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“The only true voyage of discovery, the only fountain of Eternal Youth, would

be not to visit strange lands but to possess other eyes, to behold the universe through

the eyes of another, of a hundred others, to behold the hundred universes that each of them

beholds, that each of them is; and this we can contrive with an Elstir, with a Vinteuil; with

men like these we do really fly from star to star.”

Marcel Proust [1]
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resumo 
 

 

Nas tendências de crescimento de diversas áreas tecnológicas, os 
metamateriais abriram novas oportunidades no controlo da radiação 
eletromagnética para aplicações avançadas. Existem diferentes tipos de 
metamateriais que: a) oferecem valores negativos para as partes reais da 
permitividade e/ou permeabilidade efetivas [meio duplamente negativo (DNG)]; 
b) proporcionam valores extremamente elevados e/ou anisotrópicos desses 
parâmetros [por exemplo, meios de fios condutores (WM)]; e c) apresentam 
valores próximos de zero desses parâmetros, como nos meios de 
permitividade elétrica próxima de zero (ENZ) ou de permeabilidade magnética 
próxima de zero (MNZ). 
 
Uma das formas mais comuns dos metamateriais concebidos para aplicações 
de microondas são estruturas periódicas regulares. Embora a periodicidade 
possa às vezes ser uma propriedade necessária (como, por exemplo, nos 
metamateriais fotónicos de bandas proibidas (PBG)), algumas outras formas, 
como os meios de fios condutores (WM), não precisam ser periódicas para 
oferecer a mesma permitividade efectiva do material de tipo plasma. Além 
disso, a periodicidade em metamateriais projetados para a supressão da 
propagação pode abrir novas bandas nas quais as ondas podem se propagar. 
 
Recentemente, a eletrodinâmica de estruturas fractais tem vindo a atrair uma 
grande atenção na conceção de dispositivos de microondas e ópticos e nas 
suas aplicações. Os fractais são padrões geométricos cujas dimensões 
topológicas não pode ser sempre representada por um número inteiro. Em vez 
disso, as dimensões nos fractais são descritas por outras definições, como a 
dimensão de Hausdorff. Devido ao seu padrão de auto-repetição, os fractais 
trazem novas oportunidades à conceção de metamateriais. 
 
Neste trabalho, a abordagem fractal-geométrica foi estudada para construir 
diferentes tipos de metamateriais. Especificamente, os objetivos do projeto são 
modelar as características eletromagnéticas desses metamateriais com base 
em diferentes tipos de fractais; e fornecer novas técnicas de homogeneização 
para este grupo de metamateriais. 
 
Para expandir ainda mais as aplicações da geometria fractal neste contexto, o 
novo conceito de metamateriais de codificação fractal foi também desenvolvido 
e estudado no âmbito deste projeto. 

 

 



 



 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  

keywords 

 
metamaterials, homogenization, fractals, self-similarity. 
 

abstract 

 
In the growing trends in different technological areas, metamaterials opened 
new opportunities for controlling electromagnetic radiation for advanced 
applications. There are different types of metamaterials that a) offer negative 
values for the real parts of effective permittivity and/or permeability [double-
negative (DNG) media]; b) provide for extremely high and/or anisotropic 
parameters (e.g., wire media); and c) have near-zero values of these 
parameters as in electric near-zero (ENZ) or magnetic near-zero (MNZ) media. 
 
One of the most common forms of the metamaterials designed for microwave 
applications are regular periodic structures. Although periodicity can be 
sometimes a necessary property (like, for example, in the photonic band-gap 
(PBG) metamaterials), some other forms such as wire medium (WM) do not 
really need to be periodic to provide the same plasma-like effective permittivity. 
Moreover, periodicity in metamaterials designed for suppression of the 
propagation may open new bands in which waves can propagate. 
  
Recently, electrodynamics of fractal structures caught a vast attention in the 
design of microwave and optical devices and their applications. Fractals are 
geometric patterns whose topological dimensions cannot be always 
represented by an integer number. Instead, dimensions in fractals are 
described by other definitions such as the Hausdorff dimension. Due to their 
self-repeating pattern, fractals can bring new opportunities in the design of 
metamaterials. 
 
In this work, the fractal-geometric approach has been studied in order to build 
different types of metamaterials. Specifically, the project objectives are to 
model electromagnetic characteristics of these metamaterials based on 
different types of fractals; and to provide new homogenization techniques for 
this group of metamaterials. 
   
To further expand the idea of fractal applications, the new concept of fractal 
coding metamaterials also has been developed and studied in the framework of 
this project.  
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Chapter 1

Introduction

1.1 Metamaterials: a Brief History

Metamaterials (MMs) are under active research since the beginning of this millennium. These

materials are patterned composites in which we change the overall material response (electric,

magnetic, or mechanical) by using different material constituents in order to obtain the

properties that we need. Usually the patterns in metamaterials are repeating.

There are various types of metamaterials such as negative index materials (NIM), electro-

magnetic band gap (EBG) materials, frequency selective surface (FSS) based metamaterials,

and others. Fig. 1.1 shows the classification of magneto-dielectric materials and MMs based

on their µ and ε values.

Theoretical prediction of the media with simultaneously negative permittivity and perme-

ability first appeared in the V. Veselago’s paper in 1968 [2]. Although there is no natural

material with such properties [3], in the 1990s, J. Pendry proposed the use of composite

materials comprising conducting metallic wires [4] for negative permittivity, and split ring

resonators (SRRs) for negative permeability [5]. Later, R. Shelby and D. Smith successfully

fabricated and examined the first DNG medium by combining these ideas [6]. Their material

operated at a specific frequency in the microwave band. Since then there has been active re-

search on different phenomena in these materials such as: negative refraction; super-resolution

focusing [7, 8]; invisibility cloaking [9–11]; photonic band-gap [12–14] and nonlinear effects

[15–17].

1
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Figure 1.1: Permittivity-permeability (ε-µ) diagram where ω is angular frequency and ωpe
and ωpm represent the electric and magnetic plasma frequencies, respectively.

Since the birth of the MM era, there have been different proposals to design and fabricate

MMs with good quality and desired ε and µ. Some of the well-known structures include

Ω-rings [18], S-rings [19], metallic rod pairs [20, 21], and metallic crosses [22].

The concept of macroscopic electromagnetics using averaged microscopic field quantities was

first proposed by Plank [23]. By expanding this idea, characterization of the effective re-

sponses of MMs became possible [24, 25]. Due to the complexity of the MM structures, and

in order to have accurate and efficient techniques for determining the EM response of a given

structure, different EM characterisation methods were proposed. Describing complex MMs

by a set of a few effective parameters is desirable in engineering applications. This observa-

tion gave rise to a class of characterization techniques known as the homogenization methods.

These methods rely on the fact that, when the distances between the elements of a MM are

small compared to the wavelength, the MM is effectively continuous and can be understood

as a homogeneous medium.

There are macroscopic methods belonging to this class, which are based on the results of

physical or numerical experiments such as measurements or simulations of the reflection
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and transmission coefficients of the MM samples. In particular, in the Nicolson-Ross-Weir

retrieval method (NRW) [26, 27], a layered MM structure is described as a bulk material

with effective parameters µ and ε retrieved from the reflection-transmission measurements

or simulations. Although the NRW method comes with a rather simple formulation, the

ambiguity in choosing the right branch of the complex logarithm function (due to the 2π

periodicity in the phase of the transmitted signal) involved in the calculations of the effective

refractive index, and, respectively, the effective permittivity and permeability, makes the use

of this method problematic for thick MM samples.

Various generalizations of the NRW method using the inversion of computed or measured

scattering data [28, 29] exist. These methods usually perform poorly in MMs with bianistropic

and spatially dipersive effects. They as well suffer from the branch uncertainities and give

multiple answers for the homogenization problem, so that, in some cases, it is not easy to

determine the right solution, although certain methods have been proposed to reduce this

ambiguity [30–32].

Another group of the EM characterization methods is based on the microscopic point of view

at the MM lattice level. These methods determine the EM behavior of the MMs by studying

the complex EM response of their unit cells. The unit cell response is determined not only

by its chemical composition, but also by the geometric properties of the unit cell elements,

the lattice symmetry, etc. However, in contrast to the photonic crystals whose complex EM

behavior results dominantly from their periodicity and granularity, the homogenizable MMs

are effectively continuous structures. The material parameters of such homogenizable periodic

MMs can be determined, for instance, with the source driven homogenization methods [33],

or by using the multipolar expansion [34].

For the MM with periods much smaller than the wavelength, or random dense MM, the

classical analytical homogenization theories [35] can be used. These methods consider the

MM as a composite or mixture of two or more components and define the MM effective

parameters by using, e.g. the Clausius-Mossotti (Maxwell-Garnett) or the coherent potential

approximations [36]. These theories are valid under certain limitations and are often not

applicable to MMs formed by conductors and resonators with high inclusion volume fractions.

Besides that, these methods do not take into account the spatial dispersion resulting from

the periodicity of the MM.
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There are methods which use the band structure of the MM to obtain the effective parameters,

but such methods usually are not applicable within the EM band gaps or in the MM structures

with high losses. Special homogenization techniques based on the plane wave expansion and

the band structure calculations [37] and on the combination of asymptotic multiscale methods

with wave-field conception [38] are also known.

1.2 Fractal Geometry and its Applications

Fractal geometry can be seen as an extension of the classical geometry. Fractals can be

described by irregular mathematical sets that provides better representation of many natural

phenomena than the classical approach [39].

Although fractals have been around for centuries, application of fractal geometry in EM

design is a relatively new area. The term “fractal” was, itself, first coined by B. Mandelbrot

in 1975 from the Latin word “fractus” meaning made-up of broken or irregular fragments.

By Mandelbrot definition, a fractal is a set for which the Hausdorff–Besicovitch dimension

strictly exceeds the topological dimension. Unlike Euclidean geometrical figures, if a fractal’s

1-D length is doubled, the spatial content of fractal scales gets a fractal dimension that

exceeds the fractal topological dimension. The latter is not necessarily an integer. This

fractal dimension is the Hausdorff–Besicovitch dimension that was first introduced by Felix

Hausdorff in 1918 and is a measure of the local size of a set of numbers. In traditional

geometry, it’s an integer corresponding to the topology of the structure.

However, we cannot describe all different types of fractals by Mandelbrot definition. In the

more general mathematical description, fractal is a set with the following properties:

- having a fine structure: available details on arbitrary small scales,

- being too irregular,

- having some form of self-similarity,

- usually fractal dimension1 is strictly bigger than topological dimension,

- mostly you can describe them by simple definitions e.g. recursively.

1The term fractal dimension in this thesis always refers to Hausdorff–Besicovitch dimension.
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Fractals usually have repeating patterns at every scale. The replication can be exactly the

same at each scale (self-similar pattern, e.g. Koch Snowflake) or nearly the same (e.g. Man-

delbrot set), or it can have a detailed pattern that repeats itself but does not show self-similar

behaviour even statistically (e.g. coastline [40]).

Self-similar fractals can be classified according to their correlation at different scales as de-

terministic or random (statistically self-similar). Deterministic fractals can have geometrical

replication or algebraic replication. Fig. 1.2 depicts a few examples of different classes of

fractals.

Figure 1.2: Some examples of different fractal geometries: a) Sierpinski carpet (deter-
ministic geometric fractal); b) Julia set (deterministic algebraic fractal); c) Brownian tree

(non-deterministic random fractal)

The application of fractals in engineering designs is very recent. In particular, fractals in EM

designs dates back to 1986 when they were used in the design of linear arrays of antennas

[41].

Many types of fractals can be used in high-frequency designs to achieve desired EM charac-

teristics. One of the most interesting possibilities in fractal approach to antenna design is

that with using such structures one may develop invariant frequency antennas or multiband

antennas due to the mentioned self-similarity property of fractals [42]. With respect to this

property a fractal antenna is similar to a log-periodic antenna. Fractal approach to the design

of reflectarray unit cells resulted in improved properties such as miniaturization and low loss

[43].

Enhanced diffraction properties can be obtained by using Sierpinski gasket [44]. Fractals

also have been used for wave localization at microwave and terahertz frequencies [45, 46].

Eigenmodes in a fractal cavity have been studied in [47]. There has been also some research

on using fractal structures in optical transmission [48–50].

Fractal structures share some similarity in properties with MMs [51].
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Besides the interesting properties of fractals in antenna and high frequency designs, there

have been some investigations toward using them in metamaterial design. The most common

fractal that has been used in different studies of MMs is the H-shape fractal. Due to the

multiband and sub-wavelength behavior, it has been used to build electric MMs [52–54],

magnetic MMs made of metallic planar fractal structures and metallic sheets [55, 56], and

palsmonic MMs comprising metallic plates drilled with periodic fractal slits [57, 58].

1.3 Research Gaps

Although the idea of MMs is very interesting and brought novel perspectives to various ap-

plications, the existing structures for MMs are far from practical use in many applications.

Among them, structures with resonant elements do not provide a good transmission medium

due to low intrinsic quality factor that is associated with each resonator [59]. On the other

hand, as it has been pointed out before, these structures besides being bulky, exhibit narrow-

band behaviour and have high loss.

There has been successful research on electrodynamics of fractals but there is not too much

focus on using fractal geometry in MM designs. The well-studied MMs typically have simple

periodic structures of very narrowband nature. On the other hand, fractal structures are

typically aperiodic, being thought for wideband operation.

Particularly, the focus in electrodynamics of fractal structures has been on the calculation of

dispersion diagrams or impedances in fractal antennas and, only for a few known structures,

it has been done in a general way.

Besides the limitations in MM structures, the known analytical methods for homogenization

of MMs are too limited and do not cover the wide variety of MM structures. Although there

are exact methods for periodic MMs, the homogenization methods for aperiodic MMs are

still under development and just a few approximate methods exist in this case. Developing

a more general analytical method for homogenization of MMs based on their geometry is an

important step towards using MMs in engineering applications.

The known homogenization theories for random media are not directly applicable for fractal

structures, because fractal structures possess a much higher degree of order as compared

to disordered media. In particular, the existing methods for periodic MM rely on strict
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periodicity of the medium, and are not applicable to fractal structures, which are not periodic.

On the other hand, the methods for random media rely on randomness in the positions of

inclusions, but again for many fractals this property does not hold: fractals are self-repeating

structures, but generally not random.

In contrast, depending on the type of fractal chosen for a fractal MM, the structural MM

elements may drastically vary in size, orientation, and electrical properties. For instance, such

elements can become electrically connected or disconnected, be scaled, rotated, etc., within

a single fractal MM sample. In order to study such structures, the scattering properties of

the microscopic building blocks have to be thoroughly analysed, which will later allow for a

general macroscopic description of the fractal MM itself.

1.4 Objectives

The focus of this thesis is on the study of EM behaviour of MMs based on self-similar fractals.

This is done numerically and, when possible, by deriving analytical formulas. Different fractal

MMs in 1D, 2D , and 3D are investigated, and applicable homogenization techniques for each

class are developed.

The result of this work provides better understanding of the EM behaviour of these structures

in general.

In particular, a special attention is paid to self-similar fractals due to their potential in the

prediction of the system behaviour at different scales. Such structures find applications where

self-repeating (at different scales) patterns of the structural elements lead to improvements

in the performance of the structure.

Apart from the study of fractal MMs, a new coding strategy based on fractal interpolation

function is introduced. Taking advantage of the mathematical properties of the fractals, an

analytical approach for fractal coding MMs is developed.



Chapter 1. Introduction 8

1.5 Thesis outline

In the part I of this work, in chapter 2, we design one-dimensional fractal metamaterials

and derive the effective parameters of such structures. In chapter 3, the design of a two-

dimensional metamaterial based on the Hilbert curve [60] has been studied. A homogenization

technique applicable to this type of fractal MMs has been developed and an equivalent circuit

model based on the Babinet’s principle [61] has been proposed. In chapter 4, we present a

three-dimensional fractal metamaterial based on the Sierpinski carpet and investigate the

features of this fractal WM that it can offer in contrast to the traditional MMs such as the

wire medium.

In the part II, in chapter 5, we propose the new concept of the fractal coding MMs. Using a

fractal interpolation function we derive a theoretical model for this class of structures. The

theory has been verified through numerical simulations and confirmed with an experiment.

Chapter 6 highlights the main achievements and draws the main conclusions of this thesis

project.

The results of this thesis are published in Refs. [62–68].



Part I

Metamaterials based on Fractals

9





Chapter 2

1D MM based on Deterministic

Geometrical Fractal:

Layered Dielectric based on a Fractal Set

The purpose of this chapter is to develop a method to derive the effective material parameters

of such a complex MM, that is, to homogenize it. In the first section, we develop a transfer

matrix-based homogenization approach applicable to self-similar fractal structures. With

this method, we derive the material parameters of a layered fractal MM comprising two

different dielectrics with permittivities equal to ε1 and ε2, respectively, in which the layers

are distributed based on a fractal set. In the second section, we develop homogenization

techniques on the spatial scale Λ such that L� Λ, where Λ is the characteristic wavelength

of the external electromagnetic field which excites the structure.

In this work, we are interested in fractal MMs, constituents of which follow a fractal down-

scaling rule and therefore have (theoretically) infinitely many internal parts of infinitesimal

dimensions. Here, the self-similarity properties of fractals are exploited for proposing a new

homogenization method for such MMs based on fractal geometry.

2.1 Extraction of Material Parameters

The example structure we consider for this work is a layered fractal MM comprising two

different dielectrics. In this case, an unbounded fractal MM can be formed by periodically

11
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repeating fractal unit cells.

This structure is shown in Fig. 2.1, with the z-axis oriented perpendicularly to the layers.

The structure is infinite and regular in the xy-plane.

Figure 2.1: The geometry of the proposed fractal structure (third order). The third order
fractal has 11 dielectric layers. The blue color corresponds to permittivity εr = ε1 and the

green layers correspond to εr = ε2.

Along the z-axis, the MM is formed by periodically repeated fractal cells of length L, with

the geometry of each cell obtained as follows: In the first order fractal (Fig. 2.2a), we consider

a cell formed by three layers (a triplet): the middle dielectric layer with permittivity ε1 and

thickness d1, and the two outer layers with permittivity ε2 and thickness d2. One such cell has

thickness L = d1 +2d2. By increasing the fractal order, the outer layers of the first-order cells

are replaced by triplets of layers which are geometrically self-similar to the original cells, but

with the roles of the two dielectrics interchanged, i.e., ε1 is replaced with ε2 and vice versa.

For a fractal of n-th order this procedure is repeated n − 1 times. The resulting profiles for

the first four iterations εr(z) are shown in Fig. 2.2.

Thus the geometrical structure of an infinite-order fractal cell of length L can be defined

with a single dimensionless parameter: The ratio between the thickness of the outer layers

in the first-order cell to the total length of the cell, r = d2
L , which we call fractal ratio. By

definition, 0 ≤ r < 0.5. As is easy to verify, when r = 0, the whole MM is a uniform

dielectric with permittivity ε1. On the other hand, when r → 0.5 the fractal cells do not

reduce to a uniform dielectric with permittivity ε2. Instead, in this limit the cells are formed

by interlacing dielectric layers with infinitesimal thickness and permittivities ε1, ε2.

In the following we consider a structure having just one such cell. The effective parameters

of the 1D fractal medium can be calculated analytically using the transfer (ABCD) matrix
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(d) 4th order

Figure 2.2: ε profile for different orders of fractal MM. In this example, L = d1+2×d2 = 1,
d2 = 0.45L, ε1 = 4 and ε2 = 1.

approach. The transfer matrix, A, is defined as follows [69]:

Ex1

Hy1

 = Adiel ·

Ex2

Hy2

 , (2.1)

in which Ex1,2 and Hy1,2 are the transverse fields at the input and the output of the structure

and Adiel is the transfer matrix of a dielectric layer which can be written as shown below [70]

(for the time dependence of exp(−iωt); where i =
√
−1):

Adiel =

 cos kd −iη sin kd

− i
η

sin kd cos kd

 , (2.2)

where d is the thickness of the dielectric layer, and

η = η0

√
µr
εr
, (2.3)

k = k0
√
εrµr, (2.4)
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and η0 and k0 are the wave impedance and the wave propagation factor in free space, respec-

tively.

For nonmagnetic materials, we have µr = 1 and if we use the field units such that η0 = 1,

the equation for Adiel with relative permittivity εr can be simplified as shown below:

Adiel =

 cos k0
√
εrd −i

sin k0
√
εrd√

εr

−i√εr sin k0
√
εrd cos k0

√
εrd

 . (2.5)

Using these expressions, the total transfer matrix of a stack of dielectric layers is calculated

as an ordered product of the transfer matrices of the separate layers.

2.1.1 Eigenvalues of the Transfer Matrix and the Band Dispersion Diagram

By knowing the eigenvalues of the transfer matrix, the band diagram [71, p. 29] of the

structure can be calculated. The eigenvalues Λ1,2 of the total transfer matrix are related

to the propagation factors kz = k0
√
εeff as Λ1,2 = exp±ikzL. Within propagation bands, kz

is real (when there is no loss) and the two eigenvalues of the transfer matrix are complex

conjugate of each other. On the other hand, within stopbands, kz is purely imaginary and

the two eigenvalues have distinct real values.

The band diagram (the dispersion characteristic) for the fractal structure of 9th order ob-

tained with the transfer matrix approach is shown in Fig. 2.3. In this diagram, the propagation

factor kz is calculated as

kz =
1

L
|Im(log Λ1)|. (2.6)

2.1.2 Effective Permittivity in the Quasi-Static Approximation

When the fractal order is increasing, the total number of layers in the structure grows very fast

(in geometric progression), which makes direct numerical computation of the total transfer

matrix and the band diagram inefficient. Therefore, to describe fractal structures of order

n→∞, an alternative approach is needed.
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Figure 2.3: The band diagram for the 9th order fractal MM. Four propagation bands and
three band gaps are seen in the diagram.

In order to develop such approach, we note that the transfer matrix of the whole structure

of infinite fractal order A∞ can be calculated recursively due to the self-repeating property

of the fractal:

A∞(k0, L, ε1, ε2) = B∞ ·Adiel(k0, d1, ε1) ·B∞, (2.7)

where B∞ is the transfer matrix of the two fractal parts which surround the middle dielectric

layer of thickness d1 = (1 − 2r)L. By using fractal’s self-similarity property, B∞ can be

expressed as

B∞ =A∞(k0, r
2L, ε1, ε2) ·Adiel(k0, rd1, ε2) ·A∞(k0, r

2L, ε1, ε2). (2.8)

The equations 2.7 and 2.8 are functional equations for the unknowns A∞ and B∞. Resolving

these equations analytically for arbitrary values of the parameters appears impossible. How-

ever, when interested only in the behaviour of the structure at low frequencies, the following

method can be used. The same approach also allows us to find the effective permittivities of

the structure at low frequencies.

In order to solve Eqs. 2.7 and 2.8 with the effective medium approach, we equate the unknown

transfer matricesA∞ andB∞ to the transfer matrices of uniform dielectric layers with some ef-

fective permittivities εA,eff and εB,eff : A∞ = Adiel(k0, L, εA,eff) and B∞ = Adiel(k0, rL, εB,eff),
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and search for such εA,eff and εB,eff which satisfy the equations 2.7 and 2.8. In the quasi-

static limit of k0L
√
εr � 1 the expression for the transfer matrix of the dielectric layer can

be approximated as:

Adiel(k0, d, ε) =

1− ε
2(k0d)2 −ik0d

−iεk0d 1− ε
2(k0d)2

+O
(
(k0d)3

)
. (2.9)

Using this expression for A∞ and B∞, we solve the system of equations (Eq. 2.7 and 2.8),

which follows from the self-similarity property of the fractal:

A(k0, L) = B(k0, rL) ·Adiel(k0, d1, ε1) ·B(k0, rL),

B(k0, rL) = A(k0, r
2L) ·Adiel(k0, d2, ε2) ·A(k0, r

2L). (2.10)

The solution of this system of equations is:

εA,eff =
ε1 + 2ε2r

1 + 2r
, (2.11)

εB,eff =
ε2 + 2ε1r

1 + 2r
, (2.12)

where, εA,eff ≡ εeff is the effective epsilon of the whole fractal. Note that, in the quasi-static

limit, the effective permittivity of the structure is expressed as a weighted average of the

permittivities of the layers.

In order to understand the range of applicability of the obtained quasi-static expressions for

the effective permittivity, we compare the eigenvalues of the total transfer matrices calculated

by the effective medium approach and by the multilayer approach.

The transfer matrix eigenvalues for both the effective medium approach and the direct nu-

merical calculation for multiple layers are shown in Fig. 2.4. This figure depicts the real part

and the absolute value of the imaginary part of the two eigenvalues as functions of k0L. The

curves representing these functions (the blue and golden curves) coincide within the propaga-

tion bands and split (form ”loops” visible in Fig. 2.4) in the stopbands. Fig. 2.4 shows that

outside of the stopbands and when k0L . 2, the result from the effective medium calculations

is similar to the result from numerical calculations for 9th order.
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Figure 2.4: The imaginary and real parts of eigenvalues obtained from numerical results
and effective medium calculations for the 9th order fractal MM.

2.1.3 FDTD Simulations

In order to verify the analytical results obtained with the transfer matrix approach, MIT

Photonic-Bands (MPB)1 package and MIT Electromagnetic Equation Propagation (MEEP)2

simulation software package have been used [72].

In contrast with the transfer-matrix based calculations, in which considering structures that

have thousands of dielectric layers is feasible, in FDTD3-based numerical calculations working

with higher orders of fractals is more difficult. Therefore, the following results are given only

for 9th and 11th order fractal MMs which have 683 and 2731 dielectric layers in the whole

structure, respectively. Fig. 2.5 shows the ε profile of the fractal of 9th order.

2.1.3.1 FDTD-Based Band Diagram Calculations

Fig. 2.6.a depicts the permittivity profile of the 9th order fractal MM as it is represented by

the MPB. With increasing the resolution of the figure the distribution of ε is better seen for

higher orders.

1The MIT Photonic-Bands (MPB) package is a free program for computing the band structures (dispersion
relations) and electromagnetic modes of periodic dielectric structures.

2The MIT Electromagnetic Equation Propagation (MEEP) is a free finite-difference time-domain (FDTD)
simulation software package developed at MIT to model electromagnetic systems, along with MPB eigenmode
package.

3FDTD is one of the approximation methods to solve differential equations in computational electromag-
netics. Being a time-domain techniques allows wide frequency coverage with each simulation. In order to
solve a problem with this method, we need to write partial differential Maxwell’s equations in time dependent
discrete form. The system of obtained equations should be solved in leapfrog manner until it reaches the
steady-state behaviour.
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Figure 2.5: ε profile for the 9th order fractal MM. Due to the limited resolution of the
figure, the very thin dielectric layers located in the coloured regions are not seen.

Figure 2.6: ε profile for the 9th and 11th order fractal MM by MPB. The black and gray
color are ε1 and ε2 respectively.

The number of layers in each order of this structure is 1
3(2n+2 − (−1)n). The smallest layer

thickness equals to Lrn for 1
3 < r < 1

2 , and L(1 − 2r)rn−1 for r < 1
3 . Considering these

conditions, the physical limits for the highest order of this structure can be estimated.

Fig. 2.7 shows the band diagram for the 9th and 11th orders (the epsilon profile of this order

is shown in Fig. 2.6.b) of fractal MM. As is seen from the band diagram for the 9th order,

the simulation results follow closely the analytical results shown in Fig. 2.3.

As it is seen from Fig. 2.7, since the finest fractal elements are already too small in these

orders (as compared to wavelength), the band diagrams are very close to each other.

Fig. 2.8 shows the agreement between analytical results and numerical calculations for the

fractal of 9th order.
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Figure 2.7: Band diagrams for 9th and 11th order by MPB.

Figure 2.8: Comparison between band diagrams from analytical and numerical calculation
for a 9th order fractal MM.

2.1.3.2 Field Distributions in the Propagation Bands

Using the FDTD algorithm allows us also to study how the electromagnetic field of the modes

propagating inside the structure is distributed within the multilayer structure.

The field distribution along the fractal structure is shown in Fig. 2.9, for four bands of

propagation. In these examples, kzL = π
2 . As one can see, the field distributions closely

resemble the ones for plane waves propagating in uniform media, which shows that the studied

fractal structure can be considered as effectively homogeneous in these frequency bands.
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Figure 2.9: Distribution of the transverse electric field (real and imaginary parts) inside
the fractal structure for different propagation bands (in units relative to the field maximum).

2.2 Homogenization in Spatially Dispersive Case

Constitutive relations for a wide class of materials — including MMs — can be represented[73]

as in Eq. (2.13):

 ~D(ω,~k)

~B(ω,~k)

 =

ε(ω,~k) ξ(ω,~k)

ζ(ω,~k) µ(ω,~k)

 ·
 ~E(ω,~k)

~H(ω,~k)

 , (2.13)

where ~E and ~H are electric and magnetic fields and ~D and ~B are electric displacement and

magnetic induction, respectively. The material parameters in Eq. (2.13) are the dyadics of

permittivity ε and permeability µ, and the magnetoelectric coupling dyadics ξ and ζ. In

reciprocal media 4, ξ = −ζ
T

[73].

In our case, because we consider a MM formed by reciprocal dielectric (nonmagnetic) layers

we may assign µ = µ0I (here, I is the unity dyadic). In addition, the symmetry of our

structure and of its excitation implies no magnetoelectric interaction effects and thus ξ =

−ζ
T

= 0. Therefore, here we only calculate the effective permittivity dyadic of the structure

as a function of the frequency and wave vector: εeff(ω,~k). In this work, we consider that

4The reciprocal media here is the media such that the Lorentz reciprocity theorem holds.
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~k has just the z component: ~k = kz~z0. Note that in Eq. (2.13) ω and ~k are considered as

independent variables, so that the constitutive relations are valid also at the (ω,~k) points

which do not belong to any dispersion branch for the waves that may propagate in the

structure. This is important when considering the electromagnetic response of a MM inside

band gaps, or in cases when there is an external source embedded in the material.

Taking into account the above remarks, Eq. (2.13) can be simplified in our case as follows:

~D(ω, kz) = εeff(ω, kz) ~E(ω, kz), (2.14)

where,

εeff(ω, kz) = ε0εr(ω, kz) = ε0


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 . (2.15)

Since the layered fractal structure we are considering is uniaxial (only one special direction

exists — the z-axis direction), εeff is a diagonal dyadic with εxx = εyy 6= εzz:

εr(ω, kz) =


εxx(ω, kz) 0 0

0 εxx(ω, kz) 0

0 0 εzz(ω, kz)

 . (2.16)

In order to extract the effective dispersive permittivity εeff(ω, kz) with the frequency ω and

the wave number kz, understood as independent variables, the structure is excited by an

embedded source (App. B) ~Jext(t, z) = ~J0e
−iωteikzz, which is a plane wave of distributed

electric currents with independently set ω and kz. We find the induced electromagnetic fields

inside the structure either by using Finite-Difference Time-Domain (FDTD) technique (in

numerical calculations) or solving Maxwell’s equations directly (in analytical calculations).

Since in the external source we can set ω and kz independently (see more on this in App. B),

we can expect that in steady state the fields induced by such source vary similarly within

the structure with the same characterictic wavelength Λ = 2π
kz

and the same frequency ω.

Thus, by applying an external source, we are able to study the electromagnetic response of

the MM while kz and ω are independent from each other. The same idea has been previously

employed for homogenization of spatially-dispersive periodic media [33]. In a similar way, the
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dispersion behaviour of our structure can be studied as a function of the frequency and the

wavenumber.

Hence, we need to find the solution of the non-uniform Maxwell’s equations within the region

occupied by the structure when an embedded external source is applied to the structure:

∇× ~E = −µ0
∂ ~H

∂t
,

∇× ~H = ε0εr(z)
∂ ~E

∂t
+ ~Jext(t, z), (2.17)

where εr(z) is the dielectric permittivity profile (e.g. Fig. 2.5) in the structure which is

assumed real valued and not dispersive. Since the external source and the induced fields vary

only along the z-axis, we can equate ∇ = ~z0( ∂∂z ). In order to extract the two independent

components εxx and εzz of the effective permittivity dyadic (which is, in general, different

from εr(z)), the source current must have non-vanishing components along the x and z axes.

Under these assumptions, ~E = ~x0Ex + ~z0Ez and ~H = ~y0Hy, and thus Maxwell’s equations

are reduced to

∂Ex
∂z

= −µ0
∂Hy

∂t
, (2.18)

∂Hy

∂z
= −ε0εr(z)

∂Ex
∂t
− Jx,ext(t, z), (2.19)

ε0εr(z)
∂Ez
∂t

= −Jz,ext. (2.20)

In order to have a unique solution, we must also define the boundary conditions (BC) at the

edges of the fractal cell and an initial condition at t = 0. As the BCs must be compatible

with the variation of the source currents, we use the Bloch-periodic BCs of the form

Ex,z
∣∣
z=L

= Ex,z
∣∣
z=0

eikzL,

Hy

∣∣
z=L

= Hy

∣∣
z=0

eikzL. (2.21)

Because these relations involve complex values (and also because the external source is

complex-valued) in numerical calculations we have to use an FDTD implementation which

allows for complex values of the time-domain fields. Fortunately, MEEP can work with

complex-valued fields and sources in the time domain [72].
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The initial condition at t = 0 can be set as ~Ex = ~Hy = 0 everywhere in the structure.

MEEP’s FDTD implementation also allows us to specify a gradual turn on of the sources,

so that the currents do not change abruptly at t = 0, but, instead, approach the steady-

state amplitude smoothly during a specified period of time. This reduces inaccuracies in the

numerical extraction algorithm.

After finding the field values at different points inside the structure (the “microscopic” fields),

we find the average (“macroscopic”) electric field ~Eav(ω, kz) and the electric displacement

~Dav(ω, kz) as follows:

~Eav(ω, kz) =
1

TL

L∫
0

T∫
0

~E(t, z)eiωte−ikzz dt dz,

ε−1
0
~Dav(ω, kz) =

1

TL

L∫
0

T∫
0

εr(z) ~E(t, z)eiωte−ikzz dt dz, (2.22)

where in these Fourier transforms T � 2π
ω (ideally, T →∞). The final result for the effective

permittivity components εxx and εzz can be obtained by using the following expressions:

εxx(ω, kz) =
ε−1

0 Dx,av(ω, kz)

Ex,av(ω, kz)

∣∣∣∣
~J0=J0,x~x0

, (2.23)

εzz(ω, kz) =
ε−1

0 Dz,av(ω, kz)

Ez,av(ω, kz)

∣∣∣∣
~J0=J0,z~z0

. (2.24)

When extracting εxx, the source current is directed along the x-axis (the other two compo-

nents are zeros), and when extracting εzz, the source current is set up along the z-axis.

2.2.1 Analytical Calculations

The analytical calculations are done by solving the non-uniform Maxwell’s equations (Eq. 2.17).

In these equations we replace ∂
∂t 7→ −iω and solve the resulting system in each case with the

appropriate embedded source. The time harmonic dependency e−iωt is omitted in this section

for the sake of brevity.
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2.2.1.1 Calculation of εzz

In order to derive εzz, the source current is set up along the z-axis: Jz(z) = J0,ze
ikzz. Since

there are no variations of current along x and y axes ~H = 0 and Maxwell’s equations are

reduced to Eq. (2.20). By solving this equation, we obtain the following relations for the

electric field and electric displacement:

Ez = − iJ0,z

ωεzz(z)
eikzz, (2.25)

Dz = − iJ0,z

ω
eikzz. (2.26)

The averaged electric field and displacement can be calculated using Eq. (2.22). Since the

distribution of εr among the fractal layers depends on the parity of n, the averaged electric

field also depends on the same condition:

If n is even: Ez,av = − iJ0,z

ω

(
1 + (2r)n+1

ε1(1 + 2r)
+

2r(1− (2r)n)

ε2(1 + 2r)

)
,

If n is odd: Ez,av = − iJ0,z

ω

(
1− (2rn+1)

ε1(1 + 2r)
+

2r(1 + (2r)n)

ε2(1 + 2r)

)
, (2.27)

Dz,v = − iJ0,z

ω
. (2.28)

The epsilon in this case now can be obtained using Eq. (2.24):

If n is even: εzz =

(
1 + (2r)n+1

ε1(1 + 2r)
+

2r(1− (2r)n)

ε2(1 + 2r)

)−1

,

If n is odd: εzz =

(
1− (2rn+1)

ε1(1 + 2r)
+

2r(1 + (2r)n)

ε2(1 + 2r)

)−1

. (2.29)

2.2.1.2 Calculation of εxx

In the case of εxx, we solve the system of two differential equations, namely, Eqs. (2.18)

and (2.19), written for a single dielectric layer with uniform permittivity εr,xx and an em-

bedded current source. The layer is located at z1 < z < z2. The embedded source current

is along x-axis: Jx(z) = J0,xe
ikzz. The differential equations are solved by the method of
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variation of parameters, with which we find the following general solutions for Ex and Hy:

Ex(z) = C1 cos(kz) + C2 sin(kz)

− ik0η0

k

(
sin(kz)

∫
cos(kz)Jx(z)dz − cos(kz)

∫
sin(kz)Jx(z)dz

)
, (2.30)

Hy(z) =
i

k0η0
(C1k sin(kz)− C2k cos(kz))

−
(

cos(kz)

∫
cos(kz)Jx(z)dz + sin(kz)

∫
sin(kz)Jx(z)dz

)
, (2.31)

where k = k0
√
εr,xx, k0 = ω

√
ε0µ0, and η0 =

√
µ0
ε0

.

To find the C1 and C2 parameters in these equations, we express them through the electric

and magnetic fields at the point z = z2 (one of layer’s boundaries) with known electric and

magnetic field values. From here, the values for C1 and C2 are:

C1 = − iη0k0

k
sin(kz2)Hy(z2) + cos(kz2)Ex(z2)− iη0k0

k

∫
Jx(z) sin(kz)dz

∣∣∣
z=z2

,

C2 =
iη0k0

k
cos(kz2)Hy(z2) + sin(kz2)Ex(z2) +

iη0k0

k

∫
Jx(z) cos(kz)dz

∣∣∣
z=z2

. (2.32)

By substituting Eq. (2.32) into Eq. (2.31) and representing the result in a matrix form, we

obtain the following matrix relation:

Ex(z)

Hy(z)

 =

 cos(k(z2 − z)) −iη sin(k(z2 − z))

− i
η

sin(k(z2 − z)) cos(k(z2 − z))

 ·
Ex(z2)

Hy(z2)

 (2.33)

+

 ηJ0,x
k2z−k2

(
ike−ikzz + e−ikzz2

(
kz sin(k(z2 − z))− ik cos(k(z2 − z))

))
− J0,x
k2z−k2

(
ikze

−ikzz + e−ikzz2
(
k sin(k(z2 − z))− ikz cos(k(z2 − z))

))
 ,

where η = η0√
εr,xx

.

Using the above formula, and the known fields values at the edge z = L
2 of the structure,

fields values at any −L
2 ≤ z <

L
2 are:
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Ex
Hy


z=zm,n

=
m−1∏
i=1

Am−i,n ·

Ex
Hy


z=L

2

(2.34)

+

m−2∑
k=1

k∏
i=1

Am−i,nJm−k−1,n + Jm−1,n m ∈ [1, 2n+1],

where

zm,n =



zm
2

+1,n−1 + rn−1(1− r)L if m = 4p− 2, p ∈ [1, 2n−2],

zm+1
4
,n−1 + rn+1L if m = 4p− 1, p ∈ [1, 2n−2],

zm
2
,n−1 if m = 4p, p ∈ [1, 2n−2],

zm+1
2
,n−1 if m = 4p+ 1, p ∈ [1, 2n−2 − 1],

(2.35)

Al,n =

 cos k0
√
εq,n(zl,n − zl+1,n) − iη0√

εq,n
sin k0

√
εq,n(zl,n − zl+1,n)

− i
√
εq,n
η0

sin k0
√
εq,n(zl,n − zl+1,n) cos k0

√
εq,n(zl,n − zl+1,n)

 , (2.36)

Jl,n =
J0,x

k2
z − k2

0εq,n

 η0√
εq,n

(
ik0
√
εq,ne

−ikzzl+1,n+

−
(
ikze

ikzzl+1,n+
(2.37)

e−ikzzl,n
(
kz sin k0

√
εq,n(zl,n − zl+1,n)− ik0

√
εq,n cos k0

√
εq,n(zl,n − zl+1,n)

))
e−ikzzl,n

(
k0
√
εq,n sin k0

√
εq,n(zl,n − zl+1,n)− ikz cos k0

√
εq,n(zl,n − zl+1,n)

))
 ,

where z is the coordinate of one of the boundaries of the fractal layers, m is the number of

the boundary counting from the right edge (z = L
2 ) to the left, n is the order of the fractal,

l ∈ [1,m − 1]. The quantity εq,n is the relative permittivity of the layer number q in the

fractal of order n which can be determined using following conditions:

ε2n,n = ε1,

ε22s1 (2s2+1),n =

 ε1 if n : even s1 ∈ [0, bn−1
2 c]

ε2 if n : odd s2 ∈ [0, 2n−2s1+1 − 1]
,

ε22s3+1(2s4+1),n =

 ε1 if n : odd s3 ∈ [0, dn−1
2 e],

ε2 if n : even s4 ∈ [0, 2n−2s3−2 − 1],
,

ε2n+1−s5,n = εs5,n, s5 ∈ [1, 2n−1]. (2.38)

The total number of layers in the fractal of order n is 2n+1 − 1.
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By applying the periodic boundary condition to the final result, we obtain the analytical

expressions for Ex and Hy inside the whole fractal structure.

Ex
Hy


z=L

2

=

e−ikzLI − 2n+1−1∏
i=1

A2n+1−i,n

−1

· (2.39)

2n+1−2∑
k=1

k∏
i=1

A2n+1−i,nJ2n+1−k−1,n + J2n+1−1,n

 ,

where I is the unity matrix. Now this expression can be substituted into Eq. (2.23) and the

effective epsilon is found from this formula and by that the homogenization problem is solved

for this structure.

2.2.1.3 Extra recursive formulas related to the structure

If z is the coordinate of the boundaries of the fractal layers, m is the number of the boundary

counting from the right to left, and n is the order of the fractal:

zm,n+1 =



zm
2

+1,n + rn(1− r)L, m = 4p− 2, and p ∈ [1, 2n−1],

zm+1
4
,n + rn+1L, m = 4p− 1, and p ∈ [1, 2n−1],

zm
2
,n, m = 4p, and p ∈ [1, 2n−1],

zm+1
2
,n, m = 4p+ 1, and p ∈ [1, 2n−1 − 1].

(2.40)

2.2.2 Numerical Results

We use FDTD to solve the Maxwell’s equations with a source numerically in the case of εxx.

In this work, MEEP has been used as an FDTD solver software to study the structure. In

the FDTD algorithm we employed, the structure is excited by an external source in the form

of a superposition of many plane waves with different values of kz:

Jx,ext(t, z) = e−iωteikz0z
N∑
n=0

ein∆kzz = e−iωteikz0z
1− ei(N+1)∆kzz

1− ei∆kzz
. (2.41)
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Thus, in this expression, the kz values start from kz = kz0 and continue increasing up to

kz = kz0 + N∆kz with the step ∆kz. This way in a single run of the FDTD algorithm we

obtain a set of values of εxx(ω, kz) at different kz, as it will be explained later.

In order to be able to have a small value of the step ∆kz and at the same time keep the

source variation compatible with the Bloch-periodic BCs at the edges of the structure, the

unit cell in the FDTD simulation is formed by combining several fractal cells into a bigger

supercell. If we select a smaller value for ∆kz, we need to combine more cells in order to have

the desired accuracy in kz. Namely, the number of fractal cells within the supercell can be

calculated as

Ncells =
2π

∆kzL
. (2.42)

We use L∆kz
2π = 1

51 to run for fifty one wavenumber, and thus we combine Ncells = 51 fractal

cells to form one supercell. The Bloch periodic BCs are applied at the edges of this supercell.

In the simulations we only have Ex and Hy components of the fields. We simulate the

structure over a certain period of time and then sample the field values along the structure.

Because the source is off at t < 0 and thus is not exactly a continuous wave, the sampling of

the field should start only after a certain amount of simulation time passed which is defined

in the program as delay start time.

By calculating the mean square variation (variance) of the field complex amplitude values

sampled at successive moments of simulation time (Eq. (2.46)), we determine the moment

when the simulation reaches the steady state. During the simulation, the variance of the

samples is calculated iteratively.

XN =
1

Ñ

N∑
n=1

αN−nXn; (2.43)

σ2 =
1

Ñ

N∑
n=1

αN−n(Xn −XN )2, (2.44)

where Ñ = αN−1 + ... + α0 =
1− αN

1− α
. The above equations can be written in an iterative

form:

XN+1 =
α(1− αN )

1− αN+1
XN +

1− α
1− αN+1

XN+1, (2.45)

σ2
N+1 = X2

N+1 −X
2
N+1. (2.46)
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The Courant number5 (C =
c∆t

∆z
) is equal to Meep default value and is 0.5 (which is lower

than the maximum number (Cmax,explicit = 1) we can choose for one-dimensional cases).

After the simulation reaches the steady state we calculate the Fourier-transforms (Eq.2.22)

at each kz value and obtain the averaged fields. Next the effective permittivity is calculated

as explained in Sec. 2.2. The dependence of the effective permittivity on frequency in a wide

range of k0L parameter, for three selected values of the parameter kzL
2π is shown in Fig. 2.10.

Figure 2.10: Real part and imaginary part of the extracted permittivity εxx as functions
of k0L for three different values of kzL

2π indicated in the plot.

The simulation has been also performed for more values of the normalized wavenumber kzL
2π

ranging from zero to one, and the obtained results are presented in Fig. 2.11. From these

results we may conclude that the effective permittivity of the structure depends on both

5This number is determined by Courant–Friedrichs–Lewy condition which is a necessary condition for
convergence in solving partial differential equations in finite differences methods.
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frequency and the wavenumber in a resonant manner. Moreover, for a fixed wavenumber

value a few resonances can be identified from Fig. 2.11. The resonances observed at kzL
2π = 0.5

correspond to the band gaps: in these regions the real part of the effective permittivity is

negative which forbids propagation.

The curve with kzL
2π = 0 at small values of the normalized frequency k0L

2π corresponds to

the quasistatic case discussed in Sec. 2.1 [63]. Using Eq. 2.12 in which the quasistatic limit

for the effective permittivity εxx was found and for the parameters considered in this work

(ε1 = 4 and ε2 = 1), we have εxx ≈ 2.58. This result is in good agreement with the numerical

simulations.

Figure 2.11: Real part and imaginary part of the extracted permittivity εxx as functions
of the normalized frequency k0L

2π and the normalized wavenumber kzL
2π .

The resonance regions are more clearly presented in contour plots of εxx which are shown in

Fig. 2.12. The dependence of the resonant frequency on kz is better seen in this figure.

The simulation control file for this part is presented in App.C.
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Figure 2.12: Contour plot of real part and imaginary part of the extracted permittivity
εxx as functions of the normalized frequency k0L

2π and the normalized wavenumber kzL
2π .

2.3 Conclusion

In this chapter a new 1D MM which is based on a fractal set has been presented. In the first

section, a homogenization method that uses self-similarity property of the structure has been

developed. We have derived the effective material parameters of this fractal MM structure and

verified them numerically. The quasi-static effective permittivity obtained with this method

is expressed as a weighted average of permittivity of dielectric layers in the fractal. This
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result agrees well with the known quasi-static solutions for layered media, which confirms the

validity of the proposed homogenization method.

In the second section, a layered non-magnetic fractal MM has been considered. The effective

material parameter dyadics have been derived (in this case we just have effective permittivity

dyadic), both analytically and numerically.

Analytical expressions are obtained as the result of solving Maxwell’s equations in each case.

In order to do that, a number of recursive formulas are derived for the parameters of the

fractal structure such as the coordinates of the boundaries for each layer in the structure, the

transfer matrices for each layer and the total transfer matrix, including the terms due to the

presence of the embedded external source, as it appears in the final result.

For the numerical calculations, MEEP was used as an FDTD solver and the obtained numer-

ical results are presented. The obtained numerical results are in good agreement with the

derived analytical formulas.



Chapter 3

2D MM based on Deterministic

Fractal:

Metasurface based on Hilbert Curve

In this chapter, we develop a homogenization approach for a quasi-2D fractal-based MM

(fractal-based metasurface 1). As it was mentioned in the introduction, in order to homogenize

a metasurface, one has to introduce effective electric and magnetic surface currents on the

metasurface and find the relations between them and the applied electric and magnetic fields.

The structure that we consider in this chapter is a quasi-periodic array of patches based on

the Hilbert curve. The array can be placed above a metallic ground plane, be printed on a

dielectric substrate, or it can be considered free-standing in air. In this study, we develop

a theoretical model for the effective surface impedance of the structure by using the self-

similarity of the fractal and the electromagnetic Babinet principle. We numerically simulate

the reflection of the plane waves incident on such a metasurface (with the substrate plane

included). The properties of the Hilbert fractal metasurface will be extracted from the data

obtained in these simulations. Our aim is to find the effective parameters and construct an

equivalent model for the fractal patches.

12D metamaterials are widely known as metasurfaces. Beside being a dimension reduction of MMs, meta-
surface also can be seen as a functional extensions of frequency selective surfaces [74]. Metasurfaces are lighter
and less lossy (due to the volume reduction) as compared to MMs. And in comparison to FFSs, they are more
flexible and have richer functionalities.

33
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3.1 Introduction

Space-filling, self-similar curves were first introduced by Giuseppe Peano in 1890 [75]. The

Peano curve is a surjective and continuous functional mapping of a unit interval onto the unit

square. Due to this fact, the space-filling curves are mostly referred to as the Peano curves.

However, the Peano curve is just one example from numerous other fractals with similar

behaviours. David Hilbert among many others refined the curve in 1891 [60] and introduced

a simpler algorithm to build a space-filling curve, known as the Hilbert curve.

Following the technological advancement in the last century, new requirements for the design

of telecommunication devices were introduced. The appearance of small-sized devices brought

more attention to the advantages that space-filling curves could offer. Since then, there

have been many studies that involve different aspects of the use of fractal structures, more

specifically, the space-filling and self-repeating curves.

Application of Hilbert curve-based fractal MMs in antenna design results in reconfigurable

and/or wideband properties, and helps in miniaturization. Some representative studies,

among numerous others, can be found in Refs. [76–81]. Such fractal structures have been

used in microwave filter design for size reduction and improving the quality factor [82, 83].

The peculiar properties of these fractal curves have been also used in the design of optical

devices [84].

Following the successful application of the space-filling curves-based structures in antennas,

there have been studies on the MMs that utilize the Hilbert curve in the electromagnetics

and acoustics [85–89].

However, in regard to the electromagnetics of the fractal MMs based on the Hilbert curve,

most of the known results are limited just to numerical simulations. In contrast, in this

chapter we develop a semi-analytical model for the Hilbert-based metasurface.

3.2 Geometry of the Structure

The recursive procedure of the Hilbert curve construction (Fiq. 3.1) involves a “path” follow-

ing these conditions [90]:



Chapter 3. Metasurface based on Hilbert Curve 35

Figure 3.1: The first six orders of Hilbert curve.

• If in order n, we divide the square into 2n+1 equal size squares, the path should go

through each square once,

• the path’s starting point is through a definite neighbouring edge 2 of one of the corners,

• the path’s final point is through the opposite edge of the first one and in the neighbour-

hood of the other corner (not diagonally-opposite),

• if you quarter an existing square, the rules should still be applicable.

The Hausdorff dimension of the Hilbert curve is 2 due to the space-filling property, while

the Euclidean length of the path with the rules defined above is 2n − 1
2n . Although the

length grows exponentially with the order n, the curve is always limited by the borders of

the covering square.

In order to apply these rules in practice, instead of filling a fixed area with the ideal Hilbert

curve of zero width, we fill the entire 2D plane with an approximation of the Hilbert curve

formed by a finite-width metal strip, by following this rule: while following the Hilbert curve

and advancing forward by a small fixed step dl, we attach a square patch of metallization

with the dimensions dl× dl to the path, so that one of the sides of the square coincides with

the path and the square’s middle is always at the right-hand side with respect to the direction

of path traversal. The first five iterations of this design are shown in Fig. 3.2.

2The edge of the original square.
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Figure 3.2: The first five iterations of Hilbert structure.

The resulting structure has recursive properties. If you divide the n-th order structure into

four smaller equal size squares, the top squares are simply the (n−1)-th order and the bottom

ones are the complementary structures of the n − 1 order, where by the complementary

structure we mean the one that can be obtained by replacing the metallized areas by the

empty areas and vice versa. The smallest feature of this structure has the dimension of

dln = a
2n−1 , where a is the size of the enclosing square (same as the unit cell is some designs).

The number of filled squares is 2n−1(2n − 1) where n is the order of the curve. The relative

unit cell area coverage for the structure with order n is 2n−1(2n−1)
22n

. Therefore, when n tends

to infinity, the area coverage tends to 0.5. Note that when dl is fixed and is the same for all

orders, each fractal order iteration increases the area of the enclosing square by a factor of

22, so that the structure fills the 2D plane area rather quickly and essentially forms a fractal

metasurface. In the following sections, we study the electromagnetic properties of such a

metasurface.

3.3 Reflection Simulations

In order to extract the surface impedance data for the Hilbert curve-based metasurface,

we first simulate the structure numerically within the CST Microwave Studio. In order to

keep the overall size of the structure less than λ
2 , which is necessary to be able to perform

the simulations effectively in a wide frequency range in a single-mode waveguide, 3 in this

example, we investigate just the first five iterations of the structure. In each order n, we

slightly modify the original Hilbert curve-based structure of order n by adding a metallized

strip of width dln
2 at the bottom of the structure. This is done in order to account for the

electrical connection between the subareas of the order n − 1 that compose the n-th order

structure. This change to the fractal structure is shown in Fig. 3.3.

3Such PEC-PMC waveguide, due to reflections in its walls, effectively models a periodic array.
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Figure 3.3: The first five iterations of fractal metasurface in x-y plane as fitting the same
unit cell area.

Figure 3.4: Port positions (red squares) and boundary conditions for the simulation of the
5th order fractal metasurface (the perfect electric conductor (PEC) walls are labelled with
the green ground symbols and the perfect magnetic conductor (PMC) walls are labelled with

the blue symbols).

The fractal structure on a dielectric substrate with the positions of the exciting ports and

the boundary condition settings as modelled in CST are shown in Fig. 3.4.

The substrate in this example is Rogers RO3006 with the relative permittivity εr = 6.15 and

the thickness h = 1.28 mm. The metallization thickness is t = 0.017 mm. The sizes of the

substrate square in each order are as follows: 0.23 mm, 0.46 mm, 0.94 mm, 1.88 mm, 3.75 mm.

The numerically simulated S-parameters (here, for the surface impedance extraction we just

need the reflection from one side of the structure, for instance, S22, for each order of the

fractal) for each order are shown in Fig. 3.5.

It should be noted that for the normally incident plane wave with vertical polarization there

is no cross-talk to the horizontal polarization, due to the symmetry of the structure. Then,

from the reciprocity it follows also that there is no cross-polarized vertical component when

the incident wave is horizontally polarized.
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Figure 3.5: Top: the real part of S22, Bottom: the imaginary part of S22

3.4 Extraction of the Effective Impedance of the Metasurface

Knowing the obtained S-matrix parameters (we just need S22) for the fractal metasurface and

using the following equations, we extract the surface impedance of the fractal metasurface Zs

(in what follows, the time dependence is exp(jωt); where j =
√
−1):

Zs =
η0Zl
η0 − Zl

, (3.1)

where η0 ≈ 377 Ohm is the vacuum impedance and Zl is expressed as

Zl = η
Zin − jη tan(kh)

η − jZin tan(kh)
, (3.2)

where η = η0√
εr

, εr is the substrate relative permittivity, h is the substrate thickness, k =

ω
c

√
εr, and

Zin = η0
1 + S22

1− S22
. (3.3)
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These equations are obtained by employing the transmission line analogy for the normal plane

wave incidence on the structure. In this analogy, Zin is the input impedance of the structure,

as seen from the side of the dielectric substrate and Zl is the total load impedance at the

other side of the substrate, which is a parallel connection of Zs and the free space impedance

η0.

After extracting the numerical data for the complex surface impedance, Zs = Rs + jXs, at

a large number of frequency points (about 103) in the frequency interval of our interest, we

apply the cubic spline interpolation for the real and imaginary parts of Zs as functions of

the frequency. This information is used next to construct an equivalent circuit model for the

fractal metasurface.

3.5 Equivalent Circuit Model for the Fractal Metasurface

The Babinet’s principle was formulated in 1800s by Jacques Babinet for optics and it describes

a relation between the diffraction pattern of an opaque body with a hole and of the comple-

mentary body of the same size [91]. Although originally used in Fourier optics, the Babinet’s

principle can be modified in order to describe the Maxwellian electromagnetic phenomena as

well.

In its application to the antenna design the Babinet-Booker’s [92] principle states that

ZsZ
comp
s =

η2

4
, (3.4)

where Zs and Zcomp
s are the surface impedances of two mutually complementary structures

rotated by 90 degrees with respect to each other (e.g., a metallic patch with arbitrary holes

and its compliment with the metallized areas replaced by empty areas and vice-versa and

rotated) and η is the intrinsic impedance of the surrounding medium.

Some extensions of this principle are known. In general, there are two classes of problems

when it comes to the Babinet’s principle application in electromagnetics. Either we are

dealing with an array of metallic patches (or similar structures) in a uniform background

medium, or such an array lays on the boundary between two different media (e.g., a dielectric

substrate and air). In the case of uniform medium, the Booker’s impedance relation can be

derived by requiring the sum of the transmission matrices of the complementary structures
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Figure 3.6: The relation between the n-th order metasurface and its parts of the order
n− 1 (the 4th order is shown here).

be equal to the unity matrix. In the case of non-uniform medium the fields need to be

decomposed into non-coupling parts, while keeping in mind that the product of the effective

surface inductance of one structure to the effective surface capacitance of the complementary

structure is constant based on Babinet’s principle [93].

As it was mentioned before, the Hilbert curve-based structure with order n can be decomposed

into four patches of the order n− 1 and their complements (Fig. 3.6).

From the Babinet-Booker’s principle we may write first for the inductive and capacitive

complementary screens in air

if Zs =
1

jωCs
, then Zcomp

s = jωLb, (3.5)

and

if Zs = jωLs, then Zcomp
s =

1

jωCb
, (3.6)

where Lb =
η20Cs

4 and Cb = 4Ls

η20
are the quantities transformed in accordance with the Booker’s

impedance formula. In order to take into account the dielectric permittivity of the substrate

in the quasi-static approximation, we have to multiply the free-space capacitance Cs by

the factor εr+1
2 , which is the average permittivity of the two materials on both sides of the

metasurface. The inductance remains unmodified as we assume that the relative permeability

of the substrate µr = 1.
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Figure 3.7: The equivalent circuit model for the effective surface impedance of the first
(left) and n-th order (right) fractal metasurface.

Therefore, for a metasurface formed by a combination of the capacitive, Ca,i, and inductive,

La,i, patches, we can derive the following relations for the corresponding parameters of the

complementary structure, Cb,i and Lb,i,

Cb,i =
4La,i
η2

eff

, (3.7)

Lb,i =
η2

effCa,i
4

, (3.8)

where ηeff = η0

√
2

εr+1 .

Thus, we may construct the equivalent model for the surface impedance of the Hilbert curve-

based metasurface as follows

Zs,1 = Ra,1 + jLa,1ω +
1

Ga,1 + jωCa,1
, (3.9)

Zs,n =
1

Ga,n + jωCa,n +
2

Zs,n−1 + Zcomp
s,n−1 +Ra,n + jωLa,n

. (3.10)

In this model, the effective impedance of the n-th order metasurface, Zs,n, is expressed

through the impedances of the (n−1)-th order of the same structure, Zs,n−1, the impedances

of their complements, Zcomp
s,n−1, and the free parameters Ca,n, La,n, Ga,n ≡ ωAn, and Ra,n,

which account for the mutual coupling between the (n − 1)-th order parts of the n-th order

structure and the excess loss due to the distributed fields (Fig. 3.7). The motivation for this

circuit model becomes apparent from Fig. 3.6.



Chapter 3. Metasurface based on Hilbert Curve 42

Im
(Z

) 
(O

hm
)

Freq (GHz)

Order:1

Equivalent model
Simulation

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 5  10  15  20  25  30  35  40

R
e(

Z)
 (

O
hm

)

Freq (GHz)

Order:1

Equivalent model
Simulation

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 5  10  15  20  25  30  35  40

Figure 3.8: Imaginary and real part of the impedance Zs obtained from the equivalent
model vs. simulation results for the 1st order.

In order to find the values of the free parameters, we use the curve fitting approach with the

following figure of merit (FOM) and the optimization algorithm LBFGS 4:

FOM(n, fmin, fmax, N) =
1

N

N−1∑
k=0

[
(Re(Zs,n(fk))−Rs,n(fk))

2 + (Im(Zs,n(fk))−Xs,n(fk))
2
]
,

(3.11)

where fk = fmin + k
N−1(fmax− fmin) and fmin and fmax define the frequency range in which

the optimization algorithm is applied, n is the order of the fractal, and N is number of

frequency samples. In this formula, Zs,n(fk) is the value given by the circuit model at the

frequency f = fk and Rs,n(fk), Xs,k(fk) are the interpolated values obtained from the CST

simulations.

Figs. 3.8- 3.12 show the imaginary and real parts of the effective surface impedance obtained

from the equivalent model in comparison to the simulation results. A very good agreement is

obtained for the orders from 1 to 4 (the disagreements in the real parts are below 1 Ohm, while

the absolute impedance values are on the order of hundreds of Ohm). The disagreement in

the 5th order at frequencies higher than 20 GHz is due to the fact that the 5th order structure

approaches the size of λ
4 at around 20 GHz, which is already too large for the quasi-static

homogenization assumptions that we use.

Fig. 3.13 shows the obtained values for the equivalent model parameters for each order of the

fractal metasurface. From this figure represented in double log scale one can notice the clear

trend in the change of the parameters with increasing of n: All parameters (except the excess

4Limited-memory BFGS (LBFGS) is an optimization algorithm based on quasi-Newton methods that ap-
proximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount of computer
memory. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is an iterative method for solving un-
constrained nonlinear optimization problems.
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Figure 3.9: Imaginary and real part of the impedance Zs obtained from the equivalent
model vs. simulation results for the 2nd order.
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Figure 3.10: Imaginary and real part of the impedance Zs obtained from the equivalent
model vs. simulation results for the 3rd order.
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Figure 3.11: Imaginary and real part of the impedance Zs obtained from the equivalent
model vs. simulation results for the 4th order.
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Figure 3.12: Imaginary and real part of the impedance Zs obtained from the equivalent
model vs. simulation results for the 5th order.
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Figure 3.13: Obtained values for the equivalent model for each order of the fractal

metal loss parameter Ra,n which decreases nonlinearly when n increases), vary approximately

proportional to n2, which is in perfect agreement with the fact that the Hilbert curve is a

space-filling curve with the Hausdorff’s dimension equal to 2.

3.6 Conclusion

In this chapter, we addressed the homogenization problem of the fractal Hilbert-curve based

metasurface. By taking into account the self-similarity properties of the structure, we could

obtain an equivalent model based on an extension of Babinet-Booker’s principle for electro-

magnetics. The results of this model show very good agreement with the simulation results.



Chapter 4

3D MM based on Deterministic

Geometrical Fractal:

Wire medium based on Sierpinski Carpet

In this chapter we implement the idea of fractal geometry in a three-dimensional MM formed

by an array of parallel metallic cylinders – the wire medium (WM) [62]. This MM has a

stop-band at frequencies below an effective plasma frequency which is determined by the

radius of the cylinders and the structural period. In contrast to the standard periodic WM,

now we distribute the positions of the cylinders and their radii over the cross-section of the

structure by following the Sierpinski carpet fractal pattern. It is shown that a WM with a

fractal structure can perform similarly to the regular WM while opening new possibilities to

make the structure lighter and using less material. The proposed structure also offers better

control over the selection of the frequency range.

4.1 Theory

A wire medium (WM) is a metamaterial characterized by negative effective permittivity below

a certain threshold frequency, also known as the plasma frequency. A WM formed by a dense

array of parallel metallic wires is a very common component in present day metamaterials.

For frequencies below the plasma frequency, the propagation of the electromagnetic waves

whose electric field vector is parallel to the wires, is suppressed. Therefore, such waves are

45
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totally reflected from a WM slab. If the period of the wires (a) is much smaller than the

wavelength (λ), the WM effectively behaves as a continuous material [51].

For the waves propagating perpendicularly to the wires, the effective permittivity of the WM

is found in Ref. [94] as:

ε = ε0

(
1−

ω2
p

ω2

)
, (4.1)

where ωp, the plasma frequency, is given by

ωp =
c

a

√√√√√ 2π

ln

(
a2

4r(a− r)

) , (4.2)

and r is the wire radius.

Most of the MMs designed for microwave applications are regular periodic structures. Al-

though periodicity can be sometimes a necessary property (like, for example, in the photonic

band gap (PBG) MMs), a dense WM does not really need to be periodic to provide the

same plasma-like effective permittivity of Eq. 4.1. Moreover, periodicity in MMs designed

for suppression of the propagation may open new bands in which waves can propagate. In

this work we consider WM-like structures with periods much smaller than the wavelength, in

which the stop band is determined not because of the periodicity, but due to the fact that,

for ω < ωp, the effective permittivity of the WM is negative.

This work is centred on the planar fractal structure of Fig. 4.1, which is known as the

Sierpinski carpet. It is formed by taking a unit square, dividing it into 9 equal smaller sub-

squares and then filling in the central square (the black square in the middle). Then, we

repeat the procedure recursively for each sub-square, in an iterative form.

Figure 4.1: Geometry of the Sierpinski carpet fractal
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It can be shown that the remaining unfilled geometrical area of the fractal structure can be

calculated from Eq. 4.3

An =

(
8

9

)n
(4.3)

where n is the fractal iteration order. Because this remaining area (An) tends to zero when

n→∞, the structure will be successively more filled as the fractal iteration is increased. The

Hausdorff dimension of the Sierpinski carpet is dim =
ln 8

ln 3
= 1.8928, which is smaller than 2.

4.2 Design

In this work, we design a WM-like MM of cylindrical wires, based on the Sierpinski carpet

fractal. In order to represent this fractal in the electromagnetic simulation software, we used

the IFS method as described by the following set of equations:

f1(x) =

1
3 0

0 1
3

x, f2(x) =

1
3 0

0 1
3

x+

0

1
3

 ,

f3(x) =

1
3 0

0 1
3

x+

0

2
3

 , f4(x) =

1
3 0

0 1
3

x+

1
3

0

 ,

f5(x) =

1
3 0

0 1
3

x+

1
3

2
3

 , f6(x) =

1
3 0

0 1
3

x+

2
3

0

 ,

f7(x) =

1
3 0

0 1
3

x+

2
3

1
3

 , f8(x) =

1
3 0

0 1
3

x+

2
3

2
3

 . (4.4)

Here, x is the 2-dimensional vector representing a point within a unit square. Thus, the

Sierpinski carpet has 8 similar parts, corresponding to each of the above equations in each

iteration [95].

We distributed the wire position and the radius as is shown in Fig. 4.2. In this figure, which

shows the cross-section orthogonal to the wires, the central wire has the radius r = 0.15a,

where a is the dimension of the cell. The cells are periodically repeated so that a crystal of

infinite parallel cylinders is formed. In order to simulate this structure, we used MPB (MIT

Photonic Band) and Meep.
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Figure 4.2: WM structures based on Sierpinski Carpet distribution. a) the 1st order
structure (the traditional WM): the unit cell cross-section in xy-plane, b) the same as a) but
for the 2nd order structure, c) the same as a) but now for the 3rd order structure, d) the
same as a) for the 4th order structure. The drawings on the left are the cross-sections in

yz-plane.

We simulated WM-like structures comprised by either conducting or dielectric wires. On

one hand, MPB simulator was used to calculate the band structure of the dielectric fractal

array since this simulator only allows for dispersionless dielectrics with positive ε. On the

other hand, Meep was used to calculate the band structure for the metallic wire medium

characterized by a Drude-type negative dispersive permittivity. In both simulators, we used

the IFS approach to build the fractal structure.

The relative permittivity of the dielectric wires has been selected to be high enough so that,

for the waves polarized orthogonally to the wires (the TM waves in which the electric field

is in the plane of Fig. 4.2), the properties of the dielectric structure are similar to the ones

of the metallic structure. For the waves with the electric field polarized along the wires (the

TE waves), the dielectric and the metallic structure behave differently. When possible, using

a frequency-domain tool such as MPB for band structure calculations is preferable, because

MPB is known to be more reliable than Meep (which is a time-domain solver) in this regard.

For instance, in MPB, the modal frequencies are uniquely sorted by bands, while in Meep, in

some situations, the closely located bands may mix up.
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4.3 Simulation Results

The simulated band diagrams for the first three Sierpinski-based fractal geometries shown

in Fig. 4.3 (panels a, b, c) demonstrate similar frequency response (especially, in the case

of the TM polarization). These results are shown in Fig. 4.3 for the two lowest bands of

transmission in the structures mentioned above, both for TE and TM polarized waves.

The TE band curves shown in this figure are for the structures with metallic wires. On the

other hand, it was found that simulated TM curves for the WM structures with metallic

wires and with the dielectric ones practically coincided. Fig. 4.3 depicts only the TM curves

obtained with MPB for the structures with dielectric wires.

Figure 4.3: Band structure of the fractal WM MM. The top plot shows the diagrams
for the first TE and TM bands in the WM fractal structures of the 1st, 2nd and 3rd order
[Fig. 4.2 (a,b,c)]. The bottom plot depicts the diagrams for the second TE and TM bands
for the same structures. The points Γ, X, and M on the horizontal axis represent the values

(0,0),(
π

a
,0),(

π

a
,
π

a
) of the wave vector k in the xy-plane, respectively. The intermediate values

for k are obtained by linear interpolation between these points.

We see that the TE waves do not propagate at frequencies below a certain cut-off frequency.

Moreover, the obtained results demonstrate that, by replacing the regular WM structure by

the fractal one, we can significantly increase the cut-off frequency (the plasma frequency) of
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the structure for the TE polarized waves by up to 8 times, without affecting propagation in

the lowest TM bands.

Fig. 4.4 shows the relation between the plasma frequency and the radius of the wires for the

fractal structures of the 1st, 2nd and 3rd order [Fig. 4.2 (a,b,c)]. It is seen that the plasma

frequency increases simultaneously with the radius. The upper limit for the radius of the

wires can be calculated for each structure, in order to avoid the contact between the wires.

For the 1st order, the maximum is rmax =
a

2
. This value gets smaller as the order increases.

For the 2nd and 3rd order the maximum acceptable radius values are
a

4
and

a

5
, respectively.

Figure 4.4: The cut-off (plasma) frequency as a function of wire radius for the first TE band
in the WM fractal structures of the 1st, 2nd and 3rd order [Fig. 4.2 (a,b,c)]. Blue crosses:
1st order fractal structure. Green circles: 2nd order fractal structure. Red triangles: 3rd
order fractal structure. The solid line shows the theoretical estimation by the approximate

Eq. 4.2 for the first-order structure, where
a

λp
=
ωpa

2πc
.

It can be concluded from the geometry of this structure that the weight of the structure is

proportional to:

Wn = πr2l
n−1∑
k=0

(
8

9

)k
(4.5)

where l is the height of the cylinders, and n is again the iteration order of the Sierpinski

carpet fractal structure. From this equation we can conclude that the mentioned change in

the geometry of the structure is associated with an increase in the weight of the structure.

However, while the plasma frequency increases by about 8 times, the structural weight in-

creases only by about 2.7 times, as compared to the original structure (Fig. 4.2). On the

other hand, it can be estimated from Eq. 4.2 that to increase the plasma frequency in the
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same proportion, one would have to increase the wire radius by about 3 times, which would

result in a greater increase of the structural weight.

4.4 Conclusion

In this chapter we have studied a wire medium type MM with the wires distributed in

accordance with the Sierpinski carpet fractal. We have simulated the band diagrams of this

fractal structure for TE and TM polarized waves and have shown that the Sierpinski wire

medium structure in certain cases outperforms traditional periodic wire media.
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Chapter 5

Fractal Coding Metamaterials

We propose the concept of fractal coding metamaterials, which can be used to design reflective

metasurfaces with self-similar pseudo-random phase responses based on the coding strategy

utilizing fractal interpolation functions (FIF). We consider the class of fractals whose FIF is

formed by a contraction mapping on the y-coordinate and an arbitrary linear function of the x-

coordinate. This formulation is used in deriving the theoretical model and in the experimental

realization. An analytical relation between the reflection phase distribution in the form of

the above-mentioned FIF and the far-field radiation pattern of the structure is derived. In

the numerical example, a reflecting metasurface formed by slotted metallic patches of varying

sizes is considered. A number of full wave scattering simulations for such a metamaterial

reflectarray are performed and the optimal designs which make the response of the structure

more accurate as compared with the analytical predictions are identified. Following the

simulation results, the array is built and a number of measurements are performed. The

results of this work may find applications in phased antenna array design and beam forming.

5.1 Introduction

This chapter deals with the concept of fractal coding metamaterials. Historically, the coding

metamaterials started with the concept of digital metamaterials first presented in Ref. [96].

The goal of this concept is to build metamaterials with the desired effective parameters, like

the effective dielectric permittivity εeff . In Ref. [96], the metamaterial structure is made of two

components: one with negative epsilon (silver (Ag) with εm = −4.7+ i0.22) and another with
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positive epsilon (silica (SiO2) with εd = 2.42). The resulting εeff depends on the geometrical

arrangement of these two materials and the direction of the incident field which is applied to

the structure (i.e., the structure is anisotropic). The effective permittivity can be either in

the range between the two permittivity values εm and εd (the weighted average of them) or

well outside of this range. Considering the desired value of ε the structure and material can

be selected. Since the study of Ref. [96] was done for just the two-dimensional (2D) case, the

validity of the formulas for the three-dimensional (3D) case should be tested separately. Also,

the structures are studied just at a single wavelength and thus cannot not be considered for

operation in a wide bandwidth.

Later, in Ref. [97], the concepts of coding metamaterials, digital metamaterials and pro-

grammable metamaterials were presented in order to pursue the goal of controlling elec-

tromagnetic waves. In Ref. [97], the basic elements of the structure are not just blocks of

different materials. Instead, the “0” and “1” elements are represented by metallic patches

on a dielectric substrate. These elements when reflecting an incident electromagnetic wave

have different phase responses. For example, for the 1-bit coding metamaterial the maxi-

mum phase difference one can use is π and therefore one of the patches is designed to have

0 phase response and another one with π phase response. The phase difference stays 180◦

in a quite wide range of frequencies and thus one may realize the desired phase response in

a wider bandwidth. It is clear that with this method one can also introduce n-bit coding

metamaterials with 2n different elements. When n increases, the phase differences decrease

and the accuracy in the design becomes more important. Also, the requirement of having

wider bandwidth puts more restrictions onto the design of the elements.

In order to control the phase response of the structure electrically, in Ref. [97], a single

element has been introduced with a diode that connects two symmetric metallic patches on

the dielectric substrate (F4B with dielectric constant of 2.65 and loss tangent of 0.001). It is

shown that by turning the diode on and off one can obtain the phase responses corresponding

to the “0” and “1” elements as discussed above. The phase difference stays in the vicinity

of π in a shorter bandwidth as compared with the previous design. The programmable

metasurface proposed in the same reference is controlling “0” and “1” sequences with a Field

Programmable Gate Array (FPGA). By triggering switches in the FPGA, the distribution of

the induced current changes on the surface of the structure and consequently the structural

elements will perform either as “0s” or “1s” as programmed. The basic elements can be

phase-controlled or polarization-controlled.
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Following the introduction of the coding metamaterials, there have been numerous papers

trying to address various problems with this newly developed concept such as dealing with

abnormal scattering and reflection properties [98–100], designing coding metamaterials based

on the Quick-Response code [101], performing coding relevant to the electromagnetic waves

polarization [102], etc. More examples and reviews of the coding and programmable meta-

materials for different applications can be found in Refs. [103–106]. Some other methods for

beam forming also have been studied in Refs. [107–109].

In order to expand the idea of controlling electromagnetic waves by coding metasurfaces, here

we approach the problem from a different point of view. In this work we design an array

of patches with varying size in a way that the phase response of the final structure can be

presented in the form of a fractal. Fractal functions are known to exhibit self-similarity and

pseudo-randomness, which can be useful in applications such as complex beam forming for

phased array antennas, in the design of Multiple Input Multiple Output (MIMO) antenna

systems, and in other areas.

Namely, in this work we develop a method of designing a reflective metasurface with a given

form of the phase response using the concept of coding metamaterials extended by the novel

idea of fractal coding. Having the ability to predict the behaviour of such fractal structures in

terms of the far-field radiation patterns is interesting for the above-mentioned applications. In

order to achieve this goal, we consider fractal metasurfaces whose encoded phase response is

determined by the fractal interpolation function (FIF) (y = f(x)), which is formed by a linear

contraction mapping on y and an arbitrary linear function of x. We consider analytically the

case when the phase distribution on the structure takes the form of the above-mentioned FIF

and find the far-field radiation pattern of the structure. In the numerical examples we consider

a reflecting metasurface formed by metallic patches of varying sizes with four slots of varying

lengths. We perform a number of full wave scattering simulations for such a metamaterial

reflectarray and identify the optimal designs which make the final response of the structure

more accurate when compared with the analytical predictions. At the last stage, the final

structure is built and the corresponding validation measurements are performed.
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5.2 Theory

5.2.1 Fractal interpolation functions

To derive the radiation pattern of the reflect array with a fractal phase distribution, we need

some mathematical tools in order to represent fractals analytically. Iterative function systems

(IFS) can be considered as such a tool for self-similar fractals [110]. IFS is one of the most

general ways to formulate fractals mathematically.

Fractal interpolation function (FIF) was first introduced by Barnsley [95]. The idea is based

on iterated function systems (IFS). By definition, the fractal interpolation curve or surface

is a unique function that is the attractor of the related IFS. IFS itself is the generalization

of Banach fixed-point theorem.1 There is still no evidence of the existence of the FIF in

complete metric space. One should also note that in principle it is possible to use other

fixed-point theorems (e.g. Rakotch’s fixed point theorem) in order to prove the existence of

FIF.

By definition, the fractal interpolation function (FIF) which is generated by the iterative

function system is a unique function f : X → IR that maps the affine map of a set of points

to a contraction map:

f(Lj(x)) = Fj(x, f(x)), j = 1, 2, ..., N, x ∈ X, (5.1)

where X = [x0, xN ], Lj : X → X is an affine map satisfying Lj(x0) = xj−1, Lj(xN ) = xj ,

j = 1, 2, ..., N (let x0 < x1 < ... < xN ) and Fj : X × IR→ IR is the contraction mapping (the

distance between a set of points after transformation is smaller than α multiplied by their

original distance):

Fj(x0, y0) = yj−1, (5.2)

Fj(xN , yN ) = yj , j = 1, 2, ..., N, (5.3)

|Fj(x, y1)− Fj(x, y2)| 6 |αj ||y1 − y2|, −1 < αj < 1, (5.4)

where y0, y1, ..., yN ∈ IR.

1Banach fixed-point theorem guarantees the existence and uniqueness of fixed points of specific self-maps
(compact sets) of metric space. The theory also presents a method to find these points[111].
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Eqs. 5.2 and 5.3 define the continuity condition for function f . Deterministic fractal as-

sociated with this FIF is the attractor of the IFS on X × IR [112]. When an IFS satisfies

the condition 5.4, that iterated function system is called hyperbolic. It is proven that a hy-

perbolic IFS has a unique attractor [95]. So as we said before, we can say that the FIF is

unique, which can be used as the project function for the phase distribution on the reflecting

metasurface.

In this work we consider a group of FIF with the following form of contraction mapping:

Fj(x, y) = qj(x) + αjy, (5.5)

where qj is linear.

In this case, it can be proven that the integral of such FIF is also a FIF. For the integral of

fractal interpolation function we have in this case[112]:

g(Lj(x)) =

∫ x

x0

f(Lj(t)) dt

= q′j(x) + α′jg(x), (5.6)

where

α′j = αj
xj − xj−1

xN − x0
, (5.7)

q′j(x) = g(x0) + g(xj−1)− α′jg(x0) +
α′j
αj

∫ x

x0

qj(t)dt. (5.8)

which shows that the integral of the FIF is also a FIF with a similar form as compared to the

function under integral. In a similar way, it can be proven that the Fourier transform of a

FIF with linear qj(x) is also a FIF [113]. Using the above mentioned theorems we can prove

that the Fourier transform of an exponential function of a FIF can be also a FIF. For that

we consider a FIF with linear qj(x):

f(Lj(x)) = qj(x) + αjf(x), (5.9)

where we have:

qj(x) = ajx+ bj . (5.10)
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Now we want to prove that f̂(x) can be also a FIF, where

f̂(x) = ef(x). (5.11)

Using the continuity condition of the affine map (Lj(x0) = xj−1, Lj(xN ) = xj), we can prove

that:

f̂(xj)− f̂(xj−1) = f̂(xN )αjeqj(xN ) − f̂(x0)αjeqj(x0). (5.12)

Considering the equality f̂(xj) = f̂(x0) +
∑j

n=1(f̂(xn)− f̂(xn−1)), we have:

f̂(xj) = f̂(x0) +

j∑
n=1

(f̂(xN )αneqn(xN ) − f̂(x0)αneqn(x0)). (5.13)

Therefore, for the f̂(Lj(x)) we have:

f̂(Lj(x)) = f̂(x)αjeqj(x). (5.14)

Using the Taylor polynomial we have:

f̂(Lj(x)) ≈ α̂j f̂(x) + q̂j(x), (5.15)

where,

α̂j =αje
qj(xk)f̂(xk)

αj−1, (5.16)

q̂j(x) =âjx+ b̂j ,

âj = aj f̂(xk)
αjeqj(xk), (5.17)

b̂j = (1− ajxk + αj)f̂(xk)
αjeqj(xk) (5.18)

where xk is the point around which we perform the linearisation and f̂(xk) can be obtained

from Eq. 5.13.
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5.2.2 Radiation pattern of a fractal reflect array

We assume that the structural elements are distributed over a rectangular surface laying

on the xy plane. The z axis is perpendicular to the center of this surface. The surface

is illuminated by a normally incident plane electromagnetic wave ~Einc = Einc~y0 such that

after the reflection from the surface, the electric field of the reflected wave on the surface

is ~E = Ey~y0 with Ey = E0ejφ(x,y), where φ(x, y) is the reflection phase distribution on the

surface. This surface acts as an emitting aperture antenna. The far-field electric field created

by the small rectangular element of the surface (dx, dy) is [114]:

d ~E|R = ~y0(~u0 · ~z0)
jkE0

2πR(x, y)
e−jkR(x,y)ejφ(x,y) dx dy, (5.19)

where ~u0 is the vector in the direction of the line which connects the center of the structure

to the far field observation point, and R(x, y) is the distance between the point on the surface

and the far field point:

R(x, y) = R0 − x(~x0 · ~u0)− y(~y0 · ~u0) = R0 − (x~x0 + y~y0) · ~u0. (5.20)

By substituting Eq. 5.20 in Eq. 5.19 and defining ~ρ = x~x0 + y~y0, we obtain:

d ~E|R = ~y0(~u0 · ~z0)
jkE0

2πR(x, y)
e−jkR0ejk~ρ·~u0ejφ(x,y) dx dy. (5.21)

The varying distance R(x, y) in the denominator can be approximated by the distance to the

center of the surface R0. The far field is obtained by integrating Eq. 5.21 over the reflecting

surface:

~E|R =

∫∫
A
d ~E|R (5.22)

= ~y0(~u0 · ~z0)
jk

2πR0
e−jkR0

∫∫
A
E0ejφ(x,y)ej(kxx+kyy)dxdy,

where kx = k(~x0 · ~u0), and ky = k(~y0 · ~u0).

From Eq. 5.22, it can be seen that, in the far zone, the reflected field is proportional to

the Fourier transform of the same field as distributed on the reflecting surface. In order to

investigate the effect of the fractal phase distribution on the far-field pattern, we go through

an example and build a reflectarray which demonstrates such properties.
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5.3 Numerical Example: A linear reflect array formed by slot-

ted metallic patches
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Figure 5.1: Top: Fractal interpolation function of order N →∞. Bottom: Approximation
of the fractal interpolation function of order 3 by a set of 82 discrete points. We want the

unwrapped phase response of the reflect array with 82 elements to resemble this graph.

In this section we study a linear reflect array formed by slotted metallic patches on a dielectric

substrate. In order to design the necessary phase distribution along the array, we consider

the following affine and contraction mappings which define the FIF that will be used as an
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example for the following simulations:

L1(x) =
x

3
, L2(x) =

x

3
+

1

3
, L3(x) =

x

3
+

2

3
, (5.23)

F1(x, y) =
y

3
, F2(x, y) =

y

3
− x

3
+

1

3
, F3(x, y) =

y

3
+
x

3
+

1

3
, (5.24)

and f passing through (0, 0), (1/3, 1/3), (2/3, 1/3) and (1, 1). The number of points in this

function is 3N+1 + 1, where N is the number of interpolations. When N goes to infinity the

fractal function will tend to the graph shown in Fig. 5.1 (top). The x and y axes on this plot

correspond to, respectively, the relative position along the reflect array and the relative value

of the reflection phase as to be realized in an ideal case.

In practice, we have to limit the number of fractal elements in a realization to a reasonable

value. In this example we go through just three iterations of FIF (i.e., N = 3), which results

in a set of 82 discrete points approximately representing the original fractal function. The

plot of this set is shown in Fig. 5.1 (bottom).

In order to build the reflectarray we first need to design an array element with high enough

reflection phase variation. A large number of possible designs were tested, ranging from simple

square metallic elements with varying sizes, to complex structures such as slotted metallic

patches based on the Hilbert space-filling curve fractal (Fig. 5.2).

Figure 5.2: Patches designed based on the Hilbert curve and the corresponding array.

The patch design with the widest range of phase variation with respect to its geometric

parameters such as width, the slot length, etc. at around 9 GHz frequency has been selected.
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This selected design of the slotted patch is shown in Fig. 5.3 (top). The simulation result of

the phase response of this patch when changing the sizes of the slots and the patch is shown

in Fig. 5.3 (bottom).
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Figure 5.3: Top: Basic element of the reflectarray: a slotted metallic patch on a grounded
dielectric substrate with ε = 6.15 and thickness 1.524mm. Bottom: Simulation results for
phase response of the basic element as a function of frequency and one of the structural
parameters (the relative sizes of the patch). The overall size of the array element (the unit

cell size) is 4.16mm.

Based on these results, the optimal operating frequency which gives the widest range of the

phase variation with the patch size that has been selected, and the relation between the size

of the patch and the reflected phase at this specific frequency have been found by constructing

an interpolation function. The result of such interpolation at 9 GHz is shown in Fig. 5.4.

Next, by using this interpolation function we can map the required fractal phase distribution

to the required patch size in each unit cell of the array. We select the total phase variation

along the complete array to be 6π radians (3×360 degrees). The mapping result is presented
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Figure 5.4: Phase response of the slotted patch on a grounded substrate at 9 GHz as a
function of the relative patch size.

in Fig. 5.5 (top). The abrupt changes in the patch size in this figure correspond to the points

where the phase wraps over the realizable phase interval −150◦ < φ + φ0 < +150◦, where

φ0 = 20◦. Note that, because at the end points of this interval the reflection phase is rather

close to ±180◦, such abrupt changes in the patch size do not result in large variations of the

phase factor eiφ, and thus this factor changes more or less smoothly along the array even at

those points. If the patch sizes in the array follow the values obtained from Fig. 5.5 (top),

then we will have the fractal reflection phase distribution shown in Fig. 5.5 (bottom).

Based on these results, we have simulated such an array of patches with varying sizes (which

will have the desired phase response) and calculated its far field radiation pattern by using

the CST Microwave Studio. The geometry of the complete reflectarray is shown in Fig. 5.6.

The array is formed by 11 horizontal rows of patches of varying size. The linear patch arrays

in each row have the same geometry. Hence, this reflectarray will have the radiation pattern

in the horizontal plane determined by the fractal phase distribution along the patch arrays.

The simulation results for the reflection phase response of this array (as well as similar

structures formed by five rows of patches, and effectively infinite number of rows) compared

to the original theoretical prediction are presented in Fig. 5.7. As it is seen from this Figure

the simulation results are in good agreement with the theoretical results, which shows that

the presented method for realization of the reflectarray works well.

We have also calculated the far field radiation pattern of these structures in the CST Mi-

crowave Studio and compared it with the theoretical one obtained with Eq. 5.22. The result
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Figure 5.5: Top: Patch size for the elements of the reflectarray as a function of the element
index (patch number). Bottom: Phase response of the same array as a function of the element

index.

of these calculations can be seen in Fig. 5.8. We observe a satisfactory agreement between

the theoretically predicted radiation pattern and the simulated ones in the main beam region.

The discrepancies seen in Fig. 5.8 can be explained by the fact that the theoretical formula

takes into account only the phase variation of the reflected field assuming the fixed reflection

amplitude, while in the real structure the amplitude of the reflected field also changes along

the structure. The theoretical result also does not take into account the edge diffraction

effects, which may have a detrimental effect on the radiation pattern, especially on the level

of the side lobes.
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Figure 5.6: Top: Array of patches as modelled in CST Microwave Studio. Bottom:
Magnified view of a region of the array.

Ph
as

e 
(d

eg
)

Patch number

Theory
Result for 1 row

Result for 5 rows
Result for 11 rows

-180

-120

-60

 0

 60

 120

 180

 10  20  30  40  50  60  70  80

Figure 5.7: Phase response of the array with one row of patches placed in a two-plate
waveguide (which represents an array with effectively infinite number of horizontal rows),

and with 5 and 11 rows placed in free space, as compared to the theoretical prediction.

5.4 Experimental results

In order to provide an experimental validation of the proposed reflectarray design, we selected

the array with 11 rows (Fig. 5.9). The dimension of the structure was 341.43 mm by 46.15 mm.

Substrate was Rogers RO4360G2 with relative permittivity of 6.15 and thickness of 1.524 mm.

The metallization thickness was 17.5 µm. Since the total structure length was larger than
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Figure 5.8: Far field radiation patterns for an array with 1 row (in a parallel plate waveg-
uide), 5 rows and 11 rows (in free space), as compared with the theoretical result.

the maximum length available for the substrate, the reflectarray structure was made in two

halves and then glued together as is shown in Fig. 5.9. The reflectarray was produced with

printed circuit board (PCB) technology using a CNC (Computer Numerical Control) milling

machine.

Figure 5.9: Reflectarray with 11 rows of slotted patches formed on a printed circuit board.
A part of the supporting structure and the anti-reflection absorber are seen behind the array.

To conduct the experiment in anechoic chamber we designed an arm to rotate the transmitter

antenna together with the reflect array around the y-axis while the receiver antenna was fixed

at one end of the chamber (Fig. 5.10), in order to measure bistatic radar cross section (RCS).

In this way, the angle of incidence is kept constant while the angle at which the field scattered

by the reflectarray is measured is changing.
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Figure 5.10: Photo of the complete experimental setup assembled for anechoic chamber
measurements of bi-static radar cross section. The supporting structure built from PTFE
pipes, the array and the transmitting antenna are seen in the front. The receiving antenna
is seen in the back. Bottom: Another view from the camera installed inside the anechoic

chamber.

The supporting structure was made from polytetrafluoroethylene (PTFE) pipes. PTFE has

a relatively low refracting index at microwave frequencies, which helps to minimize reflections

from the support.

As the receiver we used a pyramidal horn antenna operating at 9 GHz frequency and with

the working frequency range between 8 GHz to 12 GHz. The transmitter antenna was a

corrugated conical horn antenna. We did the measurements in the presence of the array and

also without the array, in order to measure the reflection from the surroundings.
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Fig. 5.11 shows the comparison between the measurement results and the theoretical and

simulated values. The shift in the position of the main maximum is due to a systematic error
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Figure 5.11: Comparison of the analytical, numerical and measurement results for the
normalized bi-static radar cross section.

in the milling process that tends to make slots and gaps in the metallization slightly wider

than required. By measuring the dimensions of the unit cell elements under a microscope, it

was found that, on average, the gaps between the patches were 0.09 mm bigger as compared

with the required values. The standard deviation of the measured systematic increase in the

gap size was 0.03 mm. These rather high values of the errors inherent to the production

process explain the difference between the measurement and the simulation results. Indeed,

the minimum gap in metallization made by the milling process is 0.2 mm, which is very

close to the minimum feature size in the structure (also about 0.2 mm), therefore these small

features could not be reproduced with a high accuracy. Nevertheless, considering all the

inaccuracies the behaviour of the prototype structure follows the desired pattern.

5.5 Conclusion

The focus of this work has been on developing a new approach to so-called coding metasur-

faces. The approach is based on the use of fractal interpolation functions (FIF). FIF are a

versatile tool to produce quasi-random self-similar patterns. Here, we have used such patterns

to model the far-field scattering characteristics of a reflectarray realized as a metasurface with
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FIF-encoded reflection phase. We have proved analytically that if the reflection phase distri-

bution belongs to a specific class of FIF, then the far-field radiation pattern of the structure

is also approximately a FIF. In order to test this concept in practice, we have proposed a

method to construct metasurfaces with a given phase distribution pattern by using arrays of

slotted patches. A number of simulations in CST Microwave Studio have been performed to

determine the geometry of the unit cells which results in the largest reflection phase variation

with respect to the variation of the structural parameters. In the next step, the designed

metasurface has been prototyped and its performance has been evaluated with direct mea-

surements of bi-static RCS of the structure in an anechoic chamber. Although the prototype

has demonstrated expected behaviour close to the main lobe of the reflection pattern, we

have found that the inaccuracies associated with the used production method (CNC milling)

prevented us from reproducing the expected behaviour in the sidelobe regions.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work we investigated the fractal-based metamaterials. We developed several theoretical

and numerical models applicable to the class of fractal MMs. The self-similar fractals, which

were the main focus of this work, showed a great potential in enabling analytical modelling

for such rather complicated structures.

In the case of the 1D MM based on a fractal set, we developed a homogenization method

using the self-similarity property of the fractal set. The analytically derived effective pa-

rameters were verified numerically. It was shown that, in the quasi-static limit, the effective

permittivity of such MM is a weighted average of the permittivities of the dielectric layers in

the fractal, which agrees well with similar results obtained for the quasi-static behaviour of

periodic layered media and further validates our method of homogenization. In order to solve

Maxwell’s equations, we used a recursive function approach inherent to the fractal nature

of the problem. We also generalized this method for 1D fractal MM at higher frequencies,

and, for the non-magnetic case, the effective permittivity dyadic analytically derived with

this framework were validated numerically by FDTD simulations.

For the case of 2D fractal MM, we designed and studied a metasurface based on the space-

filling curves, in our case, the Hilbert curve. To homogenize this structure, we calculated

the effective surface impedance of the structure. The self-similarity properties of this fractal

structure allowed us to develop an equivalent circuit model based on an extension of the

Babinet-Booker’s principle for electromagnetic fields. The results from the analytical model

73
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and the simulations were in good agreement. The developed methods are applicable for other

MM structures exhibiting self-similarity and complementarity properties.

The 3D fractal wire medium (WM) was another topic of investigation. In this problem,

unlike the traditional WM, we distributed the wires based on the Sierpinski carpet fractal.

The fractal distribution influenced both the positions and the diameters of the wires. We

simulated the band diagrams for the TE and TM polarization cases. The result suggested

that the fractal WM can result in lighter and more compact structure as compared to the

traditional WM.

In another part of this thesis, we developed a new approach to coding metasurfaces, which

we named fractal coding metasurfaces. The fractal coding metasurfaces can be used in re-

flectarrays for beam forming and controlling applications. We used an approach based on

the fractal interpolation functions (FIF) in order to generate the necessary quasi-random

self-similar patterns of the reflection phase. The FIF properties helped us to model the far-

field scattering characteristics of the structure with the FIF-encoded reflection phase. Most

importantly, we proved analytically that if the reflection phase distribution belongs to the

special class of FIFs, then the far-field radiation pattern of the structure is also approximately

a FIF. We proposed a method for the construction of an array of slotted patches realizing

the given phase distribution . The method is not dependent on the unit cell design. We

checked our method by numerical simulation of an example of such structure. We also de-

signed a prototype of a FIF-based reflectarray and measured the resulted radiation pattern.

The simulations and the experimental results showed close relation.

6.2 Future Work

The idea of using fractal geometry in the design of MMs is very young and still has great

potential for future investigation. In this work, the focus has been primarily on the self-

similar fractals, however, this class of fractals comprises just a small group of such objects.

Investigating other classes of fractals, especially the random fractals, which are characterized

by a richer set of parameters, may open new horizons in applications of such structures in

the design of the EM MMs.

The homogenization approaches developed in this work apply to the structures having infi-

nite extents in 1D, 2D, or 3D spaces. However, such simplifying assumptions may lead to
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inaccuracies when considering practical designs. Thus one possible extension is to develop

homogenization techniques which are able to take into account the edge effects in the finite

fractal arrays. It is interesting to look for the relation between the effective parameters of

the infinite and finite structures, and study, e.g. how the number of unit cells in a structure

affects these parameters.

In this thesis, the EM fractal MMs have been investigated. However, similar ideas can be

developed, for example, for acoustic metamaterials, since the acoustic wave propagation in

certain systems obeys similar wave equations. The concept of homogenization is as well ap-

plicable in acoustics. In particular, homogenization of the acoustic MMs implies calculating

effective Young’s modulus and mass density, which are similar to the permittivity and perme-

ability of the EM MMs. Although acoustic MMs are already a well establish concept, there

is still lots to be done for the fractal acoustic MMs.





Appendix A

General Remarks on

Homogenization

In general, the response of a medium to the applied electromagnetic field can be expressed

through a set of polarizability tensors. The polarizability tensors represent the linearisation1

of the response of a material to an applied electric and/or magnetic field for small field

strengths, and therefore provide a first order approximation to said response. For example,

in a MM formed by many arrays of inclusions distributed in a fractal manner, each inclusion

will have the polarizability tensor defined with respect to the average electric filed in the MM.

This polarizability depends on the fractal structure. Namely, considering the induced electric

polarization density P as a function of the average electric field E, the electric polarizability

tensor χij is defined as the Frechet derivative of P with respect to E at E = 0, that is,

χij = ∂Pi/∂Ej |E=0.2 In chiral and bi-anisotropic media, the electric field E can induce

magnetic polarization M, and vice versa, the magnetic field H can induce electric polarization

P, so that in this more general case

Pi = χeeijEj + χemij Hj , (A.1)

Mi = χmeij Ej + χmmij Hj (A.2)

where χeeij = ∂Pi/∂Ej |E=H=0, χemij = ∂Pi/∂Hj |E=H=0, etc.

1The response of a MM can be nonlinear if it includes certain types of dielectrics or semiconductors or
ferrites, for example.

2For sufficiently small E, we can expand P as a Taylor series: P = P(E = 0) + χE + O(||E||2) where the
higher order terms are small. And, because we assume P = 0 when E = 0 (no polarization without applied
field), we are left with: Pi = χijEj where the repeated indices denote summation (Einstein notation).
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After the polarizability tensors are found, the homogenization problem is solved and the

dispersion equation for the wave propagating in the media can be formulated from solving

the uniform Maxwell equations

∇×E = −jω(µ0H + M), (A.3)

∇×H = jω(ε0E + P) (A.4)

1D Fractal Metamaterials

Typically, when dealing with such MMs the purpose is to find the dispersion relation for the

waves propagating in a single chain (or multiple parallel chains) of subwavelength elements

repeated in a fractal manner. Analytical formulas can be derived expressing the material

parameters of such 1D-media and their relation to the fractal iteration level. In particular,

the effective dielectric permittivity can be calculated in each case.

The above mentioned traditional approach, however, is not always the best one when ap-

plied to 1D structures. In 1D structures, where the propagation happens along just a single

direction, it is possible to obtain the effective parameters by using the ABCD (transfer) ma-

trix. Thus, a 1D fractal MM can be realized as a layered dielectric structure, and the EM

properties of this structure can be studied by the ABCD matrix approach.

2D Fractal Metamaterials

In order to homogenize two-dimensional MMs, the effective surface polarizability tensors

need to be calculated for the metasurfaces which describe the homogenized behaviour of

these structures.

These quantities relate (in the linear approximation) the induced surface currents (electric

and/or magnetic) with the fields at the metasurface. Analytical expressions relating these

quantities with the scattering matrix elements of the metasurface need to be derived, as well

as a method of extraction of the polarizability tensor components from a set of reflection/-

transmission measurements will be developed. The method should take into account the

peculiarities inherent to fractal structures, such as the pseudo-random scattering pattern and

the geometrical self-similarity properties.
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3D Fractal Metamaterials

To homogenise three-dimensional fractal MMs means to derive a form of material relations

applicable to this class of MMs. In order to find such effective parameters, one can start with

the Tellegen form of material relations describing interaction between electric and magnetic

polarizations and fields in a reciprocal medium:

D = εE + ζH, (A.5)

B = µH− ζTE. (A.6)

Here, the material tensors ε, µ, and ζ are functions of frequency (accounting for the frequency

dispersion) and the wave vector (accounting for the spatial dispersion).

An analytical-numerical homogenization technique based on the works of [34] can be devel-

oped for such cases.





Appendix B

Embedded External Source for

Homogenization

To explain better the presence of the embedded external source which we take in a form of

a plane wave of current spread over all dielectric layers, let us consider the following source

in which the current is concentrated within infinitely thin sheets (of any physical nature,

for example, they can be formed by grids of very thin ideally conducting wires with fixed

currents; when such wires are very thin they do not influence the average electromagnetic

field due to the high effective inductance and, respectively, high effective reactive impedance

of the wires [70]) placed in the infinitesimal gaps between the adjusting dielectric layers of

the periodically repeated fractal supercells. Mathematically, this source can be written as

Eq. (B.1).

~Jext(z) =

+∞∑
n=−∞

~Js,exte
ikzzδ(z − nLN ), (B.1)

where ~Js,ext is the sheet surface current (located at z = 0), LN = L × Ncells is the size

of a supercell formed by Ncells adjusting fractal cells, and δ(z) is the Dirac delta function.

The source from Eq. (B.1) is Bloch-periodic: ~Jext(z + LN ) = ~Jext(z)e
ikzLN , where kz is a

unrestricted parameter which determines the phase shift between currents in different sheets.
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Maxwell’s equations and boundary conditions for the first supercell at [0, LN ] are:

∇× ~E = iωµ0
~H,

∇× ~H = −iωε0εr(z) ~E + ~Js,extδ(z), (B.2)

BCs: ~E, ~H
∣∣
z=LN

= ~E, ~H
∣∣
z=0

eikzLN . (B.3)

We can expand the source term in the Fourier-Bloch series:

~Jext(z) =
+∞∑

n=−∞
e
i
2π

LN
nz

eikzz ~Cn, (B.4)

where

~Cn =
1

LN

LN/2∫
−LN/2

~Js,exte
ikzzδ(z)e

−i
2π

LN
nz

dz

=
1

LN
~Js,ext. (B.5)

By substituting the Eq. (B.5) into Eq. (B.4), we have the final expression for the source. It has

the same form as the one which has been used in the analytical and numerical calculations.

~Jext(z) =
~Js,ext

LN
eikzz

+∞∑
n=−∞

e
i
2π

LN
nz

. (B.6)

So it is safe to say that the embedded source used in the calculations can be represented

in practice by current sheets placed at the boundaries of fractal supercells. By means of

Fourier-Bloch expansion we prove that such a source is equivalent to a superposition of many

distributed plane wave sources.

As an alternative approach to obtain a distributed source with a given profile, we can add

a series of electrodes placed in pairs [one electrode above the structure (at x = h
2 ) and one

electrode below the structure (at x = −h
2 )], separated along the z-axis by ∆z � λ, with each

such pair of electrodes connected to an AC current source with complex amplitude In ≡ I(zn)

(here and below we work in the frequency domain), where zn is the coordinate of the pair

at the z-axis. The vertical distance, h, between the electrodes in pairs is considered to be

sufficiently small.
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Without the fractal structure present (i.e., when the electrodes are separated by vacuum)

each vertical pair of electrodes acquires voltage Vn = − In
iωC , where C is the capacitance of

the electrode pair in vacuum. Thus, when the fractal structure is present, we can say that

electrodes induce external electric field ~Eext(zn) = ~x0Vn
h in this structure (the same process

creates also magnetic field ~Hext, as predicted by the Maxwell’s equations). On the other

hand, for the total field inside the structure we can write:

~Etot = ~Eext + ~E,

~Htot = ~Hext + ~H. (B.7)

As we will show below, the fields ~E = ~Etot− ~Eext and ~H = ~Htot− ~Hext in the above expressions

can be understood as the fields created by a distributed plane wave current source. We can

write Maxwell’s equations inside the dielectric while it is polarized by the electrodes:

∇× ~Etot = iωµ0
~Htot,

∇× ~Htot = −iωε0εr(z) ~Etot. (B.8)

For the external fields in absence of the dielectric layers, we can write the following equations:

∇× ~Eext = iωµ0
~Hext,

∇× ~Hext = −iωε0 ~Eext. (B.9)

By subtracting the Eq. (B.9) from Eq. (B.8), and substituting Eq. (B.7), we will have the

relations for the electric and magnetic fields ~E and ~H:

∇× ~E = iωµ0
~H,

∇× ~H = −iωε0εr(z) ~Etot + iωε0 ~Eext = −iωε0εr(z) ~E + ~Jext, (B.10)

where

~Jext ≡ −iωε0(εr(z)− 1) ~Eext

= −iωε0(εr(z)− 1)
Vn
h
~x0 = ε0(εr(z)− 1)

In
Ch

~x0, (B.11)
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and here the distributed external current ~Jext is expressed through the source currents In.

And this can be a way of implementing the distributed external current in practice.



Appendix C

Simulation Control file for MPB for

1D Fractal MM

;; These functions are used to define the fractal

(define 1D-fractal

(lambda (cen L eps1 eps2 ratio order)

(if (> order 0)

(append

(1D-fractal (+ (* -0.5 L (- 1 ratio)) cen)

(* ratio L) eps2 eps1 ratio (- order 1))

(list (list cen (* L (- 1 (* 2 ratio))) eps1))

(1D-fractal (+ (* 0.5 L (- 1 ratio)) cen)

(* ratio L) eps2 eps1 ratio (- order 1)))

(list (list cen L eps1)))))

;; MPB related

(set! num-bands 4)

;; all k vectors lie in xz plane

; only kz is changing (propagation normal to the layers)
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(set! k-points (list

(vector3 0 0 0)

(vector3 0 0 0.5)))

(set! k-points (interpolate 31 k-points))

;; This function takes the list of coordinates of centres

;; of dielectric layers and the values of epsilon and

;; makes the structure for MPB

(define make-fractal-structure

(lambda (objs acc)

(if (pair? objs)

(let* ( (obj (car objs))

(rest (cdr objs))

(cen (car obj))

(d (cadr obj))

(eps (caddr obj)) )

(make-fractal-structure

rest

(cons ;cons: construct the pair out of elements

(make block

(center 0 0 cen)

(size no-size no-size d) ;no-size: infinite

(material

(make dielectric (epsilon eps))))

acc)))

acc)))

(define-param cen 0)

(define-param L 1)

(define-param eps1 4)

(define-param eps2 1)
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(define-param ratio 0.45)

(define-param order 11)

(set! geometry (make-fractal-structure

(1D-fractal cen L eps1 eps2 ratio order) ’()))

(set! geometry-lattice (make lattice (size no-size no-size L)))

(set! resolution (expt 2 (+ order 2))) ; resolution = 2^(n+3)

(run-yeven output-efield output-hfield) ; TE modes

(run-yodd output-efield output-hfield) ; TM modes
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