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Filling the Health Gap in Energy
Performance Certificates to Reduce
Pulmonary Diseases Due to Bad Indoor
Air Quality

Alexandre Soares dos Reis, Marta Ferreira Dias, and Alice Tavares

Abstract Good indoor air quality (IAQ) levels in buildings are among the essential
benefits and drivers as they lead to better health and comfort of the occupants.
However, this research identified a health gap in dwellings’ energy performance
certificates (EPCs) in Portugal, as IAQ seems not to be appropriately covered.
Volatile organic compounds (VOCs) are gases containing various chemicals
emitted from liquids or solids. Additionally, biomass-burning stoves are significant
contributors to fine particle matter (PM2.5) concentrations that may cause cancer
and respiratory diseases. Therefore, it is crucial to formulate strategies to control
and enhance IAQ. As air pollutants often enter the human body through inhalation,
the respiratory system is regularly the main target of Indoor Air Pollution (IAP),
resulting in pulmonary diseases and allergies. These facts emphasize the need to
track IAQ properly. Depending on indoor air pollutants, several rules and criteria
are the basis of the current published work on IAQ indicators. According to our
findings, in the planning stage, understandable and straightforward criteria for
VOCs, PM2.5, and proper ventilation schemes, could help architects and engineers
to enhance IAQ. Finally, next-generation EPCs could consider the proposed IAQ
score to fill the identified health gap.

Keywords Energy performance certificates � Indoor air quality � VOCs � PM2.5 �
Ventilation

A. S. dos Reis (&) � M. F. Dias
Research Unit On Governance, Competitiveness and Public Policies (GOVCOPP),
Department of Economics, Management, Industrial Engineering and Tourism (DEGEIT),
University of Aveiro, Aveiro, Portugal
e-mail: alexandre.soares.reis@ua.pt

A. Tavares
Research Centre for Risks and Sustainability in Construction (RISCO), Department of Civil
Engineering (DECivil), University of Aveiro, Aveiro, Portugal

A. Tavares
Centre for Research in Ceramics and Composite Materials (CICECO), University of Aveiro,
Aveiro, Portugal

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. K. Ashish and J. de Brito (eds.), Environmental Restoration, Lecture Notes
in Civil Engineering 232, https://doi.org/10.1007/978-3-030-96202-9_20

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96202-9_20&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96202-9_20&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96202-9_20&amp;domain=pdf
mailto:alexandre.soares.reis@ua.pt
https://doi.org/10.1007/978-3-030-96202-9_20


1 Introduction

The 2019 United Nations Climate Change Conference (COP25), headed in Madrid,
incorporated the 25th Conference of the Parties to the United Nations Framework
Convention on Climate Change (UNFCCC), the 15th meeting of the parties to the
Kyoto Protocol (CMP15), and the second meeting of the parties to the Paris
Agreement (CMA2). The agreement recognized the importance of people in the
fight against climate change and that they should inevitably be at the heart of the
response to the climate emergency—in short, people first [1].

It is clear the European Union’s (EU) commitment to developing an energy
system on the track to carbon neutrality as established in the energy performance of
buildings directive (EPBD) from 2010 [2] and 2018 [3]. According to the EPBD, it
is the exclusive responsibility of Member States (MS) to set minimum requirements
for the energy performance of buildings and building components. Improvements
should be made in the building stock, bringing them to nearly zero-energy buildings
(NZEBs).

The EPBD also refers to good health and wellbeing, which depends on indoor air
quality (IAQ) since people spend most of their time indoors [4]. IAQ may deter-
mine how comfortable and healthy occupants may be inside buildings [5], espe-
cially when sleeping, due to its essential role in human welfare [6]. IAQ refers to
the contribution of the building components to the good health and wellbeing of the
occupants [7], and enhancing ventilation effectiveness may improve IAQ [8]. In the
long term, a weak IAQ may seriously compromise the health and wellbeing of
people inside buildings [9], especially children [10]. Sleep disorders, allergies, a dry
throat, respiratory problems, eye irritation, headaches, or loss of concentration are
possible effects [11], especially for those with existing health issues [12]. Hence,
architects and engineers should take additional care in the planning stage [13] to
minimize human exposure to contaminants [14], prioritizing people’s health instead
of energy efficiency as indoor air pollutants are likely to accumulate inside houses
due to airtightness [15]. High thermal insulation and insufficient ventilation [16]
may become a breeding ground for molds [17], viruses, and bacteria. Among the
risks for health are also a variety of volatile organic compounds (VOCs) [18],
particulate matter (PM) [19], and carbon dioxide (CO2), which presence in build-
ings are extensively described in the literature. Several authors have monitored
indoor air pollutants for the characterization of IAQ. PM, formaldehyde [20],
CO2—likely associated with consequent higher emissions through breathing and
metabolic processes [21], and carbon monoxide (CO) are among the most referred
air pollutants. Additionally, inside buildings, several contaminants can also be
found as benzene, toluene [22], nitrogen dioxide (NO2), ozone (O3) acetaldehyde
[23], siloxanes, flame retardants, synthetic phenolic antioxidants [24], acrolein [25],
bioaerosols [26], ethylbenzene and xylenes [27].

Oil paints and PVC floors are sources of VOCs, and the radiation amount of all
pollutants increases with temperature increase [28]. Materials (finishes and fur-
nishing) are one of the primary sources of indoor air pollution (IAP) [29]. IAP is a
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severe threat to human health, causing millions of deaths each year
[30]. Commonly reported plausible health effects associated with IAP are respira-
tory symptoms, sick building syndrome (SBS) [24], and cancer risk [31]. As the
renovation increases, the concentration of formaldehyde, one of the most wide-
spread VOCs, increases significantly due to finishing materials [32]. Formaldehyde
and total VOCs (TVOCs) concentrations in apartments may be critical [33]. PM2.5

may cause respiratory diseases and affect mental health [34]. Hence, the planning
stage plays an essential role in achieving a good IAQ [35].

In Portugal, for non-residential buildings, EPCs consider fresh air flows
depending on the number of occupants, interior finishing materials, and activities
developed in each space [36]. However, in dwellings’ EPCs, the ventilation is based
on the air changes per hour (ACH) in the whole house [37], so it does not consider
minimum fresh air flows as the methodology for non-residential buildings.

The main objectives of this study are to define clear criteria to reduce the
concentration of VOCs and PM2.5 and suggest proper ventilation schemes in
dwellings to enhance IAQ. The final goal is to propose a score base criteria for IAQ.

This paper is structured as follows. Section 1 introduces the problem and pro-
vides a literature review about the health problems related to VOCs and PM2.5 as
the importance of proper ventilation. The adopted methodology and the discussion
of results are described in Sect. 2. Finally, Sect. 3 presents the conclusions.

1.1 VOCs

Nowadays, as people spend most of their time inside buildings, mainly at home or
at the workplace [38], researchers started to change the focus from outdoor air
quality (OAQ) [39] to IAQ. According to Hanif et al. [40], VOCs are widely
recognized to cause significant adverse health effects on humans. Huang et al. [41]
have concluded that VOCs concentration indoor may become at least ten times
higher than outdoor. One of the most widespread VOC is formaldehyde, a colorless,
flammable, strong-smelling chemical used in building materials like varnishes,
paints, and glues [42]. They come into the interior of buildings mainly from
internal sources due to building materials, flooring, composite wood products,
adhesives, brand new furniture [43], cleaning agents, and other consumer products
[44]. According to Kotzias [45], VOCs significantly impact IAQ, thus, human
health and wellbeing, as they may lead to chronic or severe diseases [46]. Suzuki
et al. [47] found a substantial relationship between VOCs concentration and
building-related symptoms (BRS). They realized that people with a medical history
of allergies and those with a high sensitivity to chemicals tended to experience
BRS. Therefore, in the planning stage, architects and engineers should carefully
choose interior building components. Liang [48], while assessing VOCs risks to
construction workers, found that TVOCs concentration was the highest during the
doors and doorframes stage. Formaldehyde constituted 78% and 66% of the cancer
risk for painters and carpenters, respectively.

Filling the Health Gap in Energy Performance Certificates … 261



Additionally, Jung et al. [49] measured the concentrations of VOCs and inor-
ganic gaseous pollutants in around 5000 households in Japan, concluding that
toluene, formaldehyde, and acetaldehyde were the dominant indoor VOCs. Stamp
et al. [50] state that improved guidance and product labeling schemes may be
required to achieve the guideline concentrations of formaldehyde and reduce
associated health risks. On the other hand, while studying the indoor total volatile
organic compound concentrations in densely occupied university buildings, Jia
et al. [51] realized that the indoor TVOCs concentration variation was similar to the
indoor CO2 values. However, Liang et al. [52] found that when variations of
CO2 concentrations occur, the levels of CO2 may not be used as an indicator for
formaldehyde, despite their positive correlation. Additionally, according to Persily,
there have been many instances in which CO2 concentration measurements have
been misinterpreted and misunderstood [53], stating that an indoor CO2 limit is not
a good indicator of ventilation or IAQ [54].

The focus on energy performance might influence architects and engineers to
design airtight buildings that may lead to the accumulation of VOCs indoors, thus
changing the philosophy stated in the EPBD for a healthy indoor environmental
quality.

1.2 PM2.5

PM is a complex mixture of solid and liquid particles suspended in the air [55].
These particles can vary in size, shape, and composition. PM that are 10 µm in
diameter or smaller (for instance, PM2.5) are inhalable and can affect the lungs,
causing acute respiratory disorders [56]. PM2.5 may also play a role in mental health
conditions, such as major depressive disorder [34].

Last years have witnessed a surge in publications about the influence of biomass
burning on PM’s concentration and chemical composition. Combustion of biomass
fuel is among the leading environmental risk factors for preventable disease, as
stated by Fandiño-Del-Rio et al. [57]. According to Baris et al. [58], domestic
burning of biomass fuel is one of the most critical risk factors for developing
respiratory diseases and infant mortality. Especially in areas where the winters are
long, and the biomass stove is indoors. Hadeed et al. [59] concluded that dwellings
heated with coal or wood had elevated indoor PM2.5 concentrations that exceeded
both the U.S. Environmental Protection Agency (EPA) ambient standard and the
World Health Organization (WHO) guideline. Abdel-Salam [60] observed a robust
seasonal variability, with air quality being inferior in winter. Due to increased
ventilation rates in summer, indoor air pollutants were less critical. In contrast,
indoor concentrations in winter were more strongly affected by indoor sources due
to increased human activities and poor ventilation. Fulvio Amato et al. [61]
demonstrated that, during the winter period, biomass equipment used for residential
heating represents one of the leading PM sources in urban areas, contributing up to
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over 20% of PM2.5 values. OAQ may be directly related to IAQ, as Frasca et al.
showed [62]. While studying PM inside two flats with airtight biomass systems,
they realized that infiltration from the outdoor is the primary source of fine particles.
Furthermore, mainly due to the cleaning operations required to remove residual ash,
biomass stoves may be a significant source of indoor pollution. In fact, during
regular operation, the combustion products are isolated from the surrounding
environment, but the periodical removal of residual ash results in its dispersion
inside the flats.

In addition, Zhou et al. [63] have also developed a method that analyses the
variation of PM2.5 inside dwellings between seasons that suggests significant
infiltrations from outside. Rice et al. [64] studied the impact of exposure to sec-
ondhand smoke and indoor combustion from gas heaters, wood stoves, and fire-
places on respiratory symptoms in children with bronchopulmonary dysplasia
(BPD). They found that 75% of the children were exposed to at least one com-
bustible source of air pollution in the home. This exposure was associated with an
increased risk of hospitalization. Their conclusions state that exposure to com-
bustible sources of indoor air pollution was associated with increased respiratory
morbidity in a group of high-risk children with BPD. Ventilation frequency and
duration, biomass equipment characteristics, design, and location could be essential
to improve the IAQ and preserving human health, as de Gennaro et al. [65] stated.
Investigations carried out by Carvalho et al. [66] showed that the adjustment of fuel
loads to heating requirements could result in a tendency of the efficiency of new
biomass stoves to be higher than 80%.

On the other hand, airtight installations may reduce wood consumption by more
than 50% compared with fireplaces. PM emissions may be reduced by more than
30% when using automated systems instead of manual control of combustion air
inlets. Noonan et al. [67] have made the follow-up of a changeout program of old
wood stoves to new lower emission ones and found a 53% reduction of PM2.5

emissions. Carvalho et al. [68] developed a system consisting of an outer chimney
installed around the existing chimney of a wood stove. In this way, the outgoing air
going up preheated the outdoor air coming down through the external chimney
before entering the combustion chamber. With this heat transfer system, the thermal
efficiency of the wood stove increased from 62% to up to 79%. To sum up,
secondary air was supplied to the wood stove reducing the carbon monoxide
(CO) emissions by 39%. The two measures resulted in a better heat release from the
wood stove, more stability, and reduced the average PM2.5 emission factor by 22%.
Lai et al. [69] also conclude that to reduce PM emissions associated with biomass
stoves in dwellings is essential to study the combustion conditions. Saraga et al.
[70] highlighted the increase of PM mass concentration, both outside and inside
homes, due to biomass burning. On average, outdoor PM2.5 concentration levels
were up to two times higher during biomass burning hours. They have also realized
that the indoor air was significantly influenced by the burden outdoor atmosphere in
flats where no biomass burning occurred. McNamara et al. [71] have proposed air
filtration units to reduce PM2.5. Vicente et al. [72] tested several fuels in an
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automatic pellet stove and concluded that the pellet composition greatly influences
PM emissions.

This literature review shows that fine particulate matter inside homes may
directly contribute to pulmonary diseases, emphasizing the need to establish criteria
to minimize the exposure to PM2.5.

1.3 Ventilation

The general purpose of ventilation in buildings is to provide healthy air for
breathing by diluting the pollutants originating in the building and removing the
contaminants [73]. Low ventilation rates are regularly associated with pulmonary
diseases, including cancer [74]. Lin et al. [75] concluded that the excess lifetime
cancer risk shows a need to lower exposure by reducing or removing VOCs,
especially formaldehyde, or increasing ventilation rates. Sun et al. [76] found that
low ventilation rates in bedrooms caused elevated concentrations of formaldehyde
and an increased prevalence of SBS [76]. Moreover, Bornehag et al. [77] realized
that a decrease in the air changes in single-family houses coincides with the increase
in allergic diseases among children and adults. Hence, appropriate ventilation
regimes are needed. Huang et al. [78] stated that improved ventilation effectively
reduced the indoor concentrations of VOCs. Gabriel et al. [23] state that the pro-
motion of ventilation is essential for improving air quality in households and
promoting children’s health. Burguelle et al. [79] found that mechanical supply and
exhaust ventilation yielded an overall improvement of IAQ. However, also natu-
ral ventilation may positively impact IAQ. Assuring a continuous entrance of
outside air through windows provides to the indoor a feasible and affordable way to
regulate and sustain low standards in the VOCs, as stated by Aguillar et al. [80].
They have proposed a method that allows outside air to regulate the VOCs inside
buildings effectively. D’amico et al. [81] also highlighted the central role of ven-
tilation in IAQ.

Furthermore, Amira et al. [82] stated that a sound ventilation system and a
careful selection of construction materials are crucial for a good IAQ. Yang et al.
[83] studied VOCs levels in 169 energy-efficiency dwellings in Switzerland, con-
cluding that thermal retrofit of residential buildings and absence of mechani-
cal ventilation system were associated with high levels of formaldehyde. The
results suggest that actions should accompany energy efficiency measures in
dwellings to mitigate VOCs exposures and avoid adverse health outcomes. In
addition to this, according to Fan et al. [84], diluting indoor air pollutants with fresh
outdoor air is the most convenient way to lower VOCs values. While assessing air
pollutants in university buildings, Mundackal and Ngole-Jeme [85] observed high
VOCs concentrations. They have recommended additional ventilation and frequent
monitoring of IAQ. Kraus and Juhasova Senitkova [86] referred to a simulation tool
that predicts the emission of VOCs from building surface materials and furnish-
ings, helping to select low-emission materials and effective ventilation strategies.
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Yang et al. [87] characterized the indoor environment at facilities for sensitive
populations in Korea, investigating the effects of legal regulation on IAQ. They
recommend installing efficient ventilation to reduce indoor pollutants concentra-
tions while controlling the primary sources of pollutants. Holos et al. [88] studied
the influence of ventilation on VOCs emission rates in newly built and reno-
vated buildings. Their results may be used to assess practical ventilation strategies
to keep the concentration of TVOCs within acceptable levels during hours of
occupancy after completion of a new or renovated building. However, ventilation
for itself might not be enough to ensure a good IAQ [89].

2 Methodology and Results

Existing published work about IAQ indexes is mainly based on real-time data
generated by indoor air pollutants, like the one developed by Yuan et al. [90].
Based on the data collected from sensors in a classroom, Rastogi et al. [91] pro-
posed a novel method for the determination of ventilation states using three indoor
pollutants, PM2.5, PM10, and carbon monoxide (CO), with three levels of alerts: 1)
“poor”; 2) “moderate”; and 3) “good”. Balbis-Morejón et al. [92] proposed an Air
Conditioning Performance Indicator (ACPI) based on six criteria: energy con-
sumption, IAQ, thermal comfort, carbon emissions, investment costs, and finally,
operation and maintenance costs. Piasecki and Kostyrko [93] developed a method
based on a decision matrix that includes six attributes: actual indoor air CO2

concentration, TVOCs, and formaldehyde concentration, and their anthropogenic
and construction product emissions to the indoor environment with a combined
weighting scheme for an IAQ index equation. Kim et al. [94] suggested an IAQ
index which reflects PM2.5 and CO2, divided into five grades from “good” to
“hazardous” with a scale of 1 to 100 points, as follows: “good” (0–20); “moderate”
(21–40); “unhealthy for a sensitive group” (41–60), “bad” (61–80), and “haz-
ardous” (81–100). Nimlyat [95] developed two indexes for indoor environmental
quality (IEQ), the IEQ performance model (IEQPM), and the IEQ occupants’ sat-
isfaction (IEQPOS) in hospital ward buildings. The IEQPM model indicated that
thermal, acoustic, visual, and IAQ are significant determinants of IEQ performance.
The author found out a substantial relationship between IEQPM and IEQPOS and
proposed the Comprehensive Occupant Satisfaction Index (COSI), which may be
used for the assessment of comfort of the IEQ criteria in Green Building Rating
Systems (GBRS), according to the following scale: IEQ performance “above
average” (COSI = 0.90); “average” IEQ performance (COSI = 0.80); IEQ per-
formance “below average” (COSI = 0.70). Javid et al. [96] aimed to develop a
comprehensive index with fifteen parameters and 108 rules—the Fuzzy-Based
Indoor Air Quality Index (FIAQI). Poirier et al. [13] built three emission rates
classified for PM2.5 and formaldehyde: “high”, “medium,” and “low”, to be
selected depending on the available data at the design stage. For instance, a “low”
emission rate concerning formaldehyde may be considered only if A-class
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IAQ-labelled materials are used. Sérafin et al. [97] present an original method for
IAQ in office buildings by calculating a hazard quotient (HQ) and a hazard clas-
sification (CMRE). Based on the ventilation rate (VR) and on the Predicted Mean
Vote (PMV), Rastogi et al. [98] developed an indicator for IAQ and thermal
comfort, the Air Quality and Comfort Indicator (AQCI), with a three level scale: 1)
“good”; 2) “moderate; and 3) “poor”.

The literature review, the current published work about IAQ scores, and the
Active House Specifications [99] inspired the adopted methodology. Active House
Specifications have nine areas of performance indicators, graded on a four-level
scale [100]. Bringing complicated and ambiguous scenarios is not the way to move
forward [101], as this may negatively influence decision-makers, architects, and
engineers [102]. As the weighting methods are regularly subjective [103], with
essential differences between existing schemes [104], this research intends to give
the same weight [105] to all criteria under a four-level scale from 1) “better” to 4)
“worst” [100].

Measuring the concentrations of indoor air pollutants is the primary strategy
used in the identified published work about IAQ indexes. According to the present
knowledge, there is a gap in IAQ indexes to be followed in the planning stage. The
proposed methodology will allow making essential decisions at the earliest level of
a project: first, reducing the source of pollutants—VOCs and PM2.5; second,
enhancing ventilation. The final IAQ score would be the average of each score
proposed, from 1 to 4, for VOCs, PM2.5, and ventilation.

2.1 VOCs

The adopted approach to minimize the risk of VOCs inside homes was to follow the
French guidelines Étiquetage des émissions en polluants volatiles des produits de
construction [106] and the Portuguese Ministerial Order Nº353-A/2013 [36], with
the criteria and scores showed in Table 1.

Table 1 Criteria and scores to minimize the risk of VOCs inside homes

VOCs Score

By area, � 75% of paints and varnishes used follow the guidelines of Étiquetage des
émissions en polluants volatils des produits de construction that leed to class A+

1

By area, � 75% of paints and varnishes used follow the guidelines of Étiquetage des
émissions en polluants volatils des produits de construction that leed to class A+ or A

2

By area, 50–74% of paints and varnishes used follow the guidelines of Étiquetage des
émissions en polluants volatils des produits de construction that leed to class A+ or A

3

Paints and varnishes used do not follow the guidelines of Étiquetage des émissions en
polluants volatils des produits de construction that leed to class A+ or A

4
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2.2 PM2.5

Reducing indoor PM2.5 levels may offer a more feasible and immediate way to save
substantial lives and economic losses attributable to PM2.5 exposure [92]. The main
objective is to minimize the risk of releasing and spreading PM2.5 inside homes.
Hence, the proposed criteria aim to reduce the risk of PM2.5 moving inside
dwellings. The following Table 2 gives information about the proposed score for
each criterion.

2.3 Ventilation

As ventilation plays a significant role in IAQ, the proposed criteria follow the
recommendations of the Portuguese Ministerial Order N.º297/2019 [107] and the
book Manual de Apoio ao Projecto de Reabilitação de Edifícios Antigos [108],
defining simple and understandable criteria—Table 3.

For an air pollutant, the concentration is the amount of contaminant present in
each unit volume or unit mass of air. Exposure usually refers to the product of
pollutant concentration in the breathing zone of a room and the time the person
spends in that room. For some indoor-generated pollutants, as VOCs and PM2.5,
outdoor exposures can become negligible compared to indoor exposures. A broad
range of health effects may result from indoor pollutant exposures. Some pollutants
increase the risk of cancers or other severe health effects. The evidence of health
risks is sufficient to justify taking precautionary measures to limit VOCs and PM2.5

inside homes. Nowadays, we spend most of our time inside buildings, especially
inside our homes, so much of our exposure to air pollutants, as VOCs present in
building materials or PM2.5 released from wood-burning devices, occurs indoors.

Table 2 Proposed scores for each criterion to minimize the risk of release and spreading PM2.5

inside homes

PM Score

Air for biomass stoves comes from the outside, and the kitchen exhaust fan is not in
the same room. Or no biomass stoves installed inside the house

1

Air for biomass stoves does not come from the outside, and the kitchen exhaust fan is
not in the same room

2

Air for biomass comes from the outside, and the kitchen exhaust fan is in the same
room

3

Air for biomass stoves does not come from the outside, and the kitchen exhaust fan is
in the same room

4

Filling the Health Gap in Energy Performance Certificates … 267



Ventilation is an option for reducing existing indoor VOCs and PM2.5 concen-
trations. Providing outdoor air will decrease the indoor air concentrations of pol-
lutants released from indoor sources. However, considering a strategy to minimize
the indoor pollutant sources would be crucial, as ventilation alone cannot optimize
health conditions in homes. Hence, eliminating or limiting the indoor sources of
VOCs and PM2.5 should be the first option to consider. Reducing the sources of
indoor pollutants, for example, by selecting low emitting building materials and the
proper use of wooden stoves, diminishes the amount of ventilation needed to
maintain low indoor pollutant concentrations. Pollutant source control often does
not affect building energy use, while increasing ventilation increases energy
consumption.

The proposed IAQ score, based not only on increasing ventilation but mainly on
reducing the internal sources of VOCs and PM2.5, would give precise information,
on an early stage, to architects, engineers, builders, and building owners. From 1 to
4, score-based criteria for selecting materials that emit VOCs at a lower rate,
properly installing wood-burning equipment and ventilation systems could con-
tribute to a practical and straightforward way to a better IAQ in dwellings.

3 Conclusions

Poor indoor air quality negatively impacts occupants’ health, as highlighted in this
paper. In Portugal, due to the air changes per hour ventilation criteria in dwellings
(Order Nº 15,793-K/2013), there might not be sufficient fresh air to dilute pollutants
like VOCs and PM2.5. Besides ventilation, it is also vital to reduce finishing
materials that may spread VOCs like formaldehyde inside homes. The integration
of biomass stoves should be carefully thought, in the planning stage, to avoid high
concentrations of PM2.5. Adequately ventilated rooms may minimize the high
concentrations of VOCs, and PM2.5 inside homes, reducing the risk of pulmonary

Table 3 Proposed criteria and scores for ventilation

Ventilation Score

Fresh air (at least 30 m3/h in bedrooms and 60 m3/h in living rooms) with
self-regulating flap ventilators. Discharge of polluted air achieved mechanically, with
variable flow units, at least in bathrooms. Or centralized mechanical ventilation
system that assures fresh air (at least 30 m3/h in bedrooms and 60 m3/h in living
rooms) and discharge of polluted air

1

Fresh air (at least 30 m3/h in bedrooms and 60 m3/h in living rooms) with
self-regulating flap ventilators. Discharge of polluted air achieved through natural
ventilation with static ventilators Class B—NF P 50 413

2

Fresh air in bedrooms and living rooms with self-ventilating flap ventilators or
infiltrations through windows with airtightness class 2 or less

3

No fresh air in bedrooms and living rooms 4
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diseases. Still, it is essential to mitigate the sources—as fewer VOCs and PM2.5,
better. A crucial need is to inform decision-makers and occupants of how proper
ventilation, a good choice of finishing materials, and properly installing biomass
stoves may contribute to a healthier indoor environment. Complicated and too
detailed criteria might not be helpful for this purpose.

This research proposes an accessible and understandable criterion rated on a
four-level scale from 1) “better” to 4) “worst”. For VOCs, based on the French
guidelines for paints and varnishes. For PM2.5, according to the literature review.
Finally, for ventilation considering the Portuguese Ministerial Order Nº 297/2019
and the the book Manual de Apoio ao Projecto de Reabilitação de Edifícios
Antigos.

The aim is to avoid inappropriate interventions during building renovation that
could compromise the purpose of having healthy indoor conditions for a better life
inside buildings, now more than ever, because people spend much time at home.

For better consumer understanding, future developments should consider
applying a certification scale from A (“better”) to G (“worst”), similar to the energy
performance certificates. This health rating could also be part of the next-generation
energy performance certificates, side by side with the energy rating.
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