
 

Universidade de Aveiro 

Ano 2022 

 

Raúl Kevin do Espírito 
Santo Viana  

Deep learning architecture for fast intra-mode CUs 
partitioning in VVC 
 
Arquitetura de aprendizagem profunda para 
particionamento rápido de CUs no modo intra no 
VVC 
 

 

 

   



  



 

Universidade de Aveiro 

Ano 2022 

 

Raúl Kevin Do Espírito 
Santo Viana 
 

Deep learning architecture for fast intra-mode CUs 
partitioning in VVC 
 
Arquitetura de aprendizagem profunda para 
particionamento rápido de CUs no modo intra no 
VVC 
 

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos 
requisitos necessários à obtenção do grau de Mestre em Engenharia Eletrónica 
e Telecomunicações, realizada sob a orientação científica do Professor Doutor 
António Navarro do Departamento de Eletrónica, Telecomunicações e 
Informática da Universidade de Aveiro, com co-orientação do Professor Pedro 
Assunção do Departamento de Engenharia Eletrotécnica do Instituto Politécnico 
de Leiria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Este trabalho teve o financiamento da FCT-Programa Operacional Regional do 
Centro, fazendo parte do projeto ARoundvision CENTRO-01-0145-FEDER-
030652, Instituto de Telecomunicações (IT). 

  



  

 

 
 
 

 
 

o júri / the jury   
 

presidente / president Prof. Doutor Pétia Georgieva Georgieva 
Professora Associada do Dep. de Electrónica, Telecomunicações e Informática da Universidade de 
Aveiro. 

  

 

vogais / examiners committee Prof. Doutor Luís Alberto da Silva Cruz 
Professor Auxiliar do Dep. de Eng. Eletrotécnica da Faculdade de Ciências e Tecnologia da 
Universidade de Coimbra. 

  

 

 Prof. Doutor António José Nunes Navarro Rodrigues 
Professor Auxiliar do Dep. de Electrónica, Telecomunicações e Informática da Universidade de 
Aveiro (Orientador) 

  

 

  
 

  
 

  

  
 

  
 

  
 

  

 

 

 

  



  

agradecimentos / 
acknowlegments 

 

Graças ao contributo, que agradeço, do Instituto de Telecomunicações, 
Fundação para Ciência e Tecnologia, Universidade de Aveiro e do DETI, esta 
investigação foi realizada com sucesso. Sem a infraestrutura e o conhecimento 
disponibilizado por estas instituições, não seria possível a execução desta 
dissertação. Por isso, este documento não é a expressão de um trabalho 
individual, mas sim coletivo. Colegas, professores e os orientadores ajudaram 
na realização deste trabalho. 
Um especial agradecimento ao José Filipe pelas intervenções e comentários 
que contribuíram para o enriquecimento deste trabalho.  
Finalmente, mas de certeza não menos importante, agradeço a minha família. 
Obrigado, Maria Eduarda. Obrigado, Carla. Obrigado, Eduardo. Obrigado, 
Tatiana. Obrigado a todos meus amigos. Sem o vosso apoio este trajeto teria 
sido mais difícil.  
 
 
Thanks to the contribution, which I am grateful for, from Instituto de 
Telecomunicações,  Fundação para Ciência e Tecnologia, Universidade de  
Aveiro and DETI, this investigation was successfully carried out. Without the 
infrastructure and knowledge provided by these institutions, it would be 
impossible to execute this dissertation. Therefore, this text does not represent 
an individual's labor, but rather a community effort. Colleagues, professors and 
the supervisors helped me in the realization of this work. 
Special thanks to the José Filipe for his contributions and insightful remarks that 
enriched this work. 
Last, but certainly not least, I would want to thank my family. Thank you, Maria 
Eduarda. Thank you, Carla. Thank you, Eduardo. Thank you, Tatiana. Thanks to 
all my friends. This journey would have been more difficult without their help. 
 

 
 



  

 

 

 

 

 

 

 

 

 

 

  

palavras-chave 

 
Aprendizagem Automática, Redes Neurais Convolucionais, Aprendizagem 
Profunda, Codificação de vídeo, VVC, QTMT, Codificação Intra 

resumo 
 

 

O surgimento de novas tecnologias que proporcionam experiências audiovisuais 
criativas, como filmes em 360º, realidade virtual, realidade aumentada, 4K, 8K 
UHD e 16K, demonstram a demanda por vídeo no mundo moderno. Por causa 
desta tensão, Versatile Video Coding (VVC) foi desenvolvido devido à 
necessidade de introdução de novos padrões de codificação. Apesar dos 
avanços alcançados com a introdução deste padrão, sua complexidade 
aumentou em comparação ao seu antecessor, High Efficiency Video Coding 
(HEVC). Isso deve-se à inclusão de novas ideias, como duas novas 
transformadas, 32 novos modos de previsão intra-angular e uma nova 
metodologia de partição de blocos. A nova técnica de particionamento é 
responsável pela maior parte do aumento no tempo de codificação. Esta 
duração estendida está associada à ao processo de otimização em termos de 
bito-distorção. Embora o VVC ofereça taxas de compressão mais altas, a sua 
complexidade é alta. 
 
Tendo em conta a complexidade desta norma, esta dissertação analisa o Multi-
Stage Exit Convolutional Neural Nework (MSE-CNN). Este modelo é baseado 
em Deep Learning e está disposto numa estrutura sequencial composta por 
diversos estágios cujo objetivo é simplificar o método de partição para o modo 
intra no VVC. Cada estágio, que representa uma específica profundidade de 
partição, contém uma variedade de camadas para extrair características de uma 
Coding Tree Unit (CTU) e tomar uma decisão em como realizar a partição desta. 
O MSE-CNN reduz a complexidade através da simplificação do processo de 
partição. Logo, com este modelo, ao invés do VVC recorrer a estratégias 
recursivas para encontrar a melhor forma de dividir uma imagem, este consegue 
prever a maneira mais adequada de o fazer. Neste trabalho é apresentado um 
modelo do MSE-CNN que segue estratégias diferentes em relação à 
implementação original do treino desta rede. Com as modificações feitas foi 
possível obter, utilizando um limite de seleção conservativo, uma perda de Y-
PSNR de 0.65% e uma redução de complexidade de 41.49%. Para além destes 
resultados, foi estabelecido um conjunto de passos para tratar o dataset 
utilizado, foi criado o ground-truth para treinar e validar o modelo, e foi feita uma 
interpretação do trabalho realizado pelos criadores originais do MSE-CNN. 

 

  



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 
Machine Learning, Convolutional Neural Networks, Deep Learning, Video 
Encoding, VVC, QTMT, Intra Coding 

abstract 

 
The emergence of new technologies that provide creative audiovisual 
experiences, such as 360-degree films, virtual reality, augmented reality, 4K, 8K 
UHD, and 16K, demonstrates the demand for video data in the modern world. 
Because of this tension, Versatile Video Coding (VVC) was developed because 
of the necessity for the introduction of new coding standards. Despite the 
advancements achieved with the introduction of this standard, its complexity has 
increased in comparison to its predecessor, High Efficiency Video Coding 
(HEVC). This is due to the inclusion of new ideas such as two new transforms, 
32 new intra-angular prediction modes, and a new block partition methodology. 
The new partitioning technique is responsible for much of the increase in 
encoding time. This extended duration is linked with the optimization of the Rate-
Distortion cost (RD cost). Although VVC offers higher compression rates, the 
complexity of its encoding is high. 
 
In light of this, this dissertation examines the Multi-Stage Exit Convolutional 
Neural Network (MSE-CNN). This Deep Learning-based model is organised in 
stages in a sequential structure, with the objective of simplifying the partitioning 
scheme for intra mode VVC. Each stage, which represents a different partition 
depth, encompasses a set of layers for extracting features from a Coding Tree 
Unit (CTU) and deciding how to partition it. Instead of using recursive approaches 
to determine the optimal way to fragment an image, this model allows VVC to 
estimate the most appropriate way of doing it.  This work presents a model of the 
MSE-CNN that employs training procedures distinct from the original 
implementation of this network. With the improvements made, it was possible to 
achieve an Y-PSNR loss of 0.65% and complexity reduction of 41.49%. In 
addition to these results, a pipeline to process the used dataset was established, 
the ground-thruth to train and validate the model was created, and an 
interpretation of the work done by the MSE-CNN’s original creators was 
provided. 
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Overlapping convolution Type of convolution in which two or more consecutive receptive fields
share the same values.

Receptive field A segment of an input image used to calculate the activation of a neuron in a
feature map.
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Chapter 1

Introduction

1.1 Context and Motivation

20 years ago, the state of the technology associated with multimedia was completely different
from what we have today. Humanity went from having mobile devices that could only be used
to make calls or send SMS messages and having very slow and inconsistent video calls over the
internet; to cell phones that can be used as video players, cameras, web browsers, email clients,
navigation and social networking tools and very reliable video calls, allowing to connect instantly
with anyone anytime.

Beyond the previous mentioned improvements, many other signs of progress exists. Better
communication infrastructure, more advanced technology, and price reductions all contributed to
where we are now.

The average number of hours viewed by users and the resolution of the videos have both
increased significantly as a result of the widespread adoption of video consumption, making the
bandwidth devoted to the presentation of video footage the largest among all applications. In 2023
it is expected that the number of devices connected to IP networks will surpass by three times the
number of the global populations [1], this for sure will lead to an increase in video traffic. The
previous fact plus the introduction of new technologies that offer innovative audiovisual experiences,
such 360º films, virtual reality, augmented reality, 4K, 8K UHD, and 16K, only serves to emphasize
the requirements of video needed today. To illustrate, if a 2-hour 4K video was filmed at a resolution
of 4096 x 2160 (DCI 4K) and in the RGB colour space quantised with 8 bits, the required storage
would be around 1.39 TBs. Since 59 GBs of data would be loaded every frame, consumer-level
computers would not be able to handle this volume of raw data.

Prior to transmission or storage, a digital video’s data requirements are reduced by the process
of video compression, while maintaining a minimal loss of quality. This process is also known as
video encoding. Before a video is displayed, the complementary procedure of decoding or decom-
pressing recovers a digital video signal from a compressed representation. Spatial and temporal
characteristics are leveraged in this procedure to take advantage of the many redundancies present
in a video file. In the bellow image, many applications of this tool can be seen.
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Figure 1.1: Video coding scenarios [2]

Even if it is now simple to execute algorithms quickly thanks to advancements in computing
power, the continuous growth of video resolutions and demand for video technologies do not stop.
Thus the complexity of the encoding process cannot be dealt only based on faster processors. Large
resolution and high storage needs increase the processing time of encoding greatly since there is
more data to be analysed. Problems would still arise if one just relied on faster processing units.
For mobile devices with small batteries, such as smartphones or laptops, the usage of encoding
techniques would still be unsuitable due to excessive power consumption.

Some hardware or software solutions can be used with these extremely complicated algorithms
to expand the reach of this cutting-edge video technology without compromising its usability.
Regarding the software strategy, they all aim to optimise a certain step in the encoding process.
For example, heuristics is a technique that produces better results by making a decision based
on a set of expected outcomes. Therefore, many of the building pieces of these algorithms may
be improved by incorporating this method. An additional method is to utilise statistics to find
the most important patterns to reduce complexity. This is done by creating models that are less
complicated by computing several indicators from a vast amount of research data. The new most
trendy approach to solve many of nowadays’s problems, ranging from classification to regression,
is by using Machine Learning. By applying these algorithms, it is possible to learn patterns that
help reduce the number of computations needed to encode a video file. In addition to improving
pure software compression and decompression methods, there has been a strong emphasis on
creating dedicated hardware for such encoding tools. Since such co-processors often display a
superior performance than generic CPUs, this strategy might resolve many of the issues that were
previously raised.

There are two main types of machine learning paradigms: supervised and unsupervised. Com-
puters can learn from data using both strategies. Unsupervised learning do not use labelled data to
improve its parameters, in contrast to supervised learning, which does. Supervised learning should
be an alternative when there are limited but well-labelled data. Unsupervised learning would fre-
quently work and yield better results for large unlabeled datasets [3]. However, the best approach
is still goal dependent. The huge volume of video data makes it obvious that video encoding will
greatly benefit from this field.
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Figure 1.2: Machine Learning applications

Several video compression algorithms have been employed during the past ten years before
being quickly superseded by newer versions that provide more compression advantages with less
quality loss, such as the replacement of HEVC by VVC. It’s crucial to keep in mind that although
compression rates are increasing, complexity is also rising at a similar rate.

1.2 Scope and Learning-based Approach

In this section, the purpose of this dissertation will be discussed and also the steps to solve the
problem in hand.

1.2.1 Versatile Video Coding (VVC)

Versatile Video Coding (VVC), also referred to as H.266, is a video compression standard that
was put into place on July 6, 2020 by the Joint Video Experts Team (JVET), a collaboration
between the VCEG working group and another working group from MPEG. High Efficiency Video
Coding (HEVC), often known as H.265, was replaced by it. It was created with two main objectives
in mind: better compression performance and support for a huge variety of applications [4].

Figure 1.3: VVC logo [5]

This novel standard presents a significant improvement compared to its predecessor, HEVC,
having a compression rate 44.4% higher [6], while maintaining the same quality. This encoder not
only offers compression advantages but also enables a variety of resolutions and settings, living up
to the term ”versatile” that appears in its name. The VVC Test Model (VTM), a reference software
codebase with a basic set of coding tools, has been used in the development of VVC. Despite the
advances made with the emergence of this standard, with it also came an increase in complexity
that reaches 2000% when compared to HEVC [7]. This is due to the introduction of new concepts,
including two new transforms, 32 new intra-angular prediction modes and a new block partition
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scheme. The partitioning strategy introduced four new structures. Although it is now possible to
break apart a frame with more detail due to this update, this requires an exhaustive search in order
to find the optimal way of organizing the data. This new scheme is responsible for the majority of
the increase in encoding process time, accounting for approximately 97% of the total time [8].

In light of all mentioned in this section, this thesis proposes a potential strategy for simplifying
this standard, more specifically its block partitioning procedure. The speeding up of the compres-
sion and decompression of VVC, enables it to have a wider range of use cases, such as real-time
applications.

1.2.2 Machine Learning Approach

The machine learning field has been offering an increasing number of answers to various chal-
lenges over the past ten years. Many regression and classification problems, as well as anomaly
detection and clustering problems, started to be solved. In order to lessen the complexity issue
burden of the VVC standard, it was chosen to leverage the many tools that this area offers while
also taking into account the present state-of-the-art. For this, the Multi-Stage Exit Convolu-
tional Neural Network (MSE-CNN) was studied [10]. This network uses Deep Learning concepts
(ConvNets, LSTMs and ResNets) to simplify the partitioning process. Bearing in mind what
was mentioned above, the strategy to simplify the decision process required to achieve optimal
partitioning involves:

• firstly, coding, processing and structuring a dataset with diversified and sufficient information;

• then implement a set of neural networks that to be trained in a supervised manner, using
the data mentioned above;

• after obtaining a collection of models that went through validation and the fine-tuning pro-
cess, choose the one that yields the best results;

• finally, the neural network should be merged with the VVC Test Model (VTM), in order to
verify the performance of the standard with this modification.

In addition to these steps, it is necessary to internalize a number of concepts and technologies
in order to implement the algorithm that will be covered later in this document.

1.3 Outline

In the preceding sections, the problem and a learning-based solution for this dissertation were
introduced. The remaining of this document is divided in 6 main chapters.

In chapter 2, an explanation of the theoretical foundations necessary for a better understanding
of the developed solution will be made, concepts from codecs to ML will be elaborated.

In the following chapter, the database, composed of pictures and videos, will be described.
Topics such as its acquisition, the generation of labels through it and its processing to create
appropriate data structures used for the development of a model will be addressed.

The procedure to implement the model and how the training was done will be described in
chapter 4.

In chapter 5, the results obtained from the model will be presented, along with an discussion.
Finally, summary and conclusions of what was done in this work is presented in the last chapter,

in addition to some suggestions for improving the results as well as the main contributions of this
work.
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Chapter 2

Fundamental concepts

The two primary subjects of this work, Video Codecs (VVC, specifically) and Machine Learning,
will be introduced in this chapter. Colour spaces, video formats, compression quality, prediction
models, spatial models, entropy encoders, and VVC will all be covered regarding codecs. As for
ML, points related to this thesis will be addressed in more detail: Artificial Neural Networks,
Convolutional Neural Networks, Recurrent Neural Networks, Residual Networks, metrics used in
ML and the current applications of this field. The description of the theoretical ideas behind the
domains that make up this thesis not only assists the readers in better grasping what was done,
but also reflects the research carried out to develop this work.

2.1 Video formats

Recording a video involves obtaining all the colours or contrasts that compose a visual en-
vironment through a time interval. This is achieved by numerical representation that facilitates
representing a scene’s colour or contrast and storing its description in a specific digital format.
For example, to describe colour three elements are typically used to illustrate an entire colour
space. Although one component is enough to represent the different shades of the image, such as a
monochromatic frame. Regarding storing the video, the most popular formats are the ’intermedi-
ate’, Standard Definition (ITU-R 601) and High Definition. However, the right choice for a format
will not just depend on the medium capacity but also on the end user specifications.

2.1.1 Colour Spaces

In the world of computing, a colour space is required in order to represent colours. This space
indicates different characteristics that a given pixel must have, such as brightness and colour.
Monochromatic images do not require a parameter to specify the colour because it can be described
just by its brightness values. Since not all devices represent colours in the same way and different
spaces provide particular advantages, there are different types of colour spaces (RGB, HSV, YCbCr,
CIELAB, among others). The conversion between different spaces can result in loss of information,
thus in image quality.

RGB

RGB is one of the main colour spaces that are everywhere in our day-to-day devices, from our
TVs to our smartphones. Composed of red, green, and blue, by varying the proportions of these
three, it is possible to create any colour. This space is very appropriate for capturing and displaying
images. For a frame to be captured, each individual colour from a scenery has to be filtered out.
This is achieved through the use of sensor arrays that absorb specific wavelengths. Regarding
the displaying, an RGB image has each pixel component (red, green and blue) illuminating with
different intensities. The result of this, from a normal viewing distance, is the merging of the
components into a single colour. Usually the values for each component are stored with 8 bits, but
more can be used for higher resolution.
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Figure 2.1: RGB cube [1]

YCbCr

Figure 2.2 shows a depiction of the elements that make up the YCbCr colour space which is
commonly used in video codecs. The first image, starting from the top, is the original image, which
includes all the components merged together. The second contains only the Y component, which
consists of the contrast variation in the image. For this reason, this picture is in black and white.
The last two images, contains the chroma blue (Cb) and chroma red (Cr) components. These two
contain the colour information from the main image. It is relevant to mention that YCbCr is the
digital version of YUV.

Figure 2.2: Pictures with different YCbCr components [2]

Unlike RGB, YCbCr is a system that takes human vision into account. Since the human visual
system (HVS) has less problem distinguishing contrasts than colours, YCbCr takes advantage of
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this feature to save memory. As a result, more bits can be allocated to the luma weight rather
than to Cb and Cr (chroma), without being visually noticeable.

This type of representation minimises the amount of storage space required to save an image.
The parameters Y, Cb and Cr can be obtained directly from the RGB colour space from the
following equation,

Y = kr ∗R+ kb ∗B + kg ∗G (2.1)

Cr = R− Y

Cb = B − Y

Cg = G− Y

Y: Luma component

Cr, Cb, Cg: Chroma components

kr = 0.299, kb = 0.587, kg = 0.114 [3]: Constants

The variables kr, kb, and kg in the equation above are used to create a weighted average of the
parameters R, G, and B [3]. Of the three chroma values, only two are used (Cr and Cb). This is
because Cr + Cg + Cb is constant, implying that the component Cg can be determined given the
values of the other two and the luma.

There are 3 types of formats in YCrCb that propose different ways of grouping luma and
chroma samples. The numbers in the format naming convention indicate the sampling rate of each
component in the horizontal direction. In the format 4:4:4, for 4 samples of Y, there are 4 for
Cr and Cb. A balance between chroma and luma is achieved in this configuration. For a 4:2:2
arrangement, there are two samples of each chroma component for every four samples of Y. Then
there is the 4:2:0, which has a vertical and horizontal resolution that is half that of Y for both Cr
and Cb. This means that for 4 luma values, only 1 value is used for the blue and the red chroma.
4:2:0 is widely used in various contexts, from digital television to DVDs. This fact is due to the
storage space it occupies, requiring less memory than 4:4:4, 4:2:2 and RGB. It should be noted
that this specific format does not follow the same naming logic as the previous two.

(a) 4:4:4 (b) 4:2:2 (c) 4:2:0

Figure 2.3: YCbCr types

2.1.2 Video resolutions

In order to transmit or store video, the proper format has to be chosen so that the needs
for a specific application are met. The frame quality, available bandwidth, and the end user’s
specifications are all critical to deciding the most suitable format or resolution.

Before compression or transmission, it is common to use an ’Intermediate format’ to capture or
convert video footage. Common Intermediate Format (CIF) is part of a group of popular formats
for these types of applications. In the bellow table, they are listed.
Regarding the use for each, in devices where the display resolution and bitrate are confined, QCIF
or SQCIF are the fittest; CIF and QCIF are the most utilised in videoconferencing applications;
for DVD-video and standard-definition television, 4CIF is the ideal one.
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Format Luma resolution (horz. x
vert.)

Bits/frame (4:2:0, 8 bits
sample)

Sub-QCIF (SQCIF) 128x96 147456

Quarter CIF (QCIF) 176x144 304128

CIF 352x288 1216512

4CIF 704x576 4866048

Table 2.1: Formats based on CIF [4]

Another format to be discussed is the Standard Definition, ITU-R Recommendation BT.601-5.
This format is used for converting analogue television signals to digital and back and has been
employed as an approach for most digital consumer video formats. It uses the 4:2:2 YCrCb with
the luminance component being sampled at 13.5MHz and the chrominance at 6.75MHz. Depending
on the frame rate, the specifications of the video will be different. Thus, the parameters used for
the NTSC and PAL standards are distinct, since the former’s rate is 30Hz and the latter’s 25Hz.
Despite this dissimilarity, both norms have the same total bitrate of 216Mbps, resulting from the
lower frame rate of PAL being compensated by its higher spatial resolution. The active area is
the true region shown on the screen, so it is smaller than a frame’s actual resolution. One more
characteristic of this format is that its samples use 8 bits for quantification. The values 0 and 255
are reserved for synchronisation, and the luma range is 16 to 235 (the former number corresponding
to black and the latter to white).

30Hz frame rate 25Hz frame rate

Field per second 60 50

Lines per complete frame 525 625

Luminance samples per line 858 864

Chrominance samples per line 429 432

Bits per sample 429 432

Total bitrate 216Mbps 216Mbps

Active lines per frame 480 576

Active samples per line (Y) 720 720

Active samples per line (Cr,Cb) 360 360

Table 2.2: Standard definition formats specifications [5]

The High Definition (HD) formats are widely used in applications associated with heightened
quality video viewing, from films in the cinema to online streaming. In the following table, the
most popular ones are presented.

Format Progressive or
Interlaced

Horz. Pixels Vert. Pixels Frames or field
per second

720p Progressive 1280 720 25 frames

1080i Interlaced 1920 1080 50 fields

1080p Progressive 1920 1080 25 frames

Table 2.3: High definition formats specifications [6]

15



Comparing SD formats with HD formats, it is possible to see a big difference in the amount of
data being transmitted. A SD video has 10368000 displayed pixels per second, while a 1080p HD
video has 51840000. The latter format takes five times more storage than its counterpart. For this
reason, compressing algorithms must be used to make these formats more feasible.

Format Progressive or
Interlaced

Horz. Pixels Vert. Pixels

4K Progressive 3840 2160

8K Progressive 7680 4320

Table 2.4: Ultra High Definition (UHD) formats [7] [8]

In Table 2.4, the resolutions of Ultra High Definition (UHD) are listed. The higher pixel
density of these formats emphasises the need for more robust codecs. In today’s world, these are
the common used formats.

2.2 Video encoding techniques

According to the Shannon-Hartley Theorem, for a given communication channel that has a
certain bandwidth and noise, there is a maximum value for the transmission rate on that same
channel. Taking this theorem into account, if video files were sent without any kind of compres-
sion, they would take too long to reach the receiver. For this reason, the appearance of codecs
(enCOder/DECoder) came to facilitate transmission and storage of information. This is done
through a sequence of encoding, transmitting/storing and decoding the data (1.1). Devices that
capture, receive, store, or transfer video must thus have these codecs.

In order to compress the data, codecs exploit redundancies in the information, searching for
spatial correlations in the same image and/or temporal correlations in image sequences. When it
comes to spatial correlations, the algorithms search for similarities/redundancies between pixels
that are close to each other. In any of the frames from the Figure 2.4, it is noticeable that certain
sections of the characters’ suits are similar in colour. On the other hand, in the temporal domain,
the fact that successive frames have a lot of identical characteristics between each other is exploited.
As an illustration, the background of the sequence of frames in the previously mentioned Figure
remains unchanged.

Figure 2.4: Redundancies in frames

The compression of an image can lead to its subsequent reconstruction being very different or
not from the original file. Depending on which case it is, we will be dealing with a lossless or lossy
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codec. When compressing a video in a lossless way no information is lost. In other words, after
decoding the resulting output is an exact copy of the input. However, in this type the encoding
gains are modest. Contrarily, in lossy the compression ability is much higher than the previous
type, but the quality loss of the reconstructed file is higher. Due to existing deterioration, these
algorithms take into account HSV, thus allowing the quality reduction to be less noticeable.

In this section, the most relevant concepts of codecs, in the context of the solution developed
in this thesis, will be mentioned. Namely the following topics: Codec Model, Prediction Models,
Partitioning, Spatial Model and Entropy Encoding.

2.2.1 Codec Model

The goal of any codec is to describe a collection of picture sequences in a more simplified design.
All of them have the same basic structure, which is composed of: a prediction model, a spatial
model and an entropy encoder.

Figure 2.5: General Model of a Encoder

These algorithms accept one or more uncompressed images as input, which are then sent to the
prediction model. By exploring similarities between frames and/or samples of the same picture,
the encoder can predict a section or the entire image. If samples from the same frame are used, we
are dealing with an intra prediction. Whereas in the case where sequences are used, the prediction
is called inter or motion compensated. At the output of the prediction model, there is the residual
frame/block, resulting from the subtraction between the forecast and the image/reference block,
and also a set of parameters with information about the configurations of the executed process.
Then this residual data is forwarded to the spatial model. Inside this block, the residue is prepared
in order to reduce spatial redundancy. For this purpose, it is typically applied to data transforms
and quantisation. The use of the transforms allows the conversion of samples to a new domain.
Quantization makes it possible to remove insignificant values and characterize the residue more
compactly. This stage outputs a set of quantised transform coefficients. In the last phase, the
results of the prediction model and the spatial model are compressed by the entropy encoder. This
encoder gathers all the information that has been manipulated, removes redundant content and
generates a sequence of bits ready to be stored or transmitted.
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Figure 2.6: General Model of a Decoder

Since the decoder may only use the data provided by the encoder to reconstruct a frame
sequence, it must do the opposite procedure from the encoder to rearrange the information. After
the coded coefficients and parameters are read, they pass through the entropy decoder where
they are interpreted. Then, they go through the spatial model in order to obtain the residual
frame/block. In the end, using the prediction parameters and previously decoded pixels, the
various images that make up the file are retrieved.

2.2.2 Prediction Model

Most of the codecs’ compression gains come from the prediction model, which plays a key role
in video encoding. Given one or more images it can use spatial and/or temporal correlations to
build a simplified representation of the input sequences. The final product of this process is a set
of residues, resulting from the difference between the reference and predicted samples. The more
accurate the prediction, the smaller the variance of the residual block, thus allowing a reduction
in the number of bits to represent the information. With the residual data and the configuration
to make the prediction, it becomes possible to reconstruct the original video.

Intra Prediction

In intra prediction, previously encoded blocks are compared with other sections of the same
reference image. This procedure is used to identify the blocks that have the most similarities with
one another, taking advantage of spatial redundancy. This idea consists of the fact that the pixels
that are closer to each other have identical characteristics. For this reason, some regions of a
picture can be used to represent other parts, without significant differences between the original
and final image. Figure 2.7 illustrates this point with a portion of a picture of a blue sky. The
pixels inside the 4x4 block are extrapolated by using the pixels above and to the left of the block.
The prediction pixels are often located quite near the block being predicted.
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Figure 2.7: Intra Prediction

When a section is selected using this method, to it a prediction mode is assigned and also a
motion vector is calculated for it. These parameters provide the encoder with information about
the reference pixels and the location of the anticipated block. For example, in VVC there are 67
intra modes, of which 65 are directional, one planar and one DC. This implies that 67 different
prediction scenarios are tested for each block in order to determine the combination of blocks that
are most similar to each other.

Inter Prediction

In this type of prediction, the encoder takes advantage of temporal redundancy. A video is
composed of several frames organised through time, so sequences close to each other share roughly
the same amount of information. Thus using these similar sections from various images, it is
possible to reduce the amount of storage needed to represent the file. Inter prediction allows the
codec to use blocks from different frames to represent other areas. After finding a match with
the most similarities (motion estimation), a motion compensation prediction is computed, and a
motion vector is calculated. All this is then transmitted to the next stage of the encoder.

Figure 2.8: Inter Prediction [9]

It is important to note that pixels from past, present and future can be used for prediction, as
shown in Figure 2.8

Residual

The metric used to obtain the degree of similarities between blocks of pixels is the SAE (Sum
of Absolute Errors):
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SAE =

N∑
i=1

|Oi − Pi| (2.2)

O: vector containing the block’s pixels for prediction

P: vector with the predicted block’s pixels

By calculating this metric, the residual is obtained. The selection of the most appropriate mode
for a set of predictions is based on the mode that leads to the minimization of the residual, i.e.,
the most appropriate mode will be the one that has the smallest SAE.

2.2.3 Partitioning

Before the intra or inter prediction is executed, the video frames are divided into rectangu-
lar structures, known as macroblocks, Coding Tree Units or superblocks. This process is called
partitioning. Since using large blocks to divide an image isn’t always superior, the use of smaller
structures is sometimes required to fit the needs of regions that have more texture or detail. The
use of small shapes makes the prediction more exact, leading to a less distorted outcome of the
encoding result. Yet, the excessive use of it leads to the increase of bits to represent a frame, be-
cause more blocks mean more instructions. This methodology consists of finding the best manner
of splitting frames into blocks in order to find a good balance between the bitrate and distortion.

Figure 2.9: Partitioning [10]

Coding Tree Units

A CTU typically is composed of three Coding Three Blocks: one for luma and two for croma.
The initial size of the CTUs is defined within the codec and can be either 128x128 or 64x64. The
choice of these dimensions will affect the coding of the video file. It is expected that for ample
pictures the use of large sizes of superblocks yields better results since they can take advantage of big
areas with little colour variation in the pixels. After the partitioning of the image into macroblocks,
they can be subdivided recursively into smaller structures called Coding Units (CUs).

Rate-Distortion Optimization

The metric that is used to obtain optimal block partitioning in each frame of a video sequence
is called Rate-distortion Cost (RD cost), specified as
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J = D + λ ∗R (2.3)

D: the distortion

λ: Lagrangian weighting factor (depends on the QP)

R: bitrate

As noted before, this RD cost represents the trade-off between the number of bits used to encode
and the quality loss of the frames. Depending on the application, this balance tends towards one
facet or the other. For instance, in the case that an HD video is required, the amount of smaller
blocks will increase, thus the distortion will be less impacted. However, the compression ability
will be reduced.

The optimal value for the RD cost is obtained through a process of Rate-Distortion Opti-
mization (RDO). Through this procedure, the encoder recursively searches for the proper way of
breaking the frames into pieces until it finds the global minima for the RD cost. A trial-and-error
approach is conducted to find the best block partitioning. The use of RDO imposes a real challenge
in the codec speed, because of the huge computational complexity needed to minimise the RD cost
being.

2.2.4 Spatial Model

In this stage, the goal is to reduce the amount of redundant data existing inside the residual
obtained from the prediction. In other words, the objective is to decrease the number of bits
needed to represent the information. To achieve this reduction, transforms and quantisation are
typically used. Moreover, the process of using transforms is to enable quantisation in order to
remove irrelevant data from the residual. The following sections explain these two concepts with
more clarity.

Transforms

Data sometimes can not be easily handled in specific domains. So to ease the use of the
information, transforms are used to represent the information as sets of uncorrelated coefficients.
The most significant advantage of this tool is that it is lossless and reversible (inverse transform).
Its usage allows it to manage data in the transform domain and convert it back to its original one
without losing any information.

There are two main categories of transform in video coding: block-based and image-based.
Block-based needs less memory to function and are well fitted in the compression of block-based
motion compensation residuals, though they suffer from artefacts at block edges. On the other
hand, image-based transforms memory requirements are high and are meant to operate with an
entire image or a large section — this category shows better compression results in still images
than the previous one.

The primary video codec transforms are the Discrete Cosine Transform (DCT) and the Discrete
Sine Transforms (DST). These two fall into the category of block-based. They receive as input
NxN residual blocks and output a new one with frequency components. Each frequency represents
a coefficient. The higher the value, the more variation there is in the block’s pixels. These types
of components are the ones that are more helpful to humans since we are more sensitive to their
change. For this reason, these coefficients are less quantised.
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Figure 2.10: Illustration of application of transform

Quantisation

During quantisation, insignificant coefficients from the transform block are removed. This
technique aims to map a signal that is represented with X amount of bits with fewer bits. The
usage of this method causes a reduction in the precision of the image data. The reduction is
accomplished by dividing the values from the transform by the Quantisation Parameter (QP),
obtaining the integers from the result, and afterwards removing small coefficients, like numbers
near zero. If QP is a large number, the compression level will be higher, and the amount of loss
data will also increase. However, if it is a small parameter, the opposite happens. There will be
more proximity between the original values and the re-scaled ones (less data loss), and the number
of bits required to represent the information increases. The choice of the QP has to take these
principles into account.

After quantisation, the blocks are composed mainly of zero-valued coefficients and a few non-
zero ones. In order to increase clusters of similar values, these numbers are re-ordered in 1-
dimension. Subsequently, the zero-valued weights are efficiently encoded, taking advantage of
clusters previously created.

2.2.5 Entropy Encoding

Entropy encoding is a lossless process that takes as input a series of symbols describing compo-
nents of a video sequence and outputs a appropriate compressed bitstream for transmission/storage.
The input ranges from motion vectors and macroblock headers to quantised transform weights and
other configuration parameters. The data is compressed by taking advantage of frequently occur-
ring input symbols and representing them by a more straightforward structure, allowing fewer bits
to be used. For instance, previously encoded motion vectors can be utilised to compute others.
Then, instead of transmitting the vector, the instructions to generate it are provided.

2.3 Subjective and Objective Quality

After encoding, evaluation of compression quality is necessary in order to rate the codec perfor-
mance. Visual quality measurement is associated with the HVS. Since this measurement depends
on the condition of the HVS, it is inherently subjective. The clarity of a video is determined by
elements like spatial fidelity, which describes how noticeable a distortion is, and temporal fidelity,
which depicts how smoothly a transition occurs between successive frames.

Given the subjectivity associated with measuring quality, developers of codecs and video pro-
cessing systems end up using a more objective metric, the Peak Signal to Noise Ratio (PSNR).

PSNR = 10 ∗ log10
(2n − 1)2

MSE
(2.4)

n: number of bits per image sample
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The PSNR is represented on a logarithmic scale and results from the square between the
maximum possible value in the signal and the Mean Squared Error (MSE) between the original
and the compressed image.

MSE =
1

M ∗N

M−1∑
i=0

N−1∑
k=0

[O(i, k)− C(i, k)]2 (2.5)

O: original image

C: compressed image

Despite being widely used in the scientific community, the PSNR is still not a good metric.
The Figure 2.11b and 2.11c have a PSNR of 28.3dB and 27.7dB, respectively, compared to the
original image (2.11a). The higher the PSNR, the higher the quality denotation. On one hand,
through a visual (subjective) analysis, it appears that the picture on the right is the one with the
greatest clearness, namely due to the sharpness of the face. However, on the other hand, through
a (objective) comparison between the two using the PSNR, it appears that the one on the left is
the superior one. These two examples highlight the dichotomy between subjective and objective
quality.

(a) Original image (b) 28.3dB (c) 27.7dB

Figure 2.11: Subjective vs Objective quality [11]

2.4 Standard Codec

In this Chapter, some more particular topics about VVC will be covered and a comparison
between it and its predecessor will be made. The concept of partitioning in VVC will be detailed,
as it has a vital role in the work done in this thesis.

2.4.1 Block-based Codec

In a block-based hybrid codec, an image is divided into several blocks of pixels and forwards
this information to the prediction model. It is called hybrid because it supports intra and inter
operating modes. The strategy implemented by this type of encoder makes space for a simple
and practical algorithm, which allows the use of block-based transforms (such as the Discrete
Cosine Transform), and establishes a competent temporal model. Despite the advantages, this
method brings with it some problems, all associated with the fact that real-life objects have a
complex appearance and motion. VVC, HEVC, AVC, and their predecessors are hybrid block-
based encoders. All of them contain a prediction model, a transform application and quantisation
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stage, and an entropy encoder. However, although they have functional blocks in common, the
behaviour of each block in the standards is different, with the newer versions having the highest
amount of complexity due to their greater diversity.

2.4.2 Partitioning in VVC and HEVC

The key objective of partitioning is to divide frames into pieces in a way that results in a
reduction of the RD cost. To achieve a perfect balance of quality and bitrate, numerous image
fragments combinations must be tested, which is computationally expensive. Due to the intensive
nature of this process, a high compression rate can be attained. Partitioning contributes heavily
to both the complexity and compression gains in both VVC and HEVC. When comparing this
method in each, it is possible to verify that the levels of both mentioned metrics are higher in
H.266. This achievement and downside are the results of a more refined partitioning scheme.

Comparing H.266 with H.265, some similarities can be seen when it comes to partitioning. Both
codecs, since they are block-based, organize a video sequence in many frames that are divided into
smaller pieces. First, pictures are split into CTUs, and then they are divided into CUs. After this
procedure, the behaviour is standard dependent. For the luma channel, the largest CTU size in
VVC is 128x128 while the largest CTU size in HEVC is 64x64. Regarding the minimum size of a
CU, it is 4x4 for the former and 8x8 for the latter.

The partitioning procedures for HEVC and VVC start to differ after the conversion of a batch
of frames into CUs. In HEVC, CUs are always split in a quarternary tree (quad-tree) partition,
meaning that all of them will have square shapes. The sizes of these structures range from 64x64
to 8x8, with powers of two and the same value for both width and height. Such setups restrict
the codec ability to predict since it has few options for determining the proper CU size to match a
particular area of an image. A prediction unit (PU) is created as a result of the splitting of a CU.
It can have the same dimensions as a CU plus a 4x4 size, and predictions are made using it.

Figure 2.12: Partitions in HEVC

On the other hand, VVC uses a different type of partitioning scheme. A quad-tree is initially
applied to the CTUs in the first level, and then a quad-tree with nested multi-type tree (QTMT)
is applied recursively (Figure 2.13). This innovation makes it possible to split CUs in different
rectangle forms besides simply square ones. Splitting a CU into three rectangles with a ratio of
1:2:1 results in a ternary tree (TT), with the center rectangle being half the size of the original
CU. When applied horizontally it is called a horizontal ternary tree (HTT), and vertical ternary
tree (VTT) when it is done vertically. A binary tree (BT) partitions a block into two symmetrical
structures. Like the case of the TT, depending on the way the split is done, it can be called either
a vertical binary tree (VBT) or a horizontal binary tree (HBT). The association of BT and TT
is named a multi-type tree. The introduction of BT and TT partitions enables the creation of
various new types of forms, with heights and widths that can be a combination between 128, 64,
32, 16, 8 and 4. The increased number of possible CUs boosts the ability of the codec to fragment
an image more efficiently, allowing better predictions. Thus, increasing the compressing power.
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Figure 2.13: Partitions in VVC [12]

Furthermore, a set of guidelines are followed during the partitioning process to prevent the devel-
opment of the same CU through a different sequence of splits. For instance, after a QT node is split
using TT the resulting middle sub-part can not be partitioned using a BT in the same direction
(Figure 2.14a). Because it is possible to acquire the identical sub-parts by using BT followed by
another BT in both resultant blocks, this sequence of splits is prohibited. A second case is when
a QT node is split using BT and the top sub-part is applied VBT, the other portion cannot be
partitioned in the same manner (Figure 2.14b). The reason for this is that the end set of CUs
could also be obtained through the use of a QT partition. Similar restrictions like these are also
predicted in the codec. Additionally, the QT partition can not be applied again after the MT is
utilised, no matter whether the MT node sub-block shape is a square or not.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 2.14: Partitioning Restrictions in VVC [13]

VVC complexity analysis

The VVC partitioning process is the most complex when compared with the previous standards.
This is verified both empirically and through the theory outlined in the preceding paragraph.
In [14] the effectiveness and complexity of VVC and HEVC’s coding were compared by the authors
using a variety of omnidirectional video sequences, along with various QPs. It was determined
that the H.266 standard takes 4.07 times longer to encode video sequences than its predecessor
on average. Another comparable research was done in [15], except in this one, multiple modules
from both codecs were examined using standard video sequences. The findings from these authors
were consistent with the previous mentioned paper. Without Single Instruction/Multiple Data
(SIMD), VVC saw a complexity increase of 15.88, while with SIMD, it experienced a gain of 10.17.
In this context, SIMD refers to a type of parallel processing that optimizes the coding process.
This investigation also came to the conclusion that Filtering and intra prediction were the two
modules with the biggest complexity increase. The complexity reduction potential for three VVC
tools—Multiple Transform Selection (MTS), Intra Mode Prediction (IMP), and Block Partitioning
(BP)—was investigated by the writers of [16]. In this experiment, the encoding time was recorded
while each of the codec components were alternately disabled and enabled. A decrease of up to
97% was shown to be attainable for BP, 55% for MTS, and 65% for IMP, it was determined. With
this result, it is evident that the partitioning process could be greatly simplified for VVC.
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Figure 2.15: Codec components and possible complexity reduction when they are disabled [16]

2.5 Deep Learning

Frank Rosenblatt is considered the father of Deep Learning (DL) since he built and researched
the fundamental component of this field, the perceptron [17]. Although his discoveries were made
in the 60s, it took 20 years for more research and interest to develop in this field of study.

While machine learning (ML) is a branch of Artificial Intelligence (AI), DL is a ML sub-branch
(Figure 2.16). The data that they use is what makes DL and ML so different from one another.
While ML leverages labelled and structured data, DL uses data that is more in its raw state. In
order to generate a model with the former, certain attributes from the data must be manually
chosen. The latter, however, can extract the features required to complete a certain task. Both
ML and DL teaches computers to do what comes naturally to humans: learn by example. DL
algorithms self-learn to identify hidden patterns in data using enormous datasets and a large
computing capacity. Driverless vehicles, chatbots, and other innovations are part of the many
applications in this field.

26



Figure 2.16: AI, ML and DL

ML models may learn in a variety of ways, which the main two are: supervised learning
and unsupervised learning. To categorise or make predictions, supervised learning uses labelled
datasets; this involves some sort of human interaction to accurately label input data. Unsupervised
learning, in contrast, does not require labelled information; instead, it analyses the data for patterns
and groups them according to a specific identifying traits.

Implementing a learning mechanism will help a model grasp what the output should be given a
certain input. In order to increase the accuracy of the results, learning entails changing the weights
of the network. The observed mistakes are minimised to achieve this. Learning is complete when
looking at more data does not improve the algorithm performance. A cost function, or loss function,
is designed in order to train the network and improve its capability for sound decision-making. The
more the outputs of the model are close to the expected value, the lower the cost function value is.
The majority of learning models may be seen as a simple integration of statistical estimates and
optimization theory.

Backpropagation is a technique used to modify the weights in order to reduce the error during
learning. For a single input-output example, backpropagation calculates the gradient of the loss
function with respect to the network weights and updates them. Since this procedure is gradient-
based, techniques that resemble gradient descent can be employed to update the weights.

Modern DL networks can have many layers and parameters. As an example, Google’s GoogleNet
has around 6.8M parameters. A staggering amount of computations must be performed for these
enormous models. In the last 4 years, large-scale cloud AI training has mostly moved away from
CPUs and onto Graphic Processing Units (GPUs) [18]. The capacity of a GPU to do computa-
tions in parallel is one of its most valued features, making it suitable for the learning process of
DL algorithms. Comparing GPU capabilities to those of a CPU, the paralleling ability makes the
execution of many calculations at the same time more advantageous than the versatility abilities
of a CPU.

It is important to note that DL, although a sub-field of ML, encompasses a wide range of
research fields. Therefore, this Section will only discuss the pertinent subjects that were crucial to
the creation of this thesis’s proposed solution. There will be an introduction to Artificial Neural
Networks, Convolutional Neural Networks, Residual Neural Networks, and Metrics. A summary
of the most recent Deep Learning approaches is presented at the end of this section.
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2.5.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANN) are powerful models whose main idea is derived from the
nervous system of animals. The nervous system’s basic element is the neuron and they can be
arranged into circuits that handle particular types of information. An example of a neuron is seen
in the Figure 2.17. The axon, dendrite, myelin, and cell body are this cell’s primary elements. The
configuration of neural circuits varies widely depending on the desired function, but all sets have
common characteristics.

Figure 2.17: Neuron [19]

With the core concepts of how these biological structures function, the artificial neuron (also
known as a perceptron or node) was created. Just like its biological counterpart, one or more inputs
are given to the perceptron and their aggregate results in an activation. A non-linear function
known as an activation function is typically applied after each input is individually weighted, as
represented in Figure 2.18. Depending on the application, this structure can have different inputs
and outputs. Images, audio, or text can all be used as input, while the output might be any real
number.

Figure 2.18: Artificial Neuron [20]

A collection of nodes organized in a specific way is considered an ANNs. In this organization,
the output of a neuron is passed down to another one until the final output is obtained. Depending
on the complexity of the network it can have a lot of layers and many nodes. The first layer is
called Input Layer, the last one Output Layer and the ones in between are Hidden Layers (Figure
2.19).
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Figure 2.19: Artificial Neural Network [21]

Depending on the number of layers of an ANN, it can be considered either a Shallow Neural
Network or a Deep Neural Network. Although there isn’t a particular depth at which shallow
and deep learning are mutually exclusive, most researchers agree that deep learning requires at
least three layers. It has been demonstrated that an approximator with this many layers may
estimate any function [22]. Deep Neural Networks help in decoupling abstractions and identifying
the features that enhance performance. As a result, bigger networks are better equipped to identify
patterns in the data. Figure 2.20 demonstrates this concept by illustrating how the first layers
begin to detect fundamental traits and the last layers more intricate ones.

Figure 2.20: Feature extraction [23]

Transfer learning in deep learning is the act of transferring the weights from one model designed
for a specific purpose to another. The model with the updated weights is typically subsequently
modelled to match the new problem, in a process known as fine-tuning. Since a network’s earliest
layers extract fundamental features and its final levels build on that knowledge, it is common for
the final layers to undergo a second training phase using fresh data in order to better serve their
new function. This strategy not only speeds up the training process, by just using the last layers
rather than the complete network, but it also offers a great deal of flexibility by reusing previously
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trained weights.

2.5.2 Residual Neural Networks (ResNet)

Sometimes the size of an ANN needs to be dramatically increased in order to address extremely
difficult challenges, however when we add more layers, a typical issue in deep learning known as the
vanishing/exploding gradient arises. This means that the gradient tends to zero or to a very large
number. Therefore, the training and test error rate similarly increases as the number of layers is
increased.

Figure 2.21: Residual Block

To solve the vanishing/exploding gradient problem, residual blocks [24] were developed. The
skip connections technique is used by this network. The skip connection links the activation of one
layer to the output of the weights of a subsequent one, creating a residual block, as seen in Figure
2.21. To build ResNets, these blocks are stacked.

2.5.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are neural networks that use the mathematical tech-
nique known as convolution. Convolution is a particular sort of linear operation where kernels or
filters move along input data and produce a group of values that collectively make up a feature
map. This model is in essence a neural network with convolution used in at least one layer instead
of standard matrix multiplication. Since the use of multi-layer perceptrons in certain problems
may lead to giant networks and the fact that they are prone to overfitting, CNNs become a viable
solution for those problems. CNNs become a more practical option because the usage of multi-layer
perceptrons may occasionally result in massive networks. Before CNNs, identifying objects in pic-
tures required the use of laborious manual feature extraction techniques. By extracting patterns
in an image, CNNs now provide a more scalable method for tasks such as object detection and
image classification. However, they can be computationally demanding, requiring GPUs for model
training.
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Figure 2.22: Convolution operation

Figure 2.22 illustrates the convolution operation in 2D data. Starting from the top left of the
input data, the four weights in the kernel multiply with the numbers in the input data that are in
the same location as them. Following that, the outputs of the four processes are added together
to get the feature map initial value, which is 2 ∗ 0 + 1 ∗ 1 + 1 ∗ 0 + 3 ∗ 0 = 1. The next phase is
a slide to the right by the kernel, followed by the same computations but with different numbers.
When the input data’s rightmost limit is reached, the kernel moves downwards and returns to the
leftmost section. The process is then repeated up until the right bottom portion of the input grid
is reached. Data that are in other dimensions are handled using a similar approach.

Regarding the kernel, there are some relevant hyperparameters to note: the stride, the number
of filters and the padding. The stride is the number of pixels that the kernel moves in each step it
takes (rightwards and downwards) on the input matrix. The number of filters affects the depth of
the feature map. Finally, padding is done by appending zero values to the input data boundaries.

Convolutional layers are only one of a few layers that a CNN contains. In order to reduce the
number of parameters in the input, the Pooling layer performs dimensionality reduction. The main
difference between this layer and the convolutional one is that the former do not contain weights.
In these layers, a choice is made that affects the entire region the filter overlaps. Max-pooling is the
process of moving a filter over the input and choosing the pixel with the highest value. In contrast,
average pooling outputs the average value found inside the receptive field. The fully-connected
(FC) layer is a further layer that is constituent of a CNN. This layer serves as the output layer of
the model and consists of collection of perceptrons.

2.5.4 Recurrent Neural Networks (RNNs)

An RNN is a type of neural network that results from many similar nodes linked together se-
quentially. During calculation, RNNs have structures in which information about the computation
is stored. Due to the ability to store previous obtained knowledge, a RNN can handle sequential
data and can accept both the current input data and the ones received in the past. Natural lan-
guage processing (NLP), speech recognition, and other temporal problems and matters where the
order of the data is relevant are frequently addressed by these networks. In the Figure 2.23, there
are various types of RNNs presented. The sequential nature of this network can be seen in the
configurations 2.23a, 2.23b, and 2.23c, where the output of a node is influenced not only by its
input X0,1,2, but also by the activation of the previous node. In this Image, it is also possible to
see that each node can have its own output.
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(a) One-to-Many (b) Many-to-one (c) Many-to-Many

Figure 2.23: Types of RNN [25]

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GTU) are the two main RNN
variants. LSTM is a more sophisticated recurrent neural network architecture that was created to
simulate more accurately chronological sequences and their long-range relationships. This variant
prevents the vanishing gradient challenges posed by traditional RNNs [26]. Regarding the GRUs,
they are comparable to LSTMs in terms of structure, but they contain fewer parameters. In Figure
2.24, it is possible to see that the GRU as a simpler architecture.

(a) GRU (b) LSTM

Figure 2.24: Main versions of RNNs [27]

2.5.5 Metrics

Every machine learning pipeline has quality measurements. Progress in the training process and
the quality of model itself, is quantified through these metrics. These indicate what characteristics
in the results of the model are most important. Therefore, it is essential to use the appropriate
criterion when assessing any model. Metrics may be classified into many different categories,
including regression metrics, classification metrics, ranking metrics, statistical metrics, and many
more. In the context of this thesis, only classification metrics will be addressed.

It is important to understand binary classification in order to properly comprehend the classi-
fication metrics used in ML. This technique separates a collection of data into two groups, one of
which is thought to be positive and the other to be negative. Four categories were established in
order to specify a relationship between the model’s predictions and the actual ground-truth:

• True Positives (TP): this happens when the actual class and the projected class are both
members of the positive class.

• True Negatives (TN): occurs when both the actual class and the projected class are members
of the negative class.

• False Positive (FP): the situation in which the actual class belongs to the negative class while
the predicted class belongs to the positive one.

• False Negative (FN): this occurs when the predicted class is from the negative and the actual
class is from the positive.
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Figure 2.25: Binary classification

It is crucial to be aware that accuracy might be a deceptive measure. In issues with unbalanced
classes, if a class makes up 90% of the total data and the model’s ability to predict it is enormous
when compared to the other classes, this measure will not reflect the model’s robustness regarding
prediction. The other metrics presented in the Table 2.5 are capable of showcasing the imbalances
in the data.

Metric Description Equation

Accuracy The proportion of accurate predictions
to all predictions

Accuracy = TN+TP
TN+TP+FP+FN

Precision The proportion of the correctly
predicted classes from all the classes
that were considered positive

Precision = TP
TP+FP

Recall The percentage of samples from the
positive class that the model
successfully predicts

Recall = TP
TP+FN

Specificity The proportion of samples from the
negative class that the model correctly
predicts

Specificity = TN
TN+FP

F1-Score The weighted average for precision and
recall. Provides a broad overview of
the model’s ability to predict both
positive and negative classes

F1score =
2∗Precision∗Recall
Precision+Recall

Table 2.5: Classification metrics

A confusion matrix is a summary table showing the number of accurate and wrong predictions
generated by a classifier. These can only be used in supervised learning algorithms where the
output distribution is known.

Confusion matrices are extensively utilised because they provide a more precise representation
of a model’s performance than accuracy. In the example in Figure 2.26, a confusion matrix is
shown. The forecasts are in the columns, while the ground-truth of the model is in the lines.
This table displays the frequency with which each category was assigned to a certain class. In the
example, it is clear that 992 of the ”cat” samples were correctly labelled, while 14 and 41 of the
other samples were labelled as dogs and mice, respectively. Similar information may be derived
from the other classes. This data can alternatively be expressed in a normalised format.
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Figure 2.26: Confusion matrix example

This matrix’s information may be utilised to calculate the previously mentioned metrics, Recall,
Precision, and F1-Score. This is done by picking one class from each group to be the positive class
and the others to be the negative classes.

2.5.6 Machine Learning Applications

Year after year, it becomes evident that ML and the algorithms that comprise it can tackle
several problems in different fields. Numerous classification and regression problems can be solved
by supervised learning algorithms such as Random Forest (RF), Decision Trees (DT), Support
Vector Machines (SVM), K Nearest Neighbors (KNN), Naive Bayes (NB), Logistic Regression
(LR), Linear Regression, Deep Learning Networks, and many others. Several of these algorithms
improved fields ranging from health to the environment, with some of them outperforming conven-
tional tactics. The abundance of data available now is one of the primary reasons for the growth
of this domain. With the increase of amount of information available, several ML algorithms are
able to generalise more effectively.

Even if ML is still in its infancy, the accomplishments that have already been made are tremen-
dous. Providing evidence that it has become a permanent part of human existence. In this portion,
the present state-of-the-art of this groundbreaking scientific discipline will be reviewed.

Energy

Attempts have been made to apply ML to the topic of energy. In [28], the novel applications
of ML in renewable energy data are discussed. Linear regression, LR, DT, SVM, NB, KNN, K-
Means, RF, DRA, and GBA were identified as the most prevalent techniques used to work with
energy data. Additionally, some application examples of a couple of these methods are provided.
In [29], for instance, a strategy to improve the accuracy and sensitivity of Heating, Ventilation,
and Air Conditioning (HVAC) power consumption forecast was developed. This was accomplished
by employing clustering techniques on the data, constructing a model by converting the clustered
hourly data to monthly data, and applying the NB classifier to categorize the hourly data under
different operating conditions into the energy consumption model with the smallest prediction
error. Moreover, a comparison was done between an ANN, the NB, and a Multi-Variable regression
(MVR) model; in this instance, the NB generated the best results, achieving a normalised mean
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bias error (NMBE) of 0.73%. Furthermore, [28] guides how to approach modelling in this setting.
For example, short, medium, and long-term power projections are required due to the necessity for
efficient grid operation and management. The most popular method for forecasting medium and
long-term trends based on historical and socioeconomic factors is the MVR. Statistical approaches
and DL methods such as neural networks and other from the family are recommended for short-
term forecasts.

Health

Concerning health, several ML strategies were also utilised to tackle obstacles. In [30], a
variety of DL applications in the health field are described. One of the applications mentioned
was in [31], in which a CNN was used to predict whether digitised film mammograms contained
cancer or not. On the Digital Database for Screening Mammography (CBIS-DDSM) test set, the
best model scored an AUC of 0.88 per picture, but on the INbreast database test set, the best
model achieved an AUC of 0.95 per picture. It is essential to note that several models were also
developed. Using a combination of the built models to categorise the photos yielded an AUC
of 0.91 for the first dataset and 0.98 for the second. Additionally, the constructed CNNs were
based on two renowned topologies, the ResNet50 and the VGG-16. To use these architectures,
pre-trained weights and transfer learning techniques were applied. The implementation of these
network designs demonstrates the adaptability of these models, as they were not created for this
kind of application. Moreover, in [30], DL approaches are the most used in medical imaging, despite
the reduced availability of annotated data in this area.

Environment

The environmental area has also profited from the contributions of machine learning. ML
techniques were utilised in [32] to estimate the Air Quality Index (AQI). The data was collected
from major industrialised cities in India, including Bangalore, Delhi, and Ahmedabad. In this
investigation, the researchers assessed the performance of DT, LR, RF, and GB models, as well as
hybrid models comprised of LR+DT and DT+GB. The metrics selected for the comparison were
the Mean Absolute Error (MAE), the Root Mean Square Error, and the correlation coefficient (r).
In contrast to classical ML models, the error levels of hybrid models were shown to be considerably
different. The MAE, RMSE, and correlation coefficients for the hybrid between LR and DT were
0.885, 4.948, and 0.9990, respectively. In comparison, the other combination yielded 0.91, 5.153,
and 0.9991 correspondingly. RF and DT were the two standalone ML algorithms with the best
performance. This research not only demonstrates the efficacy of ML approaches in forecasting
the AQI, but also demonstrates that the combination of these techniques is superior to using the
models individually. Similar to [31], the ResNet50 architecture and several others were utilised for
categorisation purposes in [33]. The goal of this study was to classify various types of household
garbage using CNNs. Using a dataset of images labelled with five distinct classes, the ResNet50
architecture achieved an accuracy of 87.5%. It is important to highlight that the accuracy metric
for each class was above 80%.

Video coding

Next, within the scope of this thesis, some proposals about the use of ML in video coding
(VVC) will be presented. In [34], a comprehensive assessment of current practises is provided.
According to this investigation, as already mentioned in previous chapters, to obtain the highest
possible compression efficiency, it is important to determine, for each coding tool, the optimal
trade-off between rate and distortion. As previously stated in [16], the tools that take the most
processing time are BP, IMP, and MTS; ordered from the most complex to the least. Consequently,
they are the focus of most of complexity reduction strategies mentioned in the literature, with the
majority of current research concentrating on block partitioning. Using heuristics and machine
learning are the two primary methods for simplifying this standard. Using statistical or non-
statistical properties of the VVC tools, algorithms are built utilising heuristics to predict the
optimal outcome for each instrument. In the second strategy, the usage of ML is established
by developing a model to forecast the result of the steps of the VVC coding process and then
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applying a huge set of data to train the model on how to perform the predictions. According to
their relationship with the coding procedure, [34] notes that there are two primary ways for data
extraction and training. In the in-loop technique, data is extracted and models are trained during
the encoding process itself. Due to the complexity overhead introduced by the model training
process, this method often provides less complexity reduction. The alternative is the off-loop, in
which data and models are trained in advance. This technique leads to a greater loss of coding
efficiency since the models do not adjust to the time-varying behavior of video. A thorough analysis
of several approaches to lessen the VVC complexity is also included in [34]. The main takeaways
from these comparisons are: although ML-associated techniques produced superior results in terms
of complexity reductions, the Bjontegaard Delta rate (BD-rate) loss was 0.29% worse than the
heuristic approaches regarding BP in intra coding; even though block partitioning is the primary
contributor to the VVC complexity, approaches that focus on low-complexity intra mode estimate
can achieve bigger reductions than others; methods based on machine learning that concurrently
target intra and inter coding are the most effective. Furthermore, in this research, an RF model
was developed to simplify the complexity of the VVC BP tool. Regarding complexity reduction,
73.10% was attained. This decrease is the greatest among those listed in this literature. Regarding
BD-rate loss, 5.89% was attained.

The research that prompted this thesis may be found in [35]. To estimate the CU partition for
intra prediction in accordance with the dynamic QTMT structure at multiple levels, the authors
of this article suggest a multi-stage exit CNN (MSE-CNN) model with an early-exit mechanism.
Since the RDO method is used by VVC, several CUs combinations are explored in order to locate
the one that leads to the optimal partitioning scheme. MSE-CNN intends to exclude many of these
tested CUs in order to decrease the complexity of this standard. In order to accomplish this, a
database was created to train the model. This database contains a large number of YCbCr 4:2:0
image and video files. It can utilised not only for the training of the MSE-CNN, but also for other
approaches. This method outperformed several previous methods demonstrated in the scientific
literature, resulting in a complexity reduction of up to 66.88% with a BD-rate as low as 1.322%.

Final Remarks

Reviewing all that has been discussed in this section, one can conclude that ML brings several
solutions, not only to the video coding sector, but also to many others. Current ML approaches,
such as DL (CNNs and ANNs in particular), other more traditional techniques (with an emphasis
on RFs and MVR), and a mixture of the traditional techniques constitute the state of the art in
ML. Although some studies indicate that DL is now superior to other methodologies, as suggested
in [36] and [37], the success of these algorithms is significantly dependent on the application for
which they are being employed. Regardless, it is evident that DL is the ideal choice for image-
related fields.
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Chapter 3

Dataset Creation

As stated in Section 2.5.6, the MSE-CNN [1] will serve as the research model for this dis-
sertation, with the goal of simplifying the partitioning scheme in the intra mode of VVC while
maintaining low quality loss. This model falls within the category of supervised learning algo-
rithms. Therefore, it requires training data to comprehend how to make predictions.

Since a robust database was produced in [1], it was also leveraged to train the model in this
work.

This Chapter will provide a full overview of the aforementioned database, an explanation of
the process used to produce the labels, and a summary of the contributions made regarding this
data.

3.1 Data Analysis

The sequences and video files used to train, assess, and conduct research on the MSE-CNN
model was created by the same authors that created the method [1].

The database comprises around 124 GB of data. It consists of 204 video segments and 8000
pictures compiled from a variety of sources [2]- [6]. These files were separated into three subgroups:
6,400 images and 160 sequences for training, 800 images and 22 sequences for validation, and 800
images and 22 sequences for testing. It is worth noting that just 182 of the training and validation
sequences, as well as all 8 000 photos, are free to use for non-commercial purposes. Additionally,
data modifications were made for storage and compatibility reasons. Videos longer than 10 seconds
were shortened to 10 seconds, and NTSC sequences were cropped to a size of 720x480. As previously
stated, all data is in its raw format, in the YCbCr 4:2:0 colour space.
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Source Resolution Num. of
images/se-
quences

Total num. of
CTUs

Total num. of
CUs

Raw
Image
Dataset
(RAISE)
[2]

2880×1920 2,000 2,640,000 372,692,745

2304×1536 2000 1,728,000 242,719,640

1536×1024 2000 768,000 173,216,005

768×512 2000 192,000 58,271,751

Facial Video [3] 1920×1080
(1080p)

6 72,960 9,660,712

Consumer
Digital
Video
Li-
brary
[4]

1920×1080
(1080p)

30 622,080 139,216,238

640×360 (360p) 59 40,520 20,699,422

Xiph.org
[5]

2048×1080 (2K) 18 95,232 21,108,370

1920×1080
(1080p)

24 471,840 125,995,868

1280×720
(720p)

4 30,600 15,913,824

704×576 (4CIF) 5 12,400 5,411,228

720×486
(NTSC)

7 10,545 4,765,478

352×288 (CIF) 25 14,368 8,603,450

352×240 (SIF) 4 688 753,882

Aggregated 8,182 6,699,233 1,199,028,613

Table 3.1: Configuration of CPIV Database [1]

The specifics of the data that can be used for non-commercial purposes are shown in Table 3.1.
It is clear to observe from the data that there are about 6.7 million CTUs and over 1 billion CUs
among the 8182 images/sequences. This quantity of information is more than sufficient to train
the CNN that is being suggested.
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Figure 3.1: CU types proportions using various split options for the luminance channel [1]

Figure 3.1 depicts the proportion of partitions for various CU sizes in the luma channel. Since
VTM-7.0, the encoder used in this dissertation (which will be discussed later), forces CTUs to split
in QT, the percentages for this case are not shown. This diagram illustrates various facts that
should be taken into account:

1. the split modes range from 2 to 6 depending on the CU type;

2. the minimum size of CU is 4x4; this is because for samples with width or height already
equal to 4, the split mode used to partition them never affects the axis with a length of 4.;

3. structures with already asymmetric dimensions (16x8, 32x16, etc) are never divided in QT.

All of these statements are consistent with the comments stated in Section 2.4.2. The information
provided in this graphic gives an understanding of the proportions of the partitions available for
each sample dimension, which is essential for ML applications (balanced or unbalanced dataset),
as will be discussed in the next section.

Another relevant Figure can be seen at 3.2. This graphic offers a new perspective on the data
by displaying the percentage of split mode types per depth. Similar to the previous image, the
first depth is disregarded.
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Figure 3.2: Proportions of CU partitions per depth (luma channel) in [2]

Prior to the third depth, the outcomes and conclusions are identical to image 2.4.2. The reason
for this is that the CU sizes for the second and third levels are 64x64 and 32x32, respectively. From
this graph, the following conclusions may be drawn:

1. in the third level, the most frequent partitions are QT and BT;

2. in the fourth stage, the far more common partition is BT, followed by Non-Split;

3. within the last two depths, the most prevalent partition mode is Non-Split;

4. there are no QT partitions in the last two levels;

5. and the difference in the amount between vertical and horizontal versions of TT and BT is
no more than 6%, i.e, the vertical and horizontal versions happen more a less equally.

As previously said, visualising data in this manner enables one to better comprehend the data,
future results, and methods to improve the model.

3.2 Labels

Annotated data must be created to train an ML model. Given that a trained network includes
inputs and outputs with certain specifications, the data that is supplied to the model must be
adapted to meet those requirements. This modification involves certain data processing steps to
create information that can directly facilitate network training.

Although the authors of [1] produced a database, they did not provide the labelled data neces-
sary for the MSE-CNN’s training. Therefore, it was necessary to design a method for extracting
this information from the provided data. In order to process the data, a five-step method was
designed, as seen in the picture below.
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Figure 3.3: Architecture to generate annotated data

The first step is to encode the complete database using the reference software, VTM-7.0, which
the authors have made accessible. The All Intra (AI) configuration (with the file enconder intra
vtm.cfg) and a QP of 32 were used to encode the data. In the subsequent step, the output from
the previous stage is transformed into a more manageable data structure. Following that, actual
CTUs are added to the data structure. Afterwards, specific CUs are chosen from all of the previous
data. Finally, for data balance purposes, the data is either upsampled or downsampled. The next
Section will elaborate on these six processing steps.

3.2.1 Generating Labels

Some statements regarding the MSE-CNN are required to comprehend the rationale behind this
pipeline’s configuration. The following are the most important considerations to better comprehend
this pipeline:

• the model can be seen as an hybrid of an RNN and a CNN, with a collection of CNNs
connected to extract features, decide on the optimal split, and send the feature maps to the
next depth level;

• the MSE-CNN is composed of six stages;

• the first stage receives a CTU as input, while all of the others receive the preceding stage’s
feature map output as input;

• while passing through the various stages, the input CTU is partitioned;

• each stage, which corresponds to a specific depth in CTU the partitioning scheme, successively
determines which of the six potential split modes is optimal for its input;

• individual types of CUs are utilised to train each model/stage independently.

The next Chapter will go into further detail on this MSE-CNN model.
Now that the essential factors that shaped this label-generating pipeline have been outlined,

its constituent components will be addressed next.

Encoding

To find the best strategy to split the CTUs in the database supplied in [1], all of the data in it
must be encoded. The authors of the paper also made accessible the VVC reference software they
used, VTM-7.0, for this purpose. This tool encodes the database and determines the optimum
approach for partitioning the sequences within it. In addition to providing a compressed version
of the input data, the encoder also produces the RD costs for each CU that makes up the data.
A binary file is then created that describes the partitioning scheme for each file in the database.
This binary file is composed of a collection of records that include all of the information required
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to identify and access a CU’s optimum split mode. The parameters of a record are depicted in
Figure 3.4.

Figure 3.4: Record structure [7]

The first two bytes of this structure provide information for the Picture Order Count (POC),
which is the location of a given frame within the sequence. The next two bytes represent the
channel to which the CU belong. Because the image format is YCbCr, the CUs contents can
be in either the luma or chroma channel. The next four bytes reveal the location of the CU in
the picture. The first two bytes represent the CU’s leftmost horizontal axis position, whereas the
second two represent the CU’s uppermost vertical axis position. The dimensions are described
in the next four bytes. The first two bytes provide width information, whereas the second two
contain height information. All of the values mentioned thus far are unsigned 16-bit integers. The
following data is stored as an 8-byte double. The remaining 48 bytes reflect the RD cost of each
split mode. The first 8 bytes include the RD cost for the non-split split mode, followed by the QT,
HBT, VBT, HTT, and VTT. By comparing these six RD costs and selecting the lowest one, the
ideal partition for a certain CU is identified.

Figure 3.5: Example of the data in a record. When the RD cost as a value equal to zero, it indicates
that the calculation was skipped by the encoder.

Using the VTM-7.0 to apply this step to all 8000 images in the Raw Image Dataset took about
7 weeks. The length of time required for this operation clearly shows the complexity of this coding
standard. This method was carried out on a machine equipped with an Intel Xeon E5-2650 v4
@2.20GHz and 64GB of RAM. Since there was an abundance of data among the 8000 images, only
those were encoded. Moreover, this data was encoded using a QP of 32.

In summary, the encoding procedure accepts as inputs all sequences in the database as .yuv
files and generates .dat files detailing each CU and its RD cost for each partition.

Generating Data Structures

Since the encoded data is a huge number of files holding information about particular CUs
without correlation, the data must be structured. To achieve this goal, at this stage the CUs are
structured according to how they will be divided at different levels. Figure 3.6 depicts the flow
from the CTU to the final partition. The new data structure adheres to this design in order to fit
the MSE-CNN’s architecture, which takes into account the partition depth.
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Figure 3.6: Partitioning from a CTU to the last CU [1]

The CUs are first extracted from the .dat files and a simple structure is created for them (image
3.7).

Figure 3.7: CU structure implemented

This structure holds the CU’s location, size, file name, POC, and optimum split mode. Because
it is necessary to identify a CU among the various files, the name and POC are stored. In terms
of the ideal partition, this is computed by selecting the partition with the lowest RD cost. After
turning the binary data into structures simpler to manage, the next step is to generate a sequence
indicating how a CTU is partitioned from beginning to end. This structure has eight properties,
as seen in Figure 3.8. The six fields described as stages 1, 2, 3, 4, 5, and 6 are CUs. They are in
accordance with the progression of partitions that a CTU undergoes. Stage 1 is the first depth,
which corresponds to a CTU. The sixth stage is the last block to be partitioned. Furthermore, the
name of the file containing the CUs and the POC are attributes of this structure that are used to
find them.

Figure 3.8: Structure implemented with CU sequences

To determine the optimal pattern for CU division, the following steps are taken:

1. select a CTU from the list of CTU structures and save it as part of stage 1;

2. based on the CTU’s position, file name, POC, size, and optimal split mode (always QT for
CTU), compute the next CU’s position and size;
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3. using the computed positions and shapes, as well as the file name and POC, a matching CU
is sought for;

4. when the CU is identified, its CU structure is stored as part of the second stage;

5. now, much like step 2, the information from this CU will be utilised to find the next one;

6. this procedure is repeated until the CU corresponding to the sixth stage is found.

The outcome of this step, is a collection of files containing a list of sequences.

Adding Raw CTUs

Since the input of the MSE-CNN is the actual pixels of an image that match to a CTU, it is
necessary to add this information to the labels. This is accomplished by utilising the superstructure
created in the previous phase, which includes all of the information required to obtain the correct
CTU from the database. Another property, termed ”raw CTU”, is added to the sequence structure,
which includes the actual CTU splitting structure from the pictures.

Figure 3.9: Structure of a dataset sample after adding the raw CTUs

The output of this step is a collection of files containing the same sequences as in the previous
step, but with the actual CTUs added as a new property. It is worth noting that following this
operation, the actual files containing the images are no longer required.

Retrieving Essential Data

In [1], it is proposed that this network is trained stage by stage and with specific CU types.
This means that not all sorts of CUs will be required simultaneously throughout training. For
example, when the third stage is trained with CUs of size 32x32, the CUs that follow and any
other CUs that may emerge in this stage are unnecessary.

To organise the data in this fashion, a search of the data from the previous step is performed
and certain changes are done to the data structure containing the sequences. To discover CUs for
training a certain stage, one must search through the sequences list using the attribute correspond-
ing to the stage being trained. When this data is discovered, a new structure is created to store it.
This new structure contains all prior CUs that led to the current CU used to train the network,
the current CU’s data, and the raw CTU’s data.
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Figure 3.10: Final form of the data that is fed to the MSE-CNN. It is relevant to notice that the
number of properties will depend in the stage being trained.

At the end of this phase, a collection of files containing essential data is already ready to be
directly used to train a specific stage of the MSE-CNN.

Data balancing

Up to this point, the data in the partitions is not spread out in the same way. As seen in
Figure 3.2, QT comprises the bulk of the entire number of split modes for depth 2. Feeding this
data to the mode may prevent it from learning how to predict underrepresented partitions. As
a consequence, the network predicts each class to be the class with the highest representation
in the dataset. To address this difficulty, data balancing is a common technique in DL. The
data is either upsampled (oversampled) or downsampled (undersampled) in this procedure (image
3.11). Upsampling consists of matching the number of underrepresented classes to the number
of overrepresented classes. This is done by repeating the data in the classes that are not as
well-represented to get more of them. Downsampling is similar to upsampling, but rather than
increasing the quantity of data for the fewer defined classes, it matches the amount of information
for the other categories to the number of samples of the class with the smallest sample size. This
is accomplished by deleting items from the more populous classes.

(a) Original Dataset (b) Upsampled Dataset (c) Downsampled Dataset

Figure 3.11: Data balancing

In this last step, the output is a set of files containing the same data as the previous phase, but
with an equal quantity of each partition type.
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3.3 Implementation remarks

To facilitate fast training, labels must be organised in a manner that supports the usage of
batch sizes greater than one. The present data processing method permits not only the gathering
of data for feeding the model but also the use of training batches with sizes higher than one. It is
feasible to build batches, however the training of this waterfall-shaped model requires batches with
the same structure. For instance, while the third stage is being trained, a batch must include CU
of the same dimensions; otherwise, mechanisms must be created to separate the various CU sizes
inside the model. Implementing this solution would not help train the MSE-CNN because it would
require a lot of for loops, which would slow down the training. As a result, before feeding a batch
of data to the model, the batch is organised according to the CU shape. In other words, identically
sized CU sequences are clustered. Furthermore, using this strategy will result in variable batch
sizes.

Since the stages of the MSE-CNN will be trained independently, data is processed for each.
Thus, each element of the data stream comprises all the information for the stage being trained
and for prior stages to guide the feature maps to that stage. Regarding the data balancing method
employed, downsampling was applied.
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Chapter 4

Deep Learning Model

Multi-Stage Exit Convolutional Neural Network (MSE-CNN) is a DL model that seeks to
forecast CUs in a waterfall architecture (top-down manner). This structure takes a CTU as input,
extracts features from it, splits the CU into one of at most six possible partitions (Non-split, QT,
HBT, VBT, HTT, and VTT), and then sends it to the next stage. This model has CTUs as inputs
in the first stage, either in the chroma or luma channel, and feature maps in the subsequent stages.
Furthermore, it generates feature maps and a split decision at each level. In the event that one of
the models returns the split decision as Non-Split, the partitioning of the CU is ended immediately.

This Chapter will talk about the MSE-CNN model constituents, how it reduces the complexity
of the intra mode VVC and the way in which this model’s training was executed.

Figure 4.1: MSE-CNN [1]

4.1 MSE-CNN

Initially, this model adds more channels to the input of this network to create more attributes
from it. This is accomplished by utilising simple convolutional layers. To extract more character-
istics from the data, the information is then passed through a series of convolutional layers. These
layers were named Conditional Convolution. At the end, a final layer is employed to determine the
optimal manner of partitioning the CU. This layer is a blend of fully connected and convolutional
layers.

In this section, it will be discussed the blocks that constitute the MSE-CNN. Namely, the
Overlapping Convolution block, the Conditional Convolution and the Sub-Networks.

4.1.1 Overlapping Convolution block

At the beginning of this model, a simple convolutional layer was added to make large and
diverse feature maps. After a CTU passes through this layer, the number of channels increases
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from one to sixteen. Increasing the amount of channels, also increments the number of filters
that must be utilised, which results in an higher number of coefficients. All of these factors result
in a prediction-capable model that is also more susceptible to overfitting. This is comparable to
increasing the number of neurons in an ANN.

This layer is made up of sixteen 3x3 filters. It works with an overlapping convolution with
a stride of one and non-zero padding. This means that the input CTU, after passing through
the layer, will still have the same 2D dimensions. Also, the activation function used after the
convolution operation is a PReLU, which has a trainable parameter. The picture below shows an
illustration of this layer.

Figure 4.2: Overlapping Convolution block input and output

4.1.2 Conditional Convolution

Because different types of CUs will flow through the various stages of this network, with the
largest diversity of CUs travelling through stages 5 and 6, the models must be able to extract more
or fewer features based on the dimensions of the CUs to make the right decision. This is done by
deepening the MSE-CNN using the Conditional Convolution block. This block is at the beginning
of each stage, as seen in Figure 4.1. Since the CU size can change a lot at the same stage, due to
them being split in a variety of ways through the depths, it would be best to have a block that can
adjust to this. For this, the MSE-CNN uses ResNets [2]. Depending on the type of CU present at
the input of a given stage, the number of residual units will be either larger (2) or smaller (0).

Figure 4.3: MSE-CNN ResNet

The conditional convolution is achieved through the following steps:

1. calculate the minimal dimension of the input CU, selecting the dimension with the least value
between height and width;
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2. using the current minimum dimension and the minimum dimension of the parent CU, com-
pute the number of residual units that will be used,

nr =

{
log2(

ap

ac
) 4 ≤ ac ≤ 64

1 ac = 128
(4.1)

3. lastly, run the input through the number of residual units calculated in the preceding step.

This strategy enables each stage to be adaptable and more efficient. In addition, these ResNets
employ the same convolutional layers and activation function as the prior mentioned block.

4.1.3 Sub-Network

Following the feature extraction phase of this model, the following step is to determine the
optimal partition for the CU; hence, a block is necessary to accomplish this prediction. To solve
this issue, a sub-network was developed. This block gets its input from the conditional convolution.
It then outputs a one-hot vector with the most likely split modes.

Figure 4.4 demonstrates that, depending on the width and height of the input, different sub-
networks are utilised within the stages. Although these sub-networks have distinct layers, their
designs are comparable.

Figure 4.4: Sub-networks of the MSE-CNN [1]

The QP half-mask comprises the initial layer of these networks. QP has a substantial impact
on the CU partition. The smaller it is, the higher the number of partitions. In these layers, this
information is added by performing a half-mask operation to the network’s input, wherein half
of the feature maps are multiplied by a normalised QP value. The following equation is used for
normalisation,

q̃ =
QP

51
+ 0.5 (4.2)

First, the QP applied to encode the database is divided by 51 (the maximum QP value in
VVC). This operation ensures that the value falls inside the range ]0, 1]. Then the previous value
is increased by 0.5. This adjusts the normalisation range to ]0.5, 1.5].

A sequence of convolutional layers are applied to the data after the QP Half-mask. All con-
volutional layers have kernels whose width and height are integer powers of 2, like 2x2 and 4x4.
In addition, the kernels are non-overlapping, unlike the ones described previously. As shown in
Figure 4.4, certain sub-networks are capable of estimating a split mode for different types of CUs.
In addition, these layers can find non-overlapping CUs in the final partition, according to [1]. This
is accomplished by employing these kernels sequentially. When the initial kernel is applied, the
kinds of CUs that can be located correspond to the kernel’s size. After this, since the output of
the last operation is smaller than its input, it becomes easier to locate larger CUs. This is because
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the first operation collects information from the input, allowing the next process to cover a larger
area, even with smaller kernels.

Figure 4.5: Convolution in the sub-networks [1]

For example, in Figure 4.5, when a 16x16 input is combined with a 4x4 kernel, the output is a 4
times smaller version of the input. This means that when a 2x2 kernel is applied to the output, it
can find 8x8 CUs. Similarly, in the subsequent layer, the input feature map has been shrunk by
a factor of 8; hence, a 2x2 kernel corresponds to a 16x16 receptive field, co-locating a 16x16 CU.
Similarly to the preceding section, the PReLU was also used as an activation function.

The last part of the sub-networks consists of two fully connected layers. This type of layer is
required to get the probabilities for each of the 6 possible partitions. In the first FC layer, there
are between 8 and 64 nodes. Also, since predicting the optimal CU partition is a classification
problem, the last layer’s activation function is a SoftMax [3], while the first FC’s activation function
is a PReLU. In addition, the input for the sub-network is transposed if its height is greater than
its width in order to ensure that the feature map shapes that pass through the sub-network are
substantially equivalent. For example, if the size of a CU is given by hxw, where h is the height
and w is the width, and h = 32 and w = 8, then the CU is transposed and becomes 8x32.

4.1.4 Loss function

As mentioned briefly in Section 2.5, a loss function is one of the most fundamental building
pieces of a DL-proposed solution [4]. The definition of a loss function has a significant effect on how
the model works because it influences how well the network’s parameters are tuned for the problem
at hand. In addition, the behaviour of a loss function may be utilised to discover problems during
the network training and determine the optimal solution for them. In the case of overfitting, for
instance, the loss function decreases during training while it rises with validation data. Overall,
a loss function not only tells a model how to adapt to the problem but can also be used as a
performance evaluation tool.

In the MSE-CNN, the loss function was designed to tackle the fact that the data was not evenly
distributed, that different CUs have different numbers of partitions for each stage and that distinct
split modes have different RD costs. Even though the problem of unbalanced data was solved in
Chapter 3 of this work by using techniques to balance the data, the approach in [1] will still be
discussed in this section.

The loss developed for the MSE-CNN is the result of two other functions, as defined in the
equation below.

L = LCE + βLRD (4.3)

The first member is a modified cross-entropy (CE) function. In equation 4.4, a conventional CE
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function takes as inputs the estimated output (ŷn,m) of the model and the ground-truth (yn,m).
Both the actual and predicted outputs are vectors that contain the probabilities of each split
mode type. The values of the integer ”m” correspond to the position of a particular split mode
probability, mε{0, 1, 2, 3, 4, 5}. The number ”n” indicates the output utilised inside the mini-batch.
The size of the mini-batch utilised in each iteration is denoted by ”N” in the formula. Since the
predicted values fall inside the range [0, 1], the logarithm returns negative integers. Thus, a minus
sign is used to keep the loss function from being negative.

LCE = − 1

N

N∑
n=1

∑
mεPartitions

yn,m log(ŷn,m) (4.4)

This function was modified to handle the imbalanced data problems. In the expression below, an
element was added to address this.

LCEmod = − 1

N

N∑
n=1

∑
mεPartitions

(
1

pm
)αyn,m log(ŷn,m) (4.5)

The ratio of each partition in the whole dataset is stored in the vector parameter pm. Thus,∑
mεPartitions pm = 1. This allows for the application of distinct penalty weights that impacts

more the less represented split modes in the dataset. In addition, αε[0, 1] is a scalar that may be
adjusted to define the significance of penalty weights. α = 0 implies that no penalty is imposed,
whereas α = 1 indicates that the weight of each punishment is proportional to the inverse of pm.
When α is too little, the model may be improperly trained, since it tends to predict just the most
common split mode. On the other hand, for higher values of α each penalty weight is proportional
to the opposite of pm. This keeps the model from being poorly trained. However, utilising high
values may reduce the accuracy of predictions. As a result, there is a trade-off between the accuracy
and reliability of predictions. As previously stated, since the labels created are already balanced,
the proportions for each split mode will be the same. Consequently, it is not possible to apply
distinct penalties to each partition type since the values in the pm vector are all the same.

Concerning the second member of the MSE-CNN loss function, this constituent gives the net-
work the ability to also make predictions based on the RD Cost.

LRD =
1

N

N∑
n=1

∑
mεPartitions

ŷn,m
rn,m
rn,min

− 1 (4.6)

In the above equation, the RD costs rn,m uses the same notation for ”n” and ”m” as the
previous equation. Regarding rn,min, it is the minimal RD cost for the nth CU among all split
modes and

rn,m

rn,min
− 1 is a normalised RD cost. As a relevant note, rn,min is equal to the RD cost

of the best partition mode. Consequently, the result of ŷn,m
rn,m

rn,min
−1 ensures that CU’s partitions

with greater erroneously predicted probability values (ŷn,m) or greater RD cost values (rn,m) are
more penalised. In

rn,m

rn,min
− 1, the ideal partition has a normalised RD cost of zero, but the other

partitions do not. Therefore, the only way for the loss to equal zero is if the probability for all other
modes also equals zero. Consequently, the learning algorithm must assign a greater probability to
the optimal split mode while reducing the probabilities for the rest. In addition, a parameter, β,
is utilised to regulate the impact of this loss on the whole loss function.

4.1.5 Multi-threshold Decision

If the best prediction of the MSE-CNN model was always chosen as the ideal split mode for
a given CU, many incorrect CU partitions would be considered best, reducing RD performance.
As a result, a multi-threshold decision scheme is employed in order to strike a balance between
encoding complexity and RD performance. This method allows the encoder to analyse the most
likely partitions rather than just the far more probable one, which eliminates the repetitive testing
of CUs in the original RDO procedure. Therefore, certain partitions are omitted, decreasing the
complexity of encoding.

In the multi-threshold decision scheme, each stage uses a different decision threshold. These
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thresholds are used on the output of each stage to choose the most probable partitions. Moreover,
like with the outputs, the thresholds range between 0 and 1. The notation for this scheme is
{τs}6s=2. ”s” is the stage index, whereas τ is the threshold value. The index begins at stage 2
since stage 1 of the present VTM encoder is deterministic and does not need to be predicted by
MSE-CNN. Let ŷn,max denote the highest predicted probability of the output of a stage. The
modes that would be picked from the output would be given by ŷn,m ≥ τsŷn,max. These would be
the partitions that the encoder checks, the rest would be skipped. Moreover, using large values
for τ means that the encoder relies on fewer partitions, resulting in the least amount of encoding
complexity but the greatest RD performance reduction. While lower values have the reverse effect,
encoding complexity is increased and RD deterioration is minimised.

Figure 4.6: Threshold variation and accuracy [1]

In the above Figure, it is possible to see the accuracy variation given different values for the
threshold. The following conclusions can be made from this Figure:

• for the lowest threshold, all stages provide maximum accuracy;

• for higher thresholds, Stage 2 always yields the highest prediction accuracy;

• when the thresholds are high, Stage 6 has the second-best prediction accuracy, but when the
thresholds are near 0, it performs relatively poorly;

• the change in accuracy is minor for stages 3, 4, and 5.

Depending on the desired performance, better quality or complexity, the authors of the MSE-CNN
developed two configurations for these thresholds:

• For less complexity,

1

5

6∑
s=2

τs ≥ 0.4, τ2 ≥ τ6 ≥ τ3 ≈ τ4 ≈ τ5 (4.7)

• For better quality,

1

5

6∑
s=2

τs < 0.4, τ2 ≥ τ4 ≈ τ3 ≈ τ5 ≥ τ6 (4.8)

4.2 Training and Configurations

Proper training is required to achieve the best possible results with a DL-based approach.
Ensuring the usage of dependable hardware and software tools improves the process of achieving
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excellent and rapid outcomes. In addition to the tools, it is crucial to use the appropriate method-
ologies. A simple training and validation approach was used to ensure that the MSE-CNN model
and concepts were operating appropriately. This Section will go over the specifics of this step.

As indicated in one of the preceding chapters, the VTM-7.0 encoder was utilised to encode
the data with a QP of 32. A machine with an NVIDIA GeForce RTX 3090, 252 GB of RAM, an
Intel(R) Xeon(R) Gold 6336Y @ 2.40GHz, and Ubuntu 20.04.5 LTS as the operating system was
utilised for training. Python [5] was the language used to construct the MSE-CNN architecture.
As a consequence, several existing tools and frameworks for this language for deep learning and
other fields were used. To create the MSE-CNN and training script, Pytorch [6] was utilised. To
manage the data and structures, the Pandas [7], Numpy [8] and Python internal libraries were
used. Using the Scikit-Learn [9] package, the model was evaluated and metrics were obtained.
For tuning hyperparameters, Optuna [10] was utilised. Tensorboard [11] was used to observe and
record the model’s behaviour throughout training.

Regarding the hyperparameters, 100 epochs and a maximum mini-batch size of 32 [13] were
selected. The network was trained using Mini-Batch Gradient Descent, as shown by the terminology
used in the previous phrase. This method provides a compromise between speed and computational
efficiency [12]. The hyper-parameter α associated with the loss function was set to zero since the
labels are already balanced. About beta, the decisions made about it will be talked about in the
next Chapter. The learning rate was always first set to a value and then dropped exponentially
by 1% every 45 epochs. Using validation data, Optuna was utilised to fine-tune this parameter for
each level in order to determine the optimal learning rate for each stage. After model optimization,
the test dataset is used to evaluate the model. Moreover, the Adam algorithm [14] is used as the
optimizer. Also, when training from scratch, all weight and bias parameters were set randomly
with Xavier Initialization [15].

The strategy used to train the MSE-CNN was very similar to the one used in [1]. The first
parts of the model to be trained were the first and second stages, in which 64x64 CUs were passed
through the second depth. Afterwards, transfer learning was used to pass certain coefficients of
the second stage to the third. Then, the third stage was trained with 32x32 CUs flowing through
it. After this step, a similar process was done to the following stages, as described in Figure 4.7.
It is worth noting that, beginning with stage 4, various CUs forms are at the models’ input. This
means that these stages were fed different kinds of CUs.

Figure 4.7: Training flow used for training
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At the end of training, 6 models were obtained one for each partitioning depth in the luma channel.
Although models for the luma and chroma channels could be created for all the shapes of CUs that
are possible, rather than just for each depth, as shown in Figure 4.8, only six were trained for the
sake of assessing the model behaviour in a simpler and more understandable configuration.

Figure 4.8: Training flow in [1]

As a side note, when one stage is being trained, the others are used in an evaluation mode where
the stage’s parameters do not change. In addition, the training data consisted of four files with
a sequence of pictures. Table 4.1 shows the amount of information contained in these files. This
data was divided into three distinct groups: one for training, one for optimising parameters, and
one for the model’s final validation [16]. 80% of the data was used for training, and the remaining
was evenly split for validation and testing [17]. The splitting of the information was done before
the data balancing procedure. When training the final model, the training and validation data
were combined. The time it took to train each stage was around 24 hours.

Partitions
types

Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Non-split 149,676 373,248 128,4208 2,477,349 2,061,549

Quad-tree 389,124 276,070 54,475 0 0

Horizontal
Binary tree

0 386,123 590,399 390,137 120,710

Vertical Bi-
nary tree

0 302,338 531,970 367,921 120,236

Horizontal
Ternary tree

0 126,755 229,741 144,667 22,695

Vertical
Ternary tree

0 89,919 193,988 140,361 27,722

All partitions 538,800 1,554,453 6,114,469 4,830,261 2,352,912

Table 4.1: Data quantity in the RAISE Test files, before the data balancing process
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4.3 Code Implementation Remarks

Due to the deterministic nature of the first stage, where CTUs are always partitioned with a
QT, it was implemented together with the second stage. If it was done separately, the training for
the first two stages would have to be done at the same time. Consequently, two distinct optimisers
would need to be employed, which could result in unpredictable training behaviour.

When implementing the sub-networks on code, those that were meant to cater for varying CU
sizes were further implemented separately. For example, in the case of the sub-network utilised
when the minimum width or height is 32, two variants of the first two layers were built (Figure 4.9).
This was done because 64x32 and 32x32 CUs can flow across this block. Because of this, the first
two layers were implemented separately from the entire block. Then, they were used in conjunction
with the remaining layers based on the dimensions of the input CU. The same procedures were
followed for the other types of sub-networks.

(a) Sub-network 1 (b) Sub-network 2

Figure 4.9: 32 minimum axis size sub-networks. In red, the QP half-mask are represented. In
blue, the convolutional layers. In which the first group of numbers corresponds to the kernel size
and the last number to the number of channels the output has. The blocks with the colour green
represent the fully connected layers and the number inside them are the quantity of outputs.

When the network was being trained, some of the RD costs from the input data had very high
values. Consequently, the RD loss function value skyrocketed, resulting in extremely huge gradients
during training. As a result, the maximum RD cost was hard coded at 1010. This amount is large
enough to be more than the best partition’s RD cost and small enough to address this issue.

The code developed for this work contains more than 20000 lines of code. It can be accessed
in the following link: https://github.com/raulkviana/MSE-CNN-Implementations.
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Chapter 5

Results and Discussion

In this Chapter, the approach proposed for training the MSE-CNN and its implementation will
be studied based on its outputs.

5.1 Rate-Distortion Loss Function

In order to test the RD loss function during the training of the model, an experiment was
performed using solely it. Figure 5.1 depicts the findings of this experiment.

Figure 5.1: Rate-distortion Loss evolution during training. The red dots corresponds to the loss
values for the first and second epochs

The trajectory of the loss across the epochs reveals that after the first epoch, the loss immediately
converges and continues with a value around 0.34. A variety of training attempts yielded the same
result. The confusion matrix for this experiment is shown in the picture below. It demonstrates
that the model classified the entire input data as non-split.
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Figure 5.2: Confusion matrix after training the stage 2 with only rate-distortion loss

These findings suggest that the loss function, at least by itself, does not enable the model to
understand how to make predictions since it discovered the incorrect way for doing so. This led
to the execution of another experiment. This experiment attempted to compare the results of
stage 2 by training the network with both losses and subsequently with only the cross-entropy
loss. The purpose was to investigate if the RD loss improves the MSE-CNN’s prediction abilities.
The weighted average of the F1-score across all classes is shown in the table below, along with the
weighted averages of the precision and recall. These metrics were obtained from the validation
data. By observing the Table, it is clear that the model trained with the cross-entropy loss
produces slightly better results. However, due to the insignificance of the difference between the
results, another experiment was carried out by trying to find the optimal value of β.

Condition Precision Recall F1-score

Both losses (β = 0.1) 0.9028 0.9027 0.9027

Only with CE loss 0.9112 0.9111 0.9111

Table 5.1: Weighted average of F1-score, recall and precision for comparing two different strategies
for training stage 2

Optuna was used to optimise the β parameter of the loss function in this new investigation. In
other words, the model was trained with a variety of β until the best one was discovered. The aim
of this optimization was to maximise the F1-score in the validation data. At the end of this process,
the optimiser gave β a value of 0.0008. This means that for the F1-score to be higher, β needed to
be low. This finding is consistent with earlier ones, demonstrating that this hyperparameter does
not lead to an improved MSE-CNN.

Because of the unusual nature of these findings, extra research was carried out. This time, it
was hypothesised that because the previous results were for the second stage, and this stage only
has two possible partition types, the benefits of the Rate-Distortion Loss function could not be
observed. As such, stage 3 was trained with both losses and also trained with just the CE loss.
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Condition Precision Recall F1-score

Both losses (β = 0.1) 0.5465 0.4793 0.4351

Only with CE loss 0.5770 0.5767 0.5624

Table 5.2: Weighted average of F1-score, recall, and precision for comparing two distinct training
strategies for stage 3

Table 5.2 shows that the same conclusions can be drawn as in Table 5.1. For all of the measures
compared, the model that was only trained with the CE loss function outperformed its counterpart.

The preceding conclusions show that the RD loss function is ineffective while training the MSE-
CNN. Although it is indicated in [1] that employing this function produces superior results, this
was not confirmed in this study.

Due to the aforementioned considerations, the Rate-Distortion loss function was not used to
obtain the next set of results. That is, β was set to zero.

5.2 Cross-Entropy Loss

Figure 5.3 depicts the evolution of the loss functions for each stage throughout training. One
may observe that all the losses nearly converge, despite the fact that none of them truly do. This
leads to the conclusion that the number of epochs should be increased and researched further,
even though the potential results would be minimal. Furthermore, based on the loss values, it is
feasible to assume that the depths that are the most difficult to train are the third, fourth, and
fifth. The fundamental reason for this is the variety of partition types that are possible in those
specific depths. Another reason is the variety of CUs that can be at the input of a specific stage,
which is greater for stages 4 and 5. As a result, finding the proper coefficients to deduce a generic
classification model is challenging for algorithms. The stages with the lowest losses have two things
in common: a minimal diversity of CU types at their input and a limited number of split modes
to forecast. Consequently, the results obtained are within expectations.
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(a) Stage 2 (b) Stage 3

(c) Stage 4 (d) Stage 5

(e) Stage 6

Figure 5.3: Evolution of losses during training for different depths

In order to analyse the presence of overfitting in the results, the loss in the testing data was also
evaluated. The occurrence of overfitting was confirmed in the final three stages (Figure 5.4). This
is evidenced by a decrease in the loss in the training data and an increase in loss in the testing data.
Consequently, it is not advisable to use the model’s parameters produced at the end of training.
Since this was anticipated, the best coefficients for the model were saved throughout the epochs.
The metric used to choose the best model was F1-score. As a result, the presence of overfitting did
not affect the ability to obtain the optimal model. Furthermore, given the amount of information
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acquired in this work, the most logical answer to the occurrence of overfitting would be to train
these stages with more information. This would allow the models to tune their coefficients more
generically.

Figure 5.4: Loss in testing data for stages 4, 5 and 6

5.3 Classification Capabilities Assessment

5.3.1 F1-score, Recall and Precision

Stage F1-score Recall Precision

Stage 2 0.9111 0.9111 0.9112

Stage 3 0.5624 0.5767 0.5770

Stage 4 0.4406 0.4581 0.4432

Stage 5 0.5143 0.5231 0.5184

Stage 6 0.7282 0.7411 0.7311

Table 5.3: F1-score (weighted average), recall (weighted average) and precision (weighted average)
results

The F1-score, recall, and precision findings for each stage are shown in Table 5.3. The results
show that the stages with the best performances in estimating the correct split modes are the second
and sixth stages, with an F1-score of 91.11% and 72.82%, respectively. This is in conformity with
the results reported about the training losses. The poorest performance was recorded in stage 4,
with an F1-score of 44.06%. As discussed in the Section on losses, the stages with the most CU
varieties at their inputs and partition types at their outputs have the most problems tuning their
parameters to satisfy all of the potential circumstances. Because of this, stages 2 and 6 are superior
to the others.

5.3.2 Confusion Matrix

Due to the fact that a confusion matrix facilitates a better understanding of the prediction skills
of a multi-classification model, examining it would provide a different perspective on the obtained
findings than the previously reported weighted averages for the F1-score, recall, and precision.
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(a) Stage 2 (b) Stage 3

Figure 5.5: Confusion matrix results in with the testing data in stage 2 and 3

Figure 5.5 depicts the confusion matrix for the results obtained from the testing data for phases
2 and 3. The results from stage 2 show that it do not have much trouble finding when the right
split mode is a non-split and when it is a QT. Furthermore, the predicting abilities of this stage
are more in favour of the non-split class, since 10% of all splits that should have been predicted
as QT were predicted as non-split. Concerning stage 3, the model generally computed the right
partition, since the diagonal squares of the matrix are darker than the others. It is also conceivable
to conclude that the non-split and quad-tree divisions are the easiest to predict, possibly because
they inherited coefficients from stage 2. The classes that were the most difficult to forecast were
HBT and VBT. These two split modes were frequently confused with their counterparts, HTT
and VTT, respectively. Although binary trees were frequently confused with ternary trees, the
opposite was not as common. The number of times a VTT or HTT was incorrectly classified as a
VBT or HBT (respectively) was the same as the number of times a TT was incorrectly classified
as a QT. Furthermore, the fact that the results of ternary tree classification are higher than those
of binary tree classification shows that not enough features are extracted for the BT class, with
most of the characteristics used overlapping with those of the TT.

(a) Stage 4 (b) Stage 5

Figure 5.6: Confusion matrix results in with the testing data in stages 4 and 5

The conclusions drawn from the stage 4 results, which are depicted in Figure 5.6a, are similar
to those of stage 3. Both stages offer great precision for the non-split and QT split modes but
are unable to forecast BT partitions correctly. Even if there are similarities between them, stage
4’s general forecasting abilities are less than those of stage 3, even though this stage’s precision
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concerning the QT split is better. Given that the QT partition is not present in the results of the
fifth stage (as demonstrated in Chapter 3), the model’s parameters could be adjusted to better suit
the existing classes. Thus, the accuracy for all classes improved. Despite an increase in precision,
the capacity to discern a BT from a TT remained unchanged. In addition, Figure 5.6b shows that,
although statistically insignificant, the model occasionally predicted classes as QT.

Figure 5.7: Confusion matrix results in with the testing data in stage 6

Similar to stage 5, QTs split modes do not exist. Consequently, this division is absent from
Figure 5.7, as the model never predicted or expected an output with this split. As in the previous
stages, it was hard to predict the BT class correctly, but this time the situation is different. In
this stage, besides the already occurring problems regarding BTs and TTs, there were problems
distinguishing between the vertical and horizontal variants of a BT. Despite the model’s BT split
categorization skills, the precision for the other partition types was very high.

The purpose of MSE-CNN is to submit a group of the most likely partitions to the encoder rather
than just the best one. Consequently, using metrics such as those described above is insufficient
to comprehend how the model would behave when merged with the encoder. It is required to
determine whether the correct split mode can be identified within the group of transmitted split
modes. In the following sections, the precision of the multi-threshold scheme will be evaluated.

5.3.3 Multi-thresholding scheme

Table 5.4 shows the percentage of times the model’s output, after multi-thresholding, contains
the right prediction. The thresholds used to evaluate this scheme were 0.3 and 0.5. For comparison,
the top 2, 3, and 4 splits from MSE-CNN’s predictions for each stage was taken and examined
to see how many times the correct split mode could be found in that group. In addition, the
average number of remaining splits, following the multi-thresholding approach for both thresholds,
is included.
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Stage Top 2
acc.

Top 3
acc.

Top 4
acc.

0.3
(MT)

0.5
(MT)

Avg.
number
splits
(MT
0.3)

Avg.
number
splits
(MT
0.5)

Stage 2 1 1 1 0.9714 0.9503 1.132 1.076

Stage 3 0.8061 0.9114 0.9672 0.8746 0.7791 2.292 1.736

Stage 4 0.6929 0.8462 0.9392 0.7525 0.6408 2.302 1.720

Stage 5 0.7785 0.9209 0.9849 0.8488 0.7423 2.293 1.759

Stage 6 0.9448 0.9962 0.9995 0.8668 0.8094 1.291 1.222

Table 5.4: Multi-thresholding (MT) results and comparisons

Although the findings of the previously mentioned metrics, such as the confusion matrix, suggest
rather poor predictive capacities for certain stages, it is possible to conclude that the top 2 best
predictions for any stage provide the optimal partition mode at least 69.29% of the time. In other
words, the accuracy would be acceptable if the encoder checked the two best splits outputted
by the models. However, when it comes to high compression rates, this may not be sufficient.
Using a threshold of 0.5 for stages 3, 4, and 5 of the multi-thresholding strategy may not be
sufficient to get satisfactory compression results. The findings with a threshold of 0.3 provide
a minimum accuracy of 75.25% for all stages, even though this requires the encoder to evaluate
more split types. Regarding the average number of splits after the multi-thresholding scheme, it
is crucial to mention that for the most conservative criterion, the highest average number of splits
left after the thresholding process is 2.292. This means that the encoder would not have to verify
an average of six partition modes for every CU, but only two. It is important to note that these
results illustrate the dichotomy between complexity and compression rates, as well as the need
to modify the threshold for each stage to get the desired outcomes. Furthermore, employing the
multi-thresholding scheme with a constant value of 0.3 results in an average accuracy of 86.28%
and a reduction in the number of splits that must be analysed by the encoder to 1.862. This result
outlines a complexity-quality commitment that leans more towards fast encoding.

5.4 Objective Quality, Complexity Reduction and Bitrate

To understand the impact of this model in the encoder, the model’s predictions were fed into
the encoder to evaluate the complexity reduction by comparing the overall time to encode the test
data with only the VTM-7.0 and with the MSE-CNN together with the encoder. Additionally, the
quality loss was compared by analysing the compression achieved with and without the integration
of the model. It is also worth noting that the model was run on GPU while the encoder was run
on CPU.

Threshold values

τ2 τ3 τ4 τ5 τ6

0.45 0.3 0.25 0.25 0.25

Table 5.5: ”Medium” configuration for the MT process [1]. Each τ is correspondent to a specific
stage.

In Table 5.6, the results are shown, these were obtained using the dataset for testing. Ad-
ditionally, the multi-thresholding approach was utilised with values from Table 5.5 (values for a
”medium” configuration, as described in [1]).
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Metric VTM-7.0 VTM-7.0+Model Gain

Bitrate 3810.192 kbps 4069.392 kbps 6.80%

Y-PSNR 35.7927 dB 35.5591 dB -0.65%

Complexity 1792.88 s 1048.95 s -41.49%

Table 5.6: Complexity, quality and bitrate regarding VTM-7.0 standlone and VTM-7.0 with MSE-
CNN

In the above Table, it is possible to see that the Y-PSNR loss (objective quality measure for
the luma channel) was 0.65%, while the complexity reduction decreased by 41.49%. Additionally,
a 6.80% increase in bitrate was attained. It is vital to remember that these values compare the
results achieved only with the encoder to those obtained with the encoder integrated with the
model.

In terms of complexity, it is quite similar to the average found in [1], 44.65%, for a multi-
thresholding with the values shown in Table 5.5. The complexity is similar since both the model
employed in this study and the one in the original paper feature a maximum sequence of six
stages. Moreover, since the complexity result from [1] is an average regarding a large set of data,
it is reasonable to say that the values presented here are very similar with those of the mentioned
paper. Concerning the quality and bitrate results, because the ones reported in [1] are for the
BD-Rate and the Bjontegaard Delta PSNR (BD-PSNR), it is not possible to compare them to
the bitrate and Y-PSNR, since the former metrics are produced by comparing the outcomes with
different QPs. Nevertheless, the results attained are extremely close to the ones obtained with
VTM-7.0 for both the bitrate and the Y-PSNR. Furthermore, while comparing the results of
HEVC with the solution provided by this research, Table 5.7, it is obvious to see that the MSE-
CNN with the VTM software is still superior to HEVC in terms of quality and bitrate. The bitrate
savings and enhanced image quality are still higher for the approach given in this thesis, with more
than 10 times bitrate reduction and more than 7 times quality superiority, as shown in the table
below. When compared to the predecessor of VVC, these results suggest that using VVC with the
MSE-CNN is still more than adequate.

Metric VTM-7.0 HEVC Gain

Bitrate 3810.192 kbps 6545.2 kbps 71.78%

Y-PSNR 35.7927 dB 34.0438 dB -4.89%

Complexity 1792.88 s 3.165 s -98.23%

Table 5.7: Complexity, quality and bitrate regarding HEVC and VTM-7.0 with the MSE-CNN
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Chapter 6

Conclusions

6.1 Conclusion

In this study, the MSE-CNN was investigated. It started with the analysis of the data that
the model would need in order to train it. Afterwards, a pipeline to generate labels was designed
and applied to the database that was made available by the authors of MSE-CNN. Following that,
the actual network was built. Many aspects of specifications of this network had to be understood
before its implementation. Finally, the model was evaluated using a large number of dependable
criteria to demonstrate the reliability of its results. All of this was done with the objective of
decreasing the complexity of intra mode VVC while preserving image quality loss. It was possible
to achieve an accuracy of 86.28% using the multi-thresholding scheme with a constant threshold of
0.3 and an average number of partition types that have to be examined by the encoder of 1.862 split
modes. Moreover, in terms of coding metrics, a complexity reduction of 41.49%, a Y-PSNR loss of
0.65%, and a bitrate gain of 6.80% were observed. In addition to the development of this network,
comments on code implementation and a more straightforward training process was suggested.

6.2 Future Work

Regarding future work, this model is amenable to several adjustments, additions, and evalua-
tions. Since this network only uses convolutional and fully connected layers, adding pooling layers
could change the results and possibly make them better. Specifically, incorporating these layers
into the sub-networks portion of the MSE-CNN. The reason for this is that the dimensionality of
the feature maps is reduced in this layer, and the final features are retrieved to determine the ap-
propriate split. According to [1], when small translations are made to the input, the pooling layers
make representations that stay mostly the same. When this layer’s results are added to those of
the convolutional layer, the outputs of this matching could be more accurate. Another intriguing
change would be to consider the split mode ratio for each depth when making predictions. By
putting the partitions that happen less often into one prediction class and the ones that happen
more often into separate ones, the model could figure out more quickly which features are most
important for this new smaller group of classes. In addition, grouping the VTT and VBT, as well
as the HTT and HBT, into two classes could be an abstraction that results in better forecasting
capabilities. In the results Chapter, it was found that stages with less partitions to predict generate
better results. After grouping some classes, new models could be designed to be specialised in fore-
casting these groups. Also, the parameter pm from the modified cross-entropy loss function, which
was not applied in this investigation, could be used in different ways. Instead of using all of the
partitions in the dataset to compute its proportions, this computation could be done stage-wise. In
other words, the ratio of split modes that are stored in the pm could be calculated for each stage.
Thus, training penalties would be more accurately administered. Moreover, all DL models benefit
being trained with more data, for this reason training this model with more data would improve
its performance. Besides increasing the amount of information fed to the model, techniques such
as K-fold cross-validation [2] could benefit the classification abilities of this model. In addition,
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hyperparameters such as the number of epochs must be tuned with the learning rate in order to
improve the performance of this model. Finally, hard coding the model to eliminate unrealistic
partition types such as partitioning a 32x16 CU in QT would be essential.

It would also be important to compare more the results of the model developed in this work
with the results of [3]. For instance, evaluate the model with more sequences, using different
multi-threshold values and training the model with data encoded with different QPs.

Concerning the developed code, optimizations could be made. These would reduce the amount
of time it takes to process the data to get the labels and also speed up the training process.
Furthermore, a possible hardware implementation of the VVC with the MSE-CNN could also be
a interesting approach to reduce significantly the complexity.

6.3 Contributions

This research made some contributions to the scientific community in the field of video coding.
The first big contribution was the actual network implementation, training and evaluation scripts,
stages coefficients, data processing code, and numerous other useful functions for interacting with
the model and data. This data is significant because it gives a possible interpretation of the model,
since it was not made available in [3]. Some information, such as how the batch sizes bigger than
one was fed into the model, is missing from the cited study. For this reason, the code developed may
allow other researchers to examine the MSE-CNN and compare their results with those presented
in this dissertation, the original publication, and other models. Since the database provided by
the developers of MSE-CNN had not previously been encoded, the work done in this thesis also
made these files available. Aside from this, all files created throughout the data processing are
accessible. Files containing all of the structures mentioned in chapter 3 are available for use by the
research community. The processed data can mostly be used for approaches that take into account
the different splits that happen when an image is partitioned with VVC. In terms of the reference
paper [3], this dissertation compares some of its findings and validates what was established in
it. Regarding the unbalanced data issues, a different strategy was implemented. While on [3], a
modification to the loss function was made to remedy this; in this research, downsampling was
applied to the data. Furthermore, a different approach regarding generating the stages for the
MSE-CNN was followed, in which 6 stages were created for the luma channel. Although the
possible results of this approach are not comparable with the original methodology, it provides
a more lightweight and straightforward way of solving this problem. Overall, this thesis offered
a technical description of how the MSE-CNN can be implemented and a discussion of the most
influencing factors and parameters on its performance.
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