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Abstract. A variable selection procedure in regression analysis using a normalized entropy measure was firstly proposed in
1996, by Amos Golan, George Judge and Douglas Miller, in the book Maximum Entropy Econometrics – Robust Estimation with
Limited Data. To the best of the authors’ knowledge, the idea has not been explored in the literature since then, despite many
noteworthy advantages that have been pointed out by Amos Golan and coauthors, such as: it is simple to perform, even for a large
number of variables (useful in some big data problems); it allows the use of non-sample information (easily incorporated in the
optimization structure); and it can be implemented for ill-posed models (frequently observed in real-world problems). Following a
recent work that illustrates how normalized entropy can represent a promising approach to identify pure noise models, this paper
revises the procedure of normalized entropy, proposes some improvements, and illustrates its performance when compared with
some well-known traditional techniques in variable selection problems.

GENERALIZED MAXIMUM ENTROPY AND NORMALIZED ENTROPY

Golan et al. [1] generalized the maximum entropy formalism of Jaynes [2, 3] to linear inverse problems with noise
expressed by

y =Xβ+e, (1)

where y denotes a (N×1) vector of noisy observations, β is a (K×1) vector of unknown parameters, X is a known
(N×K) matrix of explanatory variables and e is a (N× 1) vector of random disturbances (errors), usually assumed
to have a conditional expected value of zero and representing spherical disturbances.

Assuming that both the unknown parameters and the error terms may be bounded a priori, the linear model in (1)
can be represented as

y =XZp+V w, (2)

where β =Zp, with Z a (K×KM) matrix of support spaces and p a (KM×1) vector of unknown probabilities, and
e= V w, with V a (N×NJ) matrix of support spaces and w a (NJ×1) vector of unknown probabilities. Note that
each βk, k = 1,2, . . . ,K, and each en, n= 1,2, . . . ,N, are viewed as expected values of discrete random variables zk and
vn, respectively, with M ≥ 2 and J ≥ 2 possible outcomes, within the lower and upper bounds of the corresponding
support spaces. A detailed formulation can be found in Golan [4], Chapter 13.

For a linear regression model expressed by (1), the generalized maximum entropy (GME) estimator is given by

argmax
p,w

{
−p′ lnp−w′ lnw

}
, (3)

subject to the model constraints, y =XZp+V w, and the additivity constraints for p andw, 1K = (IK⊗1′M)p and
1N = (IN ⊗1′J)w, where ⊗ represents the Kronecker product. The GME estimator generates the optimal probability
vectors p̂ and ŵ that can be used to form point estimates of the unknown parameters and the unknown errors through
the reparameterizations defined previously. Additional details and properties can be found, for example, in Golan [4]
and Mittelhammer et al. [5].
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Golan et al. [1] defined normalized entropy to measure the information content in a particular model using the
GME estimator. For example, normalized entropy for the signal,Xβ, is given by

S(p̂) =
−p̂′ ln p̂
K lnM

. (4)

Naturally, S(p̂) ∈ [0,1], where S(p̂) = 1 indicates perfect uncertainty and S(p̂) = 0 indicates no uncertainty. (Note
that only the GME estimator will be considered here; see Macedo [6] for a comparison between the use of normalized
entropy with GME and generalized cross entropy (GCE) estimator.)

Concerning variable selection, it is interesting to note that if all the zk inZ are defined uniformly and symmetrically
around zero, then S(p̂k) ≈ 1 implies βk ≈ 0, because p̂k is uniformly distributed in that case. Thus, a variable corre-
sponding to S(p̂k)≈ 1 has no information content and should be excluded from the model. Golan et al. [1] considered
an exclusion criterion of S(p̂k) > 0.99. The supports for the parameters defined above must be defined as closed
and bounded intervals in which each parameter is restricted to belong, but there is empirical evidence that different
supports provide different results in terms of variable selection (see simulation study next). Thus, the challenge is to
find the optimal supports that allow the correct identification of relevant variables and simultaneously do not produce
excessive shrinkage on coefficients’ estimates.

A first proposal to define supports for the GME estimator with the purpose of variable selection is inspired on the
ridGME procedure [7]. However, due to the purpose of variable selection, the idea presented here is substantially
different: each zk in Z is uniformly and symmetrically defined around zero with limits established by the absolute
maximum values of the ridge estimates, such that

zk =
[
−
⌈∣∣∣max

{
β̂kridge(η)

}∣∣∣⌉ ,⌈∣∣∣max
{
β̂kridge(η)

}∣∣∣⌉] . (5)

However, two questions naturally arise: why the absolute maximum values of the ridge estimates? Is it possible
to achieve better results in terms of variable selection using other kind of prior information? The answer to the first
question can be partially supported by the numerical foundations of ridge regression, since the potencial instability of
the least squares estimator can be reduced and the shrinkage process may be controlled through a tuning parameter.
Nevertheless, this approach clearly suffers from arbitrariness, which is why a second approach is proposed next.

Similar to traditional algorithms of lasso, elastic net, oscar, among others, which provide results for a set of regular-
ization parameters, a set of supports with decreasing amplitudes in the parameter spaces can be defined, starting with
any arbitrary large support such that all S(p̂k) are approximately one and ending with tiny supports for those variables
that were not selected during the process. The optimal step on the decreasing process of the amplitudes can be identi-
fied by the solution that corresponds, for example, to the minimum mean squared error obtained by cross-validation.
(Illustration of this approach is left for future research due to space limitations.)

SIMULATION STUDY AND EXAMPLE

The simulation study involves 100 observations and 30 standard normal explanatory variables. Ten coefficients are
defined by uniform distributions, namely U(5,15) and U(1,10), and the remaining 20 are zero. Errors are defined
by normal distributions, namely ei ∼ N(0,1) and ei ∼ N(0,9), i = 1,2, . . . ,100. To define an ill-conditioned design
matrix, X , with a specific condition number value, namely cn = 100, the traditional singular value decomposition
is obtained and the singular values in S, a diagonal matrix with the same dimension of X , are modified such that
cond(X) = cond(USV ′) = cn, whereU and V are square unitary matrices, and cond(X′X) = cn2. It is important
to note that other scenarios were tested and the results presented here correspond to the worst ones, i.e. the scenarios
with a lower percentage of identification.

Table I and Table II summarize the results with the percentages of trials where the corresponding variable is included
in the model, considering three inclusion criteria of S(p̂k), in 500 replications. Regardless the scenario considered
with the GME estimator, an important conclusion is that variable selection is not possible by using wide bounds. With
a moderate support, such as [−100,100], some correct identifications begin to emerge, but the higher percentages of
correct identification appear when is used information from the ridge trace. Probably more important than a criterion
for inclusion is a graphical representation of the results. For example, considering the case with lower percentage of
identification of the ridge-based approach, the boxplot in Fig. 1 shows the identification of the ten relevant variables
in the 500 simulated models.



TABLE I. Percentages of inclusion, [min %, max %], in Model U(5,15), with cond(X) = 100.

[−500,500] [−100,100] ridge-based [−500,500] [−100,100] ridge-based
ei ∼ N(0,1) ei ∼ N(0,1) ei ∼ N(0,1) ei ∼ N(0,9) ei ∼ N(0,9) ei ∼ N(0,9)

Relevant S(p̂k)≤ 0.99 [0.0%,0.0%] [14.8%,20.8%] [95.4%,98.4%] [0.0%,0.0%] [19.2%,24.4%] [80.6%,85.6%]
variables S(p̂k)≤ 0.98 [0.0%,0.0%] [0.0%,0.0%] [89.6%,94.2%] [0.0%,0.0%] [1.2%,2.4%] [69.6%,74.2%]

S(p̂k)≤ 0.97 [0.0%,0.0%] [0.0%,0.0%] [83.4%,89.2%] [0.0%,0.0%] [0.0%,0.0%] [60.2%,65.2%]
Extraneous S(p̂k)≤ 0.99 [0.0%,0.0%] [0.0%,0.0%] [0.8%,2.4%] [0.0%,0.2%] [0.0%,0.2%] [7.0%,10.0%]
variables S(p̂k)≤ 0.98 [0.0%,0.0%] [0.0%,0.0%] [0.0%,0.6%] [0.0%,0.0%] [0.0%,0.0%] [1.4%,3.8%]

S(p̂k)≤ 0.97 [0.0%,0.0%] [0.0%,0.0%] [0.0%,0.4%] [0.0%,0.0%] [0.0%,0.0%] [0.2%,1.8%]

TABLE II. Percentages of inclusion, [min %, max %], in Model U(1,10), with cond(X) = 100.

[−500,500] [−100,100] ridge-based [−500,500] [−100,100] ridge-based
ei ∼ N(0,1) ei ∼ N(0,1) ei ∼ N(0,1) ei ∼ N(0,9) ei ∼ N(0,9) ei ∼ N(0,9)

Relevant S(p̂k)≤ 0.99 [0.0%,0.0%] [0.0%,0.4%] [79.0%,83.8%] [0.0%,0.2%] [1.4%,3.4%] [57.2%,62.8%]
variables S(p̂k)≤ 0.98 [0.0%,0.0%] [0.0%,0.0%] [70.8%,76.2%] [0.0%,0.0%] [0.0%,0.2%] [44.2%,50.6%]

S(p̂k)≤ 0.97 [0.0%,0.0%] [0.0%,0.0%] [63.8%,68.8%] [0.0%,0.0%] [0.0%,0.0%] [36.4%,42.6%]
Extraneous S(p̂k)≤ 0.99 [0.0%,0.0%] [0.0%,0.0%] [1.8%,3.8%] [0.0%,0.4%] [0.0%,0.0%] [9.8%,13.8%]
variables S(p̂k)≤ 0.98 [0.0%,0.0%] [0.0%,0.0%] [0.0%,1.2%] [0.0%,0.2%] [0.0%,0.0%] [3.4%,6.6%]

S(p̂k)≤ 0.97 [0.0%,0.0%] [0.0%,0.0%] [0.0%,0.4%] [0.0%,0.0%] [0.0%,0.0%] [1.0%,3.8%]

 

FIGURE 1. Normalized entropy; Model U(1,10), with cond(X) = 100, ei ∼ N(0,9).

In the well-known prostate cancer model, the response variable is the level of prostate specific antigen and the eight
explanatory variables are cancer volume, prostate weight, age, benign prostatic hyperplasia amount, seminal vesicle
invasion, capsular penetration, Gleason score, and percentage Gleason scores 4 or 5. Additional details on this model
can be found in the original work of Stamey et al. [8], or in Tibshirani [9], Hastie et al. [10] and Wakefield [11] that
use the same data set to illustrate variable selection techniques.



Results for different stepwise methods, all possible subsets, Bayesian model averaging, lasso, among others are
available, for example, in Hastie et al. [10] (p. 63) and Wakefield [11] (p. 187). Naturally, there are differences
between methods, but two general results emerge between those that eliminate variables: (1) three variables (cancer
volume, seminal vesicle invasion and prostate weight) and the constant were selected by almost all the methods; (2)
three variables (capsular penetration, Gleason score and percentage Gleason scores 4 or 5) were never selected. The
remaining two variables are additionally selected just by one and two methods, respectively.
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FIGURE 2. Normalized entropy in the prostate cancer model using a ridge-based approach.

Using the supports [−500,500] and [−100,100] none of the eight variables is selected. By using the ridge-based
approach to select the supports for the GME estimator, and with a simple bar chart as the one in Fig. 2, the information
content of each variable is easily checked and ranked. Since variables corresponding to S(p̂k)≈ 1 have no information
content, even without a specific exclusion criterion, the possible relevant and irrelevant variables can be identified.
Note that, in comparison with the results of other methods previously mentioned, the two groups of variables are
clearly identified in Fig. 2. It is well-known that no single method will work in all kinds of problems and subjective
judgement is required in all of them (e.g., significance levels, tuning parameters, cutoff values), but normalized entropy
could be a measure of wide application due to its simplicity and intuitive interpretation.

CONCLUSIONS AND FUTURE WORK

A variable selection procedure in regression analysis using normalized entropy is discussed and illustrated in this
work. A rule to define a cutoff value in S(p̂k) could always be specified by the user following some specific criterion
(e.g., interpretation, prediction accuracy, precision), but the information content of each variable may be enough in
many real-world scenarios. Following Macedo [6], future research should also be accomplished with the generalized
cross entropy estimator, where prior information could be incorporated in the optimization structure with the purpose
of variable selection. Maximum entropy has natural connections to artificial intelligence that should be explored in
the future. Note that maximum entropy is at the heart of information theory and this, in turn, is in the foundations
of computer science. Since artificial intelligence tools just learn from the data, maximum entropy estimation can
be important, for example, to provide useful prior information. Comparative studies with specific techniques (e.g.,
prediction, classification and regression) from recent deep learning tools are needed in future work.
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