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Abstract: In the presence of appropriate non-minimal couplings between a scalar field and the
curvature squared Gauss–Bonnet (GB) term, compact objects such as neutron stars and black holes
(BHs) can spontaneously scalarize, becoming a preferred vacuum. Such strong gravity phase tran-
sitions have attracted considerable attention recently. The non-minimal coupling functions that
allow this mechanism are, however, always postulated ad hoc. Here, we point out that families
of such functions naturally emerge in the context of Higgs–Chern–Simons gravity models, which
are found as dimensionally descents of higher dimensional, purely topological, Chern–Pontryagin
non-Abelian densities. As a proof of concept, we study spherically symmetric scalarized BH solutions
in a particular Einstein-GB-scalar field model, whose coupling is obtained from this construction,
pointing out novel features and caveats thereof. The possibility of vectorization is also discussed,
since this construction also originates vector fields non-minimally coupled to the GB invariant.

Keywords: black holes; scalarization; Higgs–Chern–Simons gravity

1. Introduction

The subject of ’spontaneous scalarization’ of asymptotically flat black holes (BHs)
has received considerable interest over the last several years. This phenomenon occurs
due to non-minimal couplings in the scalar field action, which allows for circumventing
well-known no-hair theorems [1].

The typical non-minimal coupling is between a real scalar field φ and some source
term I ; it triggers a repulsive gravitational effect, via an effective tachyonic mass for φ. As a
result, the General Relativity (GR) BH solutions are unstable against scalar perturbations
in regions where the source term is significant, leading to BH scalar hair growth.

Following [2], let us briefly review this mechanism, restricting to D = 4 spacetime di-
mensions. The starting point here is the action for the scalar sector, which has a generic form

Sφ =
∫

d4x
√
−g
[

1
2
(∇φ)2 + α f (φ)I(ψ; g)

]
, (1)

with f (φ) the coupling function, α a coupling constant, while the source term I generically
depends on some extra-matter field(s) ψ and on the metric tensor gµν. The corresponding
equation of motion for the scalar field φ reads

∇2φ = α
d f
dφ
I . (2)

An essential feature of a model allowing for scalarization is the existence of a funda-
mental solution of the above equation,
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φ = φ0, with
d f
dφ

∣∣∣
φ=φ0

= 0 , (3)

providing the ‘ground state’ of the scalar model (‘Ground state’ is intended to mean an
equilibrium solution, which is not necessarily stable). As a result, the usual GR solutions
(with φ = φ0) also solve the considered model (which consists of (1) supplemented with
terms for gravity and matter field(s) ψ), being the fundamental solutions of the model.

Apart from the ground state, the model possesses a second set of solutions, with a
nontrivial scalar field—the scalarized BHs. Moreover, usually (there are exceptions for special
coupling functions; in some models, the scalarized BHs do not emerge as an instability
of the fundamental solutions [3].) they are smoothly connected with the fundamental
set, which is approached for φ = φ0. Then, at the linear level, spontaneous scalarization
manifests itself as a tachyonic instability triggered by a negative effective mass squared of
the scalar field.

Around the ground state, the coupling function possesses the following expression:
(with δφ = φ− φ0)

f (φ) = f |φ=φ0 +
1
2

d2 f
dφ2

∣∣∣
φ=φ0

δφ2 + . . . . (4)

Then, the linearized form of Equation (2) (i.e., with a small-φ) is:

(∇2 − µ2
eff)δφ = 0, where µ2

eff = α
d2 f
dφ2

∣∣∣
φ=φ0
I . (5)

There are time independent solutions (bound states) of the above equation describing
scalar clouds: for appropriate choices of I the tachyonic condition (µ2

eff < 0) can be satisfied
for a specific (discrete) set of backgrounds, as specified e.g., by their global charge(s).
The onset of the instability is marked by such bound states. The backreacting continuation
of the scalar clouds results in scalarized BHs.

Various choices of the source term I have been considered in the literature. In the
context of this work, of special interest is the case of geometric scalarization, with

I = RµνρσRµνρσ − 4 RµνRµν + R2 = LGB , (6)

the Gauss–Bonnet (GB) invariant, a choice which allows for the scalarization of vacuum
Schwarzschild BH (we recall that LGB = −48M2/r6 in this case, with M being the BH mass).
This model has been extensively studied, starting with [4–7], where the first examples of
scalarized BHs resulting from this type of mechanism have been reported. Further work
includes the study of scalarized BHs in various extensions of the initial framework [8–24]
and the investigation of solutions’ stability [25–28]; furthermore, partial analytical results
are reported in Refs. [29–32], while scalarized, rotating BHs are studied in [33–39].

The explicit form of the coupling function does not appear for be important for the
existence of scalarized solutions (although it impacts their properties), as long as the
conditions discussed above are satisfied. For example, the results in [4] are found for
f (φ) = φ2, while Ref. [5], considers a coupling function f (φ) = 1− e−6φ2

.
To the best of our knowledge, a common feature of models allowing for BH scalar-

ization is that the origin of the term f (φ)LGB in (1), and, in particular, the choice of the
coupling function f (φ) is ad hoc, missing a well motivated origin (The coupling function
f (φ) = e−φ naturally appears in the string theory context, when including first-order α′

corrections (with φ the dilaton field). This choice, however, does not allow for BH scalariza-
tion, the condition (3) not being satisfied for any finite φ0. Despite this fact, some features
found for scalarized BHs occur also in this case, a relevant example being the appearance
of repulsive effects for static, spherically symmetric solutions [40]). The main purpose of
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this work is the study of the basic properties of the BH solutions in a model where the
interaction term f (φ)LGB emerges naturally from a Higgs–Chern–Simons gravity (HCSG),
originally proposed in [41,42]. The corresponding expression of the coupling function is

f (φ) = φ

(
1− 1

3
φ2
)

. (7)

The field φ here is a Higgs-like scalar field, being a relic of a Yang–Mills (YM) connec-
tion in higher dimensions, and approaches a nonzero value at infinity, with two discontinu-
ous vacua at φ0 = ±1. As we shall see, the expression (7) of the coupling function allows
for scalarization of Schwarzschild BHs; the basic properties of the scalarized solutions are
rather similar to those in Ref. [4] (where a quadratic coupling function has been employed).
However, there are also novel features; an interesting one is that scalarization occurs for
both signs of the constant α (which is not the case for other models with scalarized static
BHs). Another interesting feature is the existence of an extension of the model with a vector
field, which allows for vectorization of the generic Einstein-GB-scalar (EGBs) BHs.

This paper is organized as follows: in Section 2, we review the basic features of the
model in [41], in particular its derivation starting with a Chern–Pontryagin (CP) density
in D = 8 dimensions. The solutions of the model are reported in Section 3. Both generic
configurations (with a value of the scalar field which does not approach asymptotically
the ground state) and scalarized BHs are discussed; moreover, a perturbative (analytic)
solution is derived in the former case. Working in the probe limit, the solutions of an
extension of the original model with an extra-vector field are also reported. We conclude
with a summary and a discussion in Section 4.

2. HCS Gravity

The HCSG models in [41,42] are particular examples of gauge theories of gravity, and
follow the spirit (and the general framework) in [43–48], with the usual identification of the
spin-connection and the Riemann curvature with the YM connection and curvature. As a
new feature, an extra-Higgs-like scalar and a vector field occur in the four dimensional
action for the specific model studied in this work. For completeness, in this section,
we briefly review the flavour of the results in Refs. [41,42], which proposes a general
framework for the construction of such HCSG models.

The starting point in this construction is the CP density for a SO(2n) YM field in
D = 2n dimensions (n = 2, 3, . . . ),

ΩCP = Tr F ∧ F ∧ · · · ∧ F (n times) , (8)

with F the curvature 2-form. By construction, the CP density can be expressed locally as a
total divergence, ΩCP = ∇MΩ̄M (M = 1, 2, . . . , D).

In the usual approach, a Chern–Simons density is defined as the Dth component of
Ω̄M, which results in a YM theory in a d = 2n− 1 odd-dimensional spacetime (At no point is
a metric involved in this construction; this is a topological theory).
However, the approach in [41,42] (see also the Refs. [49,50] and the Appendix A of Ref. [51])
introduces an extra-step, by considering first the dimensional descent of the CP density (8)
to some intermediate dimension d < D = 2n, which can be odd or even. As usual with
gauge fields, the relics of the gauge connection on the co-dimension(s) are Higgs scalar(s).
The remarkable property of the resulting density (dubbed now Higgs-CP density ΩHCP,
being given in terms of both the residual gauge field and the Higgs scalar Φ), is that, like
the original CP density, it is also a total divergence,

ΩHCP = ∇iWi , i = 1, .., d. (9)

As with the definition of the usual Chern–Simons densities, the resulting HCS density
in d− 1 dimensions is defined as the dth component of Wi.
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For both the Chern–Simons and Higgs–Chern–Simons cases, the final step is the
(standard) prescription for the passage to gravity, the spin-connection being identified
with the YM connection. In the latter case, this prescription must be extended by the
corresponding elements pertaining to the Higgs sector, which generically result in extra
frame-vector fields, apart from the scalar field(s) [41,42]. By analogy to the standard
Chern–Simons gravities (which exist in odd-dimensions only [52]), the resulting models
are dubbed HCSG.

Let us exemplify the generic construction with the simplest two cases, the start-
ing point being the CP densities (8) in D = 6, 8 dimensions. The case of interest here
is d = 5, the final Higgs–Chern–Simons being defined in four dimensions, with the
following Lagrangians:

Ω(4,6)
HCS = εµνρσ Tr Fµν Fρσ Φ , (10)

Ω(4,8)
HCS = εµνρσ Tr

[
Φ
(

FµνFρσ +
2
9

Φ2 FµνFρσ +
1
9

FµνΦ2Fρσ

)
−2

9
(
ΦDµΦDνΦ− DµΦΦDνΦ + DµΦDνΦΦ

)
Fρσ

]
, (11)

these being the 5th components of the corresponding Wi vector in (9). In addition, note that
the d = 5 HCP density leading to Ω(4,8) is found by considering the reduction of the D = 8
CP density over a three-dimensional sphere of unit radius. In addition, the gauge group
in (10) and (11) is chosen to be SO(5) while the Higgs field takes its values in the orthogonal
complement of SO(5) in SO(6).

After the passage to gravity, the corresponding HCSG Lagrangians read [41]

L(4,6) = εµνρσεabcd φ Rab
µνRcd

ρσ , (12)

L(4,8) = εµνρσεabcd

{(
1− 1

3

(
φ2 + A2

))
φ Rab

µνRcd
ρσ +

8
3

Rab
µν∇ρ Ac(φ∇σ Ad − 2Adφ,σ)

}
. (13)

The scalar φ and the ‘frame-vector field’ Aa are relics of the Higgs scalar (with
A2 = Aµ Aµ). The density (13) can be cast in a more useful form by dropping a total deriva-
tive term, which results in the equivalent expression (Note that εµνρσεabcdRab

µνRcd
ρσ = 4LGB).

L(4,8) = εµνρσεabcd φ

{(
1− 1

3
φ2 − A2

)
Rab

µνRcd
ρσ + 8 Rab

µν∇ρ Ac∇σ Ad
}

. (14)

Note that a similar construction can also be carried out starting with a CP density
in D = 2n > 8. This results, however, in much more complicated expressions of the
corresponding HCSG Lagrangians.

3. The BH Solutions

The Lagrangian of the full model consists of the usual Einstein term for gravity and
kinetic term for the scalar field, together with the interaction term (12) or (14).

The solutions of the model with an interaction term (12) (i.e., with a linear coupling
function f (φ) = φ) have been extensively studied in the literature (For a review of the
literature together with an investigation of spinning solutions, see the recent work [53]),
starting with Refs. [54,55], falling within the Horndeski class of scalar-tensor theories of
gravity [56]. The results in this work show that the term φLGB naturally also occurs in
this topological construction leading to HCSG models. This model is rather special, the
equations of motion being invariant under the transformation φ→ φ + β (with β arbitrary),
which leads to a conserved current. The coupling function f (φ) = φ, however, does not
allow for BH scalarization: the condition (3) is not fulfilled.

In this work, we shall focus on the interaction term (14), i.e., with a cubic coupling
function as given by (7). As such, the full action of the model reads
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S =
∫

d4x
√
−g
[

R− 2(∂aφ)2 − F2 − αL(4,8)
]
, (15)

where F2 = FµνFµν is the standard kinetic term for a vector field (with Fµν = ∇µ Aν −∇ν Aµ).
Let us remark that the vector field A does not possess the U(1) gauge invariance of a
Maxwell model.

The corresponding equations of motion are found by varying the action (15) with
respect to the metric tensor gµν, scalar field φ, and vector field Aµ. One can easily verify
that A = 0 solves the equations for the vector field. As such, to simplify the study, we shall
restrict our study mainly to the scalar-tensor case. Some comments on the general case
with A 6= 0 can be found at the end of this section.

Setting A = 0, the scalar field possess two ground states at φ ≡ φ0 = ±1. In addition,
let us remark that the model is invariant under the transformation

φ→ −φ, α→ −α ; (16)

we shall restrict our study to the ground state φ0 = 1 only. An important physical conse-
quence of the symmetry (16) is that, in contrast to other models in the literature [4,5], the
scalarization of Schwarzschild BH occurs for both signs of the coupling constant α.

3.1. Einstein-GB-Scalar Field BHs

Restricting our study to spherically symmetric solutions, we consider an ansatz with

ds2 = −e−2δ(r)N(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2) , with N(r) = 1− 2m(r)

r
and φ ≡ φ(r) . (17)

This ansatz results in two first order equations for the functions m, δ and a second
order equation for φ. There is also an extra second order constraint equation, which is used
in practice to monitor the accuracy of the numerical results.

In this work, we shall consider non-extremal (The considered EGBs model is unlikely
to possess regular (on and outside a horizon) extremal BH solutions. A clear indication in
this direction is the absence of a generalization of the Bertotti–Robinson solution, with a
metric AdS2 × S2 (that is, no attractor solutions exist here). However, the situation may
change for the model with an extra vector field). BHs only, with a horizon located at
r = rH > 0. At the horizon, the solution possesses a power series expansion in r− rH , that
depends only on the parameters rH , φ(rH), δ(rH), and α, the first terms being

m(r) =
rH
2

+ m1(r− rH) + · · · , δ(r) = δH + δ1(r− rH) + · · · , φ(r) = φH + φ1(r− rH) + · · · . (18)

The coefficient φ′(rH) = φ1 satisfies a second order algebraic equation of the form

φ2
1 + pφ1 + q = 0 , (19)

where (p, q) are non-trivial functions of rH , φH and α. Consequently, a real solution of (19)
exists only if p2 − 4q ≥ 0, a condition which translates into the following inequality:

∆ ≡ 1− 384α2

r4
H

(1− φ2
H)

2 ≥ 0 , (20)

which implies the existence of a minimal horizon size, determined by α and the value of
the scalar field at the horizon. As with other EGBs models, a possible interpretation of (20)
is that the GB term provides a repulsive contribution, which becomes overwhelming for
sufficiently small BHs, and thus prevent the existence of an event horizon.

The approximate form of the solutions in the far field reads

m(r) = N − Q2
s

2r
− QM2

s
2r2 + . . . , δ(r) =

Q2
s

2r2 + . . . , φ(r) = φ∞ +
Qs

r
+

MQs

r2 + . . . , (21)
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the essential parameters here being M (the ADM mass), φ∞ and Qs (the scalar ‘charge’).
Other physical quantities of interest are found from the horizon data. These are the

Hawking temperature, TH , and the event horizon area, AH ,

TH =
1

4π
N′(rH)e−δ(rh) , AH = 4πr2

H , (22)

together with the BH entropy, which is the sum of two terms (The expression of the
coupling function f (φ) in (24) is

f (φ) = φ

(
1− φ2

3

)
− 2

3
, (23)

which guarantees that a scalar field in the ground state φ ≡ 1 provides no contribution to
the entropy, f (1) = 0. Passing from (7) to (23) is done by adding a (pure topological) GB
term to the action (15), which does not contribute to the equations of motion) [57].

S = SBH + SsGB , with SE =
AH
4

, SsGB = −2α
∫

H
d2x
√

h f (φ)R(2) . (24)

In the above relation, R(2) is the Ricci scalar of the metric hij, induced on the spatial
sections of the event horizon, H. For the employed ansatz, this results in

S = πr2
H − 16απ

(
φH

[
1−

φ2
H
3

]
− 2

3

)
. (25)

On the other hand, the ADM mass M and the scalar ‘charge’ Qs are determined by
the far field asymptotics (21).

Finally, let us note that the equations of the model are invariant under the transformation

r → λr, α→ αλ2 , (26)

(with λ > 0 an arbitrary constant) such that only quantities invariant under (26) have a
physical meaning. For example, one can work with the dimensionless quantities

aH =
AH

16πM2 , tH = 8πTH M , (27)

such that aH = tH = 1 in the GR limit.

3.1.1. Generic Solutions

The solutions of the model fall into two different classes, depending on the asymptotic
value φ∞ of the scalar field being unity or not. In the generic case, the scalar field does not
approach asymptotically the ground state, φ∞ 6= 1.

Let us remark that, for a small enough scalar field, one can construct a perturbative
solution as a power series in the dimensionless parameter

β =
α

r2
H

. (28)

Assuming that the horizon is still located at r = rH , one considers a generic expansion

N(r) =
(

1− rH
r

)
∑
k≥0

βknk(r) , δ(r) = ∑
k≥0

βkδk(r) , φ(r) = ∑
k≥1

βkφk(r), (29)

the field equations being solved order by order in β. The functions {nk(r), δk(r) and φk(r)}
are polynomials in x = rH/r. The first few terms are simple enough, with
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n0(r) = 1, n1(r) = 0, n2(r) = −
196

5
x− 116

5
x2 − 76

5
x3 +

8123
15

x4 +
872
15

x5 +
184

3
x6,

δ1(r) = 0, δ2(r) = 8x2 +
32x3

3
+ 28x4 +

128x5

5
+ 24x6, (30)

φ1(r) = φ0 − 4x− 2x2 − 4x3

3
, φ2(r) = 0,

while the n.l.o. terms are too complicated to include here.
We also display the expression of the first few terms for several quantities of interest

M = M(0)
(

1 +
196

5
β2 +

8P1(φ0)

3274425
β4
)
+ . . . , TH = T(0)

H

(
1− 724

15
β2 − 8P2(φ0)

3274425
β4
)
+ . . . , (31)

S = S(0)
(

1 + (
352

3
− 16φ0)β2 + P3(φ0)β4

)
+ . . . , Qs = rH

(
4β +

(
−101096

945
− 584φ0

15
− 4φ2

0

)
β3
)
+ . . . ,

with

P1(φ0) = −418524536 + 693(530552− 46305φ0)φ0, (32)

P2(φ0) = 407910422 + 693φ0(−1693312 + 113715φ0),

P3(φ0) = −
143915024

59535
+

16
225

φ0(31222 + 75(−44 + φ0)φ0) ,

and
M(0) =

rH
2

, S(0) = πr2
H , T(0)

H =
1

4πrH
. (33)

One can verify that this solution provides a reasonable approximation for small β and
φ∞ = βφ0.

Of special interest, however, are the configurations with large values of φ∞, which
are found numerically, and may form a disconnected branch from that described by the
perturbative solution above. In their construction, one starts from the expansion (18) and
integrate towards r → ∞ the system of three EGBs equations by using a standard ordinary
differential equation solver. In practice, we integrate up to rmax ' 3× 103rH , such that
the asymptotic limit (21) is reached with enough accuracy. Given (rH , φ∞; α), solutions
with the right asymptotics may exist for discrete set of the shooting parameters (φH , δH),
indexed by the node number of the scalar field. Here, we shall report the results for the
most relevant case of fundamental, nodeless solutions.

Several results in this case are displayed in Figure 1 (left panel), where we show
the asymptotic value of the scalar field φ∞ and mass M of the solutions as a function of
the scalar field value at the horizon, φH . One can see that the solutions exist for a finite
range of φH (located around the ground state φ ≡ 1), ending in critical configurations
where the condition (20) fails to be satisfied (This last feature cannot be captured within a
perturbative approach).

3.1.2. Scalarized BHs

As one can see in Figure 1 (left panel), a particular configuration there has φ∞ = 1,
while φH 6= 1. This configuration is of special interest, corresponding to a scalarized BH,
its profile being displayed in Figure 1 (right panel).

That solution, however, has no special features; similar configurations are found for a
range of the parameters α, rH . In addition, as with the generic case, only nodeless solutions
were studied so far, corresponding to the fundamental states; however, solutions with
nodes exist as well, corresponding to excited EGBs configurations.
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Figure 1. Left panel: The asymptotic value of the scalar field φ∞ and the mass M of the solutions are shown as a function of
the value of the scalar field at the horizon φH . The solutions have a fixed value of the horizon radius rH and of the coupling
constant α. Right panel: The profile of a typical scalarized solution (marked with a blue square in the left panel and Figure 2)
is shown as a function of the compactified coordinate 1− rH/r.

The basic properties of the scalarized BHs are rather similar to those found in [4] for a
quadratic coupling function They can be summarized as follows (see Figure 2). First, these
spherically symmetric BHs bifurcate from a special Schwarzschild solution supporting
the scalar cloud (i.e., an infinitesimally small scalar field), with α/M2 ' 0.3635. Second,
keeping the parameter α constant (or, equally, the event horizon radius rH), the solutions
can be obtained continuously in the parameter space, forming a line, which starts from the
smooth GR Schwarzschild limit (φ ≡ 1), and ends at a limiting solution. Once the limiting
configuration is reached, the solutions cease to exist in the parameter space. The existence of
the ‘critical’ configuration can be understood from the condition (20), with the determinant
∆ vanishing at that point. Finally, as with the solutions in Ref. [4], for a given ADM mass,
the entropy of the solutions is maximized by the Schwarzschild vacuum BH (although the
relative difference is rather small, of order 10−3).

Figure 2. Several quantities of interest are shown as a function of the ratio α/M2 for the set of scalarized BHs.

3.2. The Scalar-Vector Model: Perturbative Solutions

The full model (15) contains also a vector field A, which has been consistently set to
zero in the above study. The investigation of self-gravitating configurations with A 6= 0 is
a complicated task, which we do not attempt to address here. Instead, we report the results
for a preliminary investigation of scalar-vector solutions in the ‘probe limit’, i.e., is for a
fixed Schwarzschild BH background, as given by δ = 0, N(r) = 1− rH/r in the metric
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ansatz (17). This case is technically much simpler, while the corresponding solutions are
likely to capture some of the basic properties of the full model.

Restricting again to the spherically symmetric case, we consider an ansatz with

φ ≡ φ(r), A = V(r)dt, (34)

which can be shown to be consistent. Then, when ignoring the backreaction, the problem
reduces to solving the following coupled equations

φ′′ +
2r− rH

r(r− rH)
φ′ +

16αr2
H

r5(r− rH)

(
3(φ2 − 1)− r(3r− 2rH)V2

(r− rH)2 +
2r2VV′

(r− rH)

)
= 0, (35)

V′′ +
2V′

r
+

32αr2
Hφ′V

r4(r− rH)
= 0,

The approximate form of the solutions close to the horizon reads

φ(r) = φH −
16α(r2

Hv2
1 + 3(φ2

H − 1))
r3

H
(r− rH) + O(r− rH)

2, (36)

V(r) = v1(r− rH)−
v1

rH

(
1− 256α2

r4
H

(r2
Hv2

1 + 3(φ2
H − 1))

)
(r− rH)

2 + O(r− rH)
3,

where φH and v1 are arbitrary constants. For large-r, the first terms in a 1/r expansion of
the solution reads

φ(r) = φ∞ +
Qs

r
+ O(1/r2), V(r) = V∞ +

Qe

r
+ O(1/r5), (37)

with φ∞, V∞, Qe and Qs free parameters.
Equations (35) are solved numerically, by using the same approach as in the EGBs

case. The numerical results indicate the existence, for any α, of a continuum of solutions in
terms of the constants φH , v1 which enter the near horizon expansion (36). The asymptotic
values of the scalar and vector fields depend of the input parameters φH , v1, rH and α (note
that, as expected from the structure of the equations, the vector field vanishes identically,
when taking v1 = 0).

Of special interest here are the configurations which approach asymptotically the
vector ground state, i.e., with V∞ = 0. In Figure 3 (left panel), we display some quantities
of interest for a set of such solutions; there, the values of rH and v1 are fixed, while the
parameter α is varied (note that we restrict again to the case of nodeless configurations).
One can notice that, for a given α, the solution with V(∞) = 0 is found for a single value of
φH while φ∞ 6= 1. The profile of a typical solution is shown in Figure 3 (right panel).

The presence of probe-limit solutions with V∞ = 0 provides a hint for the existence
of vectorized configurations in the full backreacting model. That is, the generic solutions
above with φ∞ 6= 1 may possess generalizations with a nonzero vector field in the bulk,
and still approach asymptotically the vector ground state (See the recent work [58] for a
study of vectorized BHs together with a review of the literature). We hope to return to the
study of these configurations elsewhere.
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Figure 3. Left panel: The asymptotic value of the scalar field φ∞, the value of the scalar field at the horizon φH and the
charge of the vector field Qe are shown as a function of the ration α/r2

H for solutions of the scalar-vector model in the probe
limit. Right panel: The profile of a typical solution of the scalar-vector model in a fixed Schwarzschild BH background is
shown as a function of the compactified coordinate 1− rH/r. For all solutions, the vector field vanishes both at the horizon
and at infinity.

4. Further Remarks

The main purpose of this work was to point out that families of EGBs models with
coupling functions that permit spontaneous scalarization can be motivated by a geomet-
ric/topological construction [41,42]. This indicates a more natural embedding for GB
spontaneous scalarization models; typically, the necessary coupling is simply postulated
ad hoc. Moreover, as a case study, we present a preliminary investigation of the scalarized
BH solutions in a particular EGBs model emerging from this sort of construction.

The models discussed herein offer both novel features and challenges. As for the
novel features, the corresponding coupling function is a sum of a linear and a cubic term,
with the scalar field possessing two disconnected ground states. A consequence of this fact
is that the BH scalarization becomes possible for any sign of the coupling constant α in
front of the GB term (but around a different vacuum for each sign). As for the challenges,
the cubic term (or, in general, the highest odd power term) raises the issue of the stability
of the model. Moreover, the construction is not complete: it provides the GB term and
the non-minimal couplings, but the resulting HCSG term has been added ad hoc to the
standard Einstein-scalar field action.

The basic properties of the scalarized BHs constructed herein were found to be
rather similar to those in the original work [4], where a quadratic coupling function
has been employed. In particular, the scalarized BHs are entropically disfavoured over the
Schwarzschild vacuum configuration. Generic solutions (with a scalar field which does not
approach asymptotically the ground state) were also studied, and a perturbative solution
was reported.

A preliminary investigation of the solutions of the general model in [41] with an
extra-vector field has been also considered. Only the probe limit regime of the solutions
(i.e., for a fixed Schwarzschild background) has been considered in this case, the results
hinting towards the possible existence of ’vectorized’ BHs within the full model.
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