
Accepted Manuscript

Application of multivariate statistical analyses to ItraxTM core scanner data for
the identification of deep-marine sedimentary facies: A case study in the Galician
Continental Margin

A.E. López Pérez, D. Rey, V. Martins, M. Plaza-Morlote, B. Rubio

PII: S1040-6182(18)30103-4

DOI: 10.1016/j.quaint.2018.06.035

Reference: JQI 7495

To appear in: Quaternary International

Received Date: 31 January 2018

Revised Date: 4 May 2018

Accepted Date: 21 June 2018

Please cite this article as: López Pérez, A.E., Rey, D., Martins, V., Plaza-Morlote, M., Rubio, B.,
Application of multivariate statistical analyses to ItraxTM core scanner data for the identification of deep-
marine sedimentary facies: A case study in the Galician Continental Margin, Quaternary International
(2018), doi: 10.1016/j.quaint.2018.06.035.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.quaint.2018.06.035


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 

 

Application of multivariate statistical analyses to ItraxTM core scanner data for the 1 

identification of deep-marine sedimentary facies: a case study in the Galician 2 

Continental Margin. 3 

 4 

A.E. López Pérez1, D. Rey1, V. Martins2,3, M. Plaza-Morlote1, B. Rubio1*  5 

1. GEOMA, Dpto. Geociencias Marinas y O.T., Universidade de Vigo, 36310, Vigo, 6 

Spain.  7 

2. Universidade do Estado do Rio de Janeiro, Av. São Francisco Xavier, 524, Maracanã. 8 

CEP 20550-013, Rio de Janeiro, RJ, Brazil. 9 

3. GeoBioTec, Dpto. Geociências, Universidade de Aveiro, Campus de Santiago, 3810-10 

193 Aveiro, Portugal 11 

*Corresponding author 12 

Abstract 13 

 14 

The validity and usefulness of multivariate statistical tools for the facies characterization in 15 

deep-marine environments have been applied on the geochemical, sedimentological and 16 

magnetic data from a piston core extracted from the Transitional Zone in the Galician 17 

Continental Margin. The combination of geochemical profiles of Fe, Mn, Ti, Ba and Ca and 18 

magnetic susceptibility (MS) obtained using the ItraxTM Core Scanner at the University of Vigo, 19 

together with the grain-size, grey level and R (red) G (green) B (blue) colour analyses have 20 

allowed characterizing and classifying the sediments of the core PC13-3 using SPSS package v. 21 

23. Cluster Analysis (CA) displays, in the first level of the hierarchy, two major groups that 22 

correspond with clay-silt and sand facies. In a second level, it is possible to observe six 23 

subfacies that match de visu preliminary classification and allowed us to complete and improve 24 

the characterization and the facies limits in the whole core. Discriminant Analysis (DA) 25 

confirmed the validity of the cluster analyses and enhanced the results of the classification. The 26 

Principal Component Analysis (PCA) shows four principal components: coarse lithogenic 27 

fraction (PC1), fine lithogenic fraction (PC2), high density fraction (PC3) and biogenic fraction 28 

(PC4). These results are in concordance with the Pearson correlation coefficient and the SEM 29 

observations. In general terms, the results confirm the utility of the multivariate statistical 30 

methods applied on high resolution geochemical and magnetic data acquired with ItraxTM corer 31 

scanner, as a quick and complementary tool in sedimentary facies analysis and description in 32 

deep marine environments. 33 

Keywords: Galicia Continental Margin, Sedimentology, facies analysis, multivariate statistical 34 

analysis, ItraxTM Core Scanner  35 

Introduction 36 

In general, sedimentological facies classification is based on visual description/interpretation 37 

and qualitative analysis of the sediment core. Currently, this methodology is still widely used 38 

and provides good results. A large number of works show examples of this, such as Lamourou 39 

et al., (2017) who identified six sedimentary facies based on microscopic observations in 40 

Quaternary deposits in the Gabes Gulf located in the southeast of Tunisia coast. However, there 41 

is a tendency to quantify or systematize the classification of facies employing multivariate 42 
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statistical analyses such as Cluster Analysis (CA), Discriminant Analysis (DA) or/and Principal 43 

Component Analysis (PCA). Barbera et al., (2009) used PCA and discriminant function 44 

analyses on mineralogical (x-ray diffraction) and geochemical (x-ray fluorescence) data to 45 

demonstrate provenance and continental sedimentary history in mudrocks. Rey et al., (2008) 46 

characterized five magnetochemical facies to determinate different sedimentary marine 47 

environments using CA on geochemical and magnetic data acquired with XRF-CORTEX (core 48 

scanner Texel) and cryogenic magnetometer. Margalef et al., (2013) performed facies analysis 49 

using PCA on Fe, Ti and Ca data measured with Itrax TM corer scanner, along with other discrete 50 

analysis (TC, TN and δ13C) and macrofossil analysis in marine sediments located at the central 51 

South Pacific Ocean. Baumgarten et al., (2014) carried out CA on XRF data got with an 52 

Avaatech XRF core Scanner III to define lacustrine sediment characteristics. Flood et al., (2015; 53 

2018) used grain size, mineralogy and geochemistry data (obtained through Itrax TM corer 54 

scanner) to define grain size variability, provenance and depositional environments from a fine 55 

tidal estuary sediments using a multivariate statistical methodology based on PCA and CA. 56 

Recently, Nugroho et al., (2017) used CA and DA to characterize marine sedimentary facies and 57 

depositional environments using grain size statistical parameters and compositional data.  58 

 59 

Other studies evidence the utility of high-resolution data obtained with the ItraxTM core scanner 60 

to identify facies and microfacies in varved lakes core sediments, such as demonstrated Dulski 61 

et al., (2015). 62 

 63 

Despite these interesting works, the use of multivariate statistical methods in the facies analysis 64 

and depositional environment characterization is very scarce when compared with other fields 65 

such as environmental pollution and quality control in sediments (Rubio et al., 2000; Martins et 66 

al., 2016) and groundwaters (Tlili-Zrelli et al., 2013). 67 

The previous studies have demonstrated the advantage of using multivariate statistical analysis 68 

(CA, DA and PCA) combining different geochemical, magnetic and grain-size data against de 69 

visu descriptions to classify facies in deep-marine environments with statistical confidence. CA 70 

allows a quick classification of the samples by grouping samples with similar characteristics, 71 

while the DA provides a statistical assessment and refinement of the CA grouping. At the same 72 

time, PCA allows defining new variables or components related to the sedimentological and 73 

geochemical properties of the sediment.  74 

This paper will explore how this approach can give greater consistency, reliability, sensitivity 75 

and objectivity to facies classification than the more common de visu procedure, particularly 76 

when it is based on a large and diverse number of variables (i.e. geochemical, sedimentological 77 

and magnetic). The main advantage of these statistical methods lies in the fact that these 78 

analyses constitute a fast exploratory method, supported by statistical parameters that improve 79 

the facies distinction with very subtle changes. De visu classification is very dependent of the 80 

observer´s experience and could lead to errors in relatively homogeneous sedimentary records, 81 

with subtle changes in grain-size and variations in magnetic and/or geochemical properties. This 82 

study, unlike to the previous referenced works, uses magnetic susceptibility data (1 cm) and raw 83 

high-resolution geochemical, colour and grey level data (1 mm) (smoothed to each cm to 84 

improve results) obtained with the ItraxTm corer scanner. This high-resolution data allow a better 85 

discrimination of the facies classification, even at millimeter scale. The combination of these 86 

high-resolution data with the traditional lower resolution grain size data supposes an advantage 87 

in facies description because let detect subfacies and subtle limits along the whole core, very 88 
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difficult to detect in the de visu classification. Selecting the appropriate variables dataset allows 89 

discriminating between sedimentological and provenance processes in deep marine 90 

environments, mainly between pelagic and hemipelagic processes.  91 

Our approach allows differentiating a high number of facies in comparison with the previous de 92 

visu procedure based on a high-resolution dataset obtaining by XRF-scanner and supported by 93 

statistical analyses. This fact is representing a considerable advantage with the classical visual 94 

description facies classification commonly used and constitutes a refined approach of the using 95 

of multivariate statistical methods in the facies classification field.  96 

Materials and methods 97 

This work is based on a 4.28 m long PC13-3 piston core taken at 1,688 m depth in the 98 

Transitional Zone (TZ) province (Ercilla et al., 2008; 2011; Vázquez et al., 2008) in the Galicia 99 

Continental Margin. The core was collected during the “Burato 4240” oceanographic cruise on 100 

board the R/V Sarmiento de Gamboa in September 2010 (latitude 42°43’04.01’’N, longitude 101 

11°09’19.43’’W) (Fig. 1). The TZ is characterized by three giant pockmark structures that have 102 

been related to large-scale fluid escapes. PC13-3 is extracted at NW of one of these structures, 103 

known as Gran Burato, which has a circular morphology of 4 km in diameter, with maximum 104 

depths of 375 m, and is characterized by high slopes. The facies classification of the PC13-3 105 

core will allow knowing the affection in the local sedimentation of the fluid escape processes. 106 

Optical and radiographical images were obtained with the ItraxTM Core Scanner at the 107 

University of Vigo, as well as geochemical and magnetic susceptibility data, using the Mo-tube 108 

with a voltage of 30 kV and an exposure time of 20 seconds.  The high-resolution XRF 109 

geochemical raw data (1mm step size) were smoothed using a 1 cm running mean to validate 110 

and improve their reliability (Rodríguez-Germade et al., 2013). Radiographic data were 111 

exported to grey-scale data files with the Redicore software of the core scanner. Colour data 112 

were obtained in RGB values from the optical images obtained with the ItraxTM core scanner. 113 

Grain-size distributions were determined from discrete samples collected every 4 cm using a 114 

laser diffraction particle size analyzer Coulter LS230 (Beckman) at the Department 115 

d´Estratigrafia, Paleontologia I Geociències Marines de la Universitat de Barcelona. 116 

The petrology of the core was studied employing a JEOL JSM-6700f Scanning Electron 117 

Microscope (SEM), operating in back-scattering mode (BS), located at the C.A.C.T.I. of the 118 

University of Vigo. 119 

The statistical analyses (CA, DA and PCA) were carried out using the SPSS package v.23 for a 120 

total of 15 variables analyzed in 106 samples (1590 data points).  121 

 122 

 123 

Results and discussions 124 

 125 

1. General sediment properties 126 

Table 1 summarizes descriptive statistical values for the grain-size, geochemical and magnetic 127 

sediment properties obtained by the SPSS v.23 software. In general terms, PC13-3 core contents 128 

an average sand, silt and clay percentage of 45.19 ± 32.62 %, 26.40 ± 11.68 %, and 28.42 ± 129 
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23.61 %, respectively. The mean grain size is 88.39 ± 69.28 µm (φ = 3.50 ± 3.85). Regarding 130 

the sorting, this parameter shows a value of 66.50 ± 43.28 µm (3.91 ± 4.53 φ), so the general 131 

description of the core corresponds with very fine sand very poorly sorting. The statistic results 132 

of RGB components present mean values of 231.44 ± 13.92 for the red, 209.29 ± 23.56 for the 133 

green and 171.20 ± 39.91 for the blue, corresponding with sienna tonalities.  134 

Regarding the geochemical results, elements such as Fe, Ti, Ba and Mn show mean values of 135 

17,581.06 ± 12,549.91 peak areas (p.a.), 379.95 ± 347.47 p.a., 43.71 ± 23.55 p.a. and 223.86 ± 136 

157.58 p.a. respectively, are being the iron the metal element that presents more variability 137 

between maximum and minimum values. Ca shows a mean value of 162,539.43 ± 39,283.20 138 

p.a., as well as the highest difference between the maximum and minimum value. Respect to the 139 

MS the mean value obtained is 6.29 10-5 ± 7.59 SI and also presents a high variability between 140 

samples (range varied from 0.20 10-5 - 48.40 10-5 SI). Finally, the Grey Level (GL), a parameter 141 

related to the density, shows mean value of 33,555.91 ± 110.21. 142 

Pearson correlation matrix (Table 2) show most variables are well correlated (p <0.01). Clay 143 

and silt show a noticeable positive correlation (r = 0.850) and these both variables present 144 

negative correlation with Sand, Mean Grain Size (MGS) and sorting (r = -0.844, r = -0.920 and r 145 

= -0.891 for the clay and r = -0.665, r = -0.728 and r = -0.685 for the silt respectively). Sand 146 

shows a positive correlation between MGS and Sorting (r = 0.952 and r = 0.948 respectively). 147 

These correlations could indicate a large variability of the grain-size in the sedimentary record, 148 

being sand the most abundant size in the core (high positive correlation between sand and 149 

MGS). Moreover high positive correlation is noticeable between Fe vs. Ti (r = 0.938 and 150 

p<0.01) and is remarkable the positive correlation between MS vs, Fe, Ti, Ba, and Mn. This 151 

could be related to lithogenic components with high metallic elements content. Regarding Ca, 152 

this element shows positive correlation with RGB variables and a negative correlation with 153 

others metallic elements (Fe, Ti, Ba, and Mn) and MS, that could be associated to biogenic 154 

components with high Ca and low metallic elements. 155 

 156 

2. Statistical Analysis 157 

2.1. Statistical Analysis applications 158 

Cluster Analysis (CA) is a statistical exploration tool that allows to group samples by its degree 159 

of similarity. This analysis is widely used to study the pattern of distribution and provenance of 160 

sediments in depositional environments based on grain-size, geochemical and/or magnetic data 161 

(Kim et al., 2013; Kolesnik et al., 2017). Discriminant Analysis (DA) allows obtaining a 162 

discriminant function based on linear combinations of the variables and allows predicting and 163 

differentiating the ones, which belong to a particular group of the samples. Principal Component 164 

Analysis (PCA) reduces the dimensionality of the dataset by linear compilations of correlated 165 

variables called Principal Components (PCs). DA and PCA are typically used in assessment 166 

pollution or in the distribution of metals elements in marine sediments (Rubio et al., 2000; 167 

Farmaki et al., 2014), but very rarely for facies classification. 168 

2.2. Cluster analyses 169 
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Cluster analysis (CA) was run in Q mode using the unweighted pair group method with 170 

arithmetic mean (UPGMA method) and the Euclidean squared distance as the similarity 171 

coefficient. Previously, with the objective of testing the uniformity and normality of the data, 172 

Kolmogorov-Smirnov and Saphiro-Wilk tests were performed on all variables, confirming the 173 

non-normal distribution of the variables except for the variables of silt, MS and green colour. 174 

All data were normalized using a logarithmic transformation to obtain better results and avoid 175 

the effect of differences in magnitude and variance of the data (Rubio et al. 2001). 176 

Fig. 2 shows the obtained dendrogram, where two main clusters (CLA and CLB) in the first 177 

level of the hierarchical dendrogram and six subclusters (S1 to S6) in the second hierarchy level 178 

are identified. CLA comprises all samples with sand content below of 17 % and CLB samples 179 

with sand percentage higher than 17 %. CLA is divided into two subfacies, S1 and S2. Cluster 180 

S1 groups samples with sand percentage between 0 and 2% and S2 clusters samples with sand 181 

percentage between 4 % and 17 %. CLB group includes subclusters CL1 and CL2. CL1 contain 182 

two subfacies depending on the sand content: S3 enclose samples with sand percentage between 183 

17 % and 66 % and S4 groups samples with sand percentage higher than 69 %. Both subfacies 184 

do not include samples with high content of metallic elements, and high values of MS. CL2 185 

includes S5 and S6 subfacies, which grouped samples with higher content in Fe, Ti, and MS in 186 

the whole core. S5 shows lower values of Fe, Ti and MS (19,800.91 p.a., 435.86 p.a. and 12.41 187 

10-5 SI respectively) than S6, which displays the highest values for Fe, Ti and MS parameters 188 

(50,959.20 p.a., 1,303.41 p.a. and 17.02 10-5 SI respectively).  189 

2.3.  Discriminant Analysis 190 

DA was performed by the stepwise method to obtain the percentage of correct prediction to 191 

validate statistically the different groups obtained by cluster analysis. Prior to the DA, Box´s M 192 

Test was carried out to check the validity of the hypothesis of equal covariance. Results 193 

(p<0.05) reject the null hypothesis of equality of matrices of covariance, so DA was performed 194 

obtained a percentage of 98.1 % of correct predictions of samples classified by CA (Table 3 and 195 

Fig. 3). 196 

Only two samples (47 and 60) show a different classification in DA, which differs from the CA 197 

results. Sample 47 was classified by CA in S4 meanwhile the DA predicted that it pertains to S5 198 

in the highest group classification and S4 in the second highest group. The probability of 199 

pertaining to the predicted highest group has a value of 0.576 and shows a Mahalanobis distance 200 

of 8.976. On the other hand, the probability of correct classification in the second highest group 201 

has a value of 0.361 and shows a Mahalanobis distance value (9.910) very similar in 202 

comparison to the distance indicator in the highest group. Additionally, sample 47 present a 203 

grain-size, geochemical and magnetic values situated in CA in the high limit of S4 close to the 204 

low limit of S5. Regarding the sample 60, it was clustered in S3 using CA meanwhile DA 205 

grouped it in S2 in the highest group and S3 in the second highest group classification. The 206 

value of probability of belong to the assigned highest group is 0.997, and its Mahalanobis 207 

distance from the group centroid of S2 is 10.712. Otherwise, the probability to pertain to the 208 

second predicted highest group is 0.03, and its Mahalanobis distance (22.500) is much higher 209 

than the first predicted group distance. Moreover, this sample has a percentage of sand of 17.18 210 

%, being the grain-size lower limit of S3 suggested by CA. These grain-size values are more 211 

similar to the samples grouped in S2 (mean sand percentage of 10.13 %) than samples in S3 212 

(mean sand percentage of 53.08 %).  213 
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Taking into account all these considerations from DA (probabilities and Mahalanobis distances) 214 

and the geochemical, magnetic and grain-size subcluster limits values, we determinate that 215 

sample 47 was correctly classified in S4 using CA meanwhile sample 60 was not correctly 216 

classified in S3. This sample pertains to S2 as demonstrated the statistical results obtained by 217 

DA (p = 0.997 and Mahalanobis distance = 10.712). Moreover, the low value of Wilks's lambda 218 

(0.001), along with the high value of chi-square (1331.03), allowed us to ensure the validity of 219 

the groupings of facies classification (p <0.0001). Thus we can determine the useful and 220 

complementarity of DA in facies classification to verify and improve CA results, due to this 221 

analysis allow obtaining statistical parameters that validate the classification.  222 

Table 4 contains the correlations of the variables with the five first discriminant functions and 223 

indicates the variables selected and used in the discriminant analysis (sand, sorting, Fe, Mn, 224 

clay, SM and silt). This suggests that these variables have more weight in the dataset than the 225 

rest of variables. 226 

2.4. Principal Component Analysis 227 

Principal component analysis (PCA) was performed on all data to obtain principal components 228 

that allow describing and characterizing the sediments and geochemical properties of the core. 229 

For this purpose normalized and standardize data using logarithmic transformations were again 230 

applied without rotation of the matrix. Moreover, the MGS was removed from the matrix owing 231 

to it is related to the grain size and show high correlation with the sand. 232 

Four components have been extracted, explaining the 87.07% of the total variance (Table 5).The 233 

PC1 groups the variables of sand, sorting, Fe, Ti, Ba Mn and MS, which shows high correlation. 234 

Moreover, it is remarkable their negative correlation with clay, Ca and RGB colour variables. 235 

This component represents 48.78 % of the total variance of data. PC2 explains 26.44 % and 236 

groups silt, clay and metal transition variables and show negative significant correlation of GL. 237 

PC3 represents 6.87 % of the variance of all data and only shows significant negative 238 

correlation of GL parameter. Finally, PC4 represents 4.98% of the total variance and shows 239 

significant positive Ca correlation. Results of the PCA are in concordance with the Pearson 240 

correlation matrix. 241 

PC1 was interpreted as a coarse lithogenic component rich in metal transition elements and high 242 

MS. Meanwhile, variables groups in PC2 allowed us to describe this association as fine 243 

lithogenic component. PC3 was identified as a high-density component related to the fine 244 

lithogenic component. Both, PC2 and PC3 show a significant negative correlation of GL. PC2 245 

also shows a significant positive correlation with clay and silt. This means that samples with 246 

high content in fine-grain sediments have low values of GL, an indicative of high density, 247 

because the porosity in clay and silt fraction is lower than in sands. PC4 was described as 248 

biogenic component. 249 

The interpretation of these four components can be observed by SEM (Fig. 4). The Fig. 4a and 250 

Fig 4b shows well-preserved foraminifera sands with terrigenous components of different sizes 251 

and Fig. 4c and Fig. 4d shows magnetite and ilmenomagnetite respectively. These terrigenous 252 

components constitute the coarse lithogenic rich in transition elements (PC1) and the fine 253 

lithogenic component (PC2) related to the high density component (PC3). Finally, Fig. 4e 254 

shows a small proportion of well-preserved foraminifera in a coccolithophoridae matrix (Fig. 255 

4f). This matrix, along with the well-preserved foraminifera along the whole core, defines the 256 

biogenic component (PC4). 257 
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 258 

3. Sediment properties of subfacies classification 259 

Fig. 5. displays the facies classification obtained after CA and DA application (Fig. 5a).  This 260 

figure compares the previous visual description of the core (Fig. 5b) following by the 261 

photography (Fig. 5c), radiography (Fig. 5d) and grain-size data distribution of the core (Fig. 262 

5e). Note that the limits between the different facies and the recognition of the high magnetic 263 

susceptibility facies along the core have significantly improved. Taking into account the new 264 

facies classification for the PC13-3, Table 6 shows the average values for the different variables 265 

for each subfacies.  266 

Subfacies S1 presents average sand, silt and clay percentages of 0.25 %, 35.85 % and 63.89 267 

respectively and mean values of Fe, Ti, Ca and MS of 12,891.33 p.a., 213.88 p.a., 166,495.64 268 

p.a. and 2.63 10-5 SI respectively. Volumetrically it represents 8.04 % of the core. Meanwhile, 269 

S2 represents volumetrically 26.29 % of the core and presents sand, silt and clay content of 270 

10.13 %, 46.72 % and 43.15 % for each variable and Fe, Ti, Ca and MS average of 13,367.84 271 

p.a., 279.69 p.a., 178,198.01 p.a. and 4.74 10-5 SI respectively. S3 represents 16.65 % of the 272 

core and displays an average mean percentage of sand, silt, and clay of 53.08 %, 24.94 %, and 273 

21.98 % respectively. Moreover Fe, Ti, Ca and MS show an average of 11,835.36 p.a., 252.76 274 

p.a., 189,383.77 p.a. and 3.01 10-5 respectively. Regarding S4 represents volumetrically 19.69 % 275 

of the whole core and shows mean values of sand, silt, and clay of 80.97 %, 13.27 %, and 5.77 276 

% respectively. Also, it shows an average value for Fe, Ti, Ca and MS of 11,920.71 p.a., 242.37 277 

p.a., 185,141.13 p.a. and 2.90 10-5 SI respectively. S5, that represent volumetrically the 19.21 278 

%, contents percentages of sand, silt and clay of 70.15 %, 19.37 % and 10.48 % respectively 279 

and Fe, Ti, Ca and MS values of 19,800.91 p.a., 435.86 p.a., 129,951.01 p.a. and 12.41 10-5 SI 280 

for each variable mentioned. Finally, S6 shows a mean percentage of sand, silt, and clay of 281 

50.29 %, 30.24 % and 19.47 % respectively and represents 10.12 % of the whole core. 282 

Regarding Fe, Ti, Ca and MS parameters, S6 displays values of 50,959.20 p.a., 1,303.51 p.a., 283 

115,241.88 p.a. and 17.02 10-5 SI respectively.  284 

4. Sedimentological significance of the CA, DA and PCA results  285 

 286 

A precise combination of the variables in the matrix dataset, and the use of limits obtained by 287 

the statistical analyses, allow interpret processes (pelagic and hemipelagic) and provenance of 288 

the sediment record (detrital and biogenic), considering confidence intervals for CA, DA and 289 

PCA, combined with Pearson correlation and SEM observations. The variables dominant in 290 

hemipelagic detrital facies are Fe, Ti, and MS, in pelagic biogenic facies is mainly Ca. 291 

 292 

S1 and S2 clustering in CLA by CA, classified samples corresponding to a clay-silt grain size 293 

that show high Ca content, low Fe and Ti content and low-susceptibility. These samples defined 294 

as Ca-rich low-susceptibility silt-clay facies (Car-lok silt-clay facies) and described as silt-clay 295 

pelagite. S3 and S4 included in CL1 of CLB, content foraminifera-sand samples characterized 296 

by high Ca content, low Fe and Ti content and low-susceptibility. These samples named as the 297 

Ca-rich low-susceptibility sand facies (Car-lok sand facies) and interpreted as sand pelagite. S5 298 

and S6 grouping in CL2 of CLB, display foraminifera-sand samples with the highest content of 299 

Fe, Ti and most upper MS values. These samples classified as Fe-Ti high susceptibility sand 300 

facies (Fe-Ti sand facies) and described as hemipelagic magnetic layers interbedded in the 301 

pelagic sediment that could be related to IRDs layers deposited during the Heinrich Events. CA, 302 
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DA and PCA allow to identify three different clay-silt and sand facies that correspond to pelagic 303 

and hemipelagic sediments.  304 

Conclusions 305 

The combination of high-resolution ItraxTM core scanning determination of  Fe, Ti, Ca, Mn, Ba 306 

and magnetic susceptibility profiles with colour RGB, grey line data, detailed grain-size and 307 

other grain-size parameters (MGS and sorting) in the same data set, have allowed to 308 

characterize and to classify the sediments of the PC13-3 core using multivariate statistical 309 

method through the SPSS package v.23. Descriptive statistics results, combined with the SEM 310 

observations, allowed us to describe the sediment of the study core as a very fine foraminifera-311 

sand very poor sorting. CA shows two major facies (CLA and CLB) and six subfacies that 312 

correspond with the hemipelagite and pelagite in a previous visual classification. CA results 313 

allowed us to complete and improve the characterization and the limits of the facies and 314 

subfacies of the core, allowing establishing better limits for subtle differences. DA allowed 315 

statistically validates the clusters obtained and improved their results. DA results showed that, 316 

overall, more than 98.1% of the samples grouped by the CA are properly classified. Moreover, 317 

the low value of lambda Wilks statistic (0.001), along with the high value of chi-square 318 

(1331.03) allowed validating the facies classification made by CA (p <0.0001). Thus, the 319 

combination of CA and DA constitute a complementary multivariate statistical tool in the field 320 

of facies classification because establishes a robust statistical methodology to determinate the 321 

facies classification and confirm their validity. The combination of both analyses allows us to 322 

obtain a statistical value by DA that provides a reliance statistical weight to the CA 323 

classification, confirming the utility and confidence of these kinds of tools in marine facies 324 

classification. Moreover, PCA shows four principal components, described as coarse lithogenic 325 

fraction (PC1), fine lithogenic fraction (PC2), high density fraction (PC3) and biogenic fraction 326 

(PC4). These results are in concordance with the Pearson correlation coefficient and the SEM 327 

observations. We can conclude that multivariate statistical analyses (CA, DA, and PCA) 328 

constitute a useful and fast complementary tool in facies classification applied to Itrax TM core 329 

scanner data that let improves the visual facies characterization in deep-marine environments. 330 
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 412 

Caption to Figures 413 

Fig. 1. Bathymetric map of the Galicia continental margin with the PC13-3 core location and the four main 414 

morphostructural provinces in the study area: Deep Galicia Margin (DGM), Galicia Bank (GB), Transitional Zone 415 

(TZ) and the Galicia Interior Basin (GIB). 416 

Fig. 2. Dendrogram obtained using UPGMA method and the Euclidean squared distance as the similarity coefficient. 417 

A total of 106 samples were used in CA. 418 

Fig. 3. Plot of the canonical discriminant functions obtained by DA. 419 

Fig. 4. SEM micrographs obtained at different depths of the PC13-3 core. a) Fe-Ti sand facies at 35 cm composed by 420 

foraminifera and terrigenous components. b) Fe-Ti sand facies at 54 cm composed by foraminifera and terrigenous 421 

components. c) Magnetite located at 105 cm in Fe-Ti sand facies.  d) Ilmenomagnetite located in Fe-Ti sand facies at 422 

105 cm. e) Car-lok silt-clay facies at 400 cm f) Car-lok silt-clay facies at 400 cm with optical magnifying where it is 423 

possible to recognize the coccolithophoridae matrix. 424 

Fig. 5. a) Facies description obtained using multivariate statistical methods b) previous visual facies description c) 425 

optical and d) radiographical images obtained with the ItraxTM Corer scanner, followed by a grain size distribution 426 

(e). Note the improvement on the facies classification by using multivariate statistical methods. 427 
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 441 

Tables 442 

Table. 1. Statistical values from the variables used for the statistical described of the PC13-3 core. 443 

Variable Mean S.D. Minimum Maximum 

Clay (%) 28.42 23.61 1.89 78.94 

Silt (%) 26.40 11.68 7.82 56.20 

Sand (%) 45.19 32.62 0.00 89.49 

MGS (µm) 88.39 69.28 3.62 245.86 

Sorting (µm) 66.50 43.28 4.88 152.83 

Fe (p.a.) 17,581.06 12,549.91 6,265.55 78,318.91 

Ti (p.a.) 379.95 347.47 90.82 2,161.64 

Ba (p.a.) 43.71 23.55 15.09 161.55 

Mn (p.a.) 223.86 157.58 66.82 950.64 

Ca (p.a.) 162,539.43 39,283.20 53,594.73 227,924.18 

GL  33,555.91 110.21 33,368.82 33,867.82 

MS (10-5 SI) 6.29 7.59 0.20 48.40 

Red 231.44 13.92 161.73 242.36 

Green 209.29 23.56 136.45 253.09 

Blue 171.20 39.91 90.00 250.00 

106 samples used in the analysis. MGS= Mean Grains Size, GL = Grey Level, 
MS = Magnetic Susceptibility and S.D.= Standard Desviation 

 444 

Table. 2. Pearson correlation matrix for the variables. 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 
Clay Silt Sand MGS Sorting Fe Ti Ba Mn Ca GL MS  Red Green Blue 

Clay 1.000 .850** -.844** -.920** -.891** -.071 -.185 -.127 .103 .078 -.449** -.272** .092 .426** .462** 

Silt 
 

1.000 -.665** -.728** -.685** .134 .061 .056 .279** -.077 -.404** -.042 -.068 .200* .240* 

Sand 
  

1.000 .952** .948** .196* .336** .192* .018 -.088 .329** .350** -.223* -.437** -.477** 

MGS 
   

1.000 .995** .160 .296** .167 -.074 -.062 .411** .324** -.155 -.466** -.503** 

Sorting 
    

1.000 .172 .308** .182 -.052 -.059 .380** .331** -.175 -.472** -.505** 

Fe 
     

1.000 .938** .777** .666** -.577** -.024 .701** -.768** -.812** -.814** 

Ti 
      

1.000 .813** .641** -.472** -.009 .688** -.728** -.797** -.798** 

Ba 
       

1.000 .727** -.471** -.225* .538** -.692** -.647** -.624** 

Mn 
        

1.000 -.527** -.405** .503** -,589** -.512** -.487** 

Ca 
         

1.000 .150 -.521** .636** .662** .637** 

GL 
          

1.000 .116 .107 -.216* -.227* 

MS 
           

1.000 -.543** -.726** -.715** 

Red 
            

1.000 .739** .709** 

Green 
             

1.000 .977** 

Blue 
              

1.000 

106 samples were used for the correlation analysis. MGS= Mean Grains Size, GL = Grey Level and MS = Magnetic Susceptibility. 

** p < 0.01 
* p < 0.05 
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 459 

Table. 3. Results of correct predictions of samples classified by CA. 460 

Classification resultsa 

Subfacies 
Predicted Group Membership 

Total 
S1 S2 S3 S4 S5 S6 

Original 

Count 

S1 27 0 0 0 0 0 27 

S2 0 7 0 0 0 0 7 

S3 0 1 18 0 0 0 19 

S4 0 0 0 20 1 0 21 

S5 0 0 0 0 22 0 22 

S6 0 0 0 0 0 10 10 

% 

S1 100.0 0.0 0.0 0.0 0.0 0.0 100.0 

S2 0.0 100.0 0.0 0.0 0.0 0.0 100.0 

S3 0.0 5.3 94.7 0.0 0.0 0.0 100.0 

S4 0.0 0.0 0.0 95.2 4.8 0.0 100.0 

S5 0.0 0.0 0.0 0.0 100.0 0.0 100.0 

S6 0.0 0.0 0.0 0.0 0.0 100.0 100.0 

a. 98.1 % of original grouped cases correctly classified. 

 461 

Table. 4. Structure matrix 462 

Structure matrix 

Variables 
Function 

1 2 3 4 5 

% Sand .878* -.284 .104 -.031 .258 

MGSb .492 -.462 -.353 .057 -.116 

Sorting .474* -.353 -.220 .138 -.096 

Fe .082 .674* -.593 .120 -.065 

Tib -.025 .557 -.548 .079 -.126 

Mn .023 .526* -.212 -.105 .085 

Bab .016 .467 -.419 .093 -.005 

Redb .032 -.431 .169 .013 -.030 

Cab .041 -.284 .122 .147 .054 

GLb .035 -.256 -.010 -.070 -.013 

% Clay -.327 .500 .585* .479 .176 

Blueb -.047 -.316 .541 -.019 -.014 

Greenb .020 -.379 .524 .024 -.029 

MS .083 .340 -.244 -,549* .461 

% Silt -.165 .511 .460 -.001 -.536* 

Pooled within-groups correlations between discriminating variables and standardized canonical 
discriminant functions. Variables ordered by absolute size of correlation within function. 

*. Significant correlation between each variable and every discriminant function. 
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b. This variable not used in the analysis. 

 463 

Table 5. PCA results 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

PCA results 

Components Eigenvalues Explained variance (%) Accumulated variance (%) 

1 6.83 48.78 48.78 

2 3.70 26.44 75.22 

3 0.96 6.87 82.08 

4 0.70 4.98 87.07 

Components loading 

Component 1 Component 2 Component 3 Component 4 

% Clay -.430 .852* -.160 .079 

% Silt -.176 .853* -.174 .165 

% Sand .513 -.744* .260 .075 

Sorting .501 -.790* .203 .075 

Fe .884* .315 -.130 .184 

Ti .895* .199 -.016 .314 

Ba .787* .309 .267 .220 

Mn .643* .528 .310 .035 

Ca -.664 -.288 .079 .642* 

GL .082 -.618* -.706* .161 

MS (10-5 SI) .789* .044 -.183 .041 

Red -.804* -.278 -.002 .114 

Green -.942* .055 .198 .104 

Blue -.939* .100 .186 .087 

106 samples used in the analysis 

* Significant variable (p < 0.001) for every component 
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 491 

 492 

Table. 6. Mean values of variables for each facies 493 

Facies Car-lok silt-clay facies Car-lok sand facies Fe-Ti sand facies 

Subfacies S1 S2 S3 S4 S5 S6 

Variables Mean Mean Mean Mean Mean Mean 

Clay (%) 63.89 43.15 21.98 5.77 10.48 19.47 

Silt (%) 35.85 46.72 24.94 13.27 19.37 30.24 

Sand (%) 0.25 10.13 53.08 80.97 70.15 50.29 

MGS (µm) 8.60 20.81 82.60 190.65 120.91 82.03 

Sorting (µm) 12.12 24.86 71.03 125.27 86.38 71.34 

Fe (p.a.) 12,891.33 13,367.84 11,835.36 11,920.71 19,800.91 50,959.20 

Ti (p.a.) 213.88 279.69 252.76 242.37 435.86 1,303.41 

Ba (p.a.) 34.71 39.18 31.83 36.77 48.29 97.52 

Mn (p.a.) 188.57 247.65 163.23 123.48 256.76 547.69 

Ca (p.a.) 166,495.64 178,198.01 189,383.77 185,141.13 129,951.01 115,241.88 

GL  33,502.90 33,550.34 33,506.21 33,654.56 33,579.39 33,534.10 

MS (10-5 SI) 2.63 4.74 3.01 2.90 12.41 17.02 

Red  237.49 234.95 237.28 235.87 227.09 202.05 

Green  227.22 221.85 223.76 206.97 190.71 170.56 

Blue  203.78 193.27 196.22 165.04 137.43 107.71 
106 samples used in the analysis. MGS= Mean Grain Size, GL = Grey Level and MS = Magnetic Susceptibility. 
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