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Simple Summary: The European honey bee, Apis mellifera, is well-known to have two distinct
populations in temperate climate zone: short-living summer bees and long-living winter bees. Several
biological factors related to the different lifespans of the two populations have been studied. However,
the link between the metabolic changes and basic physiological features in the bodies of summer bees
and winter bees is limited. This study aimed to identify the metabolic fingerprints that characterize
summer and winter bees using proton nuclear magnetic resonance (1H NMR) spectroscopy. In total,
we found 28 significantly changed metabolites between the two populations. The results suggest that
the metabolites detected in honey bee bodies can distinguish the summer and winter bees. Changes
in carbohydrates, amino acids, choline-containing compounds, and an unknown compound were
noticeable during the transition from summer bees to winter bees. The results from this study give us
a broad perspective on honey bee metabolism that will support future research related to honey bee
lifespan and overwintering management.

Abstract: In temperate climates, honey bee workers of the species Apis mellifera have different
lifespans depending on the seasonal phenotype: summer bees (short lifespan) and winter bees
(long lifespan). Many studies have revealed the biochemical parameters involved in the lifespan
differentiation of summer and winter bees. However, comprehensive information regarding the
metabolic changes occurring in their bodies between the two is limited. This study used proton
nuclear magnetic resonance (1H NMR) spectroscopy to analyze the metabolic differences between
summer and winter bees of the same age. The multivariate analysis showed that summer and winter
bees could be distinguished based on their metabolic profiles. Among the 36 metabolites found,
28 metabolites have displayed significant changes from summer to winter bees. Compared to summer
bees, trehalose in winter bees showed 1.9 times higher concentration, and all amino acids except
for proline and alanine showed decreased patterns. We have also detected an unknown compound,
with a CH3 singlet at 2.83 ppm, which is a potential biomarker that is about 13 times higher in
summer bees. Our results show that the metabolites in summer and winter bees have distinctive
characteristics; this information could provide new insights and support further studies on honey
bee longevity and overwintering.
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1. Introduction

The European honey bee (Apis mellifera) is one of the most important pollinators for
agriculture and helps support ecological diversity [1]. However, the steadily reported
decline in honey bee populations’ ability to overwinter in various regions, including North
America and Europe, is a worrisome phenomenon [2–5]. The elevated overwintering mor-
tality as observed in the last few decades [6] is probably caused by several biotic and abiotic
stressors, such as Varroa destructor [7], Nosema sp. [8], viruses [9], pesticides [10], diet and
nutrition [11], poor winter conditions [12], and climate change [13]. As winter is a critical
period for honey bee colonies, understanding the positive and negative environmental
factors that influence colony mortality will be a crucial task to saving honey bees.

In temperate climates, European honey bee workers emerge into roles as either short-
living summer bee or long-living winter bee populations, depending on the emergence
period and labor division within the colony. Summer bees mainly take care of their brood,
collect nectar, pollen, and water, and have a short life span which lasts an average of
15 to 38 days [14]. When brood rearing begins to cease in the autumn, the winter bees begin
to emerge [15,16]. Their main tasks are to keep the colony warm throughout the winter
and rear the first summer generation around late winter or in early spring [17], and live
approximately 140 and up to 320 days [14].

The differences in longevity are linked to several physiological and biochemical char-
acteristics. The protein vitellogenin, juvenile hormone, and their interconnections are one
of the most well-known mechanisms that influence the aging process in honey bees. Winter
bees have low levels of juvenile hormone along with high levels of vitellogenin [18]; this
is similar to queen bees, who have the longest lifespan among the colony members [19].
However, summer bees show the opposite pattern, high levels of juvenile hormone and
low levels of vitellogenin [18]. Vitellogenin appears to play a role that affects the aging
and lifespan of honey bees in beneficial ways such as its antioxidant function, its role in
immunity, and controlling inflammation [20].

Apart from the differences in vitellogenin and juvenile hormone, winter bees have a
greater dry weight and a higher amount of total proteins, glucose, glycogen, and lipids
compared to summer bees [21,22]. Additionally, they have higher antibacterial activity [22]
and different gut microbiota profiles, which appear to be affected by dietary differences
in comparison to summer bees [23]. Moreover, winter bees showed a negligible level of
carbonylation damage in the brain [24] and negligible cognitive senescence [25] when
compared to summer foragers.

Although many studies have explained the characteristics of winter bees, their bio-
chemical pathways and associated mechanisms have not been fully elucidated. Hence,
screening the biomarkers that link the physiological factors that underlie aging and lifespan
in honey bees is important considering that the emergence of the long-living population in
late summer is crucial for successful overwintering. That could infer the diagnostic biomark-
ers that are potentially influenced by both positive and negative environmental factors.

Metabolomics entails the comprehensive profiling of metabolites in biofluids, cells, and
tissues, which potentially enables biomarker discovery and can provide new insights into
the mechanisms that determine various physiological conditions [26]. Nuclear magnetic
resonance (NMR) offers an exquisitely informative way to obtain a holistic quantitative
picture of small molecules [27]. This approach has been employed in the field of entomology,
analyzing fruit flies [28], locusts [29], parasitoid wasps [30], aphids [31], and recently in
honey bees [32].

The aim of this study is to apply NMR spectroscopy-based metabolomics to identify
the metabolic fingerprints that characterize summer and winter bees of the same age in the
temperate zone of the Northern Hemisphere. The period of sample collecting, late June
and late August for summer and winter bees, respectively, ensures a consistency in the age
of bees. This allows for an unbiased comparison of the transition of the metabolites from
short-living populations to long-living populations. The results are intended to provide
additional information that links previous research regarding the lifespan of honey bees
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and to propose potential indicator metabolites necessary for successful overwintering in
honey bee colonies.

2. Materials and Methods
2.1. Sample Collection

Honey bees (Apis mellifera carnica) were collected in 2017 over two days, 27th June and
29th August, from three hives at the Honeybee Research Institute, Kyvalka, Czech Republic
(49◦11′28.7′′ N 16◦26′58.4′′ E). The honey bees were kept under typical bee management
conditions and fed sucrose solution (3:2 w/v sucrose:water) for overwintering on August
8th, 19th, and 24th; no other supplements were added to the hives. The colonies did
not show any clinical symptoms of diseases or Varroa infestation at the time of sampling.
Samples were collected as a subset of another study published earlier [33]. The first sample
collection in June represented normal brood rearing activities, whereas the second sample
collection in August showed reduced brood activities, which is a sign that the colony is
entering the winter bee stage.

To prepare the same age of honey bees, the method from [34] was applied. Three
isolated frames (39 × 24 cm) containing capped brood that will emerge in one to three
days were placed in frame cages and kept in three hives. Newly emerged bees were
collected from each hive, marked with a color on their thoraxes, then returned to their
respective hives. After 10 days of living in the hives, the marked bees were re-collected.
The re-collected honey bees were transferred to a laboratory and kept in cages at 30 ◦C for
24 h on 60% sucrose solution to remove the bias of short-term dietary influences. Thus,
the total age of the bees was 11 days. Upon collection, whole honey bees were stored at
−80 ◦C until the time of the analysis. Previously, we have demonstrated on the samples
from the same sampling that honey bees collected in August showed significantly higher
concentrations of vitellogenin and vitellogenin gene expression (p < 0.005) compared with
the honey bees collected in June [33]. The color-marked honey bees from August continued
to be found in the hive until February. Therefore, this study considers these samples as
winter bee population.

2.2. Sample Preparation for NMR Analysis

Only the body (head, thorax with legs and wings; and abdomen) was used for NMR
analysis. Venom sacks and gastrointestinal tracts of the bees were removed with tweezers
and excluded. Honey bee bodies were individually homogenized in a 2.0 mL Eppendorf
tube by freezing with liquid nitrogen and then ground to a fine powder by a Dremel
MultiTool with an attached burr (Dremel, Mount Prospect, WI, USA). The total number
of samples included in the analysis was 120. June samples were 75 (25 per hive) and
August samples were 45 (15 per hive). Homogenized bodies were extracted with 1.2 mL
of methanol in an ultrasonic bath for five minutes, centrifuged at 14,000× g for five min-
utes, and evaporated in a centrifugal vacuum concentrator for two hours (MiVac Duo,
Genevac, Ipswitch, UK). After evaporation, the sample was re-suspended in 540 µL of
D2O. Subsequently, 60 µL of NMR solution (1.5 M K2HPO4/NaH2PO4 pH 7.4 in D2O,
5 mM Trimethylsilylpropanoic acid, and 0.2% NaN3) was added and vortexed, and the
sample was transferred into NMR tubes (5 mm, 7”, High-Throughput, SP Wilmad-Labglass,
Wineland, NJ, USA).

2.3. 1H NMR Analysis

Standard 1D 1H NMR spectra (‘noesypr1d’ Bruker pulse program) of honey bee
methanol extracts reconstituted in D2O were acquired on a Bruker Avance III spectrometer
(Bruker, Billerica, MA, USA) operating at 500.23 MHz for 1H observation, at 298 K, and
using a 5 mm Broadband obseve probe. The spectra were acquired with 4.9 s acquisition
time, 1 s relaxation delay (D1), 0.1 s mixing time, 6510.42 Hz spectral width, 64 K data
points, and 64 scans.
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2.4. Data Processing and Statistical Analysis

All spectra were zero-filled to 128 K, exponentially multiplied (line broadening 0.3 Hz),
manually phased, and baseline-corrected using Topspin 3.5 (Bruker, Billerica, MA, US). For
metabolite identification and quantification, we used Chenomx NMR Suite 8.6 (Chenomx,
Edmonton, AB, Canada) comprising the Reference Library 10 and our in-house library of
approx. 80 compounds. The additional process for identifying metabolites was confirmed
through the standard compound analysis (Sigma-Aldrich, St. Louis, MO, USA) and VWR
International, Stribrna Skalice, Czech Republic). A set of 36 metabolites was fitted to the
spectra and data were manually curated. Compounds below the limit of detection were
replaced with one-third of the minimum concentration detected in the dataset. Metabolite
concentrations were expressed in µg per bee. The average weight of a bee was 157 mg, of
which 48 mg was a digestive tract that was not used for analysis.

This study used R ver.4.1.2 (RStudio, Boston, MA, USA) for the multivariate analysis.
Data were processed using probabilistic quotient normalization, log transformation, and
Pareto scaling by the package ‘MetaboAnalystR’ [35]. Orthogonal partial least squares-
discriminant analysis (OPLS-DA) with permutation test validation was applied in Metabo-
Analyst 4.0 [36]. The packages ‘FactoMineR’ [37] and ‘ggplot2′ [38] were used for the
principal component analysis and its visualization.

An independent t-test was used to compare the concentration of metabolites in summer
bees and winter bees using SPSS statistics ver. 26 (IBM, Armonk, NY, USA), and those
metabolites with p < 0.05 after Benjamini–Hochberg false discovery rate correction were
considered statistically significant. Comparative visualizations for summer and winter
bees were performed using the package ‘ggplot2’ [38] in R.

3. Results
3.1. NMR Spectrum of Honey Bee’s Body

A total of 36 metabolites were identified in the NMR spectra of the honey bee methano-
lic extracts: 13 amino acids, 4 carboxylic acids, 5 amines, 3 choline-containing compounds,
3 nucleosides, 2 nucleotides, 2 monosaccharides, 2 disaccharides, 1 nucleobase, and 1 un-
known compound.

Figure 1 shows a typical 1H NMR spectrum of honey bees’ body with the expansion
of the signal between the 6.0 and 9.0 ppm region. The region from 0.5 to 3.5 ppm contains
peaks mainly from amino acids, organic acids, and lipids. The region between 3.5 and
5.5 ppm contains resonances of mainly carbohydrates, and the region beyond 6.0 ppm
contain mainly aromatic compounds.
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Figure 1. Typical proton nuclear magnetic resonance (1H NMR) spectrum of honey bee worker body
(gut and venom sac excluded). The numbers correspond to these quantified compounds: 1. Adenosine
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monophosphate (AMP), 2. Oxidized nicotinamide adenine dinucleotide (NAD+), 3. Inosine, 4. Ade-
nine, 5. Histidine, 6. Uridine, 7. Phenylalanine, 8. Sucrose, 9. Glucose, 10. Trehalose, 11. sn-glycero-3-
phosphocholine, 12. Fructose, 13. Proline, 14. O-phosphocholine, 15. Taurine, 16. Trimethylamine
N-oxide, 17. Choline, 18. β-alanine, 19. Dimethyl sulfone, 20. Malonate, 21. Putrescine, 22. Creatine,
23. Lysine, 24. Asparagine, 25. Unknown, 26. Sarcosine, 27. Glutamine, 28. Succinate, 29. Suberate,
30. Acetate, 31. Alanine, 32. Threonine, 33. Valine, 34. Isoleucine, 35. Leucine, 36. Glycine, and
37. Methanol.

3.2. Multivariate Analysis Explaining the Discrimination between Summer (June) and Winter Bees
(Late August)

This study posed a major question: Can summer and winter bees be discriminated
by metabolites? If so, what are the key metabolites that could separate these two groups?
To answer the question, we used sample set of worker bees comprised of 75 summer bees
(June) and 45 winter bees (late August) both of equal age of 11 days.

In this study, the principal component analysis (PCA) showed the separation between
summer and winter bees, and the correlated variables that contribute to each of the principal
components (Figure 2). The first two principal components explain 54.7% of the total
variation in the data (PC1 42.6%, PC2 12.1%) and have an eigenvalue > 1 in PC1. Summer
and winter bees showed a notable separation where summer bees formed a cluster to about
half of the PC1 whereas, winter bees more tightly clustered over the PC2 than summer bees
(Figure 2a).
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Figure 2. Principal component analysis of summer and winter bees (a) Score plot. Dim1(PC1) on the
x-axis explains 42.6%, Dim2 (PC2) on the y-axis explains 12.1% of variability between the summer
bees and winter bees; (b) Variable correlation plot. The length and colors of the arrows explain how
each variable expresses the differences between the two compared groups (summer and winter).
The longer the arrow, the stronger its influences in discrimination. The red and orange colors show
a high contribution on each principal component, whereas the green and blue show a relatively
low contribution.

The significant variables which separate the summer and winter bees are presented
in the variable correlation plot (Figure 2b). The arrow represents the amount of variance
positively or negatively correlated on the principal component. The color and length
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refers the contribution of variables on the principal component in percentage [37]. Among
the top five distinguished variables on the PC1, an unknown compound had the highest
contribution at 11.6%, followed by sucrose, phenylalanine, trimethylamine N-oxide, and
leucine (10.7%, 7.2%, 6.9%, and 6.3%, respectively). Fructose, sucrose, and glucose were the
majority of variables on the PC2 which contributed 23.2%, 20.7%, and 17.9%, respectively
(Figure 2b, Table S1). Taken together, the unknown compound, sucrose, fructose, glu-
cose, phenylalanine, trimethylamine N-oxide, and leucine were the meaningful variables
which contributed to the separation between summer and winter bees. In addition, the
permutation test from the orthogonal partial least squares-discriminant analysis (OPLS-
DA) confirmed the high validity at Q2 = 0.908, R2Y = 0.946 when calculated from the
1000 different model permutations.

3.3. Univariate Analysis Confirmed Statistically Significant Metabolites

After evaluating the link between the honey bees in summer and winter with certain
metabolites by PCA (Figure 2), an independent t-test with Benjamini–Hochberg correction
was applied to demonstrate the changes in concentrations of individual metabolites be-
tween summer and winter bees. From the 36 metabolites, 28 were significantly different
between these two groups (Figure 3, Table 1).

The concentration of all the carbohydrates (fructose p = 0.0001, glucose p > 0.05, sucrose
p < 0.0001, trehalose p < 0.0001, Figure 3a) increased in winter bees compared to summer
bees. For example, trehalose in winter bees (801.8± 212.0 µg/bee, Table 1) showed 1.9 times
higher concentration than in summer bees (416.0 ± 181.1 µg/bee, Table 1).

In the amino acids group, all amino acids (Asparagine p < 0.0001, glutamine p = 0.0001,
isoleucine p < 0.0001, leucine p < 0.0001, lysine p < 0.0001, phenylalanine p < 0.0001,
threonine p < 0.0001, and valine p < 0.0001, Figure 3b) except for alanine and proline
showed a noticeable decrease in winter bees. Phenylalanine showed the largest difference,
with levels 3.4 times higher in summer bees (4.39 ± 2.53 µg/bee, Table 1) than in winter
bees (1.31 ± 0.55 µg/bee, Table 1). Alanine (p = 0.0001, Figure 3b) and proline (p < 0.0001,
Figure 3b) were significantly increased in winter bees compared to summer bees.

For the choline-containing compounds, O-phosphocholine and choline presented
opposite trends (Figure 3c). The level of O-phosphocholine showed a statistically signifi-
cant increase in winter bees (p < 0.0001, Figure 3c), while the levels of choline showed a
statistically significant decrease in winter bees (p < 0.0001, Figure 3c).

The group of nucleobases, nucleotides, and nucleosides are presented in Figure 3d.
AMP, adenosine, and NAD+ showed a statistically significant increase in winter bees
compared to summer bees (all p-value < 0.0001, Figure 3d) while adenine, inosine, and
uridine decreased (Adenine: p < 0.0001, inosine: p < 0.0001, uridine: p = 0.0499, Figure 3d).
Adenine showed the largest differences between the groups at 2.8 times higher in summer
bees (1.29 ± 0.82 µg/bee, Table 1) than in winter bees (0.46 ± 0.25 µg/bee, Table 1).

The rest of the metabolites, such as carboxylic acids and amines, are presented as a
group in Figure 3e. Trimethylamine N-oxide showed notable differences between the two
groups, where the concentration in winter bees (2.97 ± 1.54 µg/bee, Table 1) was 3.5 times
higher than in summer bees (0.86 ± 0.63 µg/bee, Table 1). Most noteworthy is that the
unknown compound, a methyl singlet at 2.83 ppm, showed the greatest change among all
metabolites (p < 0.0001, Figure 3e), which was about 13 times more concentrated in summer
bees (19.61 ± 7.62 µg/bee, Table 1) compared to winter bees (1.53 ± 0.55 µg/bee, Table 1).
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Figure 3. Comparison of 36 metabolites between summer bees and winter bees: (a) Carbohydrates;
(b) Amino acids; (c) Choline-containing compounds; (d) Nucleoside, nucleotides, and nucleobases;
(e) Others. X-axis: the groups summer (red) and winter (green), y-axis: metabolite concentration
(µg/bee), black bar: mean. The P-values were obtained from the independent t-test. Asterisk indicates
significant differences * p < 0.05, ** p < 0.005, *** p < 0.0001, ns = not significant. Benjamini–Hochberg’s
procedure (false discovery rate, FDR 0.05) is applied after the independent t-test. Details of the
independent t-test and Benjamini–Hochberg’s procedure informed in Table 1.
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Table 1. Mean (µg/bee), standard deviation (SD), independent t-test, and Benjamini–Hochberg’s
procedure (FDR 0.05).

Summber Bees
(n = 75)

Winter Bees
(n = 45)

Independent
t-Test

Benjamini–
Hochberg

Metabolite Mean SD Mean SD DF 1 p-Value p-Value

AMP 27.56 6.60 36.12 7.55 118 0.0019 <0.0001

Acetate 11.29 8.42 7.71 2.69 118 <0.0001 0.0027

Adenine 1.29 0.82 0.46 0.25 118 <0.0001 <0.0001

Adenosine 1.25 0.68 2.76 1.58 118 0.0001 <0.0001

Alanine 23.38 8.90 28.56 6.72 118 [115.6] <0.0001 0.0001

Asparagine 10.45 3.55 5.52 2.09 118 <0.0001 <0.0001

Choline 27.35 9.66 12.57 3.50 118 <0.0001 <0.0001

Creatine 2.72 0.71 3.08 0.72 118 0.0120 0.0166

Fructose 509.4 611.6 1109.1 1008.3 118 [84.2] 0.0001 0.0001

Glucose 655.8 442.2 915.0 715.6 118 [68.8] 0.1664 0.1997

Glutamine 74.25 18.29 60.93 14.42 118 0.0001 0.0002

Glycine 11.37 3.12 13.52 11.00 118 0.3608 0.4059

Histidine 7.82 1.85 7.75 1.73 118 0.8449 0.8449

Inosine 14.73 4.76 9.17 2.36 118 <0.0001 <0.0001

Isoleucine 9.82 4.41 6.06 1.77 118 [112.8] <0.0001 <0.0001

Leucine 10.35 6.02 3.54 1.31 118 <0.0001 <0.0001

Lysine 10.83 4.45 6.67 2.59 118 <0.0001 <0.0001

Malonate 6.68 0.93 6.46 0.97 118 0.2347 0.2726

NAD+ 4.54 1.78 8.66 2.48 118 [116.8] <0.0001 <0.0001

O-Phosphocholine 68.38 17.75 88.01 15.99 118 [117.8] <0.0001 <0.0001

Phenylalanine 4.39 2.53 1.31 0.55 118 <0.0001 <0.0001

Proline 99.24 29.01 123.47 29.05 118 <0.0001 <0.0001

Putrescine 7.41 2.62 7.28 1.75 118 [116.6] 0.7555 0.7771

Sarcosine 4.00 1.80 4.55 0.97 118 [117.5] 0.0008 0.0012

Suberate 5.10 2.90 4.58 2.19 118 0.5916 0.7204

Succinate 3.86 1.53 5.49 2.47 118 0.6804 <0.0001

Sucrose 284.3 301.9 1690.3 2135.0 118 <0.0001 <0.0001

Taurine 87.57 16.47 79.62 18.12 118 <0.0001 0.0167

Threonine 10.19 4.73 6.00 2.97 118 0.0125 <0.0001

Trehalose 416.0 181.1 801.8 212.0 118 [115.7] <0.0001 <0.0001

Trimethylamine
N-oxide 0.86 0.63 2.97 1.54 118 <0.0001 <0.0001

Unknown 19.61 7.62 1.53 0.55 118 <0.0001 <0.0001

Uridine 2.38 0.85 2.01 0.59 118 <0.0001 0.0499

Valine 8.83 3.60 3.61 1.52 118 0.0388 <0.0001

sn-Glycero-3-
phosphocholine 61.28 21.28 63.42 18.68 118 <0.0001 0.6454

β-Alanine 33.81 6.80 31.56 7.31 118 0.0761 0.0945
1 Correction to the degree of freedom (DF) has applied when the equal variance is not assumed and the corrected
value is shown in brackets.
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4. Discussion

This study utilized NMR metabolomics to investigate whether summer bees and
winter bees could be distinguished by specific metabolites and identified that 28 metabolites
significantly changed during the transition from summer to winter bees. Among the
28 metabolites distinguishing summer and winter bees, the unknown compound is by far
the most noticeable. As confirmed in the PCA (Figure 2, Table S1), the unknown compound,
showing a singlet peak in the spectrum at 2.83 ppm is an important indicator of the
distinction between the two groups. This metabolite has a particularly high concentration
in the body of summer bees, while the presence is negligible in winter bees (Figure 3e,
Table 1). A preliminary elucidation suggests that the signal belongs to N-methyl group of a
non-proteinogenic amino acid and appears to be a powerful biomarker of seasonality or
longevity. Structural elucidation is currently ongoing.

Concerning carbohydrates, winter bees had a significantly higher concentration of
fructose, sucrose, and trehalose than in summer bees (Figure 3a, Table 1). Carbohydrates are
a critical source of energy for bees, and are the exclusive fuel used for flight [39,40]. They
can be converted into glycogen and stored in the fat body [41]. Higher carbohydrate intake
was translated into higher glycogen levels and better diapause survival in reared bumble
bees [42]. Trehalose is the primary blood sugar in most insects and is involved in multiple
physiological roles [43]. One of which is a role as a stress protector. Studies of several
insects have shown that stress conditions, such as drought, cold stress, and diapause, lead to
trehalose accumulation in the body [44–46]. We observed increased levels of trehalose in the
winter bees’ bodies (Figure 3a), this could be attributed to osmoregulation or enhancing cold
stress tolerance in preparation for winter. Supporting this idea, an overwintering study of
the mountain pine beetle (Dendroctonus ponderosae) using 1H NMR showed that the level of
trehalose begins to increase from September until December as temperatures declined [47],
a similar pattern has been shown in European spruce bark beetles (Ips typographus) [44], as
well as in honey bees [48].

The standard deviation of sucrose, glucose, and fructose was higher than the mean
value (Table 1). This is possibly originating from the crop leak during the sample dis-
ection or individual differences in sucrose feeding before the bees were harvested for
this experiement.

We observed that most free amino acids except for alanine and proline were signifi-
cantly lower in winter compared to summer bees (Figure 3b). Although winter bees are
characterized by generally higher protein content, vitellogenin concentration, and more
antibacterial peptides than summer bees [16,21,22,33], their protein turnover is lower [49].
In contrast, the June samples were nurse bees, producing royal jelly proteins during the
active brood rearing period [50,51], requiring a high protein synthesis and demand for free
amino acids.

Proline is the predominant amino acid in the hemolymph of honey bees [52,53] and is
known as a cryoprotectant of insects, such as trehalose mentioned above [54,55]. In freeze
tolerance studies in fruit flies (Drosophila melanogaster), proline and trehalose were the most
abundant metabolites that accumulated during the cold assimilation [55–57]. We speculate
that increased levels of trehalose and proline in the winter bees act as cryoprotectants that
prevent membrane structure damages occuring during the cold winter, maintain water
levels, or serve as an energy pool.

Environmental stressors such as pathogen exposure, starvation, and temperature
fluctuation affect changes in insect metabolites. Winter bees emerge in autumn when
brood rearing slows in the hive due to a drop in available pollen resources [15,58]. Such
environmental changes could affect the metabolites in honey bees; this may be a part of their
longevity mechanism. Low protein intake is known to be linked with lifespan extension [59].
A study found that honey bees kept on a diet low in essential amino acids showed longer
lifespans through the Sir2 expression than those consuming a high essential amino acid
diet [60]. Consistent with this result, Gomez-Moracho et al. [61] reported that insects fed a
low-protein, high-carbohydrate diet showed the highest parasite prevalence but had the
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highest longevity. The decrease in amino acids in winter bees can be a contributing factor
to the longevity mechanism in the long-living winter bees. Thus, future research focused
on the metabolites correlation with the pathways that are known to regulate lifespan would
expand the knowledge of honey bees’ longevity.

Vitellogenin is one of the most robust biochemical indicators in honey bees regarding
their aging and longevity [18,20,62]. It is a phospholipoglycoprotein, a major precursor of
egg-yolk protein synthesized by the fat body in female insects [20]. Vitellogenin contains
phospholipids, mainly phosphatidylcholine and lysophosphatidylcholine [63,64]. In this
study, we found significant changes in detected levels of choline and O-Phosphocholine in
winter bees compared with summer bees (Figure 3c). Considering these two metabolites are
the intermediates of phosphatidylcholine synthesis [65], we hypothesize that the changes
in the choline-containing compounds from summer bees to winter bees could be related
with the phosphatidylcholine synthesis as a vitellogenin component.

The levels of adenosine monophosphate (AMP) and oxidized nicotinamide adenine
dinucleotide (NAD+) have significantly increased in winter bees compared to summer
bees (Figure 3d). Changes in AMP and NAD+ concentrations indicate cellular energy
status and are meaningful for the study of longevity due to their correlation with the
activation of AMP-activated protein kinase (AMPK) and sirtuins [66,67]. Sirtuins are NAD+-
dependent protein deacylases. Increased NAD+ levels can enhance activated sirtuins that
improve metabolic function and longevity [67]. AMP is one of the AMPK activators, an
important energy sensor that is activated by increasing cellular AMP coupled with falling
ATP [66]. Overexpression of AMPK has been shown to extend lifespan in Caenorhabditis
elegans [68] and Drosophila melanogaster [69]. Previous honey bee studies have shown a
lower concentration of NAD+ and decreased activity of AMPK and sirtuin in the abdomen
of older bees compared to that of younger bees [70,71]. Therefore, we hypothesize that the
significant increase in AMP and NAD+ in winter bees is one of the signals of switching
to the long-living generation. Thus, further research is needed on this subject to more
accruately link AMP and NAD+ with the regulation of longevity pathways.

For successful overwintering practices, we consider it is important to examine the
metabolic changes from short-living summer bees to long-living winter bees. The molecular
mechanisms and the detailed metabolic pathways regarding the changes in metabolites
was not discerned during this experiment and require further research. The highlight of
this study is that summer and winter bees have distinctive metabolic characteristics, and
some metabolites could be useful biomarkers to distinguish these two groups.

5. Conclusions

This study observed and analyzed the metabolic differences between summer and win-
ter bees of the same age. We identified and quantified a total of 36 metabolites, 28 metabo-
lites which showed significant differences between the two groups.

Our results have the potential to provide a new analytical approach to confirm the
presence of a long-living population in honey bee colonies. Furthermore, knowing robust
biomarkers between summer and winter bees will guide future research on honey bee
longevity and overwintering, and help to develop a practical overwintering strategy for
the apiculture industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13020193/s1, Table S1: Contributions of the variables to
the principal components in percentage (%).

https://www.mdpi.com/article/10.3390/insects13020193/s1
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