
 

 

Universidade de Aveiro  
2010 

Departamento de Física 

Amélia Olga 
Gonçalves Ankiewicz 
 

Propriedades de nanoestruturas de semicondutores 
magnéticos diluídos auto-organizados 
 
Properties of self-assembled diluted magnetic 
semiconductor nanostructures 

 

 

   



 

 

Universidade de Aveiro  
2010 

Departamento de Física 

Amélia Olga 
Gonçalves Ankiewicz 
 
 

Propriedades de nanoestruturas de semicondutores 
magnéticos diluídos auto-organizados 
 
Properties of self-assembled diluted magnetic 
semiconductor nanostructures 

 dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Doutoramento Europeu em 
Física, realizada sob a orientação científica do Professor Doutor Nikolai A.
Sobolev, Professor Associado do Departamento de Física da Universidade de 
Aveiro e sob co-orientação científica do Professor Doutor Marius Grundmann, 
Director do Instituto de Física Experimental II da Universidade de Leipzig
(Alemanha). 
 

 Apoio financeiro da FCT no âmbito do 
projecto PTDC/FIS/72843/2006 e da 
bolsa SFRH/BD/21659/2005. 
 
Financially supported by FCT in the 
framework of the project 
PTDC/FIS/72843/2006, and of the 
bursary SFRH/BD/21659/2005.  

Apoio financeiro da rede de excelência 
SANDiE da União Europeia. 
 
 
Financially supported by the SANDiE 
network of excellence. 



 
 
  

 

 
 
 

 
 

o júri 
 

  
 

presidente 
 
 

Prof. Doutora Ana Maria Vieira da Silva Viana Cavaleiro  
professora catedrática, Departamento de Química, Universidade de Aveiro, Portugal 
 

 Prof. Doutor Nikolai A. Sobolev 
professor associado, Departamento de Física, Universidade de Aveiro, Portugal (orientador) 

  

 Prof. Doutor Marius Grundmann 
professor catedrático, director do Instituto de Física Experimental II, Universidade de Leipzig, 
Alemanha (co-orientador) 

 . 

 Prof. Doutor Wolfgang Gehlhoff 
professor catedrático, Instituto de Física de Estado Sólido, Universidade Técnica de Berlim, 
Alemanha 

  
 Prof. Doutor Werner Wesch 

professor catedrático, Instituto de Física do Estado Sólido, Universidade de Jena, Alemanha 
  
 Prof. Doutor Armando Neves 

professor associado, Departamento de Física, Universidade de Aveiro, Portugal 
  
 Prof. Doutora Fátima Cerqueira 

professor auxiliar, Departamento de Física, Universidade do Minho, Portugal 
 
 
 



 
 
  

  
 

acknowledgments There are several people I would like to thank, for different reasons. 
First of all, I am very thankful to my supervisor Prof. Dr. Nikolai Sobolev,
for proposing this work to me and for the support and guidance through it
at all times. I am also thankful to Prof. Dr. Marius Grundmann for the
supervision and help throughout my work, and for kindly receiving me at
the University of Leipzig. 
I have not enough words to express my gratitude to Prof. Dr. Wolfgang
Gehlhoff for all the fruitful scientific discussions, for the experimental
guidance, and above all for his friendship. 
I thank all of the colleagues from the Institute of Experimental Physics II
at the University of Leipzig for their help and availability during my stays in
Germany. In the same way, I also thank all the colleagues from the
Technical University of Berlin. Additional thanks to Mrs. Grupe, Mrs.
Heck, and Mrs. Wendisch for their kindness and help. 
I am grateful to all my colleagues from the Physics Department of the
University of Aveiro, especially Rui, Nuno, and Joana, for their support
during this long journey. 
I also would like to thank all of my professors at the University of Aveiro,
who significantly contributed for my personal and academic education,
and who were always accessible. 
And last, but not least, I thank my friends and family, particularly my
husband Bruno, my parents, and my grandmother, for their love and care,
and for being their at all moments. 
 

 



 
  

 
 
 
 
 
 
 
 
 

  

palavras-chave 
 

Magnetismo, ZnO, metais de transição, ressonância magnética 
 

resumo 
 
 

Este trabalho centra-se na investigação da possibilidade de se conseguir um
semicondutor magnético diluído (SMD) baseado em ZnO. 
Foi levado a cabo um estudo detalhado das propriedades magnéticas e
estruturais de estruturas de ZnO, nomeadamente nanofios (NFs), nanocristais
(NCs) e filmes finos, dopadas com metais de transição (MTs). Foram usadas
várias técnicas experimentais para caracterizar estas estruturas,
designadamente difracção de raios-X, microscopia electrónica de varrimento,
ressonância magnética, SQUID, e medidas de transporte. 
Foram incorporados substitucionalmente nos sítios do Zn iões de Mn2+ e Co2+

em ambos os NFs e NCs de ZnO. Revelou-se para ambos os iões dopantes,
que a incorporação é heterogénea, uma vez que parte do sinal de ressonância
paramagnética electrónica (RPE) vem de iões de MTs em ambientes
distorcidos ou enriquecidos com MTs. A partir das intensidades relativas dos
espectros de RPE e de modificações da superfície, demonstra-se ainda que os
NCs exibem uma estrutura core-shell. Os resultados, evidenciam que, com o
aumento da concentração de MTs, a dimensão dos NCs diminui e aumentam
as distorções da rede. Finalmente, no caso dos NCs dopados com Mn, obteve-
se o resultado singular de que a espessura da shell é da ordem de 0.3 nm e de
que existe uma acumulação de Mn na mesma. 
Com o objectivo de esclarecer o papel dos portadores de carga na medição
das interacções ferromagnéticas, foram co-dopados filmes de ZnO com Mn e
Al ou com Co e Al. Os filmes dopados com Mn, revelaram-se simplesmente
paramagnéticos, com os iões de Mn substitucionais nos sítios do Zn. Por outro
lado, os filmes dopados com Co exibem ferromagnetismo fraco não intrínseco,
provavelmente devido a decomposição spinodal. 
Foram ainda efectuados estudos comparativos com filmes de ligas de
Zn1-xFexO. Como era de esperar, detectaram-se segundas fases de espinela e
de óxido de ferro nestas ligas; todas as amostras exibiam curvas de histerese
a 300 K. Estes resultados suportam a hipótese de que as segundas fases são
responsáveis pelo comportamento magnético observado em muitos sistemas
baseados em ZnO. 
Não se observou nenhuma evidência de ferromagnetismo mediado por
portadores de carga. As experiências mostram que a análise de RPE permite
demonstrar directamente se e onde estão incorporados os iões de MTs e
evidenciam a importância dos efeitos de superfície para dimensões menores
que ~15 nm, para as quais se formam estruturas core-shell. 
As investigações realizadas no âmbito desta tese demonstram que nenhuma
das amostras de ZnO estudadas exibiram propriedades de um SMD intrínseco
e que, no futuro, são necessários estudos teóricos e experimentais detalhados
das interacções de troca entre os iões de MTs e os átomos do ZnO para
determinar a origem das propriedades magnéticas observadas. 
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abstract 
 
 

This work focuses on the study of the possibility of achieving an intrinsic diluted
magnetic semiconductor (DMS) based on ZnO. 
Detailed investigations of the structural and magnetic properties of transition
metal (TM) doped ZnO structures, namely nanowires (NWs), nanocrystals
(NCs), and thin films, were carried out. Various experimental techniques, such
as X-ray diffraction, scanning electron microscopy, transmission electron
microscopy, magnetic resonance, SQUID, and transport measurements were
employed to structurally and magnetically characterize these samples. 
For both the ZnO NWs and NCs, Mn and Co ions were successfully
incorporated as substitutional Mn2+ or Co2+, respectively, on Zn sites. For both
types of doping, the TM incorporation was heterogeneous, since part of the
electron paramagnetic resonance (EPR) spectrum stemmed from TM ions in
distorted or TM enriched environments. Furthermore, in the case of the NCs,
the relative intensities of the EPR spectra and surface modifications showed
that the NCs exhibit a core-shell structure. Moreover, the results evidence
decreasing NC size and increasing lattice distortions for increasing TM content.
Finally, in the case of the Mn doped NCs, we were able to obtain the unique
result that the shell thickness is very small, in the order of 0.3 nm, and that
there is an accumulation of the Mn ions in the shell. 
To clarify the role of charge carriers in mediating ferromagnetic interactions,
Mn, Al and Co, Al co-doped ZnO films were investigated. The Mn doped ZnO
samples were clearly paramagnetic, the Mn ions being substitutional on Zn
sites. On the other hand, the Co doped samples exhibited weak ferromagnetic
order, which we believe to most probably arise from spinodal decomposition. 
Additionally, comparative investigations of Fe alloyed ZnO films were
performed. As expected, second phases of spinel and iron oxide were found,
and the samples exhibited ferromagnetic hysteresis loops at 300 K. These
results support the indication that secondary phases are accountable for the
magnetic behaviour detected in many ZnO systems. 
No evidence of carrier mediated ferromagnetism was observed. The
experiments show that the EPR analysis allows us to directly demonstrate
whether and where the TM ions are incorporated and evidence the importance
of the surface effects at material dimensions below ~15 nm, for which core-
shell structures are formed. 
The research carried out in the framework of this thesis demonstrates that for
all studied samples, ZnO did not exhibit the behaviour of an intrinsic DMS, and
in the future very detailed element specific investigations, both experimental
and theoretical, of the exchange interactions of the transition metal ions with
the ZnO host are necessary to assert the nature of the magnetic properties. 

 
 
 



To my grandmother,

Amél ia ;

my husband,

Bruno;

and my daughter,

Inês Sof ia.

 



i 

TABLE OF CONTENTS 

TABLE OF CONTENTS .......................................................................................................................................... I 
LIST OF PUBLICATIONS ...................................................................................................................................... III 
LIST OF FIGURES ................................................................................................................................................ V 
LIST OF TABLES ................................................................................................................................................ XI 
LIST OF ACRONYMS ......................................................................................................................................... XIII 
LIST OF SYMBOLS ............................................................................................................................................ XV 

1  INTRODUCTION ............................................................................................................... 1 

2  STATE OF THE ART ........................................................................................................... 3 

2.1  ZNO – THE HOST SEMICONDUCTOR ............................................................................................................ 5 
2.2  SYNOPSIS OF CURRENT UNDERSTANDING ON ZNO BASED DMSS ................................................................. 8 

3  THEORETICAL FRAMEWORK ............................................................................................. 17 

3.1  ELECTRON PARAMAGNETIC RESONANCE ................................................................................................... 17 
3.1.1  Hamiltonian operators ............................................................................................................... 18 
3.1.2  Spin Hamiltonian ....................................................................................................................... 21 
3.1.3  Crystal Symmetry ...................................................................................................................... 23 
3.1.4  Selection rules ............................................................................................................................ 25 
3.1.5  The anisotropy of the g‐factor: doublet state ..............................................................................26 
3.1.6  Zero field splitting: electronic quadrupole fine structure (S = 1, 3/2) .............................................29 
3.1.7  Fine and hyperfine structure of Mn2+ in a cubic crystal field ......................................................... 36 
3.1.8  Relaxation phenomenon ............................................................................................................ 39 
3.1.9  Powder spectrum ....................................................................................................................... 40 

3.2  FERROMAGNETIC RESONANCE ................................................................................................................. 41 
3.2.1  Magnetocrystalline anisotropy energy ........................................................................................46 
3.2.2  Shape anisotropy ....................................................................................................................... 48 

4  EXPERIMENTAL METHODS ............................................................................................... 49 

4.1  PULSED LASER DEPOSITION .................................................................................................................... 49 
4.2  ELECTRON MAGNETIC RESONANCE ........................................................................................................... 51 
4.3  SQUID MAGNETOMETRY ....................................................................................................................... 55 
4.4  HALL EFFECT AND MAGNETORESISTANCE .................................................................................................. 56 
4.5  X‐RAY DIFFRACTION ............................................................................................................................... 59 
4.6  SCANNING ELECTRON MICROSCOPY ........................................................................................................ 62 
4.7  TRANSMISSION ELECTRON MICROSCOPY .................................................................................................. 64 

5  ZNO TRANSITION METAL DOPED NANOWIRES .................................................................... 67 

5.1  SAMPLE GROWTH AND STRUCTURAL CHARACTERIZATION ............................................................................ 67 
5.2  ELECTRON PARAMAGNETIC RESONANCE STUDY ........................................................................................ 68 

5.2.1  Mn Incorporation .......................................................................................................................68 
5.2.2  Co Incorporation ........................................................................................................................ 72 

5.3  CONCLUDING REMARKS .......................................................................................................................... 79 

6  ZNO TRANSITION METAL DOPED COLLOIDAL NANOCRYSTALS ............................................ 81 

6.1  SAMPLE PREPARATION ........................................................................................................................... 81 
6.2  STRUCTURAL CHARACTERIZATION .......................................................................................................... 82 
6.3  EPR ANALYSIS ...................................................................................................................................... 85 



ii 

6.3.1  Co incorporation ........................................................................................................................ 85 
6.3.2  Mn incorporation ....................................................................................................................... 88 

6.4  CONCLUDING REMARKS ........................................................................................................................ 101 

7  CO, AL OR MN, AL CO‐DOPED ZNO FILMS ....................................................................... 103 

7.1  SAMPLES ............................................................................................................................................ 103 
7.2  MAGNETIC PROPERTIES ......................................................................................................................... 104 
7.3  XRD MEASUREMENTS ........................................................................................................................... 111 
7.4  CONCLUDING REMARKS ........................................................................................................................ 114 

8  FE ALLOYED ZNO FILMS ................................................................................................ 115 

8.1  SAMPLE PREPARATION ......................................................................................................................... 115 
8.2  STRUCTURAL CHARACTERIZATION ......................................................................................................... 115 
8.3  MAGNETIC PROPERTIES ......................................................................................................................... 117 
8.4  CONCLUDING REMARKS ........................................................................................................................ 126 

9  SUMMARY AND OUTLOOK .............................................................................................. 127 

BIBLIOGRAPHY ..................................................................................................................... 131 



iii 

LIST OF PUBLICATIONS 

1. A. O. Ankiewicz, W. Gehlhoff, J. S. Martins, A. S. Pereira, S. Pereira, A. Hoffmann, E. 
M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, M. C. Carmo, T. Trindade, and N. 
A. Sobolev, Magnetic and structural properties of transition metal doped zinc-oxide nanostructures, 
Physica Status Solidi (b), 246, 766 (2009). 

2. A. S Pereira, A. O. Ankiewicz, W. Gehlhoff, A. Hoffmann, S. Pereira, T. Trindade, M. 
Grundmann, M. C. Carmo, and N. A. Sobolev, Surface modification of Co-doped ZnO 
nanocrystals and its effects on the magnetic properties, Journal of Applied Physics, 103, 07D140 
(2008). 

3. A. O. Ankiewicz, W. Gehlhoff, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, 
M. C. Carmo, and N. A. Sobolev, Electron Paramagnetic Resonance Characterization of Mn- and 
Co-Doped ZnO Nanowires, AIP Conf. Proc., 893, 63 (2007).  

4. A. O. Ankiewicz, W. Gehlhoff, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, 
M. C. Carmo, and N. A. Sobolev, Electron Paramagnetic Resonance in Transition Metal –Doped 
ZnO Nanowires, Journal of Applied Physics, 101, 024324 (2007). 

5. A. O. Ankiewicz, N. A. Sobolev, J. P. Leitão, M. C. Carmo, R. N. Pereira, J. Lundsgaard 
Hansen, e A. Nylandsted Larsen, Effect of Ge incorporation on the creation of luminescent defects 
in Si, Nuclear Inst. and Methods in Physics Research B, 248, 127 (2006). 



v 

LIST OF FIGURES 

Number  Page 
Fig. 2.1. Predicted Curie temperature as a function of the lattice constant for a variety of 

semiconductors [after S. C. Erwin (Naval Research Laboratory)]. This prediction 
is based on the full numeric evaluation of the mean-field solution of the Zener 
model for different host semiconductors [Erwin and Hellberg (2003)]. 4 

Fig. 2.2. Predicted Curie temperature as a function of the band gap [taken from Dietl 
(2000)]. The Curie temperatures were computed for various types of p-type 
semiconductors containing 5% Mn and 3.5×1020 holes per cm3. 5 

Fig. 2.3. Schematic representation of the ZnO wurtzite crystal structure. 6 
Fig. 2.4. Diagram illustrating magnetic polarons. A donor electron in its hydrogenic orbit 

couples with its spin anti-parallel to impurities with a 3d shell that is half-full or 
more than half-full. The figure is drawn for a magnetic cation concentration 
x = 0.1 and when the orbital radius of the magnetic cation is sufficiently large. 
Cation sites are represented by small circles. Oxygen is not shown; the 
unoccupied oxygen sites are represented by squares. (Taken from Coey et al. 
(2005)). 8 

Fig. 2.5. Schematic density of states for (a) TM = Ti, (b) TM = Mn, and (c) TM = Co in 
TM-doped ZnO. The Fermi level lies in a spin-split donor impurity band. In the 
middle of the series, there is no overlap with the 3d levels, and exchange is weak, 
but towards the end of the series, the 3d↓ states overlap with the impurity band 
(c), which then has the opposite spin splitting for the same occupancy. High 
Curie temperatures would be found whenever unoccupied 3d states overlap with 
the impurity band, but not otherwise [Coey (2005)]. 9 

Fig. 3.1. Splitting of the ground state of the ions with valence configurations of d 1 to d 9 
(Ti3+ to Cu2+) in octahedral symmetry. In tetrahedral symmetry, the terms are 
inverted, e.g. for d 7 the ground state will be an orbital singlet (A2). 25 

Fig. 3.2. Zeeman splitting and energy levels of the electron spin transitions for S = 1/2 
and B || Z (θ = 0°) und B⊥Z (θ = 90°), in the case of a centre with axial 
symmetry. 28 

Fig. 3.3. Zeeman splitting for a triplet state S = 1 in a crystal field with cubic symmetry. 
Both the allowed resonant transitions occur when the condition hν = gβB is 
fulfilled. 30 

Fig. 3.4. Zeeman splitting and the allowed transitions (ΔMS = ±1) (___) as well as the 
forbidden transitions (ΔMS = ±2) (---) for the SH (3.27) with S = 1, and B || Z. 
For exactly B || Z, the transition probability of the forbidden transitions is zero. 31 

Fig. 3.5. Zeeman splitting and the allowed transitions (ΔMS = ±1) (___) as well as the 
forbidden transitions (ΔMS = ±2) (---) for the SH (3.27) with S = 1, and B⊥Z. 32 

Fig. 3.6. Zeeman splitting and the possible six electron spin transitions for hν > 2D:  three 
allowed transitions ΔMS = ±1 (____) as well as the two forbidden transitions for 
ΔMS = ±2 (---) and one forbidden transition for ΔMS = ±3 (....), corresponding 
to the SH (3.27) with S = 3/2 and B || Z. 34 

Fig. 3.7. Zeeman splitting and the possible six electron spin transitions for hν > 2D:  three 
allowed transitions ΔMS = ±1 (____) as well as the two forbidden transitions for 
ΔMS = ±2 (---) and one forbidden transition for ΔMS = ±3 (....), corresponding 
to the SH (3.27) with S = 3/2 and B⊥Z. 35 



vi 

Fig. 3.8. Angular dependence of the fine structure for a 6S ground state in a cubic crystal 
field as a function of the magnetic field and for the rotation of the magnetic field 
in a {110} plane. 38 

Fig. 3.9. Graphical representation of the internal effective field components BM, Bϕ, Bθ in a 
spherical coordinate system. 43 

Fig. 4.1. Scheme of a typical PLD setup for large-area film growth [Lorenz (2008)]. 50 
Fig. 4.2. Top view scheme of the high-pressure PLD setup for nano-heterostructures 

[Lorenz (2005)]. 51 
Fig. 4.3. Block diagram of an EMR homodyne spectrometer. Taken from Pilbrow (1990). 52 
Fig. 4.4. Superconducting quantum interference device (SQUID): the principle of 

magnetic flux quantization by the Cooper pairs current; Josephson junction 
within a superconducting ring. 56 

Fig. 4.5. Schematic representation of the Hall effect [Neamen (2003)]. 57 
Fig. 4.6. Van der Pauw configuration for measuring (a) VDA and (b) VDC. 58 
Fig. 4.7. Schematic representation of Bragg’s law for an X-ray diffraction pattern of a 

crystal. 60 
Fig. 4.8. Hexagonal lattices are described by four principle vectors. The forth axis stands 

perpendicular to the plane spanned by (a1, a2, a3). 61 
Fig. 4.9. Basic diagram of a scanning electron microscope. 64 
Fig. 4.10. Basic diagram of a transmission electron microscope. 65 
Fig. 5.1. Typical SEM images of ZnO: 5 at. % Co (a); ZnO: 3 at. % Mn (b) and ZnO: 10 

at. % Mn. All pictures were taken under a 45º viewing angle. 68 
Fig. 5.2. Experimental angular dependence of the EPR spectra of Mn2+ in ZnO nanowires 

(nominal content of 3 at. %), measured in the X-band at 4.2 K. 69 
Fig. 5.3. Experimental angular dependence of the EPR spectra of Mn2+ in ZnO nanowires 

(nominal content of 10 at. %), measured in the X-band at 4.2 K. 69 
Fig. 5.4. Diagram of the energy levels for the EPR (X-band) transitions of substitutional 

Mn2+ in ZnO. The energy levels were calculated using the spin Hamiltonian 
parameters obtained by Schneider et al. (1962, 1963) for 300 K. The transitions 
represented by red lines correspond to the allowed ones, while the gray lines 
correspond to the “forbidden” ones. 71 

Fig. 5.5. Experimental EPR spectra for B || c of Mn2+ in ZnO nanowires with two 
different nominal Mn contents (3 and 10 at. %), measured in the X-band at 4.2 
K. 72 

Fig. 5.6. (a) Experimental EPR spectrum of Co2+ in ZnO nanowires (nominal content of 5 
at. %), measured in the X-band at 4.2 K for B || c (θ = 0º); (b) result of the fitting 
of the experimental spectrum given by the sum of components A and B shown 
in (c) and (d), respectively. 74 

Fig. 5.7. Angular dependence of the EPR spectra of Co2+ in ZnO nanowires (nominal 
content of 5 at. %), measured in the X-band at 4.2 K. θ = 0º corresponds to B || c. 
The result of the fitting of the angular dependence of the HF line positions is 
plotted in solid lines on top of the spectra. 75 

Fig. 5.8. Experimental values of the centres of gravity of the A (dots) and B (squares) EPR 
spectra, as extracted from the fittings, and calculated (solid lines) angular 
variations of the line positions of the 21±  transitions for Co2+ in ZnO nanowires 
(nominal content of 5 at. %). The spectra were measured in the X-band at 4.2 K. 75 

Fig. 5.9. Experimental temperature dependence of the EPR spectra for the Co2+ in ZnO 
nanowires (nominal content of 5 at. %), measured for B || c in the X-band. 77 



 

 vii

Fig. 5.10. Temperature dependence of the EPR intensity (top) and inverse intensity 
(bottom) of the A (dots) and B (squares) components of the 21±  transition of 
the Co2+ spectrum in ZnO NWs (nominal Co content of 5 at. %), measured in 
the X-band for B || c. The dashed lines are the calculated curves for the 21±  
transition within the S = 3/2 manifold, using the zero-field splitting of D = 2.75 
cm-1 given by Estle and De Witt ( 1961). The solid lines represent the same 
calculated lines but including a correction that takes into account a small error 
that scales linearly with temperature. 78 

Fig. 5.11. Temperature dependence of the spectral widths for the Co2+ lines in ZnO 
nanowires (nominal content of 5 at. %), measured for B || c in the X-band. Dots 
belong to the A component and squares to the B component of the spectra. 79 

Fig. 6.1. TEM images of  (a) ZnO:Co NCs, (b) polystyrene/ZnO:Co nanocomposites, 
and (c) ZnO:Co NCs capped with ZnSe. 83 

Fig. 6.2. TEM image of colloidal ZnO nanocrystals doped with nominally 5% (a) and 10% 
(b) of Mn showing average diameters of 11.8 nm and 6.5 nm, respectively. 
Histograms of the size distribution of the ZnO nanocrystals doped with (c) 5% 
and (d) 10% Mn. 84 

Fig. 6.3. X-ray diffraction measurements of Co doped ZnO NCs (red circles), 
polystyrene/ZnO:Co nanocomposites (green triangles), and ZnO:Co NCs 
capped with ZnSe (blues squares). The peak identification is identical for the 
three samples. 84 

Fig. 6.4. X-ray diffraction patterns of ZnO nanoparticle powders doped with nominal Mn 
concentrations of 5% (open red circles) and 10% (closed blue circles), 
respectively. The indexing of the wurtzite ZnO lines is given in the three-index 
notation for directions and planes of hexagonal systems; (hk.l) is equivalent to the 
four-index notation (hkil), with i = -(h + k). 85 

Fig. 6.5. Experimental X-band EPR spectrum at 10 K of ZnO:Co (nominal Co content of 
5%) nanocrystals with the respective simulation carried out by adding the EPR 
signals SI, SII and SIII. 86 

Fig. 6.6. Experimental X-band EPR spectrum at 10 K of ZnO:Co (nominal Co content of 
5%) raw nanocrystals, of those after polymer encapsulation, or after reaction with 
TOPSe. The respective simulations are plotted in light blue carried out by adding 
the EPR signals SI, SII and SIII. 87 

Fig. 6.7. Experimental Q-band EPR spectrum at 10 K of raw nanocrystals ZnO:Co 
(nominal Co content of 5%). 87 

Fig. 6.8. Q-band EPR spectrum at 290 K of the raw Mn doped ZnO nanocrystals 
(nominal Mn content of 5 at. %), measured with a modulation amplitude of (a) 
1.6 G and (b) 4 G. (c) Difference obtained by subtracting spectrum (a) to 
spectrum (b), showing the influence of the modulation amplitude on the details 
of the powder spectrum. 88 

Fig. 6.9. Comparison of the X- and Q-band angular dependence of the fine structure line 
positions for substitutional Mn2+ in ZnO calculated for both A and B sites, using 
EasySpin software package [Stoll (2006)] and the SH parameters obtained by 
Schneider et al. (1962, 1963). To superimpose both dependences, the X-band 
values were shifted by 878.8073 mT to the right so that the spectra for g = 2 are 



viii 

superimposed. The dotted green line corresponds to g = 2. θ is the angle between 
the applied magnetic field and the c-axis of ZnO. 90 

Fig. 6.10. Comparison of the X- and Q-band powder spectrum for substitutional Mn2+ in 
ZnO calculated disregarding the hyperfine interactions, using EasySpin software 
package [Stoll (2006)] and the SH parameters obtained by Schneider et al. (1962, 
1963). To superimpose both dependences, the X-band spectrum shifted by 
878.8073 mT to the right so that the spectra for g = 2 are superimposed. 91 

Fig. 6.11. Influence of the strain distribution on the Q-band powder spectrum for 
substitutional Mn2+ in ZnO calculated using EasySpin software package [Stoll 
(2006)] and the SH parameters obtained by Schneider et al. (1962, 1963). 91 

Fig. 6.12. Experimental Q-band EPR spectrum at 290 K of raw nanocrystals ZnO:Mn 
(nominal Mn content of 5 and 10 at. %). For a better visualization, the outer 
transitions are magnified (dashed lines). 92 

Fig. 6.13. EPR spectrum for (a) 5% and (b) 10% Mn doped colloidal ZnO nanocrystals, 
measured in the Q-band at 290 K, along with the respective simulations carried 
out by adding the EPR signals S1, S2, and S3. 94 

Fig. 6.14. Difference obtained by the subtraction of the experimental Q-band EPR 
spectrum, taken at 290 K, of the raw Mn doped ZnO nanocrystals (nominal Mn 
content of 5 and 10%), yielding (a) 10% Mn spectrum - 5% Mn spectrum, and 
(b) 5% Mn spectrum - 10% Mn spectrum. 95 

Fig. 6.15. Ratio of the intensities of the EPR signals S2 and S1 as a function of the 
nanocrystals average diameters. 98 

Fig. 7.1. Field dependent magnetoresistance measured at 5 K, for the Mn doped ZnO 
films on the left, and the Co doped ZnO films on the right. 105 

Fig. 7.2. Hall resistivity (after the subtraction of the ordinary Hall contribution) at 5 K as a 
function of the applied magnetic field, for the Mn doped ZnO films on the left 
and the Co doped ZnO films on the right. 106 

Fig. 7.3. Angular dependence of the EPR signal measured in the X-band at 4.4 K, for the 
Mn doped ZnO thin films. 108 

Fig. 7.4. Angular dependence of the EMR signal measured in the X-band at 4.3 K, for the 
Co doped ZnO thin films. 108 

Fig. 7.5. Temperature dependence of the EMR signal measured in the X-band, for the Co 
doped ZnO thin films. 109 

Fig. 7.6. Angular dependence of the line position of the EMR signal measured in the X-
band at 4.3 K, for the Co doped ZnO films. 109 

Fig. 7.7. Low temperature hysteresis loops for the Co doped ZnO films with (a) high and 
(b) low electron concentrations. (c) Zero field cooling (ZFC) and field cooling 
(FC) magnetization curves measured with 5 mT on the Co doped ZnO film with 
the lower electron concentration. (d) Room temperature hysteresis loop for the 
Co doped ZnO film with the lower electron concentration. 110 

Fig. 7.8. X-ray diffraction patterns of the Co doped ZnO films with different electron 
concentrations. The diffraction peaks are identified for each structure by the 
Miller indices of the planes. 111 

Fig. 7.9. Pole figures around (a) (440) CoAl2O4 and (b) (224) CoAl2O4, for the Co doped 
film TF4. 112 

Fig. 7.10. Reciprocal space maps of samples (a) TF3 [(002)ZnO + (2-10)Al2O3] and (b) 
TF4 [(002)ZnO + (2-10)Al2O3]. 113 

Fig. 8.1. (a) The correspondence between the Fe content in the precursor solution and in 
the films, measured by energy dispersive X-ray spectroscopy. (b) XRD plots for 



 

 ix

the series of ZnO films with different Fe concentrations. The diffraction peaks 
are indicated by the symbols ▼ for the ZnO wurtzite structure and ● for both 
ZnFe2O4 and Fe3O4. Miller indices of the planes are indicated for each structure. 116 

Fig. 8.2. Zero field cooling (ZFC) (empty symbols) and field cooling (FC) (full symbols) 
magnetization curves measured with 50 mT for (a) Fe alloyed ZnO films where 
only ZnO XRD peaks are visible, and for (b) films where the XRD shows the 
presence of the ZnFe2O4 or Fe3O4 phases. 118 

Fig. 8.3. Room temperature hysteresis loops for films which only exhibit ZnO XRD 
peaks. 119 

Fig. 8.4. AB2O4 spinel crystal structure. The blue cubes are also contained in the back half 
of the unit cell. 119 

Fig. 8.5. Out-of-plane angular dependence of the FMR spectra taken at 150 K for the Fe 
alloyed ZnO films with x = 0.21. 121 

Fig. 8.6. Out-of-plane angular dependence of the FMR spectra taken at 150 K for the Fe 
alloyed ZnO films with x = 0.25. 121 

Fig. 8.7. Out-of-plane angular dependence of the FMR spectra taken at 150 K for the Fe 
alloyed ZnO films with x = 0.86. 122 

Fig. 8.8. Experimental data (dots) and theoretical fitting (line) of the out-of-plane angular 
dependence of the resonance field of the strongest band obtained by the 
evaluation of FMR spectra for the Fe alloyed ZnO films with x = 0.21 presented 
in Fig. 8.5. 123 

Fig. 8.9. Experimental data (dots) and theoretical fitting (line) of the out-of-plane angular 
dependence of the resonance field of the strongest band obtained by the 
evaluation of FMR spectra for the Fe alloyed ZnO films with x = 0.25 presented 
in Fig. 8.6. 123 

Fig. 8.10. Experimental data (dots) and theoretical fitting (line) of the out-of-plane angular 
dependence of the resonance field of the strongest band obtained by the 
evaluation of FMR spectra for the Fe alloyed ZnO films with x = 0.86 presented 
in Fig. 8.7. 124 

Fig. 8.11. Temperature dependence of the resonance fields of the strongest bands for the 
orientations B || c and B ⊥ c for Fe alloyed ZnO films with three different x 
values. The measurements between 10 and 300 K and between 300 and 400 K 
were performed with two microwave cavities having slightly different resonance 
frequencies, which accounts for a small discontinuity of the curves for the x = 
0.86 sample occurring at 300 K. 125 

  



xi 

LIST OF TABLES 

Number  Page 
Table 2.1. List of relevant physical properties for bulk wurtzite ZnO. 6 
Table 5.1. SH parameters for the EPR spectra of Mn2+ in ZnO nanowires, measured at 4.2 

K. Except for g, all values are given in 10-4 cm-1. 72 
Table 5.2. SH parameters determined for the EPR spectrum measured at 4.2 K of Co2+ in 

ZnO nanowires nominally doped wit 5 at. % Co. Except for g, all values are given in 
10-4 cm-1. 76 

Table 6.1. SH parameters determined for the Q-band EPR spectra of the Mn doped ZnO 
nanocrystals. Except for the g-values and the line width, all values are given in 10-4 
cm-1. 96 

Table 7.1. PLD growth parameters, electron concentration n, and film thicknesses for the 
ZnO thin films. 104 

Table 8.1. Anisotropy fields (in mT) and g-factor determined by the fitting of Eq. (8.1) to the 
experimental data taken at 150 K. 124 



xiii 

LIST OF ACRONYMS 

AFC automatic frequency control 
AHE anomalous Hall effect 
BSE backscattered electrons 
CF crystal field 
CL Cathodoluminescence 
DMS diluted magnetic semiconductor 
DMSO Dimethylsulfoxide 
EDS energy dispersive x-ray spectroscopy 
EMR electron magnetic resonance 
EPR electron paramagnetic resonance 
EXAFS extended X-ray absorption fine structure spectroscopy 
FC field cooling 
FMR ferromagnetic resonance 
FS fine structure 
FWHM full width at half maximum 
HF Hyperfine 
LDA local density approximation 
MOCVD metalorganic chemical vapour deposition 
MR Magnetoresistance 
NC Nanocrystal 
NMR nuclear magnetic resonance 
NW Nanowire 
PIMOCVD pulsed injection metalorganic chemical vapour deposition 
PIXE particle induced X-ray emission 
PLD pulsed laser deposition 
PS Polystyrene 
RBS Rutherford backscattering 
RKKY Ruderman-Kittel-Kasuya-Yosida 
RSM reciprocal space map 
SEM scanning electron microscopy 
SH spin Hamiltonian 
SQUID superconducting quantum interference device 
TEM transmission electron microscopy 
TM transition metal 
TOPO trioctylphosphine oxide 
XMCD X-ray magnetic circular dichroism 
XPS X-ray photoelectron spectroscopy 
XRD X-ray diffraction 
ZFC zero field cooling 



xiv 

ZFS zero field splitting 



xv 

LIST OF SYMBOLS 

A hyperfine constant 

A hyperfine tensor 
a lattice parameter; cubic fine structure parameter
aB Bohr radius

B magnetic field 
B1 magnetic component of the microwave radiation

BC coercive field 

C Covalency
c lattice parameter 
D axial fine structure parameter
D spin-spin interaction tensor 
d thickness; diameter 
dhkl  distance between lattice planes

E energy; orthorhombic fine structure parameter
e electron charge 
Eg band gap energy 

F Force 
F fine structure parameter 
g g-factor 
gN nuclear g-factor 

[ Hamiltonian operator 

h Planck constant 
I nuclear spin operator 
I nuclear spin; intensity; current flow
K anisotropy constant; Scherrer constant

kF Fermi wave vector 

L orbital quantum number 
L total orbital angular momentum operator
l mean free path; sample length
l, m, n direction cosines 
lk individual orbital angular momentum

m electron mass; number of nearest neighbours
M Magnetization 
mI nuclear spin quantum number

mp proton mass 

MS electron spin quantum number



xvi 

MSat  saturation magnetization 

N free carrier concentration; integer
N number of centres 
nC critical electron concentration 

Q nuclear quadrupole moment 
q Charge 
r mean distance between donors 
r Radius 
R electrical resistance 
RH Hall coefficient

RS anomalous Hall coefficient 

S electron spin operator 
S electron spin 
Ŝ effective spin 
t time; thickness
T Temperature 
TC Curie temperature 

TN Néel temperature 

U crystalline potential 
v Velocity 
V Volume 
W line width 
Z atomic number
α1, α2, α3 direction cosines 

β Bohr magneton
βN nuclear magneton 

γ gyromagnetic ratio 
δ full width at half maximum 
ΔBpp  peak to peak line width 

ε effective particle size 
ζ effective strain
θ polar angle between the quantization axis and the applied magnetic field (EPR); polar angle defining the 

orientation of the magnetization vector (FMR); incident angle (XRD) 

λ Wavelength 
μ magnetic dipole operator 
μ carrier mobility
μ0 magnetic permeability of free space

ν Frequency 
ρ Resistivity 



 

 xvii

σ Conductivity 
φ polar angle between the projection of the applied magnetic field in the XY plane and the Y-axis 

direction (EPR); azimuthal angle (FMR) 

χ magnetic susceptibility 
ψ wave function 
Ω relative orientation between a paramagnetic centre and the laboratory frame 
ω angular frequency 
ω0 Larmor frequency 

 



1 

1  INTRODUCT ION  

A renewed interest in the investigation of ZnO, a wide band gap semiconductor, has been 

prompted by the recent developments in the areas of transparent conductors for applications in 

photovoltaics and flat panel displays [Iwata (2005)], ferromagnetic semiconductors for 

spintronics [Pan (2008)], and the possibility of applying doped ZnO in photoelectrochemical 

water splitting [Wolcott (2009)]. 

 The wide-band-gap zinc oxide-based diluted magnetic semiconductors (DMSs), in which 

a fraction of non-magnetic elements is substituted by magnetic transition metal (TM) ions, 

currently attract considerable attention due to their possible applications in spintronic and UV 

devices [Heo (2004b), Wang (2004), Pan (2008)]. Recently a new paradigm of electronics based 

on the spin degree of freedom of the electron, which places electron spin rather than charge at 

the very centre of interest, has began to emerge. The underlying basis for this new technology is 

to simultaneously use charge and electron degrees of freedom. Instead of using the spin only for 

storage information in magnetic-recording devices and, independently, the electron charge for 

information processing in semiconductor high frequency devices, there is a new goal for 

processing and storing information in a unique device by combining the use of spin and charge. 

Information can be encoded through the alignment of a spin (either “up” or “down”) relative to 

a reference. These novel devices would be non-volatile, have high processing speed, low power 

consumption, and increased integration densities compared with the conventional 

semiconductor devices. 

  One of the triggers for the development of this field was the prediction by Dietl et al. 

(2000) of high temperature ferromagnetism in some magnetically doped wide-band-gap p-type 

semiconductors. Even though the ab initio calculations predicted that the incorporation of V, Cr, 

Fe, Co, or Ni in ZnO in the 5-25 % concentration range should give rise to metallic behaviour 

and a ferromagnetic state without need of additional doping [Katayama-Yoshida (2002), Sato 

(2000)], the experimental results are quite controversial even for bulk materials. For Mn and Co 

doped ZnO films, only weak ferromagnetism has usually been found [Diaconu (2005a), Sharma 

(2003), Ueda (2001)]. More recently, a giant magnetic moment of 6.1 β/Co and a high Curie 

temperature of 790 K have been observed in isolating ZnO films doped with 4 at. % Co grown 

at low temperature (200ºC) [Song (2006)]. As to nanostructures, their magnetic properties can be 
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completely different from their bulk counterparts [Liu (1998), Ohno (1999), Sellmyer (2001), Yu 

(2001)]. 

 The work presented in this thesis aims to contribute to the clarification of the 

fundamental properties of magnetically doped ZnO. One of the crucial issues addressed here is 

the relation between the incorporation of the magnetic ions and the observation of intrinsic 

magnetic properties. Three kinds of magnetically doped ZnO structures were studied; namely 

nanowires, nanocrystals, and thin films. The main finding was that the studied materials do not 

exhibit a DMS behaviour and that the incorporation of the TM ions into the host lattice does 

not produce any ferromagnetic interaction for any of these structures. Furthermore, the 

investigations evidence the importance of surface effects for material dimensions inferior to ≈15 

nm. 

 This thesis is organized in the following way: in chapter 2 the basic properties of ZnO are 

described and a summary of the current understanding in the field of ZnO-based DMSs is 

given; the theoretical fundaments of electron paramagnetic resonance and ferromagnetic 

resonance are introduced in chapter 3; chapter 4 contains the description of the experimental 

techniques; in chapters 5 – 8 the own experimental results are presented and discussed; finally, 

chapter 9 contains the summary of the main results, conclusions and the outlook for future 

work. 



 

3 

2  STATE  OF  THE  ART  

Magnetic semiconductors combining properties and functionalities of both semiconductors and 

ferromagnets have been driving an enormous scientific activity due to their potential 

applications in spintronics [Liu (2005)], where logic and memory operations could in principle 

be flawlessly integrated on a single device, and taking advantage of the already established 

fabrication processes. Diluted magnetic semiconductors (DMSs) are especially interesting for 

devices such as spin-based light-emitting diodes, sensors and transistors that use spin in addition 

to charge [Furdyna (1988)]. The main objective in the research field of DMSs for devices is the 

synthesis, characterization and application of semiconductors which exhibit significant carrier 

spin polarization at and above room temperature. In these materials, ferromagnetism is achieved 

by the incorporation of transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) or rare 

earths (e.g. Eu, Gd, Er) into the semiconductor host. Both types of ions have partially filled d or f 

shells, respectively, which give rise to non-zero electron spin. There are many mechanisms that 

could produce magnetic ordering, and many of these could be present simultaneously. The 

discussion of the individual processes, particularly of the dominant ones, can be very 

enlightening. In DMSs, the delocalized conduction band electrons and valence band holes 

interact with the localized magnetic moments of the magnetic atoms. In general, when 3d TM 

ions substitute the cations of the host, the resultant electronic structure suffers strong 

hybridization of the 3d orbitals of the magnetic ion and mainly of the p orbitals of the 

neighbouring host anions. This hybridization originates a strong magnetic interaction between 

the localized 3d spins and the carriers in the host valence band [Furdyna (1988)]. The 

macroscopic magnetic behaviour is found to be strongly dependent on a number of parameters, 

including the concentration of the magnetic ions, the carrier density, and the crystal quality. 

Hence, the preparation methods play a crucial role in obtaining true DMSs. A major challenge is 

to prevent the formation of second phases that may dominate the magnetic properties of the 

semiconductor, since the magnetic ion concentrations are usually well above the solubility limits. 

These difficulties in maintaining single-phase diluted material, and the typical low magnetization 

produced by the diluted magnetic ions have raised large controversy in the scientific reports. 

The most usual DMSs, as for instance (Ga,Mn)As, exhibit relatively low Curie temperatures (TC) 

(<≈170 K) [Nazmul (2002)], which limits their potential applications. The exchange coupling 
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between the dopant spins and the valence or conduction band carriers, the interaction 

responsible for the carrier spin polarization, is known to be sufficiently weak in conventional 

semiconductors such as GaAs, Si and Ge, so that magnetic ordering above cryogenic 

temperatures is extremely difficult to attain. On the other hand, in the beginning of the 21st 

century, the wide band gap materials GaN and ZnO seemed much more promising for 

obtaining high TC [Erwin and Hellberg (2003)]. Figs. 2.1 and 2.2 illustrate this statement. Note 

that the wider the band gap, the larger the p-d hybridization, the smaller the spin-orbit 

interaction, and the smaller the lattice constants. Among the promising wide-band gap materials, 

ZnO is especially attractive because it is widely used in electronic applications, meaning that 

DMSs based on ZnO could be easily incorporated in the existing technologies. The theoretical 

predictions and the combination of the properties of ZnO inspired researchers all around the 

world, and a plethora of scientific reports appeared. It is worth mentioning that the theoretical 

assumptions, namely the high hole concentration, used by Dietl et al. (2000) have not yet been 

achieved for ZnO. 
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Fig. 2.1. Predicted Curie temperature as a function of the lattice constant for a variety of semiconductors [after S. C. Erwin 

(Naval Research Laboratory)]. This prediction is based on the full numeric evaluation of the mean-field solution of the Zener 

model for different host semiconductors [Erwin and Hellberg (2003)]. 
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Fig. 2.2. Predicted Curie temperature as a function of the band gap [taken from Dietl (2000)]. The Curie temperatures were 

computed for various types of p-type semiconductors containing 5% Mn and 3.5×1020 holes per cm3. 

2 . 1  ZNO   –   T H E   HO S T   S E M I C O N D U C T O R  

ZnO is an inorganic compound that normally crystallizes in the wurtzite (hexagonal) crystal 

structure as illustrated in Fig. 2.3, which is thermodynamically stable at normal ambient 

conditions, with lattice parameters of a = 3.24982 Å and c = 5.20661 Å [Maensiri (2006)]. Note 

that the lattice parameters are somewhat dependent on the free carrier and/or point defects 

concentrations. The oxygen atoms are arranged in a hexagonal close-packed lattice and the zinc 

atoms occupy half of the tetrahedral voids. The Zn atoms are tetrahedrally coordinated to four 

O atoms, where the Zn d electrons hybridize with the O p electrons. The structure is, thus, 

relatively open with all the octahedral and half the tetrahedral voids unoccupied. The Zn-O 

chemical bonding is essentially polar. However, there is a homopolar component of binding 

between the next nearest zinc and oxygen ions in the direction of the c-axis. A set of relevant 

physical properties of ZnO is given in Table 2.1.  

 ZnO is a direct gap semiconductor which exhibits strong luminescence in the UV, and 

has a stable exciton with binding energies up to 100 meV in superlattices [Chia (2003)]. Thus, 

stable laser operation at room temperature is achievable. Additionally, high-quality epitaxial films 

exhibit electron mobilities of 300 cm2 V-1 s-1 at room temperature [Tsukazaki (2005)], and high 

saturation velocity of the electrons. Hence, there are possibilities for spin-based electronics and 
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optoelectronics using ZnO as the host semiconductor, given that it can be doped in a way that 

there is spin polarization in the majority carrier band. 

 

a
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Fig. 2.3. Schematic representation of the ZnO wurtzite crystal structure. 

Table 2.1. List of relevant physical properties for bulk wurtzite ZnO. 

Physical property ZnO Reference 
Lattice constants: a, c  3.24982 Å, 5.20661 Å [Maensiri (2006)] 

Band gap energy at 300 K 3.37 eV [Özgür (2005)] 

Exciton binding energy 60 meV [Özgür (2005)] 

Dielectric constants ε∞, ε0 3.52, 8.0 [Bundesmann (2002), (2006)] 

Melting point  1975 ºC [Özgür (2005), Triboulet (2003)] 

Thermal conductivity  0.54 W cm-1 K-1 [Triboulet (2003)] 

Density 5665 Kg m-3 [Jagadish and Pearton (2006)] 

 

  ZnO is readily doped n-type using Al, Ga, H, interstitial Zn, and intrinsic defects. It is 

much harder to dope ZnO p-type. The fact that ZnO has a relatively large band gap (3.37 eV at 

300 K) combined with its high electron affinity (4.35 eV) makes it difficult to find acceptors with 

states that are easily ionized in ZnO at room temperature, since its valence band maximum is 

sufficiently far below the vacuum level. The problem is aggravated by the facility with which 

ZnO is doped n-type. The significant compensation of acceptors by unintentional donors, such 

as native defects or Al coming from sapphire substrates, limits achievable hole concentrations 

[Claflin (2006)]. Nevertheless, the natural candidates for p-type dopants in ZnO are the Group 
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15 anions. Despite the difficulties, numerous experimental results of p-type conductivity have 

been reported for various dopants in ZnO epitaxial layers, nanowires and bulk crystals [Liu 

(2003), Lin (2004), Lee (2004), Look (2005a), Xiang (2007), Cao (2008a), Cao (2008b)]. 

 Intrinsic defects are one of the key features for understanding charge mechanisms in 

semiconductors. Local density approximation (LDA) calculations have explained why certain 

intrinsic defects tend to dope ZnO n-type and why others, such as the oxygen vacancy (VO), are 

not expected to be shallow donors, regardless of the general conviction that they should be. 

Zhang’s et al. (2001) calculations demonstrate that the formation energy of the interstitial Zn 

(Znint), which is a known shallow donor in ZnO [Thomas (1957), de la Cruz (1992)], is low 

under both Zn- and O-rich conditions. Furthermore, these calculations show that defects that 

would compensate Znint, such as Oint or Zn vacancies (VZn), have high formation energies. 

Similarly, although Oint and VZn are intrinsic acceptors, these defects’ high formation energies 

prevent their spontaneous formation. Additionally, calculations by Janotti and Van de Walle 

(2005) demonstrate that the VO defect, thought to be a shallow donor in ZnO, is in fact 

ineffective as a donor because its formation energy is predicted to be rather high (3.5 eV), and its 

ionization energy also is sufficiently high, so that even if VO did form, it would not be thermally 

ionized at room temperature. Recent positron annihilation experiments on ZnO single crystals 

irradiated with 2 MeV electrons are consistent with VO being a deep donor and VZn a deep 

acceptor [Tuomisto (2005)].  

 Other native defects in ZnO may be electrically active dopants as well, at least under 

certain preparation conditions. For example, Look et al. (2005b), from a detailed analysis of low-

temperature photoluminescence spectra, suggested the formation of a defect complex consisting 

of Znint and substitutional N, being a shallow donor in bulk ZnO containing N impurities.  

 An additional interesting aspect is the observation of long spin lifetimes (188 ps) at room 

temperature in non-magnetically n-type doped ZnO [Ghosh (2005)], since practical spintronic 

applications require long spin coherence times. 

 Another advantage of ZnO is that it can be rather easily grown as single crystals, thin 

films, nanocrystals, and nanowires by different methods. Furthermore, this material has a low 

refractive index (2.0), is strongly resistant to high energy irradiation and has low toxicity [Özgür 

(2005)].  The combination of these properties makes ZnO an attractive material for several 

applications, such as optoelectronics, for producing light emitting devices.  
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2 . 2  S YNO P S I S  O F   C U R R E N T   U N D E R S T A N D I N G  ON  ZNO   B A S E D  DMSS  

The theory explaining the physical processes responsible for ferromagnetism in DMSs is still not 

fully understood. Zener (1951a), (1951b), (1951c) first proposed that ferromagnetism was due to 

the exchange interaction between carriers and localized magnetic ions, indicating that simple 

superexchange between the magnetic ions does not produce a ferromagnetic interaction, but 

that indirect carrier mediated superexchange does. As a result, the DMS character is induced by 

the exchange interaction between the localized d shell electrons of the magnetic ions and the 

delocalized band carrier states (of the s or p origin). More recently, there have been several 

attempts to explain the experimental observations by developing models based on the mean-

field theory, first principle calculations, and bound magnetic polarons (see Fig. 2.4).  

Antiferromagnetic pair

Isolated polaron

Overlapping polarons

Isolated ion

 
Fig. 2.4. Diagram illustrating magnetic polarons. A donor electron in its hydrogenic orbit couples with its spin anti-parallel to 

impurities with a 3d shell that is half-full or more than half-full. The figure is drawn for a magnetic cation concentration 

x = 0.1 and when the orbital radius of the magnetic cation is sufficiently large. Cation sites are represented by small circles. 

Oxygen is not shown; the unoccupied oxygen sites are represented by squares. (Taken from Coey et al. (2005)). 

For instance, Coey et al. (2005) proposed the spin-split-orbit model, schematized in Fig. 2.5, 

which postulates that the ferromagnetism is mediated by shallow donor electrons that form 

bound magnetic polarons which, in turn, overlap to create a spin-split impurity band. The 

bound magnetic polarons are formed by the alignment of the spins of many transition-metal 

ions with that of much lower number of weakly bound carriers such as excitons within a 

polaron radius. The magnetic ions in different charge states couple virtually by the hopping of 

the “extra” electron from one ion to the other. Basically, the 3d electrons in the partially filled 3d 
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orbitals of neighbouring TM ions are allowed to hop between each other if the latter have 

parallel magnetic moments. Hence, the ferromagnetic exchange interaction is mediated by 

charge carriers in a spin-split impurity band formed by extended donor states; the impurity states 

hybridize with the d orbits of the TM ions.  
 

Impurity band Impurity band Impurity band 

3d ↑

3d ↑

3d ↑

2p 2p2p

3d ↓

3d ↓

3d ↓

4s4s
4s

(a) (b) (c)  
Fig. 2.5. Schematic density of states for (a) TM = Ti, (b) TM = Mn, and (c) TM = Co in TM-doped ZnO. The Fermi level lies 

in a spin-split donor impurity band. In the middle of the series, there is no overlap with the 3d levels, and exchange is weak, 

but towards the end of the series, the 3d↓ states overlap with the impurity band (c), which then has the opposite spin splitting 

for the same occupancy. High Curie temperatures would be found whenever unoccupied 3d states overlap with the impurity 

band, but not otherwise [Coey (2005)]. 

Of course, these models have limitations. However, it is very difficult, if not impossible, to find 

a universal model to explain all the observed DMS features, such as the wide range of Curie 

temperatures found for the same material [Pearton (2007)]. It should also be noted that the 

nature of the hybridization of the Mn 3d states and host p-states strongly depends on their 

relative energy position in the band structure, and that it would require substantial modifications 

to existing simple theories in order for them to successfully describe ferromagnetism in different 

semiconductors, such as GaN and ZnO. Nevertheless, sophisticated first-principles calculations 

have been carried out for a number of specific material systems since 2000 [see the review of 

Pearton et al. (2007)]. Very recently, Raebiger et al. (2009) reported interesting calculations, using 

a band-structure-corrected theory, which demonstrate that among the 3d 1 – 3d 8 series, the early 

Sc, Ti, and V are shallow donors, and that only the late Co and Ni have acceptor transitions in 

ZnO. The authors further show that long-range ferromagnetic interactions emerge due to partial 
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filling of 3d resonances inside the conduction band and, in general, require electron doping from 

additional sources. 

 Research on magnetic semiconductors is not so recent. In the 1980’s, Story et al. (1986) 

demonstrated carrier mediated ferromagnetism in bulk [(PbTe)1-x(SnTe)x]1-y[MnTe]y (x = 0.72, 

y = 0.03). Early on, II–VI compounds (such as CdTe, ZnSe, CdSe, CdS, etc.) doped with TM 

ions substituting their original cations were the most commonly studied DMSs [Furdyna (1988)]. 

However, these materials became less attractive for applications due to their low Curie 

temperatures and somewhat to the difficulty in doping these II–VI based DMSs p- and n-type. 

On the other hand, the conventional III–V semiconductors have been extensively applied for 

high speed electronic and optoelectronic devices [Liu (2005)]. More recently, the discovery of 

carrier mediated ferromagnetism in (Ga,Mn)As up to 172 K [Nazmul (2002)] renewed the 

interest in searching for new DMSs that retain their properties at and above room temperature. 

The properties of (Ga,Mn)As may be used as standards to test the authenticity of new 

candidates for high TC DMSs. For instance, at low Mn concentrations (x < 0.01) the 

conductivity is reasonably low, nevertheless, the material exhibits ferromagnetic ordering at low 

temperatures, due to the formation of bound magnetic polarons [Chambers (2006)]. For 

0.015 < x < 0.07, the Mn-induced hole concentration scales with the Curie temperature, 

indicating a direct correlation between conductivity and magnetization [Matsukura (1998)]. 

Additionally, anomalous Hall effect measurements have shown that itinerant holes interact 

strongly with the Mn spin moments, and the ferromagnetism was claimed to have its origin in 

the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction mediated by holes [Matsukura (1998)]. 

X-ray magnetic circular dichroism (XMCD) measurements support the attribution of the origin 

of the observed ferromagnetism to a spin inequality in Mn-derived hole band states [Edmonds 

(2005)]. Furthermore, spin polarized carriers can be successfully injected from (Ga,Mn)As as 

demonstrated by polarized light emission from nonmagnetic quantum well structures in which 

(Ga,Mn)As works as a spin-polarized hole injector [Ohno (1999), Chye (2002), Van Dorpe 

(2004)]. Very recentely, Chiba et al. (2008) were able to electrically manipulate the magnetization 

in (Ga,Mn)As. The principle behind this research is that the magnetic anisotropy, which 

determines the magnetization direction, depends on the charge carrier concentration. Therefore, 

by applying an electric field using a metal-insulator-semiconductor structure, the authors were 

successful in controlling the hole concentration and, thereby, the magnetic anisotropy, allowing 

the manipulation of the magnetization direction. The advantage of this method is that it does 
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not require flowing currents in the device, but only the application of voltage. It is therefore 

highly compatible with the existing metal-oxide semiconductor technology used in 

microprocessors and random-access memory devices [Saitoh (2008)]. 

 Large activity has been taking place in the investigation of novel DMSs based on GaN 

and ZnO since Dietl et al. (2000) predicted that these materials could exhibit ferromagnetism 

above room temperature, in the case of them being p-type (on the order of 1020 holes.cm−1) and 

doped with ≈5 % Mn. In basic terms, this is to some extent due to the strong p-d hybridization 

that engages the valence band in the host. In this approach, the keys to a high TC are a high 

density of states at the Fermi level and a large value of the p-d exchange integral.  Furthermore, 

Sato et al. (2000) predicted that the ferromagnetic state Co2+(d 7 ) in Co doped n-type ZnO could 

be stabilized by s-d hybridization, indicating another possibility of achieving high Curie 

temperatures.  Since these challenging theoretical predictions of Curie points above room 

temperature and the observation of room-temperature ferromagnetism in Co doped anatase 

TiO2 [Matsumoto (2001)], one of the most interesting and stimulating scientific developments of 

the early 21st century has been the study of semiconductors doped with TMs with unpaired d 

electrons. 

 In the case of ZnO, the solubility of TM elements, namely Mn and Co, can reach up to 

35% [Liu (2005)]. However, experimentally it is very difficult to obtain robust p-type doping of 

ZnO in the presence of high concentrations of TMs. The Mn doping is particularly attractive 

because the only potential second phase that contributes to the ferromagnetism is Mn3O4 with a 

Curie temperature below 50 K. Conversely, Co doping is more complicated, since Co in the 

metal form is ferromagnetic. On the other hand, in both ZnO thin films [Fukumura (2001)] and 

nanocrystalline powders [Mandal (2006)], the solubility limit for Fe was shown to be lower than 

5 at. %, and the formation of Fe oxide secondary phases was concluded for values exceeding 

this limit. 

 Early on, Ueda et al. (2001) used pulsed laser deposition (PLD) to grow ZnO doped with 

Co, Mn, Cr and Ni. From the several dopant-host combinations, only Co doped ZnO was 

found to be ferromagnetic with a TC of ≈280-300 K, and differences in magnetization were 

assumed to be due to differences in conductivity, indicating some form of carrier-mediated 

exchange interaction. However, other possibilities, such as magnetic secondary phase formation, 

could not be ruled out. Indeed, the magnetic moments per Co atom (1.8-2.0 β) were close to 

that of Co metal (1.7 β). 
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 Kim et al. (2002) used PLD to grow paramagnetic and highly resistive epitaxial Co doped 

ZnO and found that for substrate temperatures below 600ºC and oxygen partial pressure 

>≈10−5 Torr, homogeneous solid solutions could be grown for x < ≈0.25. But, when changing 

the substrate temperature to 700ºC and the oxygen partial pressure to 10−6 Torr, they obtained 

Co metal precipitates, with the expected appearance of Co induced ferromagnetism and much 

lower resistivity as a result of partial film reduction. They also found experimental evidences of 

spin-glass behaviour in some of the Zn1−xCoxO films. Conversely, polycrystalline powder 

samples of Zn1−xCoxO have been found to be antiferromagnetic [Yoon (2003)]. 

 Tuan et al. (2004) grew epitaxial Co doped ZnO by metalorganic chemical vapour 

deposition (MOCVD) and found that the material was consistently paramagnetic and highly 

resistive as grown. However, annealing in vacuum resulted in n-type conductivity and weak 

ferromagnetism between 5 K and 340 K. In contrast, PLD grown Co doped ZnO films, with 

various electron concentrations up to 4.61 × 1019 cm−3 at room temperature, showed only 

paramagnetism down to 2 K [Xu (2009)]. The authors also found that clustering instead of a 

uniform distribution of Co2+ ions may play a role, since a clear anomalous Hall effect was 

observed in the highly conducting Co doped ZnO films. 

 Recent investigations of Kaspar et al. (2008a) found no significant room temperature 

ferromagnetism in PLD grown Co doped ZnO thin films, for n-type conductivities in the range 

of 10-4-10-5 Ω.cm, indicating that itinerant conduction band electrons alone are not sufficient to 

induce ferromagnetism in this system, even when the carrier concentration is a significant 

fraction of the magnetic dopant concentration. After annealing in Zn vapour, the Co doped 

ZnO thin films became weakly ferromagnetic [Kaspar (2008b)], but this ferromagnetism was 

proved not intrinsic, since X-ray photoelectron spectroscopy (XPS) depth profiling showed the 

presence of Co(0), and X-ray absorption fine structure indentified the CoZn ferromagnetic 

secondary phase. In contrast, Xu et al. (2008a) brought new hope for this material having found 

tunnelling magnetoresistance at 5 K in magnetic tunnel junctions with Co doped ZnO as a 

bottom ferromagnetic electrode and Co as a top ferromagnetic electrode prepared by PLD, 

demonstrating the spin polarization in Co doped ZnO. 

 As in the case of epitaxial film growth, wet chemical synthesis of Co doped ZnO has 

produced a range of results. For instance, Risbud et al. (2003) thermally decomposed mixed Co 

and Zn oxalates to produce Zn1−xCoxO precipitates, yet none of the samples exhibited 

ferromagnetism. In contrast, Schwartz et al. (2003) found ferromagnetism in Zn0.964Co0.036O 
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nanoparticles grown by a reaction of Zn and Co acetates with ethanolic N(CH4)4OH. Recently, 

Belghazi et al. (2009) grew Co doped and Co,Al co-doped ZnO films by sol-gel process, and 

found weak ferromagnetism. Nevertheless, the comparative investigations between the two 

types of films showed no impact of the charge carriers on the magnetic behaviour of the 

material. 

 Despite the fact that the predictions only support ferromagnetism in p-type (Zn,Mn)O, 

there have been experimental reports on ferromagnetism in insulating (Zn,Mn)O [Jung (2002)] 

and n-type (Zn,Mn)O [Heo (2004a), Norton (2003b), Philipose (2006)]. Sharma et al. (2003) also 

showed that carrier-induced ferromagnetism can be obtained in either p-type or n-type ZnO 

with Mn concentration < 5 at.%. Later, Kundaliya et al. (2004) showed that processing (Mn, 

Zn)O under conditions similar to those used by Sharma et al. (2003) results in the formation of a 

vacancy stabilized and highly-defective Zn-doped Mn2O3 phase, rather than Mn doped ZnO. 

On the other hand, there are reports on PLD grown Mn doped ZnO films which exhibit either 

spin glass behaviour [Fukumura (2001)], weak ferromagnetism with very low TC [Jung (2002)], or 

no ferromagnetism at all [Tiwari (2002)]. Straightforward electron paramagnetic resonance 

(EPR) measurements revealed that ZnO nanocrystals substitutionally doped with Mn have a 

pure paramagnetic behaviour [Norberg (2004), Zhou (2003)]. Kittilstved et al. (2005) found 

experimental evidence of carrier mediated ferromagnetism through chemical manipulation. They 

found clear evidence of a correlation between p-type doping and high-TC ferromagnetism in Mn 

doped ZnO and an inverse correlation for Co doped ZnO. By spin coating Mn doped ZnO 

high-quality colloidal nanocrystals into films and changing the charge polarity of the carriers, 

Kittilstved et al. (2006) were able to switch the ferromagnetism on (p-type) and off (n-type). 

Similarly, the manipulation of the polarity of the doping in Co doped spin coated films was 

obtained, but in this case the ferromagnetic behaviour was produced by the n-type doping. The 

work of Diaconu et al. (2005a, 2005b, 2005c) indicates that both paramagnetic and 

antiferromagnetic interactions of the Mn ions occur in Mn doped ZnO thin films. Later the 

same group reported the observation of Curie temperatures above 375 K in PLD grown thin 

films using targets sintered at temperatures above 500 ºC [Diaconu (2007)]. More recently, Xu et 

al. (2008b) achieved room temperature ferromagnetism in PLD grown ZnO films co-doped 

with Mn and Nd, once more suggesting that co-doping is an efficient method for introducing 

levels into the ZnO band gap to mediate the ferromagnetic interaction. 
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 However, these results remain controversial since several reports claimed that the 

magnetic signature arises from clustering or segregated phases [Han (2003), Norton (2003a), 

Kolesnik and Dabrowski (2004), von Bardeleben (2008)]. Another example of the effect of 

secondary phases can be found in a work on Fe and Cu co-doped ZnO films [Shim (2005)], 

where the presence of Zn ferrite phases was found to be the explanation for preliminary results 

pointing to a robust ferromagnetic diluted phase [Han (2002)]. Other authors have identified 

precipitates of Fe3O4 [Shinagawa (2006)], Ni [Zhou (2006a)], ZnFe2O4
 [Zhou (2008a)] or Mn, Fe 

and Co [Blasco (2006)] as the origin of the detected room temperature ferromagnetism in ZnO 

based materials. This points to the need for further investigations using a variety of methods to 

establish the lattice position, charge state, and oxidation state of the TM in the host lattice, in 

order to clarify magnetic properties of these materials that are very sensitive to the preparation 

method. 

 An optimistic approach to phase separation is given by Dietl (2007). The author points 

out the relevance of two kinds of nanoscale spacial phase separations. The first is spinodal alloy 

decomposition (chemical phase separation) into regions incorporating either very large or very 

small concentration of the magnetic element. For instance, if the concentration of one of the 

constituents is small, it may appear in a form of coherent nanocrystals embedded by the majority 

component. The second is disorder-driven electronic phase separation into ferromagnetic 

bubbles containing a large carrier density, and immersed in a depleted paramagnetic 

environment. Mainly, the author argues that weakly localized or delocalized carriers are 

necessary to mediate the ferromagnetic interactions between the randomly distributed diluted 

magnetic spins. Moreover, the author suggests that, since the distribution of magnetic ions can 

be controlled by growth conditions, co-doping, and post-growth processing, it is possible to 

prepare a material which is either a uniform magnetic semiconductor or a hybrid 

semiconductor/ferromagnet composite system. 

 At this point, it is essential to make a distinction between true ferromagnetic 

semiconductors and those which simply show magnetic hysteresis. In a true DMS, the magnetic 

dopant spins preserve a remnant alignment under the influence of spin polarized free carriers, 

which may be introduced either by the magnetic dopant or by a secondary electronic dopant. In 

the case of Zn1-xCo1−xO, magneto-optical effects measured by MCD indicate that this is a true 

DMS with polarized carrier population [Ando (2001a), Heo (2004a)]. On the other hand, 

magnetic hysteresis can have other physical origins, such as magnetic secondary phase 
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formation, or intrinsic defects [Xu (2008c), Zhou (2008b), Coey and Chambers (2008)]. 

Additionally, nonmagnetic semiconductors with embedded secondary phase ferromagnetic 

particles may exhibit an anomalous Hall effect, indicating an internal magnetic force on free 

carriers [Denardin (2003), Shinde (2004)]. Yet, the possible spin polarization in the majority 

carrier band so far has not been proved controllable in a way that is useful for spin-based 

devices. 

 Despite such pullbacks, Pan et al. (2007) reported surprisingly strong room temperature 

ferromagnetism in C-doped ZnO films grown by PLD. Along with the first-principles 

calculations, experimental evidence was given that carbon ions substitute for oxygen and their 

p-orbits contribute to the local moments. This result was checked and confirmed by Zhou et al. 

(2008c) by introducing carbon into ZnO films by ion implantation. 

 For both theoretical and experimental investigations to arrive at valid structure–magnetic 

function relationships, well-characterized magnetically doped semiconductors of high structural 

quality must be generated and carefully studied. Doped TM oxides are extremely complex, 

principally when the desired doping levels approach the limits of solid solubility. The structural 

complications that can result in these materials require detailed materials characterization prior 

to drawing conclusions about the mechanism of magnetism. Magnetic contamination is very 

easy to occur, for example by simply using common stainless steel tweezers, and results in 

misleading magnetic signals [Abraham (2005), Salzer (2007)]. Additionally, there is the possibility 

of detecting pitfalls in search of magnetic order. For example, Salzer et al. (2007) found 

ferromagnetic behaviour of single crystalline sapphire substrates, which is partially removed after 

surface cleaning. Detailed analysis of artefacts and pitfalls, such as contamination of cleaving 

edges by Ney et al. (2008) demonstrate that hysteresis measurements are not a sufficient criterion 

to prove the existence of ferromagnetism if the size of the signal is small (below 4×10-7 emu). As 

will be shown is this work, EPR is a valuable technique that can give additional insight into the 

magnetic interactions in these materials, given its extreme sensitivity to the microscopic 

environment of the doping elements. The combination of such a sensitive magnetic technique 

with structural characterization results in feasible conclusions about the magnetic features of the 

materials. Additionally, high standards of cleanliness and purity which have been used in the 

semiconductor industry should be applied to DMS research.  
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3  THEORET ICAL  FRAMEWORK  

3 . 1  E L E C T R O N   P A R AM A GN E T I C   R E S O N A N C E  

The phenomenon of electron paramagnetic resonance (EPR) was first found by Zavoiskii 

(1944) when he observed induced quantum transitions between Zeeman sublevels in his studies 

of paramagnetic relaxation and resonance spectroscopy in the radiofrequency band (10-100 

MHz). The magnetic resonance phenomenon is based on magnetic dipolar moment transitions 

between Zeeman energy levels, in the presence of a static magnetic field, and it consists of the 

absorbance of the electromagnetic radiation related to the occurring transitions. Due to the 

unique information that the magnetic resonance spectra provide about the interactions of the 

magnetic dipolar moment (i.e. the electron in EPR or the nucleus in nuclear magnetic resonance 

(NMR)) with its surrounding, this experimental technique has become essential in several areas 

of natural sciences, such as Physics, Chemistry, Geology, Biology and Medicine. 

 As most of spectroscopic techniques, EPR measures the interaction between 

electromagnetic radiation and matter. Nevertheless, the majority of these techniques use the 

interaction with the electric-field component of the radiation. For absorption to occur, the 

energy of a quantum of radiation must be equal to the separation between certain energy levels, 

and the oscillating electric-field component must be able to interact with an oscillating electric 

dipole moment. Similarly, a permanent magnetic moment may interact with the magnetic 

component of the electromagnetic radiation, forming the basis for magnetic resonance 

spectroscopy. Generally, in magnetic resonance experiments, an external magnetic field is 

applied in order to align the magnetic moments and split the energy levels (Zeeman effect). 

Each electron has an intrinsic magnetic-dipole moment that arises from its spin, but in most 

systems electrons occur in pairs, and the net magnetic moment is zero. Hence, EPR can be 

applied to any system containing unpaired electrons or magnetic nuclei.  

 EPR is extremely sensitive to the microscopic environment of the centres, being a very 

powerful technique for studying the electronic structure of defects in semiconductors, as 

revealed by the fine structure (FS) of the absorption. EPR gives insight in the total angular 

momentum, and the local symmetry of point defects. Moreover, with this technique one can 

probe the chemical nature of defects provided by nuclear hyperfine (HF) interactions, revealing 

both the nuclear spin and the relative abundance of the involved isotopes. The anisotropy of 
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such interactions provides further information on the structure and symmetry of the centres. 

Given enough data and guidance from theory, one may construct an energy-level diagram from 

a spectrum. Comparison between an energy-level diagram and an observed spectrum shows 

that, of all possible transitions between the various levels, only a relatively few “allowed” 

transitions are observed. Hence, one has to take into account the selection rules in order to 

analyze the transitions intensities.  

 

3.1.1 Hamiltonian operators 

 The basis of the interpretation of all EPR spectra in the solid state is the appropriate 

assignment of the spin transitions to the energy levels of the paramagnetic centres.  These 

energy levels can be determined from the solutions of the eigenvalue problem: 

 ψψ E=[ , (3.1)  

where [  is the Hamiltonian operator, which characterizes the interaction of the paramagnetic 

centre with itself, with the host substance, with the applied magnetic field and eventually with 

additional external interference. Since the exact solution of a many particle problem is not 

achievable in practice, one has to find the suitable approximation procedure in order to 

completely describe the system taking into account its experimental properties, but in a simple 

and clear way. The Hamiltonian operator of the full system may be approximated by a sum of 

individual operators  i[ . The perturbation theory may be applied taking into account the 

magnitude of the involved individual contributions. 

 Neglecting weak interactions, the Hamiltonian operator may be approximated by the 

following sum 

 SSZQILSILSCFF [[[[[[[[[ +++++++= , (3.2)  

where: 

i. The Hamiltonian for the free ion is 
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here Z is the atomic number, e is the electron charge, m is the electron mass, and ijr  is the 

radius vector of the i–th electron with respect to the j–th nucleus jiij rrr −= . F[  causes 

energy splittings of the order of 104-105 cm-1. 
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ii. The Hamiltonian of the crystal field CF[  considers the influence of the electric fields 

created by the neighbouring ions or molecules (“ligands”). The splitting values can be 

calculated by means of group theory. They depend on the orbital quantum number L and 

on the geometry of the crystal field (CF) and span the range from 105-101 cm-1. 

iii. LS[  is the Hamiltonian of the spin–orbit interaction, which in the case of the Russell–

Saunders coupling is given by 

 ( ) SL ⋅= rξLS[ , (3.4)  
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2 22 , ( )rV  is the Hartree-Fock central field potential, L and S 

are the total orbital angular momentum and the electron spin operators, respectively. For 

the iron group ions, the splittings due to LS[  are of the order of 102 cm-1. 

iv. The Hamiltonian of the HF structure SI[  describes the interaction between the electron 

spins and the nuclear magnetic moment: 
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where I is the nuclear angular momentum and includes the spins as well as the nucleons 

orbital momenta. For the sake of brevity, one calls I nuclear spin. g and gN are the electron 

and the nuclear g-factors, respectively, and β and βN are the Bohr magneton and the 

nuclear magneton, respectively. The first term reflects the usual dipole–dipole interaction 

between the spin magnetic moments of the nucleus and of the electrons. The second term 

reflects the Fermi contact interaction and can be obtained from the first one by making 

0→r . The first term accounts for the HF interaction of the p–, d– and f–shell electrons 

with the nucleus. The s–electrons have a finite density at the nucleus. For them, the HF 

interaction is given by the second term. For the iron group, the HF splitting does not 

exceed 10-1 – 10-3 cm-1.  

v. The interaction of the nuclear spin with the orbital momentum of the electron is described 

by the Hamiltonian 

 ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
=

k k

k
NNIL r
βgβg 5

Il
[ , (3.6)  



20 Chapter 4 Experimental methods 

 

 

with kl  being the operator of the individual orbital angular momentum. This interaction 

indirectly couples the nuclear and the electron spins, namely through the spin-orbit 

interaction. 

vi. The Hamiltonian of the nuclear quadrupole interaction Q[  is given by 
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and considers the electrostatic interaction of the CF with the quadrupole moment of the 

nucleus Q. The quadrupole interaction causes a level shift but no splitting. The interaction 

occurs only for I ≥ 1 and the splitting is of the order of 10-3 cm-1 .  

vii. The energy of the interaction of the external magnetic field B with the spin magnetic 

dipole moments of the electrons and of the nucleus is ( ) ( )IBSB ⋅−⎟
⎠

⎞
⎜
⎝

⎛
⋅∑ NN

k
k βgβg  

( ) BIS ⋅−= NN βgβg . In the case of a constant magnetic field the Zeeman Hamiltonian is 

given by 

 ( ) BIBSL ⋅−⋅+= NNZ gβgβ[ . (3.8)  

For the X–band (ν ≈ 9 GHz) and g ≈ 2, B ≈ 3300 G we obtain the quantum mechanical 

mean value of the Zeeman Hamiltonian .cm 3.0 -1≈Z[  Since the ratio between the 

Bohr magneton and the nuclear magneton β/βn is equal to ratio between the proton and 

electron masses mp/m, the nuclear Zeeman term is small when compared to the electron 

one. Therefore, the nuclear Zeeman term may be neglected when the magnetic field at the 

nucleus due to the electron spin is significantly stronger than the applied magnetic field. 

viii. The Hamiltonian SS[  describes the energy of the magnetic dipole–dipole interaction of 

the paramagnetic particles among each other (that is, the spin–spin interaction); 
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The fact that 3

1

ik
SS r

∝[ , leads to a strong dependence of the splitting on the 

concentration of the paramagnetic particles. In the paramagnetic salts (e.g. MnCl2, CuSO4), 

the splittings are of the order of 1 cm-1. Because the spin–spin interaction makes the whole 
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picture very complicated, one often uses the method of “magnetic diluting”. That means, 

the paramagnetic ions are diluted in a diamagnetic matrix (host crystal). If the 

concentration of the paramagnetic ions is ≤ 1 at. %, the spin–spin interaction can be 

neglected. 

 

3.1.2 Spin Hamiltonian 

The electronic states in a crystal are described by the solution of the Schrödinger equation which 

comprises the Hamiltonian that expresses the sum of all interactions concerning the involved 

nuclei and electrons [Kittel (1996)]. The solution of this equation is impossible to achieve in 

solids. Nevertheless, using some well known approximations, namely considering that the 

electron mass is much smaller than nuclear mass, the Born-Oppenheimer approximation, the 

one-electron approximation and the periodic properties of a perfect crystal, it can be shown that 

the wave functions of the electrons in the static lattice are of the Bloch type [Kittel (1996)]. 

Hence, the electronic structure of a perfect crystal consists of several energy bands, which may 

be separated by forbidden ones. In insulators and semiconductors, the valence band (highest 

occupied energy band) is completely filled with electrons. The transition between insulating and 

semiconductor materials is continuous and dependent on the value of the band gap energy Eg 

between the valence and conduction band. 

 The defects, such as impurities or imperfections, in the material may be described as a 

perturbation to the perfect crystal, introduced by a localized potential. This effect is taken into 

account by introducing a perturbation to the Hamiltonian of the perfect crystal. Depending on 

the nature of the defect, this perturbation may induce mid-gap levels (deep defects) due to 

strong localized potentials or levels near the band edges (shallow defects) owing to weak 

delocalized potentials. 

 The ground state of a paramagnetic ion in a crystal is usually composed of a group of 

electronic levels whose separation is of the order a few reciprocal centimetres, which is very 

small compared to the energy separation with respect to other electronic states. In this sense, to 

interpret a paramagnetic resonance spectrum one can use the approach of the spin Hamiltonian 

(SH) which only considers the interactions at the ground state level of the ion. Usually, a 

paramagnetic resonance spectrum is rather complex, composed of lines due to different 

electronic transitions. The magnetic field at which these transitions take place changes with the 

frequency of the applied radiation, and, in the case of anisotropic interactions, it will also be 
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dependent on the relative orientation of the applied magnetic field and the crystal axes. The set 

of data obtained from measurements with different frequencies and orientations, under correct 

interpretation, comprises meaningful information about the structure and chemical nature of the 

paramagnetic centre. This interpretation is carried out in the light of the SH whose form can 

frequently be guessed from some considerations of CF symmetry. Such a SH contains relatively 

few terms and the magnitude of the coefficients of these terms completely describes the 

experimental data. The behaviour of the involved group of levels can be represented by defining 

an “effective spin” S~, such that the number of levels in this group is given by 1~2 +S , as in an 

ordinary spin multiplet. It is noteworthy that in some cases the effective spin and the true spin 

of the ion coincide, e. g. if the orbital momentum is zero or it is “frozen in” by the CF. It is also 

required that the matrix elements between the various states determined by the full Hamiltonian 

are proportional to those of the SH.  

 All the contributions of an orbital singlet ground state and of the excited states are 

combined into constants  and the terms in the SH depend on the magnetic field B, the electronic 

spin S and the nuclear spin I. Thus, in general the SH can be written as: 

 ( )∑ +++=
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,

L[ , (3.10)  

where the first term corresponds to the electron Zeeman interaction, the second term accounts 

for the electron quadrupole interaction (FS and zero field splitting (ZFS)), and the third term 

represents the HF interaction due to the presence of nuclear magnetic dipole and electric 

quadrupole moments in the central or ligand ions. Depending on the special problem one must 

add other terms, such as the nuclear Zeeman interaction, the nuclear quadrupole interaction and 

the interaction between the electron spin and higher order octopole momentum. The 

parameters of the SH are determined by fitting of the eigenvalues of this operator to the 

observed spectrum. Subsequently, the computation of the parameters can take place for the 

complete analysis of the spectrum. In this sense, Abragam and Pryce (1951) developed the 

concept of the SH for the analysis of EPR spectra for the so-called mean crystal field (i.e. in the 

case of spin-orbit interaction < crystal field < Coulomb interaction between the electrons of the 

paramagnetic centre).  

 For determining the centre symmetry and computing the parameters of the SH, in most 

cases the assumption of a rigid crystal lattice in first approximation is sufficient. Nevertheless, 
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for the explanation of the temperature dependence of the parameters, the relaxation behaviour 

of the centres and the coupling to the crystal lattice vibration has to be considered. However, 

this is not valid for EPR spectra of manifold states with non or only partially quenched orbital 

degeneracy. In these cases (e.g. for orbital doublet and triplet states), using the effective 

Hamiltonian operators and neglecting the interaction of the electrons of the paramagnetic 

centres with the lattice vibrations (electron-phonon coupling) can lead to wrong results. Hence, 

in such cases the Hamiltonian operator (3.10) must include not only the electron and nuclear 

spin operators, but also contributions of the orbital momentum of the electrons of the 

paramagnetic centre. 

 Generally, the SH does not have an achievable analytical solution. Therefore, in practice, 

the eigenvalues of the system are determined numerically through approximation methods.  

 
3.1.3  Crystal Symmetry 

The theory of molecular orbitals describes the modifications of the binding in the first 

coordination sphere, which is proved to be the most significant in order to interpret the 

paramagnetic centre properties. The association degree between the electron and the central ion 

varies continuously between zero and infinity (usually normalized to 1). In the case that the 

electrons of an ion are completely bonded to the ion, while the set of ligand atoms are at an 

equilibrium distance in the first coordination sphere, we are in the presence of the CF model. In 

this model, the electrons of the ligands will remain, in the same way, completely attached to 

those atoms. Conversely, one has a completely covalent bond described by the ligand field 

model, in the case of the overlapping of the wave functions of the electrons of the paramagnetic 

centre and of the ligands, so that any of the electrons of either entities may be found with equal 

probability associated to any atom of the system, whether the central ion or the ligands. Both 

described cases represent extreme types of bonding which may be found in coordination 

complexes, being special cases of the molecular orbital treatment. Nevertheless, by means of 

that treatment, all intermediate degrees of electron sharing may also be described. Thus, it is 

usual to reserve the designation of crystal field theory for the extreme in which there is no 

overlapping of the wave functions of the electrons of the central ion and of the ligands, and to 

employ the term ligand field theory to all cases in which there is a non-zero degree of mixing. 

 In EPR we are particularly interested in studying paramagnetic centres. As a paramagnetic 

centre we understand an impurity, defect, dangling bond or charge carrier possessing a non-zero 
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angular momentum, normally including its close environment. The simplest way to treat the 

ligand field is to consider it as pure electrostatic interaction. The ligands may be regarded as 

localized ions in certain lattice sites that create a crystalline potential U, which reflects the local 

symmetry of the ionic environment. This will result in an energy splitting of the magnetic 

electrons, due to the presence of this crystal electric field (Stark effect). 

 A free ion has spherical symmetry, and if only its respective orbital momentum is 

considered, only one, three, five or seven linearly independent eigenfunctions belong to an S-, 

P-, D- or F-state, respectively. In this sense, e.g. a D-state is a fivefold orbitally degenerate state. 

The analysis through group theory shows that a crystal field with cubic symmetry (Oh or Td) does 

not split a S- or a P-state, but the degeneracy of the other terms is partially lifted. The fivefold 

degenerate D-state is split by cubic symmetry in two states, one triplet (T2) and one doublet (E) 

states, and a F-state is split into two triplet states (T1 and T2) and one orbital singlet state (A2), as 

shown in Fig. 3.1. Furthermore, the corresponding calculations demonstrate that tetrahedral 

symmetry always inverts the sequence of the energy levels due to splitting in octahedral 

symmetry [Abragam and Bleany (1986)]. For example, the energy level sequence of an F-state of 

a free ion that is put into an octahedral crystal field is A2g, T2g, T1g,1  so if it was put into a 

tetrahedral ligand field the energy level sequence would be T1, T2, A2. CFs of lower symmetries 

cause further splitting of the states. The lifting of the degeneracy by non-cubic ligand fields 

frequently causes that transition metal (TM) ions have zero orbital angular momentum [van 

Vleck (1932)], which allows that these energy levels of the ion be essentially characterized by the 

spin (the effective spin). Therefore, the SH may be written as a function of the nuclear and 

electron spin operators, and the orbital angular momenta are included in the parameters of the 

different terms. 

 

                                                 
1 Contrary to tetrahedral complexes, in octahedral ones there is an inversion symmetry centre and the terms are characterized by 

an additional index g (meaning pair), so, e.g. T1g corresponds to T1. 
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Fig. 3.1. Splitting of the ground state of the ions with valence configurations of d 1 to d 9 (Ti3+ to Cu2+) in octahedral 

symmetry. In tetrahedral symmetry, the terms are inverted, e.g. for d 7 the ground state will be an orbital singlet (A2).  

 

3.1.4 Selection rules 

The type of the interaction between the electromagnetic radiation and the spin system 

establishes the transition probability between the involved states, iW  and fW . Under 

resonance conditions, this transition probability is proportional to 
2

1 fi WW [  , where 1[  

is the perturbation to the spin system by the magnetic component of the microwave radiation 

B1: 

 μB ⋅−= 11[ , (3.11)  

μ  is the total magnetic dipole operator of the spin system. Since generally we have BB ⊥1 , if 

we choose ZB  and X1B , the Hamiltonian operator will be: 

 XnnX IBβgSBβg 111 −=[ . (3.12)  

For the eigenfunctions of the SH  IS mM , , the matrix elements of 1[  are 

 
''

''
1

''
1 ,,

IXISSNN

IISXSISIS

mImMMβg

mmMSMBβgmMmM

−

=[
, (3.13)  

where MS and mI are the electron and nuclear spin quantum numbers, respectively. In the case of 

EPR transitions, these matrix elements are nonzero when 1±= SS MM  and II mm ='  [Weil et al. 
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(1994)]. Therefore, under high-field conditions, the selection rules for detectable transitions in 

EPR are 

 0Δ     and     1Δ =±= IS mM . (3.14)  

The transitions that obey these rules are commonly called allowed transitions and have a 
transition probability proportional to ( )2

1Bgβ . Other transitions are possible at low fields, where 
the eigenfunctions become linear combinations of the IS mM ,  states and the quantum 

numbers MS and mI are no longer appropriate. These transitions are known as “forbidden” 

transitions.  
 

3.1.5 The anisotropy of the g-factor: doublet state 

For a system with an odd number of electrons, the eigenvalues are at least doubly degenerate 

(Kramers degeneration) without an applied magnetic field. Hence, a Kramers doublet cannot be 

split by any crystal field. Neglecting the nuclear interactions, the interactions between the 

effective spin and the applied magnetic field can be described by the following SH operator 

 
}SBgSBgSBgSBg

SBgSBgSBgSBgSBβ{gβ

YZZYZYYZXZZXZXXZ

XYYXYXXYZZZZZZYYYYXXXX

+++
+++++=⋅⋅= SgB[

. (3.15)  

In the majority of the cases the relation gij = gji is valid, and the non-diagonal elements can be 

eliminated by choosing the appropriate X, Y, and Z axes (designated as principal axes system). 

Hence, Eq. (3.15) is reduced to:  

 }SBgSBgSBβ{g ZZZZZZYYYYXXXX ++=[ . (3.16)  

In the case of an arbitrary choice of the magnetic field direction, given the polar angles θ and φ 

relative to the principal axes of the g-tensor, Eq. (3.15) is given by2: 

 }SθgSφθgSφθB{gβ ZZYYXX coscossinsinsin ++=[ . (3.17)  

Introducing the basis functions 2/1±=SM  , one gets the following eigenvalue problem 

                                                 
2For simplification, usually in the main axes system one sets: gXX = gX, gYY = gY, gZZ = gZ. 
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EθBg)φθBigφθB(g

)φθBigφθB(gEθBg

ZYX

YXZ . (3.18)  

Thus, the resulting eigenvalues are 

 )φgφ(gθθgBβE 22
Y

22
X

22
Z cossinsincos

2
1 2

2,1 ++±= , (3.19)  

and the transition energy is given by 

 BβgEEνh =−= 12 , (3.20)  

were h is the Planck constant, and 
 )φgφ(gθθgg 22

Y
22

X
22

Z cossinsincos2 ++= . (3.21)  

The Zeeman splitting and thus the energy states involved in the electron spin transition 

MS = -1/2↔+1/2 become angular dependent, i.e. dependent on the direction of the applied 

magnetic field B relatively to the principle axes (Fig. 3.2). For axial symmetry, i.e. for tetragonal 

or trigonal symmetry, one selects the tetragonal and/or trigonal axis of the crystal field 

perturbation as the Z-axis3 and Eq. (3.21) is simplified with gZ = g||  and gX = gY = g⊥ 

 θgθgg 22 sincos 22
⊥+= . (3.22)  

In the case of a cubic crystal field, the magnetic properties must show likewise cubic or higher 

symmetry.4 In this case, the g-value is isotropic, g = gX = gY = gZ, and the choice of the axes is 

arbitrary. Thus, a new coordinate system (X', Y', Z') becomes appropriate; B is selected to be 

parallel to Z', and the SH operator (3.17) is reduced to 'ZBSβg=[  with eigenvalues 

BβgE
2
1

2,1 ±= . 

                                                 
3 The X- and Y-axes are equivalent in the plane perpendicular to the Z-axis, because of the axial symmetry. This is used 

frequently for simplification of the computation for axial symmetry. Thus, it is generally accepted that the direction of B is 
determined by an angle θ in the ZX-plane. Thus the spin Hamilton operator (3.16) is simplified to 

{ }θgθSgBβ ZZ sincos ⊥+=[ . 
4 Strictly, the following is valid: generally spherical and cubic symmetry cannot be differentiated by a bilinear term as gijBiSj. Hence, 

in the SH operator, the group theory allowed Zeeman terms ~S 3B must be considered.  However, these are different from 
zero only for S ≥ 3/2.  If this contribution is not to be neglected relatively to the normal Zeeman interaction, then a cubic 
angular dependence is observed, instead of a line arising at the same magnetic field value for arbitrary magnetic field directions 
(frequently designated as “standing line”). If one doesn’t consider locally the difference between quantum-mechanical spin 
operators and vectors/tensors, then the situation is similar to crystal physics: spherical and cubic symmetry can only be 
differentiated if the properties are described at least by a 4th degree tensor (e.g. elasticity coefficients), since only these can 
differentiate a cubic (tetrahedral, octahedral) symmetry axis from spherical symmetry. 
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  For the experimental determination of the parameters g||  and g⊥, which describe the entire 

angular dependence in the case of axial symmetry, in agreement with the relation (3.22), one 

measures the resonance field for B|| Z and B⊥Z. Similarly, in the case of orthorhombic 

symmetry, gX, gY and gZ, the resonance field values are determined for B|| X, B|| Y and B|| Z. 

  If the paramagnetic centre is introduced in a crystal with higher symmetry than the point 

symmetry of the centre, several different but equivalent orientations of the centre exist. For 

example, for a centre with trigonal symmetry in a cubic crystal field, e.g. silicon with Td-

symmetry, there are four equivalent centre orientations, thus for a general direction of the 

magnetic field all have different angles θi, and by rotating the magnetic field in a certain crystal 

plane, in agreement with Eq. (3.21), each one will exhibit a different angular dependence. 

Therefore, a clear determination of the centre symmetry (Laue symmetry) is possible. 
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Fig. 3.2. Zeeman splitting and energy levels of the electron spin transitions for S = 1/2 and B || Z (θ = 0°) und B⊥Z (θ = 90°), 

in the case of a centre with axial symmetry. 
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3.1.6 Zero field splitting: electronic quadrupole fine structure (S = 1, 3/2) 

In a CF with cubic symmetry, without any applied magnetic field, the 2S+1 energy levels are 

degenerate. By applying a magnetic field, the Zeeman effect splits the levels and the result is 

described by the Hamiltonian  

 SgB ⋅⋅=β[ . (3.23)  

Thereby a set of energy levels is produced with the same energy splittings. The allowed 

transitions occur between successive energy levels (ΔMS =±1) separated by an energy of gβB, so 

that there are 2S possible transitions with the following resonant condition  

 βBghν = . (3.24)  

This is illustrated in Fig. 3.3 for S = 1. 

 When there is a deviation from cubic symmetry, one must introduce a second degree FS 

term in the spin operator5 

 ∑=⋅⋅
ji,

jiij SSDSDS . (3.25)  

In the case of orthorhombic symmetry, the splitting due to the CF distortion is described by the 

term6 

 }SE{S1)}S(S
3
1D{S 2

Y
2
X

2
Z −++− . (3.26)  

In the case of axial symmetry, E = 0 and the SH operator including the Zeeman interaction is 

given by7: 

 1)}S(S
3
1D{S}θSgθSB{gβ 2

ZXZZ +−++= ⊥ sincos[ . (3.27)  

 

                                                 
5 D is a symmetric traceless tensor: Dij = Dji, DXX + DYY + DZZ = 0. By projecting the D tensor into its principal axis system (X', 

Y', Z') one gets: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

''00
0''0
00''

ZZD
YYD

XXD
 , where the common definition is: DX'X' = -1/3D + E, DY'Y' = +1/3D + E; 

DZ'Z' = 2/3D. Wherefrom follows that D=3/2DZ'Z', E = 1/2(DX'X' – DY'Y'). For axial symmetry, the orthorhombic 
contribution is zero, thus E = 0.  

6 Here one must always consider that in this way of writing, the orthorhombic distortion is expressed in the principal axis system 
(X, Y, Z).  

7Considering footnote 4. 
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Fig. 3.3. Zeeman splitting for a triplet state S = 1 in a crystal field with cubic symmetry. Both the allowed resonant transitions 

occur when the condition hν = gβB is fulfilled.  

 

And for a triplet state with S = 1, with the basis functions SM  (ΔMS = ±1), the corresponding 

eigenvalues are given by the following equation8 

 
0

'3/1cossin2/10
sin2/1'3/2sin2/1

0sin2/1'3/1cos

                                                                        

1

0

1

10 1

=
−+−
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⊥

−

+

−+

EDθGθG
θGEDθG

θGEDθG

Z

Z , (3.28)  

where the abbreviations GZ = gZβB und G⊥ = g⊥βB are employed. The solutions are only analyzed 

for two different cases, namely B|| Z and B⊥Z. For B|| Z, the non diagonal terms vanish because 

sinθ = 0, and therefore one gets the following eigenvalues: 

 ZGDE +=+ 3
1

1      ZDE
3
2

0 −=     ZGDE −=− 3
1

1 . (3.29)  

The energy level splittings are illustrated in Fig. 3.4, together with the allowed transitions 

(ΔMS = ±1), corresponding to hν = |D ± gZβBZ| and, for a more complete picture, the forbidden 

                                                 
8To avoid confounding between the orthorhombic distortion E with the energy eigenvalues, the latter are designated as E'. 
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transitions (ΔMS = ±2) with hν = 2gZβBZ are also indicated. From Eq. (3.28), for B⊥Z (sinθ = 1), 

one gets: 

 0''' =⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
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⎜
⎝
⎛ − ⊥ ED

3
12GED

3
2ED

3
1 2

2

. (3.30)  

From where the solution follows: 

 DE
3
1'1 = . (3.31)  

Dividing Eq. (3.30) by 1/3D-E', one gets the quadratic equation  

 02
9
2'

3
1' 222 =−−+ ⊥GDDEE . (3.32)  

with the solutions  

 
2

3,2
21

2
1

6
1

⎟
⎠
⎞

⎜
⎝
⎛+±−= ⊥

D
BβgdDE . (3.33)  

From Eqs. (3.31) and (3.33), the resulting energy splitting as a function of the applied magnetic 

field is represented in Fig. 3.5. The eigenfunctions corresponding to the three eigenvalues are 

linear combinations of the three basis functions 1+ , 0  and 1− . Thus, the transitions 

between all three energy levels are allowed, and with sufficiently high microwave frequency ν, 

the three transitions can be observed. In very strong magnetic fields (gβB >> D) the amplitudes 

of the eigenfunctions become weaker than the basis functions by a factor of the order of 

magnitude of (D/g⊥βB)2, in good approximation. 
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Fig. 3.4. Zeeman splitting and the allowed transitions (ΔMS = ±1) (___) as well as the forbidden transitions (ΔMS = ±2) (---) 

for the SH (3.27) with S = 1, and B || Z. For exactly B || Z, the transition probability of the forbidden transitions is zero. 
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 Finally, we will address the spin quartet state (S = 3/2) in a CF with axial symmetry 

(D ≠ 0, E = 0). Similarly to the case of the triplet state (S = 1), the SH is given by Eq. (3.27), but 

with the basis functions SM  (MS = -3/2, ..., +3/2), and the energy determinant is as follows:  
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 (3.34)  

For B|| Z (sinθ = 0), (3.34) is a diagonal determinant concerning the basis functions SM  and 

the four corresponding eigenvalues are immediately determined:  
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Fig. 3.5. Zeeman splitting and the allowed transitions (ΔMS = ±1) (___) as well as the forbidden transitions (ΔMS = ±2) (---) 

for the SH (3.27) with S = 1, and B⊥Z. 
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For a positive D,9 the energy level diagram is shown in Fig. 3.6, Under the assumption that the 

ZFS is smaller than the microwave energy (2D < hν), 2S = 3 allowed resonance lines are 

observed. The parameters gZ = g||  and D can be determined from the line positions of these three 

transitions. 

 For B⊥Z the energy determinant (3.34) is simplified due to cosθ = 0 and sinθ = 1:  
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from where one finds the solutions: 
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 (3.37)  

The corresponding eigenfunctions SM̂  are linear combinations of the basis functions SM . 

The energy level splitting diagram is shown in Fig. 3.7. The degeneracy for B = 0 (doubly 

degenerate spin state with a ZFS equal to 2D) is lifted by the magnetic field. 

 For 2D < hν all six possible transitions are observed, including the three 'allowed' 

transitions ΔMS = ±1, and due to the mixture of the wave functions, the two 'forbidden' 

transitions ΔMS = ±2 and the 'forbidden' transition ΔMS = ±3. The parameters g⊥ and D can be 

determined from the corresponding six equations.  

                                                 
9 For a negative D, the arrangement of the energy levels is inverted; however the line positions remain unchanged. Thus, generally 
the sign cannot be determined from the measurement of the angular dependence of the line positions. Nevertheless, it can be 
determined by the temperature dependence of the signal intensity. Due to the occupation probabilities of the energy levels, at 
very low temperatures only the lower levels are occupied and, from the temperature dependence of the signal intensity one can 
determine the D-sign. 
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Thus, the three parameters g|| , g⊥ and D are over determined by the resonance equations for B|| Z 

and B⊥Z, because there are more equations than unknown quantities. Therefore, the parameters 

can be averaged, considering the different measuring accuracies for the different magnetic field 

ranges. 
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Fig. 3.6. Zeeman splitting and the possible six electron spin transitions for hν > 2D:  three allowed transitions ΔMS = ±1 (____) 

as well as the two forbidden transitions for ΔMS = ±2 (---) and one forbidden transition for ΔMS = ±3 (....), corresponding to 

the SH (3.27) with S = 3/2 and B || Z. 

 Hence, for B|| Z, the relation SS MM =ˆ  is valid, i.e. the eigenfunctions SM̂  are equal 

to the appropriate basis functions SM , and therefore only the three allowed transitions 

ΔMS = ±1 can be observed for this magnetic field. 

 In the case of 2D >> hν, and if high enough magnetic fields are not achievable, one can 

only observe transitions within the spin doublet 2/1± . This isolated doublet can then be 

described by the simple SH  

 SBβg eff
~=[  (3.38)  
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Fig. 3.7. Zeeman splitting and the possible six electron spin transitions for hν > 2D:  three allowed transitions ΔMS = ±1 (____) 

as well as the two forbidden transitions for ΔMS = ±2 (---) and one forbidden transition for ΔMS = ±3 (....), corresponding to 

the SH (3.27) with S = 3/2 and B⊥Z. 

with the effective spin 2/1~ =S . Neglecting terms of the order of 
2

2 ⎟
⎠
⎞

⎜
⎝
⎛

D
Bβg , the line positions 

may be described in first order by  

 θ)(2gθ(gg 2222
Zeff sincos ⊥+=  (3.39)  

i.e. similarly to the spin doublet S = 1/2, if one sets 
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. (3.40)  

 This example shows how the choice of the effective spin can take place for the parametric 

description of the spectra. If the ground state of an ion is a spin doublet, the EPR spectra can 

always be described with an effective spin 1/2 and with its effective g-values, if the next higher 

energy levels lie much higher, Δ >> hν. Considering the second order contributions given by 

perturbation theory, one gets the equation 
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for the relation between the description with the effective spin 2/1~ =S  by Eq. (3.38) and the 

description with the true spin S = 3/2 by the SH operator (3.27). Consequently, the result for 

the extreme line positions is given by: 
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 (3.42)  

 

3.1.7 Fine and hyperfine structure of Mn2+ in a cubic crystal field 

Here we address a classical practical example of an EPR spectrum. The ground state of the Mn2+ 

free ion is the orbital singlet 6S. This state always remains as the ground state with the 

incorporation of Mn2+ in solids with a cubic CF, as long as the magnitude of the CF does not 

exceed a critical value10. For ions with an S ground state and an electron spin S ≥ 2 (e.g. Mn2+, 

Fe3+ with S = 5/2), usually one must also consider fourth order spin operators, in order to have 

a complete description of the possible spectra. The SH operator including these terms in a cubic 

CF without considering the HF transitions is given by 

 ⎥⎦
⎤
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⎡ −++−+++= )133)(1(

5
1

6
1 2444 SSSSSSSaBβg ZYX[  (3.43)  

where X, Y, Z are the cubic crystal axes. The second term describes the cubic FS splitting. 

Assuming that this FS splitting is small when compared to the Zeeman interaction, its 

contribution to the energy eigenvalues can be described in a good approach by first order 

perturbation theory. In this approximation, one gets11: 

 [ ] ⎟
⎠
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120
24222222
SSSM MMlnnmmlaBMβgE  (3.44)  

where l, m and n are the direction cosines between the quantization direction (the magnetic field 

direction) and the cubic CF axes, and MS is given by the values MS = -5/2, ..., +5/2. Between 

these (2S + 1) = 6 energy levels there are (2S) = 5 allowed intense transitions with ΔMS = ±1. In 

agreement with Eq. (3.44), the line positions are determined by the relations  

 ( ) ( )1−−= SS MEMEνh  (3.45)  

from which we get: 

                                                 
10 If the critical crystal field strength is exceeded by Dq/B~8, then the low spin state 2T2 becomes the ground state. 

11 Thus, the fine structure operators are to be projected into the respective quantization direction of the Zeeman terms Bg, and 
to be computed with the eigenfunctions of the Zeeman terms M . Since in the case of isotropic g, the quantization direction is 

given directly by the direction of the external applied magnetic field. 
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The angular dependence for these five FS line positions is represented as a function of the 

magnetic field in Fig. 3.8, for the rotation of the magnetic field in a {110} plane. 

 Each one of the electron spin transitions is split by the HF interaction of the d 5 electrons 

with the nuclear spin I of Mn (natural abundance 100%) into (2I + 1) = 6 HF lines. The SH 

operator for the HF interaction must be added to the SH (3.43) in order to describe this HF 

interaction:  

 IAS ⋅⋅=HF[  (3.47)  

In the present case, the HF interaction can be assumed as isotropic and Eq. (3.38) is simplified12 

 )(
2
1

+−−+ ++= ISISAIAS ξξHF[  (3.48)  

where the ξ-axis is determined by the quantization direction Bg due to the Zeeman term, i.e. for 

an isotropic g, this direction is determined by the applied magnetic field. 

 If one regards the SH operator (3.48) as the perturbation operator, then the contribution 

in first order perturbation theory is 

 ISISHFIS
(1)
Mm mAMmM,mME == ,[  (3.49)  

causing a splitting into 2I + 1 equidistant energy levels, with the separation between adjacent 

levels being proportional to the nuclear spin quantum number. The second order contribution is 

given by13 

                                                 
12 The spin raising and lowering operators S± are definied by: S± = SX ± iSY, so that SX = 1/2(S+ +S-) and SY = (1/2i)(S+ - S-), 

and in equation (3.48) X and Y are to be taken as perpendicular to the ξ-axis.  

13It is valid for 1)1()1( '''' ±±−+=± SSSS MMMSSMS , and similarly  1)1()1( '''' ±±−+=± IIII mmmIImI , thus only the following 

two matrix elements are not zero in Eq. (3.50): )1()1()1()1(1,1, +−+−−+=+−−+ IISSISIS mmIIMMSSmMISmM  and

)1()1()1()1(1,1, −−++−+=−++− IISSISIS mmIIMMSSmMISmM . Therefore, for Eq. (3.50) one gets 
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Fig. 3.8. Angular dependence of the fine structure for a 6S ground state in a cubic crystal field as a function of the magnetic 

field and for the rotation of the magnetic field in a {110} plane. 

Hence, in second order perturbation theory, the HF levels are no longer equidistant, and 

additionally, the electron spin levels are also different. The contribution hνHF to the transition 

energy, due to the HF interaction results in the transitions with ΔMS = ±1 and ΔmI = 0. Hence, 

from Eqs. (3.49) and (3.50) one gets 

[ ]{ }1)(2MmmII
Bβ2g

AAmEEEEνh SII

2

I
(2)

1M
(2)
M

)(
1M

)(
MHF −+−++=−+−= −−

211 )1(  (3.51)  

Due to the second order contribution, the distances between consecutive HF lines, equidistant 

in first order, become different and dependent on the electron spin transition. For the transition 

MS = -1/2 ↔ +1/2, the second term in the bracketed term is omitted, and Eq. (3.51) is 

simplified: 
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From Eqs. (3.46) and (3.52), one can determine the total energy hν of the six HF transitions for 

the electron spin transition MS = -1/2 ↔ +1/2 with ΔmI = 0 

 [ ]2
2/2/1 I
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I1 m1)I(I
Bβ2g

AAmBβgEEνh −+++=−= −  (3.53)  

The line positions of these six HF transitions relative to the electron spin transition 

MS = -1/2 ↔ +1/2 is therefore independent of the magnetic field direction. Considering the 

HF interaction in second order of perturbation theory, the distances between the HF transitions 

are no longer equal. 

 If one observes powder samples instead of single crystals, the line positions of the 

electron spin transitions MS = ±5/2 ↔ ±3/2, MS = ±3/2 ↔ ±1/2 are strongly broadened, 

because of their strong dependence on the magnetic field direction, due to the different 

orientations of the different crystallites. Therefore, what becomes experimentally essential is only 

the transition which is in first order independent of the direction of the magnetic field, the 

MS = -1/2 ↔ +1/2 transition, and the corresponding hyperfine structure. 

 
3.1.8 Relaxation phenomenon 

When the microwave radiation quanta are absorbed, they may excite the electrons to higher 

energy levels or even induce stimulated emission of those that already are in excited states.  

These transitions between Zeeman levels take place with the same probability. The spontaneous 

emission probability is proportional to ν3, being observed in the optical range (1014 a 1015 GHz). 

In the microwave energy range (≈1010 GHz), the probability of spontaneous emission is about 

fifteen orders of magnitude lower when compared to the optical range. That means that the 

spontaneous radiation can be neglected at the RF and microwave frequencies, and that the 

natural width of the magnetic resonance lines is very small. 

 The Einstein relations state that the stimulated emission and absorption coefficients are 

equal. Let us now consider two states n1 and n2, being the first one the ground state and the 

second one the first excited state. Absorption happens when n1 is more populated than n2, and 

the signal intensity is proportional to the population difference between these two states. When 

both states are equally populated, in average there will be no absorption and the system is 
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saturated, with no energy transfer occurring between the ac magnetic field and the spin system. 

Fortunately, there are some interactions between the electrons and their surrounding causing 

spin flips accompanied by the energy transfer to other degrees of freedom of the system. This 

process, i.e. non-radiative less transitions between n1 and n2 states, is called spin–lattice relaxation. 

Moreover, there are interactions of paramagnetic particles among each other causing a 

redistribution of the energy in the subsystem of spins. This is the spin–spin relaxation. 

 In the theory of the paramagnetic relaxation, the proposal has proven very fruitful to 

consider the magnetization process of a paramagnetic substance a two-step one. First, 

equilibrium is established within the spin system, and then an energy exchange between the spin 

system and the lattice occurs. Here we ascribe to the “lattice” all other degrees of freedom of 

our paramagnetic substance. It is quite clear that such a treatment is only possible if the spin–

spin interactions are much stronger than the spin-lattice ones. 

 

3.1.9 Powder spectrum 

In a single crystal, the resonance field or frequency depends on the orientation of the single 

crystal with respect to the applied magnetic field, and EPR analysis yields both the whole set of 

SH parameters and the orientation of the principal axes of the local ligand field with respect to 

crystallographic axes. In the case of powders and polycrystalline solids, this relative orientation 

cannot be determined because the paramagnetic centres are randomly oriented with respect to 

the applied field, so that each orientation has the same probability of occurring. Then the 

magnetic resonance spectrum, referred to as a powder spectrum, is an average over the resonance 

conditions for all possible orientations of the paramagnetic centre, and the interpretation is only 

based on the determination of the SH parameters, whose values reflect the local symmetry of 

the paramagnetic centre. 

 Nevertheless, if the paramagnetic spectrum is completely isotropic, it can be examined in 

a powder without loss of resolution. On the other hand, in a powder the spectrum of any ion 

that is anisotropic will naturally spread out; the details of the spectrum will be lost to a 

considerable extent, and the information may be significantly reduced. 

 In most cases an analytical expression is not possible, and one must resort to computer-

based numerical integration techniques to calculate the powder spectrum S(B).  
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  Generally, the resonance position Bres(Ω), the intensity I(Ω) and the line width W(Ω) 

depend on the relative orientation Ω between the paramagnetic centre and  the laboratory 

frame. The powder spectrum is an integral function14 of the field. The origin of the integral 

function is the orientation-dependent single crystal spectrum. Thus, one must integrate over all 

possible orientations of the paramagnetic centre to obtain the powder spectrum 

 ( ) ( ) ( )[ ] ΩdΩWΩBBfΩIBS res
Ω

,)( −= ∫ . (3.54)  

If, for simplicity, one neglects the line width W, one obtains the delta spectrum 

 ( ) ( )[ ] ΩdΩBBδΩIBS resD
Ω

−= ∫)( , (3.55)  

where δD is the Dirac delta function. Applying the Heaviside function ( )xδ
dx
dH

D=  to Eq. 

(3.55), one gets 

 ( ) ( )[ ] ΩdΩBBHΩI
dB
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Ω

−= ∫)( , (3.56)  

and, consequently, 

 ( )
( )

ΩdΩI
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ΩBB res

∫
≥

=)( . (3.57)  

This means that the powder spectrum is a weighted surface integral over all orientations where 

Bres is smaller than the given B.  

3 . 2  F E R R OM A GN E T I C   R E S O N A N C E  

Ferromagnetic resonance (FMR) or spin resonance at microwave frequencies in ferromagnets is 

similar in principle to EPR. The total electron magnetic moment of the substance precesses 

about the direction of the applied magnetic field, and the energy is strongly absorbed from the 

microwave field when its frequency equals the precessional frequency. As an analogy, one may 

think of the macroscopic vector S representing the total spin of the ferromagnet as quantized in 

the applied magnetic field, with energy levels separated by the usual Zeeman energies (the 

magnetic selection rule ΔMS = ±1 only allows transitions between adjacent levels). However, 

there are unusual features in ferromagnetic resonance, which include very large transverse 

                                                 
14 Note that an integral function is defined as ( ) ( )∫= dttxfxF , . 
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susceptibility components χ′ and χ′′; the shape of the sample plays a major role; the strong 

exchange coupling between ferromagnetic electrons tends to suppress the dipolar contribution 

to the line width; and saturation effects occur at low microwave power levels. 

 Nevertheless, as other resonance phenomena, FMR is characterized by the resonant 

magnetic field and by the line shape and width. One may use measurements of the line position 

at different frequencies and geometries to determine parameters that characterize the magnetic 

materials, such as the magnetization and the magnetic anisotropy. FMR may also be useful to 

evaluate magnetic inhomogeneities which may not be analysed by other experimental methods. 

 The following FMR theory is described in detail in the book of Vonsovskii (1966). 

 The magnetic moment precesses about the static magnetic field at the Larmor frequency 

ω0. When a spin finds itself in a uniform magnetic field B, it is subjected to a binary that tends to 

align its magnetic moment with the magnetic field in order to reach a configuration of minimum 

energy. 

 In quantum theory, the angular precession frequency ω0 of the orbiting spin, the Larmor 

frequency, is given by 

 Bω γ=0  (3.58)  

where h/Bμgγ =  is the gyromagnetic ratio. In FMR the local field may differ by a few kG from 

the applied magnetic field, due to the internal field produced by the aligned magnetic moments. 

To describe this situation, one may introduce the concept of effective magnetic field, i.e. one 

may take into account the contributions of the interactions occurring in the ferromagnetic 

material assuming that the spins responsible for the ferromagnetic properties precess at the 

frequency ω0 about the effective field Beff instead of B. Hence, Eq. (3.58) takes the form 

effγBω =0 , and the equation of motion for the magnetization M is given by 

 effγ
dt

d
BM

M
×−= . (3.59)  

 Let us consider a spherical coordinate system, where the orientations of the magnetization 

vector relatively to the Cartesian coordinate system (X, Y, Z) defined by the polar θ  and 

azimuthal φ angles are given by: 

 ,cos   ;sinsin   ;cossin φMMφθMMφθBM ZYX ===  (3.60)  
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as illustrated in Fig. 3.9. Hence, the effective magnetic field radial, polar and azimuthal 

components may be written as: 
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Fig. 3.9. Graphical representation of the internal effective field components BM, Bϕ, Bθ in a spherical coordinate system. 

Moreover, taking into account that the first time derivative of M in spherical coordinates is 

φφθMθθMMM ˆsinˆˆ &&& ++ , assuming that the magnetization is constant, the equations of motion 

are now given by 

 
.

sin
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θ

φ

B
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Bγθ

−=

=

&

&

, (3.62)  

 In a state of thermodynamic equilibrium, the direction of the ferromagnetic magnetization 

vector M coincides with the direction of the internal effective field BM, which magnitude is 

determined by the free energy F per unit volume: 

 
M
FBM ∂

∂
−= , (3.63)  

and, in this case, the components of the effective field along the directions θ and φ are absent. 

The equilibrium orientation of the magnetization vector M defined by the angles θ0 and φ0 is 

determined by the free energy minimum 
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In this way, working out the free energy’s minimum allows us to obtain unambiguously the 

equilibrium direction of the magnetization vector only if it is homogenous over the whole 

sample or if the system may be defined as an ensemble of homogeneously magnetized regions. 

 Let us now consider the situation in which the system is not in equilibrium, i.e. when small 

deviations from the magnetization equilibrium position occur. In this case, the conditions (3.64) 

are no longer valid and the magnetization will be changed by the polar and azimuthal 

components of the internal effective magnetic field which are no longer zero 
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θ sin
          ; −=−= . (3.65)  

 If one considers that the deviations from the equilibrium given by 

 ( ) ( ) ( ) ( ) 00         ; φtφtδφθtθtδθ −=−= , (3.66)  

are small relatively to the equilibrium values (θ0 and φ0), one may write the free energy expression 

in terms of a linear expansion of the terms Fθ and Fφ : 

 δφFδθFFδφFδθFF φφφθφθφθθθ +=+=           ; , (3.67)  

where Fθθ, Fφφ, Fθφ, Fφθ are the second derivatives of the free energy with respect to the angles, 

calculated for the equilibrium position. Combining Eqs. (3.62), (3.65) and (3.67) one obtains a 

linear system of equations that describe the magnetization vector small oscillations relatively to 

the equilibrium positions: 
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 (3.68)  

This system of homogenous equations has the periodic solutions δθ, δφ ≈ exp(iωt). The 

precession of a total magnetic moment with free energy F occurs at a frequency ω given by the 

resonance condition 

 2

0sin θφφφθθ FFF
θM

γω −= . (3.69)  
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Although Eq. (3.69) is mathematically correct, it is physically not convenient. The origin of the 

different terms in F is not clear due to the angular dependent mixing. In this sense, the following 

relation was derived [Baselgia (1988)]: 
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So, in order to obtain the resonance frequency of the system, it is necessary to have a concrete 

expression for the free energy that describes the system and that depends on the orientation of 

the magnetization. Generally, a free energy per unit volume may be described by the sum of its 

contributions 

 surfdexchemadem FFFFFFFF ++++++= ⋅0 , (3.71)  

where F0 represents the interaction energy of the magnetization with the external field (Zeeman 

energy), which depends on the angle between the magnetic field and the magnetization, Fdem is 

the energy of the demagnetizing field of the surface “magnetic charges”, Fa is the 

magnetocrystalline anisotropy energy which depends on the relative orientation of the 

magnetization and the crystal principle axes, Fm.e corresponds to the magneto-elastic energy 

which is a function of the direction of the magnetization and the stresses, Fexch stands for the 

exchange energy connected to the spatial inhomogeneity of the magnetization, Fd is the energy 

of the inter-domain boundary layers, and finally Fsurf is related to the surface of sample. The term 

expressing the exchange energy related to the molecular field that produces the spontaneous 

magnetization was not included because it does not depend on the orientation of the 

magnetization. 

 The effect on the resonance phenomenon of the shape of the sample, of crystal 

anisotropy, stresses, inhomogeneous magnetization and domain structure are determined by the 

components of the effective internal magnetic field, being its relevance dependent on the 

material properties and on the experimental conditions. 

 If the external magnetic field is sufficiently strong to magnetize the sample to a state 

approaching saturation, the sample’s behaviour will be identical to that of one region of 

spontaneous magnetization, and the term Fd would be removed from Eq. (3.71). On the other 

hand, in weak external fields, the sample has a random magnetization region structure, which is 

energetically favourable, and in this case the system is extremely sensitive to the presence of 

impurities and to small perturbations of the crystal lattice. 
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 When the samples are highly conductive, the microwave field is able to penetrate only a 

thin surface layer, leading to inhomogeneity of the magnetization. In this case, besides the losses 

related to the ferromagnetic resonance, there also are losses due to Foucault currents induced in 

the conductive sample by the microwave magnetic field. These circulating currents create 

magnetic fields that oppose the effect of the changing field (Lenz’s law). Hence, the 

homogeneous magnetization is reached only when the dimensions of the sample are large 

enough so that the material exhibits ferromagnetic properties, and are simultaneously small 

enough when compared with the thickness of the skin layer. For ferromagnetic semiconductors, 

the Foucault currents and the surface effect may be neglected, because the conductivity of these 

materials is 108 – 1013 smaller than that of metals and alloys. 

 The significance of the contribution of the internal effective field components due to the 

magnetocrystalline anisotropy is related to the type of sample, and is most relevant for single 

crystals. In the majority of cases, its influence is very small when compared to the external field, 

nevertheless in some substances, such as cobalt, its contribution is comparable to that of the 

demagnetizing field so that the magnetocrystalline anisotropy has to be considered. 

  The contributions of internal stresses, arising from growth processes or even from 

experimental conditions, have a relatively small effect on the resonance conditions. 

 Finally, the demagnetizing fields depend on the dimensions and on the shape of the 

samples, and have approximately the same order of magnitude of the applied magnetic field, in 

the case of a ferromagnetic material. 

 

3.2.1 Magnetocrystalline anisotropy energy 

The magnetic anisotropy is the direction dependence of a material’s magnetic properties. A 

magnetically isotropic material has no preferential direction for its magnetic moment in zero 

field, while a magnetically anisotropic material will align its moment to an easy axis. 

 The magnetocrystalline anisotropy is a special case of magnetic anisotropy and may be 

defined as the energy cost per atom to align its magnetization from one crystallographic 

direction to another. Consequently, the orientation of the magnetization is given by the 

equilibrium condition determined by the minimum of the magnetic part of the total energy of 

the system. 
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  The spin-orbit coupling is the direct source of magnetocrystalline anisotropy energy. The 

orbital momentum of bulk 3d metals is almost quenched due to cubic symmetry. The g-factor 

for bulk 3d metals is close to the ‘spin-only’ value (2.0023), which means that the magnetism in 

these transition metals can be ascribed mainly to the spin of the delocalized 3d electrons. The 

electron spin, however, is weakly coupled to the orbital momentum via spin-orbit coupling15, 

and consequently the energy of the system depends on the relative orientation between the 

magnetization (spin orientation) and the crystal axes. 

 If we assume that in a solid the CF forces the electron to move in a certain 

crystallographic plane, the electron spin will be aligned in a direction normal to this plane16. In 

such way, a uniaxial anisotropy can arise regardless of the shape of the crystal. Large 

magnetocrystalline anisotropy energy can be expected in ultra thin films due to the reduced 

symmetry of distorted lattices, interfaces, surfaces, and the presence of microscopic roughness. 

It is shown by a perturbation theory that the energy difference between easy and hard direction 

is related to the anisotropy of the orbital momentum [Bruno (1989)]. This part of the 

magnetocrystalline anisotropy energy (the electronic part) is defined as the difference in the total 

energy of the system for two different directions of the magnetization. Once one realizes that 

the magnetocrystalline anisotropy energy is a quantity describing the interaction between the 

electron spin and the lattice, it is intuitively clear that changes of the lattice constant will affect 

the magnetic properties.  

 The saturation magnetization MSat is reached when the field is high enough to align all 

individual magnetization vectors with the applied field. In order to calculate the resonance 

frequency, we must have a concrete expression of the anisotropy energy, which may be 

represented as an exponential series with respect to the direction cosines α1, α2, α3 of the 

magnetization vector relative to the crystal’s principal axes [Vonsovskii (1966)]: 

 ( ) L+++++= 22
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2
2

2
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22
Z

22
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2
10 ZXZYXa KKKF ααααααααα , (3.72)  

                                                 
15 For 3d transition metals, the orbital is largely quenched, but not completely. Furthermore, when the cubic crystalline symmetry 

is broken through lattice distortion, the quenching of the orbital momentum is partially lifted. 
16 On the atomic level, the crystal field exerted on the moving electrons by the neighbouring atoms will force the orbitals to align 

with the crystal field. The orbital momentum of the electron is coupled to the electron spin via the spin-orbit coupling. 
Consequently, the crystal field influences the spin direction through the orbital momentum. Therefore, the magnetocrystalline 
anisotropy energy and the anisotropy of the orbital momentum will have similar symmetry. 
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where K0, K1 and K2 are the ‘zero’, the first and second anisotropy constants. The ‘zero’ 

anisotropy constant corresponds to the energy of a single crystal magnetized to saturation along 

the easy axis. In the case of crystals with hexagonal symmetry one gets 

 θKθKKFa
4

2
2

10 sinsin ++= , (3.73)  

where θ is the angle between the magnetization vector and the hexagonal symmetry axes. The 

constants K1 and K2 represent energy densities (J.m-3), being strongly dependent on the 

temperature. Generally, one finds values of Fa in the range 102 – 107 J.m-3, which corresponds to 

an energy per atom of the order of 10-8 – 10-3 eV. When the constants K1 and K2 are positive, the 

energy is minimized for θ = 0º, and this is the easy axis of the crystal. 

 

3.2.2 Shape anisotropy  

The energy term of the demagnetizing field arises due to shape anisotropy, which is related to the 

shape of the sample and arises from magnetostatic effects (e.g. dipolar interactions). Due to the 

periodic ordering of the dipoles within a crystal lattice, the magnetic interaction energy depends 

on the orientation of the dipoles relative to the crystal lattice. For example, in the case of thin 

films, due to this shape anisotropy, the free energy is minimized when the magnetization is 

aligned with the plane of the film, as expressed by 

 θMμFshape
22

0 cos
2
1

= , (3.74)  

where θ is the angle between the normal to the film and the magnetization vector, and μ0 is the 

free space permeability. This demagnetizing effect is produced by the uncompensated magnetic 

dipoles on the surface of the sample. 
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4  EXPER IMENTAL  METHODS  

In this chapter I will address and describe the main experimental methods used for material 

growth, magnetic and structural characterization of the samples in this work, namely pulsed laser 

deposition (PLD), electron magnetic resonance (EMR), superconducting quantum interference 

device (SQUID) magnetometry, Hall effect, X-ray diffraction (XRD), scanning electron 

microscopy (SEM), and transmission electron microscopy (TEM). 

4 . 1  PU L S E D   L A S E R   D E P O S I T I O N  

Pulsed laser deposition has been proven to be a versatile technique for the growth of high-

quality ZnO-based thin films [Lorenz (2005), (2008)]. PLD is a growth method by condensation 

of a laser plasma ablated from a single target, excited by the high-energy laser pulses far from 

equilibrium. PLD uses high-power laser pulses with an energy density of more than 108 W cm−2 

to melt, evaporate, excite, and ionize material from a single target. This laser ablation produces a 

transient, highly luminous plasma plume that expands rapidly away from the target surface. The 

ablated material is collected on an appropriately placed substrate surface upon which it 

condenses and a thin film nucleates and grows. PLD is a conceptually fairly easy process which 

is shown schematically in Fig. 4.1. A pulsed high-power laser beam is focussed onto a target 

surface in order to produce a high power density. Upon the laser energy absorption, the target 

material is evaporated, excited and ionized. A highly luminous plasma plume is formed and 

expands away from the target. Finally, the ablated species condense on a substrate surface. The 

fact that the plasma plume faces the substrate perpendicularly results in a better lateral 

homogeneity of the species arriving at the substrate for thin film growth. Relevant from a more 

practical point of view is that the ablation takes place on a short time scale, in the nanosecond 

range, to minimize the dissipation of the laser energy beyond the volume of the melted and 

ablated surface layer of the target. Only within this condition, thermal destruction of the target 

together with phase segregation will be avoided. Furthermore, a well known major advantages of 

PLD is that the relative concentration of elemental species within the plasma plume corresponds 

to the chemical composition of the target material. Compared to other common growth 

techniques, such as molecular beam epitaxy (MBE) or metal organic vapour deposition 

(MOCVD), PLD is an advantageous technique since it is faster, it offers great experimental 
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versatility, and it enables the production of complex multicomponent samples from a single 

target source. 
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Fig. 4.1. Scheme of a typical PLD setup for large-area film growth [Lorenz (2008)]. 

 

 To grow ZnO-based nanostructures Lorenz et al. (2005) developed a unique low-vacuum 

PLD process, which was used to grow the nanowires studied in this thesis. At the University of 

Leipzig, the deposition chamber, schematically represented in Fig. 4.2, consists of a T-shape 

quartz tube with an outer diameter of 30 mm. A pulsed high-power KrF excimer laser beam 

(248 nm) is guided to the deposition chamber inside a protection shielding, enters along the 

centre bar of the T, and is focused by a UV lens on the cylindrical target surface of one of the 

rotating PLD targets. In this system one can fit up to three targets onto the linear rotary 

feedthrough bar, allowing in situ modulation of the chemical composition of the nanostructures. 

An encapsulated heater is built around the quartz tubes, so that the temperature at which the 

nanostructures are grown may be varied between room temperature and 950 ºC. The gas flow is 

directed from the target towards the substrate and thus supports the transport of material from 

the plasma plume.  

 The position of the nanostructures can be pre-determined by a catalyst pattern on the 

substrate prior to growth. In this work, gold was used as a growth catalyst in the form of 

colloidal particles, and Ar was used for the background gas flow.  
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Fig. 4.2. Top view scheme of the high-pressure PLD setup for nano-heterostructures [Lorenz (2005)]. 

4 . 2  E L E C T R O N  MA GN E T I C   R E S O N AN C E  

Electromagnetic radiation may be understood as the coupling between electric and magnetic 

fields perpendicular to the direction of propagation, both oscillating at the same frequency ν. In 

EMR, referring to both electron paramagnetic and ferromagnetic resonances (EPR and FMR), 

the commonly used frequency range is 1-100 GHz.  

 In a common EMR system, the electromagnetic radiation frequency is kept constant 

while the magnetic field is swept. The level splitting (Zeeman effect) occurs due to the static 

field which is applied to the sample. By sweeping the magnetic field, the separation between the 

energy levels is varied, until this separation is equal to the microwave photon energy (resonance 

condition). A typical EMR spectrometer, as shown in Fig. 4.3, may be divided into the following 

parts: 

1. Microwave bridge 

2. Microwave cavity 

3. Electromagnet and power supply 

4. Field modulation unit 

5. Signal Channel (“Console”) 

6. User interface (Computer) 
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Fig. 4.3. Block diagram of an EMR homodyne spectrometer. Taken from Pilbrow (1990). 

First, it is necessary to have a microwave source and all accessories to guide, control and 

detect the microwave radiation (waveguides, attenuators, circulators, and other elements that 

compose the microwave bridge). The microwave bridge functions both as a microwave source and 

a detector of the radiation reflected from the resonant cavity. In the microwave range (1 ≤ ν ≤ 

100 GHz) the radiation is generated by a klystron or a Gunn diode which is provided with an 

automatic frequency control (AFC). In our X-band (≈9.4 GHz) spectrometer, the microwaves 

are generated through a Gunn diode, a semiconductor oscillator that is widely used to produce 

relatively low power signals at microwave frequencies. The emitted microwave frequency 

depends on the thickness of the active region. The output radiation, almost monochromatic, is 

determined by mechanical tuning of the cavity. This is achieved by placing an adjustable screw 

into the waveguide cavity. In the case of the used Q-band (≈34 GHz), since the Gunn 

oscillator is linked to a waveguide, the frequency is not permanent, and manual adjustments 

can be done during the tuning process before each experiment. For measuring EMR in the 

absorption mode, the AFC regulates the spectrometer in a way that the dispersion part of the 

susceptibility is ruled out by stabilizing the source frequency to the resonance frequency of the 

cavity. To control the power output of the microwave source, there exists a variable attenuator 

that blocks the flow of the microwave radiation. A frequency counter measures the radiation 
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frequency. A circulator forces the incident microwave radiation to the microwave cavity and 

directs the reflected power to the detector. The static magnetic field is generated by an 

electromagnet equipped with a stabilizing, sweeping and measuring system. In order to reduce 

the signal to noise, a modulation and phase sensitive detection method (lock-in) is applied. The 

signal channel is built into the console that contains the required electronics for the phase 

sensitive detection. Modern X-band spectrometers achieve a sensitivity of about 109 spins per 

mT under standard conditions. While in optical spectroscopy one modulates the radiation 

intensity, in EMR the applied magnetic field is modulated. The static applied magnetic field is 

overlapped by an ac magnetic field produced by a pair of Helmholtz coils. If the modulation 

amplitude is smaller than 1/2 the absorption signal line width, the derivative of the absorption 

signal is correctly reproduced for most of the practical objectives. The microwave power 

reflected from the cavity is split into two components: one transmits the frequency error 

signal to the AFC and the other goes to the preamplifier. The latter is filtered by a lock-in 

detector (commonly operating at 100 kHz) that eliminates a large part of the noise. The 

reference arm guides the microwave power from the source directly to the detector, 

promoting an appropriate biasing of the working point of the detector.  

The cavity where the sample is placed is the resonant cavity, a metal box that aids the 

amplification of weak signals from the sample, and which dimensions are equal to the 

microwave length, creating a standing wave pattern. The cavity walls are highly conductive in 

order to increase the quality factor. Different shapes of resonators may be employed for 

measuring EMR [Poole (1983)]. The commonly used resonators are the cylindrical TE011 and 

the rectangular TE102 cavities. In both cavities the electric field standing wave is aligned in the 

plane perpendicular to the vertical axis. The location of the maximum of the microwave 

magnetic field B1 corresponds to the location of the minimum of the electric field component. 

Usually, B1 is chosen perpendicular to the static magnetic field direction, and the sample 

should be placed where B1 has its maximum value. 

The cavity may be represented by a parallel resonant circuit which is tuned with the 

waveguide in order to equalize the impedances and, in consequence, reduce the reflection to 

zero. The coupling of the cavity to the waveguide and the tuning are accomplished by 

mechanically varying the position of a screw that covers a small coupling hole in the cavity 

wall (iris). In the case of the critical coupling, all of the microwave energy is stored in the 

cavity, being dissipated in the form of heat, and there is no power reflection. When the 



54 Chapter 4 Experimental methods 

 

 

resonance conditions are satisfied, part of the radiation in the cavity is absorbed by the sample, 

causing a change in the impedance, and consequently, of the coupling between the cavity and 

the microwave guide. Hence, part of radiation is now reflected and sent to the detector which 

converts that reflected radiation into measurable electrical current. The latter represents the 

EMR signal. 

The quality factor of the empty cavity, Q, describes how well the cavity stores the 

microwave energy. To compare measurements performed in different cavities, one must know 

the quality factors Qe of the unloaded resonators: 

 
 cycleper energy  dissipated 

)cycleper   resonatorthe  instoredenergy (2π
=eQ . (4.1)  

The higher the energy loss, the lower is the sensitivity of the spectrometer. Some of the 

microwave energy can be lost to the side walls of the cavity, since electrical currents are 

generated which contribute to heat production. In order to reduce the dielectric losses and to 

enhance the magnetic absorption, the sample is placed in an electric field minimum and a 

magnetic field maximum. Thus, larger signals and higher sensitivities can be obtained. In 

addition, there are energy losses due to the cavity coupling hole. These losses may be 

quantified by the coupling quality factor Qr and the dielectric factor Qε, respectively. Thus, the 

overall quality factor Q is given by summing the reciprocals of the different factors [Poole 

(1983)], 
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An estimate of the quality factor of the resonator is given by 

 
ν
νQ
Δ

= , (4.3)  

where ν is the microwave frequency and ∆ν is the full width at half maximum (FWHM) of the 

cavity resonance curve [Poole (1983)]. Cylindrical cavities generally have a significantly higher Qe 

factor than rectangular ones. It is noteworthy that the sensitivity of the EMR is proportional to 

the product of the quality factor Q by the filling factor η. The filling factor is a measure of the 

efficiency with which the microwave magnetic field is concentrated at the sample. Derived 

expressions of η for particular cases commonly observed in EMR experiments may be found in 

the book of Poole (1983). In general, the filling factor is proportional to the ratio between the 
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sample volume and the cavity volume. Thus, the increase of the sample volume raises the value 

of the filling factor, whereas Q tends to decrease due to the dielectric losses. Thus, the optimum 

sample size for the highest sensitivity is strongly dependent on the used microwave frequency 

and sample properties. 

EMR spectra are usually sensitive to the sample temperature. To control this 

measurement parameter, a cryogenic system is required (which may be coupled to a heating 

system). 

 The EMR spectra were measured in the X-band (≈ 9.4 GHz) and in the Q-band (≈ 34 

GHz) at temperatures between 4 and 300 K using a Bruker ESP 300E spectrometer equipped 

with Oxford Instruments continuous flow helium cryostats, appropriate for each one of the 

frequency cavities. 

4 . 3  SQU ID  MAG N E T OM E T R Y  

Magnetization measurements are very useful to determine the type of magnetic ordering in a 

sample. Ferromagnetic materials are easily identified by their characteristic hysteresis loop. An 

external magnetic field is applied until the sample experiences saturation, as the individual 

domains align along the direction of the applied field. When the magnetic field is removed, the 

magnetization doesn’t disappear. Instead, some of the domains remain aligned with the removed 

field. The presence of an external opposing magnetic field large enough to cancel out the 

remnant magnetization, the coercive field, is necessary to saturate the spins in the opposite 

direction. Thus, one obtains a symmetric hysteresis loop.  

 SQUID magnetometry is one of the most sensitive methods available to detect magnetic 

fields, and uses the electron-pair wave coherence and the Josephson effect to perform this task. 

A SQUID sensor consists of two parallel Josephson junctions within a superconducting ring. A 

Josephson junction is formed by two superconductors separated by a thin insulating layer 

(superconductor – isolator – superconductor).  The Josephson effect consists of the tunnelling 

with phase coherence of electrons through a thin isolating layer placed between two 

superconductors. Electrons in superconductors minimize their energy by forming Cooper pairs, 

as temperature drops below the critical temperature at which superconductivity sets in. Due to 

the quantum mechanical nature of the Cooper pairs, they propagate through the lattice without 

dissipating energy. If a constant current bias is maintained across the ring as illustrated in Fig. 
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4.4, the current divides equally between the two Josephson junctions. Only a multiple of the 

magnetic flux quantum can flow through the superconducting ring (flux quantization). If the 

applied flux is not an exact multiple of the flux quanta, the excess flux is cancelled by a 

circulating current around the ring. The circulating current will flow in a direction which cancels 

any excess flux. If the current flows clockwise, it will add to the top Josephson junction’s current 

and subtract from the lower one. Applying a linearly changing magnetic flux will cause the 

circulating current to vary as a sinusoid (similarly to the Young’s double-slit interference), and 

can be measured as a voltage across the SQUID.  

 This technique is very useful to obtain information about the magnetic properties of the 

samples from their hysteresis loop and from their initial magnetization curve. The parameters 

that one can obtain are the susceptibility χ, the coercive field BC, the remnant magnetization MR, 

and the saturation magnetization MSat. 
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Fig. 4.4. Superconducting quantum interference device (SQUID): the principle of magnetic flux quantization by the Cooper 

pairs current; Josephson junction within a superconducting ring. 

4 . 4  HA L L   E F F E C T   A N D  MAG N E T O R E S I S T A N C E  

The Hall effect is used to characterize semiconductor materials, since, when complemented with 

conductivity measurements, it allows the determination of the type, concentration and mobility 

of the charge carriers. With isolated conductivity measurements in semiconducting materials one 

can only determine the product between the carrier concentration and mobility. 

 The Hall effect is based on Lorentz’s law which establishes the relation between the force 

produced on a moving charge carrier and the magnetic and electric fields. This effect may be 
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used to distinguish a p- from an n-type semiconductor, and to simultaneously measure the carrier 

mobility and concentration. 

 Let’s consider a charge q which moves with a velocity iv ˆ
xv=  in a magnetic field 

kB ˆ
zB=  (see Fig. 4.5). The force F acting on the charge q is given by: 

 BvF ×= q . (4.4)  

For both positive (hole) and negative (electron) charge carriers, the magnetic force points in the 

negative direction of the y-axis. In the case of a p-type semiconductor, an accumulation of 

positive charge will occur at y = 0, while in the case of a n-type semiconductor, a negative charge 

accumulation will be observed. At y = l, for each of the latter cases, an excess of charge carriers 

with a sign opposite to that of the carriers accumulated at y = 0 will take place. 
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Fig. 4.5. Schematic representation of the Hall effect [Neamen (2003)]. 

 The excesses of charge observed along the y-axis create an electric field (Hall field) EH 

along this direction, which in the stationary state originates a force acting on the charge carriers 

which has the same magnitude as the magnetic force given in Eq. (4.4), hence: 

 zxH BqvqE = . (4.5)  

The potential difference created along the y direction is called the transverse Hall voltage VH 

which is given by 

 lBvlEV zxHH == . (4.6)  

Assuming that a constant current Ix flows along the x direction, the Hall voltage may be 

expressed by: 
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where n is the carrier concentration, d is the sample thickness, and ( )qnRH 1=  is the Hall 

coefficient. Both the Hall voltage and the Hall coefficient are positive in the case of a p-type 

semiconductor, and negative for a n-type semiconductor. 

 Taking into account the well known definitions of current density and conductivity σ, the 

carrier mobility μ can be determined from the values of VH and RH: 

 σRμ H= . (4.8)  

 The carrier type, mobility, and conductivity of a semiconducting material can be 

determined through the measurement of the resistivity ρ using the van der Pauw method 

illustrated in Fig. 4.6. To use the van der Pauw configuration, the sample shape is arbitrary, 

nevertheless, the thickness must be homogeneous and much smaller than the width and length 

of the sample, and four small peripheric Ohmic contacts are necessary. In these conditions, the 

resistivity ρ is given by 
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where Rij,pq is the sheet resistance between the contacts i and j for a current flowing from i to j, 

and the potential difference is measured between the contacts p and q (see Fig. 4.6). 
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Fig. 4.6. Van der Pauw configuration for measuring (a) VDA and (b) VDC. 

 In the case of diluted magnetic semiconductors, the van der Pauw technique allows to 

check how the magnetic properties of the material influence its electric properties. For instance, 

up to what extent does an applied magnetic field change the materials resistance 

(magnetoresistance, MR), or if one can observe an anomalous Hall effect (AHE) which arises 

due to peculiar spin scattering mechanisms. 
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 The Hall resistivity is known to be a sum of ordinary and anomalous Hall terms, 

ρ = RHB + RSμ0M where RH is the ordinary Hall coefficient, and RS is the anomalous Hall 

coefficient. The first term describes the ordinary Hall effect, linear in B, and the second term 

represents the AHE proportional to the magnetization M [Higgins (2004)]. The anomalous Hall 

term is usually attributed to asymmetric scattering processes involving the spin-orbit interaction 

between the conduction electrons and the magnetic moments in the material. 

  In the presence of a magnetic field, the conductivity usually decreases, because the path 

length between the contacts gets larger. Hence, the charge carriers suffer more collisions than 

for B = 0. These longer paths lead to increased resistance. This change of electrical resistance 

produced in metals or semiconductors upon application of a magnetic field B is dubbed MR 

which is usually characterized by the non-dimensional parameter: 

 ( ) ( )
( )

%100
0

0 ×
−

=
R

RBRMR , (4.10)  

where ( )0R  is the resistance at zero field, and ( )BR  is the resistance at the applied magnetic 

field B. For low applied magnetic fields, the field dependence of a semiconductor MR can be 

described by: 

 ( ) 2
0 aBRBR += , (4.11)  

where a is a constant. At high fields, the MR can rise faster than B2, increase linearly with B, or 

tend to a constant (i.e. saturate), depending on the material. 

 Negative MR occurs when the magnetic disorder and the corresponding scattering are 

reduced due to the magnetic field induced spin alignment. When electron interference takes 

place, a correction to the conductivity associated to the negative MR is necessary. This is due to 

the so-called weak localization regime, and the conductivity is enhanced due to constructive 

quantum interference. 
 

4 . 5  X ‐RA Y   D I F F R A C T I O N  

In 1913, the physicists Sir W.H. Bragg and Sir W.L. Bragg17 developed a relationship that 

expresses mathematically the diffraction pattern produced by an incident X-ray beam on a 

crystal:  

                                                 
17 The discovery of X-ray diffraction was made simultaneously by the Braggs and by M. von Laue. 
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 λnθdhkl =sin2 , (4.12)  

where θ is the incident angle, dhkl is the distance between atomic layers in a crystal, λ is the 

wavelength of the incident X-ray beam, and n is an integer. As illustrated in Fig. 4.7, this 

observation is based on constructive interference of monochromatic X-rays, commonly denoted 

as X-ray diffraction. Note that the possible d-spacings are determined by the shape and size of 

the unit cell. Therefore the possible 2θ values at which one can observe reflections are 

determined by the unit cell dimensions. On the other hand, the intensities of the reflections are 

determined by the distribution of the electrons in the unit cell. The highest electron density is 

found around atoms, and the intensities depend on what kinds of atoms are present and where 

they are located in the unit cell. 
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Fig. 4.7. Schematic representation of Bragg’s law for an X-ray diffraction pattern of a crystal. 

  

 As it is know from standard solid state physics text books [e.g. Kittel (1996)], for 

orthorhombic lattices there is the following relation between the spacing of lattice planes dhkl and 

the Miller indices h, k and l associated with this family of planes: 
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Usually, in crystals that exhibit sixfold symmetry, such as ZnO, four axes of reference are used 

(Fig. 4.8). Three of them lie in a plane at 120º to one another (a1, a2, a3) and the forth axis c is 

perpendicular to the plane spanned by the others. As a consequence, in hexagonal crystal 

systems four  so-called Miller-Bravais indices h, k, i and l, are used. However, i depends of h and 

k: 
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 ( )khi +−= , (4.14)  

hence, in this notation, dhkl is given by [Vainshtein (1994)]: 
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+++= , (4.15)  

where a = ai and c are the lattice parameters of the hexagonal crystal. 
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Fig. 4.8. Hexagonal lattices are described by four principle vectors. The forth axis stands perpendicular to the plane spanned 

by (a1, a2, a3). 

 XRD is most widely used for characterization of crystalline materials, determination of 

unit cell dimensions, measurement of sample purity, determining lattice mismatch between film 

and substrate, determining the orientation of a single crystal or grain, finding the crystal structure 

of an unknown material, and measuring the size, shape and internal stress of small crystalline 

regions.  

  The spectral line width of the XRD pattern also gives valuable information about the 

samples. The line broadening can be produced by instrumental effects, by the small crystallite 

dimensions, and by lattice distortions. The instrumental contribution is relatively small and can 

be estimated by using a calibration sample. The crystallite dimension is related to the regions in 

which the diffraction is coherent, and, after removing the instrumental contributions, may be 

estimated using the Scherrer equation [Klug and Alexander (1974)]: 

 
θδ
λKDv cos

= , (4.16)  

where Dv is the volume weighted crystallite size, K is the Scherrer constant, and δ is the full 

width at half maximum (FWHM) of the XRD peak located at angle θ. However, this approach 

neglects the effect that the strain can have on the crystallite size. Williamson and Hall (1953) 
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proposed a simplified method of interpreting the line broadening in terms of lattice strain and 

crystallite size, which is expressed by: 

 
λ
θζ

ελ
θδ sin1cos

+= , (4.17)  

where ε and ζ and are the effective particle size and the effective strain, respectively. The 

effective particle size taking strain into account is estimated by plotting λθδ /cos  vs. sinθ/λ. 

 X-ray diffractometers consist of four basic elements: an X-ray tube, a sample holder, a 

monochromator, and an X-ray detector. X-rays are emitted by a cathode ray tube. Electrons are 

produced by heating a filament, and then are accelerated toward a target by applying a voltage, 

and bombard the target material. When the electrons have sufficient energy to remove inner 

shell electrons of the target material, characteristic X-ray spectra are produced. These spectra 

consist of several components, the most common are Kα and Kβ, and the specific wavelengths 

are characteristic of the target material (Cu, Fe, Mo, or Cr). Filtering, with foils or crystal 

monochromators, produces the monochromatic X-rays needed for diffraction, which are then 

collimated and directed onto the sample. As the sample and detector are rotated, the intensity of 

the reflected X-rays is recorded.  

 In this work, the XRD measurements were collected on a commercial PanAnalytical 

X’pert MPD diffractometer, equipped with a curved graphite monochromator and the 

X’Celerator detector, using Cu Kα1,2 radiation (λKα1=1.54060 Å, λKα2=1.54443 Å  with 

I(Kα2)/I(Kα1)=1/2). The XRD scans were performed in the conventional θ-2θ reflection 

geometry, at room temperature. In order to correct for any errors that may arise due to sample 

height displacement, instrumental zero offset, sample transparency, we have used a certified 

standard NIST SRM660a (LaB6 powder). Besides allowing to obtain accurate peak positions, the 

LaB6 certified powder was also used as a line profile standard to determine the instrumental 

broadening as a function of the diffracting angle. 

4 . 6  S C A NN I N G   E L E C T R O N  M I C R O S C O P Y  

The technology used in the SEM is based on television techniques. This method is suitable for 

collecting images of samples with conductive surfaces. The surface of the object is scanned with 

a focused electron beam point by point. The interactions of the electron beam with atoms at or 
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near the surface of the sample generate signals that give information about the sample’s 

topography, chemical composition, crystalline structure and orientation. Generally, a 2-

dimensional image is generated over a selected area of the surface of the sample. This technique 

is normally used to generate high-resolution images of shapes of objects, revealing details of 

about 1 to 5 nm in size,  and to show spatial variations in chemical compositions.  

 In a typical SEM, an electron beam is emitted from a cathode. The electron beam is 

accelerated by an applied voltage and reaches energies ranging from a few hundred eV to 40 

keV. This beam is then focused by one or two condenser lenses to a spot of about 0.4 nm to 5 

nm in diameter. The beam passes through pairs of deflector plates, which deflect the beam in 

the x and y axes so that it scans over a rectangular area of the sample surface.  When the incident 

electrons interact with the sample, the electron kinetic energy is dissipated producing a variety of 

signals. These signals include secondary electrons, backscattered electrons (BSE), diffracted 

backscattered electrons (that are used to determine crystal structures and orientations), 

electromagnetic radiation (characteristic X-rays that are used for elemental analysis), visible light 

(cathodoluminescence, CL), heat, and transmitted electrons. Each one of these signals may be 

used to form an image; as long as there exists an appropriate detector to convert the observed 

effect into an electric signal. Usually these specialized detectors are not all present on a single 

machine. Secondary electrons and backscattered electrons are commonly used for imaging 

samples. The first ones are most valuable for showing morphology and topography of the 

samples, while the second ones are most valuable for illustrating contrasts in composition in 

multiphase samples. Electronic amplifiers of various types are used to amplify the signals which 

are displayed as variations in brightness on a cathode ray tube. The beam current absorbed by 

the sample can also be detected and used to create images of the distribution of the sample 

current. The scanning of the display is synchronized with that of the beam on the sample in the 

microscope. The resulting image is thus a map of the intensity distribution of the signal being 

emitted from the scanned area of the sample. The image is digitally captured and displayed on a 

computer. A basic diagram of a typical SEM instrument is shown in Fig. 4.9. 

 In this work, the scanning electron microscopy (SEM) measurements were performed 

with a CamScan CS 44 Microscope using 10 keV electrons. 
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Fig. 4.9. Basic diagram of a scanning electron microscope. 

4 . 7  T R A N SM I S S I O N   E L E C T R O N  M I C R O S C O P Y  

While SEM produces images essentially similarly to a television, by the scanning principle, the 

image produced by TEM is formed by lenses, and the sample is observed in transmission mode. 

The TEM performance depends on the possibility of preparing a sufficiently thin sample to 

transmit the electron beam without significant energy losses. The image formation is thus 

intimately connected with diffraction, because when going through the sample, the electron 

waves interact with the sample and suffer phase and amplitude variations. These variations 

produce the image contrast. If one knows how the different structures change the transmitted 

electron waves, one can obtain information about the sample’s microstructure. The main 

advantage of TEM is its resolution, due to the small wave length of the electrons. A typical 

TEM system is schematically represented in Fig. 4.10. 
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Fig. 4.10. Basic diagram of a transmission electron microscope. 

 

 The electron beam is produced by a cathode. The electrons are accelerated by a high 

voltage. Usually, the accelerated electrons may have energies in the range of 10 to 300 keV. The 

higher the acceleration voltage, the shorter are the electron waves and the higher is the 

resolution power. Nevertheless, this factor is hardly ever limiting. The resolution of the electron 

microscopy is usually limited by the aberrations of the lens systems, and particularly by the 

sample preparation technique. Modern systems have powers of resolution down to 0.5 Å. The 

lens systems consist of electric coils generating a magnetic field. The beam is first focused by a 

pair of condenser lenses (C1 and C2). The first lens is strong, and originates a very small image 

of the source, which is projected by the second lens that is much weaker onto the sample 

surface. This second lens is equipped with a diaphragm that controls the beam intensity. The 

beam then passes through the sample, where it is partially deflected. The degree of deflection 

depends on the electron density of the sample. The greater the mass of the atoms, the greater is 

the degree of deflection. After passing through the sample, the scattered electrons are collected 

by an objective which has a short focal distance. Thereby an image is formed that is 

subsequently enlarged by an additional lens system, composed by two lenses, the intermediate 

one and the projection one. Consequently, the formed image is projected on a fluorescent 
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screen. Alternatively, it can be documented on a photographic material. Photos taken with 

electron microscopes are always black and white. The degree of darkness corresponds to the 

electron density of the sample. 

 Ideally, it should be possible to interpret a TEM image in terms of the samples’ 

microstructure. However, the image contrast can arise due to several mechanisms, and can 

depend crucially on the microscope working conditions, such as the exact sample orientation 

and the defocusing of the objective lens. Furthermore, the electrons may be dispersed elastically 

or inelastically. These dispersion mechanisms also influence the image contrast in different ways. 

Due to the large mass difference between electrons and ions, the energy of the elastically 

dispersed electrons is approximately the same as the energy of the incident ones. The purely 

elastic dispersion produces a perfect punctual correlation between the object and the image. On 

the other hand, the inelastically dispersed electrons suffer energy losses, and consequently are 

not focused on the theoretical image plane (due to their large dispersion angle), which generates 

a reduction in the image’s clearness and contrast. 

 The opening of the objective lens is limited by a circular diaphragm placed in the posterior 

focal plane. Only the electrons dispersed within a certain angle pass through the aperture. The 

result is a uniform intensity in the image plane, with the exception of the image of a dispersing 

element (the image of this kind of element appears dark on a bright background). 

 It is also important to note that the sample preparation is quite tricky. The samples must 

be very thin, in order to be able to transmit the radiation, and proper to place in vacuum. 

Additionally, one must not disregard the fact that the samples are irradiated with an electron 

beam, and that there is no guarantee that there will be no changes due to this interaction. 
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5  ZNO  TRANS I T ION  METAL  DOPED  NANOWIRES  

This chapter is dedicated to a detailed study of the incorporation of Mn or Co into the lattice of 

ZnO nanowires (NWs) synthesized on a-plane sapphire substrates by high-pressure pulsed laser 

deposition (PLD). The samples were characterized by scanning electron microscopy (SEM) and 

electron paramagnetic resonance (EPR) in the X-band (≈9.3 GHz) from T = 4 to 300 K. The 

results presented in this chapter were published in the following papers: (i) AIP Conf. Proc., 

893, 63 (2007); (ii) Journal of Applied Physics 101, 024324 (2007); (iii) Physica Status Solidi (b), 

246, 766 (2009). 

5 . 1  SAM P L E   G ROW T H   A N D   S T R U C T U R A L   C H A R A C T E R I Z A T I O N  

The ZnO NWs were synthesized on 10 × 10 mm2 a-plane sapphire substrates by high-pressure 

PLD with a KrF excimer laser [Lorenz (2005), Rahm (2006)]. A gold catalyst was applied prior 

to deposition in order to achieve the vapour–liquid–solid growth of ZnO nanowires. The 

growth temperature varied between 780 and 880ºC. The different rotating ZnO targets of the 

three NWs samples were prepared from 5N powders, pressed and sintered for 12 hours at 

1150ºC in air, nominally containing 3 at. % Mn, 10 at% Mn or 5 at. % Co. Argon was used as a 

carrier gas at a background pressure of 100 mbar and a constant flow rate of 100 sccm. The 

target-to-substrate distance was varied between 10 and 20 mm, and 4800 - 12000 pulses were 

used to ablate the targets with a laser energy density of about 2 J.cm-2.  

Elemental analysis using particle induced X-ray emission (PIXE) and Rutherford 

Backscattering (RBS) of the NW samples grown from the 3 at. % Mn, and 5 at. % Co  PLD 

targets was carried out by Rahm et al. (2006). For the first sample, the Mn content was more 

inhomogeneous varying between 0.20 and 0.75 at. %, while for the second sample, the Co 

content measured at 7 different spots varied between 0.15 and 0.3 at. %. In both cases, the 

measurements indicate that the doping content in the nanowires is much lower than that 

expected from the targets compositions. 

The morphology of the samples was characterized by SEM measurements, performed 

with a CamScan CS 44 Microscope using 10-keV electrons. Typical SEM pictures of the studied 

NWs are given in Fig. 5.1, evidencing the good quality and the alignment of the NWs 

perpendicular to the substrate surface. The NWs are about 1 μm long and exhibit diameters 



68 Chapter 5 Transition metal doped ZnO nanowires 

 

ranging from 60 nm to 150 nm. The structures have a hexagonal cross-section, mimicking the 

hexagonal crystal structure of ZnO.  

 

 
 

Fig. 5.1. Typical SEM images of ZnO: 5 at. % Co (a); ZnO: 3 at. % Mn (b) and ZnO: 10 at. % Mn. All pictures were taken 

under a 45º viewing angle. 

5 . 2  E L E C T R O N   P A R AM A GN E T I C   R E S O N A N C E   S T U D Y  

ZnO crystallizes in the wurtzite structure P63mc with a C3v point symmetry for the substitutional 

sites. Each metallic ion is surrounded by an almost perfect tetrahedral arrangement of O2- ions. 

The crystal field (CF) experienced by the Zn ion has a dominant cubic component and a weaker 

trigonal one. As for all 3d transition metal (TM) ions, Co and Mn are expected to substitute Zn 

atoms. In their neutral charge state (as referred to the charge state of the Zn ion), the ions have 

3d 7 and 3d 5 electron valence configurations, yielding 4A2 and 6A1 ground states for the free ions, 

respectively. Furthermore, as the ionic radii of the substitutional TM ions are obviously different 

from the Zn ionic radius, it is reasonable to consider that there will exist a local distortion of the 

lattice structure, which will be a trigonal distortion, as the doping with TM ions changes the 

distance between the central ion and the surrounding oxygen ions along the C3 axis. Ju-Fen et al. 

(2006) showed that for substitutional Fe3+ is ZnO, for which the ionic radius (0.64 Å) is inferior 

to that of Zn2+ (0.74 Å), a compression is observed along the hexagonal c-axis. In this sense, as 

both ionic radius of Co2+ (0.79 Å) and Mn2+ (0.80 Å) are larger than that of the Zn2+ ion, one 

should expect elongation along the hexagonal c-axis. 

 

5.2.1 Mn Incorporation 

The experimental angular dependencies of the EPR spectra of the Mn doped ZnO NWs 

samples is given in Figs. 5.2 and 5.3. 
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Fig. 5.2. Experimental angular dependence of the EPR spectra of Mn2+ in ZnO nanowires (nominal content of 3 at. %), 

measured in the X-band at 4.2 K. 
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Fig. 5.3. Experimental angular dependence of the EPR spectra of Mn2+ in ZnO nanowires (nominal content of 10 at. %), 

measured in the X-band at 4.2 K. 

 In the case of manganese, the trigonal component of the CF and the spin-orbit interaction 

split the S = 5/2, 6A1 ground state into three Kramers doublets E±1/2, E±3/2, and E±5/2 with zero-

field splittings (ZFSs) equal to 2D and 4D, respectively. The spin Hamiltonian (SH) for S = 5/2 

and I = 5/2 is given by [Kreissl (1990)]: 
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with S± =SX ± SY, where D and F are the axial fine structure (FS) parameters given by the spin 

operators in second and fourth order, respectively, and a is the cubic FS parameter. The crystal 

c-axis (cubic [111] axis) was chosen as the quantization axis Z, with X and Y being, in cubic 

notation, the [ ]211  and [ ]101  axes, respectively. 

 The following energy eigenvalues for B || c may be inferred from the SH given by Eq. (5.1) 

[Schneider (1962, 1963)]: 
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As the parameter a is small when compared to the Zeeman energy and to D, the terms 

proportional to 20a2/9 can be neglected in a good approximation, and the line positions for the 

FS transitions are therefore given by: 
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with B0 = hν/(βg). The prime indicates that the values are in magnetic field units (mT).  

 As presented in Table 5.1, the SH parameters for substitutional Mn2+ in ZnO do not vary 

significantly with temperature. Hence, Fig. 5.4 illustrates the expected line positions and the 

corresponding transitions in the energy level diagram which was calculated with the EasySpin 

software package [Stoll (2006)] for B || c at 300 K, using the SH parameters obtained by 
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Schneider et al (1962, 1963). In this diagram, one can clearly observe the Zeeman splitting, the 

fine and the hyperfine (HF) structures. Note that, because in this case the sign of D is negative, 

the set of allowed transitions (in red) observed at the lowest field corresponds to the set of 

transitions 2/32/5 −↔− .  
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Fig. 5.4. Diagram of the energy levels for the EPR (X-band) transitions of substitutional Mn2+ in ZnO. The energy levels were 

calculated using the spin Hamiltonian parameters obtained by Schneider et al. (1962, 1963) for 300 K. The transitions 

represented by red lines correspond to the allowed ones, while the gray lines correspond to the “forbidden” ones. 

 By fitting the experimental spectra with the Minirock program [Denninger (2006)], we 

extracted the line positions for B || c (θ = 0º). This way we have determined g , A , D and |a-

F| is given in Table 5.1. The SH parameters values are very close to the ones observed for Mn 

doped single crystals [Schneider (1962, 1963)], and do not vary significantly with the Mn 

content, in the studied Mn concentration range, as observed also by Diaconu et al. (2005b) in 

Mn doped ZnO thin films. 

 Additionally, as can be observed in Fig. 5.5, with increasing Mn content the line width 

increases due to the dipole-dipole interaction of the paramagnetic ions. Moreover, for the 

highest nominal concentration, xMn = 10 at.%, a superimposed unresolved broad line appears, 

indicating an inhomogeneous distribution of Mn, in other words, there are regions with lower 
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Mn concentrations (resolved spectrum), and regions  with a higher concentration of Mn 

(unresolved spectrum), where the HF structure of the spectra is obscured by the dipole-dipole 

broadening and breaks down due to the exchange interaction. 
 

Table 5.1. SH parameters for the EPR spectra of Mn2+ in ZnO nanowires, measured at 4.2 K. Except for g, all values are 

given in 10-4 cm-1.   

X 3 at. % 10 at. % Schneider (1962, 
1963) (77 K) 

Schneider (1962, 
1963) (300 K) 

Hausmann and 
Huppertz (1968) 

(295 K) 
|A||| 76 ± 1 78 ± 3 74.96 ± 0.05 74.10 ± 0.05 73.93 ± 0.02 

g|| 2.003 ± 0.001 2.000 ± 0.002 2.0014 ± 0.0002 2.0012 ± 0.0002 1.9984 ± 0.0002 

D -231 ± 0.1 -230 ± 3 -231.6 ± 0.4 -236.2 ± 0.4 -235.28 ± 0.04 

|a-F| 6 ± 1 7 ± 3 5.26 ± 0.05 5.23 ± 0.05 5.44 ± 0.04 
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Fig. 5.5. Experimental EPR spectra for B || c of Mn2+ in ZnO nanowires with two different nominal Mn contents (3 and 10 at. 

%), measured in the X-band at 4.2 K. 

5.2.2 Co Incorporation 

In the case of substitutional Co2+ (3d 7) state on the Zn sites the atomic 4F ground state splits 

under the influence of the tetrahedral component of the CF into a 4A2 orbital singlet state and 

two orbital triplets, 4T2 and 4T1. The first excited state 4T2 is separated from the lowest level by 

the amount 10Dq ≈ 4000 cm-1 [Koidl (1977)]. The value of 10Dq is much larger than the 

thermal energy at room temperature; hence the occupations of all excited states are much 

smaller than those of the ground-state levels. The EPR signal is therefore determined almost 
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entirely by the properties of the singlet ground state 4A2, with only a small admixture from the 

higher lying excited states. Under the action of the trigonal component of the CF and the spin-

orbit coupling both triplets and the singlet undergo further splitting. The fourfold degenerated 

(S = 3/2) 4A2 ground state divides into two Kramers doublets E±1/2 and E±3/2 with a ZFS equal 

to 2D, where the doublet E±1/2 (S = ±1/2) is the lowest, in agreement with the optical [Koidl 

(1977)] and EPR results [Estle and De Wit (1961)]. Taking into account these results, the EPR 

data can be described by the following SH [Abragam and Bleany (1986)]: 
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once again, the label Z (or || ) applies for the c-axis (hexagonal [0001] axis of ZnO) and X, Y (or 

⊥) apply for all axes perpendicular to it. In the present case, I = 7/2. As in this case the ZFS is 

much larger than the Zeeman energy, only the electron spin transitions 2/1±=SM  within 

the S = 3/2 manifold can be observed in the available magnetic fields up to 1.5 T. The 

corresponding spectrum can therefore be described in good approach by the effective SH given 

by: 

 ,IASSgB ⋅′⋅′+′⋅′⋅= β[  (5.5) 

with an effective spin 2/1=′S  and taking into account the HF interaction in the doublet. In 

this approach, the angular dependence of the line positions BM of the allowed HF transitions 

(ΔmI = 0) within the 2/1±  spin doublet is given by the resonance condition 

 ( ) ( ) ( ) ,IM mθAθBθgβνh ′+′=  (5.6) 

where θ is the angle between the c-axis and the applied external magnetic field B. The effective g-

value ( )θg ′  is related with the g-values used in equation (5.4) in the S = 3/2 manifold in first 

order by [Kreissl (1990)]: 

 ( ) ( ) ( ) ( ),sin2cos 2222 θgθgθg ⊥+=′  (5.7) 

and the apparent HF constant ( )θA′  by 
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Hence, for B || c (θ = 0º) the apparent g and A values g ′  and A′ are equal to g and A , 

respectively, while for B ⊥ c (θ = 90º) one obtains: 

 .2 and 2 ⊥⊥⊥ =′=′ AAgg  (5.9) 

Whereas for θ = 0º the parameters g ′  and A′  are identical to the corresponding g- and A-

values, the exact diagonalization of the SH (Eq. (5.4)) gives very small corrections for θ ≠ 0º. 

These small contributions are given in good approach by the perturbation theory using the 

correction up to the third order in the Zeeman energy [Kreissl (1990)]. In the case of B ⊥ c 

(θ = 90º), the corrected value is given by [ ]2)/)(16/3(12 DBμggg B⊥⊥⊥ −=′ , which raises the 

⊥g -value calculated with Eq. (5.7) only by 2.2 × 10-3 using the D-value of 2.75 cm-1 given by 

Estle et al. (1961). The SH parameters for the experimental spectra were obtained (see Table 5.2) 

by fitting the experimental spectra with the Minirock program [Denninger (2006)]. The analysis 

of the spectrum revealed that it consists of two components, A and B, as illustrated in Fig. 5.6 

for B || c.  
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Fig. 5.6. (a) Experimental EPR spectrum of Co2+ in ZnO nanowires (nominal content of 5 at. %), measured in the X-band at 

4.2 K for B || c (θ = 0º); (b) result of the fitting of the experimental spectrum given by the sum of components A and B shown 

in (c) and (d), respectively. 

These components follow the same angular and temperature dependencies. Using the intensity 

ratio between the two components, the ratio of the number of centres was determined 

NB/NA = 1.4. The calculated angular dependence of the experimental Co2+ EPR spectrum 
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together with the HF splitting using parameters given in Table 5.2 is shown in Fig. 5.7. In Fig. 

5.8 the angular dependencies of the experimental line positions for both components A and B 

are compared with the calculated ones using Eq. (5.7) supplemented with the small third order 

corrections in the Zeeman energy [Kreissl (1990)]. 

140 160 180 200 220 240 260 280 300 320

0

30

60

90

 
 

 
  

 
 

 
 

E
PR

 si
gn

al 
[a

. u
.]

 
 

 
 

 
 

 

 

θ 
[º]

 

B [mT]

 
Fig. 5.7. Angular dependence of the EPR spectra of Co2+ in ZnO nanowires (nominal content of 5 at. %), measured in the X-

band at 4.2 K. θ = 0º corresponds to B || c. The result of the fitting of the angular dependence of the HF line positions is 

plotted in solid lines on top of the spectra. 
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Fig. 5.8. Experimental values of the centres of gravity of the A (dots) and B (squares) EPR spectra, as extracted from the 

fittings, and calculated (solid lines) angular variations of the line positions of the 21±  transitions for Co2+ in ZnO nanowires 

(nominal content of 5 at. %). The spectra were measured in the X-band at 4.2 K. 
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Table 5.2. SH parameters determined for the EPR spectrum measured at 4.2 K of Co2+ in ZnO 

nanowires nominally doped wit 5 at. % Co. Except for g, all values are given in 10-4 cm-1.   

signal A B Estle and De Wit (1961) 

|A||| 16.2 ± 0.6 16.8 ± 2.0 16.11 ± 0.05 

|2A⊥| 3.2 ± 1.0 3.2 ± 1.0 3.00 ± 0.03 

g|| 2.247 ± 0.001 2.245 ± 0.002 2.243 ± 0.001 

g⊥ 2.276 ± 0.001 2.276 ± 0.007 2.2791 ± 0.002 

D - - 2.75 ± 0.01

  

  The line widths (for B || c, ΔBpp = 0.7 and 1.9 mT for components A and B, respectively) 

were larger than that reported in the literature for epitaxial layers (ΔBpp = 0.04 mT for B || c) 

[Jedrecy (2004)]. The observed broadening may be in part due to the presence of a high defect 

concentration and random strains in the NWs. However, the main part is probably caused by 

some irregularity of the NWs arrangement observed by SEM. All determined SH parameters, 

except g , fairly agree with those reported in the literature for bulk crystals and epitaxial layers 

[Estle and De Wit (1961), Jedrecy (2004)]. The g values are slightly too large, lowering the line 

position by about 0.6 mT for component A. This suggests that the sample was slightly 

misoriented during the measurement, and that in this case we did not measure exactly the values 

for B || c. Using the data from literature [Estle and De Wit (1961)] one finds that a misalignment 

of only ≈ 2.0º can be responsible for this deviation. Thus, the misalignment probably comes 

from the misorientation of the sample holder's surface in the cavity. 

 Additional information about the magnetic state of the NWs can be obtained from the 

variation of the EPR spectrum intensity I with the measurement temperature T. In the case of 

cations without exchange interaction, I is proportional to the difference in the population of the 

four lowest levels, whose energies can be calculated using the SH given by Eq. (5.4). In Fig. 5.9 

we show the experimental temperature dependence between 5 and 40 K of the EPR spectrum 

for B || c, which was the best resolved one. Although the spectrum could be detected up to 90 K, 

for T > 40 K the HF structure could not be resolved. In Fig. 5.10 we illustrate the EPR intensity 

and inverse intensity temperature dependences for both components of the spectra A and B, 
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together with the respective calculated curves of the temperature dependence for the 21±  

transition within the S = 3/2 manifold (using D = 2.75 cm-1 given by Estle and De Wit (1961).  
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Fig. 5.9. Experimental temperature dependence of the EPR spectra for the Co2+ in ZnO nanowires (nominal content of 5 at. 

%), measured for B || c in the X-band. 

 This plot evidences that both components exhibit a paramagnetic behaviour. Moreover, in 

the same figure, we plot a simulation including a correction that takes into account a possible 

small intensity error linearly dependent on the temperature, and the simulation now perfectly 

agrees with the experimental data. This error might be caused by any of the following factors or 

a combination of them: (i) miscalibration of the thermoelement, (ii) variation of the quality 

factor of the microwave cavity with temperature, (iii) setting in of a saturation of the EPR 

transition with decreasing temperature due to increasing spin-lattice relaxation time (see below 

the discussion of the temperature behaviour of the line width). Because the correction necessary 

to perfectly fit the measured values is very small, none of the above reasons can be excluded. On 

the other hand, such small effects are difficult to be checked with certainty.  
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Fig. 5.10. Temperature dependence of the EPR intensity (top) and inverse intensity (bottom) of the A (dots) and B (squares) 

components of the 21±  transition of the Co2+ spectrum in ZnO NWs (nominal Co content of 5 at. %), measured in the X-

band for B || c. The dashed lines are the calculated curves for the 21±  transition within the S = 3/2 manifold, using the 

zero-field splitting of D = 2.75 cm-1 given by Estle and De Witt ( 1961). The solid lines represent the same calculated lines but 

including a correction that takes into account a small error that scales linearly with temperature. 

The main feature of this analysis is that the curvature of the 1/I vs. T dependence caused by a 

large zero-field splitting can be misleading, giving the impression of the existence of a finite 

Curie-Weiss temperature. Thus, we do not believe to observe any ferromagnetic coupling 

between the Co2+ spins in our sample. Additional information may be extracted from the signal 

line width. Fig. 5.11 shows the temperature dependence of the line width. The increase of the 

line width with temperature due to increasing spin-lattice relaxation explains why the HF 

structure is no longer resolved for T > 40 K and the signal cannot be measured, at least with the 

same microwave power, for T > 90 K. Considering that both components, A and B, follow the 

same angular and temperature dependencies, and that the essential difference between them is 

the line width, we suggest that they represent two different environments of the Co2+ ions. 
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These different environments may be due to different local concentration of Co ions and/or 

different local strains. 

0 5 10 15 20 25 30 35 40

1.7

1.8

1.9

2.0

2.1

0 5 10 15 20 25 30 35 40

0.9

1.0

1.1

1.2
 

 

 

Li
ne

w
id

th
 [m

T]

Temperature [K]

 

 

 

 
Fig. 5.11. Temperature dependence of the spectral widths for the Co2+ lines in ZnO nanowires (nominal content of 5 at. %), 

measured for B || c in the X-band. Dots belong to the A component and squares to the B component of the spectra. 

5 . 3  CON C L U D I N G   R EM A R K S  

We investigated the incorporation of Mn and Co into nanometric ZnO wires grown by PLD. 

For the lowest nominal concentrations, xMn = 3 at. % or xCo = 5 at. %, the anisotropic EPR 

spectra of substitutional isolated Mn2+ (3d 5, 6S) or Co2+ (3d 7, 4F), respectively, has been 

measured. The ions could therefore be unambiguously identified by their HF structures due to a 

nonzero nuclear spin (I = 5/2 for 55Mn and I = 7/2 for 59Co with 100% natural abundance 

each), and their valence states could be concluded from the observed FSs. The detection of well 

resolved anisotropic spectra proved a coherent crystallographic orientation of the NWs. 

Moreover, in the case of the Co doped NWs it was possible to identify two different 

components of the spectra, A and B, which probably correspond to two different environments 

of the Co ions. The temperature dependence of the EPR intensity shows that both components 

exhibit paramagnetic behaviour. In summary, our samples have good crystalline quality and do 

not show any ferromagnetic coupling between the Co2+ or Mn2+ spins. 
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6  ZNO  TRANS I T ION  METAL  DOPED  COLLO IDAL  

NANOCRYSTALS    

Several research groups have made great efforts towards achieving high quality ZnO 

nanocrystals (NCs), where surface related effects are especially relevant due to the high surface-

to-volume ratio. In particular, for metal doped NCs, little is known about the effects of chemical 

surface modification strategies on doping. This section is dedicated to a detailed investigation of 

the magnetic and structural properties Co or Mn doped colloidal ZnO nanocrystals. The 

influence of the surface modification, namely polymer encapsulation and inorganic capping, on 

the magnetic properties of transition metal (TM) doped ZnO colloidal NCs was analysed. The 

structural properties were probed by X-ray diffraction (XRD) and transmission electron 

microscopy (TEM). Electron paramagnetic resonance (EPR) spectra have been measured and 

analysed to extract information on the incorporation of the ions in the lattice. A detailed analysis 

by means of simulations of the experimental EPR spectra was carried out. The results presented 

in this chapter were published in the following papers: (i) Physica Status Solidi (b), 246, 766 

(2009); and (ii) Journal of Applied Physics, 103, 07D140 (2008). 

6 . 1  SAM P L E   P R E P A R A T I O N  

All chemicals were supplied by Aldrich, except ethyl acetate (Lab-Scan). All the chemicals were 

used as received, except the organic solvents which were dried over molecular sieves. The doped 

ZnO colloids were synthesized by A. S. Pereira at Chemistry Department of the University of 

Aveiro by the drop wise addition of 33.3 cm3 of absolute ethanol containing 

tetramethylammonium hydroxide (N(CH3)4OH.5H2O: 0.552 mol.dm-3) to Zn2+:TM2+ 

dimethylsulfoxide (DMSO) solutions. These solutions were prepared by adding 

TM(CH3COO)2.6H2O to 100 cm3 of a DMSO solution 0.101 mol.dm-3 in Zn(CH3COO)2.2H2O, 

to achieve a 5% nominal mole doping. Additionally, a sample with a 10% Mn nominal mole 

doping was prepared in a similar way.  To extract the TM doped ZnO NCs as powders, ethyl 

acetate was added to the colloid; the formed precipitate was centrifuged and washed with ethyl 

acetate and methanol. In the case of the Co doped samples, surface modifications were carried 

out. Trioctylphosphine oxide (TOPO) capped Co doped ZnO NCs, obtained after thermal 

treatment of part of the raw sample at 150°C for 4 hours under a nitrogen stream, were 
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thoroughly washed with methanol and subjected to chemical surface modification by two 

distinct routes: 

i. A miniemulsion polymerization technique was employed to prepare polystyrene (PS) 

nanocomposites containing Co2+ doped ZnO NCs. The miniemulsion was prepared by 

mixing a solution containing H2O (17.7399 g), NaHCO3 (11.9 mg) and SDS (57.5 mg), 

with another solution containing ZnO:Co (6 mg), styrene (4 ml), hexadecane (82.1 mg) 

and AIBN (11.5 mg). These two solutions were mixed and stirred for 30 min and 

sonicated for 5 min.  The reacting mixture was held 2 h at 70ºC after being purged with 

N2 for 20 min.  The final nanocomposite was retrieved through centrifugation and washed 

with water to remove excess of PS. 

ii. In another strategy, the surface modification of the NCs was achieved by dispersing them 

in 2 cm3 of TOP and heating the mixture up to 280ºC under a N2 stream. An excess of 

TOPSe (2 mol.dm-3) was then injected into the hot mixture and the reaction was kept at 

this temperature for 4 hours, under N2 atmosphere. During this process, the formation of 

ZnSe at the ZnO surfaces was monitored by UV/visible spectroscopy. The extraction and 

washing of the NCs was performed with a mixture (1:3) of methanol and isopropanol. 

6 . 2  S T R U C T U R A L  C H A R A C T E R I Z A T I O N  

Figs. 6.1 to 6.4 show typical TEM images and the XRD measurements for all samples which are 

morphologically well-defined particles with an approximately spherical shape. XRD evidenced 

the formation of ZnO NCs with a hexagonal wurtzite crystal structure for all samples.  No TM 

clusters or TM-related complexes were detected, at least within the sensitivity of the apparatus. 

Excluding instrument broadening effects (using a certified standard NIST SRM660a (LaB6 

powder)) and applying the Scherrer equation, we estimate the crystallite size as a function of the 

peak width. In the case of the Co doped ZnO NCs, the raw, the PS capped, and the ZnSe 

capped samples yielded average diameters of 6 ± 2 nm, 6 ± 2 nm, and 12 ± 3 nm, respectively. 

For the Mn doped ZnO NCs, the estimated average diameters were of 13 ± 0.5 nm, and 

8.2 ± 0.5 nm, for the 5 and 10% Mn, respectively. 

 The TEM image shown in Fig. 6.1 (b) reveals that each nanocomposite particle of the Co 

doped NCs results from the PS encapsulation of a group of ZnO:Co NCs forming 

morphologically well-defined particles with a ZnO phase (dark spots) dispersed in round shaped 
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PS beads, in agreement with previous findings for other systems [Esteves (2005), Martins 

(2007)]. Fig. 6.1 (c) shows a TEM image obtained after 20 minutes reaction with TOPSe 

evidencing fairly morphologically homogenous nanoparticles. Fig. 6.2. (c) and (d) show the 

histograms of the size distribution of the ZnO Mn doped NCs, revealing the average diameters 

of 11.8 ± 2.3 and 6.5 ± 1 .2 nm for 5 and 10% Mn contents, respectively. The discrepancy of 

the TEM and the XRD results for the NCs diameters appears due to the different averaging 

methods: in the case of the TEM, the weighted average values of the real diameters of the NCs 

observed in the microscope is calculated, while the XRD values are calculated by the Scherrer 

formula using the FWHM of a diffraction peak containing the average contribution by all the 

NCs. 

 

   
Fig. 6.1. TEM images of  (a) ZnO:Co NCs, (b) polystyrene/ZnO:Co nanocomposites, and (c) ZnO:Co NCs capped with 

ZnSe.  
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Fig. 6.2. TEM image of colloidal ZnO nanocrystals doped with nominally 5% (a) and 10% (b) of Mn showing average 

diameters of 11.8 nm and 6.5 nm, respectively. Histograms of the size distribution of the ZnO nanocrystals doped with (c) 

5% and (d) 10% Mn. 
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Fig. 6.3. X-ray diffraction measurements of Co doped ZnO NCs (red circles), polystyrene/ZnO:Co nanocomposites (green 

triangles), and ZnO:Co NCs capped with ZnSe (blues squares). The peak identification is identical for the three samples. 
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Fig. 6.4. X-ray diffraction patterns of ZnO nanoparticle powders doped with nominal Mn concentrations of 5% (open red 

circles) and 10% (closed blue circles), respectively. The indexing of the wurtzite ZnO lines is given in the three-index notation 

for directions and planes of hexagonal systems; (hk.l) is equivalent to the four-index notation (hkil), with i = -(h + k).  

 

6 . 3  EPR   A N A L Y S I S  

EPR measurements were performed in the X- (≈9.5 GHz) and Q- (≈34 GHz) bands for all 

ZnO NCs samples, at temperatures between 4 and 300 K, using a Bruker ESP 300E 

spectrometer equipped with Oxford Instruments continuous flow helium cryostats. 

 

6.3.1 Co incorporation 

As exposed in section 5.2.2, in the case of substitutional Co2+ (3d 7) on the Zn sites the ground 

state is the orbital singlet 4A2 and, due to the strong hexagonal crystal field, the zero-field 

splitting (ZFS) is much larger than the Zeeman energy, consequently, only the electron spin 

transitions within the 2/1±  doublet can be observed in the available magnetic field range. 

Thus, the formalism used to describe the spectra is the same as explained is section 5.2.2, 

considering an effective electron spin 2/1=′S  and a nuclear spin I = 7/2. The EPR powder 

spectra were simulated by diagonalization of the spin Hamiltonian (SH) (5.5) and fully 

integrating over the space angles using the EasySpin software package [Stoll (2006)]. 
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Illustratively, the simulations of the three EPR signals for the raw Co doped NCs are shown in 

Fig. 6.5.  

 Fig. 6.6 presents the final result of the simulations of the EPR spectra for all samples, with 

the respective experimental traces. The analysis proves that part of the spectra (SI) is due to 

substitutional Co2+ with the effective SH parameters 2.2' =g , 6.4' =⊥g , -14' cm 100.16 −×=A  

and -14' cm 100.3 −
⊥ ×=A , in agreement with the bulk values [Estle and De Wit (1961)]. 

Additionally, there are two other Co lines, SII and SIII, which stem from locally distorted 

environment and can be described by 2.2' =g  and 3.5' =⊥g ,  and 2.2' =g  and 9.3' =⊥g  for 

SII and SIII, respectively, as confirmed by Q-band measurements (Fig. 6.7) which have a higher 

spectral resolution. The surface exchange reaction with TOPSe occurring during the preparation 

of the ZnSe capped NCs, in which ZnSe is formed at expense of Zn in the shell of the NCs, 

partially removes the SII and SIII signals, revealing a core-shell structure. As expected, this effect 

is not so pronounced for the polymer capped NCs, as the surface is not removed by the PS 

encapsulation. 
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Fig. 6.5. Experimental X-band EPR spectrum at 10 K of ZnO:Co (nominal Co content of 5%) nanocrystals with the 

respective simulation carried out by adding the EPR signals SI, SII and SIII.  
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Fig. 6.6. Experimental X-band EPR spectrum at 10 K of ZnO:Co (nominal Co content of 5%) raw nanocrystals, of those 

after polymer encapsulation, or after reaction with TOPSe. The respective simulations are plotted in light blue carried out by 

adding the EPR signals SI, SII and SIII. 
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Fig. 6.7. Experimental Q-band EPR spectrum at 10 K of raw nanocrystals ZnO:Co (nominal Co content of 5%). 
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6.3.2 Mn incorporation 

In the case of Mn incorporation, the main part of the signal in the EPR spectra of the NCs 

stems from substitutional Mn on Zn sites yielding a 3d 5 electron valence configuration and a 6A1 

ground state, with a nuclear spin I = 5/2 and an electron spin S = 5/2. As in the case of the Mn 

doped ZnO NWs, the EPR data obtained for the Mn doped ZnO NCs described by the SH 

(5.1). 

 In these detailed EPR investigations, from the experimental point of view, the modulation 

amplitude plays a very important role. If this measurement parameter is too large, the lines are 

broadened and significant details are missed. On the other hand, too small modulation 

amplitudes mean considerable losses in terms of signal to noise ratio. Hence, a perfect 

compromise must be found. Fig. 6.8 illustrates this feature of the EPR measurements. 

 Another important aspect is the difference between the X- and Q-band spectra. If one 

calculates the angular dependence of the FS transitions, as given in Fig. 6.9, it is clear that for the 

central electron spin transitions 21±  there is a clear shift of the line position due to second 

order effects in the ZFS.  
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Fig. 6.8. Q-band EPR spectrum at 290 K of the raw Mn doped ZnO nanocrystals (nominal Mn content of 5 at. %), measured 

with a modulation amplitude of (a) 1.6 G and (b) 4 G. (c) Difference obtained by subtracting spectrum (a) to spectrum (b), 

showing the influence of the modulation amplitude on the details of the powder spectrum. 
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Also, the angular dependence is much more pronounced in the X-band. This happens because 

the higher order effects are smaller in the Q-band, as they are inversely proportional to the 

magnetic field. Nevertheless, as illustrated in Fig. 6.10, the difference between the powder 

spectra in the two bands disregarding the hyperfine (HF) structure is small. The real difference 

in the powder spectrum arises from the HF interactions. The reason is that in the X-band both 

the allowed (6 lines) and most of the forbidden (36 lines) HF transitions are detected. In the 

main directions (B || c, and B ⊥ c), the forbidden transitions are not detectable, but for certain 

intermediate directions, these transitions are even more intense than the so-called allowed 

transitions. In the Q-band, the Zeeman interaction term is larger by a factor 3.5 and the 

spectrum is simplified, because the forbidden transitions are suppressed and more or less only 

the allowed transitions are measured. Thus, for an accurate measurement of the SH parameters, 

the Q-band is much more useful. Taking this into account, we chose the Q-band to extract the 

SH parameters of the measured powder spectra. 

 Note that in Fig. 6.9, the angular dependence of the fine structure (FS) line positions for 

substitutional Mn2+ in ZnO was calculated for the two equivalent Zn sites, A and B, with C3V 

point symmetry in the hexagonal ZnO unit cell. These two physically equivalent sites are caused 

by the ABAB stacking sequence of the wurtzite structure, and can be distinguished by EPR for 

electron spin systems with S ≥ 2. In the case of the powder spectrum, these sites are no longer 

distinguishable, since the integration over the space angle smears out the difference between 

them (A and B swap positions upon a rotation of φ = 60º). 
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Fig. 6.9. Comparison of the X- and Q-band angular dependence of the fine structure line positions for substitutional Mn2+ in 

ZnO calculated for both A and B sites, using EasySpin software package [Stoll (2006)] and the SH parameters obtained by 

Schneider et al. (1962, 1963). To superimpose both dependences, the X-band values were shifted by 878.8073 mT to the right 

so that the spectra for g = 2 are superimposed. The dotted green line corresponds to g = 2. θ is the angle between the applied 

magnetic field and the c-axis of ZnO. 

 

 An additional feature of the EPR spectra that plays a significant role in small structures is 

the strain. To describe the line broadening coming from strain one has to introduce a strain-

induced distribution of the FS parameter D. The influence of this distribution is illustrated in 

Fig. 6.11. 
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Fig. 6.10. Comparison of the X- and Q-band powder spectrum for substitutional Mn2+ in ZnO calculated disregarding the 

hyperfine interactions, using EasySpin software package [Stoll (2006)] and the SH parameters obtained by Schneider et al. 

(1962, 1963). To superimpose both dependences, the X-band spectrum shifted by 878.8073 mT to the right so that the 

spectra for g = 2 are superimposed. 
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Fig. 6.11. Influence of the strain distribution on the Q-band powder spectrum for substitutional Mn2+ in ZnO calculated 

using EasySpin software package [Stoll (2006)] and the SH parameters obtained by Schneider et al. (1962, 1963). 
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 In Fig. 6.12 are presented the Q-band powder spectra measured with modulation 

amplitude of 2 G for the 5 and 10 % Mn doped ZnO NCs. The outer transitions are magnified 

for a better visualization. These powder-like spectra contain a wealth of information about the 

Mn incorporation in the ZnO NCs, as will be revealed by the detailed analysis of the 

experimental spectra. 

 From Eq. (5.1) the splitting of the energy levels within the ground state 6A1 for a zero-

magnetic field (FS splitting) can be written as a function of the parameters a, D and (a-F) 

[Abragam and Bleany (1986)]: 
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 (6.1) 

where the signs “+” and “-” correspond to D > 0 and < 0, respectively. The extent of the FS 

splitting of the spectra is determined by the magnitude and symmetry of the local electrical field 

and the covalent bonding with surrounding ions. 
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Fig. 6.12. Experimental Q-band EPR spectrum at 290 K of raw nanocrystals ZnO:Mn (nominal Mn content of 5 and 10 at. 

%). For a better visualization, the outer transitions are magnified (dashed lines). 

 The magnitude of the HF splitting given by the second term in the SH (5.1) is very 

sensitive to changes in the wave function of the Mn2+ 3d 5 electrons. Besides the HF transitions 

of the central FS transition MS = -1/2 ↔ MS = +1/2 previously reported in other EPR studies 
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of Mn-doped ZnO NCs [Zhou (2003), Viswannatha (2004)], we have also been able to directly 

detect some HF components of the outer Mn FS transitions. The magnifications of the spectra 

given in Fig. 6.12 show the part of the HF lines due to the outer Mn FS transitions MS = ±5/2 

↔ MS = ±3/2 that are not completely overlapped by the other transitions. The visible 

amplitude of the outer FS transitions MS = ±5/2 ↔ MS = ±3/2 and MS = ±3/2 ↔ MS = ±1/2 

is always strongly suppressed as compared to that of the central FS transition MS = -1/2 ↔ 

MS = +1/2, which is mainly caused by the stronger angular dependence of the line positions of 

the outer transitions and the random orientation of the centre axes in the powder samples. Also 

in single crystals, stochastic strain fields created by point defects and dislocations are a common 

source of inhomogeneous broadening of the line width. Therefore, only the centres having 

orientations of the centre axes that give an evanescent slope of the line positions contribute to a 

detectable signal. The contributions of the other centre orientations are smeared out and cannot 

be detected. Because the experimental spectra enable us to distinguish the HF structure of the 

different FS transitions directly, the weighted average of the FS parameters D and (a-F) over the 

possible local configurations can be obtained from the investigated powder spectra with high 

accuracy. However, the FS parameters can also be obtained by computer simulation in cases 

where the outer FS lines are broadened beyond the detection, because the shape of the HF 

spectrum related to the central FS transition is affected by the magnitude of these FS terms in 

higher order of perturbation theory [Koh (1984)]. Therefore, the influence of strain and size 

effects as well as the changes in the covalent bonding on the spectra can be analyzed with high 

accuracy by computer simulation using the complete SH (5.1).  

 For the NWs, the SH parameters could be obtained by an analysis of the line positions of 

the different spin transitions for special directions, as described in section 5.2.1 for the case of 

B || c. However, in the case of powder spectra the centre axes are randomly distributed, and 

therefore one has in addition to fully integrate over the space angles in order to calculate the 

spectra and to determine the SH parameters by fitting the spectra. 

 Using the EasySpin software package [Stoll (2006)] we have solved the SH (5.1) by exact 

diagonalization and simulated the respective spectra. The results of such simulations together 

with the experimental spectra are shown in Fig. 6.13. We started our fitting procedure by 

simulating the substitutional Mn2+ spectrum S1 using, in a first step, the SH parameters for bulk 

ZnO [Schneider (1962, 1963)] and found that this was not enough to fully describe the 
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experimental Mn2+ spectrum. In order to evidence the part of the spectrum still lacking 

description, we determined the difference between the spectra of the 5 and 10% Mn doped 

NCs, given in Fig. 6.14.  
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Fig. 6.13. EPR spectrum for (a) 5% and (b) 10% Mn doped colloidal ZnO nanocrystals, measured in the Q-band at 290 K, 

along with the respective simulations carried out by adding the EPR signals S1, S2, and S3. 



Chapter 1 Transition metal doped ZnO nanocrystals 95 

   

 

1150 1200 1250 1300

 

 

E
PR

 si
gn

al 
[a

.u
.] 

B [mT]

(a)

(b)

 
Fig. 6.14. Difference obtained by the subtraction of the experimental Q-band EPR spectrum, taken at 290 K, of the raw Mn 

doped ZnO nanocrystals (nominal Mn content of 5 and 10%), yielding (a) 10% Mn spectrum - 5% Mn spectrum, and (b) 5% 

Mn spectrum - 10% Mn spectrum. 

This procedure clearly revealed a second signal S2 with a behaviour similar to that of the Mn2+ 

EPR spectrum S1, but with a 14% larger HF splitting, and a 20% smaller D. To fully describe the 

powder spectrum, we still had to add a broad Lorentzian line, S3, which is commonly present in 

highly Mn doped ZnO due to local regions with higher Mn concentrations. The SH parameters 

describing the three parts of the spectrum were varied around the values obtained in the first 

step to obtain an optimal fit to the experimental spectrum. Furthermore, in order to achieve a 

sound simulation of the observed line broadening of the spectra S1 and S2 we had to introduce a 

distribution ΔD of the zero-field parameter D describing the local lattice distortions in the 

vicinity of the Mn impurity in the different regions of the NCs. In the case of the spectrum S1, 

we found that this distribution could not be simply Gaussian (random distribution), but had to 

be a sum of at least three Gaussian distributions with different centres and widths. In the case of 

the spectrum S2, an orthorhombic distortion had to be added to the strain distribution. 

 Finally, the intensity of the spectra S1, S2 and S3 were determined by double integration. 

We obtained the intensity I2/I1 ratios of 0.2 and 0.3 for the 5% and 10% Mn-doped samples, 

respectively. The resulting SH parameters are given in Table 6.1. 
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Table 6.1. SH parameters determined for the Q-band EPR spectra of the Mn doped ZnO nanocrystals. Except for the g-

values and the line width, all values are given in 10-4 cm-1.  

x 5% 10% Schneider 
(1962, 1963) 

EPR 
signal S1 S2 S3 S1 S2 S3 bulk crystal 

g|| 
 2.0010 

± 0.0002 
 2.0011 

± 0.0002  1.9993 
± 0.0005

  2.0010
± 0.0002

2.0006
± 0.0002  1.9993 

± 0.0005 
2.0012 

± 0.0002
g⊥ 

 2.0009 
± 0.0002 

 2.0010 
± 0.0002 

  2.0009
± 0.0002

2.0006
± 0.0002

A|| 
-73.9 
± 0.3 

-84.4 
± 0.3 

– -73.9
± 0.3

-84.4
± 0.3

– 
-74.10 
± 0.05

A⊥ 
 -73.8 
±  0.3 

 -84.4 
±  0.3 

– -73.8
±  0.3

-84.4
±  0.3

– 

D  -232.8 
±   0.3 

 -183.5 
±  0.3 

– -25.3
± 0.2

-200.1
± 0.3

–  -236.2
± 0.4

ΔD  53.67 
± 0.3 

 130.1 
± 0.3 

–     4.0
  ± 0.5

133.4
± 0.3

– – 

(a–F)   6.20 6.20 –   6.20 6.20 –  6.20
± 0.05

FWHM 
[mT] 

 0.71 
± 0.01 

 0.9 
 ± 0.1 

70
± 2

0.70
± 0.01

0.9
 ±0.1

60 
± 2 – 

The symbols ||  and ⊥ stand for parallel and perpendicular to the c-axis, respectively. FWHM stands for full width 
at half maximum. 
 

 Previous investigations have also shown that, in addition to the corresponding bulk-like 

spectra, another six-line spectrum similar to S2, but with a larger HF splitting, appears in Mn 

doped CdS and ZnS [Kennedy (1995), Borse (1999), Zhou (2006b)] as well as in Mn doped 

ZnO NCs [Norberg (2004), Zhou (2003), Viswannatha (2004)]. Based on ionicity arguments 

these spectra were ascribed to Mn in the surface shell of the NCs. The decrease of the NC size 

(increase of the surface-to-volume ratio) detected by XRD and TEM and the increase of the 

determined intensity ratio I2/I1 of the EPR spectra with increasing Mn content allows us first to 

ascribe S1 and S2 to the manganese in the core and in the surface shell of the NCs, respectively; 

and second to estimate the thickness of the surface shell using a simplified model with spherical 

NCs and average Mn concentrations in the interior and surface region of the nanoparticles 

[Gehlhoff (2008)]. In the present case quite similar transition probabilities can be assumed for 

the transitions that form the spectra S1 and S2. Therefore, the intensity ratio I2/I1 is given by the 

number of Mn centres in the surface layer and the interior of the NCs, respectively. Assuming 

that the NCs are spherical, the intensity ratio is simply given by: 

 
core

shell

core

shell

n
n

V
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I
I
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where the volume of the shell is ( )[ ]33

6
1 tddπVshell −−= , with d being the NC diameter, and t 

being the shell thickness, ( )3

6
1 tdπVcore −=  is the volume of the core, and nshell, and ncore are the 

Mn concentration in the shell and the core respectively. Thus, the intensity ratio may be written 

as: 
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33
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core

shell

−
−−

= . (6.3) 

On the other hand, we observe a broadening of the single EPR lines in the shell. In the case of 

the single lines, the broadening is due to the dipole-dipole interaction and, for a Lorentzian line 

shape, the full width at half maximum (FWHM) is given by the expression [Zhidomirov (1985)]: 

 nμkgπFWHM B⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

39
8 2

. (6.4) 

where k = 3/2 for spins in resonance, and n is the centre concentration. From this relation we 

can calculate the concentration ratio in the shell and in the core nshell /ncore = 1.3, demonstrating an 

accumulation of the Mn concentration in the shell. 

 The resulting intensity ratios I2/I1 for some layer thicknesses are shown in Fig. 6.15 as a 

function of the average diameters of the NCs. Using the diameters of the NCs 

dXRD(a) = (13.0 ± 0.5) nm and dXRD(b) = (8.2 ± 0.5) nm estimated by XRD measurements and 

the determined intensity ratios I2/I1 of 0.2 and 0.3 we obtain a thickness of the surface layer of 

ta = 0.55 nm and tb = 0.61 nm for the 5% and 10% Mn doped NCs, respectively. With the 

average diameters of the NCs estimated by TEM the values ta(av) = 0.44 nm and tb(av)  = 0.55 

nm are obtained. 

  The relatively small difference between the values calculated with the different diameters 

obtained by XRD and TEM are due to the fact that in first order the surface layer thickness is 

only determined by the diameter ratio da/db. Additionally, the determined values are sensitively 

dependent on the intensity ratio I2/I1. Therefore, a very careful determination of this ratio is an 

absolute prerequisite for a quantitative analysis. However, besides all experimental uncertainties 

and the used simplification we obtained the unique result that the surface layer thickness is very 

small, of the order of 0.4 to 0.6 nm, and that the Mn is not uniformly incorporated in the NCs, 

but there is an accumulation of Mn in the shell region. Moreover, the enrichment of the Mn in 
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the surface region was confirmed experimentally by the strong decreasing of the I2/I1 if the 

surface is treated with ZnSe removing part of the ZnO surface. The production of a set of NCs 

doped with an array of different Mn concentrations and with a narrower size distribution would 

allow a more precise determination of the thickness of the surface layer and of the distribution 

of the incorporated Mn between the core and the shell region. 
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Fig. 6.15. Ratio of the intensities of the EPR signals S2 and S1 as a function of the nanocrystals average diameters.  

 As mentioned above, the quantitative determination of the intensities of the spectra S1 

and S2 have to consider the experimentally observed line broadening. Neglecting deviations 

from the C3V symmetry for the Mn site we modelled the strain-induced line broadening of the 

spectrum S1 by a sum of three Gaussian distributions of D with the mean values D = 250.2, 

235.2, and 193.5 × 10-4 cm-1 and FWHM of ΔD = 93.4, 40.0, and 93.4 × 10-4 cm-1, respectively. 

In the case of S2, we were able to model the strain-induced line broadening simply with one 

Gaussian distribution of D with ΔD = 130.1×10-4 cm-1 and 133.4×10-4 cm-1 for the 5 and 10% 

Mn doped NCs, respectively. The presence of the large D distribution reflects a stronger 

variation of the crystal field (CF) distortions in the NCs as compared to bulk crystals [Schneider 

(1962, 1963)] and epitaxial layers [Diaconu (2005b)]. The observed increase of the ΔD variation 
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for Mn in the shell region as compared to Mn in the core of the NCs can be explained by a 

greater capacity of the shell to structurally relax in different ways. 

 Theoretical predictions of the FS parameters for d 5 configuration ions (both Mn2+ and 

Fe3+) need to take into account spin-orbit coupling in higher orders in the considered CFs and 

admixture of the wave functions of the excited states with those of competing contributions 

[Wan-Lun and Min-Guang (1988), Newman and Ng (1989), Kuang (1996)]. Deviations of the 

parameters D, a-F and a from the experimental data can be explained by local lattice distortions 

in terms of the superposition model [Newman and Ng (1989)] and by complete diagonalizing of 

the energy matrix for a d 5 configuration in a trigonal CF [Kuang and Chen (1987)]. For 

hexagonal GaN:Mn2+ and GaN:Fe3+ a displacement of the TM ions towards the N ligand along 

the lattice direction c is predicted [Zheng (2001)]. For ZnO:Fe3+ the calculation indicates a 

compression distortion around Fe3+ upon retention of the C3V symmetry [Ju-Fen (2006)]. This 

compression may be ascribed by the facts that the ionic radius of Fe3+ (r = 0.64 Å) is smaller 

than that of the host Zn2+ (r = 0.74 Å) and the effective charge of Fe3+ is larger than that of 

Zn2+. For ZnO:Mn detailed calculations do not exist. However, the larger radius of Mn2+ 

(r = 0.80 Å) in comparison to Zn2+ suggests a dilatation of the trigonally distorted MnO 

tetrahedron embedded in the ZnO lattice. EPR measurements have shown that the value of the 

axial FS parameter D of Mn2+ both in Zn1 xMnxO films and bulk materials is strongly correlated 

with the macroscopic strain induced by the heteroepitaxy on sapphire and the Mn content 

[Diaconu (2005b,c)]. With increasing Mn concentration, a decrease of the absolute value of D 

both for films and single crystals is observed [Diaconu (2005b,c)]. The sign and the value of the 

D-shift are determined by the special Mn-induced local distortion of the ZnO material. For 

substitutional Mn in the core of the NCs, the absolute D-value is approximately equal to the 

value obtained for bulk ZnO (Table 6.1). The smaller absolute D-value observed for the Mn in 

the shell region can be caused by changes of the local distortions due to the proximity of the 

surface and its passivation that depends on the especial preparation of the NCs. Empirically it 

was found that the absolute D-value increases markedly with decreasing covalency of the Mn2+-

anion bonds in II-VI crystals [Title (1963)]. Large spin-orbit coupling coefficients of the ligands 

can also make a large positive contribution to the ZFS via the covalence effects [Kuang (1996)]. 

The competition between the different contributions from the local crystal distortions, 

covalence as well as number and kind of ligands near the surface results in the smaller absolute 
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D-value observed in the shell related Mn signal. To estimate the different and partly 

compensating contributions to the ZFS, independent measurements of the local distortion of 

the regular ZnO lattice structure by the incorporation of Mn in ZnO NCs are necessary. 

Recently, extended X-ray absorption fine structure spectroscopy (EXAFS) was performed to 

obtain information on the local arrangement of Mn ions incorporated in nanocrystalline ZnO 

[Koteski (2007)] consisting of ZnO/Zn(OH)2 core-shell structure. In these samples, the surface 

is passivated, due to the chosen preparation, by a thin layer of amorphous Zn(OH)2 [Zhou 

(2002), Zhou (2003)]. The fit of the EXAFS results exhibits a strong lattice distortion around the 

Mn as compared to pure ZnO. However, the experimental data can be fitted with different 

parameter sets, and the authors could not differentiate between Mn2+ in the core and in the 

surface shell. According to one possible parameter set the Mn-O bond length of the MnO4 

entity (tetrahedron) embedded in ZnO indicates a sizeable increase in the 1-fold subshell (bond 

direction || c), while the bond length in the 3-fold coordinated first subshell is slightly reduced as 

compared to the ZnO4 entity [Koteski (2007)]. While the increase of the Mn-O bond length in 

the c-direction is in agreement with the expected increase of the dimension of the MnO4 

tetrahedron, considering the difference in the ionic radii of Mn2+ and Zn2+, the reduction of the 

non-axial Mn-O bond length is in disagreement with such a simple model and the experimental 

results, indicating that the lattice parameters a and c of ZnO NCs increase linearly with 

increasing Mn content [Lou (2005)]. 

 Let us now address in more detail the question of the location of the Mn ions and the 

value of the HF constant A. Analyzing substitutional Mn2+ in various compounds, Simanék and 

Müller (1970) have shown that the absolute value of A decreases monotonically with the 

covalency C of the bond between Mn2+ and its m-nearest neighbours X of the MnXm cluster 

embedded in the compounds. For more ionically bonded compounds like the II-VI 

semiconductors, even a linear relationship holds within the relatively large uncertainty of the 

calculated C/m ratio resulting from the empirical electronegativity data. The increase of the 

averaged HF constant Aav = 1/3A|| + 2/3A⊥ from the value Aav(c) = (-73.9 ± 0.3)×10-4 cm-1 for 

Mn2+ in the core to Aav(s) = (-84.0 ± 0.3) mT for Mn2+ within the surface corresponds to the 

expected increase of the HF constant A for the transition from a MnO4 to a MnO6 cluster. The 

measured value Aav(s) is nearly identical to the HF constant A = (-81.0 ± 0.2) ×10-4 cm-1 mT for 

the octahedrally bonded Mn2+ in MgO [Low (1957)] that has a quite similar Mn-O bonding 
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length. The quantitative agreement between the measured average HF constant in the surface 

shell and the calculated value for the MnO6 cluster as well as the observed A-value for Mn2+ in 

MgO convincingly supports the assumption that the Mn2+ ion in the surface shell is sixfold 

bonded in a distorted octahedral environment. Corresponding results were also observed for the 

other Mn-doped II-VI compounds [Gehlhoff (unpublished)]. The observed strong intensity 

decrease of this component of the Mn2+ spectrum through the surface treatment that reduces 

the surface-to-volume ratio of the NCs excludes the possibility that this part of the spectrum is 

caused by interstitial Mn2+ in the core of the NCs. 

 Thus, we have distinguished three different EPR signals comprising the Mn spectrum of 

the ZnO NCs: a) a broad Lorentzian line coming from regions with a higher local Mn content; 

b) a signal clearly stemming from substitutional Mn2+ on Zn sites in the core of the NCs; and c) 

a signal caused by Mn in the surface shell of the NCs with a larger HF splitting that is attributed 

to Mn2+ at substitutional sites with distorted octahedral symmetry. 

 

6 . 4  CON C L U D I N G   R EM A R K S  

We have succeeded to incorporate Mn and Co ions in ZnO colloidal NCs and to characterize 

the local environment of the ions in the NCs using EPR spectroscopy. No evidence of 

ferromagnetism was found in any case. For both types of doping, the TM incorporation was 

heterogeneous in the sense that the EPR spectra were always composed partly of a signal 

stemming from substitutional TM ions on Zn sites, and partly of that coming from TM ions in 

distorted or TM enriched environments. Furthermore, we have proved that the TM doped 

colloidal ZnO NCs exhibit a core-shell structure revealed by the relative intensities of the EPR 

spectra and by the performed surface modifications. 

 In the case of the Co doped NCs, we are able to distinguish three different signals: one 

coming from substitutional Co2+ in the NC core with SH parameters similar to the bulk ones, 

and two other Co lines caused by locally distorted environment in the shell. The core-shell 

structure is also proved by partially removing the shell signal when ZnSe is formed at the 

expense of Zn in the shell of the NCs, i.e. “etching” the shell. As the surface shell is not 
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removed by the PS encapsulation, this effect is not so pronounced for this surface modification 

procedure. 

 In the case of the Mn doped ZnO NCs, we distinguish three components of the Mn2+ 

EPR spectrum, one coming from regions with a higher Mn concentration, another one 

stemming from substitutional Mn2+ in the NC core, and a third one being produced by Mn2+ in 

the surface shell of the NCs exhibiting a larger HF splitting. These features are unambiguously 

obtained by the simulation and fitting of the experimental powder spectra and described by the 

determined SH parameters. The Mn ions incorporated in the NCs are subjected to a larger strain 

in comparison with bulk crystals, which is particularly reflected by the variation of the FS 

parameter D. The covalency of the Mn-O bond is reflected in the HF constant and in the D-

value. The higher value for the HF constant found for the Mn2+ in the shell region can be 

explained with the formation of MnO6 clusters in this part of the NCs. We also find that, as the 

Mn content increases, the surface-related component shows increasing relative intensity. These 

results are in agreement with the XRD and TEM measurements that show decreasing NC size 

and increasing lattice distortions for increasing Mn content. Using a simple spherical core-shell 

model for the size of the NCs we determined the distribution of the manganese and the 

thickness of the shell from the measured intensities of the EPR signals produced by the Mn2+ in 

the core and the surface shell region. In spite of all experimental uncertainties and used 

simplifications we obtained the unique result that the surface layer thickness is very small, in the 

order of 0.4 – 0.6 nm, and that the Mn atoms are not uniformly incorporated in the NCs but 

that there is an accumulation of the Mn atoms in the shell region. 
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7  CO,  AL  OR  MN,  AL  CO ‐DOPED  ZNO   F I LMS  

In this chapter, Co and Al or Mn and Al co-doped ZnO thin films grown by pulsed laser 

deposition (PLD) are investigated by means of different techniques. The main objective is to 

determine the role of charge carriers in the occurrence of ferromagnetism.  

7 . 1  SAM P L E S  

Four ZnO films, co-doped either with Co and Al or Mn and Al, were grown at the University of 

Leipzig from Zn0.945Mn0.05Al0.005O or Zn0.945Co0.05Al0.005O ceramic targets, respectively, on 

10×10 mm2 a-plane sapphire substrates by means of PLD, using a KrF excimer laser. The 

samples are labelled TF1, TF2, TF3 and TF4, according to Table 7.1. The background oxygen 

pressure was varied between 4×10−5 and 0.005 mbar and the substrate temperature between 343 

and 726°C, respectively. The film thickness was controlled during the PLD growth by the 

number of laser pulses, and ex situ determined by ellipsometry measurements. The free carrier 

concentration n was determined by Hall effect measurements and controlled between 1018 and 

1020 cm−3 by the variation of the oxygen pressure, substrate temperature, and film thickness 

during the film preparation. The composition of the films was measured by combined 

Rutherford backscattering spectrometry (RBS) and particle induced X-ray emission (PIXE). The 

Al content in the films could not be determined, due to the underlying Al2O3 substrate. The Co 

and Mn contents in the films turned out to be larger than in the corresponding PLD targets and 

amounted to about 9 at. %. The crystal structure of the films was characterized by X-ray 

diffraction (XRD), which indicated the highly c-axis-oriented ZnO films without any visible 

impurities.  

 The growth parameters, the electron concentration n, and the film thicknesses are given in 

Table 7.1. 
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Table 7.1. PLD growth parameters, electron concentration n, and film thicknesses for the ZnO thin films. 

Sample Target composition 
Oxygen partial 

pressure 
[mbar] 

Substrate 
temperature  [ºC]

Number 
of pulses 

Film thickness 
[nm] 

n (5 K) 
[cm-3] 

TF1 Zn0.945Mn0.05Al0.005O 4×10-5 343 1500 36 2.13×1020

TF2 Zn0.945Mn0.05Al0.005O 0.005 726 30300 782 9.96×1018

TF3 Zn0.945Co0.05Al0.005O 4×10-5 450 1800 43 1.42×1020

TF4 Zn0.945Co0.05Al0.005O 0.001 726 30300 685 4.35×1018

 

7 . 2  MAGN E T I C   P R O P E R T I E S  

Both magnetoresistance (MR) and Hall effect were measured with the field applied parallel to 

the c-axis of the films (perpendicular to film surface) in the van der Pauw configuration. Fields 

up to 6 T were applied over a wide temperature range from 5 to 290 K. The charge carriers were 

confirmed to be n-type by Hall measurements for all the samples. 

 The MR was measured at 5 K for all samples, and is represented as a function of the 

applied field in Fig. 7.1. The two Mn doped films and the Co doped film with the lower electron 

concentration show a positive MR at low temperature. In magnetically doped ZnO, the positive 

MR is usually related to quantum corrections to the conductivity due to the influence of the 

spin-split conduction band on the electron-electron interaction [Xu (2007b)].  

 The electronic properties of n-type semiconductors depend on the ratio between the mean 

distance between donors r = [3/(4πn)]1/3 and their effective Bohr radius aB. In the dilute case, 

r >> aB, and electrons are bound to individual impurities, so that low-temperature conduction 

proceeds by means of phonon-assisted tunnelling between occupied and empty states. In this 

case, the semiconductor is in the insulating regime. In the opposite limit, r << aB, the electrons 

are in the impurity band that may overlap with the conduction band, and the low-temperature 

mobility is determined by ionized impurity scattering. The critical electron concentration nc, at 

which the metal to insulator transition occurs, was estimated for a Co doped film by Xu et al. 

(2006): nc = 4×1019 cm-3. From the estimated nc, one expects delocalized wave functions for 

n > 4×1019 cm-3, and localized wave functions for n < 4×1019 cm-3. This explains the low 

temperature negative MR (n > nc) as observed for the Co doped film with the larger electron 

concentration. Moreover, semiconductors are considered in the weakly localized regime when 

the product of the Fermi wave vector (kF) and the mean free path (l ) defined as 
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( ) ( )3/123/22 /3 nρeπlkF h=  is larger than 1 [Andrearczyk (2005)], as it is in the case of sample 

TF4 (kFl = 3.12). For Co doped ZnO, the attribution of the origin of the negative MR to the 

field suppression of the weak localization has been found to be in good agreement with the 

experimental data [Xu (2007b)].  

 Furthermore, the MR clearly increases with decreasing n for all samples, in agreement with 

the results reported by Kim et al. (2003) and Xu et al. (2007a), indicating that the electron 

concentration is primarily influenced by polarons, electron localization and defects. 
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Fig. 7.1. Field dependent magnetoresistance measured at 5 K, for the Mn doped ZnO films on the left, and the Co doped 

ZnO films on the right. 

 A possible ferromagnetic response of charge carriers in ferromagnetic semiconductors is 

the anomalous Hall effect (AHE). The measured Hall curves after subtracting the ordinary Hall 

term (see section 4.4) are given in Fig. 7.2. In order to eliminate any magnetic field effects which 

are an even function of field, i.e., MR, a simple subtraction was used ρ =1/2[ρ (B) – ρ (-B)]. The 

Mn doped films and the Co doped film with the larger n show no AHE. Nevertheless, the Co 
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doped film with the lower n (TF4) shows an AHE at 5 K, revealed by the pronounced s-shaped 

curve. This may be an indication of intrinsic ferromagnetism, although the observed AHE does 

not uniquely prove ferromagnetism [Xu (2008c)]. 
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Fig. 7.2. Hall resistivity (after the subtraction of the ordinary Hall contribution) at 5 K as a function of the applied magnetic 

field, for the Mn doped ZnO films on the left and the Co doped ZnO films on the right. 

 

 The electron magnetic resonance (EMR) is a unique method to clarify the incorporation 

of transition (TM) ions into semiconductor hosts. Figs. 7.4 and 7.5 show the angular 

dependences of the X-band EPR signals at low temperature for the Mn and the Co doped ZnO 

films, respectively. θ is the angle between the applied magnetic field and the c axis of the ZnO 

films, hence θ = 0º corresponds to the magnetic field perpendicular to the film surface. For the 

Mn doped ZnO thin films, only an unresolved approximately isotropic electron paramagnetic 

resonance (EPR) signal near g = 2 was detected. This signal corresponds to the spectrum of 

ZnO with a high content of paramagnetic substitutional Mn2+ ions on Zn sites. Conversely, in 

the case of the Co doped ZnO, the paramagnetic signal of substitutional Co2+ was not found. 

This result can be associated either to the absence of substitutional paramagnetic Co2+ due to 
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some type of Co agglomeration or to the position of the Fermi level, and could be clarified by 

means of XPS measurements, which are underway. On the other hand, an unusual broad signal 

with geff > 2 was detected at low temperature. This signal is more intense and further broadened 

with the increase of the electron concentration in the Co doped films. The signal intensity is be 

related to the film thickness which is one order of magnitude smaller in sample TF3. For both 

Co doped films, the signal is quenched at around 12 K, as illustrated in Fig. 7.5. The angular 

dependence of the line position is plotted in Fig. 7.6. This w-shaped angular dependence is 

typical of ferromagnetic resonance (FMR) measured in magnetic films [Vonsovskii (1966)]. The 

fact that the angular dependence shown in Fig. 7.6 lies entirely below the resonance field 

corresponding to paramagnetic resonance with g = 2 (B ≈ 3.48 mT in the X-band) can be 

caused by two reasons: i) the magnetization at the resonance field is not saturated (see Fig. 7.7), 

and in this case the usual FMR theory [Vonsovkii (1966)] is not applicable; and ii) we suggest 

that we observe the spectrum not of a continuous magnetic film, but that of a heterogeneous 

distribution of the Co ions, composed by Co enriched and Co poor regions (spinodal 

decomposition), exhibiting a residual texture. Note that an ideal powder FMR spectrum is 

obtained from the integration of the spectra of the individual crystallites in the same manner as 

the EPR powder spectrum, as discussed in section 3.1.9. Verdes et al. (2001) performed Monte 

Carlo simulations including dipolar and exchange interactions among randomly distributed 

particles. The authors demonstrated that the exchange effects always lower the observed 

resonance field, sometimes appreciably. 

 Our observations of some kind of ferromagnetic order in Co doped ZnO films is in 

agreement with the results of Xu et al. (2008a) which demonstrate the spin polarization through 

the measurement of tunnelling MR at 5 K in magnetic tunnel junctions based on Co doped 

ZnO. On the other hand, very recent calculations by Raebiger et al. (2009) employing a band-

structure-corrected theory show that Co doped ZnO is a possible DMS, but only under extreme 

donor doping conditions (≈3%). This condition may be achieved in our samples only locally due 

to fluctuations of the conduction band, but this would be in accordance with the previous 

discussion of the angular dependence of the FMR spectra. Additionally, we found no FMR 

related to Co clusters, as measured by von Bardeleben et al. (2008). 
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Fig. 7.3. Angular dependence of the EPR signal measured in the X-band at 4.4 K, for the Mn doped ZnO thin films. 
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Fig. 7.4. Angular dependence of the EMR signal measured in the X-band at 4.3 K, for the Co doped ZnO thin films. 
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Fig. 7.5. Temperature dependence of the EMR signal measured in the X-band, for the Co doped ZnO thin films. 
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Fig. 7.6. Angular dependence of the line position of the EMR signal measured in the X-band at 4.3 K, for the Co doped ZnO 

films. 
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 To further clarify the magnetic properties of the Co doped films, we used SQUID 

measurements. The results are represented in Fig. 7.7. Hysteresis loops were recorded for both 

Co doped films at 5 K. Sample TF3 shows insignificant hysteresis and only at low temperature. 

On the other hand, sample TF4 exhibits weak ferromagnetism at 5 K. At 300 K sample TF4 

shows no hysteresis anymore. For this sample, the temperature-dependent magnetization was 

recorded under field cooling (FC) and zero field cooling (ZFC) conditions.  
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Fig. 7.7. Low temperature hysteresis loops for the Co doped ZnO films with (a) high and (b) low electron concentrations. (c) 

Zero field cooling (ZFC) and field cooling (FC) magnetization curves measured with 5 mT on the Co doped ZnO film with 

the lower electron concentration. (d) Room temperature hysteresis loop for the Co doped ZnO film with the lower electron 

concentration. 

 The subtraction of ZFC from FC data eliminates para- and diamagnetic contributions. 

Simultaneously, a nonzero difference indicates the presence of hysteresis, i.e., ferromagnetic 

ordering, if the measuring field is lower than the maximum field at which hysteresis is observed, 

as in the present case. From the temperature dependence of the FC and ZFC curves it can also 

be excluded that the nonzero difference between FC and ZFC is due to spin-glass ordering or 

superparamagnetism, since neither a kink or blocking temperature is observed in the curves.  
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 The overall magnetic properties show no evidence of carrier mediated ferromagnetism, 

since the sample exhibiting larger magnetic order is the one with lower carrier concentration. 

 

7 . 3  XRD  M E A S U R EM E N T S  

The magnetic measurements point to some kind of ferromagnetic order in the Co doped thin 

films. In order to further clarify the origin of the found magnetic properties, XRD 

measurements were performed in the θ - 2θ geometry. The XRD patterns, shown in Fig. 7.8, 

were collected from 30º to 90º with a step size of 0.01º for 2 s per step. Additionally, the pole 

figures given in Fig. 7.9 were performed around the CoAl2O4 (440) and CoAl2O4 (224) 

directions. A higher resolution beam collimated with a 2 bounce Ge (220) monochromator was 

used in order to collect the symmetric reciprocal space maps (RSMs), given in Fig. 7.10.  
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Fig. 7.8. X-ray diffraction patterns of the Co doped ZnO films with different electron concentrations. The diffraction peaks 

are identified for each structure by the Miller indices of the planes. 
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(a)  (b)  

Fig. 7.9. Pole figures around (a) (440) CoAl2O4 and (b) (224) CoAl2O4, for the Co doped film TF4. 

 

 The 2θ-θ diffractograms (Fig. 7.8) show that the Zn1-xCoxO films have a monocrystalline 

structure with the ZnO (001) crystallographic planes aligned with the sapphire (2-10) planes for 

both samples. Furthermore, despite an especial effort to find metallic Co nanocrystals (like in 

Ref. [Coey and Chambers (2008)]), no corresponding peaks were detected, although it does not 

mean that they are absent. 
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Fig. 7.10. Reciprocal space maps of samples (a) TF3 [(002)ZnO + (2-10)Al2O3] and (b) TF4 [(002)ZnO + (2-10)Al2O3]. 
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 The pole figures around (440) and (224) reflections show no evidence of a second phase. 

The RSMs indicate that there is a slight angular deviation between the (002) ZnO and the (2.10) 

Al2O3 planes for sample TF4, while no deviation was observed for sample TF3. Moreover, the c 

lattice parameter was determined through the RSMs to be 5.2267 Å sample TF3, and 5.1986 Å 

sample TF4, indicating an expansion of the ZnO lattice upon the increase of the Co 

concentration. 

 The fact that no evidence of second phase precipitates was found supports our 

interpretation of the magnetic properties arising from spinodal decomposition. 

7 . 4  CON C L U D I N G   R EM A R K S  

The magnetic and structural properties of Mn and Al or Co and Al co-doped ZnO films grown 

by PLD were investigated. The Mn doped ZnO samples were clearly paramagnetic, the Mn ions 

being substitutional on Zn sites, as revealed by the EPR measurements. On the other hand, the 

EPR signature of substitutional Co2+ on Zn sites was not found in the Co doped samples. 

Instead, a resonance signal with geff > 2 was recorded, which behaves as FMR in the case of non-

saturated magnetization. Also, the MR, the Hall effect, and the SQUID measurements point to 

some kind of ferromagnetic order in the Co doped samples. A first glance of the results may 

make one think about carrier mediated ferromagnetism. Nevertheless, we believe that the 

formation of small precipitates, second phases, or spinodal decomposition is the origin of the 

weak observed ferromagnetism, since the Co content is very large and the EPR investigations 

clearly show that the Co is not mainly incorporated as substitutional Co2+ in the ZnO lattice. 

Hence, we found no clear evidence of carrier mediated ferromagnetism in our co-doped 

samples. Measurements of the XPS are underway to clear the valence state of the Co atoms 

(ions). 
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8  FE  ALLOYED  ZNO  F I LMS  

In this chapter, Fe alloyed ZnO thin films deposited by pulsed injection metalorganic chemical 

vapour deposition (PIMOCVD), using different Fe concentrations, are investigated by means of 

different techniques in order to further clarify the role of secondary phases in the occurrence of 

ferromagnetism.  

8 . 1  SAM P L E   P R E P A R A T I O N  

Iron alloyed ZnO thin films were grown by R. P. Borges at the University of Lisbon on sapphire 

(0001) substrates by PIMOCVD [Sénateur (2000)]. Solid precursors were dissolved in an organic 

solvent (monoglyme) forming a solution that was kept at room temperature in order to avoid 

the thermal decomposition of the precursors. An electrically driven valve allowed the controlled 

injection of small droplets of the solution into the reactor. The injected droplets were flash 

vaporized forming a stable gas-phase composition that was carried by a stream of Ar and O2 

towards a heated substrate (550 ºC) where the deposition took place. After the deposition the 

films were slowly cooled down to room temperature in 1 bar of oxygen. In this work, a single 

solution containing the Zn and Fe precursors was used for each film. By changing the fraction 

of Fe precursor in the solution (Fe/(Zn + Fe)), from 0 to 0.35, films with different nominal Fe 

alloying were obtained. 

 The films thickness was determined using a single-wavelength (λ = 632.8 nm) 

ellipsometer. The obtained values for the sample series lie in the range 50-60 nm, as expected 

from the deposition conditions [Sénateur (2000)].   

8 . 2  S T R U C T U R A L   C H A R A C T E R I Z A T I O N  

 The Fe content (x = Fe/(Zn + Fe)) of the grown films was estimated by energy dispersive 

X-ray spectroscopy (EDS). The determined values were generally higher than those of the 

precursor solution used for each film, and were also higher than the reported solubility limits for 

Fe in ZnO [Jin (2001), Mandal (2006)]. The correspondence between the Fe content in the films 

and in the precursor solution, shown in Fig. 8.1 (a), indicates that under the used growth 



116 Chapter 8 Fe alloyed ZnO films 

 

conditions the deposition rate for Fe was larger than for Zn for solution concentrations higher 

than 0.25. In the discussion below all values of Fe content refer to the determined EDS values. 

 The films texture was analysed by X-ray diffraction (XRD) in the θ - 2θ geometry. XRD 

patterns of the full series of films are shown in Fig. 8.1 (b).  
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Fig. 8.1. (a) The correspondence between the Fe content in the precursor solution and in the films, measured by energy 

dispersive X-ray spectroscopy. (b) XRD plots for the series of ZnO films with different Fe concentrations. The diffraction 

peaks are indicated by the symbols ▼ for the ZnO wurtzite structure and ● for both ZnFe2O4 and Fe3O4. Miller indices of 

the planes are indicated for each structure. 

 For Fe contents ranging from x = 0 to x = 0.25 only the (002) and (004) planes of the 

wurtzite lattice could be observed indicating that the films are well textured with the c-axis of 

ZnO perpendicular to the plane of the film and with the c lattice parameter increasing with Fe 

content. For x = 0.50 the wurtzite peaks almost disappear, and a new set of peaks identified as 

belonging to spinel structures appear. The observed broad peaks could be attributed to both 

ZnFe2O4 and Fe3O4, as shown in Fig. 8.1 (b), given that both compounds have a face centred 

cubic (fcc) structure and similar lattice parameters (a = 0.8441 nm for ZnFe2O4 [JCPDS 22-
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1012] and a = 0.8396 nm for Fe3O4 [JCPDS 19-0629]). The sixfold symmetry of both sapphire 

and ZnO imposes a [111] texture in these phases as the fcc structure is also sixfold symmetric 

along that direction. With increasing x from 0.5 to 0.86, the (222), (333) and (444) peaks shift to 

higher θ values, which might indicate that the volume fraction of Fe3O4 becomes dominant over 

that of the ZnFe2O4 phase upon the increase of the Fe content. 

8 . 3  MAGN E T I C   P R O P E R T I E S  

The temperature dependence of the magnetization M was measured after zero-field cooling 

(ZFC) and field cooling (FC) procedures for temperatures between 5 and 400 K. The ZFC and 

FC magnetization curves for an applied field of 50 mT after removal of the diamagnetic 

component of sapphire are shown in Fig. 8.2. For samples with x ≥ 0.21 the results evidence the 

onset of a low temperature antiferromagnetic phase as observed from the downturn in both 

ZFC and FC magnetization curves near 10 K. This transition is still observed for the sample 

with x = 0.50 while for the higher concentration value, x = 0.86, this feature is not detected and 

the curves display a spin-glass like behaviour with a large irreversibility, corresponding to the 

difference between the ZFC and FC curves at low temperatures. For the whole sample series 

the low temperature magnetic moment increases with increasing x, and the magnetic signal 

persists up to 400 K, even for the films with the lowest doping values. 

 The hysteresis loops performed at 300 K for the films with x = 0.11, 0.21 and 0.25 (which 

show only the wurtzite phase in the X-ray diffraction pattern) are shown in Fig. 8.3. The results 

confirm the existence of ferromagnetism at this temperature and evidence a magnetic signal that 

increases with x. In the case of x = 0.86, the coercive field is only about 40 Oe, while for all 

other films in this sample series the coercivities lie in the range 120 - 170 Oe,  suggesting a 

different magnetic phase. 

 The overall magnetic behaviour of the films can be understood as due to the presence of 

ZnFe2O4 and Fe3O4 inclusions. In the spinel ZnFe2O4, the oxygen ions form a close-packed fcc 

structure with the Zn2+ and Fe3+ ions occupying either tetrahedral A or octahedral B interstitial 

sites (see Fig. 8.4). In the normal spinel the Zn2+ ions, with zero magnetic moment due to the 

3d 10 orbital configuration, occupy the tetrahedral sites, and the Fe3+ ions are in octahedral sites. 

Due to the superexchange interaction between Fe3+ ions in octahedral sites [Schiessl (1996)] the 
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normal spinel ZnFe2O4 is antiferromagnetic with a Néel temperature of TN = 10 K. The low 

temperature transition observed in Fig. 8.2 (a) for the samples with x up to 0.50 can be 

explained by considering the presence of this normal spinel phase. For x = 0.86 the kink at 10 K 

disappears in agreement with the predominance of a different magnetic phase. 
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Fig. 8.2. Zero field cooling (ZFC) (empty symbols) and field cooling (FC) (full symbols) magnetization curves measured with 

50 mT for (a) Fe alloyed ZnO films where only ZnO XRD peaks are visible, and for (b) films where the XRD shows the 

presence of the ZnFe2O4 or Fe3O4 phases. 

 Furthermore, it is well known that the increase of Fe content in the normal spinel 

ZnFe2O4 leads to the formation of spinel structures with different degrees of inversion. In these 

structures the strong interaction between Fe3+ ions in octahedral and tetrahedral sites results in a 

ferromagnetic signal that can persist above room temperature. Moreover, as observed in the 

XRD results, the higher Fe deposition rate in the case of high Fe precursor solution 

concentration (see Fig. 8.1) leads to the formation of a predominant Fe3O4 phase for the films 

with x ≥ 0.50, even if the occurrence of this phase for the low Fe content films cannot be 
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excluded. Fe3O4 is ferrimagnetic with a transition temperature of 858 K and a high 

magnetization value at room temperature. Thus, the presence of the iron oxide and of the 

inverted spinel zinc ferrite can account for the observed room temperature hysteresis loops. 
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Fig. 8.3. Room temperature hysteresis loops for films which only exhibit ZnO XRD peaks. 
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Fig. 8.4. AB2O4 spinel crystal structure. The blue cubes are also contained in the back half of the unit cell. 
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  For the highest Fe content film x = 0.86, the presence of Fe3O4 also explains the detected 

large fraction of Fe, since if we were to consider the Zn ferrite phase alone the value of x should 

be only 0.66. In this case, the coexistence of antiferromagnetic and ferromagnetic exchange 

couplings can explain the spin-glass like behaviour illustrated in Fig. 8.2 (b). The saturation 

magnetization value of 39 emu.cm-3 obtained for this sample at T = 10 K is about one order of 

magnitude smaller than the values reported for the ZnFe2O4 inverted spinel [Philip (2007)] and 

for Fe3O4 [Horng (2004)]. Two aspects concur for the low observed values. First, there is a clear 

underestimation of the saturation magnetization, since this value is determined using the total 

film volume instead of the (unknown) volumes associated with each spinel phase. Secondly, the 

degree of inversion of the ZnFe2O4 spinel, not controlled in this experiment, is not accounted 

for in the calculations. 

 To further clarify the magnetic properties of this material, ferromagnetic resonance (FMR) 

was used as a selective probe, in particular to determine the magnetic anisotropy parameters of 

the magnetic phases. The out-of-plane angular dependences for x = 0.21, 0.25, 0.86 are given in 

Figs. 8.5, 8.6, and 8.7, respectively. The temperature dependence of the FMR signal, tracked for 

temperatures up to 400 K, was measured both for magnetic field perpendicular and parallel to 

the sample surface plane, B || c (θB = 0º) and B ⊥ c (θB = 90º or 270º), respectively, in the 

temperature range 4 ≤ T ≤ (300 or 400) K. For the samples with x < 0.21, a weak (for x = 0.11) 

or no (for x = 0.17) FMR signal was found. For higher Fe contents (x ≥ 0.21) reasonable FMR 

signals were observed, especially at room temperature. The intensity of these signals grew with 

increasing percentage of Fe. In-plane and out-of-plane angular dependences of the spectra were 

measured, and no in-plane anisotropy was found. 
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Fig. 8.5. Out-of-plane angular dependence of the FMR spectra taken at 150 K for the Fe alloyed ZnO films with x = 0.21. 
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Fig. 8.6. Out-of-plane angular dependence of the FMR spectra taken at 150 K for the Fe alloyed ZnO films with x = 0.25. 
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Fig. 8.7. Out-of-plane angular dependence of the FMR spectra taken at 150 K for the Fe alloyed ZnO films with x = 0.86. 

 

The out-of-plane angular dependence of the resonance field for the main FMR bands 

observed in samples with different Fe concentrations was fitted by a non-linear algorithm that 

minimizes the free energy of the film under an applied field B. Within the model used for the 

determination of the magnetic anisotropy parameters [Lenz (2005)], the free energy of a thin 

film is given by: 

 [ ] ( ) θKθKMπθθθθBME BB
4

4
2

2
2 cos

2
1sin2coscossinsin ⊥⊥ −−−+−= , (8.1) 

with the first term corresponding to the Zeeman energy, and the next two corresponding to the 

first and second order magnetocrystalline anisotropy energy, respectively. θ is the polar angle of 

the magnetization M with respect to the surface normal (c-axis of ZnO), and ⊥2K  and ⊥4K  are 

the first and second order out-of-plane anisotropy constants. As it is difficult to determine the 

true microscopic magnetization M of the ferromagnetic phase in the films, we limited ourselves 

to calculate the anisotropy fields Ba1 = 4πM–2K2⊥/M and Ba2 = 4K4⊥/M. The results of the 

fittings are illustrated in Figs. 8.8, 8.9, and 8.10. The g-factors and anisotropy fields obtained by 

our fittings are given in Table 8.1. 
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Fig. 8.8. Experimental data (dots) and theoretical fitting (line) of the out-of-plane angular dependence of the resonance field 

of the strongest band obtained by the evaluation of FMR spectra for the Fe alloyed ZnO films with x = 0.21 presented in Fig. 

8.5. 
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Fig. 8.9. Experimental data (dots) and theoretical fitting (line) of the out-of-plane angular dependence of the resonance field 

of the strongest band obtained by the evaluation of FMR spectra for the Fe alloyed ZnO films with x = 0.25 presented in Fig. 

8.6. 
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Fig. 8.10. Experimental data (dots) and theoretical fitting (line) of the out-of-plane angular dependence of the resonance field 

of the strongest band obtained by the evaluation of FMR spectra for the Fe alloyed ZnO films with x = 0.86 presented in Fig. 

8.7. 

 
Table 8.1. Anisotropy fields (in mT) and g-factor determined by the fitting of 

Eq. (8.1) to the experimental data taken at 150 K.  

x Ba1 Ba2 g
0.21 480 ± 10 30 ± 5 2.02 ± 0.05
0.25 490 ± 10 20 ± 5 2.03 ± 0.05
0.86 475 ± 10 –30 ± 5 1.93 ± 0.02

 

  Let us first analyze the spectra of the x = 0.86 sample. There is a very good agreement 

between the fitting and the experimental data (see Fig. 8.10). The hard magnetization axis is 

perpendicular to the film plane and thus parallel to the c-axis of ZnO.  As illustrated in Fig. 8.11, 

the FMR signal was tracked for temperatures up to 400 K. The analysis of the spectra of the 

samples with x = 0.21 and 0.25, shown in Fig. 8.5 and Fig. 8.6, reveals that the magnetic phase 

found in them differs from that detected in the x = 0.86 film. First, the temperature dependence 

of the resonance field is different (Fig. 8.11). Secondly, for x = 0.21 and 0.25 the g-factor is 

larger and the Ba2 anisotropy field is positive and not negative as in the x = 0.86 case, see Table 

8.1. (The Ba1 field is equal in all three samples only by the merest chance, as the angular 
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dependences have been evaluated for T = 150 K, at which the line positions for B || c and B ⊥ c 

coincide, see Fig. 8.11.) 
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Fig. 8.11. Temperature dependence of the resonance fields of the strongest bands for the orientations B || c and B ⊥ c for Fe 

alloyed ZnO films with three different x values. The measurements between 10 and 300 K and between 300 and 400 K were 

performed with two microwave cavities having slightly different resonance frequencies, which accounts for a small 

discontinuity of the curves for the x = 0.86 sample occurring at 300 K. 

  Importantly, for all films, the overall temperature dependence of the resonance field is 

compatible with the behaviour of the magnetization: for x = 0.86 it is stronger than for x = 0.21 

and 0.25 (cf. Fig. 8.2). When the field is applied parallel to the surface plane, the resonance field 

increases with temperature, and the opposite occurs when the field is applied perpendicular to it, 

as shown in Fig. 8.11. Thus, the resonance fields approach the value of the paramagnetic 

resonance with g = 2 as the temperature increases towards the Curie point. This means that the 

values of the saturation magnetization and/or magnetic anisotropy constants decrease with 

rising temperature. 

 It is noteworthy that other, weaker resonance bands could be observed in the spectra of 

the samples with Fe contents of x = 0.21 and x = 0.86. The observation of such bands indicates 

the existence of other magnetic phases or of the same phases as those responsible for the main 

resonance bands but in different states of strain (e.g., relaxed and non-relaxed).  
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 The values obtained by us for the g-factor are smaller than those known for bulk Fe 

(g = 2.09) [Landolt-Boernstein (1986)] and single crystalline Fe3O4 (g = 2.12) [Kale (2001), van 

der Heijden (1998)]. This result may be related to the fact that the Fe alloyed ZnO system is not 

homogeneous, so that the orbital momentum of the Fe ions is not completely quenched 

[Sénateur (2000)]. Castel et al. [Castel (2007)] observed, e.g., that the gyromagnetic ratio γ (which 

is proportional to g) decreases as the concentration of Ni in ZnO increases. This might validate 

our g-factor value. We could not find any FMR data on single-crystalline ZnFe2O4 in the 

literature in order to make a comparative analysis. 

 Zhang et al. (2006) investigated amorphous inhomogeneous magnetic Fe alloyed ZnO 

semiconductors with average Fe concentrations in the range from 62% to 86% synthesized by 

alternately sputtering of Fe and ZnO layers under thermal non-equilibrium conditions. Their 

results for the anisotropy fields are very similar to ours. 

8 . 4  CON C L U D I N G   R EM A R K S  

ZnO films alloyed with Fe at concentrations above the reported solubility limit (≈2.2 mol% 

[Fukumura (2001)]) were grown by PI-MOCVD. For the lower Fe contents (x ≤ 0.25) the X-ray 

diffractograms show only peaks associated with the ZnO wurtzite structure, while for x > 0.25 

peaks related to the fcc spinel structure appear. All samples exhibit ferromagnetic hysteresis 

loops at 300 K, and for the films with iron content x ≤ 0.50 the temperature dependence of the 

magnetization shows an antiferromagnetic transition at 10 K attributed to the presence of the 

normal spinel ZnFe2O4 phase. FMR measurements confirm the existence of a ferromagnetic 

behaviour at temperatures at least up to 400 K, which is compatible with the presence of both 

Fe3O4 and the inverted ZnFe2O4 spinel formed in the ZnO layers. The intensity of the FMR 

signal increases with increasing Fe content. Between x = 0.50 and x = 0.86 a change of the 

magnetic phase occurs, leading to a different behaviour of the magnetization vs. temperature 

and to the appearance of a new FMR spectrum. 

 In conclusion, our results support the indication that secondary phases, not detected by 

standard XRD, are accountable for the magnetic behaviour detected in many transition metal 

alloyed ZnO systems in contrast to the assumption of being in the presence of an intrinsic 

diluted ferromagnetic system. 
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9  SUMMARY  AND  OUTLOOK  

This work focuses on the study of the promising ZnO wide band gap semiconductor, doped 

with different transition metals for applications in spintronic devices. The investigations carried 

out in the framework of this thesis demonstrate that the initial optimism over achieving a diluted 

magnetic semiconductor (DMS) based on ZnO, derived from theoretical predictions which 

prompted research all over the world, was somewhat misleading, since no experimental evidence 

of a net ferromagnetic effect due to the diluted magnetic ions was found. Nevertheless, through 

this research we have learned more about this material system, which can be realized in different 

structures by several techniques, and may be used for different applications. 

 In this thesis, detailed investigations of the structural and magnetic properties of ZnO 

based structures, namely nanowires (NWs), nanocrystals (NCs), and thin films, were carried out. 

Transition metal ™ ions, specifically Co, Mn and Fe, were introduced in these structures during 

growth. Several growth methods were used. TM doped ZnO NWs and thin films were grown 

by pulsed laser deposition (PLD), TM doped ZnO colloidal NCs were synthesized by a wet 

chemical process, and Fe alloyed ZnO films were grown by pulsed injection metalorganic 

chemical vapour deposition (PIMOCVD). Various experimental techniques, such as x-ray 

diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy 

(TEM), electron paramagnetic resonance (EPR), SQUID, and transport measurements were 

employed to structurally and magnetically characterize these samples. 

 The investigations of the Mn and Co doped ZnO NWs grown by PLD revealed that the 

TM ions were mainly incorporated as substitutional isolated Mn2+ (3d 5, 6S) or Co2+ (3d 7, 4F), 

respectively. Moreover, in the case of the Co doped NWs it was possible to identify two 

different components of the EPR spectrum, A and B, which were ascribed to two different 

environments of the Co ions. Additionally, the temperature dependence of the EPR intensity 

showed that both components exhibit pure paramagnetic behaviour.  

 In the case of the ZnO colloidal NCs, both Mn and Co ions were successfully 

incorporated, yielding the EPR spectra of isolated Mn2+ or Co2+, respectively, on Zn sites. For 

both types of doping, the TM incorporation was heterogeneous in the sense that the EPR 

spectra were composed partly of a signal stemming from isolated substitutional TM ions on Zn 

sites, and partly of that coming from TM ions in distorted or TM enriched environments. 
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Furthermore, the relative intensities of the EPR spectra and the performed surface 

modifications showed that the NCs exhibit a core-shell structure. In addition, we were able to 

distinguish signals caused by locally distorted environment in the shell. Furthermore, we found 

that the TM ions incorporated in the NCs are subjected to a larger strain in comparison with 

bulk crystals, which is particularly reflected by the variation of the fine structure (FS) parameter 

D. In the case of the Mn doped NCs, we also show that the higher value for the hyperfine (HF) 

A constant found for the Mn2+ in the shell region can be explained with the formation of MnO6 

clusters in this part of the NCs. Moreover, our results evidence decreasing NC size and 

increasing lattice distortions for increasing Mn content. Finally, combining the measured 

intensities and line widths of the EPR signals produced by the Mn2+ in the core and the shell 

regions with a simple spherical core-shell model for the size of the NCs allowed us to determine 

the distribution of the manganese and the thickness of the shell. Hence, we obtained the unique 

result that the shell thickness is very small, in the order of 0.4 – 0.6 nm, and that the Mn atoms 

are not uniformly incorporated in the NCs but that there is an accumulation of the Mn atoms in 

the shell region. Future work would include the production of a set of NCs doped with an array 

of different Mn concentrations and with a narrower size distribution which would allow a more 

precise determination of the thickness of the shell and of the distribution of the incorporated 

Mn between the core and the shell. Additionally, the variation of the FS parameter D could be 

more clearly understood by an estimation of the different and partly compensating contributions 

to the zero-field splitting, through independent measurements of the local distortion of the 

regular ZnO lattice structure by the incorporation of Mn in ZnO NCs. 

  To clarify the role of charge carriers in mediating ferromagnetic interactions, the magnetic 

and structural properties of Mn and Al or Co and Al co-doped ZnO films grown by PLD were 

investigated. The Mn doped ZnO samples were clearly paramagnetic, the Mn ions being 

substitutional on Zn sites. On the other hand, the EPR signature of substitutional Co2+ on Zn 

sites was not found in the Co doped samples. Instead, the magnetic characterization through 

several techniques, namely electron magnetic resonance (EMR), SQUID, magnetoresistance and 

Hall effect pointed to some kind of ferromagnetic order in the Co doped samples. Nevertheless, 

since the Co content is very large and the EPR investigations clearly show that the Co is not 

incorporated as substitutional Co2+, we believe that the formation of small precipitates, second 

phases, or spinodal decomposition, is the origin of the observed weak ferromagnetism. To 



Chapter 9 Summary and outlook 129 

   

 

confirm our suspects, further work is needed, and measurements of the X-ray photoelectron 

spectroscopy (XPS) are underway to clear the valence state of the Co atoms (ions). 

 The ZnO nanostructures grown by different methods exhibited good crystalline quality. 

No evidence of carrier mediated ferromagnetism was observed in any case. Our experiments 

show that the EPR analysis allows us to directly demonstrate whether and where the TM ions 

are incorporated and evidence the importance of the surface effects at material dimensions 

below ≈15 nm, for which core-shell structures are formed.  

 Comparative investigations of Fe alloyed ZnO films grown by PIMOCVD were 

performed. As expected, for x > 0.25, second phases of spinel and iron oxide were found by 

XRD. All samples exhibited ferromagnetic hysteresis loops at 300 K, and for the films with iron 

content x ≤ 0.25 the temperature dependence of the magnetization showed an antiferromagnetic 

transition at 10 K attributed to the presence of the normal spinel ZnFe2O4 phase. Ferromagnetic 

resonance (FMR) and SQUID measurements confirmed the existence of a ferromagnetic 

behaviour at temperatures at least up to 400 K, which is compatible with the presence of both 

Fe3O4 and the inverted ZnFe2O4 spinel formed in the ZnO layers. The intensity of the FMR 

signal increased with increasing Fe content. Between x = 0.50 and x = 0.86 a change of the 

magnetic phase occurred, leading to a different behaviour of the magnetization vs. temperature 

and to the appearance of a new FMR spectrum. These results support the indication that 

secondary phases are accountable for the magnetic behaviour detected in many systems. 

 In general, the studies carried out in ZnO based structures revealed that the investigated 

samples didi not exhibit intrinsic DMS behaviour, and that comprehensive investigations are 

needed to assert the nature of the observed magnetic properties. Nevertheless, there are 

possibilities for applying ZnO based magnetic materials in the spintronic technology, since the 

extrinsic magnetism may still be revealed as controllable and tuneable by growth parameters, co-

doping and post growth treatments. A possibility is a hybrid system in which NCs are embedded 

and self-organized in the ZnO host [Dietl (2007)]. Here, the NC type, size, and distribution have 

to be controlled for applications. Further investigations in this area are needed for novel room-

temperature device development to be possible. 

 Recent investigations [Pan (2007), Zhou (2008c)] turned the spotlight to d 0 

ferromagnetism, were oxygen related defects are a prime suspect as the source of the observed 

magnetic order. This field represents a great opportunity for achieving reproducible results in 
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order to realize magnetic devices based on ZnO. We personally tried to reproduce the results 

obtained by Zhou et al. (2008c), but we were unfortunately unsuccessful. Nevertheless, further 

work is necessary to test this possibility, and it is especially important that electronic structure 

theory and modelling is developed to elucidate the role of structural defects in this kind of 

magnetic ordering. Combining the possibility of defect based ferromagnetism with the shape 

and size of nanostructures would trace an interesting path of research for applications in 

nanotechnology. 

 The findings of this work evidence the importance of surface effects when dealing with 

low dimensional materials, such as NCs. The formation of core-shell structures represents a 

possibility to tune the properties of the surface shell by varying the dopant content and type, 

while preserving the bulk properties in the core. Another possibility would be to investigate the 

surface functionalization with specific markers, for instance to track cancerous cells in the 

human body and help eliminate them. 

 In summary, the wide band gap DMS based on ZnO, which was thought to be a 

promising material for the next generation of spin electronic devices, has been carefully studied. 

Through a comprehensive investigation, this material was shown to not necessarily obey the 

traditional paradigms applicable to more well-established DMSs, such as Ga1-xMnxAs. On the 

other hand, new properties of this material have been explored, revealing that there is still much 

work to be done and many prospects of applications to be investigated. 
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