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Abstract

In this short paper, we consider an n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional
versions of the gradient operator involving left Caputo and right Riemann-Liouville fractional derivatives. We study the
main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem.
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1 Introduction
In recent years, many mathematicians directed their attention to some generalizations of the Sturm-Liouville problem in
connection with other fields of Mathematics. One of the most important reasons for this emerging interest is the fact that the
orthogonal eigenfunctions’ system of the fractional Sturm-Liouville problem can be used to solve fractional partial differential
equations that are related with anomalous diffusion processes (see [2,3] and references therein indicated). We consider the
n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving
left Caputo and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the
eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal
and the eigenvalues are real and simple.

2 Preliminaries
Let a, b ∈ R with a < b and α > 0. The left and right Riemann-Liouville fractional integrals Iα

a+ and Iα
b− of order α are

given by (see [1])

(Iα
a+f) (x) = 1

Γ (α)

∫ x

a

f (t)
(x − t)1−α dt, x > a (1)

(Iα
b−f) (x) = 1

Γ (α)

∫ b

x

f (t)
(t − x)1−α dt, x < b. (2)
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By RLDα
a+ and RLDα

b− we denote the left and right Riemann-Liouville fractional derivatives of order α > 0 on [a, b] ⊂ R,
which are defined by (see [1])

(
RLDα

a+f
)

(x) =
(
DmIm−α

a+ f
)

(x) = 1
Γ(m − α)

dm

dxm

∫ x

a

f(t)
(x − t)α−m+1 dt, x > a (3)

(
RLDα

b−f
)

(x) = (−1)m
(
DmIm−α

b− f
)

(x) = (−1)m

Γ(m − α)
dm

dxm

∫ b

x

f(t)
(t − x)α−m+1 dt, x < b. (4)

Here, m = [α] + 1 and [α] means the integer part of α. Let CDα
a+ be the left Caputo fractional derivative of order α > 0

on [a, b] ⊂ R, which is defined by (see [1])

(
CDα

a+f
)

(x) =
(
Im−α

a+ Dmf
)

(x) = 1
Γ (m − α)

∫ x

a

f (m) (t)
(x − t)α−m+1 dt, x > a. (5)

We denote by Iα
a+ (Lp), with p ≥ 1, the class of functions f that are represented by the fractional integral (??) of a

summable function, that is f = Iα
a+φ, with φ ∈ Lp (a, b) . A description of the space Iα

a+ (L1) is given in [4].

Theorem 2.1 (cf. [4]) A function f belongs to Iα
a+ (L1), with α > 0, if and only if Im−α

a+ f belongs to ACm ([a, b]),
m = [α] + 1 and

(
Im−α

a+ f
)(k) (a) = 0, k = 0, . . . , m − 1.

In Theorem 2.1, ACm ([a, b]) denotes the class of functions f which are continuously differentiable on the segment [a, b]
up to the order m − 1 and f (m−1) is absolutely continuous on [a, b]. We note that the conditions

(
Im−α

a+ f
)(k) (a) = 0,

k = 0, . . . , m − 1, imply that f (k) (a) = 0, for k = 0, . . . , m − 1 (see [4]). This conclusion implies (see formula (2.4.1)
in [1]) that

(
CDα

a+f
)

(x) =
(

RLDα
a+f

)
(x). Removing the last condition in Theorem 2.1 we obtain the class of functions

that admit a summable fractional derivative.

Definition 2.2 (cf. [4]) A function f ∈ L1 (a, b) has a summable fractional derivative
(
Dα

a+f
)

(x) if
(
Im−α

a+ f
)

(x) belongs
to ACm ([a, b]), where m = [α] + 1.

If a function f admits a summable fractional derivative, then we have the following composition rules (see [4])

(
Iα

a+
CDα

a+f
)

(x) = f (x) −
m−1∑
k=0

(x − a)k

k! f (k) (a) , (6)

(
Iα

b−
RLDα

b−f
)

(x) = f (x) −
m−1∑
k=0

(b − x)α−k−1

Γ (α − k)
(
Im−α

a+ f
)(m−k−1) (b) , (7)

with m = [α]+1. We remark that if f ∈ Iα
a+ (L1) then (6) and (7) reduce to

(
Iα

a+
CDα

a+f
)

(x) =
(
Iα

b−
RLDα

b−f
)

(x) = f (x).
Nevertheless we note that CDα

a+ Iα
a+f = RLDα

b− Iα
b−f = f in both cases. Moreover, for m − 1 < α < m with m ∈ N and

β > 0 we have

Iα
b− (b − x)β−1 = Γ (β)

Γ (β + α) (b − x)β+α−1
, CDα

a+ (x − a)β−1 = Γ (β)
Γ (β − α) (x − a)β−1

. (8)

3 Fractional Sturm-Liouville problem in higher dimensions
Let us consider the following Riemann-Liouville fractional Sturm-Liouville equation in n-dimensions

−
(

RL∇α
b− ·

(
µ (x) C∇α

a+f
))

(x) = λ r (x) f (x) (9)

subject to the following Dirichlet and Neuman boundary conditions

β
[j]
1 f (x) |xj=aj

+ β
[j]
2 I

1−αj

b−
j

(
µ C

a+
j

∂αj
xj

f
)

(x) |xj=aj
= 0,

β
[j]
3 f (x) |xj=bj

+ β
[j]
4 I

1−αj

b−
j

(
µ C

a+
j

∂αj
xj

f
)

(x) |xj=bj
= 0, (10)

where j = 1, . . . , n, x ∈ Ω =
∏n

i=1]ai, bi[⊂ Rn, “ · ” is the scalar product between two vectors in Rn, and µ, r are positive
continuous scalar functions defined on Ω. Moreover
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• RL∇α
b− and C∇α

a+ are, respectively, the right Riemann-Liouville and left Caputo fractional gradient operators of order
α = (α1, . . . , αn) given by

RL∇α
b− =

n∑
i=1

ei
RL
b−

i

∂αi
xi

andC∇α
a+ =

n∑
i=1

ei
C
a+

i

∂αi
xi

,

where for i = 1, . . . , n, ei denotes the standard unit vector in the direction of xi, and the partial derivatives RL
b−

i

∂αi
xi

,
C
a+

i

∂αi
xi

, are the right Riemann-Liouville and left Caputo fractional derivatives of order αi ∈
] 1

2 , 1
]

with respect to the
variable xi ∈]ai, bi[;

• I
1−αj

b−
j

denotes the right Riemann-Liouville fractional integral of order 1 − αj with respect to the variable xj ∈]aj , bj [,
where αj ∈

] 1
2 , 1
]

and j = 1, . . . , n;

• the values of λ ∈ C for which there exists non-trivial solutions f (x) ∈ I
αj

a+
j

(Lp (Ω)), with p > 1 and j = 1, . . . , n, are
called the eigenvalues of the problem.

We remark that Lp (Ω) ⊂ L1 (Ω), for p > 1, then since f (x) ∈ I
αj

a+
j

(Lp (Ω)) we have that f (x) ∈ I
αj

a+
j

(L1 (Ω)), for every
j = 1, . . . , n. Therefore, from Theorem 2.1 we conclude that f (x) |xj=aj

= 0. Let us define the fractional Sturm-Liouville
operator RLCLα associated to problem (9)-(10) as

RLCLα := −RL∇α
b− ·

(
µ C∇α

a+

)
.

This operator can be seen as a fractional differential operator of second order since αi ∈
] 1

2 , 1
]
, for every i = 1, . . . , n.

Moreover, in the special case of α = (1, . . . , 1) and µ (x) = 1 we recover the Euclidean Laplace operator. Following the
same reasoning of the proof of Theorems 3.1, 3.2, and 3.3 in [3] we have, respectively, the following results:

Theorem 3.1 Let α∗ = min1≤i≤n{αi}, p ≥ 1, q ≥ 1 and 1
q + 1

p ≤ 1 + α∗ (p ̸= 1 and q ̸= 1 in the case 1
p + 1

q = 1 + α∗).
If h ∈ Iα

b− (Lp) and µ (x) C∇α
a+g (x) ∈ Iα

a+ (Lp), then∫
Ω

h (x) RLCLαg (x) dx =
∫

Ω
g (x) RLCLαh (x) dx.

Theorem 3.2 All the eigenvalues of the fractional Sturm-Liouville problem (9)-(10) are real.

Theorem 3.3 If f and g are two eigenfunctions of the fractional Sturm-Liouville problem (9)-(10) corresponding to the
eigenvalues λ1 and λ2, respectively, with λ1 ̸= λ2, then the eigenfunctions corresponding to different eigenvalues are
orthogonal with respect to the weight function r, i.e.,∫

Ω
r (x) f (x) g (x) dx = 0.

Now, as it was done in [3], we prove under which conditions we have that for each eigenvalue corresponds only one linearly
independent eigenfunction, up to a constant. Let λ be an eigenvalue of the fractional Sturm-Liouville problem (9)-(10) and
f the eigenfunction associated to it. For the equation in (9) we have

−
(

RL∇α
b− ·

(
µ C∇α

a+f
))

(x) = λ r (x) f (x) ⇔
n∑

i=1

RL
b−

i

∂αi
xi

(
µ (x) C

a+
i

∂αi
xi

f (x)
)

= −λ r (x) f (x) . (11)

In order to incorporate (11) and the boundary conditions defined in (10) in a single equation, we need to apply fractional
integral operators to (11). Applying firstly I

αj

b−
j

and secondly I
αj

a+
j

, taking into account (7) and (6), and making straightforward
calculations, we get that (11) is equivalent to

f (x) = (xj − aj) ξ
[j]
1 |xj=aj

+ ξ
[j]
2 |xj=bj

I
αj

a+
j

(
(bj − xj)αj−1

µ (x) Γ (αj)

)

+
n∑

i=1
i ̸=j

I
αj

a+
j

(
1

µ (x) I
αj

b−
j

RL
b−

i

∂αi
xi

(
µ (x) C

a+
i

∂αi
xi

f (x)
))

− λ I
αj

a+
j

(
1

µ (x) I
αj

b−
j

(r (x) f (x))
)

, (12)

where the constants ξ
[j]
1 |xj=aj

and ξ
[j]
2 |xj=bj

with respect to the variable xj are given by

ξ
[j]
1 |xj=aj

= f ′ (x) |xj=aj
and ξ

[j]
2 |xj=bj

= I
1−αj

b−
j

(
µ (x) C

a+
i

∂αi
xi

f (x)
)

|xj=bj
.
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Applying the operator I
1−αj

b−
j

(
µ (x) C

a+
j

∂
αj
xj

)
to both sides of (12) and taking into account the relations (8), we obtain that

(12) is equivalent to

ξ
[j]
2 |xj=bj

= I
1−αj

b−
j

(
µ (x) C

a+
j

∂αj
xj

f (x)
)

− ξ
[j]
1 |xj=aj

1
Γ (2 − αj) I

1−αj

b−
j

(µ (x) (xj − aj))

−
n∑

i=1
i ̸=j

I1
b−

j

RL
b−

i

∂αi
xi

(
µ (x) C

a+
i

∂αi
xi

f (x)
)

+ λ I1
b−

j

(r (x) f (x)) . (13)

Considering now the first boundary condition (10) and the fact that f (x)
∣∣∣∣
xj=aj

= 0, we have that

I
1−αj

b−
j

(
µ (x) C

a+
i

∂αi
xi

f (x)
) ∣∣∣∣

xj=aj

= 0.

Combining the previous conclusion and (13) (with xj = aj), we get

ξ
[j]
2 |xj=bj

= λ I1
b−

j

(r (x) f (x)) −
n∑

i=1
i ̸=j

I1
b−

j

RL
b−

i

∂αi
xi

(
µ (x) C

a+
i

∂αi
xi

f (x)
)

− ξ
[j]
1

∣∣∣∣
xj=aj

1
Γ (2 − αj) I

1−αj

b−
j

(µ (x) (xj − aj))
∣∣∣∣
xj=aj

, (14)

where ξ
[j]
1

∣∣∣∣
xj=aj

comes from the second boundary condition. Taking into account (14) and (12) with xj = bj , the second

boundary condition in (10) leads to

ξ
[j]
1 |xj=aj

= Γ (2 − αj) (bj − aj)αj−1

Γ (2 − αj) (bj − aj)αj−1 − Γ (αj) I
1−αj

b−
j

(µ (x) (xj − aj)) |xj=aj

×

−
n∑

i=1
i ̸=j

I
αj

a+
j

(
1

µ (x) I
αj

b−
j

RL
b−

i

∂αi
xi

(
µ (x) C

a+
i

∂αi
xi

f (x)
)) ∣∣∣∣

xj=bj

+

−λ I1
b−

j

(r (x) f (x)) +
n∑

i=1
i̸=j

I1
b−

j

RL
b−

i

∂αi
xi

(
µ (x) C

a+
i

∂αi
xi

f (x)
) I

αj

a+
j

(
(bj − xj)αj−1

µ (x) Γ (αj)

)∣∣∣∣
xj=bj

+ λ I
αj

a+
j

(
1

µ (x) I
αj

b−
j

(r (x) f (x))
) ∣∣∣∣

xj=bj

]
. (15)

Summing up each member of (12) from j = 1, . . . , n we obtain

f (x) =
n∑

j=1

{
(xj − aj) ξ

[j]
1

∣∣∣∣
xj=aj

+ ξ
[j]
2

∣∣∣∣
xj=bj

I
αj

a+
j

(
(bj − xj)αj−1

µ (x) Γ (αj)

)

+
n∑

i=1
i̸=j

I
αj

a+
j

(
1

µ (x) I
αj

b−
j

RL
b−

i

∂αi
xi

(
µ (x) C

a+
i

∂αi
xi

f (x)
))

− λ I
αj

a+
j

(
1

µ (x) I
αj

b−
j

(r (x) f (x))
)}

, (16)

where ξ
[j]
1 |xj=aj

and ξ
[j]
2 |xj=bj

are given by (15) and (14), respectively. We can consider (16) as a fixed point condition on
the function space C (Ω) of the form f = Tf , where Tf is the right-hand side of (16). Now we calculate the norm of the
difference between Tf and Tg for f, g ∈ C (Ω).

∥Tf − Tg∥ ≤ 1
n

n∑
j=1

(∥T1f − T1g∥ + ∥T2f − T2g∥ + ∥T3f − T3g∥ + ∥T4f − T4g∥), (17)
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where each term inside the sum in (17) is associated with a term in (16). In similar way as it was done in [3], we have the
following estimated for the four terms inside the sum in (17)

∥T1f − T1g∥ ≤ ∥ϕ7∥

[(
λ ∥r∥ ∥ϕ3∥

n2 + ∥ϕ4∥ Mµ

)∥∥ϕ2|xj=bj

∥∥+ Mµ

mµ

∥∥∥∥∥ϕ5

∣∣∣∣
xj=aj

∥∥∥∥∥+ λ ∥r∥ ∥ϕ6∥
n2 mµ

]
∥f − g∥ , (18)

∥T2f − T2g∥ ≤ ∥ϕ2∥
[

λ ∥r∥ ∥ϕ3∥
n2 + ∥ϕ4∥ Mµ

+ ∥ϕ1∥
[(

λ ∥r∥ ∥ϕ3∥
n2 + ∥ϕ4∥ Mµ

)∥∥ϕ2|xj=bj

∥∥+ Mµ

mµ

∥∥ϕ5|xj=aj

∥∥+ λ ∥r∥ ∥ϕ6∥
n2 mµ

]]
∥f − g∥ (19)

∥T3f − T3g∥ ≤ ∥ϕ5∥ Mµ

mµ
∥f − g∥ , ∥T4f − T4g∥ ≤ λ ∥r∥ ∥ϕ6∥

n2 mµ
∥f − g∥ . (20)

where

ϕ1 (x) = Γ (2 − αj) (bj − aj)αj−1

Γ (2 − αj) (bj − aj)αj−1 − Γ (αj) I
1−αj

b−
j

(µ (x) (xj − aj)) |xj=aj

, ϕ2 (xj) = I
αj

a+
j

(bj − xj)αj−1

µ (x) Γ (αj) ,

ϕ3 (x) = I1
b−

j

1, ϕ4 (x) =
n∑

i=1
i ̸=j

I1
b−

j

RL
b−

i

∂αi
xi

RL
a+

i

∂αi
xi

1,

ϕ5 (x) = I
αj

a+
j

I
αj

b−
j

n∑
i=1
i ̸=j

RL
b−

i

∂αi
xi

RL
a+

i

∂αi
xi

1, ϕ6 (x) = Iαi

a+
i

Iαi

b−
i

1,

ϕ7 (xj) = (xj − aj) ϕ1 Mµ = max
x∈Ω

|µ (x)| ,

mµ = min
x∈Ω

|µ (x)| .

(21)

From (18), (19), and (20), expression (17) becomes ∥Tf − Tg∥ ≤ ϕ8 ∥f − g∥, where

ϕ8 = 1
n

n∑
j=1

[
∥ϕ7∥

[(
λ ∥r∥ ∥ϕ3∥

n2 + ∥ϕ4∥ Mµ

)∥∥∥∥∥ϕ2

∣∣∣∣
xj=bj

∥∥∥∥∥+ Mµ

mµ

∥∥∥∥∥ϕ5

∣∣∣∣
xj=aj

∥∥∥∥∥+ λ ∥r∥ ∥ϕ2∥
n2 mµ

]

+ ∥ϕ2∥

[
λ ∥r∥ ∥ϕ3∥

n2 + ∥ϕ4∥ Mµ + ∥ϕ1∥

[(
λ ∥r∥ ∥ϕ3∥

n2 + ∥ϕ4∥ Mµ

)∥∥∥∥∥ϕ2

∣∣∣∣
xj=bj

∥∥∥∥∥+ Mµ

mµ

∥∥∥∥∥ϕ5

∣∣∣∣
xj=aj

∥∥∥∥∥+ λ ∥r∥ ∥ϕ6∥
n2 mµ

]]

+ ∥ϕ5∥ Mµ

mµ
+ λ ∥r∥ ∥ϕ6∥

n2 mµ

]
,

and ϕi, i = 1, . . . , 7, Mµ and mµ are given in (21). Under the assumption that ϕ8 < 1 we have that T is a contraction on
the space C (Ω) for a chosen norm. Therefore, the unique fixed point f exists, up to a constant, and solve (9)-(10).
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