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Informática da Universidade de Aveiro

vogais / examiners committee Doutor Manuel Fernando Santos Silva
Professor Coordenador do Instituto Superior de Engenharia do Porto (ar-
guente principal)

Professor Doutor Filipe Miguel Teixeira Pereira da Silva
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e In-
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Resumo Os avanços recentes na Inteligência Artificial (IA) demonstram um conjunto
de novas oportunidades para a robótica. A Aprendizagem Profunda por
Reforço (DRL) é uma subárea da IA que resulta da combinação de Apren-
dizagem Profunda (DL) com Aprendizagem por Reforço (RL). Esta subárea
define algoritmos de aprendizagem automática que aprendem diretamente
por experiência e oferece uma abordagem compreensiva para o estudo da
interação entre aprendizagem, representação e a decisão. Estes algoritmos
já têm sido utilizados com sucesso em diferentes doḿınios. Nomeadamente,
destaca-se a aplicação de agentes de DRL que aprenderam a jogar v́ıdeo jo-
gos da consola Atari 2600 diretamente a partir de pixels e atingiram um
desempenho comparável a humanos em 49 desses jogos. Mais recente-
mente, a DRL em conjunto com outras técnicas originou agentes capazes
de jogar o jogo de tabuleiro Go a um ńıvel profissional, algo que até ao
momento era visto como um problema demasiado complexo para ser re-
solvido devido ao seu enorme espaço de procura. No âmbito da robótica, a
DRL tem vindo a ser utilizada em problemas de planeamento, navegação,
controlo ótimo e outros. Nestas aplicações, as excelentes capacidades de
aproximação de funções e aprendizagem de representação das Redes Neu-
ronais Profundas permitem à RL escalar a problemas com espaços de estado
e ação multidimensionais. Adicionalmente, propriedades inerentes à DRL
fazem a transferência de aprendizagem útil ao passar da simulação para o
mundo real. Esta dissertação visa investigar a aplicabilidade e eficácia de
técnicas de DRL para aprender poĺıticas de sucesso no doḿınio das tare-
fas de manipulação robótica. Inicialmente, um conjunto de três problemas
clássicos de RL foram resolvidos utilizando algoritmos de RL e DRL de
forma a explorar a sua implementação prática e chegar a uma classe de
algoritmos apropriada para estas tarefas de robótica. Posteriormente, foi
definida uma tarefa em simulação onde um agente tem como objetivo con-
trolar um manipulador com 6 graus de liberdade de forma a atingir um alvo
com o seu terminal. Esta é utilizada para avaliar o efeito no desempenho
de diferentes representações do estado, hiperparâmetros e algoritmos do
estado da arte de DRL, o que resultou em agentes com taxas de sucesso
elevadas. O foco é depois colocado na velocidade e restrições de tempo
do posicionamento do terminal. Para este fim, diferentes sistemas de rec-
ompensa foram testados para que um agente possa aprender uma versão
modificada da tarefa anterior para velocidades de juntas superiores. Neste
cenário, foram verificadas várias melhorias em relação ao sistema de rec-
ompensa original. Finalmente, uma aplicação do melhor agente obtido nas
experiências anteriores é demonstrada num cenário simplificado de captura
de bola.





Keywords Deep Reinforcement Learning, Continuous Control, Actor-Critic, Policy Gra-
dient Methods, Manipulation Robotics, Reaching tasks

Abstract The recent advances in Artificial Intelligence (AI) present new opportu-
nities for robotics on many fronts. Deep Reinforcement Learning (DRL)
is a sub-field of AI which results from the combination of Deep Learning
(DL) and Reinforcement Learning (RL). It categorizes machine learning al-
gorithms which learn directly from experience and offers a comprehensive
framework for studying the interplay among learning, representation and
decision-making. It has already been successfully used to solve tasks in
many domains. Most notably, DRL agents learned to play Atari 2600 video
games directly from pixels and achieved human comparable performance in
49 of those games. Additionally, recent efforts using DRL in conjunction
with other techniques produced agents capable of playing the board game
of Go at a professional level, which has long been viewed as an intractable
problem due to its enormous search space. In the context of robotics, DRL
is often applied to planning, navigation, optimal control and others. Here,
the powerful function approximation and representation learning properties
of Deep Neural Networks enable RL to scale up to problems with high-
dimensional state and action spaces. Additionally, inherent properties of
DRL make transfer learning useful when moving from simulation to the real
world. This dissertation aims to investigate the applicability and effective-
ness of DRL to learn successful policies on the domain of robot manipulator
tasks. Initially, a set of three classic RL problems were solved using RL and
DRL algorithms in order to explore their practical implementation and arrive
at class of algorithms appropriate for these robotic tasks. Afterwards, a task
in simulation is defined such that an agent is set to control a 6 DoF manip-
ulator to reach a target with its end effector. This is used to evaluate the
effects on performance of different state representations, hyperparameters
and state-of-the-art DRL algorithms, resulting in agents with high success
rates. The emphasis is then placed on the speed and time restrictions of the
end effector’s positioning. To this end, different reward systems were tested
for an agent learning a modified version of the previous reaching task with
faster joint speeds. In this setting, a number of improvements were verified
in relation to the original reward system. Finally, an application of the best
reaching agent obtained from the previous experiments is demonstrated on
a simplified ball catching scenario.
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Chapter 1

Introduction

The rise in adoption of automation technologies and their benefits are evident across
industry and different aspects of life. Automation aims to scale down the need for human
intervention in many activities and improve the standards of living for the general population.
Back in the mid-18th century, the advent of the industrial revolution brought unprecedented
economic, technological and population growth. This is justified partly by the use of ma-
chines alongside steam power engines to replace manual labor and the subsequent increase of
productivity. Today’s automation encompasses not only physical automation but increasingly
cognitive automation.

Currently, automating physical tasks relies on the use of machines and particularly on the
use of robots. In general, robots are programmable and autonomous machines which make
use of sensor input to act in an environment. Robots are widely used in commercial and
industrial contexts. For example, Amazon, the well known e-commmerce company, has made
heavy use of mobile robots to carry loads across its warehouses to reduce picking time for
orders. Automotive factories often use industrial manipulator robots to assemble, paint, weld
and glue car parts on a production line. Manipulators or robotic arms are articulated robots
which may resemble a human arm. They consist of multiple joints with links connecting them
and the tool used to perform a task (like a gripper), referred to as the end effector. More
recently, the concept of collaborative robots (cobots) has been growing in popularity. These
are robots made to be easily programmed to do simple tasks (such as packaging or lifting
weights) while being able to interact directly and safely with human workers in a shared
workspace. This makes cobots easily integrated into an existing human pipeline to quickly
automate a process.

For many decades now, computers have lead the automation of cognitive labor. However,
they are limited to problems for which the solutions can be explicitly programmed by humans.
Complex problems such as image classification, natural language processing, speech recogni-
tion, self-driving cars and others, have posed a challenge for hand coded solutions. New
methods using Artificial Intelligence which leverage great volumes of data, have shown to be
extremely effective, specifically Machine Learning algorithms which automatically improve
through experience.

Thus, AI plays an important role in modern businesses. Namely, using AI for recommender
systems in online platforms (e.g., YouTube, Netflix, Facebook) is now commonplace. For
example, a recommender system for a news website tries to increase click through rate by
learning a user’s profile before using it to suggest the next news article to read. Additionally,
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in 2016, an AI system was successfully used to improve the energy efficiency of Google’s data
centers. By using data from thousands of sensors a deep neural network is able to minimize
future energy consumption. This system managed to achieve a reduction of up to 40% in the
energy used for cooling servers.

Deep Reinforcement Learning (DRL) is the class of Machine Learning algorithms mainly
addressed in this dissertation. It is concerned with solving sequential decision making prob-
lems and is built from two components that have already independently had a profound
impact in many fields: Deep Learning (DL) and Reinforcement Learning (RL). Typically, a
DRL system combines a deep neural network to compute a non-linear mapping from percep-
tual inputs to action-values (or action probabilities) and RL signals that update the weights
of the network in order to increase the frequency of highly rewarded actions. Concretely, this
dissertation’s focus is on the use of state-of-the-art Deep Reinforcement Learning algorithms
to solve robot manipulator reaching tasks using the UR10 robot on a simulated environment.

1.1 Motivation

Recently, DRL has been successfully applied to solve problems in a variety of domains.
The most notable have been problems involving games, since these provide a level of com-
plexity interesting enough for research and can run faster than real time. In 2015, DeepMind
(a London based AI company) proposed a novel artificial agent which achieved a level of
performance comparable to humans in 49 Atari 2600 video games after learning by only hav-
ing access to the pixels and the game score. For a case combining supervised learning from
human expert games and DRL by playing against itself, in 2016, DeepMind’s AlphaGo agent
became extremely proficient at playing the ancient board game of Go, ultimately defeating
the considered best player at the time in a match 4-1. Subsequently, in 2017, DeepMind
developed an agent named AlphaGo Zero that trained only from playing against itself. It
surpassed the previous AlphaGo’s performance, arguably becoming the best Go player in the
world.

Robotics has also been a domain of focus for the application of Reinforcement Learning and
Deep Reinforcement Learning. A great number of problems in robotics are often formulated
in ways closely resembling the Reinforcement Learning framework, making its application a
natural pursuit. This is best illustrated by the extensive use of control theory in robotics.
Here, similarly to RL, the objective is to find a policy (controller) which, using feedback,
manipulates a dynamical system through control actions in order to minimize a cost function.
However, while control theory relies on perfect knowledge of a system, RL differs in the fact
that the dynamics defining a system’s response to actions are usually unknown and must be
learnt.

At present, the control of robotic manipulators is mostly achieved by solving inverse
kinematic equations to position the end-effector with respect to a fixed reference frame. These
robots perform repetitive tasks with speeds and accuracies far exceeding those of a human
operator. However, they have difficulties in adapting to complex real-world environments
subject to generalized and unsystematic variations. The robot is not expected to have, in
advance, an accurate model of its environment, the objects it contains and the necessary skills
to manipulate them.

In this context, decision-making and learning will be central abilities for such autonomous
systems to handle the challenges of real-world scenarios. DRL appears as a promising ap-
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proach to endow robots with these capabilities since no predefined training dataset is re-
quired, which may suit manipulation tasks. The expectation is that a wide range of robotic
behaviours can be acquired by combining general-purpose function approximators, such as
neural networks, with model-free reinforcement learning algorithms. However, applying DRL
to real-world robotic control faces many challenges. For example, the volume of environment
samples required is high. As a consequence, some previous works relies on parallelizing learn-
ing across multiple robots and the use of simulation before transferring the knowledge to the
real world.

1.2 Objectives

This dissertation aims to investigate the applicability and effectiveness of Deep Reinforce-
ment Learning to learn successful policies when applied to the domain of robot manipulator
reaching tasks. The objectives defined for this dissertation are the following:

• From Reinforcement Learning to Deep Reinforcement Learning: to obtain a solid back-
ground on fundamental concepts of Deep Learning and Reinforcement Learning through
practical implementation of DRL algorithms to solve simple problems.

• DRL for robot reaching tasks: to simulate, develop and implement DRL agents capable
of controlling a manipulator in reaching tasks.

• Study the influence of different parameters on the learned policies: to choose simulation
parameters, learning parameters and state representations with the goal of increasing
the performance of the DRL agents.

1.3 Outline

This dissertation is organized into 5 chapters. Chapter 1 introduces the general context
for the dissertation, presents the motivation, its objectives and outline. Chapter 2 provides
the theoretical background on Reinforcement Learning and Deep Reinforcement Learning
necessary to interpret this dissertation and also overviews previous related work. Chapter 3
presents: the main software tools used for developing and evaluating DRL agents; an early
application of RL and DRL to simple problems used to become familiarized with different
aspects of these algorithms; and the specification of the manipulator reaching tasks addressed
in this dissertation along with the methods used to solve them and evaluate the results.
Chapter 4 describes the procedures and results of a set of experiments conducted to solve the
different versions of the reaching task. Finally, Chapter 5 provides a conclusion reviewing the
results, the key ideas drawn from this dissertation and the potential paths for future work.
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Chapter 2

Background and Context

In this chapter, the context for this dissertation is presented. The Reinforcement Learning
(Section 2.1) and Deep Reinforcement Learning (Section 2.2) frameworks are defined and their
main theoretical tools and limitations described. Finally, a description of previous related
work is provided (Section 2.3).

2.1 Reinforcement Learning

Artificial Intelligence (AI) is a discipline of science characterized by its goal of achieving
human level intelligent behaviour in machines. In the pursue of this goal, the field of AI
attended to solve problems such as reasoning, learning and knowledge representation. From
this emerged the Machine Learning field which is broadly defined as a set of techniques
used to make computers learn to predict and make decisions from experience, in the form of
data, without requiring to be explicitly programmed. Depending on the nature of this data,
Machine Learning algorithms are commonly categorized into: supervised, unsupervised and
reinforcement learning.

In supervised learning the data is labeled (by an external process or entity) with the
correct prediction. It consists of solving either a regression problem, where the output is a
single value or vector of real numbers; or a classification problem, when predicting one value
out of a set discrete values which represent classes. In both cases, a supervised learning
algorithm is tasked with finding a function which maps a feature vector into the desired
output while optimizing a specific performance metric (often termed Loss).

For unsupervised learning the data has no labels and the goal is to learn any patterns and
structure present in the data. Common instances of this are clustering algorithms such as k-
means, which is an iterative process used to determine a possible set of k classes existing within
a given dataset. Another example is representation learning. This involves automatically
learning a representation from the feature vectors which is then is used in classification or
regression problems.

Reinforcement learning (RL) [7] is a framework used to model and solve sequential decision-
making tasks, while maximizing a reward signal. These tasks consist of deciding what to do
given a situation in order to achieve a specific goal. Reward signals are delayed, often sparse
and work only as evaluative feedback, thus differing from supervised learning where the correct
answer for each example (an action in the case of RL) is explicitly provided. The challenge is
being able to learn, through trial and error (experience), to correlate taking an action with the
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rewards it might produce in the future and act to maximize the total sum of rewards obtained.
The remainder of this section overviews a description of this framework, its terminology and
the main classes of RL algorithms.

2.1.1 Framework and Concepts

Markov Decision Process

In Reinforcement Learning a problem is formulated as Markov Decision Process (MDP).
An MDP is defined by a state space S, an action space A, a state transition probability
function P and a reward function R. For a problem where the probability of the next state
depends only on the current state information and action, it is said to satisfy the Markov
property. The actions are performed by an agent in an environment over discrete time steps.
At each time step t an agent receives a state st ∈ S from the environment, takes an action
at ∈ A according to some policy function π(st) and finally transitions to a new state st+1 and
receives evaluative feedback from the environment in the form of a numerical reward rt+1.
This iterative process is depicted in Figure 2.1.

Figure 2.1: Diagram of the interaction between the agent and environment, image from [1]

Some tasks are considered to be episodic (see Figure 2.2) due to the sequence, or trajectory,
of agent-environment interactions being structured as sub sequences which end within a finite
number of time steps and reset to an initial state afterwards. In these cases, a state is
considered to be a terminal state if it occurs at the final time step T of a sub sequence. These
sub sequences are named episodes and can be represented as a set of ordered tuples containing
the state, action and reward respective of each time step:

(s0, a0, r1), (s1, a1, r2), (s2, a2, r3), ..., (sT−1, aT−1, rT ) (2.1)

The rewards in Equation 2.1 follow a notation where the reward r at a given time step t
is considered to be received on the next time step, hence rt+1. In contrast, a task is defined
to be a continuing task if it is not episodic, this is: a task which is not structured as sub
sequences (episodes), it is instead a continuing sequence of agent-environment interactions
(final time step T =∞).

An environment’s dynamics are characterized by the state transition probability function
P (st+1|st, at), which provides the probability of transitioning from a current state st ∈ S to
another in the next time step st+1 ∈ S when taking an action at ∈ A. In a deterministic
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environment the state-transition probability function defines a probability distribution over
S where all the probability is accumulated in a single state: P (st+1|st, at) = 1. If this isn’t
the case, an environment is said to be a stochastic environment. That is, performing the same
action at in state st can lead to different next states st+1.

Figure 2.2: Diagram of an episodic task (top) ending in a terminal state (gray) and continuing
task (bottom).

When learning from trial and error, a goal is defined for an RL agent by using a reward
signal. A reward rt ∈ R is a number computed by the environment, using the reward function
R(s, a), where s ∈ S and a ∈ A, which evaluates the agent’s previous action in a state. While
trying to maximize this reward signal, an agent learns to achieve the desired goal. An agent’s
objective at any time step t is to choose an action that maximizes the reward, or the long-term
cumulative reward, which results from the sequence of rewards received along an MDP after
that time step t:

rt+1, rt+2, rt+3..., rT (2.2)

This cumulative reward is called return and is defined as a sum of the sequence of rewards.
It can be paired with a parameter γ ∈ [0, 1], named the discount factor, to define the discounted
return:

Gt = rt+1 + γrt+2 + γ2rt+3 + ...+ γT−t−1rT

= rt+1 + γ(rt+2 + γ2rt+3 + ...+ γT−t−1rT )

= rt+1 + γGt+1

(2.3)

The discount factor γ is used to parameterize how much an agent should discount future
rewards. For values of γ closer to 1, the agent becomes more farsighted and gives more
importance to rewards distant from the current time step t. On the other hand, for values
close 0, the agent focuses more on the immediate rewards, where in the limit γ = 0 the
discounted return is Gt = rt+1.

Policy

How an agent behaves in an environment is specified by its policy. A policy, denoted
π, maps states to a probability distribution over the set of possible actions (defined in 2.4).
The probability of each action in this distribution is usually (for a good policy) related to

7



the probability it will yield a reward given a state. Higher probability actions yield greater
returns than lower probability actions.

π(s) 7→ Pr(A|s), ∀s ∈ S (2.4)

An agent can follow multiple policies, each yielding different long-term rewards. The
optimal policy, denoted π∗, is the policy which when followed produces maximum long-term
rewards. Thus, the optimal policy can be defined as the policy which maximizes the expected
return:

π∗ = argmax
π

E[Gt|π] (2.5)

Value Function

Most RL algorithms can be split into two categories: prediction and control. Prediction
algorithms have the objective of estimating the value of an environment’s feature. Typically,
the predicted features are the reward or return. For control, an algorithm is tasked with
improving an existing policy to find the optimal policy.

Prediction algorithms, also called policy evaluation algorithms, are used to assess a policy’s
performance. This involves determining a value function for a particular policy π. Value
functions compute the expected return from state or state-action pair inputs. This is a
measure of how good it is to be in given state or how good it is to choose an action while
being in a given state. The state-value function vπ(s) is a value function which outputs the
expected return the agent will produce during its interaction with the environment when
starting from state s and subsequently continuing to follow the policy π. This expectation is
defined in Equation 2.6.

Vπ(s) = Eπ[Gt|s], ∀s ∈ S (2.6)

The action-value function Qπ(s, a) outputs the expected return after taking an action a
in state s and following policy π (see Equation 2.7). Action-value functions are useful in
learning problems without a model of the environment because in these scenarios it is not
possible to predict the next state and plan to choose the action which leads to highest return.
Thus a policy can be indirectly learned without a model of the environment by only learning
the Q values for all states.

Qπ(s, a) = Eπ[Gt|s, a],∀s ∈ S,∀a ∈ A (2.7)

2.1.2 Solution Methods

Off-Policy vs On-Policy

Prediction and control methods are also distinguished depending on the use of a policy to
generate the experience data. If an algorithm learns a policy while simultaneously using it to
collect the experience data, it is considered to be on-policy. On the other hand, an algorithm
is said to be off-policy if it learns independently of the policy used to act.
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Model-Based vs Model-Free

The state-transition probability function P together with the reward function R define a
model of the environment. This allows an agent to predict the behavior of an environment and
plan according to possible future events. RL algorithms which rely on environment models
are called model-based, whereas algorithms which learn purely by experience are model-free.

Exploration vs Exploitation

The trade-off between exploration and exploitation is a central problem in RL: at any
given moment an agent must decide between: attempting to leverage its current knowledge
(exploitation) by greedily choosing actions to maximize short-term rewards; and randomly
sampling the action space (exploration) in order to improve action-value estimates and con-
sequently find alternative strategies which may lead to greater rewards in the long-term.
Achieving the correct balance between the two is crucial when attempting to estimate the
optimal policy. The ε-greedy (Epsilon-greedy) strategy is one common method employed to
balance exploration and exploitation. It consists of choosing a random action from the action
space with a probability ε and with a probability (1−ε) choosing the action which maximizes
returns. The resultant behaviour of using ε-greedy strategy is controlled by the ε parameter,
an agent explores more often the closer ε is to 1 and explores less (exploits) if it is closer 0.
This effect is illustrated in Figure 2.3 where 8 different values of ε are tested for an agent
that was set to learn a single goal in a Gridworld environment. Gridworld is an RL problem
consisting of a 2D board where an agent navigates to reach a goal position. In this case,
an agent learns to move towards (9,9) (bottom right) starting from a fixed position (0,0)
(top left) in a 10x10 board with no obstacles. The figure displays the cells that are visited
more often in darker color as the probability of the agent acting randomly, controlled by ε,
increases.

(a) ε = 0.125 (b) ε = 0.25 (c) ε = 0.375 (d) ε = 0.5

(e) ε = 0.625 (f) ε = 0.75 (g) ε = 0.875 (h) ε = 1.0

Figure 2.3: Heatmaps illustrating the effect of the ε parameter
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Dynamic Programming

Dynamic programming (DP) is an optimization method used to solve MDPs given a
perfect model of the environment. This is done by iterative algorithms which use the Bellman
equation to update a value function estimate for a policy π. Despite most RL problems not
having a perfect model of the environment, the concepts covered in this method are present
in other RL algorithms. In the case of finite MDPs (finite state and action spaces), an
environment’s model is defined by p(s′, r|s, a) ∀s, s′ ∈ S, ∀a ∈ A and ∀r ∈ R. This p is the
probability of s′ and r occurring at a given time step t given the previous state s and action
a. With the definition of Vπ and p, the following equality named the Bellman equation , is
derived for the state-value function:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)] (2.8)

Using an iterative policy evaluation algorithm, the value-state function Vπ for a policy
π can be estimated. This policy evaluation in conjunction with a policy improvement step
allows for estimating the optimal policy π∗ in an algorithm named Policy Iteration. The
policy improvement consists in updating the policy with a greedy strategy where for each
state s ∈ S π(s) = a where a is the action that maximizes Vπ(s′) and s′ ∈ S is the next state.

Monte Carlo Methods

Monte Carlo (MC) methods involve averaging over many samples of actual returns to
estimate state-value and action-value functions. Similarly to DP, the prediction results are
used to then solve the control problem of approximating optimal policies. These are methods
that fully use experience without any model of the world. The samples of returns are obtained
from experience rollouts in episodic tasks, hence the estimates are updated episode-by-episode
rather than step-by-step.

Temporal-Difference

The two methods previously described present some limitations for RL problems: DP
requires a model of the environment (the state-transition probability function and reward
function) to compute the expectation of V (s) (model-based) and hence its direct applications
are narrow; MC methods although improving over DP by being model-free and relying on
experience samples, requires an episode rollout to complete before being able to learn and
compute its estimates. Temporal-Difference (TD) learning methods combine aspect of both
DP and MC. Like MC, it learns from experience samples and, similarly to DP, also bootstraps
by iteratively updating an estimate based on a previously learned estimate. The difference in
experience sampling between TD and MC is that the former only waits until the next time
step to receive a reward and update its estimate instead of waiting for an episode to end to
obtain the return Gt. This results in TD being less computationally intensive during training,
since updates are done iteratively along time rather than all at the end.

State–Action–Reward–State–Action (SARSA) is an on-policy RL algorithm, where a Q
action-value function is learned by minimizing a TD error for observed state-action pairs
using the Bellman equation iteratively. This error is calculated using the action derived from
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the current policy for the next state (see Equation 2.9). The complete procedure for learning
with SARSA is listed in Algorithm 1.

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.9)

This algorithm results in a Q function accurately describing the state-action value of the
policy used during learning.

Algorithm 1 SARSA, adapted from Sutton and Barto (2018)

1: Algorithm parameters: step size α ∈ (0, 1], small ε > 0
2: Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that Q(terminal, .) = 0
3: for each episode do
4: Initialize St
5: Choose At from St using policy derived from Q . e.g., ε− greedy
6: for each step of episode do
7: Take action At, observe Rt+1, St+1

8: Choose At+1 from St+1 using policy derived from Q . e.g., ε− greedy
9: Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

10: St ← St+1

11: At ← At+1

12: until St is terminal

Q-learning is an instance of a TD method used to learn the optimal action-value function
Q∗. It is a model-free RL algorithm that differs from SARSA for being off-policy. Instead of
using the action derived from the policy to calculate the TD error it uses the action which
maximizes the Q value for the next state (see Equation 2.10). The algorithm for Q-learning
is listed in Algorithm 2.

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.10)

Algorithm 2 Q-learning, adapted from Sutton and Barto (2018)

1: Algorithm parameters: step size α ∈ (0, 1], small ε > 0
2: Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that Q(terminal, .) = 0
3: for each episode do
4: Initialize St
5: for each step of episode do
6: Choose At from St using policy derived from Q . e.g., ε− greedy
7: Take action At, observe Rt+1, St+1

8: Q(St, At)← Q(St, At) + α[Rt+1 + γmaxaQ(St+1, a)−Q(St, At)]
9: St ← St+1

10: until St is terminal
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2.2 Deep Reinforcement Learning

Deep Reinforcement Learning [8][9] is the combination of Deep Learning with Reinforce-
ment Learning. In this context, Deep Neural Networks are used to approximate the state
value function or state-action value function, the policy itself or the model of the environ-
ment. Deep Learning brings two main advantages to RL: generalization and representation
learning. Generalization is the ability of a model to correctly predict the values of data inputs
different then those used in training. This allows to solve the limitations of tabular RL algo-
rithms in complex problems where tables would have to be exceedingly large, requiring more
memory to store them and more visits per state to obtain good estimates. Representation
learning consists in a model learning from experience a transformation of the input which
makes it easier to solve a classification or prediction problem. In other words, its automatic
feature engineering as a result of training. It allows for the direct application of RL to more
interesting problems with complex inputs, such as pixels from a camera, without requiring
hand-engineered features, which leads to relying less on specific domain knowledge.

This section provides a theoretical overview of Deep Learning (Section 2.2.1) and the
primary classes of solutions methods for DRL: Value Function Approximation (Section 2.2.2)
and Policy Gradient Methods (Section 2.2.3). These will focus on model-free methods and
the algorithms presented are discerned based on the functions approximated using DNNs. An
incomplete yet useful classification of DRL algorithms, some of which are addressed in this
section, is summarized in Figure 2.4.

Figure 2.4: Taxonomy of Deep RL algorithms, image from [2]

2.2.1 Deep Learning

Deep Learning (DL) [10] is a class of ML techniques used for prediction and classification
tasks which, unlike ”shallow” learning algorithms (e.g., SVM, Logistic Regression), have more
than two hidden layers between the input and output layers. These hidden layers learn a
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hierarchy of representations where complex concepts are made out of simpler ones allowing
high dimensional inputs, which may not have a linear relation with the output, to be used
where classical ML algorithms would require hand-engineered features. The most common
type of DL model is an Artificial Neural Network with multiple hidden layers, termed Deep
Neural Network.

The Artificial Neural Network ANN is a biologically inspired Machine Learning model
consisting of a number of neurons with weighted connections between them arranged in a
network topology (Figure 2.5). This network acts as a function approximator f(x; θ) which
performs a computation on inputs x to return outputs parameterized by the weights θ. The
main goal is to optimize the parameters θ to obtain the best approximation of a given function.
These models are also often referred to as a feedforward neural network for the simplest archi-
tecture where a computation begins at the inputs and flows to the outputs. This procedure
is named a forward pass.

Figure 2.5: Diagram of an artificial neural network with a single hidden layer, image from [3]

The neuron is the basic computation unit composing an ANN. It is a function of a vector
inputs x ∈ Rn and single output y ∈ R, such as a logistic regression unit. In this case output
y is a linear function of the input defined as:

y = θTx (2.11)

where θ ∈ Rn is a vector of parameters with the same size as the input. Thus, an ANN can be
interpreted as a combination of smaller functions for which the output of some neurons is the
input to others. To allow for more complex non linear functions to be learned, an additional
operation is applied on the output of a neuron h = g(y), where g is an activation function
such as the rectified linear unit (ReLU). The loss function representing the accuracy of the
neural network in a task like regression is usually the Mean Squared Error (MSE) function.
Given a dataset of N inputs x and corresponding outputs y to learn from, the MSE loss
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function is computed with the following definition:

J(θ) =
1

N

∑
x∈X

(y − f(x; θ))2 (2.12)

To decrease the loss, which is equivalent to increasing performance of the model, three
main methods exist: batch gradient descent, using the entire dataset to compute the loss;
minibatch gradient descent, computing the loss before each update using a batch smaller than
the dataset; and stochastic gradient descent (SGD), computing a loss and performing an
update for each element of a dataset. These consists of computing the gradient of the loss
function with respect to the trainable parameters θ and updating these same parameters in
the negative direction of the gradient ∇θJ(θ).

To compute these gradients a method termed backpropagation is used. This method
computes the gradients using the chain rule, where the error observed in the loss function is
propagated in a reverse order to that of a forward pass.

2.2.2 Value Function Approximation

Value Function Approximation is a class of DRL methods which involve using a DNN to
approximate either a state-action value function Q(s, a) or state-value function V (s). The
optimization of these DNNs is made by defining a loss using the Bellman update equation on
a batch of environment transitions.

Deep Q-learning is the archetypal instance of a value function approximation algorithm.
It is an algorithm proposed by DeepMind in 2013 [11] where a Q-table is approximated by a
Deep Neural Network, termed Deep Q-network (DQN). This intends to leverage the feature
learning strengths of DNNs to apply Q-learning to RL tasks with high-dimensional state
spaces. Later in 2015, DeepMind presented the results [12] of applying a DQN agent to
learn how to play 49 different Atari 2600 games directly from image pixels, where the agent
performed comparably to humans.

The DQN architecture implemented by DeepMind is composed of 3 convolutional layers
with the input being a 84× 84× 4 tensor (the 4 most recent 84× 84 sized frames of a game)
followed by 1 fully connected layer and finally an output layer which the size (number of
actions) varies according to the game. This network architecture differs from the Q-function
definition Q(s, a) → R where both the state s and action a are the input. Instead, in
order to avoid running a forward pass on the network for every action at each time step,
DeepMind’s solution redefines the Q-functions as Q(s) → Rk, where k = |A| is the number
of actions. This is more efficient by computing the Q-values for all actions simultaneously
with a single forward pass. The optimization of the network is done using minibatch gradient
descent to minimize a mean-squared error loss function, defined in (2.13), where the target
y = r + γmaxa′ Q(s′, a′; θ−) is computed using the reward received after a step, similarly to
the Bellman update in (2.10).

L(θ) = E(s,a,r,s′) U(D)[(y −Q(s, a; θ)2] (2.13)

The loss function L is computed using mini batches of training data uniformly sampled
from a fixed size queue D named replay buffer which stores experience tuples (s, a, r, s′)
of the most recent agent-environment interactions and allows the agent to learn on past
experiences. This is a technique named experience replay and is the solution found to solve
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the catastrophic forgetting phenomenon, where a neural network learning from new data
with minibatch gradient descent (or SGD) corrupts old learned parameters, resulting in the
network becoming stuck in poor local minima or diverging. Additionally, DeepMind also
observed instabilities during training due to correlations between the Q-value and the target
y. This network is called the target because when minimizing the MSE loss in Equation 2.13
the Q approaches the y. Problematically, the target y depends on the same parameters θ
being trained (using Q to calculate it), which makes the optimization of this loss function
unstable. This was solved in Deep Q-learning by computing y using a second target network
parameterized by θ−, which is a copy of network Q periodically updated at a fixed number
of iterations.

The Q-learning algorithm is known to overestimate action values due to the max operation
performed to compute the target y, which may negatively affect its performance relating to
the convergence and the resulting policies. This same problem was also observed in the
DQN algorithm. A solution, originally proposed in a tabular setting, is shown to work with
arbitrary function approximation and applied to DQN in [13]. The authors termed this new
algorithm Double DQN. In the standard DQN, the max operator uses the same value to select
and evaluate an action. Instead, in Double DQN two Q-value functions are used to decouple
the selection from the evaluation when computing the target y. The second value function
is often the already available target network. This works by using one network to greedily
select the action and another to determine its value, as expressed in Equation 2.14.

y = r + γQ(s′, argmax
a′

Q(s′, a′; θ); θ−) (2.14)

2.2.3 Policy Gradient Methods

In value function approximation methods the learned function is used to derive the policy,
for example, by greedily choosing the action with the highest Q value. In Policy Gradient
Methods, the policy π is explicitly represented as a DNN. Through various techniques, this
policy network is then optimized, using gradient descent, to increase the probability of highly
rewarded actions. This has an interesting property: it is applicable to tasks with continuous
action spaces by outputting either a single value deterministically or the mean and variance of
a continuous probability distribution. This solves the problem of having to learn the Q values
for an infinite number of actions. The latter case, taking actions according to a probability
distribution, can also be beneficial in problems where a complete state representation is not
available and the optimal policy is stochastic.

REINFORCE

The REINFORCE algorithm is often considered the simplest implementation of a policy
gradient method. It is a model-free, on-policy algorithm and since all updates are done with
respect to a previous episode rollout, it is also classified as a Monte Carlo algorithm. It
consists of using a model, such as DNN, to represent the policy πθ which is differentiable with
respect to its parameters θ. For this policy the performance objective function is defined as:

J(θ) = vπθ(s) (2.15)

where vπθ is the true value function of πθ. The objective is to maximize the performance
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of the policy, which means increasing the expected return vπθ for a given state. To this end,
the parameters are updated through gradient ascent using the following gradient vector:

∇J(θ) = Eπ[Gt∇ln(π(At|St, θ))] (2.16)

The expression in brackets is a quantity that can be sampled at each time step whose the
expectation is equal to the gradient ∇J(θ). After an episode rollout obtained following π, for
each time step the returns Gt are calculated using a given discount factor γ to be used in the
following update rule:

θ ← θ + αGt∇ln(π(At|St, θ)) (2.17)

These updates are done with SGD (or minibatch gradient descent for one or multiple
rollouts) using a gradient vector that points to a direction (in parameter space) that increases
the probability of taking an action At when in a given state St. This gradient vector has a
magnitude proportional to the return Gt observed, hence reinforcing actions that experienced
positive subsequent rewards and penalizing actions that lead to negative rewards (by gradient
descent).

Advantage Actor-Critic

A generalization of the update rule in Equation 2.17 is to replace the term Gt by a
comparison to an arbitrary baseline b(St). This takes the form expressed in Equation 2.18.

θ ← θ + α(Gt − b(St))∇ln(π(At|St, θ)) (2.18)

Baselines can have a great effect on reducing the variance of the update value and result
in better stability and speed ups in learning. A baseline should be a function of the state in
order to discern high value actions in states where all actions are high value and the same
for low value states. A commonly used baseline is a learned estimate of the value function
b(St) ≈ V π(St). The quantity Gt − b(St) is then an estimate of the advantage function
A(At, St) = Q(At, St) − V (St) where Gt can be seen as an estimate of the Qπ and b and
estimate of V π. The advantage expresses how much better or worse an action was compared
to the expected value V for a particular state.

The Advantage Actor-Critic (A2C) algorithm is a synchronous, deterministic implemen-
tation of the earlier Asynchronous Advantage Actor-Critic (A3C) [14]. These algorithms are
on-policy and use the Actor-Critic method (summarized in Figure 2.6) where a value function
approximator parameterized by θV (critic) is trained alongside the policy parameterized by
θµ (actor), often sharing some network parameters. The critic, as the name suggests, criti-
cizes the policy’s selection of actions by means of learning the state value function which is
then used to compute the advantage. The resulting parameter update is expressed as:

θµ ← θµ + αA(At, St, θ
V )∇ln(π(At|St, θµ)) (2.19)

On the other hand, the critic is optimized using a MSE loss function with the returns Gt
as a target. A2C performs synchronous updates by waiting for all the parallel agents to run a
predefined number of environment time steps before using the collected experience to compute
the gradient, unlike A3C where agents asynchronously update the shared parameters. The
latter was thought to have a regularization or exploratory effect but A2C has shown to be
better in many aspects.
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Figure 2.6: The actor-critic architecture using the advantage estimate in the optimization of
both the actor and critic networks.

Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) [15] is a model-free, off-policy Actor-critic
algorithm which simultaneously learns a Q-function and a policy function using Deep Neural
Networks. It is suited for tasks with continuous actions spaces and high dimensional states.
The Actor-critic method used in DDPG is composed of: a policy network known as actor ;
and a Q-function network known as critic. The actor µ is a deterministic policy π(s) 7→ A
which outputs a single action value given a state (as opposed to the stochastic policy which
returns a probability distribution over the actions π(s) 7→ Pr(A|s)). The critic Q evaluates
the actor’s actions and learns to estimate the respective policy’s Q-values. DDPG is based on
the Deterministic Policy Gradient (DPG) presented in [16]. In this work, the authors derived
the policy gradient with respect to the actor’s parameters θµ:

∇θµJ ≈ Est∼ρβ [∇θµQ(s, a|θQ)|s=st,a=µ(st,θµ)
]

= Est∼ρβ [∇aQ(s, a|θQ)∇θµµ(s|θµ)|s=st,a=µ(st) ]
(2.20)

where the critic function is parameterized by θQ and the actor function by θµ. By adjusting
the actor’s parameters following this gradient one will increase the critics Q-value. Similarly to
DQN, the networks in DDPG make use of an experience replay buffer and target networks (one
for each: policy and Q) to address the issues of convergence and instability during training.
The critic network Q is trained to approximate maxaQ(s, a) ≈ Q(s, µ(s)) using the policy µ
and the reward together with the Bellman equation to define targets for optimization, as in
DQN. The deterministic policy network µ is trained with the goal of choosing the action which
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maximizes the Q network output. To this end, the policy network is trained by performing
gradient ascent using the gradient of the following loss function with respect to θµ:

J =
1

|B|
∑
s∈B

Q(s, µ(s|θµ)|θQ) (2.21)

which is Equation (2.20) where the expectation is approximated by computing the mean
across a sampled minibatch B. Instead of the target networks’ parameters θ′ being copied
at fixed rate, like DQN, they are updated continuously after processing each minibatch by
polyak averaging :

θ′ ← τθ + (1− τ)θ′, for τ � 1 (2.22)

To address the problem of exploration during training which arises from using a deter-
ministic policy, noise is added to the actions. In the DDPG paper this noise is sampled from
a Ornstein-Uhlenbeck process, but other options such as zero mean Gaussian noise have been
shown to work.

2.3 Related Work

Continuous control tasks are regularly used to benchmark new DRL algorithms due to
their complexity and often high state and action space dimensions [6][17][15]. Some commonly
used benchmarks are the OpenAI Gym’s [18] 2D and 3D robots (simulated using the MuJoCo
physics engine [19]) and RLLab [20], a framework that includes a wide variety of continuous
control tasks. The tasks in these benchmarks range from bipedal locomotion of humanoids-like
agents to in-hand object manipulation [21].

Given the application of DRL to continuous control, robotic manipulation presents many
opportunities for these algorithms to be employed in the real world. An overview of DRL for
robotic manipulation can be found in [22] and [23]. These robotic manipulation tasks have
been the focus of previous work [24][25][26][27] and are distinguished based on: the sensory
input, which can be proprioceptive and contain visual information; the robot and the number
of controllable degrees of freedom (DoF); and whether it is done in simulation or with a real
robot (or both).

Lopez et al. [28] proposed a new version of an RL toolkit named gym-gazebo2, that is
based on ROS2 and Gazebo. The first version had already been successfully used by multiple
research laboratories and with this work the authors intended to improve it. Gym-gazebo2
consists of a real or simulated robot which is controlled by an agent via an OpenAI Gym en-
vironment layer with ROS2 as a middleware for communication. To showcase its application,
the Proximal Policy Optimization (PPO) algorithm was applied to 4 different versions of a
reaching task for a single goal position, using the 6 DoF Modular Articulated Robotic Arm
(MARA) from Acutronic Robotics, to replace traditional path planning techniques. The 4
versions are differentiated by what the reward is based on: the distance to the target of the
end effector; the distance and orientation of the end effector; distance of the end effector and
collision; distance and orientation of the end effector and collision. In this work, only the
position of the end effector is specified to be the state used by the agent and the actions are
joint positions between [−π, π]. In all versions of the task the agent successfully learned a
reaching motion consistently achieving average errors below 10 mm. However, in this work
the goal positions are limited to the one the agent was trained on.
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A more generic application of DRL to reaching tasks is presented in [4]. Here, the authors
apply DRL in order to learn a joint space controller to map a target position to joint angles.
The proposed Joint Action-space Learned Reacher (JAiLeR) approach consists of a policy
network trained using PPO which uses a state containing the joint positions q, velocities q̇
and the Cartesian space error δx between the end effector and the target position. The policy
then outputs actions in joint space in the form of joint velocities q̇d which are subsequently
integrated to joint positions qd and sent to a proportional-derivative (PD) controller mapping
it to joint torques τ . An overview of this approach is depicted in Figure 2.7.

Figure 2.7: Architecture of JAiLeR, image from [4]

Additionally, Kumar et al extend the reaching task to have an obstacle avoidance element.
To this end, the state representation is enhanced to also have n vectors, one for each of the
n links, representing the vector made of the two closest points between the surface of a link
and any object in the world. The reward is shaped to reduce the end effector to goal error,
penalize both high effort solutions and distances between the links and objects bellow a defined
threshold of 5 cm. A reaching policy was then trained for the Kinova Jaco 6 DoF manipulator
with 40 parallel actors and afterwards tested on randomly sampled goals, achieving distances
to the goal of less than 1.0 cm for 96.5% of evaluations and an average error of 0.4 cm, which
is comparable to other velocity-based controllers.

In [29] Aumjaud et al. defined an experimental procedure to benchmark model-free DRL
algorithms and applied it in the context of robotic reaching tasks. The authors trained a set
of state-of-the-art DRL algorithms in two simulated environments where an agent controls the
WidowX MKII 6 DoF manipulator with joint position commands. Afterwards the resulting
policies are tested for average return over 100 episodes, train time, the success ratio and reach
time for different thresholds (50 mm, 20 mm, 10 mm and 5 mm) both in simulation and with
a real robot to evaluate its generalization to physical systems. These environments define two
variations of a reaching task where the robot has the same initial joint positions and the goal
is either constant across all episodes (fixed goal) or randomly sampled for every new episode
(random goal), both always within reach of the robot. The environment is simulated in the
PyBullet physics engine and implemented with OpenAI Gym. An increase in difficulty is
observed from the fixed goal to the random goal settings. In the environment with the fixed
goal multiple agents achieved 100% success rate. For the random goal fewer agents managed
to learn a successful policy and the best performing were the off-policy algorithms which used
a sample augmentation technique termed Hindsight Experience Replay (HER) [30] achieving
a maximum success rate of 67%.
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Chapter 3

Materials and Methods

This chapter presents the materials and methodologies used in this dissertation to solve
the proposed robotic manipulation tasks. The chapter is composed of three parts: Section 3.1
justifies the choice of software tools and describes their functionalities; Section 3.2 discusses
the implementation details and results obtained in developing DRL agents to solve three
classic RL problems; and Section 3.3 presents the definition of the chosen robot manipulator
reaching tasks, the algorithms used to solve them and the metrics used in evaluating the
resulting agents.

3.1 Software Tools

The following section presents the software tools used for the implementation of the reach-
ing tasks, the DRL agents and their respective training: Section 3.1.1 presents the OpenAI
Gym RL framework; Section 3.1.2 describes the operation of the robo-gym toolkit used to sim-
ulate the reaching tasks; Section 3.1.3 describes the PyTorch tensor library for Deep Learning
which contains automatic gradient calculation features used to implement and train DNNs;
Section 3.1.4 presents the Stable Baselines3 DRL library; Section 3.1.5 presents the Ray Tune
hyperparameter optimization library used to improve the agent’s learning.

3.1.1 OpenAI Gym

OpenAI Gym [18] is an open source RL research toolkit which standardizes an interface
for Reinforcement Learning tasks. It offers a set of default tasks, referred to as environ-
ments (some are depicted in Figure 3.1), used for developing and benchmarking RL algo-
rithms. These environments follow commonly defined interface of interaction and behave as
an episodic MDP: at each time step the agent performs an action and receives a reward and
a new observation (state). The following snippet of Python code illustrates the usage of the
Gym’s environment (env) interface alongside an agent object:

import gym
env = gym . make( ’ CartPole−v0 ’ )
obse rvat i on = env . r e s e t ( )
done = False
while not done :

ac t i on = agent . p r e d i c t ( obse rvat i on )
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observat ion , reward , done , i n f o = env . s tep ( ac t i on )
env . c l o s e ( )

Initially, the env.reset function is called in order to setup the environment on a new
episode and returns its initial observation. In this case, the environment runs a single episode
until it reaches some terminal state. While the episode is not over, the agent (implemented
by the user) chooses an action based on the previous observation. The env.step function is
then called to progress the environment to the next time step by running the action chosen
by the agent. The env.step function then returns 4 values:

• observation - an object representing the next state

• reward - a float number rewarding the previous action

• done - a boolean flag indicating the termination of the episode

• info - a python dictionary containing diagnostic and debugging information

(a) Acrobot-v1 (b) BipedalWalker-v2

(c) CartPole-v1 (d) MountainCar-v0

Figure 3.1: Four default environments provided by OpenAI Gym.

An abstraction exists only for the environment and not for the agent, as long as the agent
produces an action compatible with the env.step function. This constraint is defined for each
environment in the form of a Space. An environment’s implementation defines an action
space and observation space describing the format of valid actions and observations. A space
can be discrete, in which case it is specified by an integer number (e.g., 5 different actions),
or continuous defined as an n−dimensional real space Rn where each dimension can have
different bounds or be unbounded. Other space representations exist derived from these two.

22



The following code listing contains an example of creating these two type of spaces where
the discrete space1 defines the set {0, 1} of possible values and the continuous space2 defines
a two dimensional space where the first dimension takes values in [−1.0, 2.0] and the second
dimension in [−2.0, 4.0].

import gym
import numpy as np
space1 = gym . spaces . D i s c r e t e (2 )
l = np . array ( [ −1 .0 , −2 .0 ] )
h = np . array ( [ 2 . 0 , 4 . 0 ] )
space2 = gym . spaces . Box( low=l , high=h)

3.1.2 Robo-gym

The simulation of the reaching tasks’ environment is based on the open source toolkit
robo-gym [5]. Robo-gym defines a framework to help create OpenAI Gym environments for
real or simulated robots, while being language agnostic regarding the backend used to develop
them. This was the simulation tool chosen for this dissertation due to: (i) being flexible and
extensible; (ii) using Gym as a top level interface for the agent’s interaction with the envi-
ronment; (iii) providing already existing implementations of environments for several tasks;
(iv) using the ROS (Robot Operating System) [31] framework for the robot’s programming
and Gazebo [32] as a robotics simulator (both popular throughout the robotics community).
ROS is an open source middleware suite containing a set of software libraries and tools useful
to build robot applications. Although not a real operating system, it includes functionali-
ties usually present in one, such as: hardware abstraction; low-level device control; package
management; and message-passing using its communication infrastructure. The communica-
tion is done by remote procedure call services, asynchronous streaming of data over topics
using a Publish-Subscribe pattern and data storage on a Parameter Server. The following is
a summary of the main features of robo-gym:

• Integration of multiple commercially available industrial robots.

• Built-in distributed capabilities, which allow the use of distributed algorithms and hard-
ware, making it scalable.

• Easier transfer from training in simulation to real world robots, in part because of ROS.

• Use of gRPC1 as a communication layer between Gym’s front end and the robot’s back-
end implementation, allowing for the development of robots using different programming
languages (supported by gRPC).

• Using the OpenAI Gym interface, which is the standard for modern RL research.

• Open source project2: it is easily extended and can be used without licensing costs.

1A remote procedure call (RPC) framework, https://grpc.io/docs/what-is-grpc/faq/
2https://github.com/jr-robotics/robo-gym
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Framework Architecture

Robo-gym is structured in a distributed architecture where the agent interacts with a
standard Gym environment which then communicates, using gRPC messages, with a Robot
Server which may be running in a separate machine. This architecture, shown in Figure 3.2,
is made of seven main components:

1. Real or Simulated Robot - This includes the robots and sensors implemented in
ROS, and the simulated Gazebo scenes.

2. Command Handler - ROS node responsible for publishing command messages to the
robot’s actuator topics at a defined robot-actuation rate. Receives command messages
from the ROS Bridge on a queue of size one. When the queue is empty, it publishes a
command to interrupt the movement. The implementation is specific to each robot.

3. Robot Server - An instance of a gRPC server that contains a single ROS Bridge
Python object through which it interacts with a single robot. It handles the gRPC
messages received from the Environment and calls functions in the ROS Bridge accord-
ingly.

4. ROS Bridge - Python Class specific to each robot responsible for mediating the interac-
tion between the Robot Server and the real or simulated robot, through ROS messages.
It gathers sensor information using various callbacks and stores it for when requested
(e.g., get the current state of the robot). It also publishes command messages to the
Command Handler. All this through function calls made by the Robot Server.

5. Server Manager - A gRPC server (usually one per machine) responsible for managing
the Robot Servers and the simulations. This includes instantiating, termination and
error handling for automatic restarts.

6. Environment - OpenAI Gym Env class implementing the hidden dynamics required to
expose the standard environment interface. It works by sending/receiving information
(through gRPC messages) to/from a Robot Server or a Server Manager.

7. Agent - The RL algorithm interacting with the Environment.

In order to understand the agent-environment interactions at each time step and describe
the real time behaviour of robo-gym, it is necessary to discern the different time intervals
of each component. The action cycle time is the time between any two consecutive actions
sent by the Agent (referred in this dissertation more often as action cycle rate (ACR)). The
robot-actuation cycle time is the time between commands sent to the robot’s controller by the
command handler, which can be smaller than the action cycle time. The action generation
time is the time required for the agent to produce an action upon receiving a new state. The
sleep time is the difference between the action cycle time and the action generation time, and
constrains the rate at which the agent can send actions. The relation between these intervals
and the ordering of events is depicted in Figure 3.3.
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Figure 3.2: Robo-gym architecture, image from [5]

Figure 3.3: Robo-gym interaction between agent and robot server, image from [5]

UR10

Amongst the available robots in this version of robo-gym (MiR 100 and some Universal
Robots) the one used in this dissertation is the UR103 collaborative robot (see Figure 3.4).
Known for its ease of use and robustness, the UR10 is a 6 DoF robotic arm intended to work
besides humans on more repetitive tasks which has experienced an increase of use in research
and industrial applications. It has a maximum range of 1300 mm, repeatability of 0.1 mm
and a Tool Center Point (TCP) speed limit of 1 m/s. Remaining relevant specifications are
listed in Table 3.1.

3https://www.universal-robots.com/media/50880/ur10_bz.pdf
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Attribute Value
Weight 28.9 kg
Payload 10 kg
Reach 1300 mm

Repeatability 0.1 mm
Joint ranges +/- 360º

Joint Max Velocity
Base 120º/s

Shoulder 120º/s
Elbow 180º/s
Wrist 1 180º/s
Wrist 2 180º/s
Wrist 3 180º/s

Table 3.1: UR10 specifications
Figure 3.4: UR10 robot in Gazebo
simulation

3.1.3 PyTorch

PyTorch is an open source tensor library used mostly for Deep Learning. In this context,
tensors are a type of data structure generally defined as n-dimensional matrices where n is
referred to as the rank or, in other words, the number of indices required to index a number
in a tensor. At the core of Deep Learning are neural networks which are often implemented
as matrices and matrix operations. This, along with the formulation of many Deep Learning
problems, makes training neural networks highly parallelizable, and consequently faster by
using specialized hardware or Graphics Processing Units (GPU). PyTorch is one of multiple
libraries which provide a high-level abstraction to perform tensor operations optimized both
for GPUs and Central Processing Units (CPU). More interestingly, it also provides an array
of functionalities to define neural networks and train them using its automatic differentiation
system named autograd together with various implementations of gradient based optimization
algorithms (torch.optim).

Computational graph

Similarly to other Deep Learning libraries, PyTorch makes use of computational graphs
for computing gradients. A computational graph is a Directed Acyclic Graph (DAG) used
to store a history of all operations performed on input data and its intermediate results. It
represents a function (mathematical expression) as a sequence of operations done on input
tensors, which are the leaves of this graph, resulting in output tensors, which are the roots.
For example, consider the following expression for the case of 0-rank tensors (scalar values):

z(a, b) = c.a2 + b (3.1)

This function takes two real numbers, a and b, and outputs a single real number param-
eterized by a constant c. The computational graph of this expression can be represented by
the graph in Figure 3.5, where each node is a tensor. Some nodes are tensor variables while
others represent tensor results of operations.
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PyTorch defines computational graphs in run time as a forward pass (sequence of op-
erations) is executed, which makes it a dynamic computational graph. In contrast, static
computational graphs are those which are defined previously before execution (as used in
TensorFlow4).

Figure 3.5: Computational graph of example expression

Autograd

As an expression is being executed, the PyTorch’s automatic differentiation system (au-
tograd) builds a computational graph by creating a Function object for each operation. This
Function object defines how to compute an operation’s tensor outputs from tensor inputs (for-
ward method) and how to compute its gradient with respect to the tensor inputs (backward
method) from the gradient of some other function with respect to the output tensors.

After the forward pass, calling the backward method on a root node will compute the
gradient of this root tensor with respect to the graph leaves. The graph is then processed
in reverse order by calling the backward method of each Function object and passing the
resulting gradient to the next Function objects. This is an implementation of the back-
propagation algorithm, which relies on the chain rule. The resulting gradients can then be
used in conjunction with an optimizer to, for example, minimize a loss function in a supervised
learning problem.

3.1.4 Stable Baselines3

Different implementations of the same Reinforcement Learning algorithm (and often the
same implementation) can have vastly distinct performances in a given task. This becomes
an issue when attempting to evaluate a new algorithm and comparing it with existing ones.
An improvement in performance of the new algorithm might be due to the use of unreliable
and poorly optimized baselines in the comparison.

In an attempt to solve this problem and allow for easier replication of results and easier
development of new algorithms, OpenAI Baselines5 was released in 2017. This is a Python
framework containing a set of high-quality TensorFlow implementations of RL algorithms
whose performance was matched with previously published results.

Subsequently, in 2018 the Stable Baselines6 fork of OpenAI Baselines was released. This
version, now referred to as SB2, is focused on simplicity of use and consistency by providing

4TensorFlow is another machine learning library like PyTorch (https://www.tensorflow.org/)
5https://github.com/openai/baselines
6https://github.com/hill-a/stable-baselines
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new algorithms, improved code, bug fixes, a common interface for every algorithm, and other
additional functionalities.

The SB2’s dependency on OpenAI Baselines and the release of TensorFlow 2 deprecating
some of its initial codebase, motivated a rewrite of Stable Baselines into a new version using
PyTorch: Stable Baselines3 (SB3) [33] which had its first major release in early 2021.

This is the library used in this dissertation for the implementation and training of DRL al-
gorithms. It contains implementations of state-of-the-art on-policy and off-policy algorithms
such as: Advantage Actor Critic (A2C), Deep Deterministic Policy Gradient (DDPG), Deep Q
Network (DQN), Hindsight Experience Replay (HER), Proximal Policy Optimization (PPO),
Soft Actor Critic (SAC) and Twin Delayed DDPG (TD3). Its functionalities include saving
and loading models; callbacks for monitoring learning and evaluating the models; Tensor-
Board7 support for plotting training curves and other custom metrics; custom network archi-
tectures; and vectorized environments support for parallelized training. More importantly,
SB3 is fully compatible with the OpenAI Gym’s environment interface.

3.1.5 Ray Tune

Hyperparameter optimization is an important step in model selection to increase perfor-
mance in Machine Learning problems. Ray Tune [34] is an open source library for automatic
hyperparameter optimization which offers many cutting-edge black-box optimization algo-
rithms and allows them to be executed distributedly across multiple machines.

Using this framework consists of defining a hyperparameter Search Space and choosing a
Search Algorithm and/or Trial Scheduler. The Search Algorithm provides a configuration of
hyperparameters, taken from the Search Space, to run on the next trial. This configuration
can be random, be part of a brute-force grid search or based on previous observed performance.
The Trial Schedulers can be paired with a Search Algorithm and provide functionality to
decrease search time based on performance metrics. Namely, it allows for early termination
of bad trials, pausing trials, cloning trials and altering hyperparameters of a running trial.

Additionally, Ray Tune provides many checkpointing (within experiments and trials) and
logging functionalities, making the search easily monitored and resistant to hardware or soft-
ware failures.

3.2 DRL for Simple Problems

In order to become more familiarized with the tools and details of developing RL agents,
three algorithms were implemented and explored more in depth: Q-learning, Deep Q-learning
and DDPG. For each of these algorithms, an example problem was used to evaluate its ap-
plication. Each successive algorithm tries to solve the limitations of the previous one when
applied to a more complex environment. This section presents the implementation details
and results obtained in the process of developing these agents with the goal of illustrating
the use of each algorithm and learning about some practical aspects of DRL. Initially, tab-
ular Q-learning, a classic RL algorithm, is applied to a Gridworld problem (Section 3.2.2).
Afterwards, the state representation of the same Gridworld problem is changed to be high
dimensional and is solved using an agent based on the Deep Q-Learning DRL algorithm (Sec-
tion 3.2.3). Finally, the continuous control pendulum swing-up problem is solved using the

7TensorBoard is a metrics visualization tool (https://www.tensorflow.org/tensorboard)

28

https://www.tensorflow.org/tensorboard


DDPG algorithm (Section 3.2.4). This allows to arrive at an appropriate class of algorithms
capable of solving problems with high dimensional and continuous state/action spaces.

3.2.1 Gridworld

Gridworld is often used as a toy environment to illustrate the application of RL algorithms
since it can be easily modeled as a finite MDP. A simple engine for a version of the Gridworld
game was developed using Python. The Gridworld environment used in the next examples
(depicted in Figure 3.6) is composed of a 10 × 10 board with two obstacles (black) and the
origin (0,0) at the top left corner. The agent (blue) and the goal (yellow) are placed in
different positions on the available free space. An agent’s objective is to navigate the board
avoiding the obstacles and reaching the goal through the shortest path possible within a fixed
number of steps (the maximum episode length is 1000 steps).

Figure 3.6: A Gridworld board

Assuming a board with no obstacles and a static goal, the state space dimension is |S| =
10×10−1 = 99, where each state can be represented as tuple s = (xagent, yagent) corresponding
to the position of the agent on the board. With a random goal position, the state is a
tuple with 4 components, which results from adding the position of the goal to the previous
tuple s = (xagent, yagent, xgoal, ygoal). In this case, and with no obstacles, the state space
dimension is |S| = (10× 10)× (10× 10− 1) = 9900. For the board used in the next examples
(Figure 3.6) the obstacles occupy k = 10 cells, thus the resulting state space dimension is
|S| = (10× 10−k)× (10× 10− 1−k) = 8010. At each time step of the Gridworld game loop,
the agent receives an observation of the environment as a state s ∈ S, takes an action a ∈ A,
where A = {up, down, left, right} is the action space, and receives a reward r. The reward r
is computed according to the following function:

R(xagent, yagent) =

{
10, if (xagent, yagent) = (xgoal, ygoal)

−1, otherwise

3.2.2 Solving Gridworld with Tabular Q-learning

In Chapter 2, Q-learning is presented as a TD control algorithm that learns the optimal
policy π∗ by learning the optimal Q-value for each state-action pair. The following example
aims to train an agent to solve Gridworld by learning a tabular Q-function. This Q-function
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is implemented as a lookup table of values with an entry for each state-action pair which are
updated, according to the rule in Equation 2.10, as the agent explores. Solving the Gridworld
problem means solving one of three different scenarios regarding the position of the agent and
goal: a) static agent and goal; b) random agent and static goal (or vice versa); c) and random
agent and goal. This example solves the third scenario c), hence the values in the lookup
table are indexed using the state representation (xagent, yagent, xgoal, ygoal) which is enough to
uniquely identify all configurations of an agent and goal. The algorithm used for training the
agent is shown below (Algorithm 3).

Considering the objective of learning to move from the initial agent position to the goal
for all possible starting states, the agent is set to learn in M = 10000 episodes. After selecting
a random starting state, the episode advances in the while loop where the Q table is updated.
The episode ends if the maximum number of steps for an episode is reached or the agent finds
the goal. The learning rate α was chosen empirically: if it is too small the convergence time
increases, but it must be small enough to converge. The λ parameter must only be greater
than 0, otherwise it is only learning to predict the −1 reward for taking a step. The values
for all hyperparameters used are listed in Table 3.2.

Algorithm 3 Algorithm for training the agent with tabular Q-learning

1: Initialize Q table with 0 values
2: for episode = 1,M do
3: Randomly sample a starting state s0 = (xagent, yagent, xgoal, ygoal)
4: t← 0 . Episode step
5: win← false
6: while t < L and win = false do
7: With probability ε select a random action at
8: Else select action with at = argmaxaQ(st, a)
9: Take action and observe reward rt+1 and next state st+1 from Gridworld engine

10: if st+1 is the win state then
11: win← true
12: Update the Q table according to the rule
13: Q(st, at)← Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]
14: t← t+ 1

15: if ε > εmin then
16: ε← ε− 1/M

A variation of ε-greedy strategy is used in Algorithm 3 which includes one additional
factor: ε is decremented linearly at the end of each episode by 1/M until a minimum value
εmin is reached. This has the effect of having the agent explore earlier in the training process
and, eventually, turn to exploiting near the end. As a result, this decreases training time as
episodes become shorter (due to acting greedily) at the cost of potentially losing accuracy
of the Q-value estimates by not visiting every state as often (which was observed not to be
a problem in this case). After the 10000 episodes of training the agent was tested on all
board configurations which resulted in two performance measures: 94.0% win rate and 75.4%
optimal path rate. A win is defined as reaching the goal within 50 steps. The optimal path rate
measures the ratio of winning games in which the total number of steps are equal to the length
of the optimal path. This optimal path length is computed using the Manhattan distance
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which, given the obstacles, is not correct for some episodes but is still useful for comparing
different policies. The resulting learned policy, considering a goal in position (8,8), is depicted
in Figure 3.7 where the arrows represent the action with the highest Q-value for each cell.
To illustrate the learning progress, the graph in Figure 3.8 shows the of number of steps per
episode taken by an agent as it learns to move from position (0,0) (top left) to (9,9) (bottom
right) in a 10× 10 board with no obstacles. Initially, with a high value of ε the agent mainly
explores, often reaching the maximum number of steps in the first 100 episodes. As the agent
learns and ε decreases, the learning becomes clear as it approaches the optimal path length
of 18 steps.

Figure 3.7: Learned policy visualized for a
fixed goal

Figure 3.8: Steps as agent trains for one
initial configuration

Although the trained agent performed reasonably well given the number of episodes,
tabular Q-learning is limited to MDPs such as this version of Gridworld where the state
and action spaces are discrete and small. Tabular methods are generally not applicable to
RL tasks where state and action spaces are big. For example, tasks involving images as
state representations with hundreds of pixels and continuous actions spaces where the range
is too big to be discretized without significant loss of resolution. The consequent problems
that arise from applying tabular methods to these tasks are: tables which occupy large
memory space and the impossibility of accurately updating all of the possible state values.
The next section presents RL methods that leverage supervised learning to replace tables
by function approximation techniques. This allows for the application of RL to tasks with
high-dimensional state spaces and continuous action spaces.

Hyperparameter Value Description
α 0.6 learning rate
γ 0.99 discount factor
ε 1.0 initial exploration parameter

εmin 0.1 minimum exploration parameter
M 10000 number of episodes
L 1000 maximum episode length

Table 3.2: Hyperparameters used for training the tabular Q-learning agent
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3.2.3 Solving Gridworld with DQN

To exemplify the application of Deep Q-learning to tasks with high-dimensional state
spaces, the previous Gridworld problem described in Section 3.2.1 was changed to have the
state representation be a 2× 10× 10 tensor. This tensor is two 10× 10 matrices with one-hot
encoding (all zeros and a single 1) of the position of the agent and goal to which random noise
was added. An DQN agent was then implemented using PyTorch and trained to solve this new
version of the Gridworld problem with a random agent and goal. Similarly to DeepMind’s
Atari 2600 agent [12], this implementation also makes use of a replay buffer and a target
network to improve the DQN performance.

The two one-hot encoding matrices are flattened and stacked to produce a 200 dimen-
sional vector which consists of the input layer. The hidden layers are two fully connected
layers with ReLU activation of 150 and 100 neurons. The output layer is a fully-connected
linear layer with 4 neurons: one for each action. The algorithm implementation is summa-
rized in Algorithm 4. The hyperparameters observed to have the most weight in the agent’s
performance and learning were the replay buffer size N (the maximum number of stored
past experience tuples) and target network update frequency C (the rate at which the target
network is updated). The set of hyperparameters used for the following results are in Table
3.3.

Algorithm 4 Algorithm for training the DQN agent

1: Initialize Q network with random parameters θ
2: Initialize target Q̂ network by copying parameters θ− ← θ
3: Initialize replay buffer D with size N
4: for episode = 1,M do
5: Randomly sample a starting state s0 = (xagent, yagent, xgoal, ygoal)
6: t← 0 . Episode step
7: win← false
8: while t < L and win = false do
9: With probability ε select a random action at

10: Else select action with at = argmaxaQ(st, a)
11: Take action and observe reward rt+1 and next state st+1 from Gridworld engine
12: if st+1 is the win state then
13: win← true
14: Add experience (st, at, rt+1, st+1) to replay buffer D
15: if number of stored experiences in D ≥ k then
16: Sample minibatch of k experience tuples (sj , aj , rj+1, st+1) from D
17: Set respective targets yj = rj+1 + γmaxa′ Q̂(sj+1, a

′; θ−)
18: Perform gradient descent with (yj −Q(sj , aj ; θ))

2 and gradient clipping [-1,1]
19: if t mod C = 0 then
20: Copy Q parameters to Q̂ by θ− = θ

21: t← t+ 1

22: if ε > εmin then
23: ε← ε− 1/M
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To illustrate the effect of using the replay buffer and the target network, different versions
of the DQN agent were set to learn different Gridworld scenarios regarding the position of
the agent and goal. Firstly, a vanilla DQN (without replay buffer or target network) agent
in a static version of the same Gridworld board: agent starting position at (0,0) and goal at
(9,9). The resulting loss after only 3000 episodes of learning is depicted in Figure 3.9, where
the loss is clearly approaching zero.

Figure 3.9: Vanilla DQN: static agent and goal

The instability and divergence problems described in DeepMind’s work become obvious
when attempting to train the same vanilla DQN agent on the scenario of a random agent and
goal position. As shown in Figure 3.10, the loss does not decrease and the agent displays the
catastrophic forgetting phenomenon (detailed in Section 2.2.2) resulting in not learning.

Figure 3.10: Vanilla DQN: random agent and goal

After implementing the experience replay buffer and the target network, the agent began
to learn as seen by the downward trend of the loss function in Figure 3.11 (although not as
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prominent as in Figure 3.9). This final agent was evaluated with the same performance tests
as the tabular version in Section 3.2.2 resulting in: 97.8% win rate and 57.4% optimal path
rate.

Figure 3.11: DQN with replay buffer and target network: random agent and goal.

As described previously, Deep Learning enables the application of RL algorithms, such
as Q-learning, to tasks with high-dimensional state spaces. Nevertheless, the action space is
still limited to low-dimensional and discrete actions spaces. Some problems require having
continuous control where the actions are real valued and high-dimensional. These problems
cannot be directly solved with a DQN without first discretizing the action space, which often
leads to an enormous number of actions. The next subsection presents a different approach to
learning a policy without directly using action-value functions. This approach still leverages
DNNs for feature learning of the state space and uses many of the strategies employed to
achieve stability in a DQN, and can also be applied to problems requiring continuous actions.

Hyperparameter Value Description
α 0.0001 learning rate
γ 0.8 discount factor
ε 1.0 exploration parameter

εmin 0.1 minimum exploration parameter
k 32 minibatch size
N 50000 replay buffer size
C 10000 target network update frequency
M 10000 number of episodes
L 100 maximum episode length

Table 3.3: Hyperparameters used for training the DQN agent
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3.2.4 Solving the Pendulum Swing-up with DDPG

The pendulum swing-up is a classic control problem. The goal is to swing up a frictionless
pendulum using a single actuated joint in order for it to stay upright. The version used
here (depicted in Figure 3.12) is an implementation part of the default set of environments
provided in OpenAI Gym.

Figure 3.12: Gym’s Pendulum-v0 environment

The pendulum environment is characterized by a state vector with 3 components: cos(θ)
∈ [−1, 1]; sin(θ) ∈ [−1, 1]; and the angular velocity ω ∈ [−8, 8]. The action vector is a single
component: joint effort (torque) x ∈ [−2, 2]. The reward function is:

R(θ, ω, x) = −(θ2 + 0.1× ω2 + 0.001× x2) (3.2)

where θ is the angle of rotation. Each pendulum episode begins with random starting angle
θ ∈ [−π, π] and a random angular velocity ω ∈ [−1, 1] and ends within a configured number
of steps.

A DDPG agent was implemented using PyTorch to solve the Gym’s Pendulum-v0. The
Algorithm 5 summarizes the agent training. Due to the noise added for exploration, the
resulting action is clipped to the environment’s maximum and minimum action values. The
experience tuples stored in the replay buffer have one additional element: the ”done” flag
d, which is used to compute the targets such that y = r for transitions in which the agent
reaches a terminal state.

This implementation is structured into four networks: actor µ and critic Q and their
respective target networks. The actor is composed of a single hidden linear layer of 50 neurons
with ReLU activation followed by a linear output layer with 3 neurons (action). The output
of this network is passed to a tanh activation function, which maps it to [−1, 1], and is then
multiplied by the maximum action value of 2. The critic network has two hidden linear layers
of: 50 and 53 neurons with ReLU activation. The second hidden layer takes as input the
activations of the first hidden layer (50) and the action from the actor (3). This allows the
critic to learn a state representation separately from the Q-function using the action. Finally,
the output layer is a single neuron with the Q-value. The hyperparameters used in training
are listed in Table 3.4. The angle of rotation of the pendulum takes values between [−π, π],
hence the reward function (3.2) can yield a minimum reward of −16.274 or maximum of 0.
An agent trained using this reward function will try to learn a policy which minimizes the
angle, rotational velocity and joint effort. Figure 3.13 graphs the moving average of returns
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of the agent during training. This graph shows the agent is learning, as the returns increase
over the 200 training episodes, and that it was able to balance the pendulum.

Algorithm 5 Algorithm for training the DDPG agent

1: Initialize critic network Q with parameters θQ

2: Initialize actor network µ with parameters θµ

3: Set parameters for target Q̂ network by copying θQ− = θQ

4: Set parameters for target µ̂ network by copying θµ− = θµ

5: Initialize a replay buffer D with max of size N
6: for episode = 1,M do
7: Randomly sample a starting state s0 = (xagent, yagent, xgoal, ygoal)
8: done← false
9: t← 0 . Episode step

10: while t < L and done = false do
11: Sample noise ∼ N (0, 1) . Gaussian noise
12: Select action at = clip(µ(st) + noise, amin, amax)
13: Take action at
14: Observe reward rt+1, next state st+1 and ”done” flag dt from the environment
15: Add experience (st, at, rt+1, st+1, dt+1) to replay buffer D
16: if number of stored experiences in D ≥ k then
17: Sample minibatch B of k experience tuples (sj , aj , rj+1, st+1, dj+1) from D
18: Set respective targets yj = rj+1 + (1− dj+1)γQ̂(sj+1, µ̂(sj+1))
19: Use LQ = 1

|B|
∑

j(yj −Q(sj , aj))
2 as a loss for the critic Q

20: Perform a gradient descent step with LQ on θQ

21: Use Lµ = 1
|B|

∑
j Q(sj , µ(sj)) as a loss for the actor µ

22: Perform a gradient ascent step with Lµ on θµ

23: Update target networks with polyak averaging:
24: θQ− ← τθQ + (1− τ)θQ−

25: θµ− ← τθµ + (1− τ)θµ−

26: done← dt+1

27: t← t+ 1

Hyperparameter Value Description
αµ 0.0001 Actor learning rate
αQ 0.001 Critic learning rate
γ 0.99 discount factor
τ 0.001 polyak parameter
k 64 minibatch size
N 10000 replay buffer size
M 200 number of episodes
L 200 maximum episode length

Table 3.4: Hyperparameters used for training the DDPG agent
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Figure 3.13: Moving average of returns (window of 10 episodes)

3.3 DRL for Reaching Tasks

This section presents and discusses the methods adopted in this dissertation to solve the
proposed robot manipulator reaching tasks with Deep Reinforcement Learning. Concretely,
three reaching tasks are defined and their respective Gym environment implementations de-
tailed (Section 3.3.1). Afterwards, the two state-of-the-art DRL algorithms used to train the
agents (Section 3.3.2), their respective training procedure, the hyperparameter choice and its
optimization (when applicable) are described (Section 3.3.3). Finally, the different metrics
used in evaluating the performance of each algorithm and trained agent are presented (Section
3.3.5).

3.3.1 Reaching Tasks Specification

The reaching tasks considered in this dissertation consist of an agent choosing the optimal
sequence of actions to position a robot manipulator’s end effector within some threshold dis-
tance of a target position. These actions are a result of a mapping between a desired position
in task space (often Cartesian space) and a position in joint space. The desired joint position
is then ensured by a low-level controller. The control commands performed by the agent
can be either position or velocity based. In robo-gym, the UR10 simulation is controlled
by position, this means the control commands are joint positions in radians. These com-
mands are then sent to a Command Handler which, for a defined number of robot-actuation
cycles, sends JointTrajectory commands (with a single joint trajectory point) through the
’/pos traj controller/command’ ROS topic to the robot’s controller.

UR10Reach environment

This environment defines a task consisting of reaching a random target within the UR10’s
workspace given fixed initial joint positions. The workspace (depicted in Figure 3.14) is a semi
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sphere around the base link of the UR10 which is 0.1 meters above the ground. This environ-
ment is implemented as a gym.Env class which inherits from robo-gym’s URBaseEnv class
and is required to implement the env.reset, env.step, env.reward, env. get observation space
and env. get action space Gym methods. The environment’s state s is represented as a 13-
dimensional vector containing the target’s spherical coordinates (size 3), the joint positions
(angles) normalized between [−1, 1] (size 5) and the joint velocities (angular velocities) (size
5), where the last joint is ignored:

s = [r, θ, φ,θbase, θshoulder, θelbow, θwrist1, θwrist2, ωbase, ωshoulder, ωelbow, ωwrist1, ωwrist2] (3.3)

Additionally, two modes of defining the target’s spherical coordinates are available: in the
reference frame of the base link (0.1 meters above the world’s origin) which makes it constant
throughout an episode; or in the reference frame of the end effector which changes as the
manipulator moves. An assumption is made that an existing sensor (e.g., RGB-D camera) is
used to obtain the target’s position in both these reference frames.

Figure 3.14: Random targets generated in the UR10Reach environment (in RViz8)

The UR10 has 6 DoF, however, for this task no tool is attached to the manipulator, so
the 6th joint (wrist3) is not controlled and it is fixed. The actions generated by the agent at
each time step are vectors of 5 joint positions normalized between [−1, 1]:

a = [θbase, θshoulder, θelbow, θwrist1, θwrist2] (3.4)

An episode has a maximum of 300 time steps but it may end before. There are 3 possible
outcomes which lead to episode termination: collision of the robot against itself or the ground;
exceeding the maximum number of time steps; or successfully reaching the target position
with the end effector within a tolerance of 0.1 meters (referred to as threshold distance).

A dense reward signal is used, as it is often faster to learn in comparison to a sparse reward
signal (such as -1 if not at the target, 0 if otherwise). This means that at each time step a

8RViz is a 3D visualizer for the ROS framework (http://wiki.ros.org/rviz)
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base reward is given to the agent which is linearly proportional to the negative of the distance
between the end effector and the target. Smaller the distance, the greater the reward:

rewardbase = −||target coord− ee coord|| (3.5)

A constant is added to this base reward depending if the episode ended on the last time
step or not. The complete reward definition favours fast success and penalizes collision:

reward =


rewardbase + 100, if Success

rewardbase − 400, if Collision

rewardbase, otherwise

(3.6)

For this environment, the ACR is 12.5 Hz and the maximum velocity of each joint is
decreased to 1/5 of the true maximum (max velocity scale factor = 0.2). An episode of 300
steps is then 24 seconds in simulation time. The maximum velocity is robo-gym’s default and
the ACR was chosen empirically (early results proved to work for this task definition) with
guidance of [26]. In this work, the trade off in choosing the ACR is well summarized by the
authors: a greater rate requires the agent to learn to gain momentum by repeating similar
actions which makes learning harder; a smaller rate limits performance by reducing precision
and increases time for data collection.

UR10ReachEval environment

This environment is the same as the UR10Reach in Section 3.3.1 except the initial con-
figuration for the joint position is different and the targets appear randomly in the z = 0.35
meters plane closer to the end effector (as depicted in Figure 3.15). This change in configu-
ration makes the task easier to learn and reduces the training time which is why it was used
to quickly test different combinations of ACRs and maximum joint velocities.

Figure 3.15: Random targets generated in the UR10ReachEval environment (in RViz)
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UR10BallCatch environment

Fast manipulator movements are necessary for robotic tasks involving strict time require-
ments. The UR10BallCatch environment models one of those tasks: ball catching. The ball
catching task considered here is defined as reaching a catching position within a time window
and does not involve any type of grasping using a tool in the end effector. This catching
position is the estimated interception point of a ball following a ballistic trajectory with a
given plane. The success is defined not by the distance from the end effector to the catching
position but rather to the ball position.

This task involves solving two problems: estimating a catching position during the trajec-
tory of a flying ball; and quickly moving the end effector to the estimated catching position.
In this context of reaching tasks, the agent is only set to solve the latter problem, while
the former is solved by a classic method. Consequently, this environment has two modes of
operation: train and evaluation.

Figure 3.16: Random targets generated in the UR10BallCatch environment (in RViz)

The train mode is concerned with reaching random catching positions without the flying
ball. Most of its implementation is shared with the UR10Reach environment, but the main
differences are:

• Targets appear within an annular sector of the horizontal plane at the height of the
base link in front of the manipulator (see Figure 3.16);

• The initial joint configuration was chosen so that the end effector is at the centroid of
the annular sector (≈ 0.57 meters from the center of the base link), which is the point
where the average distance to any other point is minimum;

• The base of the UR10 is 1 meter above ground, thus collisions with the ground are less
frequent

• max velocity scale factor = 1, thus not limiting maximum joint velocities;

• Parameterizable ACR;
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After learning a policy in train mode, a trained agent can then be tested in the evaluation
mode. This consists in a scenario with the specifications of the train mode, adding a flying
ball (for visualization purposes it is only 0.05 m in diameter) and a method to estimate the
catching position.

For the flying ball, a set of 10 thousand random trajectories with an average velocity of
≈ 6.94 m/s were generated following these constraints:

• Positions during a trajectory were calculated for a sampling rate of 100 Hz

• Trajectories’ duration before intercepting z=1 plane (base link plane) are between
[1.0, 1.2] seconds but the ball travels in the z axis for an additional 0.1 meters

• Trajectories’ begin 5.3 meters away from UR10’s base link (4 meters from the workspace)
and 1 meter above the ground in a point aligned with the base link and the end effector
(as depicted in Figure 3.17)

Figure 3.17: Setup of UR10BallCatch evaluation mode seen from above with the interception
of random trajectories with the plane of the base link (in blue), end effector position (in red),
initial ball position (in orange), and UR10’s base link (in dark green).

The trajectories are computed by first choosing a random (x, y) position where x ∈ [0, 1.3]
and y ∈ [−1.3, 1.3] and filtering by keeping those within the UR10’s workspace. Afterwards,
a random trajectory duration t ∈ [1.0, 1.2] is chosen and the velocity, elevation angle θ and
azimuth angle φ (as depicted in Figure 3.18) required to achieve the desired position within
the specified time are computed using projectile motion equations (listed in 3.7) and solving
for these variables.

vx = V sin(θ)cos(φ)

vy = V sin(θ)sin(φ)

vz = V cos(θ)

x(t) = vxt

y(t) = vyt

z(t) = vzt+ gt2/2, for g = 9.8m/s2

(3.7)

These trajectories are stored in a file and randomly chosen during the evaluation, where a
ROS node named objects controller publishes the position of the ball at a rate of 100 Hz until
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the trajectory or episode ends. To this trajectory no noise is added given that the purpose of
this environment is not to assess the estimation method’s noise robustness.

Figure 3.18: Initial parameters defining the trajectory of a ball: the velocity V , elevation
angle θ and azimuth angle φ.

This ball position is then used by a trajectory prediction ROS node which waits for a
parameterized minimum number of ball position samples before using these in a polynomial
approximation method to estimate the ball’s interception point with the plane of the base
link (1 meter above the ground). This plane was chosen due to being the cross section of
UR10’s workspace with the greatest area. The polynomial approximation method consists in
using the numpy.polyfit function to obtain the coefficients for the 1-degree polynomials x(t)
and y(t), and 2-degree polynomial z(t). Afterwards, using the roots of z(t) in x(t) and y(t)
allows to calculate the catching position in the plane z = 0 of the base link’s frame (or z = 1
of the world frame).

In the start of an episode, it may take more time to obtain the catching position than
1/ACR, so the agent may wait longer in the first action cycle. This catching position is then
returned to the agent as the target to reach.

3.3.2 Algorithms

The two model-free DRL algorithms used to solve the reaching tasks are TD3 and PPO.
These algorithms were chosen for being state-of-the-art DRL algorithms representing the
off-policy (TD3) and on-policy (PPO) classes allowing for these two to be compared. Both
support n-dimensional continuous action and state spaces required for these tasks. The SB3’s
implementation9 was used for training agents on the OpenAI Gym environments of the reach-
ing tasks described previously.

Twin Delayed DDPG

Twin Delayed Deep Deterministic Policy Gradient (TD3) [35] is an Actor-Critic DRL
algorithm which improves upon its predecessor DDPG (detailed in Section 2.2.3). The lat-

9https://stable-baselines3.readthedocs.io/en/v1.0/modules/ppo.html

https://stable-baselines3.readthedocs.io/en/v1.0/modules/td3.html
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ter, suffers from a known problem of overestimation of value estimates also present in Deep
Q-learning methods (detailed in Section 2.2.2). This problem results from both function ap-
proximation errors and the maximization performed in Q-learning which leads to suboptimal
policies in the Actor-Critic setting. In [35] Fujimoto et al. present Clipped Double Q-Learning
as a solution for the overestimation problem and two additional techniques used to reduce
variance: delayed policy updates; and target policy smoothing regularization.

TD3 learns two Q-functions simultaneously. Similarly to DDPG with a single Q-function,
both networks optimize a loss function LQi using minibatch gradient descent to minimize the
Bellman error:

LQi =
1

|B|
∑
j

(yj −Qi(sj , aj))2 (3.8)

The learning targets yj for each sample j are computed by taking the minimum of the
two Q-functions’ target networks (rather than the opposite target network as in Double Q-
learning):

yj = rj+1 + γ min
i=1,2

Q̂i(sj+1, µ̂(sj+1)) (3.9)

Taking the minimum acts as an upper-bound on the Q value used in the learning targets.
Thus when optimizing Q1, the target yj is computed using the less biased Q̂2 if Q̂2 < Q̂1

otherwise the more biased Q̂1 is used (clipping Q̂2 to Q̂1) at the benefit of avoiding overesti-
mation. Instead of performing a policy update at every time step, the policy is only updated
every d = 2, 3, 4, ... time steps, hence delaying updates to the policy network compared to
the Q-networks. Additionally, the target networks of both critics and actor are also updated
using polyak averaging at a rate of d. According to Fujimoto et al., the less frequent policy
updates will use a value estimate from the Q-networks with less variance since the Q-networks
were updated more often before the policy changed, resulting in lower value estimation error.
Doing a policy update using a lower variance value estimate should result in higher quality
policy updates. Additionally, a regularization method which adds noise to the target action
when updating the critic network is used.

Proximal Policy Optimization

Proximal Policy Optimization PPO [6] is a policy gradient DRL algorithm with a similar
goal to that of the Trust Region Policy Optimization (TRPO) [36]. These methods are
sensitive to the update step size because of their on-policy nature, where a very large policy
update can lead to catastrophic drops in performance. Similarly to A2C (detailed in Section
2.2.3), PPO uses a critic network to compute the advantage. However, it differs in how the
policy gradient is computed by attempting to restrict the size of these update steps by various
methods. PPO works by collecting a set of fixed length experience rollouts (e.g., 512, 1024,
2048 time steps) across multiple (or one) parallel actors and combine them into a single buffer
to perform gradient descent on a loss function. The objective is to maximize the loss function
(gradient ascent) by using the gradients with respect to the policy network’s parameters.

If the probability ratio rt(θ) (Equation 3.10), where rt(θold) = 1, is larger than 1, the
given action is more probable under the new policy compared to old one. If rt is less than 1,
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the action is less probable than before.

rt(θ) =
πθ(at|st)
πθold(at|st)

(3.10)

The method used for constraining the updates consists of a clipping mechanism in the
loss function which prevents the new policy from moving too far from the old policy. This
clipping is parameterized by ε ∈ R (e.g., ε = 0.2) and constraints updates that change rt out
of the interval [1− ε, 1 + ε]. The complete loss function is expressed in Equation 3.11.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (3.11)

As illustrated in Figure 3.19, when the advantage is positive, the action will become more
likely (the probability π(a|s) will increase) and the loss function is clipped when rt ≥ 1 + ε,
setting a ceiling for the update. Similarly, when the advantage is negative, the action will
become less likely and the loss function is clipped for rt ≤ 1− ε.

Figure 3.19: PPO loss function LCLIP as a function of probability ratio rt for positive and
negative advantages, image from [6].

The loss function can be improved by adding a term c2S[πθ](st) that ensure sufficient
exploration. The function S is an entropy estimate of the current policy πθ in the given state
st. Increasing the loss function with this term included reinforces exploration by increasing
entropy. This happens because the entropy of a probability distribution is greater the more
uniformly distributed it is (more random). More random behaviour leads to more exploration,
however this parameter must be carefully tuned.

3.3.3 Model Training and Evaluation

For a given experiment, an algorithm is trained on a single random seed for 2 million time
steps (in some cases 1 million time steps) and every 50K time steps the current model (and
replay buffer for TD3) is stored as a checkpoint.

A seed is a number used to initialize a random number generator (RNG). For the reaching
task environments, it initializes the RNG used to choose the next episode’s target, such that
two environments with the same seed will see the same sequence of episodes. In SB3 it is used
to initialize the RNG for Python, PyTorch and Numpy. This may have an effect on some
aspects of an algorithm’s learning, leading to changes in convergence and initial exploration
(due to things such as weight initialization of a neural network).
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To evaluate the agent during learning, the training is stopped every 20K time steps (1%
of total time steps) and the current agent is set to run a deterministic version of its policy
(e.g., without exploration noise) for 10 episodes with random seeds. The resulting episode
returns and episode lengths are then stored. Due to the computational cost of Gazebo and
in order to avoid having multiple simulations running on the same machine, two environment
functions were implemented to be used in the evaluation: get state which returns the state of
the RNG, the current joint positions and the target’s position; and set state which resets the
environment to the same previous values. This makes it possible to reuse the same simulation
for training and evaluation, saving significant amounts of time in evaluating the agent by not
having to start new simulations and running them in parallel (which also slows down each
simulation). The process for evaluation during training consists of the following sequence:

1. Current training episode is stopped at the evaluation steps.

2. Episode state is stored.

3. Simulation is used in new episodes for evaluating the agent.

4. Initial episode state is restored.

5. Training is resumed.

The simulation time for the physics engine used in Gazebo (ODE in this case) is controlled
in part by the max step size parameter (the time resolution of the simulation i.e changes
in the simulator occur in steps of max step size simulation seconds). In conjunction with
the real time update rate parameter (real time rate at which the simulation time steps are
advanced) the real time factor can be calculated with max step size×real time update rate.

Across all experiments the max step size is 0.001 seconds. For training, the simulations
were made to run as fast as they can (e.g., 6000 Hz) by having the real time update rate
parameter set to 0. With the hardware used, the training simulations were observed to run at
a real time factor of ≈ 6. This means 6 simulation seconds would elapse every 1 second of real
time. By running the simulation 6× faster it is natural to expect the algorithm should also
run 6× faster. Recalling what is summarized in Figure 3.3, the sleep time would be shorter (in
real time) but the action generation time would stay the same. Given the dynamic nature of
this task, it seems possible that with the simulation 6× faster the agent would learn differently
(by sending actions with a greater delay) which could hinder the evaluations of the resulting
policy made in real time (×1). However, it was empirically verified to have no significant
impact in the evaluations after training.

To verify the ratio of the action generation time in the action cycle time, the action cycle
time was measured 100 times in two tests both with max velocity scale factor = 0.2 and
action cycle rate = 12.5. First an estimation of the action generation time was obtained by
running model.predict for 1000 samples, resulting in 0.000538 seconds. Then one test of 100
samples was run for real time factor of ≈ 1 resulting in an average action cycle time of 0.0777
(close to 1/12.5 = 80 ms) seconds and another for real time factor of ≈ 6 resulting in an
average action cycle time of 0.0129 seconds (about 6.0233 smaller). The action generation
time represents, respectively, 0.69241% and 4.1705% of the action cycle time.
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3.3.4 Hyperparameter Optimization

Tables 3.5 and 3.6 contain the non optimized hyperparameters used in training. Some are
the SB3’s default (marked with *), the remaining were obtained either empirically or from
other work using these algorithms. The networks’ architecture was chosen to be two dense
layers of 256 neurons. With early experiments it was observed slower convergence for greater
network sizes (such as SB3’s [400,300] default). Given the unknown complexity of the problem
and some initial results obtained, this architecture was kept constant for all experiments.

The most common approach for systematic hyperparameter optimization in ML is grid
search. This is a brute force method to find the best performing hyperparameters that consists
in testing all possible configurations of a set of values for the chosen hyperparameters. Random
search is a version of grid search more scalable to a greater number of hyperparameters by
testing a fixed budget of random configurations.

Hyperparameter Value
learning rate 0.0003
buffer size* 1000000
learning starts 10000
batch size 128
tau* 0.005
gamma 0.995
train freq 100
gradient steps 100
action noise 0.2
policy delay* 2
target policy noise* 0.2
target noise clip* 0.5

Table 3.5: Hyperparameters used for training
the TD3 agents

Hyperparameter Value

learning rate
0.0003∗

(1− current timestep
total timesteps )

n steps* 2048
batch size* 64
n epochs* 10
gamma 0.995
gae lambda* 0.95
clip range* 0.2
clip range vf* None
ent coef* 0
vf coef* 0.5
max grad norm* 0.5
use sde* False
sde sample freq* -1
target kl* None

Table 3.6: Hyperparameters used for training
the PPO agents

However, for computationally expensive objective functions, such as the one considered
in this dissertation where an agent takes 1-2 million time steps (and up to 14 hours of time)
to fully train, the class of Sequential Model-Based Global Optimization (SMBO) algorithms
provides a more feasible framework.

These optimization algorithms use results of past configurations to inform the choice of
the next configuration of hyperparameters to test. They work by building a surrogate model
that approximates the objective function, but it is significantly cheaper to evaluate than the
objective function itself. The hyperparameters are chosen based on which combination yields
better results on the surrogate model before being tested on the objective function. As more
configurations are tested, the more accurate the surrogate model becomes in predicting the
objective function’s outcome. Algorithms based on this framework differ in how the surrogate
model is computed.

The SMBO algorithm chosen for hyperparameter search is the Tree-structured Parzen
Estimator (TPE) [37]. It consists of using a Bayesian method to estimate the probability
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distribution of the objective function’s outcome y given a hyperparameter x: p(y|x) and
sampling the most likely to yield a greater y. The implementation used is the one provided as
a Search Algorithm in Ray Tune’s library (tune.suggest.hyperopt.HyperOptSearch). It works
by defining a hyperparameter space, discrete or continuous, to sample trials from, along with
an initial configuration. Additionally, to avoid using computation time on unpromising trials,
a median pruner Trial Scheduler (tune.schedulers.MedianStoppingRule) is used to terminate
trials early if their performance at a given evaluation step is below the median.

3.3.5 Performance Metrics

To compare the performance of algorithms and assess possible effects of different param-
eters on the experiment results, each algorithm was evaluated using a set of metrics. The
metrics used for evaluating the performance aim to capture different aspects of an algorithm
and are categorized into 2 classes:

• Reinforcement Learning metrics.

• Task specific metrics.

They are also differentiated by the moment when they are computed: during or after
training. The measurements required to compute these metrics were obtained in evaluation
episodes with randomized seeds. Evaluation episodes were run on the current model during
training at fixed rate of time steps (e.g., every 10k-20k steps) or on the final model after
training.

Measurements performed at the episode level are averaged across all evaluation episodes.
Given N evaluation episodes and a respective measurement Xn for n ∈ [1, N ], the Average
X is defined as:

X =
1

N

∑
n

Xn (3.12)

To better describe the measurement’s distribution, an Average is always presented together
with the Standard Deviation σX of the measurement across the evaluation episodes, defined
as:

σX =

√∑
n(Xn −X)2

N
(3.13)

The Average and Standard Deviation are computed using the Numpy library10 functions:
numpy.mean and numpy.std, respectively.

Reinforcement Learning metrics

These are the typical RL metrics used to measure the performance of an algorithm and
its resulting model.

10Scientific computing library for the Python programming language (https://numpy.org/doc/stable/
user/whatisnumpy.html)

47

https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html


• Return - the sum of collected rewards Rn =
∑

t rt along time steps t of an episode.
The primary goal of any RL agent is to maximize this cumulative reward, which maybe
discounted with time. The assumption is: maximizing the cumulative reward is expected
to coincide with learning the optimal policy for a particular task.

• Episode Length - the total number of time steps in an episode. Depending on the task,
an agent’s performance maybe correlated with this value. In the case of the reaching
task, a longer episode indicates the agent is able to avoid collision and a shorter one
might indicate the agent reaches a target faster or quickly collides.

Task specific metrics

The RL metrics measure performance only relative to a tasks’ MDP definition. In order
to further evaluate an agent on the reaching task the following metrics are used:

• Success Rate - proportion of episodes with a success outcome: having the end effec-
tor position within the defined threshold distance from the target position. Given N
evaluation episodes, the success rate is defined as (#success outcomes)/N .

• Final Distance - Euclidean distance in meters between the end effector position Pee
and target position Ptarget at the end of an episode, defined as ||Pee − Ptarget||. Used
mostly for error analysis where two agents might fail to reach a target but with vastly
different distances.

• Elapsed Time - simulation time (not real time) measured between start and end of
an episode, reported in milliseconds.

In order to show the reliability of the Success Rate estimate, it is reported with a Con-
fidence Interval calculated for a confidence level of 95% (α = 0.05). Each episode can be
interpreted as Bernoulli trial, hence this interval is a binomial confidence interval. The inter-
val is calculated with the Clopper–Pearson method utilizing the scipy.stats.beta.ppf function
from the SciPy11 Python library.

11Library of algorithms and mathematical tools for the Python programming language (https://scipy.
org/scipylib/index.html)
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Chapter 4

Experiments and Results

This chapter presents a set of experiments (regarding the reaching tasks described in
Section 3.3), the procedures used to conduct them and the results obtained. The experiments
consist of training and evaluating DRL agents in different scenarios and are organized into
three main parts: (i) solving a reaching task with lower maximum joint velocities (Section
4.1); (ii) assessing effects of hyperparameters on performance (Section 4.2); and (iii) solving a
reaching task in the context of ball catching with maximum joint velocities (Section 4.3). The
state vectors used in these reaching tasks are distinguished by the encoding of the target’s
position (as mentioned in Section 3.3.1). The target position as spherical coordinates in the
base reference frame is referred to as base state and in the end effector reference frame is
referred to as end effector state. The complete set of conducted experiments are:

• Comparison between TD3 and PPO on a reaching task with the base state (Section
4.1.1).

• Comparison between TD3 and PPO on a reaching task with the end effector state
(Section 4.1.2).

• Correlation of the state with reward along episodes on a reaching task with the end
effector state (Section 4.1.3).

• Attempt at hyperparameter optimization for both TD3 and PPO on a reaching task
with the base state (Section 4.2.1).

• Assessing the effect of the Replay Buffer size for TD3 on a reaching task with the base
state (Section 4.2.2).

• Assessing the effect of the Horizon (n steps) for PPO on a reaching task with the base
state (Section 4.2.3).

• Assessing the effect of different action cycle rates in achieving better performance on
a reaching task with the maximum joint velocity (max velocity scale factor = 1) and
the end effector state (Section 4.3.1).

• Assessing the effect of different reward systems in achieving better performance on a
reaching task with the maximum joint velocity (max velocity scale factor = 1) and
the end effector state (Section 4.3.2).
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• Application of the best agent to a robot ball catching task with the maximum joint
velocity (max velocity scale factor = 1) and the end effector state (Section 4.3.3)

For all results, the graphs plotting the Average Return and Average Time Steps were done
using a moving average with a window of 10 on the results obtained in the evaluation episodes.
The shaded areas represent +/− half of the standard deviation (σ/2). The evaluation episodes
done on agents after training are done with a real time factor ≈ 1. The training and
evaluation of agents were done on a machine with the following specifications: Ubuntu 18.04.5
OS; 4 Core Intel i5-7500 @ 3.800GHz CPU; 8GB of Random Access Memory (RAM); NVIDIA
GeForce GTX 1050 Ti GPU. The versions of the software tools used are: Gym 0.18.3; robo-
gym 1.0.0; ROS Melodic; Gazebo 9.0.0; PyTorch 1.8.1; Stable-baselines3 1.0; Ray 1.4.0.

4.1 Solving the Reaching Task

This section presents the experiments conducted in order to solve a reaching task specified
by the UR10Reach Gym environment (detailed in Section 3.3.1) with slow maximum joint
velocities (max velocity scale factor = 0.2).

4.1.1 Reaching Task with the Base State

An initial experiment was conducted as an attempt to obtain early results, using the
set of hyperparameters in Table 3.5 and Table 3.6. Both algorithms were set to train for 2
million time steps on the UR10Reach environment using the base state and only 1 worker
(not running multiple environments in parallel). The models were evaluated every 20k time
steps, on 10 episodes with random seeds to obtain the Average Episode Return and Average
Episode Time Steps, totaling 100 evaluation moments during training. As a baseline for
comparison a random agent, randomly sampling actions from the action space, was set to run
the same number of evaluations. Figures 4.1 and 4.2 plot these metrics evolving during the
model’s training. In addition, every 100K time steps the current model was saved to be used
afterwards to plot the proportions of episode outcomes across time steps by evaluating each
saved model on 100 episodes with random seeds, as presented in Figure 4.3 and Figure 4.4.

The training time was approximately 14 hours for TD3 and 12 hours for PPO. The lower
training time for PPO is mostly due to it taking more time steps (2048 steps) between network
updates as compared to TD3 (100 steps). Only TD3 achieved some type of convergence by
the end of training. Both TD3 and PPO begun with a biased model: TD3’s initial model
ends most episodes with a collision outcome either from colliding against the ground or itself;
on the other hand, PPO’s initial model ends most episodes exceeding the maximum number
of episode steps. As training progresses, TD3 learns to avoid collision shown both by the
declining proportion of collision outcomes as well by the increase of Average Time Steps.
Near the 1 million time steps the number of Average Time Steps begins to decline faster and
the proportion of successes increases leading to the eventual convergence.

Within the first 100K time steps PPO learns a policy consisting of high collision rate
which persists, possibly due to its on-policy nature, for approximately 1.1 million time steps
leading to worse performance and returns than the random agent. Afterwards, the Average
Return begins to increase along with the Average Time Steps and the decrease of collision
rate. However, PPO ends training without achieving the same level of Average Return or
Success Rate as TD3. Tables 4.1 and 4.2 present a summary of RL and task specific metrics
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Figure 4.1: Average Return of evaluation
episodes during training for TD3 and PPO.

Figure 4.2: Average Time Steps of evaluation
episodes during training for TD3 and PPO.

Figure 4.3: Proportion of episode outcomes
during training of TD3 (base state).

Figure 4.4: Proportion of episode outcomes
during training of PPO (base state).

obtained from evaluating the final models on 100 episodes with random seeds. All metrics
were computed with respect to successful episodes (except the Success Rate, SR) in case of
Table 4.1 and with respect to failed episodes in case of Table 4.2.

Agent SR SR CI R FD TS ET

Random 0.02 (0.00,0.07) 78.34±13.74 0.10±0.00 81.00±36.00 5930.52±2642.51
PPO 0.38 (0.28,0.48) 43.90±30.06 0.09±0.01 113.61±43.00 8529.55±3259.74
TD3 0.84 (0.75,0.91) 52.66±26.28 0.09±0.01 82.26±33.12 6082.73±2483.54

Agent - Agent model; SR - Success Rate; SR CI - Success Rate 95% Confidence Interval;
R - Mean Return; FD - Mean Final Distance to target (m); TS - Mean Time Steps; ET
- Mean Elapsed Simulation Time (ms);

Table 4.1: Metrics of episodes with successful outcomes for the base state
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Both TD3 and PPO significantly outperform the Random agent with TD3 achieving the
highest Success Rate and fastest policy on successful episodes. Additionally, TD3 is faster
than the PPO agent resulting in greater Average Return. For episodes with failed outcomes,
the Random agent mostly ends due to exceeding the maximum number of steps and with
greatest distance to the target; TD3 accumulates the highest return and fails to reach the
target’s threshold by only 0.15 meters on average; and PPO failed mostly due to collision.

Agent CR MSR R FD TS ET

Random 0.04 0.96 -381.33±142.74 1.38±0.50 299.27±4.42 22123.33±335.09
PPO 0.68 0.32 -387.74±151.28 0.59±0.24 204.74±94.28 15503.91±7222.85
TD3 0.44 0.56 -256.59±194.19 0.25±0.16 204.62±108.28 15309.88±8160.48

Agent - Agent model; CR - Collision Rate; MSR - Max Steps exceeded Rate; R - Mean
Return; FD - Mean Final Distance to target (m); TS - Mean Time Steps; ET - Mean
Elapsed Simulation Time (ms);

Table 4.2: Metrics of episodes with failure outcomes for the base state

4.1.2 Reaching Task with the End Effector State

In the UR10Reach environment the end effector frame is available as a translation and
rotation relative to the base frame. Consequently, to assess if having the target defined relative
to the end effector would have an effect on training and performance of the algorithms, the
previous experiments in Section 4.1.1 were replicated now using the end effector state. The
resulting Average Return and Average Time Steps graphs are shown in Figures 4.5 and 4.6.

Figure 4.5: Average Return of evaluation
episodes during training for TD3 and PPO.

Figure 4.6: Average Time Steps of evaluation
episodes during training for TD3 and PPO.

Compared to the previous experiments both algorithms converged early, hence the agents’
training was stopped at 1 million time steps. The training time was approximately 7.2 hours
for TD3 and 6.5 hours for PPO. The plots were done with new performance samples for the
Random agent. Similarly to the base state experiment, TD3 quickly learns to avoid collision,
as it can be seen in Figure 4.6 by the number of steps approaching the maximum more often in
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the beginning and in Figure 4.7 where the proportion of collision outcomes drop significantly
after the 100K time steps. PPO on the other hand, starts with an initial policy which often
exceeds the maximum number of steps and then begins to learns a policy with high collision
rate and finally converges in successful policy. Despite converging faster, agents learning on
this state present learning patterns similar to the base state experiments, as portrayed in
outcome proportion graphs in Figures 4.7 and 4.8. However, in the Average Return graph
the PPO agent has a distinct evolution as its performance is above the Random agent more
often than the previous experiment. Figure 4.6 illustrates well how PPO differs from TD3
by not first learning to increase max steps exceeded outcomes in order to avoid collisions and,
instead, going directly from collision to success outcomes.

Figure 4.7: Proportion of episode outcomes
during training of TD3 (end effector state).

Figure 4.8: Proportion of episode outcomes
during training of PPO (end effector state).

Since a different state representation will not affect the Random agent’s performance, the
results reported in Tables 4.3 and 4.4 are compared against the same previous results of the
Random Agent in this reaching task. For these results, the final models were evaluated with
the same previous procedure of 100 episodes with random seeds.

Agent SR SR CI R FD TS ET

Random 0.02 (0.00,0.07) 78.34±13.74 0.10±0.00 81.00±36.00 5930.52±2642.51
PPO 0.85 (0.76,0.91) 62.63±28.16 0.09±0.01 61.04±33.86 4584.21±2611.22
TD3 0.97 (0.91,0.99) 59.95±26.89 0.09±0.01 69.47±30.84 5168.26±2336.49

Agent - Agent model; SR - Success Rate; SR CI - Success Rate 95% Confidence Interval;
R - Mean Return; FD - Mean Final Distance to target (m); TS - Mean Time Steps; ET
- Mean Elapsed Simulation Time (ms);

Table 4.3: Metrics of episodes with successful outcomes for the end effector state

Again, TD3 and PPO significantly outperform the Random agent with TD3 achieving
the highest Success Rate. Compared to the previous experiment, PPO more than doubled
the success rate. Additionally, PPO is now the fastest policy on successful episodes and both
TD3 and PPO see a decrease in Mean Time Steps and Mean Elapse Simulation Time on
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the evaluation episodes with PPO’s having the most significant decrease by 52.57 time steps
and 3945.33 milliseconds respectively. For episodes with failed outcomes, the TD3 agent ends
only due to exceeding the maximum number of steps and with smallest distance to the target.
TD3 accumulates the highest return and fails to reach the target’s threshold by 0.24 meters
on average. Unlike TD3, PPO has a closely balanced distribution of failed outcomes. Due to
the high success rate these results for failed outcomes have fewer samples and might not fully
describe the resulting policies for TD3 and PPO in failing episodes.

Agent CR MSR R FD TS ET

Random 0.04 0.96 -381.33±142.74 1.38±0.50 299.27±4.42 22123.33±335.09
PPO 0.47 0.53 -448.99±199.07 1.03±0.43 282.80±20.04 21737.74±1506.20
TD3 0.00 1.00 -109.07±23.34 0.34±0.09 300.00±0.00 22878.33±114.73

Agent - Agent model; CR - Collision Rate; MSR - Max Steps exceeded Rate; R - Mean
Return; FD - Mean Final Distance to target (m); TS - Mean Time Steps; ET - Mean
Elapsed Simulation Time (ms);

Table 4.4: Metrics of episodes with failure outcomes for the end effector state

4.1.3 Correlation of End Effector State with Reward

The results in Section 4.1.2 prompted the following question: why would training with
the end effector state be faster in converging and produce better performing policies than
training with the base state? Although not initially clear, the hypothesis that this state
vector has a greater correlation with the reward is explored in this section. To that end,
the PPO agent trained in the previous section with the end effector state, two of its
intermediate models (100K and 500K time steps models) and a random agent were set to
run 300 evaluation episodes with the same random seeds, during which the reward and state
vector at each time step were recorded. Afterwards, for each agent and episode the Pearson
correlation coefficient between the state vector and the reward was calculated using Numpy’s
numpy.corrcoef function.

Figure 4.9 shows the correlation coefficient between the state vector’s elements and the
reward averaged for all evaluation episodes. Here the random agent has the greatest negative
correlation with the reward on the r component of the target’s coordinates, which is expected
given that this is the distance to the target: a smaller distance increases the reward and the
chance of being within the threshold for success. For the remaining agents this r component
also has highest correlation among the state vector although not to the same degree of the
random agent. Some other elements display some correlation, however this might be specific
to the learned policy.

To better visualize the correlation between the r component and the reward, it was plot
in Figure 4.10 for the 300 episodes using the final PPO agent (trained on 1000K time steps)
together with the correlation between random samples of r and the reward as a reference
for comparison. The random samples of the r component (computed by randomly sampling
between the observed minimum and maximum across all episodes) shows no visible correlation
across episode given it is centered around 0. On the other hand, the observed r component
shows some negative correlation by having it fluctuate around ≈ −0.25 for most episodes.
Occasionally, there are peaks of correlation very close to −1 which indicates episodes ending
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without collision or success and instead exceed the maximum number of steps that returns
no reward penalty or bonus.

Figure 4.9: Mean Correlation between state vector and reward during an episode (considering
last step) for multiple agents run on 300 random seed episodes.

Figure 4.10: Correlation Coefficient between episode rewards and state vector’s r component
during an episode (considering the last step) for 300 random seed episodes.

Computing the correlation and plotting the previous graphs without the last time step,
where a reward penalty or bonus is provided, results in a clearer negative correlation as
depicted in Figures 4.11 and 4.12. Here the negative correlation of ≈ −1 is constant across
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episodes and models, which is obvious when considering the reward is based on distance to
the target. More interestingly, for PPO model at 500K time steps and 1000K time steps the
shoulder joint position and wrist1 joint position components of the state have high positive
and negative correlation respectively, which could describe the policy learned where the first
wrist joint is extended when reaching for targets.

Figure 4.11: Mean Correlation between state vector and reward during an episode (ignoring
last step) for multiple agents run on 300 random seed episodes.

Figure 4.12: Correlation Coefficient between episode rewards and state vector’s r component
during an episode (ignoring the last step) for 300 random seed episodes.
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4.2 Hyperparameters

This section presents the approach used to improve the agents’ performance, by hyperpa-
rameter tuning, on the UR10Reach environment with the base state. The environment with
the base state is considerably harder to learn compared to the one with the end effector
state given that both TD3 and PPO had worst results in this setting when training with the
same configurations. This is possibly due to the base state requiring the agent to learn a
more complex transformation of the state in order to estimate its value. Conversely, the end
effector state, as shown in Section 4.1.3, has a strong correlation with the reward making
it easier to predict a state’s value. This is well illustrated in the case of the PPO agent
trained using the base state, where the drop in performance is dramatic compared to the
end effector state version. The goal is to improve performance with better hyperparameter
configurations without requiring more environment samples. In order to fairly compare the
algorithms in this setting, for each of them it was decided to firstly attempt a systematic
hyperparameter search and then a more focused evaluation of one hyperparameter related
with sample efficiency.

4.2.1 Hyperparameter Search

The algorithm used for hyperparameter search is Ray Tune’s implementation of TPE.
It was chosen in place of a grid search or random search approach due to it performing an
informed search over the hyperparameter space (as detailed in Section 3.3.4) which is appro-
priate for the low computational budget available. For each algorithm, the search consisted of
25 trials with an initial parameter suggestion using the hyperparameters in Tables 3.5 and 3.6.
These are parameters known to work and help the search algorithm make better suggestions
for future parameters. Each trial runs sequentially for 300K time steps instead of the full
training length of 2 million. This was an assumption made for this experiment which consists
of: 300K time steps is enough for an algorithm to make measurable progress in learning (the
previous results support this) and the best hyperparameters at 300K time steps is expected
to also be the best at 2 million time steps. This decision is justified again by the limited
computational resources available.

The hyperparameter search for TD3 was done over the following parameters:

• learning rate: {0.003, 0.001, 0.0006, 0.0003, 0.0001, 0.00003}

• batch size: {32, 64, 128, 256}

• tau: {0.001, 0.005, 0.01, 0.02, 0.05}

• gamma: {0.99, 0.995, 0.999}

• train freq: {50, 100, 150}

• gradient steps: {50, 100, 200}

• noise std: {0.0, 0.1, 0.2, 0.3, 0.4}

The hyperparameter search for PPO was done over the following parameters:

• learning rate: {0.003, 0.001, 0.0006, 0.0003, 0.0001, 0.00003}
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• n steps: {256, 512, 1024, 2048}

• batch size: {32, 64, 128, 256}

• n epochs: {5, 10, 20}

• gamma: {0.99, 0.995, 0.999}

• gae lambda: {0.95, 0.98}

• clip range: {0.1, 0.2, 0.3}

• max grad norm: {0.3, 0.5, 0.7}

For the duration of each trial there are a total of 20 evaluation moments (every 15K time
steps). An evaluation is the average return resulting from running 20 episodes with random
seeds on the current model’s deterministic policy. The results of these evaluations are used
together with a median pruner Trial Scheduler which compares the current’s trial evaluation
results at a particular evaluation step with the median of previous trials and terminates if it
is bellow. However, this only happens after a period of 7 evaluations (105K time steps) in
order to avoid ending possibly good trials which perform bad initially due to random factors
such as exploration.

Although the weight of the initialization seed (for the environment and SB3) in an al-
gorithm’s results is not known, in order to mitigate any noise this might introduce in the
attempt to find the best hyperparameters each trial is run on the same random seed. Ad-
ditionally, to prevent any type of overfitting the seeds used for the evaluation episodes are
randomly chosen but, again to reduce noise introduced by an agent getting a set of ”easier”
episodes, it is the same across all trials.

The search time was approximately 55 hours for TD3 and 47 hours for PPO. The resulting
configurations for the best trials were then trained for 2 million time steps. Figures 4.13 and
4.14 show the Average Return and Average Time Steps of evaluation episodes during training.

Figure 4.13: Average Return of evaluation
episodes during training of best configurations

for TD3 and PPO.

Figure 4.14: Average Time Steps of
evaluation episodes during training of best

configurations for TD3 and PPO.
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The resulting models were then evaluated like previously on 100 episodes, the results are
summarized for all episodes in Table 4.5. This hyperparameter search for both algorithms
proved to not be an effective method to improve performance and given it is very time
consuming it was not pursued further.

Agent SR SR CI R FD TS ET

Random 0.02 (0.00,0.07) -372.13±155.28 1.36±0.53 294.90±31.29
21799.47
±2321.41

PPO 0.02 (0.00,0.07) -514.91±123.63 1.59±0.49 127.49±85.00
9609.67
±6491.35

TD3 0.46 (0.36,0.56) -69.37±100.80 0.24±0.18 211.12±100.29
15772.56
±7546.11

Agent - Agent model; SR - Success Rate; SR CI - Success Rate 95% Confidence Interval;
R - Mean Return; FD - Mean Final Distance to target (m); TS - Mean Time Steps;
ET - Mean Elapsed Simulation Time (ms);

Table 4.5: Metrics of evaluation episodes for the base state

4.2.2 TD3: Replay Buffer

The replay buffer in TD3 works just like the ones in DQN and DDPG. It stores the last
agent-environment interactions and is used for experience replay to achieve stability. Every
fixed number of episodes or steps a batch of experiences is randomly sampled from the replay
buffer and used to minimize the loss function. This is a way of casting the problem of RL
closely into supervised learning. Similarly to this, the amount data in the replay buffer and
its quality will influence learning. The replay buffer is of a fixed size, less than the number
of time steps to train on, where memories are inserted and removed with a first-in-first-out
method. Choosing this size defines how old is the oldest memory. A small replay buffer will
have only the most recent memories, which towards the end of training is made of experience
of a converging policy but initially might lead to some type of overfitting. On the other hand,
large replay buffers will contain older memories of more off-policy data due to older more
random policies and will take longer to be refreshened with good trajectories. In [38], the
authors provide an analysis of experience replay and observe, for a set of environments, that
performance improves when trained on data from more recent policies.

In order to improve the performance of TD3 on the UR10Reach environment with the
base state, three agents were trained with the same previous configuration, but varying the
replay buffer sizes: 250K, 500K and 2000K (Figures 4.15 and 4.16). The respective train times
were approximately 14.9 hours, 15.2 hours and 14.7 hours. These agents were evaluated on
100 episodes with random seeds and compared against the one in Section 4.1.1 trained with
a replay buffer size of 1 million (TD3 1000K). The results are summarized for all evaluation
episodes in Table 4.6. The agent with the best Success Rate is the one trained with a 500K
replay buffer, improving by 4% in relation to TD3 1000K. The smallest and biggest sizes
performed significantly worst.
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Figure 4.15: Average Return of evaluation
episodes for agents trained with different

replay buffer sizes.

Figure 4.16: Average Time Steps of
evaluation episodes for agents trained with

different replay buffer sizes.

Agent SR SR CI R FD TS ET

TD3 250K 0.59 (0.49,0.69) -33.05±105.95 0.25±0.26 177.14±106.72
13225.90
±8045.87

TD3 500K 0.88 (0.80,0.94) 23.61±112.06 0.11±0.10 89.14±70.61
6620.00
±5320.45

TD3 1000K 0.84 (0.75,0.91) 3.18±139.52 0.12±0.09 101.84±69.35
7559.07
±5222.92

TD3 2000K 0.55 (0.45,0.65) -34.29±108.98 0.22±0.18 179.43±113.15
13405.39
±8524.14

Agent - Agent model; SR - Success Rate; SR CI - Success Rate 95% Confidence Interval;
R - Mean Return; FD - Mean Final Distance to target (m); TS - Mean Time Steps; ET
- Mean Elapsed Simulation Time (ms);

Table 4.6: Metrics of evaluation episodes for TD3 agents trained with different replay buffer
sizes.

4.2.3 PPO: Horizon

The horizon in PPO, referred to n steps in SB3’s implementation, is a learning hyperpa-
rameter controlling the number of steps an agent runs on the environment before updating
its policy network. This has a similar function to the replay buffer in the case of TD3, which
is to accumulate a rollout of trajectories to use for optimizing a loss function. However, for
PPO these trajectories must be obtained in on-policy way and are discarded after each policy
network update. A smaller horizon adds more noise when learning, possibly leading to over-
fitting. This is more problematic for on-policy algorithms since this overfitting will affect the
policy used on the next rollout of trajectories, resulting in an accumulative effect and great
drops in performance. In contrast, longer horizons reduce overfitting, but make learning less
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sample efficient by having to run for longer before updates. Often, PPO is trained with mul-
tiple parallel agents running the current version of a policy to add experiences in a bigger
rollout buffer where the total now is horizon× number of agents.

To assess the effect of the horizon on PPO’s performance on the UR10Reach environ-
ment with base state, three agents were trained with the same previous configuration but
varying the horizon: 512, 1024 and 4096 (Figures 4.17 and 4.18) with respective times of
approximately 14.8 hours, 13.84 hours and 12.95 hours. The agents were then evaluated on
100 episodes with random seeds and compared against the agent trained with 2048 in Section
4.1.1. The results summarized in Table 4.7 show that no improvement was made. The ob-
served drop in performance from changing this hyperparameter is significant, suggesting this
is already well tuned for the given configuration.

Agent SR SR CI R FD TS ET

PPO 512 0.02 (0.00,0.07) -326.53±126.01 1.06±0.48 297.74±9.49
22657.26
±754.44

PPO 1024 0.05 (0.02,0.11) -343.76±134.31 0.99±0.47 269.53±72.81
20466.09
±5565.04

PPO 2048 0.38 (0.28,0.48) -223.72±241.72 0.40±0.30 170.11±90.39
12853.65
±6916.86

PPO 4096 0.09 (0.04,0.16) -419.26±237.62 0.81±0.35 239.84±84.18
18215.28
±6431.41

Agent - Agent model; SR - Success Rate; SR CI - Success Rate 95% Confidence Interval;
R - Mean Return; FD - Mean Final Distance to target (m); TS - Mean Time Steps;
ET - Mean Elapsed Simulation Time (ms);

Table 4.7: Metrics of evaluation episodes for PPO agents trained with different values for the
horizon.

Figure 4.17: Average Return of evaluation
episodes for PPO agents trained with different

values for the horizon.

Figure 4.18: Average Time Steps of
evaluation episodes for PPO agents trained

with different values for the horizon.
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4.3 Assessing Applicability to Robot Ball Catching

This section presents the experiments conducted in order to solve a ball catching task
specified by the UR10BallCatch Gym environment (detailed in Section 3.3.1) with the maxi-
mum joint velocities. As mentioned before, this problem is defined in a way the agent is only
tasked with learning to quickly reach a target where the ball intercepts a plane. The end ef-
fector state and the algorithm TD3 are used since this was the best performing combination
obtained from the previous experiments. The approach consists, firstly, in tuning the action
cycle rate to the faster joint velocities and given success threshold. Afterwards, agents are
trained on different reward systems. The one with the best performance on the train mode
is applied to a complete scenario, along side a polynomial trajectory approximation method
on the evaluation mode.

4.3.1 Action Cycle Rate

In order to maintain a given level of precision for greater maximum joint velocities it
is necessary to increase the action cycle rate. However, this increase may create a harder
environment by requiring an agent to learn to gain momentum by repeating similar actions,
as explained in [26]. This section presents the experiments conducted for tuning the ACR to
a task with faster maximum joint velocities.

Initially, an experiment was made where the TD3 model trained on the UR10Reach en-
vironment with the end effector state, max velocity scale factor = 0.2 and ACR = 12.5
(from section 4.1.2) was run on the same environment for 100 evaluation random seed episodes
with max velocity scale factor = 1 for the following set of ACRs: 12.5 (original ACR), 20,
30, 40, 50, 62.5 (5× original ACR). The goal is to observe if a model trained at lower maxi-
mum joint velocities could be transferred to faster speeds by simply adjusting the ACR. The
resulting success rates for the evaluation episodes are depicted in Figure 4.19.

Figure 4.19: Success rates on UR10Reach with maximum joint velocities for TD3 model
trained on 12.5 ACR and slow joint velocities run on different ACRs.
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All scenarios show a great drop in performance compared to the 97% Success Rate of
this same model in its original slower environment (the best performance is 41% by ACR of
30 and 40). This demonstrates that the information of the dynamics and/or ranges of the
joint velocities are valuable to the model and adjusting ACR alone does not result in good
transfer to faster maximum joint velocities. One other important observation is that the
Success Rate initially increases with the ACR, achieves a peak and eventually decreases, as
suggested previously.

These results informed that indeed the ACR has a role in the precision, but the joint
velocities and its dynamics specific to an environment are also important in learning. In
a further attempt to choose an appropriate ACR for fast joint velocities, four TD3 agents
were trained sequentially, with the same configurations as the one of Section 4.1.2, in a
simple reaching task specified by UR10ReachEval environment (detailed in Section 3.3.1).
This reduced version of the previous reaching task was used to have the agent’s performance
depend less on the complexity of the task and more on the variable evaluated, the ACR.
The agents were trained for 2 million time steps on the same first four ACRs as the previous
experiment. The Average Return and Average Time Steps graphs are plotted in Figures 4.20
and 4.21 respectively, with the random agent baseline run on ACR of 12.5.

The trained agents were then evaluated on 100 random seed episodes and the results of
this are summarized using the Success Rate in Figure 4.22. In this figure a similar pattern to
the previous experiment can be observed, an increase followed by a decrease in Success Rate
for greater ACRs. The best agent was the one trained for ACR = 30. For the maximum
TCP speed of 1 m/s the end effector will move 0.033m in between actions which is less than
the success threshold. Given this result, values of ACR > 40 were not tested.

Figure 4.20: Average Return of evaluation
episodes for agents trained at different ACRs.

Figure 4.21: Average Time Steps of evaluation
episodes for agents trained at different ACRs.

4.3.2 Different Reward Systems

In previous results the reward definition for the UR10Reach environment proved to be
effective for slow maximum joint velocities and a threshold distance of 0.1 meters. For the ball
catching scenario addressed here, the Success Rate is not the primary measure of performance,
the time taken to reach the target is also important. With the goal of improving performance
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Figure 4.22: Success rates of TD3 agents trained with different ACRs

in train mode of the UR10BallCatch environment, five agents were trained and evaluated
for different reward systems: normal, joint penalty, log, log w/o threshold, joint penalty and
log. The Average Return graphs are plot separately and are not compared based on absolute
values due to the different rewards systems. Additionally, the baseline random agents were
run for each reward system. The results of evaluating the trained agents are presented and
described in the final subsection. All agents were trained for a real time factor of ≈ 3.

Normal reward

The normal reward is the original described in Section 3.3.1, consists of a base reward
computed from the distance between the end effector and the target to which a bonus or
penalty is added depending on success or collision. As a baseline for comparison an agent was
trained in this environment with the normal reward for 2 million time steps (≈13.6 hours).
The resulting graphs plotting the Average Return and Average Time Steps during training
are shown in Figures 4.23 and 4.24.

Joint penalty reward

When reaching a target, the manipulator’s joints change position over time. Depending on
the change in each joint, the movement of the manipulator could be smooth (e.g., a straight
line from end effector to a target) or jerky (increasing reach time). With the normal reward
system, an agent receives a penalty, for every step, linearly proportional to the negative of
the distance, incentivizing smooth movements. However, this may not be explicit enough: if
the end effector reaches the threshold for success, the received bonus is much greater than
optimizing for smooth movement, hence an agent may achieve high success with a jerky policy.

This joint penalty reward system is a crude attempt at explicitly reinforcing smooth
movements. It is defined as the sum of the delta between the current joint positions θ
normalized between [−1, 1] and the action of the agent a, at a given time step (Equation
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Figure 4.23: Average Return of evaluation
episodes for TD3 agent trained with the

normal reward.

Figure 4.24: Average Time Steps of
evaluation episodes for TD3 agent trained

with the normal reward.

4.1). This penalty value is scaled by a coefficient and subtracted from the normal reward.
The penalty coefficient is a hyperparameter that can be tuned. A coefficient too big will be
unproductive by reinforcing no movement and too small will have no effect on jerky movement.

The Average Return and Average Time Steps graphs resulting from training a TD3 agent
for 2 million time steps (≈14.6 hours) on this reward system with the penalty coefficient = 1
are plotted in Figures 4.25 and 4.26.

joint penalty =
∑
joint

|θjoint − ajoint|

rewardnew = reward− penalty coef × joint penalty
(4.1)

Figure 4.25: Average Return of evaluation
episodes for TD3 agent trained with the joint

penalty reward.

Figure 4.26: Average Time Steps of
evaluation episodes for TD3 agent trained

with the joint penalty reward.
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Log reward

The base for the normal reward is linearly proportional to the negative of the distance
between the target and end effector. A reward system with a logarithmic (natural logarithm)
base value is used here to assess if faster convergence and improved performance could be
obtained within the time step limit. This log reward gives increasingly more reward (or less
penalty) for a change in distance the closer this distance approaches 0 as compared to the
normal reward (depicted in Figure 4.27). The base for the log reward defined in Equation 4.2
has 3 constants: log coef which is parameterizable and used to choose curve’s the steepness
and height; the 0.1 value offsets the curve in x axis so the reward doesn’t go to infinity; the 1
value offsets the curve in y axis so its start is closer to the linear base of the normal reward.

rewardbase = −log coef × log(||target coord− ee coord||+ 0.1) + 1 (4.2)

A TD3 agent was trained for 2 million time steps (≈14.0 hours) with log coef = 1. The
resulting Average Return and Average Time Steps graphs are plotted in Figures 4.28 and
4.29.

Figure 4.27: Log base reward for different coefficient values compared against linear base
reward.

Log reward without success threshold

The previous log reward base is positive starting from a distance smaller than 1/e−0.1 ≈
0.26788 meters. This together with removing the success threshold and its reward bonus was
intended to reinforce precision and smooth motion when optimizing for accumulated reward
by having to place the end effector at the target position for longer. Without a success
threshold an episode may extend to its fullest duration if the manipulator does not collide.
A TD3 agent was trained in this reward system for 2 million time steps (≈12.9 hours). The
resulting Average Return and Average Time Steps graphs are in Figures 4.30 and 4.31.
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Figure 4.28: Average Return of evaluation
episodes for TD3 agent trained with the log

reward.

Figure 4.29: Average Time Steps of
evaluation episodes for TD3 agent trained

with the log reward.

Figure 4.30: Average Return of evaluation
episodes for TD3 agent trained with the log

without success threshold reward.

Figure 4.31: Average Time Steps of
evaluation episodes for TD3 agent trained

with the log without success threshold reward.

Joint penalty and log reward

A TD3 agent was trained for 2 million time steps (≈13.7 hours) in a reward system
consisting of the combination of the previous log base reward (Section 4.3.2) and joint penalty
(Section 4.3.2). The resulting Average Return and Average Time Steps graphs are in Figures
4.32 and 4.33.

Summarized results

The trained agents were each evaluated in a total of 200 random seed episodes in the
UR10BallCatch environment using the respective reward system they were trained. The
exception is the log w/o thr agent that was evaluated on the log reward system in order to
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Figure 4.32: Average Return of evaluation
episodes for TD3 agent trained with the joint

penalty and log reward.

Figure 4.33: Average Time Steps of
evaluation episodes for TD3 agent trained

with the joint penalty and log reward.

compute the success rate. Initially, only 100 evaluation episodes were run. However, after
observing very similar performance in the Success Rate metric between the normal, joint, and
the log reward agents (having a maximum difference of 1%), 100 additional episodes were run
with new random seeds, resulting in no significant change but smaller confidence intervals.

The results for successful episodes, excluding the Mean Return metric, are listed in Table
4.8. The best agent was the one trained with the log reward, but only improving the Success
Rate by 1% relative to the normal reward. All new rewards systems lowered (improved) the
Mean Time Steps and Mean Elapsed Simulation Time. These metrics experienced a minimum
decrease, relative to the normal reward, of 10.84 time steps and 304.42 ms respectively.

Agent SR SR CI FD TS ET

normal 0.985 (0.957,0.997) 0.08±0.02 60.55±51.02 1626.27±1432.46
joint 0.985 (0.957,0.997) 0.08±0.02 49.71±45.41 1307.56±1212.43
log 0.995 (0.972,1.000) 0.08±0.02 49.66±41.14 1319.66±1129.19
log wo thr 0.725 (0.658,0.786) 0.08±0.01 47.94±43.99 1321.85±1261.17
joint + log 0.925 (0.879,0.957) 0.08±0.02 48.73±42.32 1296.23±1171.46

Agent - Agent model; SR - Success Rate; SR CI - Success Rate 95% Confidence
Interval; FD - Mean Final Distance to target (m); TS - Mean Time Steps; ET
- Mean Elapsed Simulation Time (ms);

Table 4.8: Metrics of successful evaluation episodes with a threshold distance of 0.1
meters for agents trained with different reward systems.

To better distinguish the most similarly performing agents, 200 additional evaluation
episodes were run for a success threshold distance of = 0.05 meters. The results are listed in
Table 4.9. Here, all agents experience a drop in Success Rate, increase in Mean Time Steps and
increase in Mean Elapsed Simulation Time. This was expected given they were not trained
on this threshold, suggesting that the end effector was staying close to the target position for
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Agent SR SR CI FD TS ET

normal 0.650 (0.580,0.716) 0.04±0.01 95.88±71.33 2589.09±1977.85
joint 0.880 (0.827,0.922) 0.04±0.01 80.77±66.34 2163.90±1801.42
log 0.765 (0.700,0.822) 0.04±0.01 96.93±73.01 2620.16±2005.28
log wo thr 0.525 (0.453,0.596) 0.04±0.01 85.18±70.65 2395.63±2035.22
joint + log 0.750 (0.684,0.808) 0.04±0.01 74.41±47.98 2002.79±1328.65

Agent - Agent model; SR - Success Rate; SR CI - Success Rate 95% Confidence
Interval; FD - Mean Final Distance to target (m); TS - Mean Time Steps; ET
- Mean Elapsed Simulation Time (ms);

Table 4.9: Metrics of successful evaluation episodes with a threshold distance of 0.05
meters for agents trained with different reward systems.

longer before crossing the threshold. The joint reward agent experience the smallest drop in
Success Rate. The remaining have a drop of at least 17.5% and the normal reward agent of
33.5%. Hence, the best performing agent was the one trained with the joint penalty reward.

4.3.3 Demo

This section presents the results of applying the best agent trained in the UR10BallCatch’s
train mode on its evaluation mode. This mode runs randomly chosen ball trajectories
which start at a height of 1 meter, land within reach of the manipulator and have a flight
time between [1.0, 1.2] seconds before crossing z = 1 meters. The estimated catch position
is then used in the state for the agent to reach. The details of these trajectories and the
evaluation mode are in Section 3.3.1. Before running the agent in evaluation mode, it was
run on 300 episodes, with targets evenly spaced in a grid discretizing the catching plane, to
get an estimate of the learned policy. As depicted in Figure 4.34, 298 targets were successfully
reached, but only 154 (51%) were under the maximum limit of the trajectories’ flight time of
1.2 seconds. The remaining targets are the ones at the extremity of the workspace.

In order to visualize the movement of the end effector during an episode in evaluation
mode, the best agent was run on an episode whose intercept point can be seen in Figure 4.35).
The trajectory has a total flight time of approximately 1.33 seconds (1.16 seconds before inter-
cepting the catching plane). Figure 4.36 shows the Cartesian coordinates of the end effector,
the flying ball and the estimated catching position (obtained from the trajectory prediction
ROS node) changing during this episode. It is shown only the final 0.97 seconds of the episode
since the agent has to wait (at the start) for a number of ball position samples to act. The
number of samples is a parameter that can be adjusted and has a trade-off between better
initial catching position estimate and a longer wait time to start moving.

For the purposes of this demonstration 30 initial samples were used. The end effector did
not move in a perfectly straight line towards the catching position, but it was still able to
reach it in time and be within the required distance to the ball for success. Additionally, the
velocities in rad/s for each controlled joint was measured and is plotted in Figure 4.37. In the
first 0.4 seconds the base joint stays at its velocity limit, resulting in the fast displacement
along the positive Y axis seen in Figure 4.36, while the elbow joint stays mostly static. The
base and shoulder joints seem to be responsible for the majority of the movement, given they
reach their maximum velocity limits more often then remaining joints.
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Figure 4.34: Evaluation grid results

Figure 4.35: Intercept point of trajectory 6220 with catching plane
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Figure 4.36: Target and End Effector trajectory on a successful attempt
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Figure 4.37: Joint velocities on a successful attempt
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4.4 Final Remarks

In this chapter, a set of DRL agents were trained and evaluated in different reaching tasks.
Initially, these tasks were defined with 1/5th of the maximum joint velocities, thus requiring
less tuning of the robo-gym’s MDP parameters (e.g., ACR). The end effector state proved
to be the best solution for encoding the target, resulting in faster convergence and better
policies. However, this comes at a cost: while in this simulated environment the end effector
reference frame is easily available, in real world applications this would require specialized
sensors or performing forward kinematics. Thus, despite the base state being harder to
learn, an agent using this state solves the full problem by not requiring a kinematic model of
the robot and would be more applicable to a real world scenario.

Often, in DRL research, algorithms are benchmarked in simple, computationally cheap
environments. This offers the opportunity to use hyperparameter search in great volumes to
obtain improvements. In this work, the hyperparameter search performed was constrained by
the available computational resources, in part due to the CPU dependent nature of Gazebo.
Hence, the number of configuration trials and the time steps per trial executed during the
search may possibly have been smaller than necessary to find a better set of hyperparameters.
On the other hand, the more focused approach on some parameters yielded better policies. It
also highlighted key differences in the off-policy and on-policy algorithms used, specifically, in
the case of learning with the base state. TD3 was observed to be more reliable and sample
efficient than PPO, due to being off-policy and leveraging the replay buffer.

Tuning the ACR and handling the trade off between precision and complexity of the
environment was shown to be essential in obtaining better performance for greater joint
velocities. Additionally, the reward system using a penalty for actions too far from the
current joint positions was observed to be a useful approach in decreasing reach times and
increasing success rate for smaller thresholds.

The ball catching demonstration using a reaching agent was able to meet the speed re-
quirements in reaching the targets in its workspace. Nevertheless, for targets it could reach
in time in the train mode, in evaluation mode it would often reach inside the threshold and
move away from the catching position before the ball being close to the end effector. This
shows a need for the agent to stabilize at the catching position, which can be achieved by
additional reward shaping or stopping the joints’ motion when inside the threshold.
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Chapter 5

Conclusion and Future Work

The main objective of this dissertation was to apply Deep Reinforcement Learning to the
domain of robotic manipulation tasks and evaluate its effectiveness in obtaining successful
policies. To this end, the concrete class of manipulation tasks addressed in this work were
robot reaching.

Initially, a set of classic Reinforcement Learning problems of varying complexity were
solved and used as a practical approach to obtain a solid background in DRL. This consisted
of implementing agents to solve: Gridworld using tabular Q-learning; Gridworld with a ten-
sor state representation using Deep Q-learning and PyTorch; and the pendulum swing-up
continuous control task using DDPG and PyTorch.

Afterwards, a number of OpenAI Gym environments for the different versions of the
reaching task were implemented based on the robo-gym toolkit. This allowed the simulation
of the manipulator, that has a backend in ROS and Gazebo, to have an MDP abstraction for
these tasks. This follows the Gym’s standard interface supported by the Stable Baselines3
DRL library, which provides implementations of state-of-the-art DRL algorithms.

In simulation, the UR10 collaborative robot was used together with two DRL algorithms
(TD3 and PPO), representative of approaches using off-policy and on-policy learning, to train
agents capable of successfully controlling the manipulator’s joints to solve two versions of a
reaching task at slower speeds (UR10Reach). This resulted in an agent capable of replacing
the function of methods using trajectory planning and inverse kinematics. Additionally, it
was observed that defining the target in the end effector reference frame produced faster
convergence and better resulting policies.

A systematic approach was then employed to further improve performance of the DRL
agents and an assessment of learning hyperparameters was made. Here, an improvement was
verified for TD3. The PPO algorithm demonstrated to perform worst in the harder version of
the UR10Reach when run with a single actor collecting experiences. This is most likely due
to the lower sample efficiency of PPO and the unstable aspects of on-policy learning. Because
of this, most work using this algorithm uses multiple parallel actors (e.g., 8,16,32) to collect
more experience by combining rollouts, which requires much greater computational resources
than the ones used for this dissertation.

Subsequently, the TD3 algorithm was chosen to solve a faster version of the reaching task
(UR10BallCatch) because of its better performance in previous experiments. This required
tuning the action cycle rate, a parameter that is part of the MDP definition for robotic
tasks in robo-gym, for the faster maximum joint velocities. Greater ACRs are necessary to
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achieve high precision for a given threshold. However, beyond an ACR value, performance
was observed to decrease with the increase of the ACR. As explained in [21], RL algorithms
are extremely sensitive to the frequency of taking actions and the performance goes to zero
as the frequency of taking actions goes to infinity. This is solved in [12] by using a technique
known as frame skipping : repeating the previous agent’s actions on the environment for a
number of states in between every new action. This was not used in this work since the robot-
actuation cycle time was equal to action cycle time (1/ACR), but it would be interesting to
attempt shorter robot-actuation cycle times which would increase the rate at which actions
are sent to the joints controller.

With an appropriate ACR for this faster scenario, the focus was turned to increase per-
formance of agents in the UR10BallCatch environment with regards to the success rate and
the time to reach a target. A set of different reward systems were tested which resulted
in significantly lower reach times and greater success rates for a smaller success threshold.
Finally, the agent with the best performance was applied to a ball catching scenario where a
polynomial approximation method is used to estimate the catching position for a flying ball.

For future work, different lines of research could be explored. For example, in this disser-
tation only 5 out of the UR10’s 6 joints are controlled, since no tool is used, but for other tasks
the orientation of end effector with an object could be used as a reward. For goal oriented
tasks, sparse rewards where the agent only receives a reward when achieving a goal may take
longer to converge, but can offer the agent more freedom to explore different strategies which
would be penalized in hand-engineered rewards. In the context of reaching, further improve-
ments could be obtained from redefining the task and optimizing for precision or achieving a
specific pose. It would also be interesting to transfer the learned policies from simulation to
a physical system, which is feasible given the environment’s implementation using ROS, and
to use pixels from a camera as a state together with Convolutional Neural Network (CNN)
architectures. Additionally, other classes of manipulations tasks could be attempted, for ex-
ample: reaching with obstacles avoidance, full ball catching, stacking, assembly, pushing and
inserting. For tasks requiring additional sequential context, such as the ball catching problem,
enhancing the state to include multiple samples of time changing properties of an environ-
ment could be applied to better encode these dynamics. In supervised learning contexts,
the Recurrent Neural Network (RNN) [39] architecture is used for problems with sequential
inputs. Consequently, using RNNs to represent the policy when applying DRL to these tasks
could also be beneficial.
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