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Abstract

The Manila clam Ruditapes philippinaruinis one of the most traded bivalves in the world.
Knowing its harvesting location is therefore paramoto guarantee the safety of consumers.
The present study employs fatty acid (FA) profidéshe adductor muscle (AM) to reveal the

most likely harvesting location of four batchesMénila clams suspected of having been

illegally sourced from the Tagus estuary. In treiesystem, where the collection of Manila
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clams is currently prohibited for food safety reaasoillegal, unreported and unregulated
(IUU) capture is known to occur. In order to tralse geographic origin of these four batches
of Manila clams, a reference model based on theiefiles of the AM was developed with
specimens originating from the two most represemaicosystems supplying the trade-chain
of this species in mainland Portugal (the Tagusaggtand Ria de Aveiro), as well as Ria de
Vigo, a production area outside Portugal and thatlso an important supplier. The ability of
this model to allocate clams to its origin ecosysteas evaluated using independent datasets,
with an allocation success of 100% (all sampleseweorrectly assigned to its origin
ecosystem, thus validating the model). Based on rdierence model established, the
harvesting location of the four batches suspecfedriginating from ongoing IUU in the
Tagus estuary was investigated. Specimens fromtBeoft batches screened were classified,
as most likely originating from the Tagus estuamtl{ a likelihood ranging from 90% up to
100%). These results highlight the potential ofthpproach to fight the IUU capture of

Manila clams, as this practice endangers impofahitats and threatens public health.

Keywords: traceability, mislabeling, bivalves, fosafety, lipid markers

1. Introduction

Marine bivalves, such as oysters, mussels, coekldsclams are among the most consumed
seafood products worldwide. The Manila claRuditapes philippinarujnis one of the most
representative of such bivalves, with a produciior2017 of over 35.000 tons in Europe
alone (FAO, 2019). Native from South-east Asia @hiRhcific), R. philippinarumis an
invasive species in European coasts (Humphreyk, @04.5), where it was introduced in the

early 1970’s. In Iberian Peninsula, this species lbeen reported since late 1980’s (Campos
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& Cachola, 2005; Chiesa et al., 2017), presenturgeatly well-stablished populations which
turned it an important economic resource in theadFAO, 2019).

Despite their high nutritional value, bivalves artimes threaten human health. Due to their
suspension feeding nature, bivalves can accumpédtegenic bacteria, being this especially
dangerous for human health if consumed raw orliigtdoked (Cook, 1991; Wright, Fan, &
Baker, 2018), as well as metals and metalloidsgoteis the water (Karouna-Renier, Snyder,
Allison, Wagner, & Ranga Rao, 2007; Velez, FigueBaares, & Freitas, 2015). These issues
are related with water and sediment quality ofihevesting location (Li, Yu, Song, & Mu,
2006; Stabili, Terlizzi, & Cavallo, 2013). In ordey safeguard public health, the European
Union (EU) already produced several pieces of lagian (Regulation (EC) No 853/2004,
No 854/2004, No 2073/2005 and No 1021/2008) clgisgf bivalves harvesting areas
according to the levels oEscherichia colithey display per g of bivalves flesh and
intravalvular liquid (EC, 2004a, 2004b, 2005, 200@preover, to ensure the traceability of
each batch of seafood traded in the European Unioalso stablished several labelling
regulations (Regulation (European Commission (ER9) 104/2000 and No 1224/2009;
Regulation (EU) No 404/2011 and No 1379/2013) (E@QO, 2009; EU, 2011, 2013). The
more recent and demanding of these labeling ragon&tRegulation (EU) No 1379/2013)
(EU, 2013) stipulates, among other specificatidhat marketed seafood products need to
display the catch area, production method andrfgsear used. In this way, the development
of traceability tools for origin certification isgpamount to avoid seafood mislabeling, being
key to ensure safety for human consumption (LealeBtel, Ricardo, Rosa, & Calado, 2015;
Moretti, Turchini, Bellagamba, & Caprino, 2003).

Environmental factors, such as temperature, salamd sediment type, influence the spatial
distribution of bivalves (Gosling, 2003) modulatitigeir fatty acids (FA) profile (Calado &

Leal, 2015). For instance, high salinity fluctuasoand low temperatures influence the
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structure and fluidity of cell membranes. This tesin a lower saturated FA (SFA) content,
that stabilize bilayer cellular membranes, with sthebiomolecules being replaced by
polyunsaturated FA (PUFA), which allow higher meari# fluidity (Fokina, Ruokolainen,
Bakhmet, & Nemova, 2015; Nemova, Fokina, Nefeddagkolainen, & Bakhmet, 2013).
Other driving factor of the FA composition in bival tissues is trophic history, with the
predominance of certain FA revealing their dieteggimes (Calado & Leal, 2015; Prato,
Danieli, Maffia, & Biandolino, 2010). The FAs 16:06:1n-7 and 20:5-3 (eicosapentaenoic
acid, EPA) in bivalves tissues reveal the consuonptf diatoms, while PUFA 18133 and
18:2n-6 of green microalgae, 22v& (docosahexaenoic acid, DHA) and 183 of
dinoflagellates, and odd chain FA (15:0 and 171) &8:.1-7 of detritus/bacteria (among
others, Calado & Leal, 2015; Dalsgaard, John, kattMiller-Navarra, & Hagen, 2003;
Ezgeta-Bali, Najdek, Peharda, & Blazina, 2012; Fujibayashshinura, & Tanaka, 2016;
Nerot et al., 2015). These indicative featuresvalio apply the profiling of FA signatures of
tissues from different marine species for multipt®pes, such as identifying their feeding
habitats (e.g. Coelho et al., 2011; Xu, Xu, ZhaRAgng, & Yang, 2016), diet composition
(e.g. Bosley, Copeman, Dumbauld, & Bosley, 2017;te&/kt al., 2017), seasonal variations
in dietary habits (e.g. Soler-Membrives, Rossi, &mla, 2011) or trace their geographic
origin (Ricardo, Maciel, Domingues, & Calado, 20Ricardo et al., 2015; Zhang, Liu, Li, &
Zhao, 2017).

The FA profile of the adductor muscle (AM) provedl lie suitable in geographic origin
traceability studies targeting diverse bivalve sggcsuch as cockle€érastoderme edule
Ricardo et al., 20157, 2015), scallop®e¢ten maximys Grahl-Nielsen, Jacobsen,
Christophersen, & Magnesen, 2010) and claiksigrte sulcataOlsen, Grahl-Nielsen, &

Schander, 2009). The AM is of particular interegstraceability studies, mainly due to its
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high content in polar lipids, which prevents shierm turnover in the FA profile related to
dietary shifts (Grahl-Nielsen et al., 2010; Leahkt 2015; Olsen et al., 2009).

To avoid the fraudulent mislabeling of seafood gepyic origin, it is important to develop
and refine traceability tools. Therefore, the pnéstudy aimed to develop a model based on
the FA profile of the AM that could indicate the stdikely harvesting location of four
batches ofR. philippinarumsuspected of having been illegally harvested ftbm Tagus
estuary (where the harvesting of Manila clams ibittllen due to food safety issues). A two-
step approach was employed to develop this mod#&anila clam samples harvested from
three ecosystems (the Tagus estuary and Ria deodduaio Portuguese ecosystems that
supply ~95% of the whole Manila clam traded in Bgal, and Ria de Vigo, a Spanish
ecosystem that is also an important supplier of fipiecies to the Portuguese market) were
used to validate a predictive model to trace tlggographic origin; and following the
validation of the predictive model ii) the FA prefiof the AM of clams suspected of
originating from the Tagus estuary were screenedetdy if these clams had indeed been

harvested in this area where their capture isalleg

2. Material and methods

2.1 Study areas and clam collection
Thirty specimens oR. philippinarumwere collected in May 2018 in the Tagus estuasy, (T
Portugal), Ria de Aveiro (RAv, Portugal) and Ria\dgo (RV, Spain) (3 ecosystems X 30
replicates = 90 samples; Figure 1). These ecosgspéaly an important role in the Portuguese
trade ofR. philippinarum with these clams being intensively harvestedhgsé locations.
However, it must be highlighted, that regardlesshef Tagus estuary being the main source
of Manila clams supplying the Portuguese trade, randt likely the Spanish trade as well,

the harvesting of Manila clams is currently illegathis ecosystem due to food safety issues.
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Recurrent apprehensions of several tons of thisahsv originating from the illegal,
unreported and unregulated (IUU) capture of thigale are commonly reported on
Portuguese and Spanish media, with authorities fiooth countries continuously pursuing
inspection actions to fight this practice. The spens collected from these three ecosystems
were used to assemble a predictive reference miodedsign the most likely place of origin
to sampled Manila clams (see below). Stakeholdeosigied 4 batches of Manila clams
whom they strongly suspected had been illegallydsted from the Tagus estuary, with the
1% batch of 12 clams being obtained from a retail),(the 29 batch of 7 clams from a
wholesaler (Ws) and thé®3and 4" batches of 30 clams each originating from two s&pd
tanks from a depuration center (DC1 and DC2).

All samples were collected fresh, stored in asepaigs and kept refrigerated until arrival to
the laboratory. All specimens were taxonomicallpfaoned asR. philippinarumand the AM

was dissected, freeze-dried and stored at -80 fiCthe FA analysis was performed.

2.2. Fatty acids analysis
Methyl esters of fatty acids (FAME) were obtainddough transmethylation, using a
modified method from Aued-Pimentel, Lago, Chave&mnagai (2004). In brief, 5-10 mg
of the adductor muscle was suspended in 1 mL nAgx@.2 mL of methanolic solution
KOH (2 M) and 2 mL saturated NaCl solution, follaMay intense vortexing. Posteriorly, the
samples were centrifuged at 2000 rpm for 5 minutg) the organic phase then being
collected. The FAME obtained were injected and yed by gas chromatography-mass
spectrometry (GC-MS - QP2010 Ultra, Shimadzu, Kydtapan), equipped with an auto-
sampler, a DB-FFAP column with 30 m length, 0.32 mternal diameter and 0.25 pm film
thickness (J&W Scientific, Folsom, CA). The columas initially programed to 80 °C,

increasing 25 °C mihuntil 160 °C, 2 °C mift from 160 to 220 °C and 30 °C nifirom 220
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to 250 °C, using helium as the carrier gas, atow fof 1.8 mL mif*. All FAME were
identified using the equipment built-in software bgmparing retention times, the mass
spectrum of each relative to mixed FAME standafi%-C24, Supelco 37 Component Fame
Mix) and standard spectra from the library “AOCS pidi Library”

(http://lipidlibrary.aocs.org/).

2.3. Data and statistical analysis
The relative FA composition was obtained for eaaimge, being calculated as the mean and
standard deviation for each FA per sampling grédlip-A were classified either as saturated
FA (SFA), monounsaturated FA (MUFA), polyunsatudai&d (PUFA) or highly unsaturated
FA (HUFA). Usually, FA with> 2 double bonds are only classified as PUFA, howdwe a
better characterization of the FA profile, thesentwlecules were separated in the present
study as PUFA (FAs displaying 2 or 3 double boras)) HUFA (FAs with> 4 double
bonds).
The relative FA composition of each sample was stibdhto a log (x + 1) transformation
and a dissimilitary matrix between samples wasinbthusing the Bray-Curtis coefficient.
The existence of significant differences (p < 0.08jween the FA profiles of the AM of
clams from different ecosystems was investigatedgin a one-way analysis of similarity
(ANOSIM). Additionally, a similarity percentage dysis (SIMPER) was performed to find
which FAs contributed the most to the separatiaonded between pairs of ecosystems.
A reference model was built using a canonical amsalgf principal coordinates (CAP) with
the groups corresponding to the ecosystems ofroafjthe Manila clams surveyed, namely
Te, RAv and RV. First, to evaluate the accuracythef reference model, an independent
training and test datasets was produced. The maitixall samples was randomly split with

a ratio of 0.67 to 0.33, resulting in training aedt matrices with 60 samples (20 replicates
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per ecosystem) and 30 samples (10 replicates psystem), respectively. Following this
procedure, a CAP was performed under the trainatgs#t. The generated model was then
evaluated introducing samples of the test datas®t, group at a time, verifying in which
ecosystem the samples were allocated. Finally, rédierence model with all sites per
ecosystem (30 replicates per ecosystem = 90 sampbes built. This model was used to
verify the most likely harvesting location of thansgples suspected of originating from the
Tagus estuary provided by the stakeholders, namelys, DC1 and DC2, through their
allocation to one of the following locations: TeARor RV.

To justify the allocation of the samples suspectiedriginating from the Tagus estuary to the
ecosystems, under each FA, nonparametric Nemestg veere performed to investigate the
existence of significant differences (p < 0.05waxn pairs of sampling groups.

Multivariate analysis (CAP, ANOSIM and SIMPER) wgrerformed using PRIMER v7 with
the add-on PERMANOVA+ (Anderson, Gorley, & Clark08; Clarke & Gorley, 2015),

while the Nemenyi tests were performed using Rremvnent v3.2.5 (R Core Team, 2016).

3. Results

The mean relative abundance of each FA per samgfimgp is presented in Table 1. A total
of 26 FAs were identified, being HUFA the most doamt class (50-53%), with
eicosapentaenoic (20183; EPA) and docosahexaenoic (228 DHA) acids being the most
relevant ones, followed by SFA (22-26%), with thhegominance of palmitic (16:0; PA) and
stearic (18:0) acids. The least represented clagses MUFA (13-18%), mostly present due
to oleic (18:1-9) and eicosenoic (20119/11) acids, and PUFA (7-12%), with docosadienoic
(22:2n-6) acid being the most predominant.

The results of global and pairwise ANOSIM testsfgrened under the ecosystems surveyed

(Te, RAv and RV) revealed significant differences<(0.001), with the higher value of R
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obtained for the RAv vs. RV comparison (R = 1)|daled by Te vs. RV (R = 0.999) and Te
vs. RAv (0.877). Results from the SIMPER analyses aresented in Table 2 and revealed
that DHA and EPA were, for the three comparisoms,RAs that contributed the most for the
differences recorded between ecosystems. The laweah DHA content was registered for
RV (18.80%) and the highest for RAv (30.17%), whihke lowest mean EPA content was
presented by RAv (9.22%) and the highest by RV63%, see Table 1).

The CAP results are summarized in Tables 3 andi4eaphically presented in Figures 2 and
3. The evaluation of the CAP model built with theining dataset revealed a high
performance (100% of correct allocations, see Tapl&or the reference model built with all
the ecosystem samples collected, the percentagfeeobne-leave-out cross-validation was
also 100% of correct allocation (see Table 4), ¢peims illustrated by the perfect separation
of the group samples shown in the respective CAgrdm (Figure 2). Concerning the most
likely harvesting location of the four batches oama clams suspected of originating from
the Tagus estuary, these showed high allocatioceptagesX 90%) for samples of Rt, Ws
and DC2 to TE (see Table 4 and Figure 3 A, B ancteBpectively). The sole exception was
batch DC1, with samples being mostly allocated Av R83.3% of allocation) (see Figure 3C
and Table 4).

The results of the Nemenyi tests are summarizddbie 5, where comparisons between the
FAs of the AM of Manila clams from the sampled gstems and between clams from the
batches suspected of originating from the Tagusaegtare presented. Regarding the
comparisons between ecosystems, Te vs. RAv, T&RVsand RAv vs. RV, significant
differences were recorded for most of the FAs sygdgsee Table 5). The batches of Manila
clams being investigated with most samples claskidis Te in the CAP analysis (namely Rt,
Ws and DC2), displayed only 4 FAs (or less) witgngicant differences between these

groups and Te. It is worth highlighting that thesgnificant differences were always higher
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when the comparison was performed with the tworogéigesystems surveyed (RAv and RV)
(see Table 5). Concerning DC1, a higher numberAs presented significant differences in
the comparison Te vs. DC1 than in the comparisor RA DC1. This result is in line with
the allocation of most samples from DC1 to RAv lasirt most likely harvesting location.

Overall, the results of the Nemenyi tests suppgatresults of the CAP.

4. Discussion

The fraudulent mislabeling of geographic origimigell-known problem in the seafood trade
(Leal et al., 2015). The significant differencesamled in the FA profiles of the AM of
Manila clams originating from the three ecosystesonyeyed in the present study, confirmed
the potential of this biochemical tool to trace ti@mographic origin of bivalves, as already
highlighted by previous studies (Grahl-Nielsenlet2010; Olsen et al., 2009; Ricardo et al.,
2017, 2015).

The FA profile of the AM ofR. philippinarumpresented general features similar to other
bivalves, such as cockle€grastoderme edul&icardo et al., 2017, 2015), scallafecten
maximus Grahl-Nielsen et al., 2010) or other clamstarte sulcataOlsen et al., 2009), with
the most dominant FAs being 16:0 (PA), 18:0, BBHEPA) and 22:6-3 (DHA), as well as
by the FA classes with PUFA plus HUFA presenting highest relative abundance, followed
by SFA and MUFA. The high contentsefs HUFA, namely EPA and DHA in the AM &.
philippinarumin all sampling groups screened, is likely relatedts phytoplankton diet, as
previously suggested for other bivalve species (Aak, Epstein, & Kelleher, 1974; Nemova
et al., 2013). The highest contents on DHA, ahe&dase of Manila clams originating from
RV, suggests the prevalence of a dinoflagellateedbabet, whereas specimens from other
ecosystems displayed in their AM higher levels &AE likely related to a predominant

consumption of diatoms (e.g., Dalsgaard et al. 32@jibayashi et al., 2016; Napolitano,
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1999). The areas surveyed in the present workaispllatitudinal gradient, being expected
that the northernmost ecosystems would likely hggécimens with higher levels of
unsaturated FA, as these contribute to maintain lon@ne fluidity in colder waters (Fokina et
al., 2015; Nemova et al., 2013). Nevertheless,fghttern was not found in the present study,
likely because the latitudinal cline was not suéfit to promote such contrasting water
temperatures and, as such, to be reflected inetved bf unsaturated FA on the AM &%
philippinarium The FA profile of the AM is influenced by longe dietary tendencies and
environmental conditions (Dalsgaard et al., 2008pdlitano, Pollero, Gayoso, Macdonald,
& Thompson, 1997; Nerot et al., 2015), thus, theults here obtained reflect the prevalent
abiotic and trophic conditions on the ecosystenngei@d.

The reference model assembled displayed accurdags/af 100%, as previously obtained
by Ricardo.et al. (2017) using the FA profile of the AM of cocklesginating from different
ecosystems along the Portuguese coast. The highmage of samples allocatian90%) to
the Tagus estuary from three of the four batche#lahila clams suspected from being
illegally collected in that ecosystem is in agreatneith the suspicions of Portuguese law
enforcement agencies that a significant paR ophilippinarumtraded in mainland Portugal
originate from IUU captures. The findings from tsisidy are certainly of concern as: i) the
Tagus estuary holds a production/capture areaifitas®on of C that impairs the trade of live
Manila clams, even if depurated (IPMA, 2019); Wmetdamaging nature of the harvesting
gears employed in this estuary to pursue this lidbeiry, which endangers multiple habitats
of the largest wetland zone in Portugal, and on¢hefbiggest in Europe (Ramajal et al.,
2016); and iii) the study by Chies al. (2018) that refers the high loads of metals and
arsenic (As) recorded in the edible tissuesRofphilippinarumfrom the Tagus estuary.
Overall, the IUU capture of Manila clams in thisosgstem is certainly of concern if live

specimens are traded for human consumption, agothey a serious threat to public health.
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The present study built upon the findings repotigdRicardo,et al. (2017, 2015) that used
the FA profile of the AM to trace the geographiggor of the bivalveC. edule It advanced
the state of the art by applying this approachnimtlzer commercially relevant bivalve species
(R. philippinarum targeted by IUU. The independent training and dasasets employed in
the present study to evaluate the reference madlelved a more reliable and accurate
analysis, when compared with one-leave-out crofidatoon (Franklin, 2010). The
framework presented in this study will help to sg#en food safety measures aiming to
fight the fraudulent mislabeling of the geograpbrtgin of seafood, namely for bivalves.
Future studies should enhance the robustness oéfitience model by including more origin
ecosystems (even if these only repent a smallitractf the supply chain supporting the trade
of Manila clams) and investigate how seasonal anohterannual variations on the FA

profile of the AM may challenge the accuracy ofdicéve models.
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Figure captions:
Figure 1. Sampling locations of Manila claRaditapes philippinarunm mainland Portugal
and Spain: Ria de Vigo (8° 43' 9.59"W, 42° 15' 38\), Ria de Aveiro (8° 41' 18.93"W,

40° 46' 6.95"N ) and Tagus estuary (9° 0' 58.6638¢,45' 16.55"N).

Figure 2. Reference model produced by a canonitlysis of principal coordinates (CAP)
based on the fatty acid composition of the adduatoiscle of Manila clam®&uditapes
philippinarumoriginating from the Tagus estuary (Te), Ria deiw (RAv) and Ria de Vigo

(RV).

Figure 3. Pinpoint of the harvesting location af #amples suspected of originating from the
Tagus estuary produced by a canonical analysisindipal coordinates (CAP) based on the
fatty acid composition of the adductor muscle ofnifclamsRuditapes philippinarumrhe

reference model was validated using samples franTdgus estuary (Te), Ria de Aveiro
(RAv) and Ria de Vigo (RV), on which were introddcene group at a time, samples from
the batches originating from Retailer (Rt, A), Wésdler (Ws, B), Depuration Center tankl

(DC1, C) and Depuration Center tank 2 (DC2, D).
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Table 1. Fatty acid profile (presented as % of relative atante of the total pool of fatty acids) of the

adductor muscle of Manila clanmRuditapes philippinarum (values are means of replicates +

SD)

collected from the Tagus estuary (Te), Ria de AvéRAv) and Ria de Vigo (RV) and from the four
batches of clams with unknown geographic origimmely Retail (Rt), Wholesaler (Ws) and two different
tanks from a depuration center (DC1 and DC2). SBaturated fatty acids; MUFA - Monounsaturated

Sampling groups

Fatty acids
(%) Te RAv RV Rt Ws DC1 DC2
(n=30) (n=30) (n=30) (n=12) (n=7) (n=30) (n=30)

14:0 0.36£0.08 0.52+0.13  0.80+0.18  0.53%0.09 0.3360 0.41+0.14  0.33+0.08
15:0 0.50+0.08 0.57+0.10 0.43+0.06  0.49%0.06 0.4030 0.40+0.07  0.44+0.06
16:0 12.75+0.93 13.71+1.66 14.04+0.66 13.47+0.82 .04#0.56 11.34+1.84 11.91+0.94
17:0 1.29+0.17  1.33+0.14  1.01+0.10  1.26%0.13 1.3660 1.45+0.15  1.42+0.09
18:0 7.91+0.70 9.81+1.22  8.07+0.67  8.00+0.94  8.1P*0 8.86+0.77 8.60+0.78
YSFA 22.81+1.96 25.94+3.24 24.36+1.67 23.75+2.04 3221.53 22.45+2.98 22.71+1.94
16:1n-9 0.18+0.04  0.14+0.03  0.13+0.03  0.15#0.02  0.2030.0 0.15+0.04  0.17+0.03
16:In-7 2.33£0.39 1.92+0.36  3.88+0.79  2.55+0.40 2.21#0.6 1.78+0.73  2.26+0.32
18:1n-9 4.79+0.67 4.79+0.81  3.80+0.49  4.33+0.62  4.8060.6 4.88+1.29  4.66+0.56
18:In-7 1.92+0.24  1.63+0.17 2.67+0.29  2.17+0.21 1.8440.1 1.29+0.39  1.72+0.20
20:1n-9/11 4.78+0.41  4.84+0.56 4.08+0.42 5.07+0.66  404B% 2.93+0.38 4.57+0.36
20:In-7 2.74+0.25 2.41+0.24  3.25#0.25  3.17#0.23 2.7530.2 2.43+0.29  2.84+0.26
>MUFA 16.74+1.99 15.72+2.17 17.81+2.25 17.43+2.14 .2062.01 13.47+3.11 16.23+1.72
18:2n-6 0.30£0.05 0.23+0.05 0.19+0.05 0.24+0.05 0.29+0.08 0.26+0.29 0.25%0.05
18:-3 0.84+0.14 0.38+0.06 0.52+0.10 0.63+0.11 0.82+0.13 0.38+0.20 0.75%0.08
20:2n-6 1.80+0.28 1.61+0.32 1.69+0.15 1.85+0.22 1.75+#0.17 1.08+0.20 1.82+0.22
20:1-6 0.2240.06 0.11+0.04 0.22+0.05 0.19+0.04 0.24+0.04 0.17+0.05 0.15%0.03
22:2n-9 1.18+0.15 1.31+0.19 0.87+0.13 0.92+0.14 1.10+0.11 2.14+0.44 1.09+0.17
22:2n-6 3.2310.41 2.71+0.41 2.91+0.41 2.84+0.64 3.09+0.40 6.90+1.20 3.33+0.41
22:-6 1.22+0.12 0.76£0.09 1.47+0.16 1.17+0.17 1.21+0.15 1.00+0.35 1.16+0.11
>PUFA 8.79+1.21  7.10+1.15 7.87£1.05  7.83%1.37 8.5081 11.93+2.72 8.55+1.06
18:4n-3 1.48+0.25 1.06+0.16 0.91+0.17 1.24+0.11 1.45+#0.18 1.13+0.33 1.22+0.18
20:4n-6 3.70+0.34 3.50+0.39 3.03+0.32 3.66+0.40 3.69+0.17 4.31+0.46 3.75+0.26
20:4n-3 0.72+0.17 0.47+0.10 0.92+0.15 0.74+#0.12 0.72+0.10 0.30+0.07 0.69%0.08
20:5n-3 11.55+0.77 9.22+0.67 17.63+1.20 13.00+1.58 11.16+0.93 7.30+1.28 10.80+0.77
22:4n-6 1.58+0.23 1.37#0.19 1.92+0.22 1.59+0.24 1.64+0.32 1.75+0.44 1.90+0.23
22:5n-6 2.21+0.62 1.44+0.20 0.95+0.16 1.57+0.12 1.96+0.25 2.01+0.29 1.85+0.17
22::-3 4.45+0.46 4.00+0.50 5.79+0.56 4.85+0.51 4.25+0.47 5.81+1.02 4.57%0.70
22:n-3 25.98+1.99 30.17+1.77 18.80+1.04 24.34+1.46 28.05+1.38 29.54+3.98 27.73+1.58
YHUFA 51.66+4.83 51.24+3.99 49.96+3.83 50.99+4.54 .9223.79 52.15+7.86 52.51+3.97

fatty acids; PUFA - Polyunsaturated fatty acids;FAJ- Highly unsaturated fatty acids.



Table 2.Similarity percentage analysis (SIMPERgntifying which fatty acids of the adductor muesof
Manila clamsRuditapes philippinarum contributed to the differences recorded betweersystems. Te:
Tagus estuary; RAv: Ria de Aveiro; RV: Ria de Vigo.

Te vs. RAv Te vs. RV RAvV vs. RV

Fatty Ind. Cum. Fatty Ind. Cum. Fatty Ind. Cum.

Acids (%) (%) Acids (%) (%) Acids (%) (%)
22:n-3 20.28 20.28 28n-3 23.60 23.60 22r63 28.44 28.44
20:5n-3 12.34 3261 20rs3 21.35 4495 20rs3 23.05 51.49
18:0 10.57 43.19 l6nt7 6.13 51.09 1617 595 5744
16:0 9.04 52.22 16:0 525 56.33 25 533 62.77
18:1n-9 456 56.78 22:31-3 520 61.53 18:0 525 68.02
22:51-6 453 61.31 22156 500 66.53 16:0 3.98 72.00
22:51-3 3.72 65.04 18119 413 70.66 18119 3.35 75.36
22:n-6 3.66 68.70 181-7 299 73.65 1817 3.17 78.53
16:In-7 312 7181 201t9/11 2.94  76.59 20rt7 257 81.10
20:In-9/11 3.02 74.83 18:0 284 7943
22:3-6 267 77.50 206 274 82.17
18:3-3 2.64 80.14




Table 3. Allocation success (by sampling group) of the cacedranalysis of principal coordinates (CAP)
based on fatty acid profiles of the adductor muséI®Manila clamsRuditapes philippinarum. Te: Tagus
estuary; RAv: Ria de Aveiro; RV: Ria de Vigo. Evation performed with an independent test dataset.

Total per % Correct

Oéiggsl Allocation Group Group Allocation
Te RAv RV
Reference Te 10 0 0 10 100
model RAv 0 10 0 10 100

Evaluation RV 0 0 10 10 100




Table 4. Allocation success (by sampling group) of the cacedranalysis of principal coordinates (CAP)
based on the fatty acid profiles of the adductoisetal of Manila clamdRuditapes philippinarum. Te:
Tagus estuary; RAv: Ria de Aveiro; RV: Ria de Vigt; Retail; Ws: Wholesaler; DC1: Depuration
center tank 1; DC2: Depuration center tank 2.

. . Total per ~ % Correct %
Original Allocation Group Group Allocation Allocation
Group (One-leave-out to TE
Te RAv RV cross-validation)
Reference Te 30 0 0 30 100 -
Model RAv 0 30 0 30 100 -
RV 0 0 30 30 100 ;
Pinpoint of Rt 11 0 1 12 - 91.7
harvesting Ws 7 0 0 7 - 100
location DC1 5 25 0 30 - 16.7
DC2 27 3 0 30 - 90




Table 5. Nemeney test results performed for each fatty &xidssess significant differences between samplepgt Values of p highlighted in light grey are €9 Te:
Tagus estuary; RAv: Ria de Aveiro; RV: Ria de Vig; Retail; Ws: Wholesaler; DC1: Depuration cetiégk 1; DC2: Depuration center tank 2.

TevsRAv TevsRV RAVVsRV TevsRt RAvvsRt RVvsRt Tevs Ws RAvvs Ws RVvsWs TevsDC1l RAvvsDC1 RVvsDC1l TevsDC2 RAvvs DC2 RV vsDC2
14:0 0.0011 <0.0001 0.0361 0.0169 > 0.9999 0.3161 0.994  0.0249 < 0.0001 0.9122 0.0558 < 0.0001 0.9235 < 0.0001 < 0.0001
15:0 0.3396 0.0259 <0.0001 > 0.999¢ 0.6450 0.2193 0.9996 0.5919 .72 <0.0001 < 0.0001 0.7653 0.1673 0.0001 0.9933
16:0 0.2062 0.0020 0.7841 0.5540 > 0.9993 0.9147 0.8666 0.08: 0.0048 0.0931 < 0.0002 < 0.0001 0.3056 0.0001 < 0.0001
16:1n-9 0.0048 < 0.0001 0.7561 0.5602 0.9497 0.3121 0.93 0.0154 0.0004 0.0521 0.9876 0.2469¢ >0.99¢ 0.0100 < 0.0001
16:1n-7 0.0525 <0.0001 <0.0001 0.9364 0.0172 0.1876 0.9827 0.9530 0.0046 0.0001 0.7544 < 0.0001 0.9999 0.1265 < 0.0001
17:0 0.9964 <0.0001 <0.0001 0.9981 0.9523 0.0310 0.9890 0.9998 0.0036 0.0129 0.0967 < 0.0001 0.0624 0.2914 < 0.0001
18:0 < 0.0001 0.9973 < 0.0001 0.9970 0.0004 >0.999¢ 0.995C 0.0163 >0.9999 0.0013 0.1801 0.0118 0.0346 0.0145 0.1634
18:1n-9 >0.9999 <0.0001 <0.0001 0.5994 0.7233 0.2573 > 0.9€99> 0.9999 0.0136 0.9855 0.9979 0.0001 0.9998 >0.9999 <0.0001
18:1n-7 0.0167 0.0004 < 0.0001 0.6899  0.0009 0.6449 0.9995 0.6692 0.0342 <0.0001 0.4208 < 0.0001 0.2145 0.9585 < 0.0001
18:2n-6 0.0067 < 0.0001 0.1214 0.2028 0.999¢ 0.2143 0.9999 0.48: 0.0072 < 0.0001 0.0896 >0.9999 0.1102 0.9632 0.0052
18:3n-3 <0.0001 < 0.0001 0.1481 0.1348 0.0146 0.7863 >0.999 <0.0001 0.0122 < 0.0001 > 0.9999 0.1281 0.9431 < 0.0001 0.0004
18:4n-3 <0.0001 < 0.0001 0.3207 0.515% 0.236C 0.0013 >0.999¢ 0.0120 <0.0001 <0.0001 0.9821 0.0387 0.0497 0.1437 < 0.0001
20:1n-9/11 >0.9999  0.0003 0.0002 0.9711 0.9859 0.0006 0.6977 0.6461 0.9361. <0.0001 < 0.0001 0.0066 0.8630 0.8031 0.0393
20:1n-7 0.01664 <0.0001 <0.0001 0.0221 <0.0001 0.9993 >0.9999 0.3436 0.0521 0.0513 0.9996 < 0.0001 0.9403 0.0003 0.0026
20:2n-6 0.2171 0.8041 0.95739 0.9989 0.2481 0.7105 > 0.9999.8894 0.9967 < 0.0001 < 0.0001 < 0.0001 0.9991 0.0703 0.4975
20:3n-6 <0.0001 >0.999¢ <0.0001 0.9167 0.0004 0.8315 0.9704 <0.0001 0.9896  0.0081 0.0058 0.00295 0.0002 0.1046 < 0.0001
20:4n-6 0.5552 < 0.0001 0.0242 0.9997 0.9622 0.0111 >0.999¢ 0.9045 0.0251 0.0007 < 0.0001 < 0.0001 0.9987 0.2459 < 0.0001
20:4n-3 0.0007 0.0193 < 0.0001 0.9999 0.0090 0.3382 >0.9997 0.0818 0.5475 < 0.0001 0.1597 < 0.0001 0.9989 0.0050 0.0033
20:5n-3 <0.0001 0.0016 < 0.0001 0.9429 <0.0001 0.4619 0.998C 0.2105 0.0464 < 0.0001 0.4538 < 0.0001 0.6174 0.0394 < 0.0001
22:2n-9 0.8074 <0.0001 <0.0001 0.0173 0.0003 0.9995 0.9743 0.5836 0.3291 <0.0001 0.0076 < 0.0001 0.7745 0.0726 0.0093
22:2n-6 0.0103 0.3711 0.7957 0.1724 > 0.9999 0.9727 0.99740.7041 0.9930 < 0.0001 < 0.0001 < 0.0001 0.9975 0.0012 0.1132
22:3n-6 <0.0001 0.0128 < 0.0001 0.9980 0.0004 0.0309 >0.999¢ 0.0037 0.2497 @ 0.0044 0.0975 < 0.0001 0.8929 < 0.0001 < 0.0001
22:4n-6 0.1632 0.0002 <0.0001 >0.999¢ 0.5327 0.0118 0.9852 0.2247 0.4713 0.706:  0.0011 0.0667 0.0004 < 0.0001 > 0.9999
22:5n-6 <0.0001 < 0.0001 0.0860  0.0042 0.9891 0.0612 0.999 0.0239 <0.0001 >0.9999 <0.0001 < 0.0001 0.6549 0.0006 < 0.0001
22:5n-3 0.3022 <0.0001 < 0.0001 0.7513 0.0281 0.0761 0.9955 0.9911 0.0007 <0.0001 < 0.0001 0.9975 0.9997 0.1334 < 0.0001
22:6n-3 <0.0001 0.0005 < 0.0001 0.9265 < 0.0001 0.3531 0.637€ 0.7638 0.0004 0.0008 0.9545 < 0.0001 0.2630 0.0749 < 0.0001
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Highlights (maximum 85 characters, including spaces, per bullet points):

» Fatty acid (FA) profiles of the adductor muscle trace the harvesting site of Manila clams
* Thedominant FAswere the 22:6n-3 (DHA), 16:0 (PA) and 20:5n-3 (EPA)

» Collection site of Manila clams with unknown origin was pinpointed

* Theillega harvesting of Manila clams from interdicted areas was uncovered
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