
Universidade de Aveiro
2022

João Miguel
Costa Génio

Mapas de conhecimento como ferramenta de apoio à
gestão de competências científicas

Knowledge Maps as support tool for managing
scientific competences

“I want to see if I can. I don’t know if I can. I want to find out. I
want to see. I’m going to do what I always do: I’m going to break
it down to its smallest form, smallest detail, and go after it. Day
by day, one day at a time.”

— Kobe Bryant

Universidade de Aveiro
2022

João Miguel
Costa Génio

Mapas de conhecimento como ferramenta de apoio à
gestão de competências científicas

Knowledge Maps as support tool for managing
scientific competences

Universidade de Aveiro
2022

João Miguel
Costa Génio

Mapas de conhecimento como ferramenta de apoio à
gestão de competências científicas

Knowledge Maps as support tool for managing
scientific competences

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia de Computadores e Tele-
mática, realizada sob a orientação científica do Doutor António José Ribeiro Neves,
Professor auxiliar do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro, e da Doutora Alina Trifan, Professora auxiliar convidada
do Departamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro.

Dedico este trabalho à minha família e amigos pelo incansável apoio que
sempre me deram.

o júri / the jury
presidente / president Professor Doutor Joaquim João Estrela Ribeiro Silvestre Madeira

Professor Auxiliar, Universidade de Aveiro

vogais / examiners committee Doutora Filipa Campos Soares Borrego
Gestora de CIência, Centro de Investigação em Sistemas Computacionais Embebidos e de Tempo-
Real - Cister

Professora Doutora Alina Liliana Trifan
Professora Auxiliar Convidada, Universidade de Aveiro

agradecimentos /
acknowledgements

Quero agradecer a todos os que me ajudaram neste longo percurso. À minha família
que sempre apoiou as minhas decisões. Aos meus amigos que tanto me aturaram.
Aos meus fantásticos orientadores, Professor Doutor António José Ribeiro Neves e
Professora Doutora Alina Trifan, por guiarem-me neste enorme desafio. Por fim,
quero também agradecer à Universidade de Aveiro que foi muitas vezes a minha
segunda casa, mas sempre acolhedora.

Palavras Chave mapas de conhecimento, mapas conceituais, visualização de grafos, processamento
de linguagem natural, gestão de competências científicas, mineração de dados.

Resumo Numa organização de investigação, encontrar alguém que seja especialista numa
área e que possa assumir uma determinada posição, definir áreas de excelência,
ou contratar alguém, requer a compreensão das competências internas disponí-
veis. Este trabalho explora a ideia de mapas de conhecimento ou de competências
como instrumento de apoio à gestão de competências científicas, tentando reduzir
a lacuna identificada na gestão da investigação no Instituto de Engenharia Elec-
trónica e Informática de Aveiro. Se for bem sucedida, esta ideia poderá também
ser implementada em qualquer outra organização de investigação. Os mapas de
conhecimento são uma representação visual de informação que pode ser concebida
com granularidade variável no que diz respeito aos bens de conhecimento de uma
organização. De uma perspetiva de gestão da investigação, os mapas de conheci-
mento apoiam a descoberta de competências de investigação e fornecem uma visão
instantânea de um tópico, mostrando claramente as principais áreas. A solução ex-
plorada neste trabalho utilizou abordagens de mineração de dados para recolher
informação de bases de dados públicas e apresentá-la em mapas de conhecimento.
Outras ferramentas de visualização tais como gráficos de barras, tabelas, filtros
e funcionalidades de pesquisa foram criadas e integradas numa plataforma web.
Quando reunidos, estes componentes podem transformar esta plataforma numa
componente chave para a administração de uma organização de investigação.

Keywords knowledge maps, concept maps, graph visualization, natural language processing,
scientific competence management, data mining.

Abstract In a research organization, finding someone who is expert in a field and can take
up a given role, defining areas of excellence, or employing a new member require
understanding the competences available in-house. This work explores the idea of
knowledge or competence maps as a support tool for managing scientific compe-
tences, trying to reduce the identified research management gap at the Institute
of Electronics and Informatics Engineering of Aveiro. If successful, this idea could
also be implemented at any other research organization. Knowledge maps are a
visual representation of information which can be designed with variable granularity
with respect to the knowledge assets of an organization. From a research manage-
ment perspective, knowledge maps support the discovery of research competences
and provide an instant overview of a topic by showing the main areas at a glance.
This solution explored in this work employed data mining approaches for gathering
information from public databases and presenting it in knowledge maps. Other
visualization tools such as bar charts, tables, filters and search functionalities were
created and integrated into a web platform. When put together, these components
can turn this platform into a key component for the administration of a research
organization.

Contents

Contents i

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Context and motivation . 1

1.2 Background . 2

1.2.1 Added value of this project . 5

1.3 Objectives . 5

1.4 Document structure . 5

2 Architecture 7

2.1 Requirements . 7

2.2 Technologies . 8

2.2.1 Application Programming Interfaces . 8

2.2.2 Choosing a data source . 9

2.2.3 Platform . 10

2.3 System overview . 11

3 Data Collection 13

3.1 Scopus . 13

3.1.1 Access . 14

3.2 Ciência Vitae . 15

3.2.1 Access . 15

3.3 Data model . 16

3.3.1 Authors . 16

3.3.2 Publications . 17

i

3.4 Duplicate publications . 17

3.4.1 Understanding the flow of information . 18

3.4.2 Different types of publications . 19

3.4.3 ID matching . 20

3.4.4 Merging in ideal conditions . 20

3.4.5 Field merging . 20

3.4.6 ID inconsistencies . 21

3.4.7 Synchronization order . 23

3.4.8 Title and abstract analysis . 26

3.5 Results . 29

3.5.1 Synchronizing Scopus . 30

3.5.2 Synchronizing Ciência Vitae . 30

3.5.3 Global results . 31

3.6 Developer page . 32

4 Knowledge Extraction 35

4.1 Graph visualizations . 35

4.1.1 Knowledge mapping . 35

4.1.2 Performance . 36

4.1.3 Key features . 36

4.1.4 Framework comparison . 37

4.2 Creating graphs . 39

4.2.1 Styling . 39

4.2.2 Author map . 41

4.2.3 Global map . 42

4.3 Data viewer . 43

4.4 Filters . 44

4.4.1 Keywords . 44

4.4.2 Date . 45

4.4.3 Publication type . 46

4.4.4 Headers . 47

4.5 Institutional statistics . 47

4.5.1 Publications in a time period . 47

4.5.2 Projects in a time period . 48

4.5.3 Global counters . 48

4.5.4 Author specific statistics . 49

4.6 Home page . 50

4.7 Author page . 51

ii

5 Optimization 53

5.1 QuerySets . 53

5.2 Prefetching data . 54

5.3 Django Debug Toolbar . 54

5.3.1 Query awareness . 54

5.4 Developer page . 55

5.4.1 Optimizing . 55

5.4.2 Optimization results . 57

5.5 Home page . 57

5.5.1 Knowledge map . 58

5.5.2 Bar charts . 58

5.6 Author page . 59

5.6.1 Knowledge map . 59

5.6.2 Bar charts . 60

6 Conclusion and Future Work 61

6.1 Conclusion . 61

6.2 Future work . 62

References 63

Data Model Diagram 65

iii

List of Figures

1.1 Example of an author’s profile in Authenticus. 3

1.2 Example of a knowledge map using the keywords “robot soccer”, in Open Knowledge Maps. 4

1.3 Main features of Pure. 4

2.1 System overview. 11

3.1 Scope of the Scopus and ScienceDirect APIs. 14

3.2 Duplicate publications, fetched from both APIs. 18

3.3 Example of a publication’s string representation . 18

3.4 Example of a publication that is fetched from the Scopus API and is added to the database. 19

3.5 Example of a fetched publication being merged with an already existing one. 19

3.6 Example of merging because of equal Scopus ID. 20

3.7 Flowchart of the field merging process. 21

3.8 Example of an inconsistency. 22

3.9 Main ID inconsistencies. 22

3.10 Example of a type 5 inconsistency. 23

3.11 Flowchart of the ID merging process. 23

3.12 First example of publications of a given author when Scopus is synchronized before Ciência

Vitae. 24

3.13 First example of publications of a given author when Ciência Vitae is synchronized before

Scopus. 24

3.14 Second example of publications of a given author when Scopus is synchronized before

Ciência Vitae. 25

3.15 Second example of publications of a given author when Ciência Vitae is synchronized

before Scopus. 25

3.16 Text processing pipeline execution before comparing publication’s titles and abstracts. . . 27

3.17 Two publications that share the same title and abstract. 28

3.18 Two publications where one title contains the other. 29

3.19 Merging when two publications share the same abstract or title. 29

3.20 Results from synchronizing Scopus in an empty database. 30

v

3.21 Results from synchronizing Ciência Vitae after Scopus. 31

3.22 Overview of the developer page. 33

4.1 First example of vis.js’s example page. 40

4.2 Customization of a graph visualization. 41

4.3 Author’s collaboration map, of conference papers related with the word “vision”, from 1981

to 2020. 42

4.4 Institute’s collaboration map, of conference papers related with the word “vision”, from

1981 to 2020. 43

4.5 Example of a possible state of the publication viewer. 44

4.6 Example of a possible state of the keyword form, when the user searches for “robotic soccer”

related keywords. Some choices are disabled by the user. 45

4.7 Range of options of the “End year” field, when “Start year” has the value “2020” selected. 46

4.8 Options available in the publication type form. 46

4.9 Example of a graph header. 47

4.10 Example of a viewer header. 47

4.11 Example of a bar chart about publications. 48

4.12 Example of a bar chart about projects. 48

4.13 Cards with information about the application’s global counters. 49

4.14 Example of an author’s most recurring keywords. 49

4.15 Example of an author’s most recurring scientific areas. 50

4.16 Example of an author’s most common collaborators. 50

4.17 Home page overview. 51

4.18 Author page overview. 52

vi

List of Tables

3.1 Scopus and ScienceDirect API quotas. 15

3.2 Source of the author model’s secondary fields. 17

3.3 Source of all publication model’s fields. 17

3.4 Publications with a given amount of authors in the database, after the collection phase. . 32

5.1 Developer page’s iterative gains in optimization. 57

5.2 Different workloads applied to the home page’s knowledge map. 58

5.3 Different workloads applied to the home page’s publications bar chart. 58

5.4 Different workloads applied to the home page’s projects bar chart. 59

5.5 Different workloads applied to the author page’s knowledge map. 59

vii

Glossary

2D Two-Dimensional
3D Three-Dimensional
API Application Programming Interface
CV Curriculum Vitae
DETI Department of Electronics,

Telecommunications and Informatics
DOI Digital Object Identifier
FCT Portuguese Foundation for Science and

Technology
HTML HyperText Markup Language
IEETA Institute of Electronics and Informatics

Engineering of Aveiro

JS JavaScript
NLP Natural Language Processing
NLTK Natural Language Toolkit
PDF Portable Document Format
QA Quality Assurance
SQL Structured Query Language
SVG Scalable Vector Graphics
UA University of Aveiro
UI User Interface
VPN Virtual Private Network

ix

CHAPTER 1
Introduction

This introductory chapter seeks to go over the context and motivation of this dissertation
as well as exploring background information on the topic. Additionally, the objectives and
document structure will also be explained.

1.1 Context and motivation

After a research management gap identified at the Institute of Electronics and Informatics
Engineering of Aveiro (IEETA)1 at the University of Aveiro (UA), there was a necessity to
evaluate the use of knowledge or competence maps as support tools for the management of
scientific competences. An implementation of a computational tool was then thought of, to
provide a platform that allows for both managing and gathering knowledge about the research
unit. The level of knowledge of an organization lies in its employees and their collaboration,
therefore, they are the most important assets that it owns. Managing this knowledge can
help an organization expand its intellectual assets and share them with eventual industrial
partners [1].

In a research organization, finding someone who is expert in a field and can take up a
given role, defining areas of excellence, or employing a new member require understanding
the competences available in-house. Moreover, from a research manager’s perspective, the
need to find an expert to act as the leading investigator of a research plan or as reviewer of a
given research proposal could be supported by an appropriate knowledge management tool.
Additionally, the added value of the expected output, is that potential industrial partners
will be able to identify core interests and personnel of the department to co-lead internships,
project proposals or dissertations that target the students of the Department of Electronics,
Telecommunications and Informatics (DETI).

Among the many statistics on science, called scientometrics, bibliometrics holds a privileged
place. It can be defined as a quantitative analysis of academic publishing, making it one of

1http://wiki.ieeta.pt/wiki/index.php/Main_Page

1

http://wiki.ieeta.pt/wiki/index.php/Main_Page

the few sub fields concerned with measuring the output side of science [2], [3]. When applied
to individual researchers, they can strongly influence their promotion and make their research
footprint much more noticeable. They can measure, at the article, journal or author level, the
impact that is created in a given academic discipline. At the article level, one can calculate
how many times it has been cited by another work, which is dependent on the size of the
indexing database used. Similarly, the importance of a journal in a given field can also be
calculated. Finally, at the author level, one can find more complex metrics like the popular
h-index [4], that finds h publications with at least h citations. These kinds of metrics are
important at assessing the quantity and quality of an author’s research profile. When applied
to an organization or institute, they can become one of their greatest assets for management
and business. In their raw form, they represent occurrences and other numeric representations.
Naturally, the perception of bibliometrics can be enhanced by unique and different types of
representations, like charts, diagrams, or knowledge maps.

Knowledge maps are diagrams that represent ideas with nodes and links. They are often
used as media for learning activities, lectures and study materials. They can be distinguished
by the use of labeled nodes denoting concepts and links denoting relationships among them.
The links in a map may be labeled or unlabeled, directional or non-directional [5].

Knowledge maps are a visual representation of information which can be designed with
variable granularity with respect to the knowledge assets of an organization. From a research
management perspective, knowledge maps support the discovery of research competences,
crucial for establishing efficient research and industrial partnerships. Efficient knowledge
maps are expected to bring value to those interested in knowledge management and the
identification, enhancement, and actualization of the potential of intellectual assets. They
facilitate organizational learning and the interaction with outsider stakeholders. Not only
do they support the discovery of organizational knowledge, as working knowledge maps are
often seen by those outside the organization as a clear sign of its competence. Knowledge
maps which fail to bring returns to the organization and its members are either abandoned or
left to deteriorate. They represent excellent ways to capture and share explicit knowledge
in organizational contexts, and provide an instant overview of a topic by showing the main
areas at a glance. Core competency maps, a sub type of knowledge maps, profile employees
and their capabilities, thus enabling the exploring of development opportunities, both at an
individual and organizational level. This dissertation will explore the application of these
knowledge maps in the context of research management.

1.2 Background

A broad analysis was carried out to help understand the capabilities of similar platforms
and the added value that the proposed project could offer. Although some of solutions were
identified, they were not directly applicable to our use case, as it will be detailed next.

Authenticus2 is a project developed at the University of Porto that aims to build a national
repository of publications metadata authored by researchers of Portuguese institutions. Similar

2https://www.authenticus.pt/

2

https://www.authenticus.pt/

to this dissertation’s proposed project, the system automatically imports publications from
multiple indexing databases like ORCID and conducts a redundancy or duplicate checking
process [6]. Its development started in 2010, spanning beyond 2015 through a master
dissertation [7], but has not been further developed in the last years, so it was not chosen.
Figure 1.1 shows an example of an author’s profile in this platform.

Figure 1.1: Example of an author’s profile in Authenticus.

Open Knowledge Maps3 presents to the user a topical overview based on the 100 most
relevant documents matching a given query. It uses text similarity to group documents
together and create the knowledge maps. It intends to give the users a head start on their
scholarly search. Its main goal is to identify relevant areas at a glance and documents related
to them. Its main sources are the Public Library of Science4 and PubMed5. It employs
Natural Language Processing (NLP) techniques to build their knowledge maps [8]. Figure 1.2
shows an example of a knowledge map created with the keywords “robot soccer”, using this
tool. This platform’s data sources are its main limitation, which makes it unsuitable for our
necessities.

Elsevier ’s Pure6 is also an important research information management system. Figure 1.37

illustrates its main features, such as extraction of data from numerous sources and providing
workflow improvements for both researchers and institutions. Pure’s main disadvantage is
that it is not a free tool, therefore ruling it out for our use case.

3https://openknowledgemaps.org/
4https://plos.org/
5https://pubmed.ncbi.nlm.nih.gov/
6https://www.elsevier.com/solutions/pure
7https://www.elsevier.com/solutions/pure/how-it-works

3

https://openknowledgemaps.org/
https://plos.org/
https://pubmed.ncbi.nlm.nih.gov/
https://www.elsevier.com/solutions/pure
https://www.elsevier.com/solutions/pure/how-it-works

Figure 1.2: Example of a knowledge map using the keywords “robot soccer”, in Open Knowledge
Maps.

Figure 1.3: Main features of Pure.

4

1.2.1 Added value of this project

After having identified the problem, this dissertation presents the development of a platform
that mixes the main features of a research database, with the added focus on competence
management through the aid of knowledge maps. This platform seeks to bring a powerful
set of metrics and visualization tools to help achieve management goals, like enhancing the
human resources or external partnerships. Through the development of a custom platform,
one can tailor its functionalities to the organization’s needs. Additionally, this platform would
present an improvement over the existing IEETA website, which requires manual input from
the researchers and does not facilitate the creation of statistical reports of the scientific output
of the institution.

1.3 Objectives

The main objective of this dissertation is to employ data mining approaches for developing
a platform that supports knowledge maps designed to assist on one hand, officers working in
science interface groups, and external stakeholders on the other, at identifying the experts
and their respective domains of expertise in research-based organizations. It is expected that
the resulting knowledge platform will provide a global view of the in-house competences and
enable collaborations, both from a research and industrial perspective.

Through public Application Programming Interfaces (APIs) one can get access to an
author’s publication record and project collaboration history. This data can then be used to
model the explicit knowledge of a researcher by employing data mining and keyword extraction
techniques. Moreover, a map of the researcher’s collaborators can be put together. In this
project, only information obtained programmatically is analyzed in order to minimize the
dependency on potential manual upload of information by the researchers themselves. Finally,
a management platform will be developed, complying with its requisites, with a strong focus
on the final output as a knowledge map of individual authors and of the entire organization
as well.

1.4 Document structure

This document will mostly follow the temporal development with one exception:

• Chapter 2 is dedicated to the requirements analysis and system architecture.
• Chapter 3 explores the data collection phase and deals with the eventual problems that

will occur.
• Chapter 4 goes into deep detail for the visual representation of data in the application.

It also presents the final look and feel of the platform, serving as the final output of the
knowledge maps.

• Chapter 5 explains the optimization that was done throughout the entire development
phase and also presents some performance tests to complement the process description.

• Finally, Chapter 6 goes through the conclusions of the entire work, reflecting on the
quality of implementation as well as presenting ideas for the future.

5

CHAPTER 2
Architecture

Developing a software platform requires a thorough analysis of the necessities that exist, and
what functionalities have to be implemented to satisfy them. This chapter will explain the
process of gathering the requirements as well as designing an appropriate system architecture.

2.1 Requirements

Currently, IEETA does not have a research management office in place. This means that the
requirements for the managing tool that is being conceived have to come from a higher position
within this institute. Throughout the development phase of this platform, many meetings
took place with this dissertation’s supervisors (one of which has a background in science
management), and occasionally with IEETA’s director, Prof. José Luís Oliveira, who acted as
the product owner of the platform. These meetings helped getting a better understanding
of what kinds of tools are expected to be present in a system like this. Additionally, these
meetings also helped to assure the quality of the implementation at that given moment and
feed the definition of formal, functional, and non-functional requirements of the knowledge
maps. Special attention must be given to the fact that all stakeholders must be motivated by
the knowledge map. If they cannot see the use of the map, they will not use it.

Gathering relevant amounts of information about a set of researchers can be incredibly
cumbersome, which is why one of the main objectives that is trying to be accomplished,
is being able to find people that specialize in a certain field, within seconds. Obtaining
institutional metrics, like the number of articles published in a year, are essential, not only for
understanding the existing scientific competences, but also for reporting purposes. Detailed
views about individual researchers and publications also need to be implemented because they
represent the underlying data structures that will be joined together to create the knowledge
maps.

Having all these tools at hand can become extremely useful when trying to raise detailed
data about the institute. However, performance has to be kept in check when developing a
platform that relies on external APIs. Having to constantly fetch data from them is unfeasible,

7

as they often impose limits on how many requests can be done within a time period, drastically
hindering performance. This is why it is crucial that the gathered data is stored locally, ready
to be accessed within instants.

The research platform’s purpose is to support search functionalities, which enable the
on-the-fly discovery of a person of interest. First, a simple keyword search engine is to be
implemented. A research manager as a user of the research map will thus be able to search
for specific keywords in order to identify a person of interest. Such keywords can be research
areas or topics, programming languages or classes taught. Nonetheless, an advanced search
functionality would provide more flexibility to its user.

From a software engineering perspective, a functional requirement defines a function of
a system, where a function is described as a specification of behavior between inputs and
outputs. A non-functional requirement is a requirement that specifies criteria that can be used
to judge the operation of a system, rather than specific behaviors. The following functional
requirements were identified:

• The platform should have a search functionality. This functionality would enable its
users to virtually find the information of interest on the fly.

• The visual interface of the map is an important aspect and it should be designed so as
to facilitate the identification of specific human assets or competences.

• Aggregate information should be extracted so as to provide a global view of the in-house
competences.

The non-functional requirements are:

• Interoperability - the information presented on the platform should be inter-operable,
meaning it could be easily integrated with other systems.

• Replication of information should be avoided at all cost.
• Usability - The system should respond in real-time.
• Scalability - The platform should be easily scalable so as to include a higher number of

researchers or cover more research institutions.

2.2 Technologies

This section seeks to explain what major technologies were used and how they were chosen.

2.2.1 Application Programming Interfaces

APIs are used to get programmatic access to content that is, in most cases, already
available through some sort of interactive platform (application or web based). Data alone
isn’t very useful, which is why the access to robust APIs allows one to create innovative tools
that enhance the perception of the data.

8

Scopus

Scopus is one of the largest abstract and citation databases, with more than 17 million
author profiles and more than 87 million records1. It belongs to Elsevier2, a prestigious
academic publishing company that provides many solutions to researchers and institutes, like
their APIs and platform for publishing or viewing content.

Ciência Vitae

Ciência Vitae3 is a web-based, Curriculum Vitae (CV) management system. It is developed
and mantained by the Portuguese Foundation for Science and Technology (FCT)4 and is
financed by Portugal’s Ministry of Education and the European Union. Anyone that acts
in the academic or research context in Portugal can create a CV in this platform. This lead
to the platform having more than 80,000 researcher CVs, which makes it a key part of a
researcher’s “footprint”. Ciência Vitae also allows the user to manually import their data
from other well known platforms, like ORCID5, making it much more versatile and rich in
information.

Other data sources

ORCID6, or Open Researcher and Contributor ID, is a unique digital identifier that
facilitates searching publications and allows for creating a web profile at an institutional and
personal level. Many academic and research institutions require authors to use this identifier,
for publishing and career progression purposes.

Google Scholar7 is a search engine dedicated to scholar literature. It helps finding relevant
work across the web by indexing data about articles, books and much more.

Institutional websites

IEETA and UA’s8 websites provide personal information about the professors and re-
searchers that are included in this study, however, there is not a way to programmatically
access it. Scraping these web pages would provide additional data but it was not explored.

2.2.2 Choosing a data source

The first choice of data source is Scopus, for its popularity, ability to index data from
other publishers and full content in their open access documents. Their documentation [9]
and official API wrapper 9 make the set up process very quick.

Ciência Vitae also needs to be chosen because of its possibility of manually adding content
like projects and much richer personal information. This comes at the cost of some information
overlap with the previous API, but this problem will be dealt accordingly in the next chapter.

1https://www.elsevier.com/solutions/scopus/how-scopus-works/content
2https://www.elsevier.com/about/this-is-elsevier
3https://www.cienciavitae.pt/
4https://www.fct.pt/
5https://orcid.org/
6https://info.orcid.org/what-is-orcid/
7https://scholar.google.com/
8https://www.ua.pt/
9https://github.com/ElsevierDev/elsapy

9

https://www.elsevier.com/solutions/scopus/how-scopus-works/content
https://www.elsevier.com/about/this-is-elsevier
https://www.cienciavitae.pt/
https://www.fct.pt/
https://orcid.org/
https://info.orcid.org/what-is-orcid/
https://scholar.google.com/
https://www.ua.pt/
https://github.com/ElsevierDev/elsapy

Although ORCID has an official10 Python11 API wrapper, it does not add much more
information than the previous APIs, while adding a lot of redundancy (note that Ciência
Vitae can synchronize with this platform).

Google Scholar simply indexes information and will not provide as much detail as the
original data sources like Scopus. It also does not provide an API, but there are libraries
that can scrape search results, which is far from ideal due to the high possibility of the code
becoming outdated with Google Scholar ’s web pages.

The next chapter will go into deeper detail on the chosen data sources.

2.2.3 Platform

Nowadays, almost all daily-use applications reside on the web. For the user, it means
not having to deal with installation or update issues, as well as not having control over the
application’s integrity, hence canceling the chance of breaking it. As for the developer, it is
easier to deploy and maintain, while keeping multi-environment support at a maximum. Even
some desktop applications are, in reality, web applications in disguise. These applications
obtain their User Interface (UI) and interpret it the same way as a browser would [10].
Electron12 apps are rendered through a lightweight Chromium based browser engine and
are becoming more common by the day. Popular apps include Slack, Microsoft Teams and
Discord.

Django

Django, “the web framework for perfectionists with deadlines”13, is a Python web framework
for quickly developing secure, scalable production applications. Choosing this framework
boiled down to the simplicity that Python provides, as well as a significant personal experience
with these technologies. Of course, this decision could not have been made without thoroughly
verifying if it meets this application’s requirements, which it comfortably does.

In its quickest, most simple configuration, Django initializes an SQLite14 database, that
it will use to communicate with its own model abstraction layer. The developer is expected
not to write Structured Query Language (SQL) code but to call and reference Django’s own
methods for manipulating the database [11].

User Interface

The UI is a major factor in this system given that it is responsible for taking the processed
data from the backend and transforming it into an unique visualization tool. The quality
of the rendered information is crucial for correctly interpreting and extracting the scientific
knowledge that resides in the database. Additionally, the purpose of this application is not
just to visualize, but also to manage. A dashboard type of layout makes more sense than

10https://github.com/ORCID/python-orcid
11https://www.python.org/
12https://www.electronjs.org/apps
13https://www.djangoproject.com/
14https://www.sqlite.org/index.html

10

https://github.com/ORCID/python-orcid
https://www.python.org/
https://www.electronjs.org/apps
https://www.djangoproject.com/
https://www.sqlite.org/index.html

anything else because the user will mostly consume data in the form of numbers, tables and
charts.

To set the page layout and styling, AdminLTE15 was chosen, as it allows for a simple
HyperText Markup Language (HTML) setup while providing an extensive set of visual
elements like tables, panels, forms and much more. It can be easily integrated with frontend
frameworks like React but this application does not have requirements that justify that added
complexity. Chapter 4 will go into deeper detail on the visual representation of the data as
bar charts or graphs.

2.3 System overview

Figure 2.1 represents the entire system at a high level. The flow of information starts at
the two data sources, Elsevier (2 APIs) and Ciência Vitae (1 API), then extracted with the
appropriate libraries, stored in a local database, processed by the web framework’s backend
and displayed to the user with the aid of visualization tools. Ultimately, the user has the
ability to perceive the original data in a new, refined way that allows for extracting scientific
knowledge from a set of researchers.

Figure 2.1: System overview.

15https://adminlte.io/

11

https://adminlte.io/

CHAPTER 3
Data Collection

In this chapter, we will explore the Scopus and Ciência Vitae APIs, the process to extract
information from them and saving it in our database. Each of these platforms contains useful
and unique data, but there’s also some overlap between their contents, which means that we
will need to find a way to detect duplicate data. This process will consist of simple data
processing but also some NLP strategies to analyse textual data. The development process
starts with the identification of all IEETA’s researchers and the collection of their research
IDs, more specifically, their Scopus and Ciência Vitae IDs.

3.1 Scopus

In this chapter, we will explore the Scopus API as well as the ScienceDirect API, but
for simplification purposes we will just name them both “Scopus”. We will extract relevant
publication metadata and abstracts from the Scopus API, and full-text from the ScienceDirect
API, as illustrated by Figure 3.11. The first API will include data by many other publishers,
not just Elsevier, while the second API will include the full-text content just from publications
with open access and exclusively from Elsevier.

1https://dev.elsevier.com/support.html

13

https://dev.elsevier.com/support.html

Figure 3.1: Scope of the Scopus and ScienceDirect APIs.

3.1.1 Access

To get access to the APIs, one needs what is called an API key. This is a special code
that indicates the database which users are trying to extract data, and which data is allowed
to be given to them.

Policy

Individuals and institutes can access the API for free, as long as they follow their policies2.
Our purposes follow the “Academic Research” guidelines, given that this is an academic
research document and the intended use for this application is as an internal tool for institutes.
That policy requires this document to state that all Scopus data shown was downloaded from
the Scopus API between August 15 and September 15, 2022 via http://api.elsevier.com

and http://www.scopus.com.

Permissions

Although the access is free, individuals with no extra permissions will only have access
to most publication’s metadata, while institutional users can extract abstracts and full-
text content3. Institutional users need to be logged in with their institutional account and
need to be located in their institute’s network, either physically or with a Virtual Private
Network (VPN).

Quotas

Like most APIs, Scopus establishes limits for the number and size of requests. These
limits are forced upon the user, but in order to keep our requests from returning an error, the
script is forced to sleep for the minimum amount of time that is necessary. Table 3.1 lists the
quotas relative to the Scopus APIs.4

2https://dev.elsevier.com/policy.html
3https://dev.elsevier.com/
4https://dev.elsevier.com/api_key_settings.html

14

http://api.elsevier.com
http://www.scopus.com
https://dev.elsevier.com/policy.html
https://dev.elsevier.com/
https://dev.elsevier.com/api_key_settings.html

API Endpoint Weekly quota Requests per second

Scopus Abstract Retrieval 10,000 9
Author Search 5,000 2

ScienceDirect Article Retrieval 50,000 10

Table 3.1: Scopus and ScienceDirect API quotas.

Library and documentation

To interact with the APIs, we used the official Python library from Elsevier, elsapy5, as it
provides all the operations that we need to perform.

Both the Scopus [9] and ScienceDirect [12] interactive APIs provide both the necessary
documentation and visual tools that help understand the data model and its structure.

3.2 Ciência Vitae

The Ciência Vitae API grants access to all public data, i.e., only the data that users
explicitly declare as “private” is hidden. We will use this API to extract personal information
about the author, publications that are imported through other platforms, as well as manually
added publications. Naturally, some overlap between this and the Scopus API is going to
occur. That problem will also be thoroughly explored in this chapter.

3.2.1 Access

To get access to the API, a form needs to be filled and sent to the Ciência Vitae team6.
Upon explaining our purpose of accessing the API, we were granted credentials for a Quality
Assurance (QA)7 environment. This environment consists of a database, filled with some
objects that follow the same data structures as the main (production8) environment. This is
done so that the user can safely test their scripts without worrying about breaking something
important. Our intention with the API is to read data, not write, so this process was fairly
simple because we just needed to be sure that we were fetching the correct data in a correct
way.

Quota

The quota for the API is two requests per second, which is achieved by forcing our program
to sleep for half of second on each request. Complying with this limit is specially important
because if a user exceeds this limit, their access can be blocked, instead of simply returning
an error.

Library and documentation

As of October 2022 there is no publicly available Python package or library for accessing
the Ciência Vitae API, so the solution lies on the many high quality and robust Python

5https://github.com/ElsevierDev/elsapy
6https://www.cienciavitae.pt/contactos/
7https://qa.cienciavitae.pt/docs/
8https://api.cienciavitae.pt/docs/

15

https://github.com/ElsevierDev/elsapy
https://www.cienciavitae.pt/contactos/
https://qa.cienciavitae.pt/docs/
https://api.cienciavitae.pt/docs/

frameworks for executing requests on the web. We ended up choosing the requests9 library, as
it is one of the most used and it can easily satisfy our needs.

The API provides many endpoints for accessing many types of information, but upon close
talks with the Ciência Vitae, they suggested using their global endpoint, that provides all the
data about a researcher. The drop in performance of doing many requests ceases to exist, and
instead, we do a single request with a big response. Their interactive API is very user-friendly
and provides all the documentation needed for accessing the data [13]. Once terminated the
testing phase, we were granted read-only credentials for the production environment and got
access to all public data available in the platform.

3.3 Data model

The data model of the proposed application, illustrated by the Data Model Diagram
appendix, represents all the entities that are going to be stored in our database as well as their
relationships. These classes represent the most relevant data that we are able to extract from
both the Scopus and Ciência Vitae APIs, which means that there are some fields that are
extracted exclusively from one API and some fields that can be fetched from both, increasing
the richness of an object’s information. Ultimately this can cause a publication having more
keywords or an author having more publications, which increases the level of “knowledge” that
the database has about them. Also note that the diagram’s fields are specified in Django’s
own categories10, which are also explained in the appendix.

3.3.1 Authors

The author model is defined by its three main identifiers and name. These fields are
optional because one author may not have some of these IDs. The “name” field is filled once a
synchronization process is run with any of the APIs, giving priority to the Ciência Vitae API,
as it should better represent what the authors want in their pages. This priority is achieved by
using a flag which indicates that an author has had their Ciência Vitae profile synchronized
(“synced_ciencia” field). Scopus also has a list of name variations, which is also stored in a
field called “name_list”.

Table 3.2 lists the source of the remaining fields of the author model. Both the author’s
publications and domains can be fetched from both sources but, as we will see in future
sections, there is a big overlap of data when dealing with publications.

The Scopus page of an author contains information about the number of times the author’s
publications have been cited as well as it’s “h-index”. All of them are stored in our database
in order to enhance the author’s profile. Ciência Vitae provides information on the author’s
biography, degrees, distinctions and projects.

9https://requests.readthedocs.io/en/latest/
10https://docs.djangoproject.com/en/4.0/ref/models/fields/

16

https://requests.readthedocs.io/en/latest/
https://docs.djangoproject.com/en/4.0/ref/models/fields/

Field Scopus Ciência Vitae
publications X X
domains X X
h_index X
citation_count X
cited_by_count X
current_affiliations X
previous_affiliations X
bio X
degrees X
distinctions X
projects X

Table 3.2: Source of the author model’s secondary fields.

3.3.2 Publications

Publications are fetched from both Scopus and Ciência Vitae, however, the Scopus API can
provide more information, like abstracts, full-text content and scientific areas, as illustrated
in Table 3.3. Other information, like IDs (except the Ciência Vitae ID), title, date, keywords
and publication type can be fetched from either APIs.

Field Scopus Ciência Vitae
scopus_id X X
ciencia_id X
doi X X
title X X
date X X
keywords X X
publication_type X X
full_text X
abstract X
areas X

Table 3.3: Source of all publication model’s fields.

There are two fields on this model, “from_scopus” and “from_ciencia”, that will make it
easier to understand the source of a publication, i.e., from which API it was fetched, or if it
contains information fetched from both.

3.4 Duplicate publications

There are several publications that coexist in both sources, and the same can also happen
inside the same API (although much less frequently). These duplicate publications can occur
due to the automatic synchronization that is available on the Ciência Vitae platform (authors
can automatically import publications from Scopus and ORCID), manual input (also on the
Ciência Vitae platform) or by some other reason that isn’t known.

17

Figure 3.2 shows an example of 3 publications fetched from both APIs. The first publication
was extracted from Scopus. It contains its own ID from the API, can not have a Ciência Vitae
ID associated with itself, naturally, and it also contains a Digital Object Identifier (DOI).
The other two publications were extracted from Ciência Vitae. They both contain their own
ID from the API, but one publication contains the same DOI as the first publication, while
the other contains a reference to the Scopus ID from the first publication. This means that
these three documents share the same “credentials” and therefore are duplicates.

Figure 3.2: Duplicate publications, fetched from both APIs.

3.4.1 Understanding the flow of information

Throughout this section, we will explore many mechanisms that try to handle duplicate
data in different publications. A command line debugging tool was developed to help visualize
the flow of information when importing publications from the APIs. It executes database
queries and presents data in a perceivable way. Now that we know the data structure of a
publication, we can look at a simplified way to represent it.

Figure 3.3 represents a “stringified”11 version of a publication that is added or already
exists in the database. This representation is split into several data fields, starting with
the publication’s Scopus ID, then Ciência Vitae ID and DOI. These IDs can have many
sizes, so in order to keep the outputs consistent and with the same size, a maximum output
size was set, and if the ID is bigger than the output size, then only the last characters of
the ID are displayed. This publication’s Ciência Vitae ID is “cv-prod-id-2424619” but it is
only displayed as “-2424619” because of the size of the output. After that, there are two
words, “SC” and “CV”, that represent the fields “from_scopus” and “from_ciencia”, that
were already explained in the data model. They are present if the publication contains data
from the respective API, and ultimately help understand the source of a given publication.

Figure 3.3: Example of a publication’s string representation

The publication type is the field that’s represented next. Like the ID’s, there are some
types that are too long to fit into the output, so they will be truncated to a point where

11Transformed into a string of characters

18

they are still readable. Following that, is a representation of five fields: the number of
authors associated with the publication (only those that exist in the database), the number of
keywords, the number of scientific areas, and two slots for the words “Ab” and “FT”, which
indicate if the publication contains an abstract or full-text content. The first row ends with
the date of publication, and the second row contains the title.

Next up, there are two examples of publications that are fetched from an API. Only one
of two things can happen when a publication is fetched: either it is added to the database,
or it is detected as a duplicate and then it is merged with another publication that already
exists in the database.

Figure 3.4 shows an example of a publication that is fetched from the Scopus API and
added to the database. This format is similar to the one presented before, but now we have
a piece of information at the beginning that tells us that it is a new publication and not a
duplicate. There is also a new line at the end that indicates the reason why the publication
was added, which in this case it is obvious because it’s a new publication but this will be
important in the next example.

Figure 3.4: Example of a publication that is fetched from the Scopus API and is added to the
database.

Figure 3.5 illustrates the merging process of two publications. This time we have three
representations of different publications. The first one, called “FETCH”, represents the
publication that is being fetched at the moment of the output. The second one, “TEST”, is
the publication that already exists in the database and is being tested against the one that is
being fetched. Finally, “MERGE” is the result of the two publications being merged with each
other. In this case, they were merged because they share the same abstract. The last line
becomes specially useful in this case because their abstracts are not displayed on the screen
(doing so would make the screen too cluttered). Colors were added to make it much easier to
look through an extensive list of publications but they are not important when looking at
these isolated examples.

Figure 3.5: Example of a fetched publication being merged with an already existing one.

3.4.2 Different types of publications

There may be publications that refer to the same document, like a conference paper and
a journal article. For this application, it makes more sense to keep publications of different

19

types for various purposes, like statistics (one could be interested in seeing how many papers
and articles an author has published) or other types of data visualization. With this in mind,
publications fetched from the APIs won’t be merged to ones of different type that already
exist in the application’s database.

3.4.3 ID matching

As we have seen before, the main thing that suggests that a publication is a duplicate
of an existing one, are their equal (or overlapping) IDs. Assuming that two publications are
of the same type and they contain at least one ID in common, we want them to be merged.
Let’s now assume that two publications are extracted from the Ciência Vitae API and both
refer to the same Scopus ID but have different DOIs. These inconsistencies occur for many
reasons, which will be explored on the following sections.

3.4.4 Merging in ideal conditions

Figure 3.6 illustrates a publication that was fetched from the Ciência Vitae API and
tested against an existing publication from Scopus. We can see that the fetched publication
contains a Scopus ID, which tells us that it refers to the existing one. None of them contain a
DOI, so they should be merged with certainty.

Figure 3.6: Example of merging because of equal Scopus ID.

3.4.5 Field merging

When merging two publications, there are fields that can always be merged the same way,
like the “keywords” field or the “areas” field, however, date, title, abstract and full text have
to follow different rules, to avoid updating to a less reliable information (like a less accurate
date or title) or erasing information (like updating an existing abstract to an empty one).

Keywords and areas

To merge keywords/areas from two publications, we join both lists and transform it into a
set (removing overlapping entries). This way, if one publication has the keywords “A”, “B”,
and the other publication has the keywords “A”, “C”, the resulting publication will have the
keywords “A”, “B” and “C”.

Date and title

In some cases, the APIs only provide the year of publication, so it gets defaulted to
January 1 of that year. This gives us the ability to check if one of the publications that we
are comparing is “more recent” and therefore more accurate when it comes to the “date” and
“title” fields, so they can be updated.

20

Scopus fields

When the publication that we are fetching comes from the Scopus API, we merge areas
(because Ciência Vitae publications never refer to any “areas”) and consider updating the
abstract and full text. This is only done if the existing information is empty, to prevent
overwriting existing information with an empty text.

IDs

Merging IDs might seem as straightforward as considering every ID that isn’t null, but
we will see later that there may be some inconsistencies between other IDs. Ideally, if one
publication contains a Scopus ID and the other one doesn’t, the resulting publication will
have the first ID.

Overview

This process, illustrated by Figure 3.7, will slot in at the end of a much bigger process
that will be explained in the following sections, but for now this serves as a baseline for what
we are trying to accomplish.

Figure 3.7: Flowchart of the field merging process.

3.4.6 ID inconsistencies

An ID inconsistency occurs when two publications share one ID and differ on another.
Figure 3.8 illustrates an inconsistency on the Ciência Vitae ID of the two publications

that are being compared. They are both publications from Ciência Vitae and share the same
DOI. There is information available on these publications that tells us that they should
be merged. The fetched publication contains a Scopus ID (which the existing publication
doesn’t have) but it doesn’t have any keywords (which the other publication has), so all of
this useful information needs to be on the merged publication. The general approach to merge
a conflicting ID is to not do anything, i.e., the resulting publication will have the ID (in this
case, the Ciência Vitae ID) of the existing publication.

Figure 3.9 shows the types of inconsistencies that the algorithm detects. There are
other combinations of inconsistencies but they are based on these examples, so we won’t be
necessarily focusing on them. A type 1 inconsistency occurs when two publications share the
same Scopus ID but have different Ciência Vitae IDs. The previous example (Figure 3.8)
demonstrated a type 6 inconsistency.

21

Figure 3.8: Example of an inconsistency.

Figure 3.9: Main ID inconsistencies.

Why it happens

Type 1 can occur when a publication from Ciência Vitae is introduced manually and
then another publication is added automatically, resulting in two publications pointing to the
same Scopus object. Type 2 can occur if we test an existing publication from Scopus against
a manually introduced publication from Ciência Vitae that points to that publication but
has the wrong DOI. This can also happen when an author chooses to save publications in
Ciência Vitae that represent different book chapters but keeping the Scopus reference that
points to the entire book. Types 3 and 4 can occur when you synchronize Ciência Vitae for
the second time. Because some publications were merged and some of the inconsistent IDs
were discarded. They will be merged again, resulting in no changes, (because we “prefer”
the existing IDs) and the remaining data (like keywords) was already stored on the previous
synchronization. Type 5 can occur due to duplicate publications existing in Scopus (these
duplicates exist for unknown reasons) or due to manual input errors in Ciência Vitae. Type 6
can occur when duplicate publications in Ciência Vitae point to the same DOIs.

Solution

In summary, we choose to preserve the existing ID for every type of inconsistency except
for types 2 and 5. Those types represent special cases where we can increase the accuracy of
the resulting publication’s data.

Figure 3.10 illustrates a publication fetched from the Ciência Vitae API and compared
against an existing publication from Scopus.

These publications share the same DOI but have different Scopus IDs. When this happens,
instead of preserving the Scopus ID of the existing publication, we should prioritize the
Scopus ID of the publication that was fetched from Scopus because we assume that the other
publication suffered a manual input error.

22

Figure 3.10: Example of a type 5 inconsistency.

For type 2 inconsistencies, we use the same approach, i.e., using the DOI of the Scopus
publication.

Overview

Figure 3.11 illustrates the mechanism that was just explained, however, there is still a
process named “Title and abstract analysis” that will be explained in later sections.

Figure 3.11: Flowchart of the ID merging process.

3.4.7 Synchronization order

In an ideal merging process, there should be no difference between synchronizing Scopus
before Ciência Vitae and vice versa, however, there are some inconsistencies that will affect
the resulting publications. We will see an example that was solved with mechanisms that we
already presented and an example that will be solved with a new analysis process.

Test scenarios

In order to understand the differences between synchronizing one API before another, we
need to set up an automated process that saves the state of the database after synchronizing

23

both APIs. To do this, we first have to make sure that the database is empty of any publications.
After that, we synchronize one API (let’s say Scopus) and then the other (Ciência Vitae).
The database now contains what should be the ideal number of publications and the most
accurate data, but that is not the case. The final step is to store these publications in a file,
and repeat the whole process again with the reverse synchronization order and a different file.

This test was done not on the entire database at once, but one author at a time, in order
to keep the interpretation easier.

The final output of this test is two lists of publications, but because some authors have a
great amount of publications, another debugging mechanism was added to highlight only the
differences between these lists. The examples that we will explore will present the different
publications on each list.

Example 1

In this example we can see two publications of a given author that have a different DOI
depending on the synchronization order (see the third field in square brackets)

Figure 3.12 shows us that when Scopus is synchronized before Ciência Vitae, the first
publication has the following DOI: 10.1007/978-3-540-31956-6-71 (Remember that this
visualization tool only shows the last characters of a field when it is too large to fit in the
brackets). But as we can see on Figure 3.13, the DOI is different, due to manual input on the
Ciência Vitae API.

Figure 3.12: First example of publications of a given author when Scopus is synchronized before
Ciência Vitae.

Figure 3.13: First example of publications of a given author when Ciência Vitae is synchronized
before Scopus.

This type of difference in synchronization was solved by prioritizing the fields from Scopus,
as we have seen before.

Example 2

The inconsistency that we will explore in this example was identified through the same
debugging tool discussed in the previous one, but in order to understand it better, we’ll be

24

focusing on what happened when these different publications were added or merged into the
database.

Figure 3.14 shows two publications fetched from Ciência Vitae. The first publication
is merged with an already existing publication, from Scopus. The second publication that
is fetched, is merged with the resulting publication of the previous merge (see that the
publication that we are testing against the fetched one has the “SC” and “CV” indicators).
This results in only one final publication existing instead of three, which is ideal.

Figure 3.14: Second example of publications of a given author when Scopus is synchronized before
Ciência Vitae.

Figure 3.15 also shows us two publications fetched from Ciência Vitae, but this time there
are no existing publications from Scopus. The first publication is added because there are no
existing publications that share any fields with it. The second publication should be merged
with the previous one but isn’t because they don’t share any fields. Then, when we fetch the
Scopus publication, it is merged with the first one because they have the same DOIs. This
results in two publications existing instead of three, but it isn’t ideal.

Figure 3.15: Second example of publications of a given author when Ciência Vitae is synchronized
before Scopus.

To solve this, we need to extend our analysis beyond the IDs and start analyzing both the
title and the abstract of the publications, which will be explained shortly.

25

3.4.8 Title and abstract analysis

When two publications don’t share any IDs between them, there is still a small chance
that they refer to the same document, like when a publication from the Ciência Vitae API
doesn’t include a Scopus ID or a DOI.

Text processing pipeline

When we want to compare the titles or abstracts of two publications, we have to take into
consideration many factors like special or upper case characters, among others. This process
will fall into the domain of NLP. NLP focuses on giving computers the ability to understand
text the same way human beings can, and that’s what we want to achieve in this process.

In many of the pipeline’s stages, we use one of the most popular Python NLP libraries,
Natural Language Toolkit (NLTK)12. The decision was made based on its ease of use and
detailed documentation. This process doesn’t require any complex function, so that ended
being the main factor when choosing a library. Other heavily considered libraries include
scikit-learn13 and SpaCy14.

Figure 3.16 describes the necessary processing that we need to do in order to compare
two strings (titles or abstracts), that are different in their character structure but equal in
meaning. It also includes a publication’s title as an example.

Some existing processing pipelines may transform the string into lower case at a later
stage but, in this specific application, it does not change the result and it is the first step that
one usually thinks of when designing a pipeline like this.

The second step will separate words that are connected by special characters and it’s done
using static character replacing (like replacing all dashes with a space).

“Tokenization” focuses on separating a string into smaller pieces called “tokens”. This sets
up the next steps for removing non alphanumeric tokens and, finally, removing stop words
(like “to” and “the”).

The example on Figure 3.16 shows how we transformed the title “Ontology-based health
information search: Application to the neurological disease domain” to “ontology based health
information search application neurological disease domain”. Note that this can also be applied
to abstracts, where it can result in a much more efficient comparison later on, due to the
removal of stop words and other elements.

12https://www.nltk.org/
13https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
14https://spacy.io/

26

https://www.nltk.org/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://spacy.io/

Figure 3.16: Text processing pipeline execution before comparing publication’s titles and abstracts.

Comparing

Now that we are able to transform two strings into something that has a higher chance
of telling us if they’re equal, we need a way to craft a metric that indicates us how similar
they are. Python’s built-in library, difflib, provides the SequenceMatcher class for comparing
two sequences or, in this case, strings. It resulted in a clear separation from the strings that
are slightly similar, and strings that are similar enough to be considered equal. This tool
is supposed to be used on an automated process, and not manually, so once assured that it
works, the decision was closed. The assurance was made manually, by checking all pairs of
titles and abstracts with a similarity ratio higher than 70%. This ratio indicated very small
similarities between each pair of strings but helped reduce the number of comparisons that
were worth analysing, making the manual assurance possible.

ID merging

Now that we have the ability to evaluate how similar a pair of titles or abstracts is, we
need a similar mechanism to Figure 3.11, that handles the merging of the publication’s IDs
and the situations that it should occur.

To drastically narrow down the amount of title and abstract comparisons, we only consider

27

pairs of publications of the same year. Although it’s possible that one publication has the
wrong year, no cases of pairs that failed the main ID checking (described in Figure 3.11)
where they had equal titles or abstracts.

The first case, that is checked, is when two publications share the same abstract. To
determine this, we check if their similarity ratio is higher than 95%. When abstracts are
fetched, they usually contain some special characters and IDs before the actual text. Most of
it is removed but, occasionally, some characters end up staying. This allows for two abstracts
that are “equal to the eye” to have differences that should not be there. Considering that every
occurrence of this fell above the 95% ratio, and because different abstracts end up having
extremely low similarity ratios (bellow 10%), this ratio is suitable for checking this type of
scenario. This means that this ratio will include all publications with the same abstract, and
zero publications with different abstracts, when referring to this data set.

The second case is when two publications share the same title. The only reason a 100% ratio
isn’t used is because one publication had a typo that steered the similarity ratio to somewhere
between 99% and 100%. In testing, this value only increased the number of occasions by one
(the publication with a typo). Figure 3.17 shows an example of two publications that share
the same title and abstract.

Figure 3.17: Two publications that share the same title and abstract.

The last case occurs when a publication contains words that shouldn’t be considered, like
when a version of a publication that was saved in a given API was waiting for a peer review.
This condition is activated when one title is contained in the other. Figure 3.18 shows an
example of this occurrence.

If one of these three scenarios is true, then the publications are treated as duplicates and
their fields need to be merged. The process that handles the merging of the keywords and
areas is placed at the end of the overall process, described in figure 3.11, so we only have to
worry about merging the IDs.

The first step, as described in Figure 3.19, is to update the existing publication’s IDs if
they’re empty (null). The final step applies to publications fetched from Scopus. We choose
to prioritize the IDs from the publication that has the most information, i.e. the Scopus ID,
DOI and abstract (each one adding one “point” to a publication’s level of information).

28

Figure 3.18: Two publications where one title contains the other.

In summary, if none of the three conditions are true, we can’t consider the two publications
in question to be duplicates, but if one condition ends up being true, we merge the IDs and
then we continue to the final process of merging the remaining fields.

Figure 3.19: Merging when two publications share the same abstract or title.

3.5 Results

To validate the developed algorithms, we will run a synchronization process on the Scopus
and Ciência Vitae APIs, using every merging process that was presented before. This process
will be executed on the profiles of 50 authors that were gathered from both IEETA and
DETI’s websites.

29

3.5.1 Synchronizing Scopus

Figure 3.20 presents the results of the first synchronization process (Scopus).
There were a total of 3969 publications that were fetched from the authors’ profiles,

meaning that some of these publications that were fetched, will be duplicates, because many
authors share publications between them. 2773 publications were added into the database,
while 1196 were merged either because they also belong to other authors or they shared an
ID, title or abstract with an existing publication.

As one can see on the third row of Figure 3.20, 1167 publications were merged for having
the same Scopus ID, meaning that they are publications that are shared by multiple authors.
Because there can not be two publications with the same Scopus ID on the Scopus API, there
were no ID inconsistencies when merging.

Publications from this API don’t have a Ciência Vitae ID, so no merges were done by
this criterion.

Four publications were merged for sharing the same DOI with some other publication (or
publications). Every instance of this represents an inconsistency because there can’t be any
publications with the same Scopus ID.

The title and abstract analysis resulted in 18 publications being merged by their abstract
and 7 by their title.

Figure 3.20: Results from synchronizing Scopus in an empty database.

3.5.2 Synchronizing Ciência Vitae

Figure 3.21 presents the results from synchronizing the Ciência Vitae API in a database
that has already been synchronized with Scopus.

30

From the 3834 publications that were fetched from the Ciência Vitae API, 1596 were
added into the database as new publications, while 2238 where merged into existing ones.

Of the publications that were merged, 1588 had the same Scopus ID as some other
publication that already existed in the database. We can see some inconsistencies, like
publications that refer to the same Scopus ID but have different DOIs, or some publications
from the Ciência Vitae API that share the same Scopus ID. No publications were merged
with the same Ciência Vitae ID because when different authors choose to run the platform’s
tool that automatically adds the Scopus publications to their Ciência Vitae profile, those
publications will all have different internal IDs (Ciência Vitae IDs).

344 publications were merged for sharing the same DOI with some other publication (or
publications), registering some inconsistencies along the way.

No publications were merged by their abstract because Ciência Vitae publications don’t
include one to begin with.

Finally, 272 publications were merged by their title and 34 by the “Title Contained”
criterion, which means that they either contained a title or their title were contained in
another publication.

Figure 3.21: Results from synchronizing Ciência Vitae after Scopus.

3.5.3 Global results

In summary, there were a total of 7803 publications that were fetched from the authors’
profiles, 4369 of which were added as new publications and 3434 were merged into existing
ones. When looking at the merged publications we can conclude that 3103 were merged by
their IDs and 331 were merged because of the title and abstract analysis process. Additionally,
table 3.4 shows the number of publications with a given amount of authors.

31

Number of authors Number of publications
1 3457
2 660
3 196
4 38
5 12
6 5
7 0
8 1

Table 3.4: Publications with a given amount of authors in the database, after the collection phase.

11964 different keywords were gathered from these publications, as well as 262 scientific
areas that were associated either with publications or directly with the authors’ profiles.
Finally, 144 projects were fetched from the authors’ Ciência Vitae profiles.

3.6 Developer page

In early to mid stages of developing, there was a necessity for having a place where every
entity was listed. This place needed to have UI tools to create authors, synchronize their
Scopus and Ciência Vitae profiles and, most importantly, view their personal information and
list all the data associated with their publications. The developer page was then created to
facilitate the management of the constant change of information. As Figure 3.22 indicates,
this page contains a form for adding a new author and a listing of all authors in the database.
Each one of the listings contains the author’s fields and expandable sections to present data
such as publications, projects and more. Above each listing there are buttons that execute
different operations on the author. The first three synchronize the author’s Scopus personal
information, Scopus publications and Ciência Vitae data, respectively. Finally, the last button
deletes the author but not their publications, as they can be associated with other authors as
well. Although this page has the option of manually synchronizing an author’s profile, doing
that for every author is unfeasable, as the entire synchronization process takes a few hours to
complete, due to the APIs’ quota constraints. The final implementation intends to run this
synchronization process automatically at some time at night, to avoid hampering the user
experience.

32

Figure 3.22: Overview of the developer page.

33

CHAPTER 4
Knowledge Extraction

This chapter presents the developed work that transforms the collected data into a series of
visual representations. Various approaches will be presented, with a special focus on graph
visualizations. The process of choosing a framework will be explained here, as well as the steps
required to achieve such representations. Standard charts and statistics will be crafted, and
graphs will relate two of the most important entities in this application, the authors and their
publications. Finally, all these tools will be analyzed from an institutional perspective in order
to evaluate how much knowledge they can provide.

4.1 Graph visualizations

Graphs are defined by a set of nodes and a set of edges that connect nodes. They are used
to present large amounts of data in an easy to digest and perceivable way. They can be used
to show stations and links of a complex subway system, visually define an enterprise network
architecture and much more.

4.1.1 Knowledge mapping

The ultimate goal is to map scientific knowledge into a visually unique and useful repre-
sentation, that is also fast to understand (a knowledge map). Graph visualizations satisfy all
those requirements, because they can not be transformed into a standard representation, like
a table or a chart, without abdicating readability and conciseness. Although they are still
represented in a Two-Dimensional (2D) plane, they allow to perceive non apparent levels of
connections, increasing the richness of information. That’s why this type of representation will
respond better to an administrator’s needs when analyzing an institute’s scientific competence.
The following sections will focus the key characteristics that a visualization framework should
include.

35

4.1.2 Performance

There are three main solutions when it comes to drawing graphics on a web browser:
Scalable Vector Graphics (SVG)1, Canvas2 and WebGL3. Since their creation, these graphic
APIs have been constantly getting faster, more robust and with more features. Adding to
that, the graphs that will be created from the current data set won’t be big enough to the
point where performance difference between these APIs is noticeable. With this in mind, the
choice of framework will be based on other factors.

4.1.3 Key features

Not all frameworks are created equally, therefore, one must compare the most important
features across all candidates and choose the one with the features that are needed for a
certain task.

Documentation

Documentation is a mandatory thing to have when developing and launching a framework.
Its quality is is a major factor that will be taken into consideration on all frameworks.

Live demonstrations

When choosing a graphics framework, one will definitely find images that try to illustrate
its capabilities, however, there’s more to graphs than just the visualisation. Having the
possibility of trying out an example of a graph that’s being generated and rendered through
a framework is very important. This way, the developer can have a feel of the smoothness
of the physics (if they are implemented or active), as well as the overall performance of the
rendering process.

Re-drawing

When drawing a graph with a moderate amount of data, graph readability will eventually
be degraded because of the random nature that these framework’s algorithms choose to draw
the data. Either the framework has to be incredibly accurate while maintaining a small
drawing overhead or it has to include some sort of mechanism that allows the user to command
the framework to re-draw the graph.

Editing the graph

Being able to drag nodes across the 2D plane can also be a very powerful tool for the user.
In a situation where the framework has drawn an almost perfectly readable graph, the user
should have the possibility of changing the position of a few nodes. This way the user can
obtain a graph with high quality positioning of its nodes and not have to re-draw the whole
graph, risking getting a worse graph.

1https://svgjs.dev/docs/3.0/
2https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
3https://get.webgl.org/

36

https://svgjs.dev/docs/3.0/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://get.webgl.org/

Event listeners

Although graphs can explain a lot with just their own drawing capabilities, there can still
be room to improve the experience. Let’s imagine a graph where the nodes represent authors
and the edges (connections between the nodes) represent publications that they have released
together. The graph alone demonstrates the relations between the authors, but it would be
even more powerful if there was a way to quickly find out more information about these nodes
or edges. That is why it is also imperative that a framework allows the developer to expand
its capabilities by accessing mouse events. This way, the user’s interaction with the graph can
trigger other visualization events, like an information box that goes into more detail about
the data that the user is interacting with.

Exporting

One feature that can be specially useful at an institutional level is exporting the graph into
an image or Portable Document Format (PDF). A screenshot can achieve the same result,
but it can require cropping the image in order to exclude other UI elements. This feature is
not as critical as the previous ones

Physics

While the algorithm chosen by the framework’s developers affects the time it takes to draw
the graph, physics affect the smoothness of performing operations on the graph itself. The lack
of physics will provide the user a static looking graph, with straight edges, and no repulsive
effect between the nodes, allowing for a more cluttered presentation. If the framework has
this option and is enabled, then it must also include methods to tweak the physic’s behavior
and, consequently, its performance overhead.

4.1.4 Framework comparison

When attempting to find adequate frameworks, the search terms “graph theory” and
“network graph”, followed by “js framework” or “js library”, produce the best results. The key
features and their importance will be compared throughout a selection of the most popular
frameworks and one of them will be chosen.

Cytoscape.js

Cytoscape.js4 is focused exclusively on graphs and stands as one of the most powerful
frameworks, with a good documentation and many live demonstrations. Interactions and
events are present, so are animations and physics. Exporting the graph is not supported
natively, but it is possible to render an image in the same page through a “work around”5.
Its time to setup is moderate, as it is possible to source it in a simple HTML environment.
Additionally, an extensive list of well known companies that use this framework is listed on
their website.

4https://js.cytoscape.org/
5https://stackoverflow.com/questions/69304985/how-to-export-a-cytoscape-js-graph-to-image

37

https://js.cytoscape.org/
https://stackoverflow.com/questions/69304985/how-to-export-a-cytoscape-js-graph-to-image

D3.js

D3.js6 contains an extensive list of visualization tools that aim to solve very different
problems. Consequently, documentation is vast, even for each separate module. It refers
to itself as a visualization “kernel” and not as a framework [14]. Although many live
demonstrations are available, there’s only a few, or sometimes one, for each individual module,
which makes it less accessible than other frameworks’ examples. Their graph visualizations
are editable and interactive. Exporting is done the same way as the previous framework
candidate. Setup time is considerable despite allowing for a simple HTML and JavaScript (JS)
deployment.

Graphology and Sigma.js

Sigma.js7 is a graph rendering and interaction framework. It uses WebGL, as it aims to
solve the problem of rendering a graph with thousands of nodes. Its backend consists of an
entirely different library, Graphology8, that does not focus on rendering but, instead, focuses
on the data models and the algorithmic part of graph theory. Both library’s documentation
are concise and easily readable. The graphs can be customized, interacted with and can also
be saved with the framework’s native support. Setup time is moderate, as one can observe
from their live demonstrations on their main page.

Dracula.js

The Dracula Graph Library9 is a simple framework. Its documentation is based on a code
example, encouraging the developers to try out the framework as they are learning it. They
provide live demonstrations on their page, showcasing the ability to customize the look of
the graph and its editing capabilities. The graph can be redrawn but there’s no native way
of exporting it to an image or PDF. Its main limitation is the lack of event listeners, as it
is not possible to extract information from the user’s interactions with the graph. Due to
its limitations and simplicity, the setup is simple and quick and could be a good choice for
developers who want to try out visualizing data using a graph structure.

vis.js

Finally, vis.js10 is a visualization library that does not focus on one type of tool. It can
render graphs, 2D and Three-Dimensional (3D) charts, among others. A developer can learn
this framework either by its good documentation or by its extensive list of examples. The
examples page contains practically one example per functionality, meaning that it is possible
to learn the framework by looking at code and resort to the documentation for the fine details.
As those examples indicate, the time to setup is low, while allowing for good customization
and interactivity. The heavily customizable physics allow for a better looking graph, as it

6https://d3js.org/
7https://www.sigmajs.org/
8https://graphology.github.io/
9https://www.graphdracula.net/

10https://visjs.org/

38

https://d3js.org/
https://www.sigmajs.org/
https://graphology.github.io/
https://www.graphdracula.net/
https://visjs.org/

forces the nodes to be placed far from each other, and the edges curved towards the outside
of the graph’s center. Ultimately this means that the graph can contain a lot of information
and not be cluttered, maintaining high readability. The customization allows for scaling both
the nodes and edges, which will have an impact on how the user perceives the information.
Because the graphs are rendered through the Canvas graphic API, exporting them as an
image is as simple as right-clicking the background and saving it. The event listeners allow
for the developer to know which node or edges are selected by the user, which can lead to
other information be displayed.

Overall, vis.js does not have the best customization or available algorithms, but for this
application, it can achieve its goal very quickly. This framework was chosen because all
important features are implemented and the time period between learning the framework and
producing a graph (with the data that was already collected) is very short.

4.2 Creating graphs

Having come to a decision on what framework to use to render a graph visualization on a
web page, the steps required to transform data into a graph have to be listed. In a simple
HTML environment, vis.js requires a set of nodes and edges to be fed into its main class.
This will be achieved by rendering the HTML file with the data already prepared. The data
that we need to produce the graph is fetched from the database with Django’s query sets11

and then serialized12 into a dictionary, that is then rendered into the HTML with Django’s
templating capabilities.

From an institutional perspective, graph visualizations need to represent types of data
that can’t be represented in other ways. This means that they have to relate different entities
in a way that is possible to extract unique and useful information. For this application, it
makes sense to relate authors and publications, which is going to be achieved in two similar
but still distinct ways.

4.2.1 Styling

vis.js allows the developer to customize the graph’s characteristics, like the size of the
nodes and the width of the edges. The appearance of the graph is crucial to the success of
the interpretation of the graph’s information. Figure 4.1 shows how a graph looks by default,
with no styling applied. It is the first of many examples that can be found on vis.js’s example
page of their graph visualizations13.

No matter how well the graph is arranged, it can become overwhelming when there’s a lot
of edges crossing over each other. To solve this issue, edges were made slightly transparent,
and their color different when being hovered or selected (with the cursor).

One of the main advantages of having nodes of different sizes is the ability to instantly tell
which authors (in this case) have a bigger influence on what the graph is trying to present.

11https://docs.djangoproject.com/en/4.1/topics/db/queries/
12transforming data into a format that can be stored or transmitted
13https://visjs.github.io/vis-network/examples/

39

https://docs.djangoproject.com/en/4.1/topics/db/queries/
https://visjs.github.io/vis-network/examples/

Figure 4.1: First example of vis.js’s example page.

The same effect occurs when different edges that connect these authors, have variable widths.
It indicates that their relationships are different and contain different information.

Expression 4.1 represents the function used to scale both the nodes and edges. x represents
the node that is being scaled, while N represents the total number of nodes. The value of the
node can be the number of publications that an author has, for example. In summary, the
size of the node depends on its value and the sum of all nodes’ values.

value(x)∑N
n=1 value(n)

(4.1)

Ultimately, this means that the interpretation of the graph is made easier, by increasing
the size of the most predominant elements. Additionally, vis.js allows the developer to place
images inside the nodes, to make them even more distinguishable.

The pictures of these authors are directly linked to their Ciência Vitae profile, which is
why only one is available in Figure 4.2. Other authors that are not present in that figure have
their pictures available. Finally, the user also has the possibility of hovering their cursor over
any object (node or edge) and get a small pop-up text with information about it (for example,
the value of the object, i.e., number of publications). Figure 4.2 represents the styling that is
going to be used on every graph, with one author selected and one edge that is being hovered.

40

Figure 4.2: Customization of a graph visualization.

4.2.2 Author map

The first attempt at relating authors and publications comes in the shape of a collaboration
map of a specific author. The main objective is to find the authors that someone has
collaborated with, and the number of those collaborations. But this information alone can be
represented in a table and still be easy to interpret, so in order to make the graph useful, the
relations are expanded to the collaborators. This means that the collaborations between the
author’s colleagues are also represented, giving the user a new layer of information to view.

Figure 4.3 represents a graph that was generated with real, collected data. This graph
is oriented at a specific author, António Neves, and it represents his collaboration map of
conference papers related with the keyword “vision”, between 1981 and 2020 (Note that 1981
is selected by default since it represents the date of the oldest publication in the database, and
not from this author specifically). This graph indicates that the author published 5 conference
papers with his colleague Manuel Cunha, which makes this the strongest relation in these
specific conditions.

41

Figure 4.3: Author’s collaboration map, of conference papers related with the word “vision”, from
1981 to 2020.

4.2.3 Global map

The global map is an extension of the author map, to an institutional level. It is not
built around any specific author, but instead, it evaluates all authors present in the database.
This gives the viewer a global perspective about the scientific knowledge that the institute
possesses.

Figure 4.4 represents a graph with the same parameters as Figure 4.3, but relative to the
entire research institute. It is possible to observe that the graph in Figure 4.3 is included in
this one. Both the authors and relations from the author graph that was presented before are
shown, along with new information on other authors. The previous graph now appears as it
expanded to the colleagues’ collaborations with other authors that did not collaborate with
António Neves in these specific conditions. The other observation is that now it is possible to
observe authors that have publications that match the criteria but didn’t collaborate with
anyone else, making them isolated from the rest of the graph. There’s also a pair of authors
that collaborated only with each other, on the left of the image.

42

Figure 4.4: Institute’s collaboration map, of conference papers related with the word “vision”, from
1981 to 2020.

4.3 Data viewer

Although the graph provides information in an unique way, it can only present the total
number of publications. To complement this, another visualization tool is needed to inspect
areas of the graph. This tool makes it possible to view which publications are shared between
authors as well as which publications the author has published.

When the user selects a node or an edge, the viewer updates itself to show information
relative to that same object. This means that when an author is selected, the viewer will show
all its publications that match a given criteria, like specific types of publications, date limits,
and keywords. It also means that when an edge is selected, the viewer shows the publications
that both authors published together.

Figure 4.5 shows how the viewer looked like when the author António Neves was selected,
on figures 4.3 and 4.4. In this specific state, it is showing 12 conference papers related with
the word “vision” that the author published between 1981 and 2020.

The table presented in Figure 4.5 resembles the type of visualization that was presented
many times throughout chapter 3. Each row contains, form left to right, its number, two icons
that indicate from which API the publication has gotten its information from, the number of
authors associated with the publication, number of keywords, areas, two icons that indicate if

43

Figure 4.5: Example of a possible state of the publication viewer.

the publication contains an abstract or full-text content, and finally, the date and title.
Knowing just the number of keywords (for example) is not very useful, that is why there

is the possibility of hovering the cursor above some of these fields to get more information. It
is possible to do this with the authors, keywords, areas, and abstract fields.

4.4 Filters

In order to make the visualization experience more versatile, some filtering options need
to be implemented. From a research institute manager’s perspective, it does not make sense
to analyse only global statistics. There will be many occasions where it will be necessary to
gather the best researchers of a certain scientific area or analyse data from a specific data
range.

4.4.1 Keywords

Given that the database already stores thousands of keywords, it makes sense to filter
the resulting publications by this characteristic, however, it is infeasible to assign the task

44

of choosing the keywords to the user. It would result in having to display that amount of
keywords to the user so they could select the ones that they wanted. Instead, the user is
presented with just a search form. This way, the system takes responsibility in finding the
correct keywords to be used in filtering. This process consists in iterating every keyword
stored in the database and comparing its processed name (section 3.4.8 explains this process)
with the processed version of the search query. This will generate a list of keywords that are
deemed similar to the search query, which will be used to filter out publications that the user
doesn’t want to be included in the graph.

Figure 4.6 illustrates the list of keywords that were chosen by the system, after the user’s
“robotic soccer” input query. This process allows for some keywords to “slip through” and
be considered similar when they shouldn’t be. This ensures that the user receives a list that
includes all keywords that are related at the cost of also receiving some “false positives”. That
is why it is also possible to tweak this list, by individually disabling the keywords that should
not have been included in the first place. Naturally, the user also has the ability to update the
graph with the new version of the list, now with less but more accurate data. Additionally, the
user can update list of keywords either by resetting it through the “Reset keywords” button
or by entering a new search query.

Figure 4.6: Example of a possible state of the keyword form, when the user searches for “robotic
soccer” related keywords. Some choices are disabled by the user.

These filters are stored within the user’s session, meaning that as long as the user’s browser
supports cookies and they don’t expire, the user can keep coming back to the same page and
have the same filters still applied. Cookies alone do not store the information about the filters,
but instead, they point to a location on the application’s database that actually contains the
data. The developer is given the task to choose which data to save in a user’s session, but the
actual handling of this data and the user’s cookies are handled by Django’s backend.

4.4.2 Date

Limiting the publications to a date interval is crucial to the research analysis process. This
range is implemented by fetching the oldest publication stored in the database, and setting
that value as the minimum. The current year is set as the maximum value of the form, as

45

opposed to the most recent publication’s year. In the vast majority of time, this will not make
a difference but it saves the database from doing an additional search. Additionally, the UI
prevents the user from inverting the range. This means that the “Start year” can take values
from the minimum value all the way up to the value that is currently selected on the “End
year”. Naturally, the “End year” ranges from the value that is currently selected on the “Start
year”, and goes up to the current year.

Figure 4.7 illustrates what happens to the “End year” range, when the user selects the
year 2020 as the “Start year” for publications to be fetched. Given that value as the starting
year, the only range that makes sense for the ending year is 2020 through 2022 (the current
year of writing).

Figure 4.7: Range of options of the “End year” field, when “Start year” has the value “2020” selected.

4.4.3 Publication type

Finally, it is also possible to filter publications by their type. This means that the search
can be limited to just conference papers, for example. This is a very useful feature to
implement, as it gives the ability to not only search competences by scientific fields but also
by the type of those competences.

As Figure 4.8 illustrates, there are only three individual types available to choose. This is
a consequence of having many types that sometimes are specific to each of the APIs. Articles,
books and conference papers represent the most common types of publications in the database,
that is why they are included as choices. The first choice (“All”) will fetch every type of
publication, while the last choice (“Other”) will fetch any publication that is not included in
the three previous types.

Figure 4.8: Options available in the publication type form.

46

4.4.4 Headers

In order to give the user, a better understanding of what filters are being applied, two
headers were placed above the graph and viewer. These headers complement each other, as
they tell the user exactly what information is being displayed.

Figures 4.9 and 4.10 represent a graph header and a viewer header, respectively. They both
reflect information that would be observable when looking at a graph from figures 4.4 or 4.3.
The graph header indicates that the user is looking at a collaboration map that was filtered
with the search query “vision” and limited to a range of dates from 1981 to 2020. The viewer
header reflects what the user is interacting with. It tells the user how many and what types
of publications are being shown by which author (or pair of authors).

Figure 4.9: Example of a graph header.

Figure 4.10: Example of a viewer header.

4.5 Institutional statistics

One of the main advantages of storing data from an API is that there is no performance
set back from having to execute many accesses. This allows for extracting statistics and
crafting new information about the data set, in the least amount of time possible.

Bar charts are one of the most common representations of any kinds of statistics, and
chart.js14 is one of the most popular JS frameworks to render that type of information. The
graph data is processed by fetching it from the database, transforming it into the required
data structure and rendering it directly in the HTML template.

4.5.1 Publications in a time period

The first of the bar chart representations can show any type of publication in a date
interval. It can be applied to the entire research institute or a single author.

Figure 4.11 shows an example of a bar chart that is showing the number of articles from
2012 and 2021. The accepted choices for the publication type and date range are the same as
the graph visualization (section 4.4).

14https://www.chartjs.org/

47

https://www.chartjs.org/

Figure 4.11: Example of a bar chart about publications.

4.5.2 Projects in a time period

Similar to the publications graph, the project bar chart can present the amount of projects
relative to the entire institute or an author. It accepts a date range, that follows the same
rules as the previous type of bar chart, as well as the graph visualization.

Figure 4.12 shows all projects that were collected from the Ciência Vitae API. Just like
in the previous graphs, the minimum value for the date range is taken from the oldest project
in the database.

Figure 4.12: Example of a bar chart about projects.

4.5.3 Global counters

Another statistic that can be applied to both the author and institute is a global counter.
When applied to publications, it can indicate a clear growth of the institute’s research footprint.
Additionally, when applied to keywords and scientific areas, it means that the institute can
be diverse and contain different types of scientific competences. Finally, it can be applied to

48

authors and help build a classification of the most active authors in the institute, with their
number of publications in a given date interval.

Figure 4.13 shows a card representation of the application’s global counters in the landing
page. It starts with the total number of publications in the database, followed by projects,
keywords and scientific areas.

Figure 4.13: Cards with information about the application’s global counters.

4.5.4 Author specific statistics

These set of statistics are tailored specifically to an author’s personal information and can
tell the user exactly what scientific domains they operate best in. It is possible to calculate
which colleagues have the most publications in common with a given author, indicating that
hey are good collaborators. Another powerful tool is the ability to know the keywords and
areas with the most occurrences throughout the author’s list of publications and projects.

Figure 4.14 shows an example of the most common keywords of a given author. These
keywords are obtained by iterating every publication from that author and creating a dictionary
of keywords with their respective occurrence count.

Figure 4.14: Example of an author’s most recurring keywords.

Similar to the keywords example, Figure 4.15 can show the most accurate areas of domain
of a given author. This data is available from all APIs’ publications and from Ciência Vitae
projects as well.

As a complement to the author’s map, Figure 4.16 can list the author’s top colleagues.
Similarly to the previous examples, this data can be fetched from the author’s publications
and projects.

49

Figure 4.15: Example of an author’s most recurring scientific areas.

Figure 4.16: Example of an author’s most common collaborators.

4.6 Home page

Figure 4.17 shows an overview of the application’s home page. It contains the knowledge
map and data viewer side by side, filling the entire screen when first loaded up. Upon scrolling
down, the user can find cards that report the global counters of the system, like publications,
projects, keywords and areas. Below that there are two bar charts for publications and
projects. Finally there is a list of all authors sorted by their number of publications. This list
also indicates which publications have an available abstract and full-text content.

50

Figure 4.17: Home page overview.

4.7 Author page

Similar to the home page, the author page (Figure 4.18) contains a knowledge map and
data viewer that are focused specifically on one author. Given the nature of this graph, the
author should be rendered at the center of the graph, most of the times. Scrolling down
reveals the same cards and bar charts but this time they are also tailored to the author’s
profile. On the right of the bar charts there are tables that show the author’s top keywords
and areas. Finally, at the bottom, there is a table for showing the author’s top collaborators.

51

Figure 4.18: Author page overview.

52

CHAPTER 5
Optimization

One of the main advantages of using Django is that it allows the implementation of a web
application in a very short period of time. For an inexperienced developer, this could come
at the cost of performance because any task can be achieved with simple code. Performance
can be drastically improved, specially when dealing with large amounts of data. This chapter
will explore guidelines that seek to optimize code and will present differences in performance
when applying optimizations. Every testing result presented in this chapter was obtained by
averaging five taken measurements.

5.1 QuerySets

Django’s QuerySets is a database abstraction API that allows the developer to create,
retrieve, update and delete objects [15]. It facilitates the execution of clean queries and
stack operations, by replacing query languages with simpler Python methods. In practice, a
QuerySet can also represent a list of objects that are retrieved from the database.

One of its main characteristics is the minimal use of the database when manipulating data.
When building a QuerySet, an empty cache is associated with it. By the time it is evaluated
(could be in a “for” loop, “if” condition, etc.), the results are saved in that same cache. If
the QuerySet happens to be evaluated again, there will not be the necessity of accessing the
database, because the results were already fetched [16]. Code block 1 shows the “laziness” of
QuerySets by demonstrating that it is possible to create a query in separate steps with only
one execution.

53

1 # Select all people named 'António' that don't have the surname 'Neves'
2 q = Author.objects.all()
3 q = q.filter(name__startswith='António')
4 q = q.exclude(name__endswith='Neves')
5
6 # QuerySet evaluation (Only one query is executed)
7 print(q)

Code block 1: Python code for creating a QuerySet in separate steps.

5.2 Prefetching data

To understand the prefetching process, we need to understand that in the current data
model (Data Model Diagram appendix) there are many nested relations. For example, many
authors publish many publications with many keywords. This means that the amount of
relations increases significantly when fetching everything from the data set in a way that is
legible and understandable.

In Django, there are tools that allow data to be prefetch, however, it is entirely up to the
developer to decide which data fields need to be prefetched. Mistakes can lead to excessively
long and difficult queries, therefore, it is a process that requires manual analysis of the code’s
database requirements [17].

5.3 Django Debug Toolbar

The Django Debug Toolbar1 is a powerful tool used to get performance indicators about
an application. It can monitor many aspects like database queries, cache management, time
measurements and much more. According to the Django Developers Survey 2021 2, it is the
third most popular third-party package and stands as the best debugging package. Because
of our heavy visualization necessities, this application has to perform large queries to the
database. This toolbar will help us understand where the application can be optimized.

This toolbar consists of an HTML side panel with multiple expandable sections. Each
section contains information about a distinct aspect of the page execution and upon selection,
the entire page is replaced by a much more detailed view of that same aspect [18].

5.3.1 Query awareness

While Django can make it easy to build an application by creating an abstraction layer
of the database, it can also lead to heavily inefficient code. Retrieving a set of objects can
be initially perceived as a simple operation, but when these objects contain “ForeignKey” or
“ManyToMany” relations, the evaluation of the initial database query will expand into many
other queries. The Django Debug Toolbar will allow us to know exactly which queries were
executed, what code generated each query and for how long they ran [19].

1https://django-debug-toolbar.readthedocs.io/en/latest/
2https://lp.jetbrains.com/django-developer-survey-2021-486/

54

https://django-debug-toolbar.readthedocs.io/en/latest/
https://lp.jetbrains.com/django-developer-survey-2021-486/

5.4 Developer page

Throughout the developing phase, this page’s data would grow to an incredible size and
make it slower and slower. The need for optimization was evident, so that process was
executed way before having collected all the data from the APIs.

After the data collection phase, 4369 publications were being displayed in this page,
however, this does not accurately reflect the amount of data that is being presented. 50
authors are associated with a variable fraction of those publications. More precisely, there
are 5615 distinct relations between authors and publications. Additionally, there are 20079
relations between publications and keywords, and 7360 between publications and areas. This
means that, for visualization purposes, many publications will appear multiple times but
under different authors, which also applies to keywords and areas.

If we think of an ideal scenario, these publications and keywords would only have to be
fetched once from the database and displayed how many times it is necessary. This is not
the case when applying basic knowledge from the Django framework. Like it was explained
before, Django can make it very easy and fast to develop a web application but at the cost
of some performance “shortcuts”. Luckily it provides good tools to tackle this optimization
problem, like the prefetching (section 5.2) mechanism.

5.4.1 Optimizing

This process has to start with using the Django Debug Toolbar to get information about
the queries that are being executed. Unfortunately, the amount of data requested by the page
made this tool too slow to work with. Due to the added overhead that this tool introduces in
order to execute measurements, this page took around twenty minutes to load, so instead,
only the five authors with the least amount of publications were used for demonstrating
the optimization process. These five authors generated 1213 queries, which is impressive
even comparing to the 49740 generated by the entire list. Out of the 1213 queries, the tool
deemed that 1210 shared the same SQL code with another query, but with potentially different
parameters, while 1113 shared the exact same code with another query. This information tells
us that the page is fetching the same items multiple times from the database, which is far
from ideal.

With the number of relations in mind, code blocks 2 and 3 show how the fetching is done.
Both statements from code 2 create a QuerySet which, at this point, does not have any impact
on the database because it has not been evaluated. Code 3 demonstrates that the QuerySet
is being evaluated in nested for-loops. The actual code fetches all fields from these objects,
not just their name, so the number of unnecessary queries is much bigger.

The Django Debug Toolbar revealed that the biggest set of similar queries contained 393 of
them. This is due to the amount of times that the author set of a given publication is required
to show information on the page. Showing the author set of a publication is important because
it indicates which authors are associated with it. Code block 4 shows three examples of code
that fetches data related to a publication’s author set. The first example writes the number of

55

1 # Fetches all authors
2 all_authors = Author.objects.all()
3
4 # Fetches 5 authors with the least amount of publications
5 authors = Author.objects.annotate(
6 num_publications=Count('publications')
7).order_by('num_publications')[:5]

Code block 2: Python code for fetching authors from the database.

1 {% for author in authors %}
2 <p>{{ author.name }} </p>
3
4 {% for publication in author.publications.all %}
5 <p>{{ publication.title }} </p>
6
7 {% for keyword in publication.keywords.all %}
8 <p>{{ keyword.name}} </p>
9

10 {% endfor %}
11 {% endfor %}
12 {% endfor %}

Code block 3: Django template for listing all keywords of all authors’ publications.

authors that are associated with the publication. The second example uses that same number
in a conditional statement. Finally, the third example iterates every author in that author set.

To avoid executing unnecessary database queries, this specific field needs to be prefetched,
which will create a big query that fetches all authors from every publication of a given author.
Code block 5 shows the modification that needs to be done to code block 2 in order to prefetch
this specific field. With this optimization in place, the page executed 817 queries, significantly
improving the performance. This optimization process repeats while there are still sets of
queries that are similar or equal.

1 {{ publication.author_set.all|length}}
2 ...
3 {% if publication.author_set.all|length != 1 %}
4 ...
5 {% for author in publication.author_set.all %}
6 ...

Code block 4: Different ways to evaluate a publication’s author set in a Django template.

1 # Prefetches the 'author_set' field from the author's publications
2 authors = Author.objects.prefetch_related(
3 'publications__author_set'
4).annotate(
5 num_publications=Count('publications')
6).order_by('num_publications')[:5]

Code block 5: Python code for prefetching a field.

56

5.4.2 Optimization results

Section 5.4.1 focused on optimizing the developer page with just five authors because
of the debugging tool’s added overhead. This section’s Table 5.1 presents the optimization
results when the optimization process is applied for the entire data set. When applying
no optimizations to the page, it executes 49740 queries and takes 25.253 seconds to load
completely. Upon optimizing the publications’ author set, the query count drops to 32896
and the page time to around 17 seconds. This indicates that the author sets were generating
16844 unnecessary queries. Following that, the relation between publications and areas were
the second most impactful. Doing this optimization on top of the already existing one, drops
the query count to 19356 (difference of 13540) and makes the page load in around 12 seconds.
At the end of all optimizations, the page only requires 13 total queries and loads in 4 seconds.

Optimization Query count Query weight Page time (seconds)
No optimization 49740 N/A 25.253
Publication author set 32896 16844 17.023
Publication areas 19356 13540 12.015
Publication keywords 6193 13163 6.493
Publication types 579 5614 4.347
Project areas 258 321 4.162
Previous affiliations 111 147 4.058
Current affiliations 62 49 4.040
Domains 13 49 4.015

Table 5.1: Developer page’s iterative gains in optimization.

5.5 Home page

The home page renders data that is relevant to the entire organization. It contains a
knowledge map, data viewer, global counters, a bar chart for publications, another for projects,
and a list of all authors. Each of these elements can affect the page’s loading time, depending
on the amount of filters that the user chooses to apply.

To understand the performance difference that a given element on the page has, the
adequate filters have to be applied to the other elements so that they do the least amount of
work. For the knowledge map, it is best not to choose any keyword and filter through a date
range that won’t produce any results. This way, no publications will be fetched and processed
into the graph, and consequently the viewer as well. For the publications and projects bar
charts, it is best to set them to a date range that won’t produce any results. The other
statistics have no parameters, so they can not be changed.

With all these elements producing zero results, the page takes 2.462 seconds to load. This
is because the fixed statistics still have to do some compute to produce their values. The
baseline (best case) for the following tests is set. The next step is to find the worst case for
each of the elements on the page.

57

5.5.1 Knowledge map

The home page uses a non-discriminatory algorithm to choose what publications are going
to be inserted into the knowledge map. In contrast to the map that is presented in the author
page, this one does not have to check if one author collaborates with a colleague to decide if
that person can be added to the graph. It is, therefore, much easier to implement and much
faster when applying filters, however, if no filters are applied, it has to load every relation
between publications and authors into the graph, which will represent the worst case.

Table 5.2 shows the performance impact that different workloads can have on this page’s
knowledge map. The first workload consists in setting the map to a date range with zero
publications (best case). The second workload applies the same filters as section 4.2.3. The
final workload applies no filters and, as a result, great amounts of data are loaded into the
page.

Workload Page time (seconds)
No results 2.462
Filters 2.883
No filters 38.945

Table 5.2: Different workloads applied to the home page’s knowledge map.

With the knowledge acquired in section 5.4.1, this algorithm takes advantage of having
many filters. This is because the algorithm does not need to exclude certain authors from the
graph (unlike the author’s page) and can apply these filters directly into the QuerySet.

5.5.2 Bar charts

For the publications bar chart, not specifying the publication type and setting the date
range to its maximum value, will produce the maximum amount of results. Specifying a
publication type should improve performance as that constraint can be inserted into the
QuerySet, however, as Table 5.3 shows, the performance margins are slim enough to the point
where the computer’s instability could easily skew these results. The first workload represents
the baseline for all tests. The second represents the entire date range but filtered for articles
only. The last workflow represents the entire date range with no publication type restriction.

Workload Page time (seconds)
No results 2.462
Filter 2.689
No filter 2.797

Table 5.3: Different workloads applied to the home page’s publications bar chart.

The projects bar chart only has the option to change the date range. Table 5.4 shows the
difference between setting the date range to a value that produces zero results and setting it
to its maximum range, fetching all projects. Fetching all projects does not impact the page’s
load time significantly because there are not many of them present in the database.

58

Workload Page time (seconds)
No results 2.462
Worst case 2.563

Table 5.4: Different workloads applied to the home page’s projects bar chart.

5.6 Author page

The author page renders data that is only relevant to a specific author. Like the home
page, it contains a knowledge map, data viewer, global counters, a bar chart for publications,
another for projects. It also contains lists for the author’s top keywords, areas and colleagues,
none of which have parameters that can be changed by the user.

Similar to the home page, a baseline loading time was measured. With all interactive
elements modified to their fastest behavior, the page took 2.565 seconds to load. When
comparing to the home page, one can assume that the exclusive elements belonging to this
page are marginally heavier to compute than the author list in the home page.

5.6.1 Knowledge map

In contrast to the home page, this knowledge map needs to represent data with much
stricter criteria. It starts by analysing colleagues that collaborated directly with the author in
question and then analyses the relations between the “accepted” colleagues. The fact that the
same process has to be done twice, along with having to verify if a colleague can be added to
the graph, makes this graph much more difficult to obtain.

Table 5.5 illustrates three workloads applied to the knowledge map. The first workload
represents the page’s baseline, when the map is limited to a date range that produces zero
results. The second workload applies the same filters as section 5.5.1. The final workload
applies no filters, resulting in all publications related to the author and its collaborators
are loaded. The efficiency of this algorithm’s graph is further reduced when applying filters
because instead of being applied to the QuerySet, they have to be verified every time a
publication meets the correct criteria for being added to the graph.

Work load Page time (seconds)
No results 2.565
Filters 25.121
No filters 13.379

Table 5.5: Different workloads applied to the author page’s knowledge map.

Waiting for a new graph can be accepted when its parameters are changed. After all, the
algorithm can only re-run itself with the changes added by the user. However, when users
perform an action on another page element, they should not have to wait for the system to
calculate the same graph again. The lack of memory in this sense represents a great penalty
in overall performance and user experience. Similar to “Autosubmit GUI”’s implementation
[20], the graph’s state is saved in the user’s session to avoid this overhead.

59

5.6.2 Bar charts

Similarly to the home page, the bar charts in this page create a negligible impact on the
load time of the page. In this page, the effect is not measurable at all because these bar charts
have to process much less data (one author instead of the entire institute). Therefore it is safe
to assume that the load time for this page stays at around the baseline value of 2.565 seconds.

60

CHAPTER 6
Conclusion and Future Work

This is the final chapter of this document. Conclusions will be drawn here, as well as future
work ideas.

6.1 Conclusion

This dissertation focused on the development of a knowledge management platform to be
used within the IEETA in UA. In its latest state, the platform allows for fetching a researcher’s
track record from multiple sources. Searching and filtering is also possible through the aid of
a knowledge map in the form of a graph visualization. Overall, the platform represents an
unique way to enhance the management of scientific competences in an organization.

The data collection phase ended up being one of the most important parts of the dissertation.
It showed that it is possible to extract rich information from public APIs, respecting their
limitations. Redundancy, or duplicate checking also proved to be a challenge that can be
tackled in many ways. This solution proposed the use of NLP techniques to find similar text
across many publications and deem them equal or not. The phase ended with the collection of
information for every author in the institute, and thoroughly examined the flow of information.
This analysis helped realize that the duplicate checking process is crucial when importing
data from different sources. The data model, which is explained both in chapter 3 and the
Data Model Diagram appendix, also shows that it is possible to gather many different types
of information, increasing the accuracy and richness of the system.

The knowledge extraction phase went through different visualization tools and their
characteristics. Upon settling on one framework, it showed that it is possible to represent raw
data in an enhanced visual representation. The data that was gathered was transformed into
tables and charts, but the knowledge maps really stood out as being a powerful in interpretation
and perception of the current assets of the organization. Another tool, named “Data viewer”,
was developed to improve the user experience when interacting with the knowledge map.
When put together, these visual tools transform the platform into a management “highway”,
making that process much faster and efficient.

61

The optimization phase started along side the data collection phase and stretched until
the end of the implementation. With every new feature added, optimizations had to be done
to keep the platform usable. Chapter 5 was dedicated to explaining the concepts behind the
optimization process that was employed throughout all development phases. Additionally,
it showed that the optimization gains are very significant when dealing with great amounts
of data. It also showed the performance weight of different workloads being applied to the
platform’s visual tools.

Extending the data collection to other sources could be easily done with the robust
code that was built. Moreover, the visualization framework that was chosen, meets this
platform’s requirements, however, a more complex framework could have been used to make
the platform ready for completely new features. The optimization phase ended up being
extremely interesting to explore, but its use on the platform is somewhat limited. The
developer page benefits greatly from that process, but the other pages not so much. There
are limitations that can not be controlled, like the overhead of the visualization frameworks’
rendering pipelines, but when ignoring that aspect, the process of fetching the data from the
database to create the knowledge maps could be better on the author page. After reflecting
on features that were implemented but also on the shortcomings, the platform proved that it
can become a key component for the administration of any academic institute.

Finally, a repository was created and is available1 with instructions on how to deploy this
project. It was made public, since we believe that this contribution should be free for any
research organization to use.

6.2 Future work

One of the most important characteristics of bibliometrics and knowledge management,
is citation data. Future features that could be added would be the ability to store citation
information and enhance the existing tools with that added data.

When a publication is imported, there may or may not be a set of keywords associated
with it. The system could attempt to extract keywords from the publication’s title, abstract
and full-text content, making the keyword list more accurate.

In its current state, this platform can run in any computer with Python and Django
installed, however, it would be much easier to deploy if it was included in a Docker container,
for example. That would help institutions get their internal platform up and running much
quicker, making it much more appealing.

1https://github.com/joaogenio/mestrado-knowledge-maps

62

https://github.com/joaogenio/mestrado-knowledge-maps

References

[1] D. Y. Kemp, “Knowledge management in a research & development environment-the integration of
company culture and technology,” M.S. thesis, Rochester Institute of Technology, 2004, pp. 7–8. [Online].
Available: https://scholarworks.rit.edu/theses/7689 (visited on Oct. 16, 2022).

[2] M. Thelwall, “Bibliometrics to webometrics,” Journal of Information Science, vol. 34, no. 4, pp. 605–621,
2008. doi: 10.1177/01655515070872.

[3] B. Godin, “On the origins of bibliometrics,” Scientometrics, vol. 68, no. 1, pp. 109–133, 2006. doi:
10.1007/s11192-006-0086-0.

[4] J. E. Hirsch, “An index to quantify an individual’s scientific research output,” Proceedings of the National
academy of Sciences, vol. 102, no. 46, pp. 741–754, 2005. doi: 10.1073/pnas.0507655102.

[5] J. C. Nesbit and O. O. Adesope, “Learning with concept and knowledge maps: A meta-analysis,” Review
of educational research, vol. 76, no. 3, pp. 413–448, 2006. doi: 10.3102/00346543076003413.

[6] F. Silva, “Authenticus–enabling the identification and validation of portuguese scientific publications,”
2013. [Online]. Available: http://hdl.handle.net/11366/67 (visited on Oct. 16, 2022).

[7] F. A. Domingues, “Authenticus: Architecture and mechanisms to support a national repository of
scientific publications,” M.S. thesis, Faculty of Sciences of the University of Porto, 2015. [Online].
Available: https://repositorio-aberto.up.pt/handle/10216/83466 (visited on Oct. 16, 2022).

[8] P. Kraker, C. Kittel, and A. Enkhbayar, “Open knowledge maps: Creating a visual interface to the
world’s scientific knowledge based on natural language processing,” 027.7 Zeitschrift für Bibliothekskultur,
vol. 4, pp. 98–103, Nov. 2016. doi: 10.12685/027.7-4-2-157.

[9] “Interactive Scopus APIs.” (2022), [Online]. Available: https://dev.elsevier.com/scopus.html
(visited on Oct. 16, 2022).

[10] B. Chen, H.-P. Hsu, and Y.-L. Huang, “Bringing desktop applications to the web,” IT Professional,
vol. 18, no. 1, pp. 34–40, 2016. doi: 10.1109/MITP.2016.15.

[11] D. Ghimire, “Comparative study on python web frameworks: Flask and django,” Bachelor’s Thesis,
2020, pp. 22–32. [Online]. Available: https://urn.fi/URN:NBN:fi:amk-2020052513398 (visited on
Oct. 16, 2022).

[12] “Interactive ScienceDirect APIs.” (2022), [Online]. Available: https : / / dev . elsevier . com /
sciencedirect.html#/ (visited on Oct. 16, 2022).

[13] “Ciência Vitae Swagger UI.” (2022), [Online]. Available: https://api.cienciavitae.pt/docs/ (visited
on Oct. 16, 2022).

[14] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 17, no. 12, pp. 2301–2309, 2011. doi: 10.1109/TVCG.2011.185.
[Online]. Available: http://vis.stanford.edu/papers/d3 (visited on Oct. 16, 2022).

[15] “Django, QuerySet API reference - Django documentation.” (2022), [Online]. Available: https://docs.
djangoproject.com/en/4.1/ref/models/querysets/ (visited on Oct. 16, 2022).

[16] A. Holovaty and J. Kaplan-Moss, The Definitive Guide to Django: Web Development Done Right, ser. IT
Pro. Apress, 2009, p. 373, isbn: 9781430219378. [Online]. Available: https://books.google.pt/books?
id=lfZCAAAAQBAJ (visited on Oct. 16, 2022).

63

https://scholarworks.rit.edu/theses/7689
https://doi.org/10.1177/01655515070872
https://doi.org/10.1007/s11192-006-0086-0
https://doi.org/10.1073/pnas.0507655102
https://doi.org/10.3102/00346543076003413
http://hdl.handle.net/11366/67
https://repositorio-aberto.up.pt/handle/10216/83466
https://doi.org/10.12685/027.7-4-2-157
https://dev.elsevier.com/scopus.html
https://doi.org/10.1109/MITP.2016.15
https://urn.fi/URN:NBN:fi:amk-2020052513398
https://dev.elsevier.com/sciencedirect.html#/
https://dev.elsevier.com/sciencedirect.html#/
https://api.cienciavitae.pt/docs/
https://doi.org/10.1109/TVCG.2011.185
http://vis.stanford.edu/papers/d3
https://docs.djangoproject.com/en/4.1/ref/models/querysets/
https://docs.djangoproject.com/en/4.1/ref/models/querysets/
https://books.google.pt/books?id=lfZCAAAAQBAJ
https://books.google.pt/books?id=lfZCAAAAQBAJ

[17] R. Touma, A. Queralt, and T. Cortes, “Capre: Code-analysis based prefetching for persistent object
stores,” Future Generation Computer Systems, vol. 111, pp. 491–506, 2020, issn: 0167-739X. doi:
10.1016/j.future.2019.10.023. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X19314293 (visited on Oct. 16, 2022).

[18] K. M. Tracey, Django 1.1 Testing and Debugging, ser. From technologies to solutions. Packt Pub., 2010,
isbn: 9781847197573. [Online]. Available: https://books.google.pt/books?id=mWG1AAAAQBAJ (visited
on Oct. 16, 2022).

[19] P. J. Baumgartner and Y. Malet, High Performance Django. Lincoln Loop, 2014. [Online]. Available:
https://mongard.s3.ir-thr-at1.arvanstorage.com/High%5C%20Performance%5C%20Django.pdf
(visited on Oct. 16, 2022).

[20] W. Uruchi, M. Castrillo, and D. Beltrán, “Autosubmit gui: A javascript-based graphical user interface
to monitor experiments workflow execution,” Journal of Open Source Software, vol. 6, no. 59, 2021, issn:
2475-9066. doi: 10.21105/joss.03049. [Online]. Available: http://hdl.handle.net/2117/343490
(visited on Oct. 16, 2022).

64

https://doi.org/10.1016/j.future.2019.10.023
https://www.sciencedirect.com/science/article/pii/S0167739X19314293
https://www.sciencedirect.com/science/article/pii/S0167739X19314293
https://books.google.pt/books?id=mWG1AAAAQBAJ
https://mongard.s3.ir-thr-at1.arvanstorage.com/High%5C%20Performance%5C%20Django.pdf
https://doi.org/10.21105/joss.03049
http://hdl.handle.net/2117/343490

Data Model Diagram

• BigAutoField: An automatically incremented 64-bit positive integer, for primary keys.
• IntegerField: Standard 64-bit integer, like IDs or counters.
• CharField: Field for small to large sized strings, like titles or names.
• TextField: Field for large sized strings, like abstracts.
• DateField: Field for dates.
• BooleanField: Field for binary values.
• ForeignKey: Used to represent an “N to 1” optional relation.
• ManyToManyField: Used to represent an “M to N” optional relation.

65

A
re

a

co
de

In
te

ge
rF

ie
ld

 N
O

T
N

U
LL

na
m

e
C

ha
rF

ie
ld

A
ffi

lia
tio

n

sc
op

us
_i

d
In

te
ge

rF
ie

ld
 N

O
T

N
U

LL

pa
re

nt
Fo

re
ig

nK
ey

na
m

e
C

ha
rF

ie
ld

 N
O

T
N

U
LL

N

A
ut

ho
r

id
B

ig
A

ut
oF

ie
ld

 N
O

T
N

U
LL

sc
op

us
_i

d
In

te
ge

rF
ie

ld

ci
en

ci
a_

id
C

ha
rF

ie
ld

or
ci

d_
id

C
ha

rF
ie

ld

na
m

e
C

ha
rF

ie
ld

pu
bl

ic
at

io
ns

M
an

yT
oM

an
yF

ie
ld

do
m

ai
ns

M
an

yT
oM

an
yF

ie
ld

na
m

e_
lis

t
Te

xt
Fi

el
d

h_
in

de
x

In
te

ge
rF

ie
ld

ci
ta

tio
n_

co
un

t
In

te
ge

rF
ie

ld

ci
te

d_
by

_c
ou

nt
In

te
ge

rF
ie

ld

cu
rre

nt
_a

ffi
lia

tio
ns

M
an

yT
oM

an
yF

ie
ld

pr
ev

io
us

_a
ffi

lia
tio

ns
M

an
yT

oM
an

yF
ie

ld

bi
o

Te
xt

Fi
el

d

de
gr

ee
s

Te
xt

Fi
el

d

di
st

in
ct

io
ns

Te
xt

Fi
el

d

pr
oj

ec
ts

M
an

yT
oM

an
yF

ie
ld

sy
nc

ed
_c

ie
nc

ia
Bo

ol
ea

nF
ie

ld

Pu
bl

ic
at

io
n

id
B

ig
A

ut
oF

ie
ld

 N
O

T
N

U
LL

sc
op

us
_i

d
In

te
ge

rF
ie

ld

ci
en

ci
a_

id
C

ha
rF

ie
ld

do
i

C
ha

rF
ie

ld

tit
le

C
ha

rF
ie

ld
 N

O
T

N
U

LL

da
te

D
at

eF
ie

ld
 N

O
T

N
U

LL

ke
yw

or
ds

M
an

yT
oM

an
yF

ie
ld

pu
bl

ic
at

io
n_

ty
pe

Fo
re

ig
nK

ey

fro
m

_s
co

pu
s

Bo
ol

ea
nF

ie
ld

 N
O

T
N

U
LL

fro
m

_c
ie

nc
ia

Bo
ol

ea
nF

ie
ld

 N
O

T
N

U
LL

fu
ll_

te
xt

Te
xt

Fi
el

d

ab
st

ra
ct

Te
xt

Fi
el

d

ar
ea

s
M

an
yT

oM
an

yF
ie

ld

Pu
bl

ic
at

io
nT

yp
e

id
B

ig
A

ut
oF

ie
ld

 N
O

T
N

U
LL

na
m

e
C

ha
rF

ie
ld

 U
N

IQ
U

E

Pr
oj

ec
t

id
B

ig
A

ut
oF

ie
ld

 N
O

T
N

U
LL

na
m

e
C

ha
rF

ie
ld

 N
O

T
N

U
LL

de
sc

Te
xt

Fi
el

d

da
te

D
at

eF
ie

ld
 N

O
T

N
U

LL

ar
ea

s
M

an
yT

oM
an

yF
ie

ld

K
ey

w
or

d

id
B

ig
A

ut
oF

ie
ld

 N
O

T
N

U
LL

na
m

e
C

ha
rF

ie
ld

 U
N

IQ
U

E

M

N

M

N

M

N

M

N M N

M

N M
N

M

N

N

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Context and motivation
	Background
	Added value of this project

	Objectives
	Document structure

	Architecture
	Requirements
	Technologies
	Application Programming Interfaces
	Choosing a data source
	Platform

	System overview

	Data Collection
	Scopus
	Access

	Ciência Vitae
	Access

	Data model
	Authors
	Publications

	Duplicate publications
	Understanding the flow of information
	Different types of publications
	ID matching
	Merging in ideal conditions
	Field merging
	ID inconsistencies
	Synchronization order
	Title and abstract analysis

	Results
	Synchronizing Scopus
	Synchronizing Ciência Vitae
	Global results

	Developer page

	Knowledge Extraction
	Graph visualizations
	Knowledge mapping
	Performance
	Key features
	Framework comparison

	Creating graphs
	Styling
	Author map
	Global map

	Data viewer
	Filters
	Keywords
	Date
	Publication type
	Headers

	Institutional statistics
	Publications in a time period
	Projects in a time period
	Global counters
	Author specific statistics

	Home page
	Author page

	Optimization
	QuerySets
	Prefetching data
	Django Debug Toolbar
	Query awareness

	Developer page
	Optimizing
	Optimization results

	Home page
	Knowledge map
	Bar charts

	Author page
	Knowledge map
	Bar charts

	Conclusion and Future Work
	Conclusion
	Future work

	References
	Data Model Diagram

