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ABSTRACT 

In the last few years the use of nanoparticles (NPs) such as the manganese spinel 

ferrite (MnFe2O4) has been increasing, with a vast variety of applications including 

water remediation from pollutants as metal(oid)s. Although an increasing number of 

studies already demonstrated the potential toxicity of NPs towards aquatic systems and 

inhabiting organisms, there is still scarce information on the potential hazard of the 

remediated water using NPs. The present study aimed to evaluate the ecotoxicological 

safety of Pb contaminated seawater remediated with MnFe2O4, NPs, assessing the 

toxicity induced in mussels Mytilus galloprovincialis exposed to contaminated seawater 

and to water that was remediated using MnFe2O4 NPs. The results obtained 

demonstrated that seawater contaminated with Pb, NPs or the mixture of both 

(Pb+NPs) induced higher toxicity in mussels compared to organisms exposed to Pb, 

NPs and Pb+NPs after the remediation process. In particular, higher metabolic 

depression, oxidative stress and neurotoxicity was observed in mussels exposed to 

contaminated seawater in comparison to mussels exposed to remediated seawater.  
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Toxicity; Biomarkers; Mytilus galloprovincialis; Mn nanoparticles; Lead contamination. 
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1. INTRODUCTION 

Several human activities, including mining operations and sludge dumping as 

well as industrial and agricultural production, have greatly contributed to the increase of 

the number and concentration of pollutants in costal environments (Alimba and Faggio, 

2019; Green-Ruiz and Páez-Osuna, 2001; Morais et al., 2012; Poulos et al., 2000; 

Prokić et al., 2019; Stara et al., 2020; Yi et al., 2011). In fact, often the final destination 

of pollutants are coastal aquatic systems, namely lagoons and estuaries, where 

organisms such as bivalves are continuously exposed to these anthropogenic 

substances due to their filter-feeding and sedentary behaviour (Capillo et al., 2018; 

Fattorini et al., 2008; Manzo et al., 2017; Pagano et al., 2017; Schiavo et al., 2018; 

Ventura-Lima et al., 2009, 2011; Zhang et al., 2015). Among pollutants, published 

information has already revealed that bioaccumulation of metal(oid)s can lead to toxic 

effects in bivalves, namely in mussels, including the alteration of their metabolism and 

redox status (Binelli et al., 2011; Errahmani et al., 2014; Freitas et al., 2018, Manduzio 

et al., 2005; Savorelli et al., 2017). In particular, studies conducted with metal(loid)s on 

the top list of the most hazardous materials, such as Mercury (Hg), Arsenic (As), 

Copper (Cu) and Cadmium (Cd), already showed the capacity of these elements to 

activate mussel’s antioxidant defence mechanisms and decrease their metabolic 

capacity (Azizi et al., 2018; Coppola et al., 2018a,b; Mubiana and Blust, 2007; Nardi et 

al., 2017; Raftopoulou et al., 2011). Among the most widely distributed hazardous 

materials throughout the environment it is identified Lead (Pb) (ATSDR, 2017) due to 

its use in a vast diversity of anthropogenic activities (e.g. fertilizers, pesticides), being 

considered as one of the most dangerous metals, especially towards marine and 

estuarine species (de Souza Machado et al., 2016; Machado et al., 2014; Rzymski et 

al., 2014; Wang et al., 2009, 2012; Wood et al., 2012a,b). Accordingly, previous studies 

already showed alteration of bivalve’s oxidative status accompanied by metabolic 

depression after exposure to Pb (Alak et al., 2013; Bocchetti et al., 2008; Freitas et al., 

2014; Pirone et al., 2019). 
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Due to the constant increase of environmental pollution, especially in aquatic 

systems, different approaches for water decontamination have been applied in the last 

decade (Baciocchi et al., 2005; Ballinas et al., 2004; Hansen et al., 2006; Katsoyiannis 

et al., 2002; Leupin et. al, 2005). Some of these techniques have shown a great 

potential for removing inorganic pollutants from water, including the use of 

nanoparticles (NPs) that revealed high effectiveness in removing metal(loid)s from 

water (Gehrke et al., 2017; Mohan et al., 2007; Paul et al., 2015; Zhang et al., 2010). 

For example, Mohmood et al. (2016) demonstrated that 10 mg/L of Silica-Coated 

magnetic NPs (Fe3O4@SiO2-NPs) had the capacity to remove 98% of Hg from water 

with 0.5 mg/L Hg after 24h. Manganese-ferrite (MnFe2O4) is a common spinel ferrite 

material that has also been used to decontaminate water from inorganic pollutants 

(metal(loid)s) due to its ability to sorb elements such as Pb, and its physical magnetic 

properties that allows the easy separation from the water at the end (Tavares et al., 

2013). It is well recognized that the use of these magnetic NPs for water 

decontamination is one of the most promising research areas (Aslibeiki et al., 2016; 

Bahadar et al., 2016; Beij et al., 2010; Coppola et al., 2019; Federici et al., 2007). 

However, the collateral effects of a remediated water towards organisms inhabiting 

aquatic environments it is not yet well understood (Bhatt and Tripathi, 2011; Blaise et 

al., 2008; Coppola et al., 2019, 2020; Lovern and Klaper, 2006; Lovern et al., 2007; 

Smith et al., 2007; Warheit et al., 2007).  

For this reason, the present study was focused on the toxicity of seawater 

previously contaminated with Pb and remediated by MnFe2O4, NPs. The laboratory 

experiment was conducted over 28 days using Mytilus galloprovincialis as model 

organism. This species is worldwide recognized as a good bioindicator due to mussels 

sedentary and filter-feed behaviour and, consequently, the capacity to accumulate 

pollutants, showing exposure effects (Attig et al., 2014; Banni et al., 2014a,b; Coppola 

et al., 2018a,b; Freitas et al., 2018; Hu et al., 2015; Livingstone et al., 2000; Nardi et 
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al., 2017). The experimental set up included the following treatments: clean seawater; 

seawater only with Pb 1 mg/L; seawater only with NPs 50 mg/L; seawater with Pb 1 

mg/L and 50 mg/L simultaneously; and seawater having initially Pb 1 mg/L and 

remediated with NPs 50 mg/L during 24 h. Toxicity was evaluated in terms of mussel’s 

Pb accumulation, metabolic capacity and energy reserves content, antioxidant and 

biotransformation defence capacity, lipids and protein damage, as well as neurotoxic 

impacts. 
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2. MATERIALS AND METHODS  

2.1 Model organisms and experimental setup 

Mytilus galloprovincialis was selected as model species to evaluate the 

toxicological impacts of seawater previously contaminated with Pb and decontaminated 

by magnetic spinel ferrite NPs (MnFe2O4).  

Organisms were collected in the Ria de Aveiro, Portugal (40°38'51.1"N 

8°44'05.5"W), and transported to the laboratory where they were placed in tanks of 50 

L of artificial seawater at salinity 30±1, temperature of 17±1ºC (resembling conditions at 

the sampling area), during 14 days for depuration and acclimation. Artificial seawater 

was prepared by mixing a commercially available salt mixture (Tropic Marin® SEA 

SALT from Tropic Marine Center – see Atkinson and Box (2010) for salt composition) 

with freshwater obtained by reverse osmosis (four stage unit, Aqua-win RO-6080, 

Thailand). During this period artificial seawater was in continuous aeration (with a 

weekly renewal) and mussels were fed twice per week with Algamac protein plus 

(150,000 cells per animal per L). 

Organisms with a mean body weight of 21.3±6.61 g, shell length 6.18±0.46 cm 

and width 3.52±0.27 cm were used for the experimental assays. 

After acclimation organisms were exposed to 17.0±1.0ºC; pH 8.0±0.10, 12 

light: 12 dark, continuous aeration, in artificial seawater with salinity 30±1, distributed 

into 7 different treatments (see Table 1), including: CTL (control seawater), treatment A 

(seawater with Pb levels before remediation); treatment a (seawater with Pb levels 

after remediation); treatment B (seawater with NPs levels before remediation), 

treatment b (seawater without NPs, after remediation); treatment C (seawater with Pb 

and NPs before remediation) and treatment c (seawater with Pb and NPs after 

remediation). Each treatment was conducted in triplicate with 4 individuals/replicate. 

Salinity and temperature were kept constant to match those from the acclimation period 
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(30 and 17°C, respectively) and individuals were fed every 2 days, as previously 

described.  

Lead (Lead nitrate, CAS No: 10099-74-8, EC No: 233-245-9; Sigma-Aldrich) was 

used to prepare a concentration of 1 mg/L selected for initial exposure as it is 

considered the maximum Pb concentration permissible in wastewater discharges from 

industry (Directive, 2013/39/EU, 2013). Treatment a, with 0.02 mg/L of Pb, was 

considered as remediated seawater since preliminary studies conducted with 1 mg/L in 

seawater and remediated with MnFe2O4, NPs (50 mg/L) resulted into 0.02 mg/L of Pb 

in the medium. 

The MnFe2O4, NPs 50 mg/L was selected according to NPs capacity of 

removal, which was studied in a previous work (data not shown). Those experiments 

were performed placing 50 mg/L of MnFe2O4 NPs in 1 L of an aqueous solution 

containing 1 mg/L of Pb for 24 hours. After this period, NPs were separated from 

seawater by applying an external magnetic field using a NdFeB magnet (ferromagnetic 

behaviour of the MnFe2O4 NPs in well known (Balaji et al. 2002; Thirupathi et al . 

2012)) and the residual concentration of Pb in solution was circa 0.02 mg/L. Despite 

the remarkable reduction in Pb, the remediated water could possibly present some 

toxicity, due to the amount of Pb remaining in solution, or due to NPs that eventually 

remained in the solution after separation. Treatement a, i.e., seawater with a 

concentration of Pb like that achieved after remediation (0.02 mg/L), together with 

condition b (seawater after 24 h of contact with NPs 50 mg/L, which were then 

separated)) were used to elucidate this possible issue. 

During the 28 days of experiment, seawater was renewed every 7 days, 

immediately after which all exposure conditions were re-established. During the 

experiment, water samples were collected immediately after concentrations 

reestablishment for the quantification of Pb in the solution and identification of real 

exposure concentrations. During the experimental period mortality was daily checked. 
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Dead organisms, individuals with open shells and unresponsive to external stimulus, 

were removed when identified.  

 

After 28 days of experiment, organisms from each aquarium (12 per 

treatment) were collected and immediately frozen in liquid nitrogen, being preserved at 

−80°C. 

To evaluate mussels' biochemical responses and Pb accumulation the whole 

soft tissue was removed from the shells and homogenized using a mortar and pestle 

under liquid nitrogen. Tissue homogenates were distributed in 5 aliquots of 0.5 g fresh 

weight (FW) each for biochemical analyses, and the remaining tissue was used for Pb 

quantification. Samples for biochemical parameters and Pb quantification were stored 

at −80°C.  

 

2.2 Synthesis and characterization of MnFe2O4 nanoparticles 

 MnFe2O4 nanoparticles were synthesized according a previous work (Tavares 

et al., 2013). The morphological characterization of NPs was confirmed by transmission 

electron microscopy (TEM) using the Hitachi H-9000 TEM microscope operating at 300 

kV. For TEM analysis a drop of sample was dispersed in ethanol on a carbon-coated 

copper grid and then it was air-dried. Surface area of the NPs was confirmed by N2 

adsorption/desorption on a Gemini V2.0 Micromeritics instrument. The crystalline 

phase of the NPs was identified by x-ray powder diffraction of the powders using a 

Philips Analytical PW 3050/60 X’Pert PRO (θ/2θ) diffractometer equipped with an 

X’Celerator detector and with automatic data acquisition (X’Pert Data Collector v2.0b 

software) by a monochromatized Cu Kα radiation (λ = 1,54056 Å) at 45 Kv/40 Ma. 

Fourier Transform Infrared (FT-IR) spectra of the NPs was recorded using a 

spectrometer Mattson 7000 at 4 cm-1 resolution, using a horizontal attenuated total 

reflectance (ATR) cell.  
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2.3 Lead quantification 

The quantification of Pb in seawater was made by inductively coupled plasma 

mass spectrometry (ICP-MS), on a Thermo ICP-MS X Series equipped with a Burgener 

nebulizer as described by Henriques et al. (2017). The quantification limit of the 

method was 0.1 μg/L (n =12), with an acceptable relative standard deviation among 

replicates <10% (n≥3). 

The ICP-MS was also used to determinate the total Pb concentration in M. 

galloprovincialis soft tissues, after microwave-assited acid digestion using HNO3 and 

H2O2, as described by Henriques et al. (2017). The quality control was assured by 

running blanks (reaction vessels with only HNO3 and H2O2) and certified reference 

material TORT-3 (Lobster Hepatopancreas; 0.225±0.018 mg/kg Pb) in parallel with 

samples. Blanks were always below the quantification limit and mean percentage of 

recovery for Pb in TORT-3 was 110±4% (n = 4). 

 

2.4 Biomarkers 

Mussels' whole soft tissues (2 individuals per aquarium, 6 per treatment) 

prepared for biochemical assays (0.5 g FW aliquots) were used for extractions with 

different buffer solutions (1 mL). After adding the buffer, samples were extracted 

through high-speed shaking by tissue lyser, centrifuged (at 10000 g or 3000 g 

depending on the biomarker, at 4°C), and the supernatants collected and stored at 

−80°C until analysis.  

Biochemical analyses were performed in duplicate, alongside with blanks. A 

total of 4 extraction buffers were used, depending on the biomarker (see references 

Andrade et al., 2019; Pirone et al., 2019). All parameters were analysed 

spectrophotometrically using a multi-detection microplate reader (BioTek Synergy HT). 

The biochemical parameters evaluated were: i) metabolism and energy related 

markers, including electron transport system activity (ETS), glycogen (GLY) and total 

protein (PROT) concentrations, measured according to King and Packard (1975) and 
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the modifications performed by De Coen and Janssen (1997), Dubois et al. (1956) and 

Robinson et al. (1940) methods, respectively; ii) antioxidant enzymes activities, 

including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase 

(GPx) activities, measured following the methods described by Beauchamp and 

Fridovich (1971), Johansson and Borg (1988) and Paglia and Valentine (1967), 

respectively; iii) indicators of cellular damage as lipid peroxidation (LPO) and protein 

carbonyl (PC) levels, determined following the methods described by Ohkawa et al. 

(1979) and Levine et al. (1990), respectively; iv) indicators of redox homeostasis as 

glutathione content ratio (GSH/GSSG) determined according to Rahman et al. (2007); 

v) neurotoxicity measuring acetylcholinesterase (AChE) activity according to  Ellman et 

al. (1961) and modification by Mennillo et al. (2017). All parameters are described in 

detail in Coppola et al. (2019) and Pirone et al. (2019). 

 

2.5 Statistical analyses   

Biochemical parameters and Pb contamination levels obtained from each 

tested treatment were submitted to a statistical hypothesis testing using permutational 

analysis of variance, employing the PERMANOVA+add-on in PRIMER v6 (Anderson et 

al., 2008). The matrix gathering all biomarkers responses and Pb concentrations per 

treatment was used to calculate the Euclidean distance similarity matrix. The pseudo-F 

p-values in the PERMANOVA main tests were evaluated in terms of significance. 

When significant differences were observed in the main test, pairwise comparisons 

were performed. Values lower than 0.05 (p ≤ 0.05) were considered as significantly 

different. The matrix gathering biochemical descriptors per condition were used to 

calculate the Euclidean distance similarity matrix. The similarity matrix was simplified 

through the calculation of the distance among centroids matrix, which was then 

submitted to ordination analysis, performed by Principal Coordinates (PCO). Pearson 

correlation vectors of biochemical descriptors (correlation > 0.75) were provided. 
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The null hypotheses (H0) tested were: i) no significant differences exist among 

control and contaminated treatments (CTL, A, B and C); p-values are presented in 

Table 4, with significant differences highlighted in bold; ii) no significant differences 

exist among control and remediated treatments (CTL, a, b, and c); p-values are 

presented in Table 4, with significant differences highlighted in bold; iii) no significant 

differences exist between A vs a, B vs b, C vs c treatments; significant differences 

between each pair of treatments are represented highlighted in bold in Table 4, with 

significant differences identified with an asterisk in Figures. 
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3. RESULTS 

3.1 Mortality 

After 28 days of exposure, at control (CTL) and treatment b (seawater with 

NPs levels after remediation) no mortality was observed. The lowest mortality (17%) 

was observed in organisms exposed to treatments C and c, corresponding to water 

with Pb+NPs before and after remediation. Organisms exposed to Pb before 

remediation (treatment A) presented the highest mortality level (50%), while organisms 

exposed to Pb at concentration levels after remediation (treatment a) and exposed to 

NPs levels before remediation (treatment B) presented 25 % of mortality. 

 

 

3.2 Characterization of MnFe2O4 nanoparticles  

A detailed characterization of MnFe2O4 NPs has been reported previously by 

Tavares et al. (2013). Briefly, TEM images shows spherical nanoparticles with a mean 

diameter of 75±15 nm (Figure 1). The results of FT-IR analysis confirm the presence of 

a characteristic band at 537 cm-1 related to metal-O stretching vibration of the MnFe2O4 

NPs (Bellusci et al., 2009; Mehran et al., 2016; Tavares et al., 2013). The band at 1107 

cm-1 was attributed to metal-OH and to metal-OH2 stretching vibrations, which 

correspond to water sorption on oxide, while 1635 cm-1 band is due to H-O-H bending 

and corresponds to molecular water adsorbed or incorporated into the crystalline lattice 

(Bellusci et al., 2009). The broad band at 3309 cm-1 corresponds to symmetric and 

asymmetric stretching of O-H bond (Margabandhu et al., 2016). Powder X-ray 

diffraction (XRD) pattern show peaks that are characteristics of the presence of 

MnFe2O4 with the spinel structure (JCPDS–International center diffraction data, PDF 

card 01-071-4919). 

 

3.3 Lead concentration in seawater and mussels’ tissues  
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Lead quantification in water samples, at the beginning and immediately after 

conditions reestablishment showed that differences between measured and nominal 

concentrations was always below 15%. Also, concentrations of Pb in control condition 

(CTL) and in condition with NPs (B and b treatments) were very low (Table 2) and not 

statistically different. The quantification in treatment C were not performed because the 

sorption of Pb by the NPs is extremely rapid. 

Organisms exposed for 28 days to CTL and treatments a and b presented low 

concentrations of Pb (Table 3). The highest levels of Pb in mussels were observed in 

treatment A that corresponds to seawater contaminated with Pb initial concentration. 

For each group of treatments (A vs a, B vs b, and C vs c) significantly higher contents 

of Pb were recorded in mussels exposed to “non-remediated” conditions (A, B and C) 

comparatively to “remediated” ones (a, b and c), and to control. 

 

3.3 Biochemical markers 

Metabolic capacity and energy reserves 

The ETS activity was significantly higher at control (CTL) in comparison to 

values obtained in mussels exposed to non-remediated (A, B, C) and remediated (a, b, 

c) seawater (Figure 2A, Table 4). Comparing non-remediated with remediated 

treatments, B vs b and C vs c, significantly higher values were observed in organisms 

exposed to remediated seawater (Figure 2A, Table 4). Moreover, significantly lower 

ETS activity was observed in organisms exposed to B in comparison with A and C 

treatments (Figure 2A, Table 4). Except a vs b treatments, significant differences were 

observed among remediated treatments (a vs c, b vs c) (Figure 2, Table 4).  

The GLY content was significantly lower at control (CTL) in comparison to 

values obtained in mussels exposed to non-remediated (A, B, C) and remediated (b, c) 

seawater (Figure 2B, Table 4). Comparing non-remediated with remediated treatments, 

A vs a and C vs c, significantly higher values were observed in organisms exposed to 

non-remediated ones (Figure 2B, Table 4). Significant differences among mussels 
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exposed to non-remediated treatments were observed between A and C as well as 

between B and C treatments, while among remediated treatments significant 

differences were only observed between a and c (Figure 2B, Table 4). 

The PROT content at control (CTL) was significantly lower in comparison to 

values obtained in mussels exposed to non-remediated seawater (A, B, C), while was 

similar to that of the remediated sweater (a, b and c) (Figure 2C, Table 4). Comparing 

non-remediated with remediated treatments (A vs a, B vs b and C vs c) significantly 

higher values were observed in organisms exposed to non-remediated treatments 

(Figure 2C, Table 4). Significant differences among mussels exposed to non-

remediated treatments were observed between A and C as well as between B and C 

treatments, while no significant differences were observed among the remediated 

treatments (Figure 2C, Table 4).  

 

Antioxidant defences 

The activity of SOD was significantly lower at control (CTL) in comparison to 

values obtained in mussels exposed to remediated (a, b, c) and particularly with non-

remediated (A, B, C) seawater (Figure 3A, Table 4). Comparing non-remediated with 

remediated treatments (A vs a, B vs b and C vs c) significantly higher values were 

observed in organisms exposed to non-remediated (Figure 3A, Table 4).  Significant 

differences among mussels exposed to non-remediated treatments were observed 

between A and B, while no significant differences were observed among the 

remediated treatments (Figure 3A, Table 4). 

The activity of CAT was significantly lower at control (CTL) in comparison to 

values obtained in mussels exposed to non-remediated (A, B, C) seawater (Figure 3B, 

Table 4). No significant differences in CAT activity was observed comparing CTL with 

remediated treatments (a, b and c) (Figure 3B, Table 4). Comparing non-remediated 

with remediated treatments (A vs a, B vs b and C vs c) significantly higher values were 

observed in non-remediated ones (Figure 3B, Table 4). Significant differences among 
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mussels exposed to non-remediated treatments were observed between A and C as 

well as between B and C treatments, while no significant differences were observed 

among the remediated treatments (Figure 3B, Table 4). 

The activity of GPx was significantly lower at control (CTL) in comparison to 

values obtained in mussels exposed to remediated (a, b, c) and non-remediated (A, B, 

C) seawater (Figure 3C, Table 4). Comparing non-remediated with remediated 

treatments (A vs a and C vs c), significantly higher values were observed in non-

remediated ones (Figure 3C, Table 4). No significant differences were observed among 

mussels exposed to non-remediated treatments as well as among mussels exposed to 

remediated treatments, except between treatments A and B (Figure 3C, Table 4). 

 

Cellular damage  

LPO levels were significantly lower at control (CTL) in comparison to values 

obtained in mussels exposed to non-remediated (A, B, C) and remediated (a, c) 

seawater (Figure 4A, Table 4). Comparing non-remediated with remediated treatments 

(A vs a, B vs b and C vs c) significantly higher LPO values were observed in non-

remediated ones (Figure 4A, Table 4). No significant differences were observed among 

mussels exposed to non-remediated treatments except A vs B, while among 

remediated seawater, LPO levels were significantly different (Figure 4A, Table 4).  

PC levels were significantly lower at control (CTL) in comparison to values 

obtained in mussels exposed to non-remediated (A, B, C) seawater and treatment c 

(Figure 4B, Table 4). Comparing non-remediated with remediated treatments (A vs a, B 

vs b and C vs c) significantly higher PC values were observed in non-remediated ones 

(Figure 4B, Table 4). No significant differences were observed among mussels 

exposed to non-remediated, except between A vs B, as well as between a vs c and b 

vs c remediated treatments (Figure 4B, Table 4). 

GSH/GSSG values were significantly higher at control (CTL) in comparison to 

values obtained in mussels exposed to non-remediated (A, B, C) and remediated (a, b, 
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c) seawater (Figure 4C, Table 4). Comparing non-remediated with remediated 

treatments significantly higher GSH/GSSG values were observed in remediated ones 

(Figure 4C, Table 4). No significant differences were observed among mussels 

exposed to non-remediated as well as among mussels exposed to remediated 

treatments (Figure 4C, Table 4). 

 

Neurotoxicity  

AChE activity was significantly higher at control (CTL) in comparison to values 

obtained in mussels exposed to non-remediated (A, B, C) and remediated (a, b) 

seawater (Figure 5, Table 4). Comparing non-remediated with remediated treatments 

significantly higher values were observed in treatments containing Pb+NPs (C vs c) 

(Figure 5, Table 4). Significant differences among mussels exposed to non-remediated 

treatments were observed between A and C as well as between B and C treatments, 

while no significant differences were observed among mussels exposed to remediated 

treatments, except between a and b (Figure 5, Table 4). 

 

3.4 Multivariate analysis  

Principal coordinates analysis (PCO) graph obtained is shown in Figure 6. 

PCO axis 1 explained 63.3 % total variation, while PCO axis 2 explained 16.6 % 

(Figure 6). PCO1 separated individuals exposed to A, B and C treatments at the 

negative side from mussels exposed to CTL, a, b and c in the positive side. PCO2 

separated individuals exposed to CTL, a, c and A treatments in the positive side from 

B, b and C treatments in the negative side. Organisms exposed to C and B treatments 

were associated to GLY, PROT, SOD and CAT as these markers presented the 

highest values especially at C treatment. Individuals exposed to CTL, a and c 

treatments were associated to ETS, AChE and GSH/GSSG. Organisms exposed to A 

treatment was closely related to LPO and PC, GPx parameters where higher activity of 
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these biomarkers were observed. Moreover, these results were confirmed by higher 

concentration of Pb in samples water and mussels exposed to A treatment. 
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DISCUSSION 

Nowadays, the increase of nanoparticles (NPs) for different uses can lead to their 

release and dispersion in the environment with potential toxic effects (Gehrke et al., 

2015; Hu et al., 2015; Huang et al., 2016; Keller et al., 2010). Furthermore, published 

studies already demonstrated that NPs have the capacity to interact with other 

pollutants altering their potential harmful effects (Gomes et al., 2011; Guan et al., 2018; 

Pan et al., 2012).  

One of the most recent applications of NPs is related to their use for water 

remediation (Aslibeiki et al., 2016; Davidescu et al., 2015; Gehrke et al., 2015). 

Although their efficiency in removing pollutants from water has been described 

(Mehdinia et al., 2014; Mohmood et al., 2016; Ngomsik et al., 2005; Zhang et al, 2015) 

no studies evaluated the toxicity of the remediated water. This knowledge gap was 

addressed in the present study, using magnetic manganese spinel ferrite nanoparticles 

(MnFe2O4 NPs) that have already demonstrated high capacity to sorb Pb from 

seawater (Hosseini and Asadnia, 2013). For this, in the present study the 

bioaccumulation capacity and biochemical performance were evaluated in Mytilus 

galloprovincialis exposed to non-remediated (treatments A, B and C) and remediated 

(treatments a, b and c) seawater, measuring a set of biomarkers in mussels’ tissues 

after a 28 days exposure period.  

In what regards to removal of Pb from seawater, our findings clearly 

demonstrated that the application of MnFe2O4, NPs revealed to be a promising 

procedure, since the concentration of Pb in the water significantly decreased after 

remediation. These results are in accordance to previous studies conducted by 

Mohmood et al. (2016), which showed the efficient of Fe3O4@SiO2-NPs to sorb Hg 

form water.  
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This present study clearly demonstrated the capacity of mussels to accumulate 

Pb, even if present at very low concentrations in the medium (remediated water), which 

can explain the biochemical alterations observed after a 28 days experimental period. 

These results agree with previously published studies that demonstrated the toxicity of 

Pb in mussels (M. galloprovincialis, M. edulis) even at low but environmentally relevant 

concentrations (Bocchetti et al., 2008; Fernández et al., 2010; Widdows et al., 2002). 

Concerning mussel’s biochemical responses, clearly the behaviour observed 

under non-remediated and remediated seawater differed. These results are highlighted 

by the PCO analysis that separated remediated and non-remediated waters in positive 

and negative sides of PCO1, respectively. PCO analysis demonstrated that mussels 

under non-remediated seawater were characterized by high enzymes activity (high 

SOD, CAT and GPx activates), cellular damages (high LPO and PC levels) and higher 

Pb concentrations in mussels tissues, as well as in water. 

In detail, the results obtained showed that independently on the tested treatment 

mussels tended to decrease their metabolic capacity, measured by ETS activity, in 

comparison to control levels. However, in general, mussels exposed to remediated 

treatments presents higher ETS activity than mussels exposed to contaminated water, 

indicating that remediated seawater induced less toxic effects in mussels’ metabolic 

capacity. Furthermore, similar ETS values obtained in remediated treatments (a, b, c) 

highlight similar toxicity of Pb and NPs, both isolated and in combination. Such results 

are in accordance with studies already published regarding the toxicity of Pb and NPs 

in bivalves, revealing that exposure to these type of pollutants (e.g. Pb, Hg, zinc oxide 

(ZnO2-NPs), metal oxidase (Me(O)NPs), titanium oxidase (TiO2-NPs), gold 

nanoparticles (AuNPs), carbon nanotubes (f-MWCNTs)) resulted in metabolism 

depression in mussels (Mytilus edulis, M. coruscus and M. galloporivincialis) and clams 

(Mercenaria mercenaria, R. philippinarum and Corbicula fluminea) (Baker et al., 2014; 

Coppola et al., 2018a,b; De Marchi et al., 2017; Fan et al., 2016; Freitas et al., 2014; 

Huang et al., 2018; Jaishankar et al., 2014; Li et al., 2018;Tedesco et al., 2010).  
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In this study the metabolic decrease in mussels exposed to contaminated 

water (treatments A, B and C) resulted in lower energy expenditure, showing an 

increase of PROT and GLY content in comparison with mussels exposed to 

remediated seawater (treatments a, b and c), which presented an energy reserve 

content similar to control values. In accordance with these results it was already 

demonstrated by other authors (Coppola et al., 2017; Della Torre et al., 2017; Guan et 

al., 2018; Jung et al., 2006) that bivalves under pollutants exposure avoid the 

expenditure of their energy reserves. In fact, previous studies have showed and 

justified that a consequence of metabolic decrease in mussels under stressful metal 

exposure is the low energy expenditure with an increase of energy reserves content 

(Coppola et al., 2017; Freitas et al., 2018; Pirone et al., 2019). Avoiding energy 

reserves expenditures different physiological processes may be affected, namely 

reproductive success and growth rate (Berthelin et al., 2000; Dridi et al., 2006; Ojea et 

al., 2004; Pouvreau et al., 2006).  

 

It is well known that when bivalves are exposed to pollutants the production of 

reactive oxygen species (ROS) may increase which, as a consequence, results into the 

activation of antioxidant enzymes (Regoli and Giuliani, 2014) or, it may also result in 

the inhibition of these enzymes in the case of extreme stressful conditions (Company et 

al., 2004; Maria and Bebianno, 2011; Monari et al., 2015). The obtained results showed 

a clear activation of SOD, CAT and GPx enzymes in mussels exposed to non-

remediated seawater, independently on the treatment (A, B or C), while in mussels 

exposed to remediated seawater (treatments a, b and c) there was no effective 

increase in antioxidant defenses with enzymes activity values closer to control. These 

findings evidence the toxic impacts of Pb and NPs, with a clear induction of mussel’s 

antioxidant defense mechanisms when exposed to contaminated seawater. As 

described previously, the increased activity of antioxidant enzymes such as SOD, CAT 

and GPx may result from the overproduction of ROS due to the presence of pollutants, 
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namely metals. In particular, similar activation of antioxidant enzymes was observed by 

Freitas et al. (2014) in the clam R. decussatus exposed for 96 h days to Pb, while other 

authors showed a similar response in mussels exposed to the same metal (Alka et al., 

2013). Also, studies on the impacts of NPs in bivalves showed that antioxidant 

defences were activated in mussels M. galloprovincialis exposed to TiO2-NPs or ZnO 

NPs (100 mg Zn/L), and in clams R. philippinarum exposed to f-MWCNTs (Li et al., 

2018; De Marchi et al., 2017; Monteiro et al., 2019). 

 

Under stressful conditions bivalves may prevent the occurrence of cellular 

damage if antioxidant defences are efficient in eliminating ROS, avoiding a general 

oxidative status (Regoli and Giuliani, 2014). The present findings clearly demonstrated 

that organisms exposed to non-remediated seawater (treatments A, B and C) 

presented higher lipids damage in comparison to mussels exposed to remediated 

seawater (treatments a, b and c), indicating that although antioxidant defences were 

activated in mussels exposed to non-remediated seawater these mechanisms were not 

enough to prevent cellular damage and oxidative stress was observed. On the other 

hand, although a limited activation of antioxidant enzymes was observed in organisms 

exposed to remediated seawater (treatments a, b and c) lower cellular damages were 

observed indicating that these conditions were less toxic to mussels than contaminated 

seawater. Previous studies also showed the increase of LPO when bivalves (mussels 

and clams) were exposed to Pb (Alak et al., 2013; Menzi et al., 2017; Pirone et al 

2019) and a similar response was observed in mussels M. galloprovincialis and M. 

coruscus and clams R. philippinarum exposed to different NPs (TiO2, f-MWCNTs, 

ZnO2) (De Marchi et al., 2017; Huang et al., 2018; Mezni et al., 2017). 

Another consequence of ROS overproduction is the oxidation of proteins, 

identified by protein carbonylation (PC) (Patetsini et al., 2013). The PC levels in 

mussels exposed to remediated seawater (treatments a, b and c) were close to CTL 

values and lower than in mussels exposed to contaminated seawater (A, B, C), 
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evidencing higher protein damage in mussels exposed to contamination. These results 

are in accordance with recent studies by Freitas et al. (2019), which showed an 

increase of PC levels when the mussels M. galloprovincialis was exposed to Pb. Also, 

different authors revealed an increase of PC values in bivalve species after exposure to 

metals and NPs (Baker et al., 2014; De Marchi et al., 2018; Fan et al., 2016 and 2017; 

Pirone et al., 2019; Sellami et al., 2014; Valavanidis et al., 2006). 

Under a stressful condition, organisms tend to increase oxidized glutathione 

(GSSG) content while decreasing the amount of reduced glutathione (GSH), 

decreasing their GSH/GSSG ratio in comparison to control or less stressful conditions 

(Regolli and Giuliani, 2014). In the present study, although the ratio GSH/GSSG 

decreased in all treatments in comparison to CTL, the lowest values were observed in 

organisms under non-remediated seawater (treatments A, B and C). These results 

evidence lower redox homeostasis in organisms exposed to non-remediated seawater 

(treatments A, B and C) in comparison to the ones exposed to remediated seawater 

(treatments a, b and c). Similarly, previous studies also with bivalves showed similar 

responses with higher GSH/GSSG values at the least stressful conditions (Coppola et 

al., 2018 a, b; De Marchi et al., 2017). 

In marine bivalves it is well described the neurotoxic impacts of different 

pollutants, evidenced by the decrease on AChE activity due to its high affinity for many 

neurotoxic compounds such as metals and NPs (Maisano et al., 2017; Wang et al., 

2009). Our results showed that organisms tends to decrease the activity of AChE both 

in remediated and non-remediated seawater compared to CTL, but especially in the 

presence of Pb and NPs (treatment C). In general, the AChE activity in mussels under 

remediated seawater were higher than contaminant treatments and this demonstrate 

that even after removal of Pb and NPs from the water still neurotoxic impacts were 

induced in mussels exposed to remediated seawater, evidencing the high neurotoxic 

capacity of Pb and NPs. These findings are in accordance with previous results by De 

Marchi et al. (2018) which showed a decrease in AChE activity when the clams R. 
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philippinarum were exposed to MWCNTs (Nf- and f- NPs). Also, study conducted by 

Freitas et al. (2019) showed a decrease of AChE activity when mussels M. 

galloprovincialis were exposed to Pb concentration. 

 

CONCLUSION 

In conclusion, the present findings clearly demonstrated that organisms exposed 

to non-remediated seawater presented greater alterations on their biochemical 

performance, with higher metabolism depression, oxidative stress and neurotoxicity 

than mussels exposed to remediated seawater. It was also demonstrated that impacts 

induced by Pb and NP acting individually or as a mixture induced similar oxidative 

stress levels but the combination of pollutants induced greater neurotoxicity than acting 

individually. Overall, the present study evidenced lower toxic impacts of remediated 

seawater in comparison with non-remediated seawater, showing the potential use of 

manganese spinel ferrite nanoparticles to remediate water contaminated with metals, 

and the safety of remediated water towards aquatic systems. However, an ex-situ 

decontamination is recommended as NPs showed to induce low level toxicity by itself. 
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Table 1. Experimental conditions. 

 

 

Table 2. Lead concentration (µg/L) measured in water samples collected immediately 

after the weekly water renewal. Results correspond to the mean value and standard 

deviation of the four weeks. Concentrations were measured in organisms from different 

conditions: (CTL, A, a, B, b, C and c). Asterisks represent differences between A vs a, 

B vs b and C vs c conditions, while different uppercase letters represent differences 

between CTL vs A, CTL vs B, CTL vs C and lowercase CTL vs a, CTL vs b, CTL vs c 

conditions. 

 

 

 

 

 

 

 

 

 

TREATMENTS DESCRIPTION 

                          CTL Seawater with Pb 0 mg/L + NPs 0 mg/L 

A Seawater with Pb 1 mg/L 

a Seawater with Pb 0.02 mg/L 

B Seawater with NPs 50 mg/L 

b 
Seawater after 24 h of contact with NPs 50 mg/L (NPs were 

separated) 

C Seawater with Pb 1 mg/L and NPs 50 mg/L 

c 
Seawater having initially Pb 1 mg/L and remediated with 

NPs 50 mg/L during 24 h. 

Pb water concentration (µg/L) 

CTL 
  

0.52±0.11A,a 
 

   

Pb 
A 853±281B 

* 
a 15±1.9b 

NPs 
B 0.58±0.15A 

 
b 0.47±0.18a 

Pb + NPs 
C ** 

 
c 115±13c 
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**Because the sorption of Pb by the NPs is extremely fast, the quantification of Pb in water 

was not performed. 

 

Table 3. Lead concentration in mussels (mg/Kg), 28 days after the beginning of the 

experiment. Concentrations were measured in organisms from different conditions: 

(CTL, A, a, B, b, C and c). Asterisks represent differences between A vs a, B vs b and 

C vs c conditions, while different uppercase letters represent differences between CTL 

vs A, CTL vs B, CTL vs C and lowercase CTL vs a, CTL vs b, CTL vs c conditions. 

 

 Pb mussels concentration (mg/Kg) 

CTL 
  

0.6±0.1A,a 
 

   

Pb 
A 700±232B 

* 
a 1.2±0.2b 

NPs 
B 6.5±2.5C  

* 
b 1.8±1.5b 

Pb+NPs 
C 53±29D 

* 
c 16±13c 
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Table 4. p-values obtained by pair-wise comparisons between conditions (CTL vs A, CTL vs B, CTL vs C CTL vs a, CTL vs b, CTL vs c, A vs a, 

B vs b, C vs c, A vs B, A vs C, B vs C a vs b, a vs c and b vs c) for each biomarker: ETS, electron transport system activity; GLY, glycogen 

content; PROT, total protein content; SOD, superoxide dismutase activity; CAT catalase activity; GPx, glutathione peroxidase activity; LPO, lipid 

peroxidation levels; PC, protein carbonyl levels; glutathione ratio, GSH/GSSG; acetylcholinesterase activity, AChE. Significant differences (p ≤ 

0.05) are highlighted in bold.

 
ETS GLY PROT SOD CAT GPx LPO PC GSH/GSSG AChE 

CTL vs A 0.0001 0.0003 0.0001 0.0001 0.0005 0.0001 0.0001 0.0001 0.0023 0.0117 

CTL vs B 0.0001 0.0490 0.0016 0.0001 0.0006 0.0001 0.0015 0.0001 0.0009 0.0071 

CTL vs C 0.0012 0.0001 0.0001 0.0001 0.0001 0.0020 0.0022 0.0003 0.0016 0.0003 

CTL vs a 0.0002 0.3271 0.7835 0.0100 0.5680 0.0021 0.0001 0.7876 0.0238 0.0025 

CTL vs b 0.0001 0.0264 0.9700 0.0010 0.2066 0.0001 0.8090 0.3325 0.0150 0.0240 

CTL vs c 0.0099 0.0061 0.9976 0.0001 0.7891 0.0012 0.0027 0.0001 0.0162 0.1182 

A vs a 0.0910 0.0001 0.0020 0.0002 0.0047 0.0028 0.0224 0.0001 0.0015 0.7846 

B vs b 0.0050 0.6304 0.0011 0.0001 0.0098 0.3309 0.0044 0.0001 0.0001 0.1630 

C vs c 0.0393 0.0455 0.0001 0.0001 0.0001 0.0235 0.0382 0.0033 0.0002 0.0048 

A vs B 0.0018 0.7245 0.6388 0.0090 0.2371 0.0434 0.0067 0.0464 0.2404 0.9018 

A vs C 0.3092 0.0001 0.0002 0.0867 0.0001 0.0982 0.7361 0.4576 0.3164 0.0023 

B vs C 0.0021 0.0093 0.0147 0.0549 0.0020 0.5118 0.1661 0.6072 0.7502 0.0002 

a vs b 0.0631 0.0575 0.7503 0.3488 0.5040 0.6976 0.0001 0.5074 0.3418 0.0122 

a vs c 0.0032 0.0095 0.7383 0.0751 0.6710 0.7813 0.0132 0.0002 0.4531 0.2883 

b vs c 0.0009 0.1224 0.9587 0.4154 0.2299 0.4267 0.0104 0.0007 0.9585 0.8618 
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Figure 1. Transmission Electronic Microscopy image of MnFe2O4 nanoparticles. 

Amplification 50000x. 

 

Figure 2. A: Electron transport system activity (ETS); B: Glycogen content (GLY); C: 

Total protein content (PROT) in Mytilus galloprovincialis exposed to different 

treatments (CTL, A, a, B, b, C, c) at the end of the experiment. Results are mean + 

standard deviation. Significant differences between conditions A vs a, B vs b, C vs c 

are presented with asterisks. 

 

Figure 3. A: Superoxide dismutase activity (SOD); B: Catalase activity (CAT); C: 

Glutathione peroxidase activity (GPx), in Mytilus galloprovincialis exposed to different 

treatments (CTL, A, a, B, b, C, c) at the end of the experiment. Results are mean + 

standard deviation. Significant differences between conditions A vs a, B vs b, C vs c 

are presented with asterisks. 

 

Figure 4. A: Lipid peroxidation levels (LPO); B: Protein carbonyl levels (PC); C: ratio 

between reduced and oxidized glutathione (GSH/GSSG), in Mytilus galloprovincialis 

exposed to different treatments (CTL, A, a, B, b, C, c) at the end of the experiment. 

Results are mean + standard deviation. Significant differences between conditions A vs 

a, B vs b, C vs c are presented with asterisks. 

 

Figure 5. Acetylcholinesterase activity (AChE), in Mytilus galloprovincialis exposed to 

different treatments (CTL, A, a, B, b, C, c) at the end of the experiment. Results are 

mean + standard deviation. Significant differences between conditions A vs a, B vs b, 

C vs c are presented with asterisks. 

 

Figure 6. . Principal coordinated analyses (PCO) based on biochemical parameters, 

measured in Mytilus galloprovincialis exposed to different treatments (CTL, A, a, B, b, 
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C, c). Pearson correlation vectors are superimposed as supplementary variables, 

namely biochemical data (r > 0.75): PROT; GLY; CP; CAT; SOD; GPx; LPO, ETS; 

AChE, GSH/GSSG, [Pb] in organisims and seawater. 
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Highlights 

 Pb contaminated seawater was successfully remediated by MnFe2O4 NPs 

 Mussels exposed to remediated seawater accumulated less Pb 

 Mussels exposed to Pb and/or NPs decreased their metabolic capacity 

 Mussels exposed to non-remediated treatments activated their antioxidant defences 

 Non-remediated treatments showed increased damage cell and lower GSH/GSSG ratio 
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