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Abstract. This work presents the statistical analysis of time series of
monthly average temperatures in several European locations using a
state space approach, where it is considered a model with a determinis-
tic seasonal component and a stochastic trend. Temperature rise rates in
Europe seem to have increased in the last decades when compared with
longer periods, hence change point detection methods were applied to
residuals state space models in order to identify these possible changes
in the monthly temperature rise rates. In Northern Europe the change
points were, almost all, identified in the late 1980s while in Central and
Southeastern Europe was, for the majority of cities, in the 1990s and
later.

Keywords: Air temperature· Climate change· state space models· Change
point detection.

1 Introduction

Global warming and climate change are in the scientific agenda. The increase of
droughts, floods, severe storms, and other weather catastrophes are putting vul-
nerable human and biological populations at risk. Nevertheless, global warming
effects vary around the world, therefore this phenomenon must be monitored at
a smaller scale, for instance at a European cities level. Statistical analysis of the
evolution of climate variables can contribute to a more efficient identification
and monitoring of patterns of change. In particular, the study of long tempera-
ture series is of particular interest in understanding climate dynamics at smaller
scales, allowing efficient monitoring of environmental processes.

The application of state space models to long temperature time series in
Lisbon, Coimbra, and Porto, in [6], allowed us to conclude that the latter city
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has a very different growth rate per century than the others. In [5], the appli-
cation of state space models to long series of air temperature, together with
cluster procedures, let the identification of temperature growth rates patterns
in several cities in Europe. This work allowed us to conclude that temperature
rates have been increasing in the last decades when compared to longer periods.
Following this work, we will analyze, in a state space framework, monthly tem-
perature averages in these European cities aiming to identify the change points
from which the pattern growth has changed and use them to accurately estimate
growth rates for the forthcoming decades. A state space model comprises two
equations, the state equation that translates the system dynamics, regulated by
a latent process (the state), and the observation equation that establishes the
link between the unobservable states and the observations. This class of models
allows the description of both univariate and multivariate time series, stationary
or not, that can present data irregularities such as interventions and missing
data, reveling to be a flexible class. Moreover, this class has the advantage, in
most cases, of detecting the temporal dynamics of the process more accurately
when compared to other models. State space models have been successfully used
in several research areas such as environment ([7],[4]), insurance ([3]), Finance
([22]) and animal ecology ([13]). Regarding structural breaks detection, there is
a vast literature on the subject (see [2], [20] and [23], including the references
therein). Much of the methodology was first developed for a sequence of inde-
pendent and identically distributed (i.i.d.) random variables and a large part of
the literature is devoted to CUSUM -type and likelihood ratio procedures based
on distributional assumptions (usually Gaussian) to test for a change in the
mean and or in variance. When no knowledge about the distributional form of
the sequence under analysis is available, nonparametric change detection meth-
ods can be used in order to identify these changes. The works of [9] and [19]
consider methods that have into account well established nonparametric tests
for location and scale comparisons and [18] developed an R package ([15] ) with
the implementation of several change points detection methods. The existence of
serial dependence in many applications led to the development of methodologies
to deal with change points in time series. Several approaches can be used in this
context, for example one can apply test statistics developed for the independent
setting to the underlying innovation process or one can try to quantify the effect
of dependence on these test statistics depending on the model structure that
is considered. There are several works on change point detection in climate or
environmental settings. For instance, [16] makes a review of this topic in the cli-
mate context and [10] applied several change points procedures to Klementinum
temperature. In line with this work, it is considered parametric and nonpara-
metric statistical tests with the application of maximum type statistics to the
the innovation processes predictions obtained by the Kalman filter algorithm for
the temperature time series in Europe.



2 Data Description

The Data is available at the Climate Data Online [12] and comprises the period
between January 1900 and December 2017, making a total of 1416 observations.
The location of the cities and data descriptive statistics can be found in Fig. 1
and Table 1 respectively. Table 1 presents the minimum, maximum and average
temperature for all period and also the same statistics for period under the year
2000 and for the second millennium. The cutoff point was chosen in order to
separate centuries. The global minimums are, with the exception of Ireland, in
the first period and the global maximums were reached in the second period
in two thirds of the series. For all the cities analyzed, the increase in average
temperatures in recent years is quite evident.

Table 1. Characterization of time series data set.

city (country) min max min max min max average average average missing
1900 1900 2000 1900 1900 2000 values

to 2017 to 1999 to 2017 to 2017 to 1999 to 2017 (%)

Berlin (Germany) -10.7 23.0 -10.7 22.5 -4.8 23.0 8.7 8.5 9.9 2.3
Bucharest (Romania) -11.5 27.5 -11.5 27.5 -6.6 26.5 10.1 9.8 11.1 2.6
Copenhagen (Denmark) -6.7 21.6 -6.7 21.6 -3.1 21.6 8.6 8.4 9.6 0.4
Dublin (Ireland) 0.0 17.1 0.4 17.1 0.0 17.0 9.2 9.2 9.6 2.2
Kiev (Ukraine) -15.3 26.0 -15.3 26.0 -10.0 24.7 8.1 7.9 9.4 0.9
Lisbon (Portugal) 8.0 25.1 8.0 25.1 9.4 25.1 16.9 16.8 17.4 3.4
Minsk (Belarus) -16.8 22.6 -16.8 22.0 -11.1 22.6 6.1 5.8 7.4 1.8
Nantes (France) -1.2 23.3 -1.2 23.2 2.5 23.3 12.0 11.9 12.5 0.4
Prague (Czech Rep.) -13.1 22.0 -13.1 21.7 -5.5 22.0 7.9 7.6 9.1 8.2
S. Petersburg (Russia) -18.3 24.4 -18.3 22.4 -12.1 24.4 5.3 5.1 6.5 0.0
Talin (Estonia) -15.5 21.5 -15.5 21.2 -11 21.5 5.3 5.1 6.5 5.4
Vienna (Austria) -9.5 24.4 -9.5 24.4 -3.4 24.1 10.1 9.9 11.3 0.2
Vilnius (Lithuania) -17.1 21.8 -17.1 20.4 -10.4 21.8 5.8 5.6 7.3 2.6
Zagreb (Croatia) -7.0 25.9 -7.0 25.9 -2.5 25.7 11.8 11.6 13.0 1.4
Zurich (Switzerland) -8.7 22.4 -8.7 21.8 -3.6 22.4 8.7 8.5 9.8 0.0

3 Model and Change Point Methods Descriptions

3.1 Model

Assuming that there are no change-points, the model is defined, for all time
sequence, by

Yt = τt +

12∑
i=1

βi;0St,i + e1,t (1)

τt = µ0 + φ0(τt−1 − µ0) + e2,t (2)



Fig. 1. Station locations (Adapted from google earth)

where Yt represents the monthly average air temperature in the month t, with
t = 1, ..., n, and βi;0 with i = 1, 2, ..., 12 is the seasonal coefficient associated to
the month t = i + 12k, for some k = 0, 1, 2, ..., St,i is an indicative function
defined such that

St,i = 1 =

{
1 if t = i+ 12k, for some k = 0, 1, 2, ...
0 otherwise.

(3)

{τt} is the trend component that follows a stationary autoregressive process
with mean µ0 with autoregressive parameter |φ0| < 1; the error ei,t, with i = 1, 2,
follows a white noise process (E(ei,t) = 0, var(ei,t) = σ2

i;0 and E(ei,tei,r) = 0,
for t 6= r), and are uncorrelated errors, that is E(e1,te2,r) = 0, ∀t, r.

The error e1,t is called the observation error and it can be seen as a measure
error, whereas the error e2,t is called the state error and translates the random-
ness of the trend component. Note that state τt is an unobservable process and
its predictions must be obtained. Kalman filter algorithms provides optimal un-
biased estimators for the state τt; τ̂t|t−1 for one-step-ahead prediction, τ̂t|t for
Kalman filter update and τ̂t|n for Kalman smoother predictions ([8]).

It is noted that no assumptions are made to distributional form of both
errors, although in many situations the Gaussian distribution is considered.

3.2 Change Point Detection

In order to discover an abrupt change in the behavior of the temperature rise
rates, a basic statistical tests applying maximum type statistics to detect a
change in location are performed. If there are no structural changes in the tem-
perature trend, it is expected that τt has no changes over time in its mean. If no



change point exists, the one-step-ahead forecast residuals are independent and
identically. If a change point exists at some time t∗, the one-step-ahead forecast
innovations can be used to detect and estimate it [19], and it is assumed that
after that time point the parameters of model 1–2 change to βi;1, i = 1, · · · , 12,
µ1, φ1 and σ2

j;1, j = 1, 2. We used Maximum type tests for both parametric and
nonparametric techniques.

First, consider that it is intended to test if the change point occurs at the
known time point k. The statistical hypotheses are

H0: Xt ∼ F0(x; θ0) for ∀t = 1 · · · , n
vs

H1: Xt ∼ F0(x; θ0) for t ≤ k and Xt ∼ F1(x; θ1), for t > k.

Under the non existence of change points hypothesis, it can be applied a,
parametric or a nonparametric, two-sample comparison test. If the statistic test
exceeds some appropriately chosen threshold then the null hypothesis that the
two samples have identical distributions is rejected, and we conclude that a
change point has occurred immediately after k time. Since it is not known in
advance where the change point occurs, the k time is unknown and the statistic
test is evaluated at every value 1 < k < n, and the maximum value is used.

Maximum type T test Under normality assumption, with no changes in σ2

which is assumed to be unknown, the test statistic T (n) is the maximum of the
absolute values of two sample t-test statistics

T (n) = max
1≤k<n

|Tk| = max
1≤k<n

√
(n− k)k

n

∣∣∣Xk −X
∗
k

∣∣∣
sk

where

Xk =
1

k

k∑
i=1

Xi, X
∗
k =

1

n− k

n∑
i=k+1

Xi

and

sk =

√√√√ 1

n− 2

[
k∑

i=1

(
Xi −Xk

)2
+

n∑
i=k+1

(
Xi −X

∗
k

)2]
.

The null hypothesis can be rejected if the statistic T (n) is greater than the
critical value. The exact distribution of T (n), for independent variables, is very
complex and [21] was able to calculate the true critical values only for the number
of observations n less than 10. Alternatively, approximate critical values can
be computed by other methods as the Bonferroni inequality, simulation or the
asymptotic distribution.

When random variables X1, X2, ..., Xn are not independent but form an
ARMA process then the asymptotic critical values of the test statistics consi-
dering independence have to be multiplied by

√
2πf(0)/γ, where γ = var(Xt)



and f(·) denotes the spectral density function of the corresponding ARMA pro-
cess ( [1]). Especially for an AR(1) sequence, the critical values should be mul-

tiplied by
[
(1 + φ)(1− φ)−1

]1/2
where φ is the first autoregressive coefficient,

[11].

Maximum type Mann-Whitney test In the nonparametric setting, at each
k point, 1 < k < n, the two-sample Mann-Whitney test statistic Dk;n can be
computed. The variance of Dk;n depends on the value k, so the test statistic is
obtained through the maximization of the standardized Dk,n to have mean 0
and variance 1 (see [18]),

Dn = max
k=2,···,n−1

D̃k,n =

∣∣∣∣Dk,n − µDk,n

σDk,n

∣∣∣∣ . (4)

The null hypothesis of no change is then rejected if Dn > hn for some ap-
propriately chosen threshold hn. This distribution does not have an analytic
finite-sample form and for the case of the Mann-Whitney statistics the asymp-
totic distribution of Dn can be written ([14]). However, these asymptotic dis-
tributions may not be accurate when considering finite length sequences, and
so numerical simulation may be required in order to estimate the distribution
([17, 18]). The best estimate of the change point location will be immediately

following the value of k which maximized D̃n,k.

4 Results

The parameters of model 1–2 were estimated in a classical decomposition ap-
proach combining the least squares estimation of the seasonal parameters β0;i,
with i = 1, ..., 12, with a distribution-free estimators developed to state space
models (see [7]) in order to estimate the remaining parameters. The results of
the estimation procedure are presented in Table 2.

All φ estimates verifies the stationary condition of the AR(1) process and
the smallest estimate of the mean of the stochastic trend level is 0.383 in Dublin
(Ireland) whereas the largest is 1.132 in Vilnius (Lithuania). The residuals anal-
ysis showed that, for the majority of cities, there is no serial correlation up to
lag 10 when considering a significance of 1% (see Fig. 2). The exception is the
city of Lisbon which presents no serial correlation only up to lag 3.

Although no assumption was made to the distribution of the errors in the
model under study, the normality was tested through the application of Jarque-
Bera test to standard residuals which lead to the rejection of this assumption in
the majority of the cities. This situation is not unusual, since the length of the
series is quite long, and in this situations tests tend to reject quite often.

This is an ongoing work and we only used the at most one change point
approach. For each city we have considered three situations: the maximum-type
test using Mann-Whitney tests and also T test applied to the residuals; the
application of the maximum-type T test applied to smoother predictions of the



Table 2. Parameter estimates of model 1–2

β̂0

city Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. µ̂0 φ̂0 σ̂2
0;e1 σ̂2

0;e2 σ̂2
0;Yt

Berlin -1.2 -0.4 3.0 7.6 12.7 15.8 17.5 16.6 12.9 8.1 3.2 0.1 0.709 0.576 1.937 1.319 3.912
Bucharest -3.9 -1.7 3.6 9.9 15.3 19.1 21.3 20.7 16.0 9.8 3.8 -1.4 0.611 0.537 1.989 1.653 4.311
Copenhagen 0.0 -0.2 1.9 6.1 11.2 14.9 16.9 16.4 13.0 8.7 4.5 1.7 0.655 0.711 1.128 0.836 2.815
Dublin 4.4 4.5 5.6 7.3 9.9 12.7 14.5 14.2 12.3 9.6 6.3 5.0 0.383 0.521 0.704 0.484 1.369
Kiev -5.5 -4.7 0.2 8.0 14.6 17.9 19.6 18.7 13.7 7.4 1.4 -3.1 0.732 0.583 2.735 1.893 5.601
Lisbon 10.9 11.6 13.4 14.9 17.0 19.9 21.8 22.3 20.9 17.9 14.0 11.6 0.510 0.771 0.859 0.179 1.299
Minsk -7.1 -6.4 -2.1 5.3 11.8 15.4 17.0 16.0 11.1 5.2 -0.3 -4.6 0.954 0.679 3.377 1.299 5.788
Nantes 5.2 5.7 7.9 10.2 13.6 16.6 18.6 18.3 16.0 12.2 8.0 5.8 0.478 0.439 1.385 0.785 2.357
Prague -2.8 -1.8 2.0 6.7 11.9 15,1 16.9 16.2 12.3 7.1 1.9 -1.4 0.797 0.701 2.506 0.674 3.831
S. Petersburg -7.5 -7.5 -3.4 3.3 9.9 14.8 17.7 15.9 10.7 4.8 -0.6 -4.9 0.843 0.607 3.232 2.100 6.560
Talin -5.5 -6.0 -2.8 2.7 8.6 13.2 16.0 15.0 10.5 5.3 0.5 -3.0 0.800 0.648 2.181 1.844 5.360
Vienna -1.0 0.5 4.6 9.5 14.3 17.5 19.4 18.7 14.7 9.4 4.3 0.6 0.710 0.559 2.043 1.086 3.624
Vilnius -6.7 -5.9 -2.3 4.5 11.0 14.3 16.2 15.1 10.4 4.9 -0.4 -4.3 1.132 0.821 3.487 0.782 5.889
Zagreb 0.3 2.4 6.9 11.5 16.0 19.4 21.4 20.8 16.7 11.4 6.2 1.9 0.572 0.606 2.258 1.044 3.907
Zurich -1.2 0.0 3.8 7.5 11.9 15.1 16.9 16.3 13.1 8.2 3.1 -0.1 0.763 0.653 2.302 0.591 3.331

Fig. 2. Ljung-Box p-values residuals tests. α = 1% in red.



latent process τt which represents the trend of the temperature. Since τt has an
autoregressive structure of order 1, it was necessary to adjust, for each series, the
critical value of the test using the estimates of the autoregressive parameters.
Results of the change point detection are presented in Table 3.

Table 3. Change point time for each city;

M-W test T-test t-test (smoother)
change point change point change point

city (country) month/year month/year month/year

Berlin (Germany) 8/1987 8/1987 9/1987
Bucharest (Romania) 9/2006 12/2007 9/2006
Copenhagen (Denmark) 8/1987 8/1987 9/1987
Dublin (Ireland) 9/1987 9/1988 10/1988
Kiev (Ukraine) 12/1999 11/1988 12/1989
Lisbon (Portugal) 1/1945 6/1978 7/1978
Minsk (Belarus) 11/1988 11/1987 11/1987
Nantes (France) 7/1981 8/2017 7/1987
Prague (Czech Rep.) 11/1997 8/1987 8/1987
S. Petersburg (Russia) 12/1987 12/1988 12/1988
Talin (Estonia) 9/1987 9/1987 12/1988
Vienna (Austria) 8/1987 9/1987 8/1987
Vilnius (Lithuania) 6/1982 9/1987 11/1987
Zagreb (Croatia) 12/1991 12/1992 12/1992
Zurich (Switzerland) 7/1997 6/1987 8/1987

There are several cities whose change points obtained by the three methods
are very similar. In most of these cities the change points are identified in the
late eighties or in the early nineties of the last century, with the exception of
Bucharest which was identified in 2006. Although normality assumption was
rejected, the results based on the T-tests do not differ substantially from the
results obtained in the nonparametric case.

We highlight Kiev, Prague and Zurich as cities where the nonparametric
method identifies a change point about ten years later than the other two meth-
ods. In Lisbon case the nonparametric method identifies a change point about
thirty years early than the other methods. Analysing the values of the statisti-
cal tests involved there is two local maximums indicating the possibility of the
existence of more than one change point (Fig. 3). Note that in Lisbon the resid-
uals show significant correlation after lag 3, so in this case the tests validity are
compromised and is necessary further model investigation in order to have non
correlated residuals.

Table 3 presents discrepant values in Nantes. The nonparametric method
points for a change point in July 1981 and the T test applied to smoother
predictions points for a change point six years later. The T test applied to the
residuals presents a change point almost at the end of the period under analysis.
The first difference can be explained by the fact that between 1981 and 1987



Fig. 3. Values of D̃k,n for residuals , Tk for residuals and Tk for smoother predictions
in Lisbon.

there are two local maximums in the test statistics. In the nonparametric case
the global maximum occur in july 1981 but the difference for the other value is
rather small, 0.08 (see Fig. 4). In july 2017 there is a spike in all test statistics,
nevertheless only in the T test applied to the residuals this value exceeds all
other values. Note that in the test statistic, Tk, the mean of the second segment
is calculated with only 5 observations. We highlight the fact that the residuals
from July 2017 are very high compared to the other values of the series which
may justify the discrepancy with the other methods.

Fig. 4. Values of D̃k,n for residuals , Tk for residuals and Tk for smoother predictions
in Nantes.

In order to analyze the existence of a geographical pattern in the detection of
change points, Fig. 5 presents, for each city and the nonparametric method, the
time (in terms of early or late decade) identified as a change point. In Northern



Fig. 5. Change point identification, for each city, using the nonparametric approach
(adapted from google earth)

Table 4. Residuals mean before and after change point time defined by M-W test

mean residuals mean residuals Mean
city (country) before change point after change point Difference

Berlin (Germany) -0.172 0.573 0.745
Bucharest (Romania) -0.075 0.93 1.005
Copenhagen (Denmark) -0.121 0.371 0.492
Dublin (Ireland) -0.092 0.305 0.397
Kiev (Ukraine) -0.131 0.756 0.887
Lisbon (Portugal) -0.188 0.126 0.314
Minsk (Belarus) -0.215 0.635 0.850
Nantes (France) -0.15 0.353 0.503
Prague (Czech Rep.) -0.144 0.693 0.837
S. Petersburg (Russia) -0.199 0.598 0.797
Talin (Estonia) -0.175 0.475 0.650
Vienna (Austria) -0.173 0.54 0.713
Vilnius (Lithuania) -0.212 0.491 0.703
Zagreb (Croatia) -0.157 0.609 0.766
Zurich (Switzerland) -0.133 0.685 0.818

Europe the change points were, with the exception of Vilnius , identified in the
late 1980s while in Central and Southeastern Europe, with Vienna one exception,
this identification was in the 1990s and later. As mentioned before Lisbon case,
in southwestern Europe, presents a change point much earlier than the other
cities. Table 4 presents the residuals means before and after the detection of the



change points using the nonparametric approach with the M-W tests. One can
see, together with Table 3 and Fig. 5, that the biggest differences occur almost
always for later detections and that the smaller changes occur in western Europe.

5 Conclusions

By applying methodologies to detect at most one change point in the residuals
of the state space models applied to monthly average temperatures of European
cities, it was possible to conclude that they exist and are different, in time and
magnitude, for these different cities of Europe.

From this detection, and for each city, it is important to use it in the esti-
mation of the parameters before and after the change point in order to assess
the existence or not of more change points and, in a final stage, to use the most
appropriate model to predict the temperature rise rates in European cities. This
is a topic of future research.
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