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Abstract

In this short paper, we obtain the eigenfunctions of the uniformly distributed-order wave equation in Rn × R+, as
Laplace integral of Fox H-functions. For the particular case of the first fundamental solution, the fractional moment of
second order of the fundamental solution is studied using the Tauberian Theorem.

Keywords: Time-fractional telegraph equation; Distributed order; Hilfer fractional derivative; Laplace transform;
Fourier transform; Mellin transform; Mittag-Leffler function; Fox H-function; Fractional moments; Tauberian Theorem.

MSC 2010: 26A33; 33C60; 35C15; 35A22; 35S10; 40E05.

1 Introduction
In the last years, fractional partial differential equations with distributed order received increasing attention from researchers
on differential equations. One reason of the interest is the relation of these equations with physical processes involving
time-scales (see [1, 2] and references therein indicated). More recently, the analysis of fractional differential equations
with distributed order has been extended to the case of Hilfer (or composite) fractional derivatives (see [6] for the case of
higher dimensions). The Hilfer fractional derivative allows interpolating smoothly between the Riemann-Liouville and the
Caputo fractional derivatives. Using Fourier-Laplace transformation techniques, we obtain an integral representation of the
eigenfunctions of the uniformly distributed-order wave equation in Rn ×R+ with time-fractional Hilfer fractional deriatives.
For the particular case of the first fundamental solution, we make use of the Tauberian Theorem to study the second-order
moment.

2 Preliminaries
Let a, b ∈ R with a < b and α > 0. The left Riemann-Liouville fractional integral Iγ

a+ of order γ > 0 is given by (see [1])

(
Iγ

a+f
)

(x) = 1
Γ (γ)

∫ x

a

f (w)
(x − w)1−γ dw, x > a.

The Hilfer (or composite) fractional derivative tD
γ,ν
0+ of order γ > 0 and type 0 ≤ ν ≤ 1 is given by (see [2])

(
tD

γ,ν
0+ f

)
(t) =

(
I

ν(m−γ)
0+

d

dt

(
I

(1−ν)(m−γ)
0+ f

))
(t) , (1)
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where m = [γ] + 1 and [γ] means the integer part of γ. We observe that in the case when ν = 0 we recover the left
Riemann-Liouville fractional derivative and in the case when ν = 1 we have the left Caputo fractional derivative. The Fox
H-function Hm,n

p,q is defined, via a Mellin-Barnes type integral, by (see [3])

Hm,n
p,q

 z

(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (bq, βq)

 = 1
2πi

∫
C

∏m
j=1 Γ(bj + βjs)

∏n
i=1 Γ(1 − ai − αis)∏p

i=n+1 Γ(ai + αis)
∏q

j=m+1 Γ(1 − bj − βjs)
z−s ds, (2)

where ai, bj ∈ C, and αi, βj ∈ R+, for i = 1, . . . , p and j = 1, . . . , q, and C is a suitable contour in the complex plane
separating the poles of the two factors in the numerator (see [3]). In [6] it is proved the following result (see Corollary 3.5):

Theorem 2.1 The solution of the generalized time-fractional wave equation of distributed order in Rn × R+∫ 1

0

∫ 2

1
b2 (β, ν) t∂

β,ν
0+ u (x, t) dβ dν − c2 ∆xu (x, t) + d2 u (x, t) = q (x, t) (3)

for a given integrable order-density function b2 (β, ν), subject to the following initial and boundary conditions(
tI

(1−ν)(2−β)
0+ u

) (
x, 0+)

= g1 (x) ,

[
∂

∂t

(
tI

(1−ν)(2−β)
0+ u

)] (
x, 0+)

= g2 (x) ,

lim
|x|→+∞

u (x, t) = 0,

∫ 1

0

∫ 2

1
b2 (β, ν) dβ dν = C1 ∈ R+,

where (x, t) ∈ Rn ×R+, c, d ∈ R+, ∆x is the classical Laplace operator in Rn, and the partial time-fractional derivative of
order β ∈ ]1, 2] and type ν ∈]0, 1[ is in the Hilfer sense given by (1), is given, in terms of convolution integrals, by

u (x, t) =
∫
Rn

g1 (z) G2 (x − z, t) dz +
∫
Rn

g2 (z) G3 (x − z, t) dz +
∫
Rn

∫ t

0
q (z, w) G4 (x − z, t − w) dw dz,

where G2, G3, and G4 are given by

G2 (x, t) = −1
π

n−1
2 (2 |x|)n

∫ +∞

0

re−rt

ρ sin (γπ)

[
ρ∗ sin (γ∗π) H

(
1

|x| √
ρ

)
+ d2

c2 sin (γπ) H∗
(

1
|x| √

ρ

)]
dr,

G3 (x, t) = 1
π

n−1
2 (2 |x|)n

∫ +∞

0

e−rt

ρ sin (γπ)

[
ρ∗ sin (γ∗π) H

(
1

|x| √
ρ

)
+ d2

c2 sin (γπ) H∗
(

1
|x| √

ρ

)]
dr,

G4 (x, t) = −1
c2 π

n−1
2 (2 |x|)n

∫ +∞

0

e−rt

ρ
H∗

(
1

|x| √
ρ

)
dr

with 
ρ =

∣∣B2
(
reiπ

)∣∣
γ = 1

π
arg

(
B2

(
reiπ

)) ,


ρ∗ =

∣∣B∗
2

(
reiπ

)∣∣
γ∗ = 1

π
arg

(
B2

(
reiπ

)) , (4)

and

B2 (s) = 1
c2

(∫ 1

0

∫ 2

1
b2 (β, ν) sβ dβ dν + d2

)
B∗

2 (s) = 1
c2

(∫ 1

0

∫ 2

1
b2 (β, ν) s−ν(2−β) dβ dν + d2

) (5)

and the functions H and H∗ are expressed in terms of the following Fox H-functions

H
(

1
|x| √

ρ

)
= H0,2

3,2

 1
|x| √

ρ

(1 − n, 1) ,

(
1,

1
2

)
,

(
0,

γ

2

)
(

1 − n

2 ,
1
2

)
,

(
0,

γ

2

)
 ,

H∗
(

1
|x| √

ρ

)
= H0,2

3,2

 1
|x| √

ρ

(1 − n, 1) ,

(
0,

1
2

)
,

(
−γ,

γ

2

)
(

1 − n

2 ,
1
2

)
,

(
−γ,

γ

2

)
 . (6)
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Moreover, from the expression (86) in [6], we have that the second-order moment in the Laplace domain for the first
fundamental solution of (3) (g1 (x) = δ (x), g2 (x) = 0 = q (x, t), and d = 0) is given by

M̃2 (s) =
21−n Γ

( 5−n
2

)
π

n−1
2

s B∗
2 (s) (B2 (s))

n−5
2 , n ̸= 5 + 2k, k ∈ N0. (7)

In order to perform the Tauberian analysis in the last section, let us recall some necessary Laplace inversion formulas
that can be found in [4]:

• Formula (2.1.1.1):

L−1
{

1
sν

}
(t) = tν−1

Γ (ν) , ν > 0, (8)

• Formula (2.5.1.12):

L−1
{

1
sν

lnn (s)
}

(t) =
(

− d

dµ

)n [
tµ−1

Γ (µ)

] ∣∣∣∣∣
µ=ν

, n ∈ N. (9)

• Formula (2.5.6.5):

L−1
{

1
sν

lnµ (as)
}

(t) = aν−1

Γ (−µ)

∫ +∞

0

w−µ−1

Γ (ν + w)

(
t

a

)w+ν−1
dw, Re (µ) < 0, a > 0, Re (s) > 0. (10)

3 Uniformly distributed-order operator
The aim of this section is to obtain a representation in terms of Laplace integrals of Fox H-functions of the eigenfunctions
of the uniformly distributed-order operator. In this sense let us consider the following eigenfunction equation∫ 2

1
t∂

β,η
0+ u (x, t) dβ − c2 ∆xu (x, t) = λ u (x, t) , (11)

subject to the following initial and boundary conditions(
tI

(1−η)(2−β)
0+ u

) (
x, 0+)

= δ (x) =
n∏

i=1
δ (xi) ,

[
∂

∂t

(
tI

(1−η)(2−β)
0+ u

)] (
x, 0+)

= 0, lim
|x|→+∞

u (x, t) = 0. (12)

The boundary value problem (11)-(12) is a particular case of Theorem 2.1, where b2 is given by

b2 (β, ν) = δ (ν − η) p (β) , with p (β) = 1 and 0 < η < 1, (13)

d = i
√

λ, g1 (x) = δ (x), and g2 (x) = 0 = q (x, t). In these conditions, the integral representation of the solution of
(11)-(12) is given by

u (x, t) = −1
π

n−1
2 (2 |x|)n

∫ +∞

0

re−rt

ρ sin (γπ)

[
ρ∗ sin (γ∗π) H

(
1

|x| √
ρ

)
− λ

c2 sin (γπ) H∗
(

1
|x| √

ρ

)]
dr, (14)

where ρ, ρ∗, H, and H∗, are given, respectively by (4), and (6). Moreover, from (13), we have from (5)

B2 (s) = 1
c2

s (s − 1)
ln (s) , and B2 (s) = 1

c2 η

1 − s−η

ln (s) . (15)

Remark 3.1 If we consider λ = 0 in (11) the solution u (x, t) corresponds to the first fundamental solution.

4 Second order moment of the fundamental solution
In this section, we obtain the expression for second-order moment of the first fundamental solution of (11) in the Laplace
domain, and we apply the Tauberian Theorem to study the asymptotic behaviour in the time domain for t → 0+ and
t → +∞. Considering (15) in (7) and making straightforward calculations, we arrive to

M̃2 (s) =
21−n Γ

( 5−n
2

)
π

n−1
2 cn−3η

s n−3
2 (1 − s−η) (s − 1)

n−5
2

(ln (s))
n−3

2
, n ̸= 5 + 2k, k ∈ N0. (16)
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When s → 0+ we have the following asymptotic behaviour

M̃2 (s) =
(−1)

n−3
2 21−n Γ

( 5−n
2

)
π

n−1
2 cn−3η

s n−3
2 −η (1 − sη) (1 − s)

n−5
2

(ln (s))
n−3

2
∼

(−1)
n−3

2 21−n Γ
( 5−n

2
)

π
n−1

2 cn−3η

(ln (s))
3−n

2

sη+ 3−n
2

.

Making use of (9) (for n = 1), (8) (for n = 3), and (10) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, and
applying the Tauberian Theorem, we obtain for t → +∞

M2 (t) ∼



2c2

η

tη ln (t)
Γ (1 + η) , n = 1

c

4η
L−1

{
(− ln (s))

1
2

sη+ 1
2

}
(t) , n = 2

1
4πη

tη−1

Γ (η) , n = 3

21−n Γ
( 5−n

2
)

π
n−1

2 cn−3 η

(−1)
n−3

2

Γ
(

n−3
2

) ∫ +∞

0

w
n−5

2 tw+η+ 1−n
2

Γ
(
w + η + 3−n

2
) dw, n = 4 + 2k, k ∈ N0

.

When s → +∞ we have the following asymptotic behaviour

M̃2 (s) ∼
21−n Γ

( 5−n
2

)
π

n−1
2 cn−3η

(ln (s))
3−n

2

s4−n
.

Making use of (8) (for n = 1), (9) (for n = 3), and (10) (for n = 4 + 2k, k ∈ N0) to invert the Laplace transform, and
applying the Tauberian Theorem, we obtain for t → 0+

M2 (t) ∼



c2

η
t2 ln

(
1
t

)
, n = 1

c

4η
L−1

{
(ln (s))

1
2

s2

}
(t) , n = 2

1
4πη

, n = 3

21−n Γ
( 5−n

2
)

π
n−1

2 cn−3 η

1
Γ

(
n−3

2
) ∫ +∞

0

w
n−5

2 tw+3−n

Γ (w + 4 − n) dw, n = 4 + 2k, k ∈ N0

.

Remark 4.1 When n = 1, all the results presented in this section correspond to the correspondent ones obtained in [7]
(Section 3). Moreover, when n = 3 if we consider the limit case of η = 1 (i.e., the case where the time-fractional partial
derivatives are in the Caputo sense), we obtain the results presented in Section 5.1 of [5].
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