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Abstract: It is well known that network-based parallel data processing algorithms are well suited
to implementation in reconfigurable hardware recurring to either Field-Programmable Gate Arrays
(FPGA) or Programmable Systems-on-Chip (PSoC). The intrinsic parallelism of these devices makes it
possible to execute several data-independent network operations in parallel. However, the approaches
to designing the respective systems vary significantly with the experience and background of the
engineer in charge. In this paper, we analyze and compare the pros and cons of using an embedded
processor, high-level synthesis methods, and register-transfer low-level design in terms of design
effort, performance, and power consumption for implementing a parallel algorithm to find the two
smallest values in a dataset. This problem is easy to formulate, has a number of practical applications
(for instance, in low-density parity check decoders), and is very well suited to parallel implementation
based on comparator networks.

Keywords: data processing; parallel algorithm; hardware accelerator; high-level synthesis; embedded
processor; two smallest values in a dataset

1. Introduction

Many data processing algorithms recur to parallel networks, in which several data
items are handled concurrently by independent processing units organized in a network
level. The input data are fed to the first network level, processed there in parallel, and then
propagate through the remaining network levels until the result(s) can be read from the last
level output(s). The number of network levels is known as the network’s depth, which is
directly related to the network’s latency. The processing units employed in such networks
are usually simple combinational blocks like comparators and half-adders. Therefore,
the higher the latency, the lower the network performance (throughput). This is one of
the reasons why designers try to increase the throughput by inserting pipeline registers
between the network’s levels so that different sets of data can be processed in the network
at the same time.

Some examples of parallel data processing networks are sorting networks [1], search-
ing networks [1], and counting networks [2]. It has been shown by various studies that
parallel data networks are well suited for implementation in reconfigurable hardware,
such as Field-Programmable Gate Arrays (FPGA) and Programmable Systems-on-Chip
(PSoC) [3–14]. This is because many processing elements can easily be instantiated, synthe-
sized, and implemented according to the required network structure, and modern FPGAs
contain plenty of distributed storage elements that can be used for effective pipelining.
The principal characteristics, benefits, and limitations of the different approaches to im-
plementing network-based hardware accelerators in FPGA and PSoC are reviewed in [15].
As indicated in [15], the majority of the analyzed implementations recur to low-level
hardware designs (usually in VHDL/Verilog or in a specially developed language whose
specifications are later translated to standard HDL (Hardware Description Language) RTL
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(Register-Transfer Level) descriptions). None of the respective authors realized any study or
comparison of using different specification methods (ranging from high-level descriptions
to low-level code) when implementing a particular data processing network.

In this work, we study one data network type dealing with the problem of finding
the two smallest values in a dataset. Three design specification methods, based on using
an embedded processor soft core, low-level VHDL RTL design, and High-Level Synthesis
(HLS) from C++ specification, are discussed, analyzed, and compared, and their pros
and cons are identified. We believe that the problems pinpointed and the conclusions
drawn would be beneficial for future designers, suggesting new parallel data processing
architectures in reconfigurable hardware.

The remainder of this paper is organized as follows. Section 2 discusses the considered
problem and the respective algorithms, which are suitable for parallel implementation in
hardware. Section 3 exploits the three considered specification methods to implement the
selected parallel algorithm in FPGA. Section 4 demonstrates the results of experiments and
comparisons. Finally, conclusions are given in Section 5.

2. Algorithms for Finding Two Smallest Values

Sorting data and finding a maximum/minimum value within a dataset is a very
common task in many data processing algorithms [1,16–18]. The problem of discovering
two smallest (or greatest) values looks similar to but is more complex than discovering only
the minimum (or maximum). This task, besides being very didactical and therefore actively
explored in traditional programming courses, has a number of practical applications. For
instance, low-density parity-check (LDPC) decoders may efficiently be implemented using
a min-sum scheme, whose operation can be improved by producing only the two smallest
values within a check-node function unit [13]. Likewise, a number of largest-weight feature
words must be extracted for Web page clustering, such as in [19].

The problem of finding the two smallest values can be solved by firstly sorting the
data in ascending order and then outputting the first two values. However, this is an
unnecessarily complex approach; therefore, more efficient solutions have been proposed
in the literature [1,13,14]. They are mainly based on networks of comparators [1], net-
works of comparators with memory [13], and bit searching [14]. These solutions are good
candidates for implementation in reconfigurable hardware (particularly in FPGA) since
a number of the operations that are involved may be executed in parallel, increasing the
throughput and reducing the latency of the respective circuits. Graphics processing units
are also good platforms that offer valuable support for parallel algorithms [20] but use
significantly more power than FPGA. Besides the GPUs’ control overhead due to the Single
Instruction, Multiple Threads (SIMT) execution model cannot compete with FPGAs fully
custom datapaths.

Parallel comparator networks have long been used to find the smallest value (min_1st)
in a data set. Such networks are especially suitable for parallel implementations in reconfig-
urable hardware [10]. To process N = 2L values, L lines (levels) of comparators are required,
as depicted in Figure 1a for N = 8 and integer values. The comparators are represented as
pairs of two dots connected by a short vertical line using the widely known Knuth notation

(
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search for the second smallest value (min_2nd) could be continued in a similar manner, 
but by processing N-1 remaining data items (see Figure 1b). For any N ≥ 2, the number of 

) and function so that if a data item in the upper input is smaller than the data item
in the bottom input, the input values are swapped (see Figure 1c). Otherwise, the input
values pass unchanged through the comparator. This guarantees that the smallest value
will gradually move “down” the network and after L levels can be read from the bottom
line. All the comparators belonging to the same level can operate in parallel because they
do process independent data items. After finding the first smallest value, the search for the
second smallest value (min_2nd) could be continued in a similar manner, but by processing
N-1 remaining data items (see Figure 1b). For any N ≥ 2, the number of comparators C(N)
is given by Formula (1), and the number of lines (levels) of comparators L is given by
Formula (2) below:

C(N) = 2 × N − 3 (1)
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Figure 1. A network of comparators for finding the smallest data item (a). A network of comparators 
for finding two smallest data items (b). A single comparator (c). 

The number of comparators could be reduced if we keep track of the compared data 
items at each level. The respective algorithm for N = 8 (and the same data set as in Figure 
1) is depicted in Figure 2. Here, each data element requires a small memory that keeps a 
maximum of L data items. After every comparison operation, these memories need to be 
updated for the involved data items. For example, on the first level of comparators (the 
left-hand side of Figure 2), the first comparator analyzes the data items 10 and 1. Conse-
quently, the value 1 is written to item 10’s memory and the value 10 is written to item 1’s 
memory. In the second level of comparators, the value 5 is compared to the value 1. Once 
again, the value 1 is written to item 5’s memory and the value 5 is added to item 1’s 
memory. After executing all L comparator levels, the smallest data item (min_1st=1) can 
be read from the bottom line, as before. However, to find the second smallest value, 
(min_2nd=5) just L-1=2 additional comparators are required, which would only analyze 
data values recorded in the memory of min_1st (i.e., data values 10, 5, and 7 in the example 
of Figure 2). As a result, the required number of comparators is reduced to: C N = N + L − 2 (4)

For large values of N, the resources (the number of comparators) are diminished con-
siderably, but additional memory requirements and memory management make this ap-
proach not very suitable for parallel hardware implementations. For every data item, an 
independent memory block is required (either an embedded block RAM or a distributed 
memory constructed from flip-flops or look-up tables). The memory blocks have to be 

Figure 1. A network of comparators for finding the smallest data item (a). A network of comparators
for finding two smallest data items (b). A single comparator (c).

The number of comparators in each level i = 0, 1, . . . , L − 1 is given by Formula (3):

2L

2i+1 (3)

The number of comparators could be reduced if we keep track of the compared data
items at each level. The respective algorithm for N = 8 (and the same data set as in Figure 1)
is depicted in Figure 2. Here, each data element requires a small memory that keeps a
maximum of L data items. After every comparison operation, these memories need to
be updated for the involved data items. For example, on the first level of comparators
(the left-hand side of Figure 2), the first comparator analyzes the data items 10 and 1.
Consequently, the value 1 is written to item 10’s memory and the value 10 is written to
item 1’s memory. In the second level of comparators, the value 5 is compared to the value
1. Once again, the value 1 is written to item 5’s memory and the value 5 is added to item
1’s memory. After executing all L comparator levels, the smallest data item (min_1st=1)
can be read from the bottom line, as before. However, to find the second smallest value,
(min_2nd=5) just L-1=2 additional comparators are required, which would only analyze
data values recorded in the memory of min_1st (i.e., data values 10, 5, and 7 in the example
of Figure 2). As a result, the required number of comparators is reduced to:

C(N) = N + L − 2 (4)

For large values of N, the resources (the number of comparators) are diminished
considerably, but additional memory requirements and memory management make this
approach not very suitable for parallel hardware implementations. For every data item, an
independent memory block is required (either an embedded block RAM or a distributed
memory constructed from flip-flops or look-up tables). The memory blocks have to be in-
dependent to allow for parallel writing operations. In any case, the respective multiplexing
scheme tends to be quite complex.
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The bit searching approach proposed in [14] for finding the two smallest values is 
not based on comparisons between the elements of a dataset; instead, the items’ bits are 
scanned from the most significant bit to the least significant bit with the aid of filters con-
structed from FPGA look-up tables (LUTs). This scheme works very well for small data 
items (whose number of bits M ≤ 3) but is not efficiently scalable for greater values of M. 

That is why, for the implementations and experiments, the algorithm from Figure 1b 
will be used. 

3. Specification Methods 
Three different specification methods are evaluated in this work: 

• VHDL RTL specification; 
• High-level C code to be executed on an embedded soft processor; 
• High-level C++ code to be synthesized with HLS tools. 

All the implementations are targeted towards a low-cost/low-power xc7a100tcsg324-
1 FPGA of the Xilinx Artix-7 family [21], available on a Nexys-4 prototyping board [22]. 
For the design entry, synthesis, simulation, implementation, and tests, Xilinx Vivado/Vitis 
2020.2 tools were employed. 

First, C++ code that permitted high-level modeling of the architecture in Figure 1b 
was developed. Such high-level modelling is very helpful for interaction, experiments, 
and the evaluation of the results. Moreover, the verification and debug may be performed 
at earlier stages, significantly reducing the verification effort because of the high speed of 
execution (compared to register-transfer level simulations) and due to the different easy-
to-use debug tools being readily available. Therefore, the design errors are much easier to 
locate and fix at higher abstraction levels; this is especially true for determining the right 
data indices to be analyzed in different comparators of the network. 

Figure 2. Network of comparators with memory for finding the two smallest data items.

The bit searching approach proposed in [14] for finding the two smallest values is
not based on comparisons between the elements of a dataset; instead, the items’ bits are
scanned from the most significant bit to the least significant bit with the aid of filters
constructed from FPGA look-up tables (LUTs). This scheme works very well for small data
items (whose number of bits M ≤ 3) but is not efficiently scalable for greater values of M.

That is why, for the implementations and experiments, the algorithm from Figure 1b
will be used.

3. Specification Methods

Three different specification methods are evaluated in this work:

• VHDL RTL specification;
• High-level C code to be executed on an embedded soft processor;
• High-level C++ code to be synthesized with HLS tools.

All the implementations are targeted towards a low-cost/low-power xc7a100tcsg324-
1 FPGA of the Xilinx Artix-7 family [21], available on a Nexys-4 prototyping board [22].
For the design entry, synthesis, simulation, implementation, and tests, Xilinx Vivado/Vitis
2020.2 tools were employed.

First, C++ code that permitted high-level modeling of the architecture in Figure 1b was
developed. Such high-level modelling is very helpful for interaction, experiments, and the
evaluation of the results. Moreover, the verification and debug may be performed at earlier
stages, significantly reducing the verification effort because of the high speed of execution
(compared to register-transfer level simulations) and due to the different easy-to-use debug
tools being readily available. Therefore, the design errors are much easier to locate and fix
at higher abstraction levels; this is especially true for determining the right data indices to
be analyzed in different comparators of the network.

After exhaustive tests were executed in software, we advanced to the implementation
in hardware, recurring to three different specification methods detailed below.
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3.1. VHDL RTL Specification

For the most “traditional” low-level specification method, the VHDL language was
used. The main objective was to design a fully parameterizable circuit that can easily be
adapted to different values of N (number of data items), M (bit-width of a data item), and L
(N = 2L).

The hardware architecture is a combinational circuit, which generally follows the
idea from Figure 1b by implementing a network of parallel comparators. The respective
specification in VHDL is as follows (Listing 1):

Listing 1: VHDL specification of the algorithm for finding the two smallest data items.
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            N : positive := 8); -- N must be equal to L**2 
   port    (inData       : in std_logic_vector(M*N-1 downto 0); 
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            ); 
end two_min; 

architecture Behavioral of two_min is 
   signal workData : std_logic_vector(M*N-1 downto 0); 
   type LEVELS is array (0 to L) of std_logic_vector(M*N-1 downto 0); 
   signal sto_level1, sfrom_level1 : LEVELS; 
   signal sto_level2, sfrom_level2 : LEVELS; 
begin 

process(inData) –- network for finding the smallest value min_1st 
   variable to_level1, from_level1 : LEVELS; 
begin 
 to_level1(0) := inData; 
 for i in 0 to L-1 loop 
   from_level1(i) := to_level1(i); 
   for j in 0 to ((2**L)/(2**(i+1)) - 1) loop 
     if (to_level1(i)( ((2**i+j*2**(i+1))*M)-1 downto (2**i-1+j*2**(i+1))*M) < 
  to_level1(i)(((2**i+j*2**(i+1)+2**i)*M)-1 downto ((2**i-1+j*2**(i+1)+2**i)*M))) 
     then 
from_level1(i)(((2**i+j*2**(i+1)+2**i)*M)-1 downto ((2**i-1+j*2**(i+1)+2**i)*M) ) :=   
to_level1(i)( ((2**i+j*2**(i+1))*M)-1 downto (2**i-1+j*2**(i+1))*M ); 
from_level1(i)(((2**i+j*2**(i+1))*M)-1 downto (2**i-1+j*2**(i+1))*M ) :=  
to_level1(i)( ((2**i+j*2**(i+1)+2**i)*M)-1 downto ((2**i-1+j*2**(i+1)+2**i)*M) ); 
     else 
from_level1(i)( ((2**i+j*2**(i+1)+2**i)*M)-1 downto ((2**i-1+j*2**(i+1)+2**i)*M)) :=  
to_level1(i)( ((2**i+j*2**(i+1)+2**i)*M)-1 downto ((2**i-1+j*2**(i+1)+2**i)*M) ); 
from_level1(i)( ((2**i+j*2**(i+1))*M)-1 downto (2**i-1+j*2**(i+1))*M ) :=   
to_level1(i)( ((2**i+j*2**(i+1))*M)-1 downto (2**i-1+j*2**(i+1))*M );             
     end if; 
   end loop; 
   to_level1(i+1) := from_level1(i); 
 end loop; 
 min_1st <= from_level1(L-1)(N*M-1 downto (N-1)*M); 
 sfrom_level1 <= from_level1; 
 sto_level1 <= to_level1; 
end process; 

-- A similar code specifying the network for finding the second smallest value which  
-- gets source data from sfrom_level1(L-1) and produces the result min_2nd 

end Behavioral; 
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In the VHDL code above, the for . . . loop VHDL construction permits the required
number of levels of comparators to be generated based on the parameter L. The parameter
M configures the required comparators’ width. The data to be processed must be supplied
to the circuit as a long vector of all the concatenated data items (this vector has N × M bits).
The results are generated on two outputs: min_1st and min_2nd. An analysis of the
elaborated design confirms that the circuit corresponding to Figure 1b is constructed.

The proposed specification has been validated with the aid of VHDL testbench in the
integrated Vivado simulator, and the conducted tests confirmed that the code is correct and
can be used for synthesis and further integration with higher-level circuits to provide test
input data and visualize the results.

3.2. Software Running on an Embedded Soft Processor

The second specification method that was analyzed consists of directly running the
high-level C code (derived from the C++ code given in Listing 2) on an embedded soft core
processor. For this purpose, a hardware platform, based on the MicroBlaze processor [23],
has been developed using Vivado IP (Intellectual Property) Integrator tool. One instance
of MicroBlaze core was created and configured to run baremetal code (no operating sys-
tem) in 32-bit mode. The processor was optimized for performance with the instruction
and data caches disabled and the debug module and the peripheral AXI data interface
enabled. Two interfaces for memory accesses were used: local memory bus and AXI4 for
peripheral access.

Listing 2: High-level modelling in C++ of the algorithm for finding the two smallest data items.

J. Low Power Electron. Appl. 2022, 12, 38 6 of 16 
 

In the VHDL code above, the for…loop VHDL construction permits the required 
number of levels of comparators to be generated based on the parameter L. The parameter 
M configures the required comparators’ width. The data to be processed must be supplied 
to the circuit as a long vector of all the concatenated data items (this vector has N × M 
bits). The results are generated on two outputs: min_1st and min_2nd. An analysis of the 
elaborated design confirms that the circuit corresponding to Figure 1b is constructed. 

The proposed specification has been validated with the aid of VHDL testbench in the 
integrated Vivado simulator, and the conducted tests confirmed that the code is correct 
and can be used for synthesis and further integration with higher-level circuits to provide 
test input data and visualize the results. 

3.2. Software Running on an Embedded Soft Processor 
The second specification method that was analyzed consists of directly running the 

high-level C code (derived from the C++ code given in Listing 2) on an embedded soft core 
processor. For this purpose, a hardware platform, based on the MicroBlaze processor [23], 
has been developed using Vivado IP (Intellectual Property) Integrator tool. One instance 
of MicroBlaze core was created and configured to run baremetal code (no operating sys-
tem) in 32-bit mode. The processor was optimized for performance with the instruction 
and data caches disabled and the debug module and the peripheral AXI data interface 
enabled. Two interfaces for memory accesses were used: local memory bus and AXI4 for 
peripheral access. 

Listing 2: High-level modelling in C++ of the algorithm for finding the two smallest data items. 

void swap(int& a, int& b)   // modelling a comparator 

{   int aux = a; 

    if (a < b)   {   a = b; b = aux;  } 

} 

void ProcessData(vector<int>& data, int N) 

{   int L = ceil(log2(N)); // number of levels = network’s depth 

    for(int i = 0; i < L; i++) 

       for (int j = 0; j <= (pow(2,L))/(pow(2,(i+1))) - 1; j++) 

            swap(data[pow(2, i) - 1 + j * pow(2, i + 1)], 

                 data[pow(2, i) - 1 + j * pow(2, i + 1) + pow(2, i)]); 

} 

int main()  { 

    vector<int> data; // … filling data vector with input values  

    ProcessData(data, data.size()); // determining min_1st  

    cout << “Smallest value: “ << data[data.size()-1] << endl; 

    data[data.size()-1] = data[data.size()-2]; // “delete” the smallest item 

    ProcessData(data, data.size()); // determining min_2nd 

    cout << “Second smallest value: “ << data[data.size()-1]; 

    return 0;  } 

 

Besides the processor itself, the following IP cores were added to the hardware plat-
form: 

Besides the processor itself, the following IP cores were added to the hardware platform:

• Local memory connected to the MicroBlaze through the local memory bus core;
• Debug module interfacing with the JTAG port of the FPGA to provide support for

software debugging tools;
• UARTLite module implementing AXI4-Lite slave interface for interacting with the

FPGA through UART from the host PC, which is used to interact with the MicroBlaze
through a serial port terminal;

• Programmable AXI timer used for measuring the execution times;
• Fixed-interval timer responsible for synchronizing external displays;
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• Several general-purpose input/output modules providing an interface to the board’s
peripheral devices such as push buttons, switches, LEDs, and 7-segment displays,
used for tests and experiments;

• AXI interrupt controller that together with the concat module supports interrupts
from the AXI timer, the UARTLite module, and the board’s input peripheral devices;

• Clock and reset modules to generate the clock signal for the design and provide
customized resets for the system’s blocks;

• AXI interconnect with one slave and seven master interfaces. The interconnect core
connects AXI memory-mapped master devices to several memory-mapped slave
devices. The single slave port of the interconnect is connected to the MicroBlaze. The
seven master ports are linked with the interrupt controller, UARTLite module, AXI
timer, and four types of peripheral devices.

The final block diagram is illustrated in Figure 3.
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After the synthesis, implementation, and bitstream generation steps, the hardware
platform was exported to Vitis, where C code was developed executing the following steps:

• Randomly generate input test data according to the given parameter N;
• Reset and start the programmable AXI timer;
• Execute the ProcessData function whose code is almost identical to the one given

Listing 2 (the only difference is that instead of obtaining a vector of integer values, the
function receives an array of integers (a pointer to the first array’s element)).

• Stop the AXI timer and calculate the processing time;
• Print all the results on a serial port terminal interacting with the MicroBlaze though

the UART-lite module.

The developed C code, which can be easily adapted to experiments with other prob-
lems, is given below in Listing 3:



J. Low Power Electron. Appl. 2022, 12, 38 8 of 16

Listing 3: C code of the algorithm to be executed on MicroBlaze.
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void RestartPerformanceTimer() 

{ XTmrCtr_Disable(XPAR_TMRCTR_0_BASEADDR, 0); 

 XTmrCtr_SetLoadReg(XPAR_TMRCTR_0_BASEADDR, 0, 0x00000001); 

 XTmrCtr_LoadTimerCounterReg(XPAR_TMRCTR_0_BASEADDR, 0); 

 XTmrCtr_SetControlStatusReg(XPAR_TMRCTR_0_BASEADDR, 0, 0x00000000); 

 XTmrCtr_Enable(XPAR_TMRCTR_0_BASEADDR, 0); 

} 

unsigned int StopAndGetPerformanceTimer() 

{ XTmrCtr_Disable(XPAR_TMRCTR_0_BASEADDR, 0); 

return XTmrCtr_GetTimerCounterReg(XPAR_TMRCTR_0_BASEADDR, 0); 

} 

void swap(int* a, int* b)   // modelling a comparator 

{   int aux = *a; 

   if (*a < *b) 

   {   *a = *b; *b = aux; } 

} 

void ProcessData(int* data, int N) 

{   int L = ceil(log2(N)); // number of levels 

   for(int i = 0; i < L; i++) 

      for (int j = 0; j <= (pow(2,L))/(pow(2,(i+1))) - 1; j++) 

           swap(&data[(int)(pow(2, i) - 1 + j * pow(2, i + 1))], 

                &data[(int)(pow(2, i) - 1 + j * pow(2, i + 1) + pow(2, i))]); 

}  

int main() 

{   init_platform(); 

   // … GPIO tri-state configuration 

   unsigned int timeElapsed; 

   const unsigned int N = 256;  

   int data[N];        // … filling memory with pseudo-random data 

   RestartPerformanceTimer();  // reset and enable the AXI timer 

   ProcessData(data, N);  // find the smallest value min_1st 

   xil_printf("Smallest value: %04x\n", data[N-1]); 

   data[N-1] = data[N-2];       // "delete" the smallest item 

   ProcessData(data, N);  // find the second smallest value min_2nd 

   xil_printf("Second smallest value: %04x\n", data[N-1]); 

   timeElapsed = StopAndGetPerformanceTimer();// stop the AXI timer 

   xil_printf("\n\rSoftware only two_min time: %d microseconds",  

timeElapsed / (XPAR_CPU_M_AXI_DP_FREQ_HZ / 1000000)); 

   cleanup_platform(); 

   return 0; 

} 

3.3. High-Level Synthesis

Finally, high-level synthesis technology has been explored based on Vitis HLS tools [24].
This approach is particularly interesting because of the relatively small effort required from
the designer to produce the hardware circuit. That is, given the C++ code that was used for
the high-level algorithm validation, it must be slightly adapted and the remaining steps
that are required to run the code in programmable logic are automated by the Vitis HLS tool.
Therefore, engineers with little hardware design experience might refer to this specification
method to produce reasonable designs.
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The following steps have been applied to test the algorithm with this approach:

• The algorithm C++ code given in Listing 2 was adapted to the HLS requirements. In
particular, the ap_uint<> data type was used to define the arbitrary precision integer
data type (basically, to be able to variate the M parameter between 8 and 1024 bits),
declaring the input data array as follows: ap_uint<M> work_array[N];

• The code was then compiled, simulated, and debugged.
• The algorithm was synthesized to an RTL design and an RTL co-simulation was executed.
• The RTL implementation was packaged and exported as an RTL IP to be used in either

of the design approaches explored in the previous two subsections (i.e., RTL design or
a hardware platform where the generated IP acts as MicroBlaze co-processor).

Various synthesis directives permit the designer to improve the results of synthesis by
driving the optimization engine towards the desired performance goals and RTL architec-
ture. Some examples of the synthesis directives are unrolling loops (by default the loops
are kept rolled; when unrolled all or several loop iterations might be executed in parallel,
reducing the latency at the cost of occupying more hardware resources), configuring the
type of memory used for arrays, and others. The synthesis reports provide information on
the generated circuit latency, initiation interval, throughput, and resource utilization, and
may direct the designer to the most appropriate synthesis directives to be applied.

The HLS C code of the top-level function is reproduced below in Listing 4:

Listing 4: C code of the algorithm used for HLS for finding the two smallest data items.
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{   int L = ceil(log2(N)); // number of levels 

   process_l1: for(int i = 0; i < L; i++) 

   {   int comparators = (pow(2,L))/(pow(2,(i+1))) - 1; 

        process_l2: for (int j = 0; j <= comparators; j++) 

      {   #pragma HLS unroll 

          swap(&data[(int)(pow(2, i) - 1 + j * pow(2, i + 1))], 

                &data[(int)(pow(2, i) - 1 + j * pow(2, i + 1) + pow(2, i))]); 

      } 

   } 

} 

unsigned int two_min (ap_uint<N*M> input_data) 

{   ap_uint<M> work_array[N]; 

  //… filling in the work array from input_data 

  ProcessData(work_array, N); 

  unsigned int min_1st = work_array[N-1]; 

  work_array[N-1] = work_array[N-2]; // "delete" the smallest item 

  ProcessData(work_array, N); 

  unsigned int min_2nd = work_array[N-1]; 

  //… producing the result from min_1st and min_2nd 

  return result; 

} 

4. Experiments 
All three considered design methods have been validated through simulations. Af-

terwards, the experiments were realized in the xc7a100tcsg324-1 FPGA of the Xilinx Artix-
7 family. It is very important to underline that different specifications are validated and 
compared practically as is, i.e., no profound optimization has been executed over any of 
the methods. For example, in case of a low-level RTL design, it is possible to increase the 
synthesis and implementation tools’ efforts to produce a faster circuit by raising the de-
sired running frequency in the design constraints. Instead of this, the default Nexys-4 
clock oscillator frequency (100 MHz) was applied and the reported worst slack analyzed 
to calculate the shortest supported clock period. In a similar manner, in the case of a Mi-
croBlaze processor, higher GCC compiler optimization flags could be employed. Instead 
of this, default GCC flags were used. Finally, for HLS, the only synthesis optimization 
directive that has been applied is the unrolling of the loops to guarantee that all the com-
parators belonging to the same network level operate in parallel. This is because the ob-
jective of the research is not producing the fastest circuit for finding the two smallest val-
ues, but instead comparing different specification methods according to criteria such as 
the ease of use, test, change, and maintenance, portability, and the basic resource require-
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4. Experiments

All three considered design methods have been validated through simulations. Af-
terwards, the experiments were realized in the xc7a100tcsg324-1 FPGA of the Xilinx Artix-
7 family. It is very important to underline that different specifications are validated and
compared practically as is, i.e., no profound optimization has been executed over any of
the methods. For example, in case of a low-level RTL design, it is possible to increase the
synthesis and implementation tools’ efforts to produce a faster circuit by raising the desired
running frequency in the design constraints. Instead of this, the default Nexys-4 clock
oscillator frequency (100 MHz) was applied and the reported worst slack analyzed to calcu-
late the shortest supported clock period. In a similar manner, in the case of a MicroBlaze
processor, higher GCC compiler optimization flags could be employed. Instead of this,
default GCC flags were used. Finally, for HLS, the only synthesis optimization directive
that has been applied is the unrolling of the loops to guarantee that all the comparators
belonging to the same network level operate in parallel. This is because the objective of
the research is not producing the fastest circuit for finding the two smallest values, but
instead comparing different specification methods according to criteria such as the ease of
use, test, change, and maintenance, portability, and the basic resource requirements and
performance. Once a particular design method is selected, additional optimizations must
be applied to produce the best circuit according to the target implementation criteria (such
as the minimum circuit area, maximum throughput, etc.).

In a similar manner, increasing the N and M parameters as much as possible was not
the main objective of this research and the experiments have been executed for relatively
small values of M and N. All the designs themselves are scalable to support higher M/N
but are subject to two important constraints: limited FPGA resources and a restricted I/O
bandwidth. Recurring to a larger FPGA device and pipelining the network might solve
the first problem (and this is often what the designers choose to employ). However, the
communication overheads (related to supplying the input data to the circuit) will always
limit the ideal theoretical throughput. To solve this problem, designs have been proposed
that allow the processing to be overlapped in time with data transfers [15].

The results of the experiments with circuits synthesized and implemented from RTL
specification in VHDL are summarized in Table 1. The FPGA device that was used has 63
400 LUTs, and the number of LUTs occupied by circuits with different M/N parameters
is indicated in the “LUTs” column. A simple calculation will demonstrate that the circuit
never exceeds 20% of the FPGA logical resources for N ≤ 128 and can therefore be employed
in embedded applications. The occupied resources are comparable to the sorting-based
design XS [13]. When compared to [14], the solution reported here uses fewer FPGA logic
resources. It is clear that the required resources are not linearly scalable with the increase
of N/M. For instance, if M is doubled, the resulting circuit will not occupy double the
amount of the same resources as the circuit synthesized for M/2; instead, the resources
will increase more than just two times. This is because some of the FPGA LUTs would
be used for routing. The results from Table 1 confirm this observation. Actually, the
number of the network’s comparators grows as illustrated in the graph in Figure 4. To
estimate the scalability, additional experiments were executed for N = 1024 and N = 2048
that revealed that the circuit exceeds the capacity of the low-cost FPGA that was used when
N = 2048 and M = 32. So, for large values of N and M, the required number of comparators
(and consequently the occupied FPGA logic resources) can be a limiting factor for the
respective circuit. One possible improvement to the suggested hardware architecture is
to reuse the same group of comparators two times (once to find min_1st and the second
time to find min_2nd). The resources can be reduced by constructing a sequential circuit
that reuses just one group of comparators but takes two steps to obtain the result. An
N×M-bit register is required to store the cascading outputs at the end of each step. The
overall throughput of the sequential circuit is slightly lower than that of the combinational
circuit (because of additional setup requirements on the flip-flops composing the register)
but the resources are reduced in twofold.
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Table 1. Hardware resources and performance for implementing the selected algorithm in
xc7a100tcsg324-1 FPGA for M = 8/32 and N = 2L, L = 3, 4, . . . , 8 using RTL specification in VHDL.

M N LUTs Fmax

8 8 64 81 MHz
16 124 63 MHz
32 168 50 MHz
64 250 41 MHz

128 944 31 MHz
256 1839 28 MHz

32 8 143 67 MHz
16 228 51 MHz
32 397 43 MHz
64 1031 33 MHz

128 11,614 21 MHz
256 21,619 18 MHz
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Figure 4. Number of M-bits comparators for N = 2L, L = 3, 4, . . . , 11 used in the implemented
network for finding the two smallest data items.

The column “Fmax” indicates the maximum operating frequency calculated as de-
scribed above. As expected, the larger the value of N, the greater the circuit latency and the
lower the supported clock frequency. This is because the larger the value N, the larger the
number L of comparator levels. This problem can easily be solved with circuit pipelining
by inserting registers between the levels of the comparators.

The second tested design is based on the MicroBlaze soft processor core as described
in Section 3.2. In this case, the required hardware resources and the maximum operating
clock frequency are always the same, regardless of the value of N. The synthesized and
implemented design occupies 2223 LUTs (3.5% of the used FPGA resources) and can
run at 129 MHz. The hardware resources are comparable with that of the RTL VHDL
design for M = 32 and N = 64. The programmable AXI timer is used to measure the circuit
performance and the results are summarized in Table 2 (M is always equal to 32 as the C
unsigned int data type is used to store and manipulate input data values). All xil_printf
statements have been removed to allow for fair time measurements.
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Table 2. Execution time of the C code, presented in Section 3.2, on an embedded MicroBlaze processor
for M = 32 and N = 2L, L = 3, 4, . . . , 8 (LUTs = 2223, Fmax = 129 MHz).

N Execution Time

8 45.5 ms
16 102.7 ms
32 212.1 ms
64 425.7 ms

128 847.7 ms
256 1686.7 ms

Finally, Vitis HLS synthesis reports were analyzed to assess the performance of the
respective implementations described in Section 3.3. The synthesized design requires
about 11,250 LUTs (~18%), and a significant portion of these LUTs is due to calculation of
different powers of 2 (function pow) when generating the indices of the data to be used
for comparators’ inputs. It is interesting to observe that both the required LUT count
and the operating frequency do not vary significantly with N. The reasonable explanation
is that the number of comparators per level varies among networks levels (according to
Formula (3) and visually observable in Figure 1b). This means that the inner loops in the
code in Section 3.3 have variable bounds. It is known that some of the optimizations that
Vitis HLS can apply are prevented when the loop has variable bounds. Since variable
bound loops cannot be unrolled, they not only prevent the unroll directive being applied,
but they also block pipelining of the levels above the loop [24]. Thus, only the execution
time increases with N, but the resource (LUTs) augment is marginable. In contrast to
this, the number of required storage elements grows significantly with N (for instance, for
N = 128/M = 32, the circuit utilizes 11281 flip-flops, while for N = 32/M = 32, 8047 flip-
flops are required). The evaluated performance parameters allowed for an estimate of the
synthesized circuit latency and the results are presented in Table 3. These results are only
estimates because Vitis HLS is not aware of the routing delays that will be present in the
final implemented circuit. As in the previous two designs, additional optimizations must
be applied to improve performance. This is the only one from the considered three designs
that has just been validated through simulation and no tests in FPGA have been executed.
To perform tests on hardware, the RTL design produced by Vitis HLS must be exported to
be used by other tools (such as an IP core to be added to Vivado IP catalog).

Table 3. The results of high-level synthesis of the selected algorithm for M = 32 and N = 2L, L = 3, 4,
. . . , 8 (LUTs ≈ 12,500, Fmax = 120 MHz).

N Execution Time

8 1652 ns
16 2203 ns
32 2837 ns
64 3404 ns

128 4089 ns
256 4673 ns

An analysis of Tables 1–3 permits the conclusion that RTL VHDL-based designs run
at a significantly lower frequency compared to the MicroBlaze implementation, but the
throughput is much higher. For example, for M = 32/N = 32, the MicroBlaze-based circuit
requires ~212 ms to produce the result while the circuit synthesized from VHDL is ready
to obtain a new set of inputs every 23 ns. Moreover, many more hardware resources
are used for modest values of N (N ≤ 64); however, for N ≥ 128, the MicroBlaze-based
implementation turns out to be more beneficial from the LUT-usage point of view. The
circuits generated through HLS require many more resources than any other method. These
circuits are significantly faster than executing C code on MicroBlaze but are much slower
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than RTL VHDL-based designs. For example, for M = 32/N = 32, the circuit generated
through HLS requires 2837 ns to produce the result, which is ~120 times slower than the
circuit synthesized from VHDL. Figure 5 summarizes the calculated processing latency for
all three analyzed methods for M = 32 and N = 2L, L = 3, 4, . . . , 8.
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5. Conclusions

This paper discusses a network-based parallel data processing algorithm, which per-
mits two minimum values to be found in a set of N data items. The algorithm was modelled
using software and then three design approaches were evaluated for implementing it in
an FPGA of the Artix-7 family. The results of the experiments revealed that the circuits
produced from low-level specifications in a hardware description language (VHDL) are
significantly less resource consuming for moderate values of N and exhibit an incomparably
better performance. However, the time needed to describe, implement, and validate such a
circuit is quite significant, and a profound knowledge of the target hardware architecture,
design methods, and HDL syntax is required. The generated circuit specification is fully
parameterizable, which is a great benefit since the code may be simulated and debugged
for small values of N and then configured through VHDL generic constants to achieve
particular application requirements. To be truly competitive, profound optimizations have
to be applied to all the considered designs.

Regarding the power consumption, the RTL design tends to consume significantly
less power than the MicroBlaze-based hardware platform. This is the expected result, since
the MicroBlaze design uses a number of auxiliary components, such as the UART module,
which contribute to spending more power. The total on-chip power calculated by the
Vivado power analysis tool from the implemented netlist for the RTL-based system with
N = 256 and M = 32 is 0.109 W, while the MicroBlaze-based system requires 0.241 W.

When comparing the ease of code development, change, and maintenance, the
MicroBlaze-based approach requires almost no design effort as the C code used for model-
ing can be executed with just slight modifications. The only work consists in creating the
base hardware platform, including the MicroBlaze processor itself, the timers used for the
performance evaluation, the UART module for communication and debugging, and the
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basic support for the input/output. However, the developed hardware platform can easily
be reused for experiments with other algorithms, in contrast to the VHDL design, which
is completely tailored to the considered task. The price to pay for these facilities is the
performance, which is definitely the lowest among the three considered design approaches.

Recurring to HLS proved to be more difficult than was expected because although the
source specification code can be almost directly reused from the modeling stage, and the
validation step is very simple and straightforward, the generated circuit is not capable of
running with an initiation interval equal to 1 and optimization directives must certainly be
applied to produce a lower latency design. The HLS tool also prevented the unrolling of
the variable bounds loops. Moreover, despite many researchers mentioning that no specific
hardware knowledge is required to design with HLS tools, this information seems to be
false, because to analyze the synthesis reports and to work efficiently with the profiling
tools, a deep understanding of many hardware-related concepts (such as initiation intervals,
loop latency, trip count, etc.) is definitely essential. In addition, high-level synthesis takes
quite long time, comparable to the synthesis and implementation time of VHDL RTL
specification. These conclusions do apply particularly to Vitis 2020.2 HLS tools; no study or
analysis of alternative HLS tools has been executed.

The main conclusion is that for quick tests and non-time critical applications, MicroB-
laze (or other soft/hard processor)-based designs are much easier to develop, experiment
with, and manage. When performance is the critical factor, low-level HDL specifications
are the clear winners with the only drawback being that a wide RTL design experience
is necessary to produce, test, and optimize high-performance circuits. HLS tools have
been introduced as a great opportunity for software developers to enable them to syn-
thesize accelerated hardware from a software algorithm written in a high-level language
(usually C/C++). However, many important concepts involved in the design process,
although very familiar to people with RTL design experience, are not sufficiently clear
to software engineers to enable them to achieve high-performance designs. Moreover, a
typical software refers to such programming techniques as recursion and dynamic memory
allocation—these techniques are not synthesizable. This means the code must be refactored
to make it both synthesizable and as “parallel” as possible (so that the HLS tool could infer
parallelism and exploit it to achieve greater performance) [24]. Therefore, HLS tools are
more suitable to designers and software programmers who are familiar with concurrent
computing concepts and/or special platforms, such as GPUs. Once these topics are domi-
nated, the HLS approach provides quite substantial productivity gains over RTL design.
This conclusion is in concordance with related works [25–28], where the authors point
out that the HLS method contributes to accelerating the development of data processing
algorithms, but also that engineers need to dominate technologies of parallel programming
and possess/acquire knowledge about the structure and features of FPGA. Moreover, HLS
usually permits individual components to be synthesized that must be further integrated
at the RT level, implying that the system-level verification needs to be performed at lower
levels of abstraction, which significantly diminishes the benefits of using HLS [29]. So, for
complex designs, a trade-off between the design effort and performance should be reached,
and various design methods need to be explored for each case [30,31].
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