
Universidade de Aveiro Departamento de Engenharia Mecânica
2018

Filipe Oliveira Costa Calibração de Sensores do ATLASCAR2 por
Otimização Global

ATLASCAR2 Sensors Calibration by Global
Optimization

Universidade de Aveiro Departamento de Engenharia Mecânica
2018

Filipe Oliveira Costa Calibração de Sensores do ATLASCAR2 por
Otimização Global

ATLASCAR2 Sensors Calibration by Global
Optimization

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestrado em Engenharia
Mecânica, realizada sob orientação cient́ıfica de Miguel Armando Riem de
Oliveira, Professor Auxiliar do Departamento de Engenharia Mecânica da
Universidade de Aveiro e de V́ıtor Manuel Ferreira dos Santos, Professor
Associado com Agregação do Departamento de Engenharia Mecânica da
Universidade de Aveiro.

O júri / The jury

Presidente / President Prof. Doutor Jorge Augusto Fernandes Ferreira
Professor Auxiliar da Universidade de Aveiro

Vogais / Committee Prof. Doutor Miguel Armando Riem de Oliveira
Professor Auxiliar da Universidade de Aveiro (orientador)

Prof. Doutora Ana Maria Pinto de Moura
Professora Auxiliar da Universidade de Aveiro

Agradecimentos /
Acknowledgements

Em primeiro lugar gostaria de agradecer ao Professor Miguel Oliveira pela
orientação neste trabalho, onde foi notável a dedicação e motivação que
o professor demonstrou, onde nunca deixou que eu perdesse o rumo ao
objetivo final.

Quero também agradecer ao Professor Vitor Santos pois procurou
sempre acompanhar o trabalho, demonstrando interesse e disponibilizando-
se sempre a ajudar.

Quero também deixar um agradecimento ao Professor Paulo Dias
por emprestar o equipamento ASUS ZenFone AR para que fosse posśıvel a
realização dos ensaios.

Quero deixar um grande obrigado à minha faḿılia pois sem eles isto
nunca teria sido posśıvel, pois apoiaram-me nos momentos bons e menos
bons de todo este percurso, nunca me negando a ajuda.

Por fim quero agradecer a todos os meus colegas que viveram comigo este
trajeto, onde mostraram sempre companheirismo e entreajuda, onde nunca
deixaram um soldado para trás.

Palavras-chave calibração de cameras; fusão de sensores; calibração extŕınseca; visão com-
putacional; marcadores Aruco; otimização.

Resumo Em véıculos autónomos é frequente a necessidade de instalar um grande
número de sensores a bordo. Assim, a calibração extŕınseca destes sistemas
multi-sensoriais é um problema de grande relevância para o desenvolvimento
de algoritmos de condução autónoma ou de apoio à condução. Este tra-
balho propõe um mecanismo capaz de fazer uma calibração automática em
simultâneo de várias câmaras. No processo são usados marcadores aruco,
o que permite estabelecer um grafo de onde se extraem as transformações
geométricas entre as várias câmaras e um referencial global. Inicialmente, os
marcadores são detetados nas imagens usando uma ferramenta do OpenCV.
Posteriormente é construido o grafo em que os nós são câmaras ou mar-
cadores, e as ligações entre nós são transformações geométricas em pares
câmara aruco. Em seguida é calculada uma estimativa inicial dos parâmetros
extŕınsecos de todas as câmaras, baseada nas deteções dos marcadores e nos
caminhos obtidos do grafo. No fim, é feita uma otimização dos parâmetros,
onde é minimizado o erro de reprojeção. Para demonstrar o processo foram
criados vários ”datasets”, de modo a validar os resultados obtidos.

Keywords camera calibration; sensor fusion; extrinsic calibration; computational vision;
Aruco markers; optimization.

Abstract In autonomous vehicles, it is often necessary to install a large number of
sensors on board. Thus, the extrinsic calibration of these multi-sensory
systems is a problem of high relevance for the development algorithms of
autonomous driving or of assistance to the driving. This work proposes
a tool to automatically calibrate simultaneously multiple cameras. In the
process, aruco markers are used, which allows establishing a graph from
which the geometric transformations between the various cameras and a
global reference are extracted. Initially, markers are detected in the images
using an OpenCV tool. Subsequently, the graph is established where the
nodes are cameras or markers and the edges are the transformations between
them. Then an initial estimate of the extrinsic parameters of all cameras is
calculated based on the detections of the markers and the paths obtained
from the graph. In the end, an optimization of the parameters is done, where
the reprojection error is minimized. In order to demonstrate the process,
several datasets were created in order to validate the obtained results.

Contents

1 Introduction 1

1.1 ATLAS project . 2

1.2 Project context . 2

1.3 Objective . 4

1.4 Document structure . 4

2 Related work 5

2.1 LRF to LRF calibration . 6

2.2 Camera to LRF calibration . 12

2.3 Camera to camera calibration . 16

2.4 Structure-from-Motion . 18

3 Experimental infrastructure 21

3.1 Software . 21

3.1.1 ROS . 21

3.1.2 OpenCV . 22

3.1.3 SciPy . 22

3.2 Hardware . 22

3.2.1 Point Grey Camera . 23

3.2.2 ASUS ZenFone AR . 23

4 Calibration approach 25

4.1 Intrinsic camera calibration . 25

4.2 Calibration target . 27

4.3 Calibration procedure . 28

4.3.1 Create a graph of nodes . 29

4.3.2 Obtaining an initial estimate . 29

4.3.3 Optimization of the extrinsic parameters 33

5 Experiments and results 37

5.1 Dataset 1 . 37

5.1.1 Calibration using the marker’s corners 37

5.1.2 Calibration using the center of the marker 41

5.2 Dataset 2 . 44

5.3 Dataset 3 . 48

5.4 Dataset 4 . 53

i

6 Conclusions and future work 57
6.1 Conclusions . 57
6.2 Future Work . 58

ii

List of Tables

3.1 Proprieties of the Point Grey camera FL3-GE-28S4-C [42] 23

4.1 Representation of the sparse matrix corresponding to the example in Fig.
4.6 . 35

5.1 Average Error (meters). 56

iii

iv

List of Figures

1.1 Some of the ATLAS project small scale platforms [2]. 2

1.2 The car used in ATLASCAR [47]. 3

1.3 The car used in ATLASCAR2. 3

2.1 RTN : The relation between two coordinate systems [48]. 6

2.2 Data acquisition from two 2D Laser Rangefinder (LRF) (Uncalibrated) [9]. 6

2.3 Transformation graph where xi represents the LRFs and zi represents the
transformations between the pair of LRFs [45]. 7

2.4 Transformation graph where xi represents the LRFs and zi represents
the transformations between the pair of LRFs and li represents the point
correspondences observed by the LRFs [45]. 8

2.5 Results of first test of the calibration method implemented in [45]. 8

2.6 Results of second test of the calibration method implemented in [45]. . . . 8

2.7 Observation of a corner structure (two perpendicular planes) by two LRFs
[17]. 9

2.8 Overview of the calibration approach by Pereira [39]. 10

2.9 Results of the calibration method developed in [39]. 11

2.10 Results of the calibration method by [41]. 11

2.11 Camera and 2D LRF calibration using two planar boards arranged in a
v-shape [28]. 13

2.12 Results of calibration method developed in [51]. Point Grey camera using
the 3D rigid body transformation method in blue and Point Grey camera
using the extrinsic camera calibration method in magenta. 15

2.13 The calibration target for method presented in [22]. 15

2.14 Segmentation pipeline for extraction of the reference points from the LRF
point cloud [22]. 16

2.15 Segmentation pipeline for the extraction of the reference points from the
stereo point cloud [22]. 16

2.16 An example of the sparse matrix used to solve a bundle adjustment prob-
lem. [27]. 19

3.1 Point Grey camera FL3-GE-28S4-C [3]. 23

3.2 ASUS ZenFone AR sensors setup (rear camera (s)). 24

4.1 Example of an image with a chessboard. 26

4.2 Representation of the corners detected by the findChessboardCorners func-
tion. 26

4.3 Example of markers images. 27

v

4.4 Example of markers detection on the image. 27
4.5 Overview of the steps of the calibration process. 28
4.6 Example of a graph node construction. 30
4.7 Diagram of the transformation from the coordinate system of the marker

to the coordinate system of the camera. 30
4.8 Diagram of the transformation from the ”C2” node to the ”C0” node. . . 31
4.9 Representation of the corners of the Aruco marker. 34

5.1 Representation of the dataset 1 and markers’ corners. 38
5.2 Graph node of the dataset 1. 38
5.3 Representation of the initial guess (blue squares), the ground truth (red

squares) and the id of the marker. 39
5.4 Representation of the costs related to each detection. 39
5.5 Reprojection of the 3D points on the image using the final values resulting

from the optimization. 40
5.6 3D reconstruction of the scenario of dataset 1. 41
5.7 Representation of dataset 1 and the markers’ center and reprojection of

the 3D points on the image using the initial guess. 42
5.8 Representation of the costs related to each detection. 42
5.9 Reprojection of the 3D points on the image using the final values resulting

from the optimization. 43
5.10 3D reconstruction of the scenario of dataset 1. 44
5.11 Representation of dataset 2 and the center of the markers (red squares)

and the reprojection of the 3D points on the image using the initial guess
(blue squares). 45

5.12 Graph node of dataset 2. 46
5.13 Representation of the costs related to each detection. 46
5.14 Reprojection of the 3D points on the image using the final values resulting

from the optimization. 47
5.15 3D reconstruction of the scenario of dataset 2. 48
5.16 Representation of dataset 3 and the markers’ center (red squares) and

reprojection of the 3D points on the image using the initial guess (blue
squares). 49

5.17 Graph node of dataset 3. 50
5.18 Representation of the costs related to each detection. 50
5.19 Reprojection of the 3D points on the image using the final values resulting

from the optimization. 51
5.20 Disposition of markers in dataset 3. 52
5.21 3D reconstruction of the scenario of dataset 3. 52
5.22 Marker board with real dimensions. 53
5.23 Representation of some images. Reprojection of the points using the ini-

tial estimate (blue squares). Reprojection of the points after the opti-
mization (yellow circles). 54

5.24 Representation of the costs related to each detection. 55
5.25 3D reconstruction of scenario of the dataset 4. 55

vi

Acronyms

AD Autonomous Driving. 1

ADAS Advanced Driver Assistance Systems. 1

BA Bundle Adjustment. 18

CenSurE Center Surround Extremas. 17

HSV Hue, Saturation, and Value. 14

IAV Internal Angle Variance. 10

ICP Iterative Closest Point. 10, 12, 16

IEPF Iterative-End-Point-Fit. 13

LAR Laboratory for Automation and Robotics. 5, 14

LIDAR Light Detection And Ranging. 2

LRF Laser Rangefinder. v, 4–14, 16, 58

MI Mutual Information. 13

OpenCV Open Source Computer Vision Library. 12, 14, 16, 17, 21, 22, 25, 27, 28, 57

PCL Point Cloud Library. 9, 10

RANSAC Random Sample and Consensus. 7, 9, 10, 17

ROS Robot Operating System. 21

SBA Sparse Bundle Adjustment. 18

SciPy Scientific computing in Python. 21, 22, 36

SFM Structure-from-Motion. 18

SNN Spatial Nearest Neighbour. 9

trf Trust Region Reflective. 36

vii

Chapter 1

Introduction

Nowadays, most cars rely on Advanced Driver Assistance Systems (ADAS) to avoid
vehicle crashes, to park automatically, to recognize traffic signs and sensors to give
the driver perception of the surrounding area [33]. All this technology proves that
Autonomous Driving (AD) is no longer science fiction. Some companies, like Google,
Mercedes-Benz, Tesla and others, already have autonomous cars working, however they
are still at level 2 of the AD level [49], which means that the car can steer and accelerate
or decelerate using information about the driving environment, but the driver must be
ready to operate the pedals and steering wheel if there is a fault in the system.

There are many techniques used in AD, and each one has a different way of func-
tioning. In any case, these methods use a great number of sensors on the car with the
purpose of improving the quality of the data. Using many sensors involves a calibration
process which merges all the information taken from the sensors and thus has a real
notion of the space to be interpreted.

Multi-sensor platforms are not just applications for AD. These can also be used
for the 3D reconstruction of buildings, where this reconstruction can be used for the
rehabilitation of old buildings that have degraded over the years. Platforms can also
make 3D models in the field of biology which makes it easier to study them. All this is
possible with a good calibration of the sensors in order to allow the data fusion from the
sensors.

In the literature, there is a multiplicity of solutions to carry out the calibration of
the sensors. However, there is not yet an optimal solution which can calibrate more
than two sensors automatically, without user intervention. The implemented methods
usually require user intervention to select matching points such as the calibration target
and some even need good lighting conditions to work. All these factors induce errors
in the calibration process, and prevent the calibration process from being automatic.
Calibrating a set of sensors at a random place and without any human intervention
would be the ideal solution of a calibration process.

This document presents a new approach to calibrate N cameras using fiducial markers
as a reference pattern. The method begins by obtaining an initial estimation of the
cameras’ position and the position of the markers, and then using the bundle adjustment
method, it is possible to minimize the reprojection errors and output the optimal solution
for the extrinsic parameters of the cameras.

1

2 1.Introduction

(a) (b) (c)

Figure 1.1: Some of the ATLAS project small scale platforms [2].

1.1 ATLAS project

ATLAS is a project created by a Group from Automation and Robotics in the Depart-
ment of Mechanical Engineering at the University of Aveiro [47]. The goal of this project
is to develop systems to promote the autonomous control of cars and other platforms.
Firstly, the ATLAS project started to build up systems to allow autonomous navigation
using small scale platforms in controlled environments. The ATLAS platforms have par-
ticipated in many competitions winning some awards for the best performance. Some
platforms are represented in Fig. 1.1.

In 2010, the ATLAS project migrated from small scale platforms to a common car
(Fig. 1.2), in order to start a new challenge in autonomous driving. This new challenge
is named ATLASCAR and presents greater complications, in relation to the perception
of the surrounding area, since the roads of circulation do not always have the same
characteristics. The lighting conditions represent another major complication, as they
are completely random due to the climatic conditions. Initially, some hardware was
applied to the car: an active vision unit, a thermal camera, a 3D Light Detection And
Ranging (LIDAR) and a stereo camera, to allow a robust perception from the external
environment and agents. Some research was done with this car, where it was possible
that the car followed a person. This was an important milestone for the autonomous
driving of ATLASCAR.

In 2017, the ATLASCAR project migrated to a new and more modern car with elec-
tric motorization (Fig. 1.3). This ATLASCAR2 already has some equipment installed
on board that migrated from the previous ATLASCAR, as well as some new equipment.

1.2 Project context

In autonomous driving there is the need to make quick decisions because the car is moving
at high speeds and a wrong or even slow decision can be fatal to the performance of the
car. For this, several sensors are used which allow the car to know the surrounding space
and make the detection of people or objects in motion, and thus decide which direction
should to take, or even accelerate or stop.

As mentioned earlier, ATLASCAR2 is the design of a self-contained car and therefore
contains some installed sensors. Currently, the ATLASCAR2 is equipped with two Sick
LMS151 which is a robust 2D LIDAR, one Sick LD-MRS400001 which is a 3D LIDAR
and one Point Grey ZBR2-PGEHD-20S4C camera.

Filipe Oliveira Costa Master’s thesis

1.Introduction 3

Figure 1.2: The car used in ATLASCAR [47].

Figure 1.3: The car used in ATLASCAR2.

For all these sensors to be really useful, it is important to perform their extrinsic
calibration, to have a better perception of the surrounding area. Due to the variety of
the existing sensors on the car, the calibration process becomes very complex.

The extrinsic calibration of all the sensors that are on board ATLASCAR will allow
us to know their position in relation to a common reference, which will allow the fusion
of all the data obtained through the sensors. The merging of the data obtained from
the sensors is important because it allows the analysis of the data as one and cross-
references the information of all sensors, thus allowing us to acquire a good perception
of the surrounding scene.

Filipe Oliveira Costa Master’s thesis

4 1.Introduction

In previous years, Pereira [39] and Silva [51] developed an approach to calibrate
some sensors using a ball as a calibration target, which is a good calibration target
because is easily detected both by cameras as well as by LRFs. However, the approach
used is not totally automatic because it calibrates the sensors in pairs, where all sensors
are calibrated relative to one initially chosen to be the reference sensor. This method
presents good results for the calibration of LRFs. However, it has some problems with
the calibration of stereo cameras.

1.3 Objective

In order to carry out more advanced studies of driving perception and assistance, it
is necessary to calibrate the various sensors on board of the vehicle. The calibration
process is a sporadic procedure that aims to estimate the geometric transformations
between each pair of sensors on board the car. These transformations are later used
to map data from one sensor to another. The goal of this work is to investigate the
possibility of using the global optimization processes to perform a calibration of the
sensors on board of the ATLASCAR2.

The global optimization consists of a process that seeks to minimize the error of
reprojection of the data obtained from the sensors. This optimization seeks to vary the
results obtained from an initial calibration in order to lower reprojection error, if possible
up to zero. In the data to be optimized, the extrinsic parameters of the sensors as well
as the positions of the points detected by the sensors are present. Intrinsic parameters
can also be inserted in the optimization if the sensors are cameras. Due to the variety of
parameters that the optimizer varies to find a more precise solution, both extrinsic and
intrinsic parameters, and the position of the points obtained by the sensors, this process
is called global optimization.

1.4 Document structure

This document is divided into six chapters where a brief introduction was initially made
and the objectives for the development of this work were also presented. Then, in chap-
ter 2, some work related to the calibration of sensors mentioned in the literature is
presented, where LRF to LRF calibration, camera to LRF calibration and camera to
camera calibration methods are presented. Some optimization methods are also men-
tioned. After, in chapter 3 the software and hardware used in the accomplishment of
this work will be presented. In chapter 4, the calibration method developed in this work
will be presented, where the calibration target used will be mentioned, followed by the
calibration process that is carried out. In chapter 5 the datasets that were elaborated
to test the implemented calibration method as well as the results that were obtained
are exposed. Finally, in chapter 6, all the conclusions that were obtained during the
accomplishment of this work are detailed and to conclude some future work is proposed
that will be able to give continuity to this new method of calibration.

Filipe Oliveira Costa Master’s thesis

Chapter 2

Related work

Multisensor platforms provide a large amount of data, but the utility of this information
depends on the possibility to merge all this data in a common reference frame. This
process of merging requires extrinsic calibration of the sensors. Over years, many solu-
tions have been presented. However, today there is not a great solution to this problem
which calibrates all type of sensors at the same time, without manual human interven-
tion. In this chapter, a brief explanation of the extrinsic and intrinsic calibration is
presented, and also, some calibration methods proposed from the literature, as well as
the calibration method implemented in Laboratory for Automation and Robotics (LAR)
to calibrate the ATLASCAR sensors.

Before presenting the several methods of calibration used in the state of the art, it
is important to understand the concept of extrinsic calibration. Extrinsic calibration is
the process of finding the relative rotation and translation between different coordinate
systems. Each coordinate system refers to a sensor which is to be calibrated. The
translation and rotation combined are often referred to as transformation. Whenever
a new sensor is added to the system or the placement of the sensors changes, these
transformations must be recomputed by a process designated extrinsic calibration.

As previously mentioned, the transformation is a combination of a rotation compo-
nent and a translation component, which results in the matrix represented on the Eq.
2.1. The transformation matrix T is composed by a 3×3 matrix (r - rotation component),
and a 3×1 matrix (t - translation component).

T =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (2.1)

The transformation between two coordinate systems is represented by RTN . If the
coordinate system R is a calibration reference frame and the coordinate system N is
a Laser Rangefinder (LRF) coordinate system, the extrinsic matrix of the LRF is the
transformation matrix RTN , as illustrated in Fig. 2.1.

To move a point defined in a coordinate system N to a coordinate system R, the
transformation that will be applied to the point is the transformation RTN .

Figure 2.2 shows a process of extrinsic calibration. The process of extrinsic calibra-
tion consists of searching for the values of the transformation between two sensors that

5

6 2.Related work

Figure 2.1: RTN : The relation between two coordinate systems [48].

(a) (b) Overlap of the LRF 1 and 2

Figure 2.2: Data acquisition from two 2D LRF (Uncalibrated) [9].

give the best quality overlap between the data viewed by the sensors, in order to allow
for a good reconstruction of the scenario.

In Fig. 2.2 (a) two LRFs are represented in different positions. The blue diamonds
and red spheres represent the data acquired by LRF 1 and LRF 2 respectively, which are
represented on the respective LRF reference frame. Without performing any calibration
process, the result of overlapping the data of the two LRFs has the result shown in the
Fig. 2.2 (b). This result does not represent any useful information since it does not allow
for the reconstruction of the object as it is represented in the Fig. 2.2 (a). For this,
it is necessary to calibrate the sensors in relation to a common reference and with the
calibrated sensors it is possible to determine the side of the object that is being observed
by each LRF. Thereby it is possible to rebuild the object.

2.1 LRF to LRF calibration

LRF sensors are a technology widely used by robots and intelligent vehicles in order to
generate a perception of the surrounding area. However, when many LRFs are used to
have the perception of the same object, it is necessary to calibrate them. This calibration

Filipe Oliveira Costa Master’s thesis

2.Related work 7

Figure 2.3: Transformation graph where xi represents the LRFs and zi represents the
transformations between the pair of LRFs [45].

consists of estimating the extrinsic parameters of the LRFs, i.e. to estimate the position
of the LRF sensors in relation to a common reference frame.

In 2015, Rowekamper et. al. [45] proposed a new approach to calibrate a network of
multiple planar LRF with horizontal scanning. The implemented method can estimate
the extrinsic parameters of all LRF sensors at the same time and does not need a specific
calibration pattern like a chessboard. The method only needs an obstacle that moves in
front of all sensors, to get an initial estimation of the extrinsic parameters of the LRFs.

In order to acquire an initial estimation of the extrinsic parameters, the authors
begin by detecting the obstacle in motion by all LRF sensors. For that, the authors use
a background subtraction technique [10], that consists of subtracting the actual data
from the previous data acquired by the LRF sensor and to detect the differences. The
detected differences correspond to the obstacle that is in motion. Because the LRFs do
not see the obstacle at the same time, the authors use a Random Sample and Consensus
(RANSAC) algorithm to estimate the transformations between each pair of LRFs that
see the obstacle at the same time.

RANSAC was proposed by Fischler and Bolles [18] in 1981. This algorithm is an
iterative method to estimate the parameters of a mathematical model using the minimum
amount of information. This algorithm begins by using the smallest set of data and then
complements it with more information until it obtains the best possible result for the
parameters.

As the extrinsic calibration consists of getting the positions of all sensors with re-
spect to a common reference frame, and the position estimation of the sensors acquired
previously only refers the position between a pair of LRFs, the authors built a node
graph (Fig. 2.3) where each node represents one sensor and the connections between
nodes refer to the estimated pairwise transformations. In this way, authors compute
the transformation of all sensors in relation to a common reference frame, giving more
weight to the connections with more transformations.

Finally, to make the calibration of all LRF sensors, the authors add the point cor-
respondences observed by the LRFs to the node graph, as is illustrated in Fig. 2.4.
Then, they do an optimization based on the bundle adjustment method [50], seeking to
minimize the reprojection error of the transformations of the LRF pairs and all point
correspondences observed by LRFs.

The authors did two tests to evaluate the method. In the first test (Fig. 2.5), they
varied the height position of the LRFs, and in the second test (Fig. 2.6) they put
all LRFs in the same height position. They concluded that the implemented method
does not have good results for the first test, where they obtained a consistency score of

Filipe Oliveira Costa Master’s thesis

8 2.Related work

Figure 2.4: Transformation graph where xi represents the LRFs and zi represents the
transformations between the pair of LRFs and li represents the point correspondences
observed by the LRFs [45].

Figure 2.5: Results of first test of the calibration method implemented in [45].

Figure 2.6: Results of second test of the calibration method implemented in [45].

24%. However, in the second test they obtained a consistency score of 92%, which they
consider a good result and which they argue, validates the proposed method.

Fernandez-Moral et. al. presented a calibration of a 2D LRF method from perpendic-
ular plane observation [17]. This method consists of establishing geometric constraints

Filipe Oliveira Costa Master’s thesis

2.Related work 9

Figure 2.7: Observation of a corner structure (two perpendicular planes) by two LRFs
[17].

between the observations of pairs of perpendicular planes, which is shown in Fig. 2.7.

The proposed method needs a first approximation for the position of the sensors, and
the measurement planes of at least two sensors must intersect. This method calibrates
the LRF sensors in pairs, and also needs to have at least two observations corners from
different orientations, so that it may calibrate a pair of sensors. This approach begins
with the detection of the corners by the LRFs, where the corners detected are selected
through co-planarity and orthogonality constraints. After corner selection, a RANSAC
method to estimate the transformations between a pair of sensors is used. The method
will add and remove detected corners until it achieves a good solution.

Pereira presented one method to do the extrinsic calibration of the LRF sensors of
the ATLASCAR [39], [37], [38]. This method uses a ball as a calibration pattern, which
has the advantage of being detectable both by LRFs as well as by cameras. This method
of calibration requires the diameter of the ball to be known.

The method of calibration consists of detecting the center of the ball by all sensors
in many positions, and generating a point cloud with all of the detected ball centers for
each sensor, as is illustrated in Fig. 2.8. Finally, one of the LRF coordinate systems
is chosen to be the reference for calibration, in order to calibrate all sensors. Then the
LRFs are calibrated one at a time in relation to the calibration frame using an algorithm
of the Point Cloud Library (PCL) [46].

The detection of the ball and its center is one of the biggest problems in this cali-
bration method. This problem has different difficulties depending on the type of data.
In 2D data, the author begins with a segmentation of the LRF scan, which consists of
clustering sets of points with a high probability of belonging to the ball. For this, the
author uses the Spatial Nearest Neighbour (SNN), based on [14], which is a recursive
algorithm that computes the Euclidean distance (Eq. 2.2) between one point and all
other points, and when the computed distance is smaller than a threshold, this point
is clustered to the interest points. After that, the author uses a method to detect the

Filipe Oliveira Costa Master’s thesis

10 2.Related work

Figure 2.8: Overview of the calibration approach by Pereira [39].

circle, based on [53], which uses a technique named Internal Angle Variance (IAV). IAV
uses the trigonometric properties of the arcs, where every point in the arc has congruent
angles in respect to the extremes. Then the author determines the circle proprieties:
the coordinates center and radius. Finally, it computes the center of the ball given its
diameter, using trigonometric relations.

dE,Npontos =

N∑
n=1

√
(ax − bx)2 + (ay − by)2 (2.2)

In 3D data, the author uses the PCL segmentation capabilities, namely the sample
consensus module, that uses a RANSAC estimator method. This model accepts as input
a point cloud and outputs the coordinates of the center of the ball and the radius.

To estimate the transformations, the author uses a variant of the Iterative Closest
Point (ICP) algorithm, available on PCL, which is used to estimate the transformation
between two point clouds. This variant has two error minimization metrics, and the
author selected the point-to-point metric, which minimizes the sum of the Euclidean
distance between corresponding points.

The authors tested the method on sensors of ATLASCAR1, and concluded that the
calibration results were accurate, with the exception of the stereo system which yielded
a small error. The results are represented in Fig. 2.9.

In 2016, Quenzel et. al. [41] used the calibration method implemented by Rowekam-
per et. al [45] previously mentioned, and made some modifications with the goal of
increasing the robustness. The author did just two modifications. The first was to con-
sider more objects in motion and not just one, to estimate the transformations between
a pair of LRFs with the RANSAC method. The second difference was optimizing just
the transformations between sensors and not the point correspondences observed by the
LRFs. The authors claim that this method is more robust stating they had better results
than Rowekamper et. al, and which are represented in Fig. 2.10.

Despite having good results, the aforementioned methods are not sufficient for our
purposes because of the reasons presented below. In [45] and [41], the calibration requires
that all LRFs are positioned at the same height, with co-planar scanning planes. In [17]
and [39], the calibration is done in pairs of sensors. The fact that the calibration is done
in pairs may overlook some relevant data. For example, if a calibration is performed
between three sensors, 1,2 and 3, a pairwise calibration will first calibrate between sensor
1 and sensor 2 and then between 2 and 3. However, there may be useful information

Filipe Oliveira Costa Master’s thesis

2.Related work 11

(a) Sensors setup on the ATLASCAR1.

(b) Representation of the position sensors after the process of cali-
bration.

Figure 2.9: Results of the calibration method developed in [39].

(a) Real position of the sensors LRF. (b) Final result of the calibration process.

Figure 2.10: Results of the calibration method by [41].

Filipe Oliveira Costa Master’s thesis

12 2.Related work

between sensor 1 and sensor 3 which is discarded by pairwise calibration schemes. Note
that only a global calibration methodology is able to address the problem described
before, since it will take into account all the available data between any combination of
sensor pairs. The method presented in [17] needs an initial estimation of the position
of the sensors. This, however, is a common requirement in any optimization algorithm
in order to avoid local minima. The method presented in [39] uses the ICP algorithm
for estimating the pose of the sensors. This algorithm uses a pre-defined cost function
which is not customizable.

2.2 Camera to LRF calibration

LRF sensors have good precision and are able to measure the surrounding area. Some-
times, it is difficult to know what the LRF sensors see. Therefore, adding a camera
can solve this problem. However, to use a camera, besides the extrinsic calibration, it
is necessary to make the intrinsic calibration and get the lens distortion. Nowadays,
there are some shelf tools which get these parameters, like the Matlab Camera Calibra-
tion Toolbox [11] and also an algorithm implemented in Open Source Computer Vision
Library (OpenCV) [15].

The two major distortions are radial distortion, which contain up to six coefficients
usually denominated k1, k2, k3, k4, k5 and k6 and tangential distortion, which contains
two coefficients denoted p1 and p2. To obtain the undistorted image, Eqs. (2.3) are
applied to remove the radial distortion and the Eqs. 2.4 to remove the tangential dis-
tortion.

xradial = x · (1 + k1r
2 + k2r

4 + k3r
6)

yradial = y · (1 + k1r
2 + k2r

4 + k3r
6)

(2.3)

xtangential = x+ [2p1xy + p2(r
2 + 2x2)]

ytangential = y + [p1(r
2 + 2y2) + 2p2xy]

(2.4)

The intrinsic calibration consists of getting the intrinsic matrix, named camera ma-
trix. The matrix K is represented in Eq. 2.5, where the fx, fy represent the focal length
and the cx, cy represent the optical centers.

K =

fx 0 cx
0 fy cy
0 0 1

 (2.5)

In 2011, Kwak et. al. presented a new approach to carry out the calibration of 2D
LRFs and cameras [28]. The method uses two planar boards arranged in a v-shape with
an angle of 150◦ as a reference pattern, as is illustrated in Fig. 2.11(a). The convex
side is used for calibration. In order to allow for better visualization by the camera,
the author puts black tape on the lateral extremes and in the middle of the two planar
boards.

The method begins by getting a set of images and LRF scans with the target in
different poses and at different ranges. The LRF and camera have to see the reference
pattern, ensuring that the LRF intersects the left and right sides of the target.

Filipe Oliveira Costa Master’s thesis

2.Related work 13

(a) Setup configuration. (b) Calibration board description.

Figure 2.11: Camera and 2D LRF calibration using two planar boards arranged in a
v-shape [28].

After data acquisition, the authors select three lines (ll, lc, lr) and two points (pl, pr)
manually from each image, as represented in Fig. 2.11(b). Then, knowing the dimensions
of the target, the authors estimate the segments that link the points pl and pr with the
center point pc, using the Iterative-End-Point-Fit (IEPF) algorithm [16], that recursively
splits a set of points until a distance related criterion is satisfied. Fitting lines to each
segment using the total least squares method [21], the authors find the center point (pc).

Finally, the authors estimate the extrinsic parameters by minimizing the distance
between the line features and point features in 2D. Then, they project the LRF points
into the camera image, and by an optimization problem they minimize the distance
between points using the error function E represented in Eq. 2.7.

dik = dist(pik, l
i
k), k = left, center, right (2.6)

E(R, t) =
N∑
i=1

(dil)
2 + (dic)

2 + (dir)
2, (2.7)

where the function dist is the minimum distance from point pik to line lik and N the
number of sets of images and LRF scans.

The authors perform experiments with 50, 100 and 150 image/scan pairs and get an
error, respectively, of 6.0, 4.0 and 3.7 pixels. They compare the results with other more
robust methods and claim that the alignment accuracy is better and also concluded too
that the method needs fewer image/scan pairs to achieve the same calibration accuracy.

In 2012, Pandey et. al. presented a method to make the extrinsic calibration of a
3D LRF scanner and optical camera system [36]. The method does not need a reference
pattern, and uses a Mutual Information (MI) framework which uses the surface reflec-
tivity values reported by the range sensor and the grayscale intensity values reported
by the camera to make the extrinsic calibration between these sensors. The authors say
that the correct extrinsic calibration results from the maximization of the correlation
between the LRF reflectivity and camera intensity. However, if the environment con-
tains coloured surfaces that completely absorb infra-red light, these surfaces will show

Filipe Oliveira Costa Master’s thesis

14 2.Related work

up as black patches in the LRF reflectivity and will be completely uncorrelated with
the corresponding grayscale values obtained from the camera. Therefore, the mutual
information based calibration technique might not work well in such situations.

To complement the method of calibration, using a ball, developed in LAR, Silva
implemented a camera to LRF calibration method, which uses a ball as a reference
pattern [51], [38]. To estimate the transformation between sensors, the author tested two
methods. The 3D Rigid Body Transformation method developed in [39] is used by the
author but in this case the point cloud results from the conversion of the interest points
on the image into 3D points in the camera coordinate system. The author developed an
Extrinsic Camera Calibration method which instead of projecting the image points into
a 3D coordinate system of the camera, it projects the 3D points detected by the LRF,
into the 2D image projection. The problem is solved resorting to an iterative method
based on Levenberg-Marquardt optimization algorithm [29], [32], finding a pose that
minimizes reprojection error.

To detect the ball with a camera, the author uses an algorithm named ”Approximated
Contour” that uses the OpenCV libraries and follows three steps, 1) Finding contours
in the image, where the contours are a set of points that represent a closed curve in an
image; 2) Contour approximation by a polygonal curve; 3) Ball contour detection and
circle properties, that select the contour that represents the ball. This algorithm only
requires a Hue, Saturation, and Value (HSV) color range for thresholding. The HSV
values change with the light conditions, thus the method requires these values to be set
at the beginning of the calibration process. The results are illustrated in Fig. 2.12. The
author concludes that the 3D Rigid Body Transformation method has a large error but
the extrinsic camera calibration method has close results from real values.

In 2017, Guindel et. al. presented a calibration method for a LRF sensor and a stereo
system [22]. This method uses a planar board with four circular holes symmetrically
disposed as a calibration pattern, as shown in Fig. 2.13. The approach of this method
begins with the segmentation of the reference points in both point clouds, and then the
process to estimate the extrinsic parameters. In order to compare the data acquired
by the sensors, the authors need the data sensors to have a format like a point cloud.
The LRF data is already a point cloud, however, the stereo data is represented by a
grayscale intensity and depth estimation. To solve this, the authors use a stereo matching
algorithm, which converts every pixel in a 3D point cloud. Having the point clouds it
is necessary to make the segmentation of the clouds to recognize the calibration target,
for this, the authors implemented a sample consensus-based segmentation method to
determine the plane models, in each cloud, which the results of which are represented
in Figs. 2.14(a) and 2.15(a). Then, the authors use the method implemented in [30], to
find the points that correspond to discontinuities, on the LRF cloud, the result of which
is represented in Fig. 2.14(b). For the camera, they applied a Sobel filter that results in
Fig. 2.15(b).

The objective of this segmentation is getting the center points of the holes. With the
objective of detecting the circles, the method filters the points resulting from the previous
process concluding in Figs. 2.14(c) and 2.15(c). Having the circles, they find their
centers (Figs. 2.14(d) and 2.15(d)), and finally the segmentation is ready to estimate
the extrinsic parameters.

Finally, the authors find the initial transformation parameters by minimization of
the distance between the reference points of both point clouds. Then, they use the ICP

Filipe Oliveira Costa Master’s thesis

2.Related work 15

(a) Sensors setup on the ATLASCAR1.

(b) Representation of sensors position after calibration
process.

Figure 2.12: Results of calibration method developed in [51]. Point Grey camera using
the 3D rigid body transformation method in blue and Point Grey camera using the
extrinsic camera calibration method in magenta.

Figure 2.13: The calibration target for method presented in [22].

algorithm to find a final estimation of the extrinsic parameters. The authors concluded
that the proposed algorithm outperforms the existing approaches by a large margin.

Filipe Oliveira Costa Master’s thesis

16 2.Related work

Figure 2.14: Segmentation pipeline for extraction of the reference points from the LRF
point cloud [22].

Figure 2.15: Segmentation pipeline for the extraction of the reference points from the
stereo point cloud [22].

All previously presented methods, i.e. [28], [51] and [22] propose calibration method-
ologies which are done in pairs of sensors. In [28], the calibration process requires
intervention by the user. In [36], in spite of being a multi-sensor calibration method, it
needs specific lighting conditions to work, which implies needing an appropriate place
to perform the calibration.

2.3 Camera to camera calibration

Nowadays there are some tools to carry out the calibration of a dual camera system like
the Matlab Camera Calibration Toolbox [11] and the algorithm implemented in OpenCV
[15]. These tools allow the calibration of two cameras, where a chessboard is used as a
reference pattern. However, these methods do not allow us to calibrate N cameras at
the same time.

In 2013, Heng et. al. presented a new method to calibrate a multi-camera system
[24]. In this work, the calibration method is projected to calibrate a multi-camera system
in which each pair of cameras is arranged in a stereo configuration. However, the authors
point out that this method can easily be extended to a multi-camera system with at least
one stereo camera and any number of monocular cameras. However, they do not refer
to how this can be achieved. In this method the whole system, cameras plus the camera
support, is in motion during the calibration process.

This method begins with stereo calibration, in which the authors use several chess-
boards and the method implemented in [34], when the system sees a minimum of chess-
boards, it finds the initial estimation for the camera pose and intrinsic parameters. Then,

Filipe Oliveira Costa Master’s thesis

2.Related work 17

having the camera pose, the authors estimate the transformation between two cameras
and thus get the stereo configuration.

After stereo calibration, each stereo camera rebuilds the scenario on the respective
coordinate system and using the Center Surround Extremas (CenSurE) feature detector
[8], implemented in OpenCV, they detect features in each stereo data. Using a P3P
method [26], they find correspondences of the features detected by each stereo camera,
then using the RANSAC method, they get an initial estimation of the transformation
between stereo cameras. In parallel, a graph node is built where the nodes are the stereo
camera poses and the edges between nodes correspond to the correspondence features
between the stereo cameras. These two processes run at the same time in loop, and
finish when the connections between nodes are well supported.

Having a lot of corresponding features between the stereo cameras, the authors merge
all stereo maps and by combining the detected features they could estimate the transfor-
mations between all stereo systems. After having the initial estimates of the transforma-
tions between the stereo cameras, the authors run a bundle adjustment to optimize the
camera intrinsics, camera extrinsic parameters, camera poses, and 3D scene points. The
bundle adjustment uses a complex cost function (Eq. 2.8) to minimize the reprojection
errors, where the first set of residuals corresponds to the sum of image reprojection errors
of the 3D scene points, and the second corresponds to the sum of image reprojection
errors of the chessboard corner points.

CF (Kc, Pi, Qj , Tc, Xp) =∑
c,i,p

wpρ(‖π1(Kc, Pi, Tc, Xp)− pcip‖2)

+
∑
c,j,q

ρ(‖π2(Kc, Qj , Yq)− pcjq‖2),

(2.8)

π1 is a projection function that predicts the image coordinates of the scene point Xp seen
in camera c given the camera’s intrinsic parameters Kc, the camera system pose Pi, and
the transformation from the camera frame to the camera system frame Tc. pcip is the
observed image coordinates of Xp seen in camera c with the corresponding camera system
pose Pi. Similarly, π2 is a projection function that predicts the image coordinates of the
chessboard corner point Yq seen in camera c given the camera’s intrinsic parameters Kc,
and the camera poses Qj . pcjq is the observed image coordinates of Yq seen in camera
c whose pose is Qj . ρ is a robust cost function used for minimizing the influence of
outliers.

The calibration takes around 15 minutes, and the resulting average reprojection error
associated with the generated map was 0.659 pixels. The authors point out that this
calibration method produces accurate extrinsic calibration parameters with multiple
stereo cameras, with a condition of that there is a sufficient number of inter-camera
feature correspondences, and the majority of scene points are close to the cameras.

Most of the methods presented to calibrate a multi-camera system use a pairwise
calibration and often use an object with known shape and dimensions or a chessboard.
On the other hand, there are other methods like the method proposed in [24] that
uses an global extrinsic calibration of the cameras, but before obtaining the extrinsic
parameters, the method carries out a stereo configuration between a pair of cameras and

Filipe Oliveira Costa Master’s thesis

18 2.Related work

then computes the transformations between the stereo cameras and only then does it
get the extrinsic parameters of all cameras. This document will present a new method,
where the global calibration of N cameras is carried out, without using any of the above
methods. The advantages of this new approach are that this method does not require
any user intervention, the calibration of N cameras is done at the same time, the cameras
do not have any restriction in their position and the process is totally automatic.

2.4 Structure-from-Motion

Structure-from-Motion (SFM) is the process of reconstructing 3D structure from its
projections into a series of images taken from different viewpoints. This technique was
developed in the branches of computer vision and visual perception, and nowadays it
has many applications like augmented reality, autonomous navigation, motion capture,
hand-eye calibration, image/video processing, image-based 3D modelling, remote sens-
ing, image organization/browsing, segmentation and recognition, and military applica-
tions [52]. The SFM process can summarize in a multi-camera calibration, where there
are as many cameras as there are images. The calibration of these cameras allows the
rebuilding of the 3D scenario existent on images. The SFM have two implemented
methods, the Bundle Adjustment (BA) and the Sparse Bundle Adjustment (SBA).

The BA is the problem of refining a visual reconstruction to produce jointly optimal
3D structure and viewing parameter (camera pose and/or calibration) estimates. Op-
timal means that the parameter estimates are found by minimizing some cost function
that quantifies the model fitting error, and jointly that the solution is simultaneously
optimal with respect to both structure and camera variations [50].

The SBA is an identical problem but more robust, because it is based on a dense
Cholesky factorization of the reduced camera matrix. It has space complexity that is
quadratic and time complexity that is cubic in the number of images [31].

In 2010, Agarwal et. al. presented the design and implementation of a new inexact
Newton type BA algorithm [7]. Initially, they have a set of 3D points in the real world.
Then they get some images of these points by different cameras, where each camera
is defined by its orientation and translation relative to a reference frame and also by
focal length and two radial distortion parameters. After this acquisition, the authors
project the 3D points into the image and get the 2D coordinates of the points seen by
the cameras. The goal of the BA algorithm is to adjust the initial estimation of the
camera parameters and the position of the points, in order to minimize the reprojection
errors. Mathematically the algorithm works according to the mathematical expression
illustrated in Eq. 2.9.

min
aj ,bi

n∑
i=1

m∑
j=1

vijd(Q(aj , bi), xij)
2, (2.9)

where each camera j is parametrized by a vector aj and each 3D point i by a vector bi
and Q(aj , bi) is the predicted projection of point i on image j and d(x, y) denotes the
Euclidean distance between the image points represented by vectors x and y [4], [23].

After the authors construct Jacobian sparsity structure, which consists of a sparse
matrix where the number of the lines (M) is the number of point correspondences on
the image and the number of the columns (N) is the number of parameters that will be

Filipe Oliveira Costa Master’s thesis

2.Related work 19

Figure 2.16: An example of the sparse matrix used to solve a bundle adjustment problem.
[27].

optimized. The matrix is constituted of zeros and ones where the ones are collocated in
the line matrix (m) that corresponds to a point correspondence when it is affected by
the parameter (n), an example of a sparse matrix is illustrated in Fig. 2.16.

Before carrying out the optimization, the authors make a cost function which seeks
to minimize the Euclidean distance (Eq. 2.2) between the points of the image and the
correspondent points projected in the image. Finally, having an initial estimation, a
cost function and a sparse matrix, the authors give it as input on the optimization
function and they get the optimal parameters values as output that results in a minimal
reprojection error.

Filipe Oliveira Costa Master’s thesis

20 2.Related work

Filipe Oliveira Costa Master’s thesis

Chapter 3

Experimental infrastructure

The hardware and software used in this work are presented in this chapter, as well as
its characteristics and the method of use. Although the calibration method presented in
this work is able to calibrate N cameras, only one camera sensor was used, where several
images were acquired simulating N cameras. The framework and libraries used in this
work were the Robot Operating System (ROS), OpenCV and Scientific computing in
Python (SciPy). ROS is used to connect to the camera and collect the images. The
OpenCV library is used to get the intrinsic parameters of the camera and the distortions
coefficients and, at a later stage, to detect the Aruco markers. The SciPy library is used
to form the final optimization of the position of the cameras. Next, the proprieties of
the software and hardware are presented.

3.1 Software

This section presents all the software used to perform this work, framework and libraries.
Its general applications, the method of use and the functionalities used in this work will
also be presented.

3.1.1 ROS

ROS is a flexible framework for writing robot software. It is a collection of tools, li-
braries, and conventions that aim to simplify the task of creating complex and robust
robot behaviour across a wide variety of robotic platforms [44]. ROS provides services of
an operating system such as hardware abstraction, low-level device control, implementa-
tion of commonly used functionalities, message-passing between processes, and package
management.

The architecture of the ROS processes is represented on a graph architecture, where
the processes are carried out on nodes, which can send and receive messages like post and
multiplex sensor, control, state, planning, actuator and others. ROS has other packages
in which commonly used functionalities are implemented, as well as hardware drivers,
robot models, datatypes, planning, perception, simultaneous localization and mapping,
simulation tools, and other algorithms.

In this work, the ROS framework was used to connect to the camera and acquire
images. For this, a package of hardware drivers of the camera [43] is used, which is
composed of just one node for a single camera, that publish two topics, one with the

21

22 3.Experimental infrastructure

unprocessed image data and the other which contains the camera calibration. The second
topic is not used because the calibration of the camera is done posteriorly. To visualize
the camera output the rviz interface was used which allows saving the images obtained
by the camera.

3.1.2 OpenCV

OpenCV is an open-source, computer-vision library for extracting and processing mean-
ingful data from images [12]. This library was designed for computational efficiency and
with a strong focus on real-time applications. It contains many algorithms based on
the literature. Some examples are object detection, recognizing all or parts of objects,
algorithms to get the intrinsic and extrinsic parameters of a camera, tracking objects
in motion and others. OpenCV has C++, Python and Java interfaces and supports
Windows, Linux, Mac OS, iOS and Android. In order to have the library organised,
OpenCV is divided in modules, the calib3d and aruco modules are used in this work.

Module calib3d

This module has many functions to get the calibration parameters of the camera and it
also has functions to rebuild the 3D scenario using 2D images. The functions to obtain
the intrinsic parameters of the camera as well as the lens distortions were used in this
work, where the functions only need some images obtained by the camera. These images
must have a chessboard and it is necessary to give the real dimensions of the squares of
the chessboard.

Module aruco

This module is an extra module of the OpenCV, and it has functions to detect Aruco
markers in an image and the corners of the marker. Having these markers in the image,
and knowing the real size of the markers, it is possible to obtain the camera pose relative
to the marker on the 3D space by using the functions of this module.

3.1.3 SciPy

SciPy is an open source library which contains routines commonly used in scientific work.
There are routines for computing integrals numerically, solving differential equations,
optimization and sparse matrices. This library is implemented in python programming
language. A routine for an optimization problem is used in this work. The optimiza-
tion problem of this work is a Large-scale bundle adjustment problem that follows the
algorithm presented in [7].

3.2 Hardware

This section presents all the hardware used to carry out this work, as well as its charac-
teristics and utilities. In this work only two pieces of equipment were used. First a point
gray camera was used for image acquisition. In an advanced phase, an ASUS ZenFone
AR was used, which contains a 3D camera that allows the reconstruction of spaces.

Filipe Oliveira Costa Master’s thesis

3.Experimental infrastructure 23

3.2.1 Point Grey Camera

The camera that was used in this work was the Point Grey Flea3 FL3-GE-28S4 Camera
(Fig. 3.1) which is a camera that promotes high-performance for industrial environ-
ments and traffic applications. This camera collects high resolution and quality images.
Combining these characteristics with the sensitivity and size of the camera makes this
model ideal for applications in factory automation and machine vision. Some of the most
relevant characteristics of the camera are represented in the Tab. 3.1.

Figure 3.1: Point Grey camera FL3-GE-28S4-C [3].

Resolution 1928×1448
Framerate 15 FPS
Megapixels 2.8 MP
Chroma Color
Pixel Size 3.69 µm
Interface GigE Vision
Power Requirements 12-24 V
Dimensions 29mm×29mm×30mm

Table 3.1: Proprieties of the Point Grey camera FL3-GE-28S4-C [42]

3.2.2 ASUS ZenFone AR

The ASUS ZenFone AR is a device that supports Google platforms dedicated to emerging
technologies and it is available to support both Tango and Daydream. Project Tango
is Google’s attempt to get mobile phones and tablets to see the way that the humans
see. This means granting the device full spatial awareness, or the ability to understand
your environment and your relation to it. The essential aim is to allow smartphones
to understand the world around them, enabling them to provide augmented reality
experiences. Daydream is a virtual reality platform developed by Google that is built
into the Android mobile operating system.

To enable this technology, the smartphone is equipped with some sensors, as shown
in Fig. 3.2. The built-in sensors are: main shooter 23 MP IMX 318, dual-tone LED

Filipe Oliveira Costa Master’s thesis

24 3.Experimental infrastructure

flash with RGB color correction sensor, one laser autofocus, one depth sensing camera
and one motion tracking camera.

Figure 3.2: ASUS ZenFone AR sensors setup (rear camera (s)).

With all these sensors and using a previously developed treatment application, it is
possible to create a 3D point cloud of the surrounding space. Subsequently a triangular
mesh is defined which is painted using the colour mapping resulting from the treatment
of the various images obtained with the camera, combined with the data obtained from
the other sensors.

Filipe Oliveira Costa Master’s thesis

Chapter 4

Calibration approach

This chapter presents the methodology for calibrating several cameras. As was men-
tioned in chapter 2, the main purpose of calibrating a camera is to obtain the extrinsic
parameters with respect to a common reference frame. Thus, the final result of the
calibration process is one transformation matrix, as represented on Eq. 4.1, for each
camera.

The method presented in this work is an automatic calibration method which cali-
brates all the cameras at the same time. This method has no restrictions on the initial
poses of the cameras. However, for this method to work, the camera must have at least
one connection marker with another camera. To manage and process the connectivity
between cameras, a graph-based approach is used. This calibration method assumes
that the intrinsic calibration of the cameras has already been done, and therefore the
cameras’ intrinsic parameters are known.

T =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (4.1)

4.1 Intrinsic camera calibration

The intrinsic calibration of the camera is done only once for each camera sensor, it
assumes that the camera has no adjustable focus. As was said above, it is necessary to
obtain these parameters before doing the extrinsic calibration. In subsection 2.2, what
intrinsic calibration is and what the camera’s intrinsic parameters are, were explained.
This process is done with an algorithm implemented in OpenCV [15]. The OpenCV
algorithm uses some pictures with a chessboard of known (Fig. 4.1) dimensions. In
order to improve the calibration results, the chessboard should vary the rotation around
the Pitch axis and Yaw axis and it is also important to move the chessboard through
the entire image size.

When a chessboard is used to calibrate a camera, the top left corner point is defined
as the origin of the global reference system, as illustrated, in red, in Fig. 4.2. The
function implemented in OpenCV to extract the intrinsic parameters of the camera is
the calibrateCamera function. This function needs the corner points defined in the global
coordinate system and it also needs the detected chessboard corners in the image. The

25

26 4.Calibration approach

global coordinates of the corner points are calculated using the chessboard size (in this
case the chessboard size is 8×6 squares) and the size of the square (in this case 105
mm). To detect the corners of the chessboard the findChessboardCorners function is
used, which returns the coordinates on the image of all corners of the chessboard, as
represented in Fig. 4.2.

Finally, the intrinsic parameters are saved on a file that will be read at the beginning
of the extrinsic calibration, at a later stage.

Figure 4.1: Example of an image with a chessboard.

Figure 4.2: Representation of the corners detected by the findChessboardCorners func-
tion.

Filipe Oliveira Costa Master’s thesis

4.Calibration approach 27

4.2 Calibration target

The calibration target used in this work is not just one, but many Aruco markers (Fig.
4.3). These markers are defined in the Aruco library, presented in the aruco module of
the OpenCV. This is a popular library for the detection of square fiducial markers [20].

Figure 4.3 illustrates that an Aruco marker is a square which has a wide black
border to allow the detection of the marker on the image. In the middle of the square,
the markers have a binary code which corresponds to an identifier number.

In the aruco module, there are many different dictionaries of Arucos which are distin-
guished by the number of markers that compose the dictionary and the size of the marker
(number of bits) [35]. The dictionary used in this work is the dictionary with 1024 mark-
ers and a size of 5×5 (25 bits). This dictionary is called ”DICT ARUCO ORIGINAL”
and is present on the aruco module. For generating and printing these markers an
automatic generator present on the web [1] was used.

The process of detecting Aruco markers on the image begins by detecting squares on
the image. Then, applying some filters, the squares that correspond to the markers are

Figure 4.3: Example of markers images.

Figure 4.4: Example of markers detection on the image.

Filipe Oliveira Costa Master’s thesis

28 4.Calibration approach

detected. Finally, the marker corners and the respective ids are identified. This process
is done using the detectMarkers function of the aruco module. Fig. 4.4 illustrates an
example of the marker detection. Each Aruco marker has its own reference system
where the x and y axes lie on the marker plane and the z axis is perpendicular to the
marker plane and points out the marker. To detect this reference system in the image
the orientation of the marker’s binary code is used. This enables estimating the rotation
and translation from the coordinate system of the marker to the coordinate system of
the camera. For this the estimatePoseSingleMarkers function of the aruco module is
used.

4.3 Calibration procedure

The calibration method implemented in this work uses the following steps illustrated in
the diagram of Fig. 4.5.

The first step is to place the cameras in the position where the calibration will be
done and to spread markers in front of the cameras. Then, it is necessary to obtain one
image for each camera. Next, follows for the second step where the markers are detected
on the image. This step was explained in section 4.2, in which the aruco module is
used from the OpenCV library. When a marker is detected a new detection is saved
with the id of the marker and the camera by which the marker was seen are saved.
In this detection, the transformation from the marker coordinate system to the camera
coordinate system where the marker is seen is also saved.

Collect images from cameras

Detect Aruco Markers by all images

Create a graph of nodes

Obtain an initial estimate
of the extrinsic parameters

Optimize the extrinsic parameters

Figure 4.5: Overview of the steps of the calibration process.

Filipe Oliveira Costa Master’s thesis

4.Calibration approach 29

4.3.1 Create a graph of nodes

The graph node is the way to verify how the problem is connected and it gives a better
perception of the problem. The NetworkX [13], which is a Python package, was used.
This package, which allows the creation, manipulation, and study of the structure of
the graph nodes, was used to construct this graph. After the construction of the graph
node, this tool can show if all nodes are connected, which is an important function in
this work because if the graph node is connected, this means that all the cameras have
at least one Aruco marker that they connect with another camera.

The process of the construction of the graph is represented in Algorithm 1, where, for
each detection, two nodes are created, one for the camera and the other for the marker
if they do not already exist. Finally, a connection between these nodes is created. The
nodes created are cameras and markers, and the connection represents a transformation
matrix from the marker to the camera.

Algorithm 1 Constructing a graph node

1: for detection in detections do
2: if the node with the ID of this marker does not exist then
3: Add a node with the ID of the marker
4: end if
5: if the node with the ID of this camera does not exist then
6: Add a node with the ID of the camera
7: end if
8: Add an edge between these nodes
9: end for

Fig. 4.6 exemplifies the result of constructing a graph of nodes. In this example,
3 cameras (C) and 3 markers (A) were used, where the cameras ”C0” and ”C1” are
connected by the marker ”A595” and the cameras ”C1” and ”C2” are connected by the
marker ”A444”.

4.3.2 Obtaining an initial estimate

It is necessary to calculate an initial estimate of the extrinsic parameters to give to the
optimizer later, since the optimizer needs an initial approximate and coherent estimate
of the extrinsic parameters.

The detection of the Aruco markers allows having the transformation from the co-
ordinate system of the marker to the coordinate system of the camera, as is illustrated
in Fig. 4.7. However, the extrinsic calibration consists of having the position of the
cameras and markers with respect to a common reference system. The graph is used to
obtain the initial estimates of transformation from each camera and marker to the map
reference system.

At the beginning, before computing the initial estimation for the extrinsic param-
eters, it is necessary to define the reference frame. The world reference frame can be
a marker or a camera, however, the reference frame must be a camera because it is a
camera calibration, and the goal of the camera calibration consists of having the posi-
tions of the cameras in relation to a world reference frame. Thus, the final results will

Filipe Oliveira Costa Master’s thesis

30 4.Calibration approach

be the transformations of the cameras and the markers in relation to the camera that
was previously selected.

After defining the world reference frame, the conditions for computing an initial
estimate for the extrinsic parameters are met. Thus, it is now necessary to find the
transformation between each marker or camera and the world reference frame. The
path from any node (camera or marker) to the world reference frame is retrieved by the
graph. For example, in the graph represented in Fig. 4.6, if ”C0” is defined as the world
reference frame, the shortest way to go from ”C2” to the world reference frame will be
”C2→A444→C1→A595→C0”. The above problem is simple. However, when a more
complex problem is presented, it is possible that there are several possible paths to go
from a node to the world reference frame, a function all shortest path in NetworkX is
used to find all shorter paths of the set of paths. Each of these paths has an associated

Figure 4.6: Example of a graph node construction.

Aruco Camera

ATC

AT−1C

Figure 4.7: Diagram of the transformation from the coordinate system of the marker to
the coordinate system of the camera.

Filipe Oliveira Costa Master’s thesis

4.Calibration approach 31

C2

A444

C1

A595

C0

(A444TC2)
−1

A444TC1 (A595TC1)
−1

A595TC0

C2TC0

Figure 4.8: Diagram of the transformation from the ”C2” node to the ”C0” node.

transformation. As the goal is to obtain a single transformation, the average of the
various transformations obtained is computed.

Compute the average of multiple transformations is not a linear process. Therefore,
to compute the average transformation, we begin by computing the average of all trans-
lations (x, y and z). Then, the average of the rotation component has to be computed.
Initially, the rotation component is converted to rotation quaternions [5]. Next, the
spherical linear interpolation between two rotations is carried out [6], which corresponds
to the average of the two rotation components. By crossing all rotation components and
using the previously computed average, the process of computing the spherical linear
interpolation is repeated until the average of all rotation components is computed. Fi-
nally, both the rotation and translation components are linked, constructing the average
transformation matrix. Thus, using the transformations obtained from the detection of
the markers, it is possible to estimate the transformations of all markers and cameras in
relation to the world reference frame.

The diagram represented in Fig. 4.8 explains the example previously refereed to.
For example, in this case camera ”C2” only sees marker ”A444”, so in this detection
it is possible to know the transformation from the coordinate system of the marker
to the coordinate system of the camera. However, the required transformation is the
transformation from the camera to the marker, so the inverse of the transformation of
the marker to the camera is used. This is given by:

aTb = (bTa)−1 (4.2)

From diagram in Fig. 4.8, we can extract Eq. 4.3 which represents the initial estimate
of the extrinsic calibration of camera ”C2”.

C2TC0 = (A444TC2)
−1 ·A444 TC1 · (A595TC1)

−1 ·A595 TC0 (4.3)

The algorithm which performs this process is represented in Algorithm 2.

Filipe Oliveira Costa Master’s thesis

32 4.Calibration approach

Algorithm 2 Getting an initial estimate of the extrinsic parameters.

1: for node in nodes do
2: find all the shortest paths from the node to the reference node
3: for path in paths do
4: T = identity matrix
5: for i in [1,2,.., until the number of nodes that constitute the path] do
6: start node = path[i-1]
7: end node = path[i]
8: det = detection which has the marker and the camera that represents the

start and end node
9: if start node is a marker then

10: Ti = transformation that corresponds to the detection
11: else
12: Ti = inverse of the transformation that corresponds to the detection
13: end if
14: T = Ti × T
15: end for
16: Join T to AllTransformations list
17: end for
18: Tmed = mean of AllTransformations list
19: if node is a camera then
20: Tmed corresponds to the initial estimate of the extrinsic calibration of the

correspondent camera
21: else
22: Tmed corresponds to the initial estimate of the extrinsic calibration of the

correspondent marker
23: end if
24: end for

Filipe Oliveira Costa Master’s thesis

4.Calibration approach 33

4.3.3 Optimization of the extrinsic parameters

The optimization was done based on work developed by Agarwal [7] which is referred
to in subsection 2.4. In work previously referred to, the authors project the 3D points
onto the image and compare the distance between the projected points and the points
detected by image processing.

Creating the vector that will be optimized

To perform the optimization, it is necessary to create a vector of parameters with all
the parameters that will be optimized. The parameters that will be optimized are the
transformation matrices of the cameras and the markers. The vector will have the format
represented in Eq. 4.4.

vector = [tx
C0, ty

C0, tz
C0, r1

C0, r2
C0, r3

C0, ..., tx
A0, ty

A0, tz
A0, r1

A0, r2
A0, r3

A0, ...] (4.4)

tx, ty, tz represent the translation component and r1, r2, r3 represent the rotation com-
ponent, where the rotation matrix component is converted on Rodrigues’ rotation so
that there is no redundancy in the rotation component. These 6 elements of the vector
represent just one transform matrix whereby, the number of elements of the vector will
be equal to 6 · (ncameras + nmarkers).

Projecting 3D points onto 2D points on the image

In this work the same process refereed to above is used, where the 3D points that
represent the corners of the Aruco marker are projected onto the image, as illustrated
with blue circles in Fig. 4.9. The transformation of the 3D points onto 2D image points
made in this work follows the pinhole camera model [19]. To transform the 3D points
into 2D image points the distortion coefficients, the intrinsic matrix and the extrinsic
matrix are necessary.

Initially, the corners of the markers are transformed from the coordinate system of
the marker to the coordinate system of the world reference frame, using Eq. 4.5, where
T represents the extrinsic matrix. The 3D points represented in the marker coordinate
system are calculated using the size of the Aruco marker. For example, if the size of
the marker is ”s”, coordinates of the corners are (−s2 ; s2), (s2 ; s2), (s2 ;−s2) and (−s2 ;−s2),
beginning in the upper left corner and rotating clockwise, respectively.

Preference frame = T · Pmarker (4.5)

The coordinates of the Preference frame can be represented by (x, y, z). After getting
the points coordinates on the reference frame, the 3D coordinates are converted into
homogeneous coordinates with the Eq. 4.6.

x′ =
x

z

y′ =
y

z

(4.6)

Filipe Oliveira Costa Master’s thesis

34 4.Calibration approach

Figure 4.9: Representation of the corners of the Aruco marker.

Then, the tangential and radial distortion are removed, using Eqs. 4.7, which results
from Eq. 2.3 and 2.4 refereed to in subsection 2.2.

x′′ = x′ · (1 + k1 · r2 + k2 · r4 + k3 · r6) + 2 · p1 · x′ · y′ + p2 · (r2 + 2 · x′2)
y′′ = y′ · (1 + k1 · r2 + k2 · r4 + k3 · r6) + p1 · (r2 + 2 · y′2) + 2 · p2 · x′ · y′

where r =
√
x′2 + y′2

(4.7)

Finally, using the intrinsic matrix (Eq. 2.5), that results in Eq. 4.8, the coordinates
of the points in the image (u, v) are obtained.

u = fx · x′′ + cx

v = fy · y′′ + cy
(4.8)

Sparse matrix

The optimization of a large problem, i.e. one with thousands of parameters, may become
cumbersome. This is due to the difficulty in tuning a very large number of parameters
from the scalar number returned by the cost function. In multi-camera calibration prob-
lems the relationships between the various cameras is not complete. In other words, if one
considers a graph where the cameras and aruco markers are the nodes and transforma-
tions between these are edges, this graph will not be fully connected. This demonstrates
the fact that not all cameras observe all of the aruco markers.

Filipe Oliveira Costa Master’s thesis

4.Calibration approach 35

Taking this into account one may change the cost function to return a vector of
errors instead of a scalar error. Each value in this vector will represent the reprojection
error associated with each camera-aruco marker detection. Since it is possible to define
which optimization parameters affect a camera-aruco marker detection, i.e., a camera X
to aruco marker Y detection is influenced only by the six parameters that describe the
pose of the camera and the six parameters that describe the pose of the aruco marker. A
matrix of detections in the Y axis and optimization parameter in the X axis is created to
describe which detections (i.e. positions in the error vector returned by the cost function)
are influenced by which parameters. Since, in multi-camera optimization problems, this
matrix is populated by a large number of zeros (non influences), this is often called
sparse matrix and the problem sparse bundle adjustment.

By using the sparse matrix information, the optimizer is able to tune the optimization
parameters more precisely and thus the optimization is much faster. In some cases
involving very large problems, a sparse formulation is the only way to achieve a solution
since the classical approach fails to converge to a solution.

For the example of the node graph in Fig. 4.6, the sparse matrix would look like
it is represented in Tab. 4.1, where, in the columns, there are the extrinsic parame-
ters corresponding to each element (camera or marker) which are included in the vector
to optimize, and the lines correspond to detections. Each element of the columns cor-
responds to six elements, the first three correspond to the translation component of
the transformation matrix and the following correspond to the rotation component, the
component of rotation is represented in Rodrigues angles (tx,ty,tz,r1,r2,r3). Therefore,
each element of the line correspond to six equal elements and the sparse matrix of this
example have a size of 5×36. The ones of sparse matrix mean that the detection has
influence on the parameters, and the zeros mean the opposite.

Detections/Parameters C0 C1 C2 A444 A470 A595

C0 - A595 1 0 0 0 0 1
C1 - A595 0 1 0 0 0 1
C1 - A444 0 1 0 1 0 0
C2 - A444 0 0 1 1 0 0
C2 - A470 0 0 1 0 1 0

Table 4.1: Representation of the sparse matrix corresponding to the example in Fig. 4.6

Setting the bounds for the parameters

A bundle adjustment problem can be quite a time-consuming process due to the existence
of several solutions, but sometimes most of the existing solutions are not correct. For this,
it is possible to set limits for the vector parameters to optimize, so that the optimizer
can reduce the number of possible solutions and converge to a solution closer to the
desired values.

In this work, this functionality was only used in the tests of dataset 4, as it was
intended to find the positions of all the centers of the markers in relation to the marker
”A0”. So, it was necessary to tell the optimizer that the transformation associated with
the marker ”A0” would have to be maintained, to avoid redundancies. In this way it

Filipe Oliveira Costa Master’s thesis

36 4.Calibration approach

was possible to converge the optimizer to the solution that was intended.

Cost function

The optimization process aims to decrease the reprojection error. The reprojection error
is the Euclidean distance between the point reprojected in the image and the interest
point of the image detected by image treatment (ground truth). Thus, the cost function
used in this work is a cost function that seeks to minimize the Euclidean distance between
the points reprojected in the image and the points detected by image processing in the
image of the markers’ corners.

The cost function is defined in Eq. 4.9 where Nd is the number of detections of the
marker/camera pairs, Nc is the number of markers’ corners and xreprojection, yreprojection
and ximg, yimg, as the name indicates, are respectively, the coordinates x, y of the repro-
jection of the 3D points and the coordinates of the points detected in the image.

Cost function =

Nd∑
i=1

Nc∑
j=1

√
(xijreprojection − x

ij
img)2 + (yijreprojection − y

ij
img)2 (4.9)

Another cost function (Eq. 4.10) was tested where the Euclidean distance between
the reprojected points in the image and the points detected by image processing in the
image of the marker centers is minimized. This function is, in all, equal to the cost
function referred to above, with a small difference that for each marker only the center
point is compared instead of the corners.

Cost function =

Nd∑
i=1

√
(xireprojection − xiimg)2 + (yireprojection − yiimg)2 (4.10)

Optimization algorithm

The optimization is performed like a nonlinear least-squares problem with bounds on
the variables, for this the SciPy library is used. This method uses the Trust Region
Reflective (trf) algorithm, which is particularly suitable for large sparse problems with
bounds.

The SciPy function named ”least squares”, only needs the cost function, the vector,
the bounds and the sparse matrix to carry out the optimization. At the end of the opti-
mization, the function returns a vector with better results for the extrinsic parameters
which minimize the reprojection errors.

Filipe Oliveira Costa Master’s thesis

Chapter 5

Experiments and results

In order to test and validate the calibration method implemented in this work, some
datasets have been developed from the simplest to the most complex. These datasets
will be presented in this chapter as well as the results obtained in each.

This calibration method is one that can calibrate several cameras at the same time,
so it will be evaluated whether the final result is acceptable not only for the calibration
of one camera but also for that of multiple cameras. The number of markers used in
the calibration of the cameras should have an influence on the calibration result, and
therefore will also be tested.

A new dataset will also be tested in which the poses of the markers are known i.e.
there is ground truth, in order to have a numerical validation of the method. Finally,
the application of this method will be evaluated in an application of 3D reconstruction
of a scene.

This chapter presents the datasets created to test the calibration method that was
developed in this work. An explanation of the calibration method in each dataset will
also be given. Finally, the calibration results obtained for each dataset will be presented.

5.1 Dataset 1

Initially, a very simple dataset was tested with only one camera and two markers. This
simple dataset is designed to validate the calibration process. Fig. 5.1 shows the image
obtained from the camera where two markers are visible.

5.1.1 Calibration using the marker’s corners

Initially, markers are detected in the images. Then, for each detected marker, the points
of the corners (red squares), the identification number (id) referent to each marker and
the respective coordinate system of each marker whose position and orientation, as
previously stated, depends on the binary code of the marker are represented. As already
mentioned, the detection of an Aruco marker allowed us to know the dimensions of the
markers, in order to compute the transformation from the camera to the marker.

37

38 5.Experiments and results

Figure 5.1: Representation of the dataset 1 and markers’ corners.

Figure 5.2: Graph node of the dataset 1.

Figure 5.2 represents the graph of nodes referring to dataset 1 where it is visible that
the two markers are connected to the same camera. As all the elements of the graph are
connected, it is possible to estimate the extrinsic parameters of all elements with respect
to the common reference frame. In this dataset, camera 0 is chosen to be the world
reference frame. This dataset does not refer to a multi-camera calibration. However, it
helps to see if the position of the markers with respect to the camera is consistent. In
this way, it is proven that estimating the position of the camera relative to the markers
using the Aruco markers is a valid procedure.

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 39

Figure 5.3: Representation of the initial guess (blue squares), the ground truth (red
squares) and the id of the marker.

Figure 5.4: Representation of the costs related to each detection.

Projecting the corners of the markers from their coordinates in the global coordinate
system to the coordinates in the image results in the blue squares is shown in Fig. 5.3.
From this projection it is possible to conclude that the initial estimate is already good.
In other words, the reprojection error is already very close to zero.

Filipe Oliveira Costa Master’s thesis

40 5.Experiments and results

Figure 5.5: Reprojection of the 3D points on the image using the final values resulting
from the optimization.

An optimization of the reprojection error is carried out. The results are shown in
Fig. 5.4. The graph shows the cost for each of the detections. As mentioned in the
previous chapter, the detections represent a camera-marker pair. Therefore, in the case
of this dataset, there are two detections that are the pair C0-A564 and C0-A446, where
C0 represents the camera of the dataset and the A564 and A446 are the markers present
in the dataset.

In Fig. 5.4, the solid line represents the initial cost before the optimization and the
dashed line represents the result after optimization. From this data we conclude that
there was an improvement from the initial solution, with the optimizer achieving more
improvements in the cost of the first detection, which initially had a higher cost. In
conclusion, the cost of the first and the second detection did not show a very significant
variation with the optimization, indicating that the initial estimate was very close to
reality. However, the average reprojection error reduced from 0.816 to 0.812 pixels.

In Fig. 5.5 the 3D points are reprojected in the image, using the results obtained by
the optimization (yellow circles). The variation from the initial state is almost invisible
because the initial estimate already produced very appreciable results.

Thus, obtaining the extrinsic parameters, it is possible to perform a 3D reconstruction
of the scenario of dataset 1. This is represented in Fig. 5.6. From this 3D representation
it can be concluded that the calibration presents excellent results. It is easy to conclude
that the coordinate systems of both markers are in agreement with the image, using
Fig. 5.6(b), which allows for a better perception of the position of the elements. When
comparing this representation with Fig. 5.5, it is possible to verify that the front axis
of the camera is pointing to the markers and the x and y axes correspond to the x and
y axes of the image. The x axis starting at the upper left corner of the image being
in the horizontal and left direction, the y axis also starts in the upper left corner but
has vertical and down direction. This is the same result which is represented in the 3D
reconstruction.

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 41

(a) (b)

Figure 5.6: 3D reconstruction of the scenario of dataset 1.

5.1.2 Calibration using the center of the marker

For the same dataset and under the same conditions, the calibration method was tested
using only the centers of the markers, as shown with red squares in Fig. 5.7. Since
only the corners of the markers are detected by the aruco detection library, the following
equation was used to find the center of the markers. This is the same as computing the
center of mass considering the cameras all have m = 1:

xCM =
m1 · x1 +m2 · x2 +m3 · x3 +m4 · x4

m1 +m2 +m3 +m4

yCM =
m1 · y1 +m2 · y2 +m3 · y3 +m4 · y4

m1 +m2 +m3 +m4

(5.1)

Figure 5.7 shows the centers of the markers using the initial estimate (blue squares).
As verified previously, the reprojection error is very low.

Filipe Oliveira Costa Master’s thesis

42 5.Experiments and results

Figure 5.7: Representation of dataset 1 and the markers’ center and reprojection of the
3D points on the image using the initial guess.

Figure 5.8: Representation of the costs related to each detection.

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 43

The reprojection error is minimized using the optimization process. The results of
the optimization are represented in Fig. 5.8. Compared to the previous case, there was
a higher initial cost of around 2.5 pixels reprojection error. The optimization process in
this case is more effective because it reduces the reprojection error to values close to 0.2
pixels.

We have shown that optimization is more successful in the case where only the
center of the markers is used. This is associated to the fact that in optimization, where
only the center of the markers is used, only the parameters referring to the detection
which contains the marker are changed by the optimizer, considering only the error
of reprojection of one point. When using the marker’s corners, these parameters are
modified taking into account a reprojection error of four points. The use of the marker’s
corners will cause more restrictions on the optimizer, which creates several local minima.
If the optimizer starts from an initial estimate with a considerable reprojection error, it
may fall to a local minimum, so that it cannot determine a valid solution.

Again, the corresponding points of the center of the markers are projected in the
image (represented by yellow circles) using the results obtained from the optimization,
as shown in Fig. 5.9. As can be seen, there was a small improvement in relation to the
projection that uses the initial estimate (represented by blue square).

Finally, a 3D representation of the dataset was performed, showing in Fig. 5.10. In
comparison to the results in Fig. 5.6, it is possible to conclude that the representation
is in all similar, and using the arguments used to justify the representation of Fig.
5.6, it is notable that the representation is with an arrangement equivalent to the real
arrangement of the markers and camera.

Figure 5.9: Reprojection of the 3D points on the image using the final values resulting
from the optimization.

Filipe Oliveira Costa Master’s thesis

44 5.Experiments and results

(a) (b)

Figure 5.10: 3D reconstruction of the scenario of dataset 1.

As can be concluded from the tests made in dataset 1, the calibration/optimization
process presents better results when only the centers of the markers are used. Thus,
for all subsequent datasets only the tests that use the centers of the markers will be
presented.

5.2 Dataset 2

In order to validate the calibration method, an additional simple dataset was developed,
consisting of one marker and two cameras, as shown in Fig. 5.11. It is already understood
that the problem with this dataset is that of a multi-camera calibration, because there
are two cameras with unknown positions in relation to each other. Only one marker will
be used to relate the two cameras. This dataset allows us to understand if the pose of
the cameras in 3D projection is consistent with the actual position of the cameras.

In Fig. 5.11 the images corresponding to the cameras are shown. One Aruco marker

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 45

is visible. The centers of the markers are marked as red squares.

The graph of nodes represented in the Fig. 5.12, which was generated according
to the detections, makes it possible to verify that the two cameras are connected by a
marker. This connection will allow us to estimate where one camera is with respect to
the other, relating the transformations obtained on the detections of the markers in the
image, which represent the transformation of the marker coordinate system to that of
the cameras. Once again, in this dataset, camera 0 was defined as the common reference.

(a) Camera 0

(b) Camera 1

Figure 5.11: Representation of dataset 2 and the center of the markers (red squares) and
the reprojection of the 3D points on the image using the initial guess (blue squares).

Filipe Oliveira Costa Master’s thesis

46 5.Experiments and results

Figure 5.12: Graph node of dataset 2.

Figure 5.11 shows the initial estimate, represented by blue squares. The initial
estimate is almost perfect because the blue squares are overlapping the red squares,
which represent the center of the Aruco marker.

Although the initial estimate provided good results, the reprojection error minimiza-
tion process was done. In this dataset there are two detections, C0-A595 and C1-A595.
As can be seen in Fig. 5.13, the second detection has a higher cost than the first, with
an initial cost of 0.35 pixels, which is considered a low and acceptable cost. Nonetheless,
the optimizer was able to reduce this cost to a value close of 0 pixels.

Figure 5.13: Representation of the costs related to each detection.

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 47

(a) Camera 0

(b) Camera 1

Figure 5.14: Reprojection of the 3D points on the image using the final values resulting
from the optimization.

Figure 5.14 represents the points projected on the image using the values optimized
(yellow circles). As can be seen, there was not a very significant change in the position
of the points because the initial values were already very close to the correct values.
Fig. 5.14 also shows that camera 0 is slightly below camera 1 because in the image of
camera 0 (Fig. 5.14 (a)) the marker is in a higher position with respect to the image
of camera 1 (Fig. 5.14 (b)). In the 3D view of the problem (Fig. 5.15) it is possible to
verify that the cameras are positioned in agreement with reality. Fig. 5.15(b) is aligned
with the images of Fig. 5.14 which allows a better perception of the 3D arrangement of
the cameras, and proves that the disposition of the elements (cameras and marker) is
consistent with what was expected.

Filipe Oliveira Costa Master’s thesis

48 5.Experiments and results

(a) (b)

Figure 5.15: 3D reconstruction of the scenario of dataset 2.

5.3 Dataset 3

After validating the calibration method using simple datasets, a more complex dataset
containing 5 cameras and 6 markers was created. This dataset is represented in Fig.
5.16. In these images, the markers seen by the cameras are identified, as well as their
centers. The detections of the markers by each camera produce a graph represented in
Fig. 5.17. In this graph it is possible to verify that cameras C0 and C1 are connected
by two markers, and the remaining connections, C1 and C2, C2 and C3, C3 and C4,
are connected by only one marker. In this way the whole system is interconnected, so
the calibration process is possible. In this dataset, camera 0 was defined as the world
reference frame.

Figure 5.16 also illustrates the reprojection of the 3D points on the image using the
extrinsic parameters initially estimated. The projection is already very close to the real
result, although on detection C1-A471, it is possible to note a small error. However, the
other reprojected points are in positions which are very close to the ground truth.

The reprojection errors in some of the detections in this dataset are quite high, so
obtaining a good result in the optimization process would be very relevant. The results
of the optimization process are represented on graph in Fig. 5.18, and as previously
mentioned, the detection C1-A471 presents a large reprojection error of around 12 pixels.
Nevertheless, the optimizer was able to obtain good results (represented by the red dotted

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 49

line). Despite having increased the cost in the first detections, the optimizer reduced
the higher costs to much lower values, bringing the costs of all detections to close to 0
pixels. The average initial cost was approximately 2.1 pixels and the optimizer reduced
this to 0.35 pixels, which is significant.

(a) Camera 0 (b) Camera 1

(c) Camera 2 (d) Camera 3

(e) Camera 4

Figure 5.16: Representation of dataset 3 and the markers’ center (red squares) and
reprojection of the 3D points on the image using the initial guess (blue squares).

Filipe Oliveira Costa Master’s thesis

50 5.Experiments and results

Figure 5.17: Graph node of dataset 3.

Using the values obtained from the optimization, the 3D points were reprojected in
the image (represented by the yellow circles), as illustrated in Fig. 5.19. In these results,
the improvement of the extrinsic parameters is visible, because all the points reprojected
in the image are in close positions with the ground truth detected by image processing.

Figure 5.18: Representation of the costs related to each detection.

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 51

(a) Camera 0 (b) Camera 1

(c) Camera 2 (d) Camera 3

(e) Camera 4

Figure 5.19: Reprojection of the 3D points on the image using the final values resulting
from the optimization.

Figure 5.21 shows a 3D view of the problem, where it is possible to see that the
elements of the dataset are in the correct positions according to the real disposition
visualized in Fig. 5.20. It should also be noted that all the coordinate systems of the
markers in the 3D view are consistent with what was expected. Also, note that the 3D
view has a slight rotation on the y-axis. This rotation was purposely done in the 3D view
in which the coordinate systems of the cameras were not overlapped on the coordinate
systems of the markers.

Filipe Oliveira Costa Master’s thesis

52 5.Experiments and results

Figure 5.20: Disposition of markers in dataset 3.

Figure 5.21: 3D reconstruction of the scenario of dataset 3.

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 53

5.4 Dataset 4

In the previous datasets, analysing the reprojection of the points in the image and
showing a 3D view of the elements present in each dataset allowed the verification of
the validity of the implemented calibration method. However, this validation is only an
empirical, qualitative validation.

For this reason, it was necessary to create a dataset in which the poses of the elements
of the dataset were known. This information is difficult to obtain for cameras. However,
it is possible to create a dataset in which the markers are in known positions.

For this, a marker board was created, as shown in Fig. 5.22, where it is known that
the markers are all in the same plane. Knowing the lateral size of each marker is 100
mm and that these are spaced at 20 mm, both in vertical and horizontal directions, it
is possible then to have the arrangement of the markers with a ground truth value for
the positions of all the markers.

To obtain the images of this dataset the ASUS ZenFone AR was used. This equipment
allows the making of 3D reconstructions of the surrounding space, and as previously
mentioned in section 3.2.2, it acquires several images from several perspectives. In fact,
for this dataset two tests were done, both tests use the same marker board, however,
the first dataset contains 104 images and the second test contains 38 images. All the
analysis of the dataset will be carried out for the test with 104 cameras and in the end
the values of the average errors of the 3D reprojection of both will be compared.

Figure 5.22: Marker board with real dimensions.

In order to facilitate the analysis of the dataset, marker ”A0” was defined as the
global reference frame, which allows to find the positions of all the others. Thus, the
center of all markers must be located in the xy plane with z=0, and the locations x and

Filipe Oliveira Costa Master’s thesis

54 5.Experiments and results

y can be easily calculated by knowing the dimensions of the marker board, where the
centers are spaced 120 mm in the x and y directions.

The generated graph for this dataset is too complex since it consists of 104 nodes
referring to the cameras, plus 54 nodes referring to the markers. Since each camera
visualises about 20 markers, the number of existing links is high. Due to this, the
representation of the graph of nodes is practically imperceptible when represented in a
small space, so it is not shown in this document.

Figure 5.23 represents some of the images present in this dataset. It is possible to see
the reprojected points which use the initial estimate (represented by the blue squares)
and those that use the values obtained after the optimization (represented by the yellow
circles). It is also possible to verify that the initial estimate has a large reprojection
error with respect to the ground truth. However, the optimizer achieved good results,
managing to overlay the reprojected points with the ground truth.

The cost for each detection graph is shown in Fig. 5.24. There was a significant cost
reduction over all the detections. The average cost of the initial estimate was 9.6 pixels,
and the optimizer was able to reduce it to a cost of 0.85 pixels.

The 3D representation of the problem is shown in Fig. 5.25. To have the perception
if the cameras are located in the correct position is almost impossible. However, it is
quite perceptible that the representation of the center of the markers is consistent with
reality. Hereupon, it is necessary to analyse the numerical results of this test to prove
that the calibration method is reliable.

(a) Camera 25 (b) Camera 30

(c) Camera 37 (d) Camera 46

Figure 5.23: Representation of some images. Reprojection of the points using the ini-
tial estimate (blue squares). Reprojection of the points after the optimization (yellow
circles).

Filipe Oliveira Costa Master’s thesis

5.Experiments and results 55

Figure 5.24: Representation of the costs related to each detection.

Figure 5.25: 3D reconstruction of scenario of the dataset 4.

Filipe Oliveira Costa Master’s thesis

56 5.Experiments and results

As already mentioned, marker ”A0” is the global reference frame, that is, its center
will be the origin of the global reference frame. Thus, the real position of all markers in
relation to the global reference is already known. The average error of the 3D position
of all centers of the markers is computed before and after the optimization process. So,
it is necessary to compute the position of the points using the first guess and using the
result of optimization.

Having these three sets of points: the real position of the points, the position of
points using the initial estimate and the position of the points using the data obtained
from the optimization, it is possible to calculate the average error before and after the
optimization using Eq. (5.2). Equation 5.2 computes the sum of the Euclidean distances
of the real center of the marker and the center computed, where Nm is the number of
markers and divides the sum of the Euclidean distances by the total number of markers,
giving the average error (AE).

AE =

∑Nm
i=1

√
(xicomputed − xireal)2 + (yicomputed − yireal)2 + (zicomputed − zireal)2

Nm
(5.2)

Table 5.1 shows the average error for the initial estimate and for the optimization
result, where the noise over the initial estimate is also varied.

% of noise
Test with: Parameters Nd 1 5 10 15

104 cameras
Initial estimate 0.0243 0.0247 0.0317 0.0457 0.0557

Optimization result 0.0283 0.0250 0.0307 0.0314 0.0416

38 cameras
Initial estimate 0.0120 0.0123 0.0199 0.0393 0.0520

Optimization result 0.0117 0.0097 0.0100 0.0164 0.0302

Table 5.1: Average Error (meters).

From the results obtained, it can be concluded that the optimization process can
reduce the average error of the 3D projection, even if in the initial estimate there is
some noise. This reduction is bigger when the noise present in the initial estimate is
higher. However, for the test which uses 104 images, the optimization process practically
maintained the average error for the cases where no noise was applied and for the case
where 1% of noise was applied. Even so the values obtained are quite appreciable.

Filipe Oliveira Costa Master’s thesis

Chapter 6

Conclusions and future work

6.1 Conclusions

Today, multisensor platforms have many applications. However, it is necessary to cali-
brate these sensors to obtain a good performance from the platform. There is currently
no fully reliable multi-sensor calibration method yet, and almost all of them require
manual intervention from the user. Hence the need to develop a calibration method
that allows us to do it anywhere, where it is only necessary to spread Aruco markers in
the surrounding space for the process to work. Therefore, the method implemented in
this work is of high relevance, because it is a method that does not require any manual
intervention from the user to function, it can calibrate a large number of camera sensors
using only some Aruco markers and it produces good results.

It is important to mention, before drawing any conclusion, that no datasets were
assembled in the ATLASCAR since only one camera has been installed in the vehicle for
now. The reason for not having placed any datasets in the ATLASCAR is not only the
previously mentioned one, but also the fact that this calibration method can be applied
to any type of platform with any number of cameras. Due to its versatility, this method
can be tested here in a large number of systems.

This work allows us to validate a method of calibration of N cameras at the same
time, without needing any intervention from the user, using the Aruco markers. This
calibration process is fully automated. It is only necessary to ensure that all cameras
have at least one marker that is also visible by another camera, so that it is possible to
establish connections between them, achieving a fully connected graph.

With this work, it was also possible to show the accuracy of the values obtained in
the detection of the Aruco markers, which allows us to obtain excellent first guesses,
compared to the information acquired by the aruco module of OpenCV.

Sometimes the first guess did not present very precise values and to solve this problem
an optimization method based on the Bundle Adjustment was used. This method uses
a cost function based on the Euclidean distance between the image points and the 3D
points reprojected in the image and presented very reliable results. In the chapter of the
results of the several calibration tests, it was possible to verify very significant reductions
in the reprojection error, which validates the optimization method used.

The 3D projections for each dataset represented above are consistent with the actual
arrangement of the elements, which also validate the calibration method presented.

When the calibration method was subjected to a test where the real positions of the

57

58 6.Conclusions and future work

markers were known, to enable later comparison with the results of the calibration, this
was always successful, presenting a good first guess. It was also possible to verify that
even if the first guess showed some noise, the optimizer would be able to find a better
solution.

6.2 Future Work

In the future, this work could be continued, because it proved to have good results, and
above all, proved to be a versatile calibration method, with numerous applications.

One of the areas to be developed using this method would be to explore the bounds
that can be imposed on the parameter vector that is optimized. The setting of bounds
in the vector is a very powerful tool because with it, it is possible to address the redun-
dancies of the problem, and thus, to make the problem converge to the correct solution
more easily.

Another area would be the application of this calibration method in a dataset taken
from the ATLASCAR. With this it would be possible to compare this calibration method
with the calibration methods already implemented, and thus, to draw some conclusions.
This test would also contemplate the fact that the calibration results can be used and
tested on a platform with real use.

This method only calibrates cameras, so other work could be based on the expansion
of this method, where in addition to the cameras, other types of sensors like LRFs would
also be calibrated. In this way the calibration method would be more global.

The inclusion of the LRF sensors in the method implemented will promote some
changes. Initially, the 3D LRFs have to detect the Aruco markers, e.g. finding features
with square form in the LRF data. Next, the enhancement of the center of the Aruco
markers becomes possible doing a treatment of the point cloud. However, even detecting
the centers of the markers, you should need to know their identifier, which is not possible.
Therefore, another solution would be to carry out a comparison between both the point
clouds generated by the cameras as well as by the LRFs and find similarities assigning
an identifier to the markers.

Nevertheless, the earlier method has not much utility for 2D LRFs. For this, a
RADLOCC based method based on [40] can be implemented. This method uses a
chessboard as a calibration target to do a camera to 2D LRF calibration, where the
chessboard is easily detected by the cameras as well as by the 2D LRFs. The detection
of the chessboard by the 2D LRF is based on the algorithm implemented in [25]. Finally,
the pose of the two sensors between each other is possible to obtain.

Filipe Oliveira Costa Master’s thesis

References

[1] Generate ArUco Markers for printing. https://tn1ck.github.io/aruco-print/.

[2] Projeto ATLAS - Universidade de Aveiro, 2003. https://www.http://atlas.web.
ua.pt/.

[3] Flea3 FL3-GE-28S4 Camera, 2012. https://www.visiononline.

org/vision-resources-details.cfm/vision-resources/

Flea3-FL3-GE-28S4-Camera/content_id/3694.

[4] Bundle adjustment, 2018. https://en.wikipedia.org/wiki/Bundle_adjustment.

[5] Quaternions and spatial rotation, 2018. https://en.wikipedia.org/wiki/

Quaternions_and_spatial_rotation.

[6] Slerp, 2018. https://en.wikipedia.org/wiki/Slerp.

[7] Sameer Agarwal, Noah Snavely, Steven Seitz, and Richard Szeliski. Bundle Adjust-
ment in the Large Computer Vision. Eccv, 6312:29–42, 2010.

[8] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. CenSurE: Center Sur-
round Extremas for Realtime Feature Detection and Matching. In David Forsyth,
Philip Torr, and Andrew Zisserman, editors, Computer Vision – ECCV 2008, pages
102–115, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[9] Miguel Almeida. Reconstrução 3D e calibração de lasers no AtlasCar. 2011.

[10] Y. Benezeth, P. M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger. Review and
evaluation of commonly-implemented background subtraction algorithms. In 2008
19th International Conference on Pattern Recognition, pages 1–4, Dec 2008.

[11] J. Y. Bouguet. Camera Calibration Toolbox for Matlab, 2010. http://www.vision.
caltech.edu/bouguetj/calib_doc/.

[12] Gary Bradski. The OpenCV Library, 2000. http://www.drdobbs.com/

open-source/the-opencv-library/184404319.

[13] Andrew Brooks. Graph Optimization with NetworkX in Python, 2017. https://

www.datacamp.com/community/tutorials/networkx-python-graph-tutorial.

[14] Daniel Coimbra e Silva. LIDAR Target Detection and Segmentation in Road Envi-
ronment. page 104, 2013.

59

https://tn1ck.github.io/aruco-print/
https://www.http://atlas.web.ua.pt/
https://www.http://atlas.web.ua.pt/
https://www.visiononline.org/vision-resources-details.cfm/vision-resources/Flea3-FL3-GE-28S4-Camera/content_id/3694
https://www.visiononline.org/vision-resources-details.cfm/vision-resources/Flea3-FL3-GE-28S4-Camera/content_id/3694
https://www.visiononline.org/vision-resources-details.cfm/vision-resources/Flea3-FL3-GE-28S4-Camera/content_id/3694
https://en.wikipedia.org/wiki/Bundle_adjustment
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Slerp
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.drdobbs.com/open-source/the-opencv-library/184404319
http://www.drdobbs.com/open-source/the-opencv-library/184404319
https://www.datacamp.com/community/tutorials/networkx-python-graph-tutorial
https://www.datacamp.com/community/tutorials/networkx-python-graph-tutorial

60 REFERENCES

[15] OpenCV documentation. Camera Calibration and 3D Reconstruction, 2018.
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_

and_3d_reconstruction.html.

[16] R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley and
Sons Inc, 1973.

[17] E. Fernández-Moral, V. Arévalo, and J. González-Jiménez. Extrinsic calibration of
a set of 2D laser rangefinders. 2015(C):2098–2104, 2015.

[18] Martin a Fischler and Robert C Bolles. Paradigm for Model. Communications of
the ACM, 24(6):381–395, 1981.

[19] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. 2003.

[20] S Garrido-Jurado, R Muñoz-Salinas, F J Madrid-Cuevas, and M J Maŕın-Jiménez.
Automatic generation and detection of highly reliable fiducial markers under occlu-
sion. Pattern Recognition, 47(6):2280–2292, 2014.

[21] G. H. Golub and C. F. Van Loan. An analysis of the total least squares problem.
SIAM J. Numer. Anal., 17:883–893, 1980.

[22] Carlos Guindel, Jorge Beltrán, David Mart́ın, and Fernando Garćıa. Automatic
Extrinsic Calibration for Lidar-Stereo Vehicle Sensor Setups. 2017.

[23] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[24] Lionel Heng, Gim Hee, and Lee Marc. Self-Calibration and Visual SLAM with a
Multi-Camera System on a Micro Aerial Vehicle. (2009):1–19, 2013.

[25] Abdallah Kassir and Thierry Peynot. Reliable automatic camera-laser calibra-
tion. Proceedings of the 2010 {Australasian} {Conference} on {Robotics} &
{Automation}, 2010.

[26] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the
perspective-three-point problem for a direct computation of absolute camera po-
sition and orientation. In CVPR 2011, pages 2969–2976, June 2011.

[27] Kurt Konolige. Kurt konolige : Sparse sparse bundle adjustment 1 sparse sparse
bundle adjustment. 2010.

[28] Kiho Kwak, Daniel F. Huber, Hernan Badino, and Takeo Kanade. Extrinsic cali-
bration of a single line scanning lidar and a camera. IEEE International Conference
on Intelligent Robots and Systems, pages 3283–3289, 2011.

[29] K. Levenberg. A method for the solution of certain non-linear problems in least
squares. Quarterly of Applied Mathematics, 2(2):164–168, 1944.

[30] Jesse Levinson and Sebastian Thrun. Automatic online calibration of cameras and
lasers, 06 2013.

Filipe Oliveira Costa Master’s thesis

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

REFERENCES 61

[31] Manolis I. A. Lourakis and Antonis A. Argyros. Sba. ACM Transactions on Math-
ematical Software, 36(1):1–30, 2009.

[32] Donald W Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Pa-
rameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–
441, 1963.

[33] McKinsey&Company. Self-driving car technology, 2018. https://www.

mckinsey.com/industries/automotive-and-assembly/our-insights/

self-driving-car-technology-when-will-the-robots-hit-the-road.

[34] C. Mei and P. Rives. Single view point omnidirectional camera calibration from
planar grids. In Proceedings 2007 IEEE International Conference on Robotics and
Automation, pages 3945–3950, April 2007.

[35] OpenCV. Detection of ArUco Markers, 2015. https://docs.opencv.org/3.1.0/

d5/dae/tutorial_aruco_detection.html.

[36] Gaurav Pandey, James R Mcbride, Silvio Savarese, and Ryan M Eustice. Automatic
Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual
Information. Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intel-
ligence, pages 2053–2059, 2012.

[37] Marcelo Pereira, Vitor Santos, and Paulo Dias. Automatic Calibration of Multiple
LIDAR Sensors Using a Moving Sphere as Target. In Lúıs Paulo Reis, António Paulo
Moreira, Pedro U Lima, Luis Montano, and Victor Muñoz-Martinez, editors, Robot
2015: Second Iberian Robotics Conference, pages 477–489, Cham, 2016. Springer
International Publishing.

[38] Marcelo Pereira, David Silva, Vı́tor Santos, and Paulo Dias. Self calibration of
multiple LIDARs and cameras on autonomous vehicles. Robotics and Autonomous
Systems, 83:326–337, 2016.

[39] Marcelo Silva Pereira. Automated calibration of multiple LIDARs and cameras
using a moving sphere. 2015.

[40] Qilong Zhang and R. Pless. Extrinsic calibration of a camera and laser range
finder (improves camera calibration). 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 3:2301–2306.

[41] Jan Quenzel, Nils Papenberg, and Sven Behnke. Robust extrinsic calibration of mul-
tiple stationary laser range finders. IEEE International Conference on Automation
Science and Engineering, 2016-Novem(August):1332–1339, 2016.

[42] Technical Reference. Flea3. 2017.

[43] Kumar Robotics. flea3, 2017. https://github.com/KumarRobotics/flea3.

[44] ROS. About ROS, 2018. http://www.ros.org/about-ros/.

Filipe Oliveira Costa Master’s thesis

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html
https://github.com/KumarRobotics/flea3
http://www.ros.org/about-ros/

62 REFERENCES

[45] Jorg Rowekamper, Michael Ruhnke, Bastian Steder, Wolfram Burgard, and
Gian Diego Tipaldi. Automatic extrinsic calibration of multiple laser range sen-
sors with little overlap. Proceedings - IEEE International Conference on Robotics
and Automation, 2015-June(June):2072–2077, 2015.

[46] Radu Bogdan Rusu and S Cousins. 3D is here: point cloud library. IEEE Interna-
tional Conference on Robotics and Automation, pages 1–4, 2011.

[47] V. Santos, J. Almeida, E. Ávila, D. Gameiro, M. Oliveira, R. Pascoal, R. Sabino,
and P. Stein. ATLASCAR - Technologies for a computer assisted driving system
on board a common automobile. IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC, 2008:1421–1427, 2010.

[48] Vı́tor Manuel Ferreira Santos. Sebenta Robótica Industrial 2003-2004. page 166,
2004.

[49] TechRepublic. Autonomous driving levels 0 to 5: Understand-
ing the differences, 2016. https://www.techrepublic.com/article/

autonomous-driving-levels-0-to-5-understanding-the-differences/.

[50] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon.
Bundle Adjustment A Modern Synthesis. Vision Algorithms: Theory and Practice,
1883:298–372, 2000.

[51] David Tiago Vieira da Silva. Multisensor Calibration and Data Fusion Using LIDAR
and Vision. page 107, 2016.

[52] Ying-mei Wei, Lai Kang, Bing Yang, and Ling-da Wu. Applications of structure
from motion: a survey. Journal of Zhejiang University SCIENCE C, 14(7):486–494,
jul 2013.

[53] J. Xavier, M. Pacheco, D. Castro, A. Ruano, and U. Nunes. Fast line, arc/circle and
leg detection from laser scan data in a player driver. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, pages 3930–3935, April 2005.

Filipe Oliveira Costa Master’s thesis

https://www.techrepublic.com/article/autonomous-driving-levels-0-to-5-understanding-the-differences/
https://www.techrepublic.com/article/autonomous-driving-levels-0-to-5-understanding-the-differences/

	Introduction
	ATLAS project
	Project context
	Objective
	Document structure

	Related work
	LRF to LRF calibration
	Camera to LRF calibration
	Camera to camera calibration
	Structure-from-Motion

	Experimental infrastructure
	Software
	ROS
	OpenCV
	SciPy

	Hardware
	Point Grey Camera
	ASUS ZenFone AR

	Calibration approach
	Intrinsic camera calibration
	Calibration target
	Calibration procedure
	Create a graph of nodes
	Obtaining an initial estimate
	Optimization of the extrinsic parameters

	Experiments and results
	Dataset 1
	Calibration using the marker's corners
	Calibration using the center of the marker

	Dataset 2
	Dataset 3
	Dataset 4

	Conclusions and future work
	Conclusions
	Future Work

