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Abstract
Recently a spectral Favard theorem for bounded banded lower Hessenberg matrices
that admit a positive bidiagonal factorization was presented. These type of matrices
are oscillatory. In this paper the Lima–Loureiro hypergeometric multiple orthogonal
polynomials and the Jacobi–Piñeiro multiple orthogonal polynomials are discussed
at the light of this bidiagonal factorization for tetradiagonal matrices. The Darboux
transformations of tetradiagonal Hessenberg matrices is studied and Christoffel for-
mulas for the elements of the bidiagonal factorization are given, i.e., the bidiagonal
factorization is given in terms of the recursion polynomials evaluated at the origin.
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1 Introduction

In this paper we will analyze some aspects for the tetradiagonal Hessenberg matrix of
the form

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c0 1 0

b1 c1 1
a2 b2 c2 1
0 a3 b3 c3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where we assume that an > 0, and its bidiagonal factorization

T = L1L2U , (2)

with bidiagonal matrices given by

L1 =

⎡
⎢⎢⎢⎢⎣

1 0 0
α2 1 0

0 α5 1

⎤
⎥⎥⎥⎥⎦

, L2 =

⎡
⎢⎢⎢⎢⎣

1 0 0
α3 1 0

0 α6 1

⎤
⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 1 0

0 α4 1

0 0 α7

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(3)

If the requirement

α j > 0, j ∈ N,

is fulfilled, we say that we have a positive bidiagonal factorization (PBF). In [5],
this factorization was shown to be the key for a Favard theorem for bounded banded
Hessenberg semi-infinite matrices and the existence of positive measures such that the
recursion polynomials aremultiple orthogonal polynomials and theHessenbergmatrix
is the recursion matrix from this set of multiple orthogonal polynomials. We also gave
a multiple Gauss quadrature together with explicit degrees of precision. Then, in [6]
we studied for the tetradiagonal case when such PBF, in terms of continued fractions,
for oscillatory matrices exists. Oscillatory tetradiagonal Toeplitz matrices were shown
to admits a PBF. Moreover, it was proven that oscillatory banded Hessenberg matrices
are organized in rays, with the origin of the ray not having the positive bidiagonal
factorization and all the interior points of the ray having such positive bidiagonal
factorization.

In the next section of this paper we succinctly discuss two cases that appear in the
literature, the Jacobi–Piñeiro [11, 16] and the hypergeometric [3, 12] families. In the
final section, the Darboux and Christoffel transformations [4] are connected with the
PBF factorization, the coefficients α in the PBF are reconstructed in terms of the values
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of the type II and I polynomials at 0, see Theorem 2 and the Darboux transformations
are discussed at the light of the spectral Christoffel perturbations [1], see Theorem 3.

1.1 Preliminarymaterial

For multiple orthogonal polynomials see [1, 11, 14].
Let us denote by T [N ] = T [{0, 1, . . . , N }] ∈ R

(N+1)×(N+1) the (N +1)-th leading
principal submatrix of the banded Hessenberg matrix T :

T [N ]:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 1 0 0

b1 c1 1
a2 b2 c2 1
0 a3 b3 c3 1

0
aN−1 bN−1 cN−1 1

0 0 aN bN cN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Definition 1 (Recursion polynomials of type II) The type II recursion vector of poly-
nomials

B(x) =
⎡
⎢⎣
B0(x)
B1(x)

⎤
⎥⎦ , deg Bn = n,

is determined by the following eigenvalue equation

T B(x) = x B(x). (5)

Uniqueness is ensured by taking as initial condition B0 = 1. We call the components
Bn type II recursion polynomials. One obtains that B1 = x − c0, B2 = (x − c0)(x −
c1) − b1, and higher degree recursion polynomials are constructed by means of the
4-term recurrence relation

Bn+1 = (x − cn)Bn − bn Bn−1 − an Bn−2, n ∈ {2, 3, . . .}. (6)

Definition 2 (Recursion polynomials of type I) Dual to the polynomial vector B(x)
we consider the two following polynomial dual vectors

A(1)(x) =
[
A(1)
0 (x) A(1)

1 (x)
]
, A(2)(x) =

[
A(2)
0 (x) A(2)

1 (x)
]
,

that are left eigenvectors of the semi-infinite matrix J , i.e.,

A(1)(x)T = x A(1)(x), A(2)(x)T = x A(2)(x).
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The initial conditions, that determine these polynomials uniquely, are taken as

A(1)
0 = 1, A(1)

1 = ν, A(2)
0 = 0, A(2)

1 = 1,

with ν �= 0 being an arbitrary constant. Then, from the first relation

c0A
(a)
0 + b1A

(a)
1 + a2A

(a)
2 = x A(a)

0 , a ∈ {1, 2},

we get A(1)
2 = x

a2
− c0+b1ν

a2
and A(2)

2 = − b1
a2
. The other polynomials in these sequences

are determined by the following four term recursion relation

A(a)
n an = −A(a)

n−1bn−1 + A(a)
n−2(x − cn−2) − A(a)

n−3, n ∈ {3, 4, . . .}, a ∈ {1, 2}.
(7)

For example, one finds

A(1)
3 a3 = −A(1)

2 b2 + A(1)
1 (x − c1) − A(1)

0 = − b2
( x

a2
−c0 + b1ν

a2

)
+ν(x − c1) − 1,

A(2)
3 a3 = −A(2)

2 b2 + A(2)
1 (x − c1) − A(2)

0 = b2
b1
a2

+ x − c1.

Second kind polynomials are also relevant in the theory of multiple orthogonality.

Definition 3 (Recursion polynomials of type II of the second kind) Let us consider the
recursion relation (6) in the form

an Bn−2 + bn Bn−1 + cn Bn + Bn+1 = x Bn, (8)

set b0 = a0 = a1 = −1 and n ∈ N0. The values, initial conditions, for B−2, B−1, B0
are required to get the values Bn for n ∈ N. The polynomials of type II correspond to
the choice

B−2 = 0, B−1 = 0, B0 = 1. (9)

Two sequences of polynomials of type II of the second kind
{
B(1)
n

}∞
n=0 and

{
B(2)
n

}∞
n=0

are defined by the following initial conditions

B(1)
−2 = 1, B(1)

−1 = 0, B(1)
0 = 0, (10)

B(2)
−2 = −1 − ν, B(2)

−1 = 1, B(2)
0 = 0. (11)
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Proposition 1 (Determinantal expressions)

(i) For the recursion polynomials we have the determinantal expressions

BN+1 = det
(
x IN+1 − T [N ])

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x − c0 −1 0 0

−b1 x − c1 −1
−a2 −b2 x − c2 −1
0 −a3 −b3 x − c3 −1

0
−aN−1 −bN−1 x − cN−1 −1

0 0 −aN −bN x − cN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (12)

Hence, they are the characteristic polynomials of the leading principal subma-
trices T [N ].

(ii) For the recursion polynomials of type II of the second kind, B(1)
N+1 and B(2)

N+1,
we have the following adjugate and determinantal expressions

B(1)
N+1 = e�

1 adj
(
x IN+1 − T [N ])e1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x − c1 −1 0 0

−b2 x − c2 −1
−a3 −b3 x − c3 −1
0 −a4 −b4 x − c4 −1

0
−aN−1 −bN−1 x − cN−1 −1

0 0 −aN −bN x − cN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

B(2)
N+1 = e�

1 adj
(
x IN+1 − T [N ])(e2 − νe1) = b(1)

N+1 − νB(1)
N+1,

b(1)
N+1 = e�

1 adj
(
x IN+1 − T [N ])e2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x − c2 −1 0 0

−b3 x − c3 −1
−a4 −b4 x − c4 −1
0 −a5 −b5 x − c5 −1

0
−aN−1 −bN−1 x − cN−1 −1

0 0 −aN −bN x − cN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Finite truncations of this matrices having this positive bidiagonal factorization are
oscillatory matrices. In fact, we will be dealing in this paper with totally non negative
matrices and oscillatory matrices and, consequently, we require of some definitions
and properties that we are about to present succinctly.
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Further truncations are, for k ∈ {0, 1, ..., N },

T [N ,k]:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ck 1 0 0

bk+1 ck+1 1
ak+2 bk+2 ck+2 1
0 ak+3 bk+3 ck+3 1

0
aN−1 bN−1 cN−1 1

0 0 aN bN cN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(N+1−k)×(N+1−k),

(13)

T [N ,N+1]:=1, (14)

notice that T [N ] = T [N ,0]. Corresponding characteristic polynomials are:

B[k]
N+1:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x − ck −1 0 0

−bk+1 x − ck+1 −1
−ak+2 −bk+2 x − ck+2 −1

0 −ak+3 −bk+3 x − ck+3 −1

0
−aN−1 −bN−1 x − cN−1 −1

0 0 −aN −bN x − cN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

k ∈ {0, 1, . . . , N }. (15)

Totally nonnegative (TN) matrices are those with all their minors nonnegative [8,
9], and the set of nonsingular TN matrices is denoted by InTN. Oscillatory matrices
[9] are totally nonnegative, irreducible [10] and nonsingular. Notice that the set of
oscillatory matrices is denoted by IITN (irreducible invertible totally nonnegative) in
[8]. An oscillatory matrix A is equivalently defined as a totally nonnegative matrix A
such that for some n we have that An is totally positive (all minors are positive). From
Cauchy–Binet Theorem one can deduce the invariance of these sets of matrices under
the usual matrix product. Thus, following [8, Theorem 1.1.2] the product of matrices
in InTN is again InTN (similar statements hold for TN or oscillatory matrices). We
have the important result:

Theorem 1 (Gantmacher–Krein Criterion). [9, Chapter 2, Theorem 10]. A totally non
negative matrix A is oscillatory if and only if it is nonsingular and the elements at the
first subdiagonal and first superdiagonal are positive.

The Gauss–Borel factorization of the matrix T [N ] in (4) is the following factoriza-
tion

T [N ] = L [N ]U [N ] (16)

with banded triangular matrices given by
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L [N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

𝓂1 1
𝓁2 𝓂2 1
0 𝓁3 𝓂3 1

0
0 0 𝓁N 𝓂N 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, U [N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 1 0 0

0 α4

α7 0

1
0 0 α3N+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Proposition 2 The Gauss–Borel factorization exists if and only if all leading principal
minors δ[N ] of T [N ] are not zero.

For n ∈ N, the following expressions for the coefficients hold

𝓁n+1 = an+1δ
[n−2]

δ[n−1] , 𝓂n = cn − δ[n]

δ[n−1] , α3n−2 = δ[n−1]

δ[n−2] , (17)

where δ[−1] = 1 and a1 = 0, and we have the following recurrence relation for the
determinants

δ[n] = anδ
[n−3] − bnδ

[n−2] + cnδ
[n−1], (18)

is satisfied.

For oscillatory matrices the Gauss–Borel factorization exits and both triangular
factors belong to InTN. See [13] for a modern account of the role of Gauss–Borel
factorization problem in the realm of standard and non standard orthogonality.

2 Hypergeometric and Jacobi–Piñeiro examples

Now we discuss two cases of tetradiagonal Hessenberg matrices that appear as recur-
rence matrices of two families of multiple orthogonal polynomials. For each of them
we consider bidiagonal factorizations and its positivity.

2.1 Hypergeometric multiple orthogonal polynomials

In [12] a new set of multiple hypergeometric polynomials were introduced by Lima
and Loureiro. The corresponding recursion matrix TLL was used in [7] to construct
stochastic matrices and associated Markov chains beyond birth and death. For the
hypergeometric case the TLL = L1L2U bidiagonal factorization is provided in [12,
Equations 107-110], that ensures the regular oscillatory character of thematrix TLL for
this hypergeometric case. Notice the correspondence betweenLima–Loureiro’sλn and
our αn is λ3n+2 → α3n+1, λ3n+1 → α3n and λ3n → α3n−1. These coefficients were
gotten in [12] from [15, Theorem 14.5] as the coefficients of a branched-continued-
fraction representation for 3F2. For more on this see the recent paper [17]. This
sequence is TP, so that TLL is a regular oscillatory banded Hessenberg matrix.
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2.2 Jacobi–Piñeiro multiple orthogonal polynomials

Jacobi–Piñeiro multiple orthogonal polynomials, associated with weights w1 =
xα(1 − x)γ , w2 = xβ(1 − x)γ with support on [0, 1] α, β, γ > −1, α − β /∈ Z,
is a well study case. This system is an AT system and the corresponding orthogonal
polynomials and linear forms interlace its zeros, see [11], even though, as we will
discuss now, the recursion matrix TJ P is not oscillatory. The corresponding monic
recursion matrix TJ P was considered in [7, Section 4.3] and we show that this recur-
sion matrix was a positive matrix whenever the parameters α, β lay in the strip given
by |α − β| < 1.

Lemma 1 (Jacobi–Piñeiro’s recursion matrix bidiagonal factorization). The Jacobi–
Piñeiro’s recursion matrix has bidiagonal factorizations as in Eq. (2) with at least the
following two set of parameters:

α6n+1 = (n + 1 + α)(2n + 1 + α + γ )(2n + 1 + β + γ )

(3n + 1 + α + γ )(3n + 2 + α + γ )(3n + 1 + β + γ )
,

α̃6n+1 = (n + 1 + α)(2n + 1 + α + γ )(2n + 1 + β + γ )

(3n + 1 + α + γ )(3n + 2 + α + γ )(3n + 1 + β + γ )
,

α6n+2 = n(2n + 1 + γ )(2n + 1 + α + γ )

(3n + 2 + α + γ )(3n + 1 + β + γ )(3n + 2 + β + γ )
,

α̃6n+2 = (n − α + β)(2n + 1 + γ )(2n + 1 + β + γ )

(3n + 2 + α + γ )(3n + 1 + β + γ )(3n + 2 + β + γ )
,

α6n+3 = (n + 1)(2n + 1 + γ )(2n + 2 + β + γ )

(3n + 2 + α + γ )(3n + 3 + α + γ )(3n + 2 + β + γ )
,

α̃6n+3 = (n + 1 + α − β)(2n + 1 + γ )(2n + 2 + α + γ )

(3n + 2 + α + γ )(3n + 3 + α + γ )(3n + 2 + β + γ )
,

α6n+4 = (n + 1 + β)(2n + 2 + α + γ )(2n + 2 + β + γ )

(3n + 3 + α + γ )(3n + 2 + β + γ )(3n + 3 + β + γ )
,

α̃6n+4 = (n + 1 + β)(2n + 2 + α + γ )(2n + 2 + β + γ )

(3n + 3 + α + γ )(3n + 2 + β + γ )(3n + 3 + β + γ )
,

α6n+5 = (n + 1 + α − β)(2n + 2 + γ )(2n + 2 + α + γ )

(3n + 3 + α + γ )(3n + 4 + α + γ )(3n + 3 + β + γ )
,

α̃6n+5 = (n + 1)(2n + 2 + γ )(2n + 2 + β + γ )

(3n + 3 + α + γ )(3n + 4 + α + γ )(3n + 3 + β + γ )
,

α6n+6 = (n + 1 − α + β)(2n + 2 + γ )(2n + 3 + β + γ )

(3n + 4 + α + γ )(3n + 3 + β + γ )(3n + 4 + β + γ )
,

α̃6n+6 = (n + 1)(2n + 2 + γ )(2n + 3 + α + γ )

(3n + 4 + α + γ )(3n + 3 + β + γ )(3n + 4 + β + γ )
,

here n ∈ N0.

Proof Wehaveα1 = c0 and𝓂1 andα4 are gotten from𝓂1α1 = b1 and𝓂1+α4 = c1.
Then, 𝓁n , 𝓂n , α3(n−1)+1, n = 2, 3, . . ., are determined recursively according to
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𝓁nα3(n−2)+1 = an , 𝓁n + 𝓂nα3(n−1)+1 = bn and mn + α3n+1 = cn (from the first
relation we get 𝓁n , from the second mn and from the third α3(n−1)+1). Now, these
expressions for 𝓁’s and𝓂’s lead to the remaining α’s. Indeed, we have α2+α3 = 𝓂1
and α5α3 = 𝓁2 (we get α3 and α5, respectively) and then we apply the recursion,
n ∈ N, α3n+2 + α3(n+1) = 𝓂n+1, α3(n+1)+2α3(n+1) = 𝓁n+2 (in each iteration we
obtain α3(n+1) and α3(n+1)+2, respectively). ��
Remark 1 The bidiagonal factorization {α̃n}∞n=1 was found in [2, Section 8.1], that is
why we refer to it as the Aptekarev-Kalyagin-Van Iseghem (AKV) bidiagonal factor-
ization.

For n ∈ N0, given these two bidiagonal factorizations, the entries of the corre-
sponding lower unitriangular factor L = L1L2 = L̃1 L̃2 of the lower factor L in the
Gauss–Borel factorization of the Jacobi–Piñeiro’s Hessenberg transition matrix, can
be expressed in the following two manners

{
𝓂2n+1=α6n+2+α6n+3=α̃6n+2+α̃6n+3, 𝓂2n+2=α6n+5+α6n+6=α̃6n+5+α̃6n+6,

𝓁2n+2=α6n+5α6n+3=α̃6n+5α̃6n+3, 𝓁2n+3=α6n+8α6n+6=α̃6n+8α̃6n+6.

(19)

To better understand the dependence on the set of Jacobi–Piñeiro’s parameters (α, β)

we define some regions in the plane. Let us denote by R:={(α, β) ∈ R
2, α, β >

−1, α − β /∈ Z}, that we call the natural region –where the orthogonality is well
defined, and divide it in the following four regions:

R1:={(α, β) ∈ R : α − β > 1}, R2:={(α, β) ∈ R : 0 < α − β < 1},
R3:={(α, β) ∈ R : −1 < α − β < 0}, R4:={(α, β) ∈ R : α − β < −1}.

We show these regions in the following figure
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Lemma 2 (i) For the sequence {αn}n∈N of the first bidiagonal factorization, we have

(a) In the regionR the sequence in TN but for α5 that is negative inR4 and α6
that is negative in R1.

(b) Is a TN sequence in the strip R2 ∪ R3. Excluding α2 = 0, the sequence is
TP.

(ii) For the AKV sequence {α̃n}n∈N, we have

(a) In the region R the sequence in TP but for α̃2 that is negative in R1 ∪ R2,
α̃8 that is negative in R1 and α̃3 that is negative in R4.

(b) Is a TP sequence in the half stripR3.

Proof For the first set of bidiagonal parameters {αn}n∈N, we check that all are positive
in R, but for α2 = 0 and α5, α6. From direct inspection we get that α5 < 0 when
1 + α − β < 0, i.e. in regionR4 and α6 < 0 when 1 − α + β < 0, i.e. in regionR1.
Hence, the sequence {αn}∞n=1 is a TN sequence, TP but for α2 = 0, in regionR2 ∪R3,
is TN in R but for α5 in R4 and TN in R but for α6 in R1. For theAKV parameters
{α̃n}n∈N, all are positive in R, but for α̃2, α̃8 and α̃3. The entry α̃2 < 0 when α > β,
that is inR1 ∪R2, α̃8 < 0 when 1−α +β < 0 i.e. inR1 and α̃3 when 1+α −β < 0,
i.e. inR4. ��
Lemma 3 For the two first subdiagonals of the lower triangularmatrix L in theGauss–
Borel factorization of the Jacobi–Piñeiro’s Hessenberg recursion matrix TJ P we have

(i) The sequence {𝓂n}∞n=1 is TP in the definition region R.
(ii) The sequence {𝓁n}∞n=1 is TP but for 𝓁2 (𝓁3), that is negative inR4 (R1).

Proof From (19) and the first bidiagonal factorization we get that the lower triangular
L has all its entries in the two first subdiagonals TP but for 𝓁2 (𝓁3), that is negative in
R4 (R1), and maybe 𝓂5 = α5 + α6. Looking now at the AKV factorization we see
that 𝓂5 = α̃5 + α̃6 > 0. ��
Proposition 3 The Jacobi–Piñeiro’s recursion matrix satisfies:

(i) Is oscillatory if and only if the parameters (α, β) belong to the stripR2 ∪ R3.
(ii) Admits a positive bidiagonal factorization at least if the parameters belong to

the lower half stripR3.
(iii) The retraction of the complementary matrix T (4)

J P ( T (5)
J P ), described in [6, Theo-

rem 11] is oscillatory in the regionR2 ∪ R3 ∪ R4 (R).

Proof (i) It follows from Lemma 2.
(ii) The AKV bidiagonal factorization sequence is TP in R3.
(iii) We use the Gauss–Borel factorization of these retractions described in [6, The-

orem 11], that we know have a bidiagonal factorization with TP sequences.
��

Remark 2 From the previous discussion of the Jacobi–Piñeiro’s recursion matrix it
becomes clear that demanding the matrix to have a positive bidiagonal factorization
is sufficient but not necessary to have spectral measures. In the natural region R the
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Jacobi–Piñeiro’s weights exist, are positive with support on [0, 1]. However, we know
that it is an oscillatory matrix only in the strip R2 ∪ R3. The associated matrix that
is regular oscillatory in the natural region R is the retracted complementary matrix
T (5)
J P . This observation leads to the question: Is it enough to have a spectral Favard

theorem and positive measures that a retracted complementary matrix of the banded
Hessenberg matrix is oscillatory?

3 Applications to Darboux transformations

3.1 Darboux transformations of oscillatory banded Hessenbergmatrices

We now show how our construction connects with those of the seminal paper [2] by
Aptekarev, Kalyagin and Van Iseghem on genetic sums, vector convergents, Hermite–
Padé approximants and and Stieltjes problems, and with the Darboux–Christoffel
transformations discussed in [4]. We identify the Darboux transformations of the
oscillatory banded Hessenberg matrices with Christoffel transformations of the spec-
tral measures. Recall that ν is the initial condition given in Definition 2.

Definition 4 (Darboux transformed Hessenberg matrices). Given an oscillatory
banded lower Hessenberg matrix T and its bidiagonal factorization as in (2), we
consider the semi-infinite matrices

T̂ :=L2UL1,
ˆ̂T :=UL1L2.

We will refer to these matrices as the first and second Darboux transformations of the
banded Hessenberg matrix T .

Remark 3 These auxiliary matrices T̂ [N ] are not the m-th leading principal submatrix
of the matrix T̂ :=L2UL1. The difference is in the last diagonal entry. The entries of
T̂ are

⎧⎪⎨
⎪⎩

ĉn = α3n+2 + α3n+1 + α3n,

b̂n = α3nα3n−1 + α3n+1α3n−1 + α3nα3n−2,

ân = α3nα3n−2α3n−4,

(20)

All the entries of the (N + 1)-th leading principal submatrix of T̂ coincide with those
of T̂ [N ] but for the last diagonal entry, as (T̂ [N ])N+1,N+1 = α3N + α3N+1 while
ĉN+1 = α3N + α3N+1 + α3N+2.

Remark 4 i) From definition it is immediately checked that both Darboux trans-
formed Hessenberg matrices has the same banded structure as T .

ii) For coefficients of the second Darboux transform ˆ̂T we have
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⎧⎪⎪⎨
⎪⎪⎩

ˆ̂cn = α3n+3 + α3n+2 + α3n+1,

ˆ̂bn = α3n+1α3n + α3n+2α3n + α3n+1α3n−1,

ˆ̂an = α3n+1α3n−1α3n−3.

iii) If T has a positive bidiagonal factorization, so that we can take α2 > 0, then

the Darboux transforms T̂ ,
ˆ̂T are oscillatory.

Associated with these Hessenberg matrices we introduce the vectors of polynomials

ˆ̂B:=UB, B̂ = L2
ˆ̂B:=L2UB. (21)

Notice that B̂n and
ˆ̂Bn are monic with deg B̂n = deg ˆ̂Bn = n + 1.

Lemma 4 We have

L1 B̂ = x B. (22)

Proof Equations (21) imply L1 B̂ = L1L2UB = T B = x B. ��

Proposition 4 The eigenvalue properties T̂ B̂ = x B̂ and ˆ̂T ˆ̂B = x ˆ̂B are satisfied.

Proof Equations (21) and (22) lead by direct computation to

T̂ B̂ = L2UL1 B̂ = xL2UB = x B̂,
ˆ̂T ˆ̂B = UL1L2UB = UT B = xU B = x ˆ̂B.

��
Let us denote by if T̃ [n] and ˜̃T [n] the (n + 1)-th leading principal submatrices of T̂

and ˆ̂T .
Lemma 5 The polynomials B̂n and

ˆ̂Bn can be expressed as B̂n = x B̃n and
ˆ̂Bn = x ˜̃Bn,

with the monic polynomials B̃n,
˜̃Bn having degree n.

Proof One has that ˆ̂B0 = B̂0 = α1 + B1 = α1 + x − c0 = x . Then, as the sequences
of polynomials are found by the recurrence determined by the banded Hessenberg

matrices T̂ and ˆ̂T , respectively, we find that the desired result. ��
We call these polynomials B̃n and

˜̃Bn as Darboux transformed polynomials of type
II.

Proposition 5 The entries of the Darboux transformed polynomial sequences of type
II

B̃ = 1

x
L2UB,

˜̃B:= 1

x
U B, (23)
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read

B̃n = 1

x

(
Bn+1 + (α3n+1 + α3n)Bn + α3nα3n−2Bn−1

)
,

˜̃Bn = 1

x

(
Bn+1 + α3n+1Bn

)

(24)

were we take αk = 0 for k ∈ Z−. The following determinantal expressions hold

B̃n+1 = det
(
x In+1 − T̃ [n]), ˜̃Bn+1 = det

(
x In+1 − ˜̃T [n]).

Proof Equation (24) appears as the entries of the defining equations. The determinantal
expressions follow from the fact that its expansions along the last row satisfy the
recursion relations with adequate initial conditions. ��

Following definitions given in (13) and (15) we consider similar objects in this

context. That is, we denote by T̃ [n,k] ( ˜̃T [n,k]) the matrix obtained from T̃ [n] ( ˜̃T [n]) by
erasing the first k rows and columns. The corresponding characteristic polynomials
are

B̃[k]
n+1 = det

(
x In+1−k − T̃ [n,k]), ˜̃B[k]

n+1 = det
(
x In+1−k − ˜̃T [n,k]).

These polynomials B̃[k]
n ( ˜̃B[k]

n ) satisfy the same recursion relations, determined by T̃

( ˜̃T ) as do B̃n ( ˜̃Bn) but with different initial conditions. Following ii) in Proposition 1
we have the transformed recursion polynomials of type II

B̃(1)
n+1 = B̃[1]

n+1,
˜̃B(1)
n+1 = ˜̃B[1]

n+1, B̃(2)
n+1 = B̃[2]

n+1 − ν B̃[1]
n+1,

˜̃B(2)
n+1 = ˜̃B[2]

n+1 − ν
˜̃B[1]
n+1.

Then we consider the following vectors of polynomials

B̂(1)
n+1 = x B̃(1)

n+1,
ˆ̂B(1)
n+1 = x ˜̃B[1]

n+1, B̂(2)
n+1 = x B̃(2)

n+1,
ˆ̂B(2)
n+1 = x ˜̃B(2)

n+1.

Proposition 6 (Vector Convergents) These recursion polynomials correspond to the
vector convergent y1n = (An,0, An,1, An,2) discussed in [2] as follows

Bn = A3n,0, B̂n = A3n+1,0,
ˆ̂Bn = A3n+2,0,

B(1)
n = A3n,1, B̂(1)

n = A3n+1,1,
ˆ̂B(1)
n = A3n+2,1,

−1

ν
B(2)
n = A3n,2, −1

ν
B̂(2)
n = A3n+1,2, −1

ν

ˆ̂B(2)
n = A3n+2,2,

Proof It follows from the fact that they satisfy the recursion relation [2, Equation (23)]
and adequate initial conditions. ��
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Then, following this dictionary the important [2, Lemma 5] states for x ≥ 0 that

∣∣∣∣∣
B̂n B̂(1)

n

Bn B(1)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
B̂n B̂(2)

n

Bn B(2)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
ˆ̂Bn

ˆ̂B(1)
n

Bn B(1)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
ˆ̂Bn

ˆ̂B(2)
n

Bn B(2)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
ˆ̂Bn

ˆ̂B(1)
n

B̂n B̂(1)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
ˆ̂Bn

ˆ̂B(2)
n

B̂n B̂(2)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
Bn+1 B(1)

n+1

B̂n B̂(1)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
Bn+1 B(2)

n+1

B̂n B̂(2)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
Bn+1 B(1)

n+1
ˆ̂Bn

ˆ̂B(1)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
Bn+1 B(2)

n+1
ˆ̂Bn

ˆ̂B(2)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
B̂n+1 B̂(1)

n+1
ˆ̂Bn

ˆ̂B(1)
n

∣∣∣∣∣ ≤ 0,

∣∣∣∣∣
B̂n+1 B̂(2)

n+1
ˆ̂Bn

ˆ̂B(2)
n

∣∣∣∣∣ ≤ 0.

Remark 5 Using these facts, Aptekarev, Kalyagin and Van Iseghem in [2, Lemmata 6
& 7] deduce the degree of polynomials, simplicity of zeros and interlacing properties
of Bn with Bn−1, B

(1)
n and B(2)

n . Notice that we derive the same result by just using
the spectral properties of regular oscillatory matrices.

For recursion polynomials of type I, we introduce the following polynomials

Â(2):=A(1)L1, Â(1):=A(2)L1,
ˆ̂A(1):=A(1)L1L2 and

ˆ̂A(2):=A(2)L1L2.

Proposition 7 Vectors Â(1), Â(2) are left eigenvectors of T̂ and ˆ̂A(1), ˆ̂A(2) are left

eigenvectors of ˆ̂T .
Proof A direct computation shows that Â(2)T̂ = A(1)L1L2UL1 = A(1)T L1 =
x A(1)L1 = x Â(2). The other cases are proven similarly. ��
Lemma 6 Let us assume that 1 + α2ν = 0. Then, Â(2)

0 = 0 and Â(2)
1 = 1

α3α1
x.

Proof Let us consider the vector Â(2) = A(1)L1 with components Â(2)
n = A(1)

n +
α3n+2A

(1)
n+1, n ∈ N0. The first two entries are

Â(2)
0 = A(1)

0 + α2A
(1)
1 = 1 + α2ν,

Â(2)
1 = A(1)

1 + α5A
(1)
2 = ν − α5

c0 + b1ν

a2
+ α5

a2
x = ν − α5

α1 + (α3 + α2)α1ν

α5α3α1
+ α5

α5α3α1
x

= −1 + α2ν

α3
+ 1

α3α1
x .

Here we have used Definition 2 and c0 = α1, b1 = (α3 + α2)α1 and a2 = α5α3α1.
Then, as 1 + α2ν = 0, we find the stated result. ��
Proposition 8 If 1+ να2 = 0, we can write Â(2)

n = x Ã(2)
n and ˆ̂A(1)

n = x ˜̃A(1)
n , for some

polynomials Ã(2)
n ,

˜̃A(1)
n .

Proof The recursion relation ĉ0 Â
(2)
0 + b̂1 Â

(2)
1 + â2 Â

(2)
2 = x Â(2)

0 and Lemma 6 gives

Â(2)
2 = − b̂1

â2α3α1
x . Hence, induction leads to the conclusion that Â(2)

n = x Ã(2)
n , for

some polynomial Ã(2)
n . ��
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Lemma 7 We have ˆ̂A(2)
0 = 0 and ˆ̂A(2)

1 = 1
α4
x.

Proof Let us consider the vector Â(1) = A(2)L1 with components Â(1)
n = A(2)

n +
α3n+2A

(2)
n+1, n ∈ N0. The first three entries are

Â(1)
0 = A(2)

0 + α2A
(2)
1 = α2,

Â(1)
1 = A(2)

1 + α5A
(2)
2 = 1 − α5

b1
a2

= 1 − α5
(α3 + α2)α1

α5α3α1
= −α2

α3
,

Â(1)
2 = A(2)

2 + α8A
(2)
3 = −b1

a2
+ α8

a3

(
b2

b1
a2

+ x − c1
)

= b1
a2

(α8b2
a3

− 1
)

− α8c1
a3

+ α8

a3
x

= α3 + α2

α5α3

(α6α4 + α5α4 + α5α3

α6α4
− 1

)
− α4 + α3 + α2

α6α4
+ 1

α6α4
x

= α3 + α2

α5α3

α5α4 + α5α3

α6α4
− α4 + α3 + α2

α6α4
+ 1

α6α4
x

= 1

α6α4

(α3 + α2

α3
(α4 + α3) − α4 − α3 − α2 + x

)

= α2

α6α3
+ 1

α6α4
x .

Then, we consider ˆ̂A(2) = Â(1)L2 with components ˆ̂A(2)
n = Â(1)

n + α3n+3 Â
(1)
n+1,

n ∈ N0. The first two components being

ˆ̂A(2)
0 = Â(1)

0 + α3 Â
(1)
1 = α2 + α3

(
− α2

α3

)
= 0,

ˆ̂A(2)
1 = Â(1)

1 + α6 Â
(1)
2 = −α2

α3
+ α6

( α2

α6α3
+ 1

α6α4
x
)

= 1

α4
x,

and the result follows. ��

Proposition 9 There are polynomials ˜̃A(2)
n such that ˆ̂A(2)

n = x ˜̃A(2)
n .

Proof It holds for the two first entries ˆ̂A(2)
0 and ˆ̂A(2)

1 . Hence, from the recursion relation
ˆ̂A(2) ˆ̂T = x ˆ̂A(2) we get that it holds for any natural number n. ��

We name the polynomials Â(1)
n , ˜̃A(1)

n , Ã(2)
n and ˜̃A(2)

n as Darboux transformed poly-
nomials of type I.

Proposition 10 Let us assume that 1 + να2 = 0. The entries of the Darboux trans-
formed polynomials sequences of type I

Ã(2) = 1

x
A(1)L1,

˜̃A(1) = 1

x
A(1)L1L2, Â(1) = A(2)L1,

˜̃A(2) = 1

x
A(2)L1L2

are given by
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Ã(2)
n = 1

x

(
A(1)
n + α3n+2A

(1)
n+1

)
,

˜̃A(1)
n = 1

x

(
A(1)
n + (α3n+2 + α3n+3)A

(1)
n+1 + α3n+5α3n+3A

(1)
n+2

)
,

Â(1)
n = A(2)

n + α3n+2A
(2)
n+1,

˜̃A(2)
n = 1

x

(
A(2)
n + (α3n+2 + α3n+3)A

(2)
n+1 + α3n+5α3n+3A

(2)
n+2

)
.

3.2 Spectral representation and Christoffel transformations

We identify the entries in the bidiagonal factorization (2) with simple rational expres-
sions in terms of the recursion polynomials valuated at the origin.

Theorem 2 (Parametrization of the bidiagonal factorization) The α’s in the bidiagonal
factorization (2) can be expressed in terms of the recursion polynomials evaluated at
x = 0 as follows:

α3n+1 = − Bn+1(0)

Bn(0)
, (25)

α3n+2 = − A(1)
n (0)

A(1)
n+1(0)

, 1+να2=0 is required,

(26)

α3n+3 = − A(1)
n (0)A(2)

n+1(0) − A(1)
n+1(0)A

(2)
n (0)

A(1)
n+1(0)A

(2)
n+2(0) − A(1)

n+2(0)A
(2)
n+1(0)

A(1)
n+2(0)

A(1)
n+1(0)

. (27)

The relations

[
α3n+2 + α3n+3 α3n+5α3n+3

] = −
[
A(1)
n (0) A(2)

n (0)
] [

A(1)
n+1(0) A(2)

n+1(0)

A(1)
n+2(0) A(2)

n+2(0)

]−1

(28)

are satisfied as well.

Proof Equation (21) and the fact that B̂(0) = 0 gives that UB(0) = 0. Hence, we get
α3n+1Bn(0)+ Bn+1(0) = 0 and (25) follow. Now, as Â(1) = A(1)L1 and Â(1)(0) = 0
implies A(1)(0)L1 = 0. Hence, A(1)

n (0) + A(1)
n+1(0)α3n+2 = 0 and we find (26). To

prove (28) we observe that

A(1)
n (0) + (α3n+2 + α3n+3)A

(1)
n+1(0) + α3n+5α3n+3A

(1)
n+2(0) = 0,

A(2)
n (0) + (α3n+2 + α3n+3)A

(2)
n+1(0) + α3n+5α3n+3A

(2)
n+2(0) = 0,

so that

[
A(1)
n (0) A(2)

n (0)
]

+ [
α3n+2 + α3n+3 α3n+5α3n+3

] [
A(1)
n+1(0) A(2)

n+1(0)

A(1)
n+2(0) A(2)

n+2(0)

]
= 0,
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and Eq. (28) follows.
This equation implies component-wise the following relations

α3n+2 + α3n+3 = − A(1)
n (0)A(2)

n+2(0) − A(1)
n+2(0)A

(2)
n (0)

A(1)
n+1(0)A

(2)
n+2(0) − A(1)

n+2(0)A
(2)
n+1(0)

,

α3n+5α3n+3 = − A(1)
n+1(0)A

(2)
n (0) − A(1)

n (0)A(2)
n+1(0)

A(1)
n+1(0)A

(2)
n+2(0) − A(1)

n+2(0)A
(2)
n+1(0)

.

Thus, we get Eq. (27). ��

With the previous identification we are ready to show the complete correspondence
of the described Darboux transformations of the oscillatory bandedHessenbergmatrix
T with Christoffel perturbations of the corresponding pair of positive Lebesgue–
Stieltjes measures (dψ1, dψ2).

Theorem 3 (Darboux vs Christoffel transformations) For α2 = − 1
ν

> 0, the mul-

tiple orthogonal polynomial sequences
{
B̃n, Â

(1)
n , Ã(2)

n
}∞
n=0 and

{ ˜̃Bn,
˜̃A(1)
n ,

˜̃A(2)
n

}∞
n=0

correspond to the Christoffel transformations given in [4, Theorems 4 & 6] of the
multiple orthogonal polynomial sequence {Bn, A

(1)
n , A(2)

n }∞n=0. If the original couple
of Lebesgue–Stieltjes measures is (dψ1, dψ2), then the corresponding transformed
pairs of measures are (dψ2, x dψ1) and (x dψ1, x dψ2), respectively.

Proof Recalling (26), that cn = α3n+1+α3n +α3n−1 and that an+1 = α3n+2α3nα3n−2
we write

α3n+1 + α3n = A(1)
n−1(0)

A(1)
n (0)

+ cn, α3nα3n−2 = − A(1)
n+1(0)

A(1)
n (0)

an+1.

Then, using Theorem 2 and the first equation in (24) we get

B̃n = 1

x

(
Bn+1 +

( A(1)
n−1(0)

A(1)
n (0)

+ cn
)
Bn − A(1)

n+1(0)

A(1)
n (0)

an+1Bn−1

)
,

Â(1)
n = A(2)

n − A(1)
n (0)

A(1)
n+1(0)

A(2)
n+1,

Ã(2)
n = 1

x

(
A(1)
n − A(1)

n (0)

A(1)
n+1(0)

A(1)
n+1

)
.

These three equations are the Christoffel formulas in [4, Theorem 4] for the permuting
Christoffel transformation (dψ1, dψ2) → (dψ2, x dψ1). Also, using again Theorem
2, the second equation in (24) and (28) we get
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˜̃Bn = 1

x

(
Bn − Bn+1(0)

Bn(0)
Bn+1

)
,

˜̃A(1)
n = 1

x

⎛
⎝A(1)

n −
[
A(1)
n (0) A(2)

n (0)
] [

A(1)
n+1(0) A(1)

n+2(0)

A(2)
n+1(0) A(2)

n+2(0)

]−1 [
A(1)
n+1

A(1)
n+2

]⎞
⎠ ,

˜̃A(2)
n = 1

x

⎛
⎝A(2)

n −
[
A(1)
n (0) A(2)

n (0)
] [

A(1)
n+1(0) A(1)

n+2(0)

A(2)
n+1(0) A(2)

n+2(0)

]−1 [
A(2)
n+1

A(2)
n+2

]⎞
⎠ .

These three equations are the Christoffel formulas in [4, Theorem 6] for the Christoffel
transformation (dψ1, dψ2) → (x dψ1, x dψ2). ��

Conclusions and outlook

In this paper we have discussed examples of structured tetradiagonal matrices of
oscillatory type connected to two families of multiple orthogonal polynomials and the
possibility of having a positive bidiagonal factorization. Moreover, it has been shown
the relation of Darboux transformations of this matrix and Christoffel formulas for
Christoffel perturbations of corresponding multiple orthogonal polynomials.

Other open questions are:

(i) What happens when the banded recursion matrix has several superdiagonals as
well as subdiagonals? What about the corresponding Darboux transformations?

(ii) Chebyshev (T) systems appear in [9] in relation with influence kernels and
oscillatory matrices. Is there any connection between the AT property and the
oscillation of the matrix or some submatrix of it?
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