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Abstract 

Advances in design of materials for solid oxide fuel cells, oxygen and hydrogen separation membranes, and catalysts for 

biofuel conversion into syngas and hydrogen are reviewed. Application of new efficient techniques of material synthesis 

and characterization of their atomic-scale structure, transport properties, and reactivity allowed to develop new types of 

efficient cathodes and anodes for solid oxide fuel cells, asymmetric supported oxygen, and hydrogen separation membranes 

with high permeability and structured catalysts with nanocompositeactive components demonstrating high performance and 

stability to coking in steam/autothermal reforming of biofuels.  
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Introduction  

Production of syngas and pure hydrogen is a key problem in the field of modern hydrogen energy. Design of efficient, 

inexpensive, and stable to coking catalysts for conversion of biogas and biofuels into syngas and hydrogen, as well as 

catalytic membrane reactors, is an urgent challenge in the sustainable and renewable energy field [1]. Another related 

problem is the design of solid oxide fuels cells (SOFCs) that could efficiently generate energy at decreased temperatures 

from hydrogen, syngas, and biofuels. Hence, mixed ionic-electronic conducting materials for SOFC electrodes and 

oxygen/hydrogen separation membranes with improved functional properties are to be designed as well. 

In this review, recent advances in developing intermediate temperature SOFCs, oxygen and hydrogen separation 

membranes, and catalysts for the conversion of biofuels into syngas and hydrogen are reviewed. This includes analysis of 

methods for synthesis of mixed ionic-electronic conducting materials with required enhanced properties, atomic-scale 

factors controlling their performance and stability, as well as the progress in working characteristics of these devices. 

 

Efficient methods for synthesis of materials 

The solid-state reaction and solution combustion synthesis [1-8] are among the most widely used techniques. Intermediate 

mechanical activation for solid-state reaction helps to obtain highly active precursors allowing the use of short-time 

calcination [1-3]. A lot of oxide materials were obtained using solution combustion synthesis with different kinds of fuels 

and chelating agents [4-8]. Pechini technique allows obtaining dispersed powders with uniformity of the element 

distribution owing to a high level of mixing in a polymerized matrix [9]. Ultrasonic dispersion based on a cavitation effect 

allows producing fine powders with a low aggregation [1,10].  

For dense ceramics, hot pressing [11,12], microwave, and radiation thermal sintering allow decreasing sintering 

temperatures and processing duration [13-16]. 

Nanosized catalysts can be obtained using coprecipitation, seeded growth, auto-redox, electrospinning, template methods, 

one-pot method, wetness impregnation, synthesis in supercritical media, electrophoretic synthesis, and so on. [17-24]. 

Chemically assisted electrodeposition was developed for highly active electrodes [25] (Figure 1). Hydrothermal [23,26,27] 

and spray drying [10,28,29] techniques are used as well. During the in situ exsolution, metal cations incorporated into the 

oxide form active metallic nanoparticles on its surface (Figure 2) in reducing atmospheres [30-32]. 

 

Novel materials for proton-conducting ceramic fuel cells 

It was suggested to use oxides with multicomponent doping (high entropy oxides) for achieving high protonic conductivity. 

The first protonic conductivity studies of BaZr0.2Sn0.2Ti0.2Hf0.2Ce0.2O3-δ, BaZr0.2Sn0.2Ti0.2Hf0.2Y0.2O3-δ, 

BaZr1/7Sn1/7Ti1/7Hf1/7Ce1/7Nb1/7Y1/7O3-δ, and BaZr0.15Sn0.15Ti0.15Hf0.15Ce0.15Nb0.15Y0.10O3-δ were accomplished [33]. The 

maximal protonic conductivity was achieved for BaZr0.2Hf0.2Sn0.2Ti0.2In0.2O3 (1.5×10-4 S/cm at 600 °C). Total conductivity 

of dense triple-doped solid solutions of barium cerate and zirconate BaCe0.5Zr0.2Y0.1Yb0.1Gd0.1O3-δ ceramics achieved 1×10-2 

S/cm at 600 °C in wet air [34].  
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Figure 1. Preparation of nanofibrous composite cathode. Hybrid route including CAED for the preparation of a 

nanofibrous LaNi0.6Fe0.4O3–Ce0.9Gd0.1O1.95 (n-LNF-GDC) composite electrode (on the left) and evolution of the electrode 

microstructure during the process (on the right): (a) a carbon nanotube (CNT)-modified GDC scaffold; (b) a magnified 

image of the CNTs; (c) Ni–Fe-coated scaffold; (d) a magnified image of Ni–Fe coating; (e) a nanofibrous n-LNF−GDC 

cathode calcined at 900 °C; and (f) magnified image of the n-LNF−GDC cathode [19]. CAED, chemically assisted 

electrodeposition. 

 

 

Figure 2. Demonstration of nickel exolution effect [30].  

 

 

High entropy BIMEVOXes are based on the parent Bi4V2O11 with vanadium partially replaced by several metals [35]. Ionic 

conductivity of high entropy BIMEVOX is comparable to those for single-doped BIMEVOXes, they have an increased 

stability and the highest ionic transference numbers. 

For calcium-doped layered perovskites BaNd1-xCaxInO4-x/2, total conductivity was 1-2 orders of magnitude higher than that 

for BaNdInO4 [36]. 
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Isotope exchange of oxygen 

18О2 is commonly used for studying the oxygen mobility. However, oxygen substitution is often limited by oxygen 

dissociation on the surface, hence, lowering sensitivity to diffusion. A high surface exchange rate with С18О2 allows a 

comprehensive elucidation of the diffusion features. For С18О2 exchange with PrNi0.5Co0.5O3, the response curve has two 

extrema (Figure 3) making evidence of at least two forms of oxygen in the bulk, whereas the fastest oxygen form is not 

discovered during the experiment with 18О2. Such nonuniformity was found for most oxides, and composites and models 

were suggested to describe it [37-40]. 

 

 

Figure 3. Temperature-programmed exchange with 18O2 and C18O2 on PrNi0.5Co0.5O3-δ in the flow reactor. Points — 

experiment, lines — calculation [37,38].  

 

Symmetrical solid oxide fuel cells 

Promising direction in SOFC technology is the development of symmetrical cells (SSOFCs) with two identical electrodes. 

The use of the same material for oxygen and fuel electrodes improves chemical and thermal compatibility of the cell 

components and contributes to simplification and cost-effectiveness of the fabrication process [41-44]. 

Sr2Fe1.5Mo0.5O6-δ (SFM) was proposed as a prospective symmetrical electrode material. The SFM was studied in oxidizing 

atmospheres to clarify kinetics of oxygen reduction and hydrogen oxidation in the anode conditions, as well as during redox 

cycling in an SSOFC [45-49]. Electrochemical activity of Sr1.95Fe1.4Ni0.1Mo0.5O6-δ electrodes was higher than that of SFM in 

both oxidizing and reducing atmospheres, which can be explained by exsolution of nickel particles having high 

electrocatalytic activity [50,51]. 

The Pr2NiO4+δ catalyst effectively increases the rates of oxygen reduction and hydrogen oxidation. The rate of oxygen 

reduction after its introduction into the cathode increases owing to increase in the rate of oxygen exchange, whereas the 

enhanced rate of hydrogen oxidation is provided by the increased rate of its adsorbed molecule dissociation (Figure 4) [49].  

https://doi.org/10.1016/j.cogsc.2021.100558


Current Opinion in Green and Sustainable Chemistry, 2022, Vol.33, art.100558. https://doi.org/10.1016/j.cogsc.2021.100558 

5 

 

 

Figure 4. The pathways for oxygen reduction and hydrogen oxidation reactions before and after impregnation with the PNO 

catalyst [49]. PNO, Pr2NiO4+δ. 

 

The application of this design to proton ceramic cells is only at the beginning of its development. New Nd1-xBaxFe0.9M0.1O3-δ 

materials (M = Cu, Ni; x = 0.4, 0.6) were investigated [52]. The reported results are among the first concerning the effective 

electrode operation in SSOFC’s with proton-conducting electrolytes. 

 

Reversible solid oxide cells 

Reversible solid oxide cells are promising electrochemical devices which can function effectively both in the fuel cell and 

electrolysis mode [53,54]. The reversible solid oxide cells based on proton ceramic (rPCC) with a BaCe0.5Zr0.3Y0.1Yb0.1O3-δ 

membrane generated a maximal power density and a hydrogen evolution rate. This complex approach allowed the main 

factors influencing the rPCC performance to be disclosed, and some approaches were proposed for future rPCCs’ 

optimization. Because the ohmic resistance exceeds 50% of the total rPCCs’ resistance in all studied modes, achievement of 

the next generation of cells operating below 600 °C with high performance and efficiency can be implemented through 

decreasing the electrolyte thickness to the 1-5 µm range [55-59].  

 

Solid oxide fuel cell anodes 

Metallic nickel in Ni-YSZ anodes serves as a catalyst for fuel oxidation and provides a path for electronic conduction. It is 

not suitable for hydrocarbon-fueled SOFCs because Ni catalyzes hydrocarbons cracking resulting in coking and also suffers 

from poisoning by sulfur and other contaminants. Significant efforts have been dedicated to the development of vanadium- 

and molybdenum-based components. Increasing Mo fraction in Ni-Mo catalysts significantly improves resistance to coking 

although reduces catalytic activity [60]. The Ni(11 wt.%)-Mo(3 wt.%)-YSZ reforming layer at the Ni-YSZ anode ensured a 

stable performance of the isooctane-fueled cell, whereas a similar cell without a reforming layer failed after 12 h [61]. The 

addition of molybdenum to the Ni-Ce0.5Zr0.5O2 anode improved the electrical conductivity, nearly doubled power density, 

and ensured a stable operation [62]. The long-term (1737 h) stable performance of a cell with the Ni-Mo-CeO2 anode fueled 

by H2S and siloxane-contaminated biogas was demonstrated [63].  

https://doi.org/10.1016/j.cogsc.2021.100558


Current Opinion in Green and Sustainable Chemistry, 2022, Vol.33, art.100558. https://doi.org/10.1016/j.cogsc.2021.100558 

6 

Perovskite-type AVO3 and AMoO3 (A = Ca, Sr) oxides attracted attention as prospective ceramic components owing to 

their high electronic conductivity under reducing conditions. Increasing molybdenum content in the B-sublattice of CaV1-

xMoxO3-δ increases electrical conductivity and reduces thermal expansion [64]. Materials were stable in the pO2 range 

corresponding to operation conditions but undergo oxidative decomposition at higher pO2. A partial substitution by 

transition metal with a more stable oxidation state can extend the stability domain. A compromise between a high electrical 

conductivity of SrVO3 and thermodynamic stability of SrTiO3 was demonstrated for SrV1-yTiyO3-δ [65]. Note the difference 

in the thermodynamic stability of V- and Mo-based perovskites under highly reducing conditions. Easier reducible 

molybdenum tends to exsolve at temperatures ≥1000 °C [64,66], whereas vanadium cations remain in a mixed 3+/4+ 

oxidation state even at 1500 °C [64].  

SrMo0.5Ti0.5O3-δ exhibits higher conductivity than that of the V-based counterpart [67]. This material showed good 

compatibility with electrolytes, good coking resistance, and sulfur tolerance [67]. The electrochemical activity of 

SrMo0.5Ti0.5O3-δ can be improved by providing a minor cation deficiency in the B-sublattice [68]. The power density of cells 

with Sr(Mo,Ti)O3-δ anodes fueled by H2S-contaminated syngas can be increased ~2 times by the surface modification with 

Pd [67,68]. 

Oxidized SrV0.5Mo0.5O4 can be easily reduced to highly conductive SrV0.5Mo0.5O3-δ [69]. The reduction of the nickel-doped 

SrV0.5Mo0.5Ni0.1O4-δ precursor leads to exsolution of nickel covering the surface of perovskite: this results in the increase in 

electrical conductivity; a decrease in the electrode polarization resistance; a good electrocatalytic activity in H2S-

contaminated and hydrocarbon fuels; as well as a stable performance [69].  

 

Asymmetric supported oxygen and hydrogen separation membranes 

Conventional oxygen and hydrogen separation membranes consist of perovskites and noble metals or their alloys, 

respectively, lacking stability [1,38]. Using nanocomposites can help to avoid such drawbacks. Membranes based on 

PrNi0.5Co0.5O3 - Ce0.9Y0.1O2, La0.3Bi0.7MnO3+δ – Bi1.5Y0.3Sm0.2O2, and La5.5WO11.25-δ - NiCu - demonstrated high 

oxygen/hydrogen permeation fluxes and stable performance in catalytic reactions [1,38,70,71]. 

 

Structured catalysts with nanocomposite-active components for biogas and biofuel conversion into syngas and 

hydrogen 

The main problem for catalysts for biofuel reforming, especially for the methane dry reforming, is coking leading to 

deactivation, especially for those composed of inexpensive Ni on different supports [72-75]. The most efficient approaches 

to deal with this problem are based on the next concepts of design:  

1. Suppress acidity of supports responsible for catalysis of reactions leading to coking. 

2. Use oxide supports with a high oxygen mobility and reactivity containing transition and/or rare-earth cations reduced in 

the reaction conditions and able to activate carbon dioxide on the oxygen vacancies generating reactive oxygen species 

rapidly migrating to the metal-oxide interface and interacting with the activated fragments of fuels converting them into 

syngas. 
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3. Provide a strong metal-support interaction, which prevents metal sintering in the reaction conditions and ensures 

developed metal-support interface. 

4. Use bimetallic catalysts, the best Ru-Ni alloy nanoparticles to prevent carbon nucleation. 

5. Use supports with a core-shell structure (mesoporous MgAl2O4 with supported layers of perovskite, fluorite, or spinel 

oxides with high oxygen mobility and reactivity) to increase surface area, porosity, and thermal stability of catalysts. 

6. Use heat-conducting substrates to support active components, thus providing efficient heat and mass transfer in the 

reactors. 

Doping of alumina with Mg indeed effectively suppresses acidity (increases proton affinity) as demonstrated by the analysis 

of the shift of hydroxyls infra-red (IR) bands owing to CO adsorption [76]. This results in a higher stability of Ni-containing 

catalysts on these supports in the reactions of methane [72-77], ethanol [76], and other biofuels (glycerol, ethylacetate, and 

so on) [76,78] reforming owing to coking suppression.  

For Ni catalysts on oxide supports with perovskite, fluorite, and spinel structures containing cations able to change their 

charge state in the reaction conditions (Mn, Cr, Fe, Pr, Ce, and so on), coking was suppressed owing to their high oxygen 

mobility and reactivity [75,76,79-83]. For such catalysts, the independent activation of reagents was reliably demonstrated 

by pulse experiments (including temporal analysis of products (TAP) pulse responses and pulse microcalorimetry) and 

SSITKA, steady state isotope transient kinetic analysis [75,80,84]. Estimation of oxygen self-diffusion coefficients for these 

catalysts demonstrated their high values providing a fast oxygen transport to the metal-support interface [75,80]. At the 

same time, for Ni/La2Zr2O7 catalyst without cations of variable charges in the support, SSITKA revealed that oxygen of the 

support is not involved in the methane dry reforming [85]. 

The most reliable method to characterize the metal/support interaction is Fourier-transformed infrared spectroscopy of the 

adsorbed CO [75,76,80]. Small sizes of metal particles owing to strong interaction with a support, their decoration by oxidic 

fragments, as well as the presence on the surface of metal alloy nanoparticles, atoms of each type mainly surrounded by 

atoms of another type results in domination in Fourier-transformed infrared spectroscopy spectra of adsorbed CO bands 

corresponding to terminal carbonyls (νCO 2000-2100 cm-1), whereas bands corresponding to CO adsorbed on neighboring 

atoms of the same type (bridging carbonyls, νCO < 2000 cm-1) disappear. Domination of terminal carbonyls and a high 

intensity of their bands correlates with a high catalytic activity and coking stability of catalysts with Ni-Ru nanoparticles 

loaded on bulk fluorite, spinel and perovskite oxides [75,80], or Mg-doped alumina covered with their layers [76]. This is 

explained by prevention of carbon fragment nucleation on isolated Ni atoms and by suppression of carbon diffusion into the 

bulk of metal alloy particles, thus avoiding carbon nanotube nucleation at the metal-support interface [72,77]. 

Because catalysts based on bulk oxides with spinel, fluorite, and perovskite structure possessing a high oxygen mobility and 

reactivity have in general much lower specific surface area as compared with traditional supports (γ-Al2O3 and so on), a lot 

of work was devoted to design of core-shell structures by supporting reactive oxide layers on high surface area supports 

[75,76,78,84,86]. The most efficient combination was found to be mesoporous MgAl2O4 with supported layers of 

Ce0.35Zr0.35Pr0.3O2 fluorite promoted by Ru + Ni nanoparticles owing to optimized interaction between components, only 

moderately decreasing the reactive surface oxygen content and increasing its bonding strength [76,84].  
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Use of the ethylendiaminetetraacetic acid, EDTA-chelating agent in Ni supporting by impregnation on a ceria-loaded 

MgAl2O4 improved catalysts activity and stability in ethanol steam reforming owing to stronger metal-support interaction 

[78]. However, application of acetylacetone to load Ru + Ni on the mesoporous MgAl2O4 support precovered by 

Ce0.35Zr0.35Pr0.3O2 or to load PrNi0.9Ru0.1O3 on a pure MgAl2O4 support resulted in excessively strong incorporation of Ni 

and Ru into support, hence, decreasing catalytic activity [76]. Hence, preparation procedures are to be optimized with a due 

regard for interaction of active components with the support at the impregnation step. Thus, for 50 wt.% 

Pr0.15Sm0.15Ce0.35Zr0.35O2 + 50 wt.% LaMn0.45Ni0.45Ru0.1O3, nanocomposite formation of the perovskite phase from a 

polyester matrix with dispersed fluorite oxide provides the nanocomposite with a high specific surface area, developed 

interphases, and a high activity in EtOH (ethanol) reforming. In a one-pot synthesis method from a polyester containing all 

cations, the perovskite phase was not formed owing to La incorporation into the fluorite matrix, hence, a lower activity was 

demonstrated [81].  

For any practical application, catalysts for conversion of biofuels into syngas are to be supported as thin layers on 

monolithic substrates, which allows minimization or even elimination of any heat and mass transfer limitations typical for 

granulated catalysts [75,76,87]. Supporting thin layers of active components based on a mesoporous MgAl2O4 support 

loaded with Ru + Ni/Ce0.35Zr0.35Pr0.3O2 on a FeСr alloy honeycomb substrate allowed to provide a stable performance and 

high yields of syngas in dry reforming of natural gas, steam reforming of ethanol, and oxy-steam reforming of ethylacetate 

at contact times several times lower than for catalysts on the same substrate loaded with catalysts based on bulk-doped Ce-

Zr-O fluorite or traditional alumina supports [75,76].  

 

Conclusions and outlook 

New methods of materials synthesis for SOFC, permselective membranes, and catalysts for biofuel conversion apparently 

open the ways to improve their functional properties and achieve required characteristics of devices constructed on their 

bases. Though additional research is clearly required, especially in the case of SOFCs with proton-conducting electrolytes, 

the progress made in the last two years is apparent. From the fundamental point of view, the most important are results 

related to design of mixed ionic-electronic conductors via multiple doping or preparation of nanocomposites with a core-

shell structure. Among the characterization methods, a great progress was achieved in the oxygen isotope exchange methods 

for estimation of oxygen self-diffusion coefficients and SSITKA to elucidate kinetic features of catalytic reactions.  
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