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Non-existence of perfect 2-error correcting
Lee codes of word length 7 over Z

Catarina Cruz and Ana Breda*

Abstract

The Golomb-Welch conjecture states that there is no perfect nerror correcting Lee
code of word length n over & for n = 2 and » > 2. This problem has received great
attention due to its importance in applications in several areas beyond mathematics
and computer sciences. Here, we give a contribution for the proof of the Golomb-Welch
conjecture which reinforces it, proving the non-existence of perfect 2-error correcting
Lee codes of word length 7 over Z.

Perfect Lee codes, Golomb-Welch conjecture, tilings, Lee metric.

1 Introduction

Tiling problems are common in coding theory, in fact, certain tilings can be seen
as error correching codes, see [7] and [10]. Here, we are interested in dealing with
tilings of spaces by Lee spheres. The study of these tilings was introduced by
Golomb and Welch ([6] and [7]) which related them with error correcting codes,
considering the center of a Lee sphere as a codeword and the other elements of
the sphere as words which are decoded by the central codeword. When a Lee
sphere of radius r tiles the n-dimensional space, the set of all centers of the Lee
spheres, that is, the set of all codewords, produces a perfect r-error correcting
Lee code of word length n. There exists an extensive literature on codes in the
Lee metric due to their several applications, see, for instance, [1] and [2].
Golomb and Welch have conjectured that there is no perfect r-error corre-
cting Lee code of word length n over Z forn > 3 and » > 2. Many partial results
on this subject have been achieved. In [4] we present a proof of the Golomb-
Welch conjecture for the casen = 7 and r = 2, one of the cases of the conjecture
that has resisted for a long time. Later, Kim [9] has proved the non-existence
of perfect 2-error correcting Lee codes for a certain values of %, including n = 7.
Qur idea to prove the case n = 7 and r = 2 of the Golomb-Welch conjecture
differs to the one presented in [9]. While Kim [9] has used an algebraic process,
our method is faithful to the geometric idea of the problem. In our strategy
we were faced with a huge amount of hypotheses to try to cover certain words
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by codewords, being the hard work of the proof. The proof is very extensive,
and so, we present here only its generic idea as well as some key proofs of the
achieved results, showing the line of reasoning. It should be pointed out that
all proofs can be conferred in [4].

2 Definitions and previous results

Let (S, ) be a metric space, where & is a nonempty set and p a metric on 8.
Any subset M of & satisfying |M| > 2 is a code. The elements of S are called
words and, in particular, the elements of a code M are called codewords, A
sphere centered at W € & with radius r, will be denoted by S(W,#). £ W & M
and V € 8(W,r), with V # W, then we say that the codeword W covers
the word V.

Definition 1. A code M is a perfect r-error correcting code if:
i) 8(W,r) N 8(V,r) = @& for any two distinct codewords W and V in M;

i) Uy en SW,7) = 8.

Here, we deal with metric spaces (Z", uz), where Z” is the n-fold Cartesian
product of the set of the integer numbers, with n a positive integer number,
and py is the Lee metric. If M C Z™ is a perfect r-error correcting code of
(Z™, 1), then M is called a perfect r-error correcting Lee code of word
length n over Z, shortly a PL{nr,r) code.

Having in mind the Golomb-Welch conjecture, we intend to prove the non-
existence of PL(7,2) codes. Our strategy is based on the assumption of their
existence. Let us assume the existence of a PL(7,2) code M € Z7, and suppose,
without loss of generality, that O € M, with O = (0,...,0). Thus, all words
W € Z7 such that pr (W, 0) < 2 are covered by the codeword O. Taking into
account Definition 1, for each word W € Z7 satisfying up(W,0) = 3 there
exists a unique codeword ¥V € M such that ur(W, V) < 2, where V issuch that
pr(V,0) = 5. We focus our attention on these codewords, being our idea maostly
based in cardinality restrictions on sets of these codewords. This strategy is a
natural adaptation of the one given by Horak [8] and follows the same notation.

The words W € Z7 satisfying pr(W,0) = 3 are of types [£3], [£2, £1]
and [+1%]. Note that, for instance, V = (vy, ..., v7) is a word of type [£2, £1], if
|v;l] = 2 and |u;| = 1 for some i,5 € {1,..,7}, and |vg| = O for all
ke{l,..,7\{i4}. We denote by A, B, C, D, £, F and G the sets of code-
words W satisfying uz(W,0) = 5 of types [£5], [+4, £1], [£3,£2)], [£3,+17],
[£22, £1], [£2,£1%] and [£15), respectively. Note that: [£3] must be covered
by codewords of AU BUC UD; [£2,4£1] must be covered by codewords of
BUCUDUEUF; [+1%) must be covered by codewords of D UEUFUG. The
conditions for the existence of PL(7,2) codes derive essentially from the analysis
of the cardinality of subsets of AUBUCUDUEU FUG, in particular, of their
index subsets.
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Let ZT={+1,+42,..,+7,-1,—2,..., =7} be the set of signed coordinates.
By index subsets of H C Z7 we consider, for 1,7 € I, with |i| # [j],
and k a positive integer number, the sets: H; = {W € H : ) > 0}
My =W eH : dupy >0 A guy >05HY = (W eH : duwy >
0 A |yl = &}

Next, we present some necessary conditions for the existence of PL(7, 2)
codes proved in [5].

Lemma 1. For eachie I, |A; U B’Ed) UCEa) U Dgg)| =1.
Lemma 2. For eachi,§ € T, with |i| # 4],

18 n B +1c:n ¢l + PP n DO +16P n 5[+ IFE n D = 1.
Lemma 3. For each 1,4,k € I, |Diju U&ijn U Fign U Gigie| = 1, with ld], |5] and
|k| pairwise distinct.

Horak [8] has deduced the following results, one of them involving the para-
meters a = [A], b=|B|,c=|[C], d= D], e= €], f= |F| and g = [G]-

Proposition 1. The parameters a, b, ¢, d, e, [ and g satisfy the system of
equations

a+b+ct+d=14

b-+2c+2d+4e+3f = 168

d+e+4f 4 10g = 280.

Lemma 4. For each i € Z, |Ds U&;| + 3|F| + 6|G:| = 60. Consequently,
ID; U & = 0(mod 3).
Lemma 5. For each i,§ € T, |i| # |4, [Py U Eyl + 21F5] + 3|G4] = 10.

Next results impose conditions in subsets of . The first one is derived from
Lemmas 3 and 5. The proof of the second one can be conferred in [4].

Lemma 6. For any i,§ € I, with |i| # |4], |Fi| < 5. Furthermore, if | Fy;| = 5,
then |Fyul = 1 for all k € \{i, —1, 5, —7}.
Lemma 7. For each i € I, ]}f2)| <4 If |-7:¢(2)| = 4, then |.F1-(2] NF;| =1 for
all § € I\{4, —i}.

Our aim is to prove that any nonnegative integer solutions of the system of
equations presented in Proposition 1 contradicts the definition of PL(7,2) code.

In this sense, particular attention will be given to the sets G and F in which
the codewords have more nonzero coordinates. In [3] and [5] we have proved:

Theorem 1. ForeachieZ, 3 < |G| < 7.

Next, are presented conditions that must be satisfied when |Gl assumes one
of the possible values for some i € Z. The proofs can be checked in [4].
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Lemma 8. If |G| =3, ¢ € I, then [A] = 1, |B;UC,U & =0, [Dy] = 3 and
|Fi| = 18. More precisely, [D®) = 0, DV = 3, |FP| =4 and |[F)] = 0.

Lemma 9. If|G;| = 4, i € I, then one and only one of the following conditions
must occurs: 1) |D;UE| = 3 and | Fy| = 11; 1) |D;| =6, |&;] = 0 and |F;| = 10.

. ) 0 el o W) _ g 17D =
Besides, if it) is sotisfled, then |A;| = 1, |B;UC] =0, (D7 =6, |77 =4
and |F| = 6.

Lemma 10. If|G;| = 5, i € I, then one and only one of the following conditions
must occurs: i) |D;UE;| =0 and | F| = 10; i) [D;U&;| = 3 and |F;| = 9; i)
[D;U&| =6, |[FR] =8and |D;| 2 3, ) Dy =8, [£&] =0 and |F| = T.
Besides, if ) is satisfied, then |A;| = 1, |B;UCy = 0, D] = 9, |FP| = 4
and | FV| = 3.

Lemma 11, If|G;| = 6, i € I, then one and only one of the following conditions
must occurs: i) [D;UE| =0 and |F;| = 8; ii) [D; U & = 3 and | Fy| = 17; iii)
|D;UE&;| =8 and | F| = 8, dv) |D;U&| =8, |Fi| =5 and |Dy| 2 6, v) | Dy = 12,
[€:] = 0 and |F;| = 4. Besides, if v) is satisfled, then | Al = 1, |B;UC;| =0,
IDM) = 12 and |FP| = 4.

Lemma 12, If|G;| = 7, i € I, then one and only one of the following conditions
reust occurs: i) [D;UE; = 8 and |[F| = 5, i) |D; U &| = 6 and | Fy| = 4, i)
ID,‘,U 8" = g, |J:171 =3 and ID@I Z 3,’ ?:‘U) |IJ¢ Ug.gl = 12, |F‘| =2 and |D,{’ 2 9.

Lemma 13. Let G; for i € T. Fbr all j € I\N{i, —i}, |Gy| < 3. If|Giy| = 3 for
some j € I\{i, —i}, then ’.?TEQ)I < 3. Besides: i) |G;| # 3, ii) if |G| = 4, then
|Fi| = 11; 4i4) if |Gi| = b, then 8 < |F3| <10; @) if |G;| = 6, then B < |F;| <8.

Theorem 1 restricts the variation of ¢ = |G]. Since g = 3.7 1G:|, with
|Z} = 14, and by Theorem 1, 3 < |G| £ 7, for all ¢ € T, then 8 < ¢ < 19, Our
strategy to prove the non-existence of PL(7,2) codes relies on restricting more
and more the variation of |G|, for any i € T.

3 Proofof |G;|#3foranyicl

In this section we present the general idea of the proof of |;| # 3 for any
i € 7. Under the assumption |G;| = 3, for some i € 7, we derive conditions that
necessarily must be satisfied by the codewords of G; UF; and which will lead to
contradictions in the definition of PL(7,2) code.

Let us suppose |G| = 3 for some i € Z. Under this condition, by Lemma 8,
we have |F;| = 12 and, in particular, |}'§2)I = 4, The following results impose
conditions in the index distribution of the codewords of G; L F;.

Proposition 2. If [G;| = 3, for some i € I, then there are o, f,y in
IN{i, —i}, with o, B andy pairwise distinct, such thal, | Fi| = | Fig| = | Fiy| = 5.
Furthermore, |Fi| < 3 for allw € T\{1, -, o, B, 7y}
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Proof. Let i € I be such that |G| = 3. The three codewords Wy, Wy, Ws of
G; satisfy Wy € Givywpuswy W2 € Giugwewrws 20d W3 € Giugusownswins With
wy, ..., wiz € I\{i, —1} and not necessarily pairwise distinct.

As |F = %Ewez\{i,—i} |Fu| and |F;| = 13 one has,

Y |Fuw| =30 (3.1)
weT\ {41}

Since |I\{i, —i}| = 12 and, by Lemma 5, |Fi.| < 5 for all w € I\{4, —i}, the
equation (3.1) implies the existence of, at least, two elements ¢, 8 € T\{i, —i},
with o # B, such that, | Fi,|, | Fig| > 4.

Let us show, now, that there are, at most, three elements ¢, B8,y € T\{1, —i},
distinct between them, such that, |Fial, | Figl, |Fs| > 4. Suppose, by contra-
diction, that there exist o, 8,7, § € I\{4, —i}, distinct between them, such that,
[Fials | Figls | Fals Fis| = 4. By Lemma 5, |Gia| = [Gig| = |Giy| = |Gus| = 0
and having in account the index distribution of Wy, Wo, W3 € G, we may
conclude that wy,...,wie € I\{i, =i, 0, 8,7, 6}. As [I\{i, —i, 0, 8,7, 8} = 8,
there are w, @ € T\{i, —i, o, B,y, 6} such that |Gu.s] > 2, contradicting Lemma
3. Thus, there are, at most, three distinct elements o, 8,y € Z\{4, —i} satisfying
| Facks FFigh 1Pl 2 4.

Next, we prove that there is no w € Z\{i, —i} satisfying |Fy,| = 4. By
. contradiction, assume that & € T\{{, —i} is such that |Fis| = 4.

In view of (3.1) and in spite of the conditions established until now, one and
only one of the following conditions is verified:

i) there is B € I\{%, —i, &} such that |Fig| = 5 and |Fi,| = 3 for any
we I\{i> —t 0, ﬁ}?

i) there are 8,y € I\{i, —%, o}, with 8 # <, such that |Fg|,|Fy| > 4 and
I'F'Wl S dforallwe I\{z} "—i) a;ﬁ:'}'}'

As |G| =8 and |Gi| = § Xuerps,- |Gul, then Tz 15, —iy [0ia| = 12.

Let us analyze the hypothesis ¢). By Lemma 5, |G| = [Gig| = 0 and
|Ga| < 1 for all w € IT\{i, —i,0, B}. As |T\{{, —i, &, B}| = 10, it follows that
Zwel\{i,_i_} |G.| < 10, which is a contradiction.

Now assume that the conditions stated in %) are fulfilled. In these conditions,
|Fial + |Figl + |Fiyl £ 14, then having in consideration (3.1) we get
Yowe\[i,—honpiy} [Fiw] = 25. Since |I\{s, —i, &, B,7}| = 0 and |Fy| < 8 for all
w e I\{i,—1, o, 8,7}, then |Fu| = 1 for all w € I\{i, —i, e, 8,7}, further-
more, there are, at most, two distinct elements &, & € T\ {4, —, o, §,v} so that
1 < |Fel, 7| <2. Thus, by Lemma. 5, Zu&l\{z?,—-t'} |Gs| < 11, contradicting
cur assummption.

Accordingly:

- there are exactly two distinct elements o, 8 & I\{%,—i} so that
| Fia| = |Fig| = 5 and |Fy,| < 3 for all w € T\{%, —4, &, B};
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- there are exactly three distinct elements o, 8,7y € I\{%, —i} such that
| Fic| = | Fig| = | Fiy| = 5 and |Fo,| <3 for all w € T\{§, —i, ¢, 8,7}

Let us assume first that there are only two distinct elements e, 8 € I\ {4, —1}
such that |Fa| = |Fig| = 5. By (3.1), there exists a unique element
¢ € I\{i, —1, o, B} such that | Fip| = 2 and | Fi,| = 3 for all w € T\{4, —i, o0, B,6}.
Consequently, by Lemma 5, we conclude that 3° 7 ;s |G| < 11, which is
a contradiction.

Summarizing, if [G;| = 3, there are exactly three distinct elements «, 8,7y
in I\{{, =i}, such that, |Fi.| = |[Fig| = |Fiy| = 5 and |[F| < 3 for all
o EI\{‘I‘:, —t, 0 JS;'Y} a
Proposition 3. Let o, B,y € I\{i,—i} such that |Fia| = [Fig| = |Fiy| = 5.
Then, |o|, |8| and |y| are pairwise distinct and there exist Uy, Up, Uz, Uy € F;
whose inder distributions satisfy:

i o ERIED
1 e
LEEEEED
1y 1w |y

. where x1,%2,23,%1,%,Ys € I\{i) -, B, n.(}

Procf. Let o, B,y € I\{4, —i} so that | Fio| = |Fig| = | Fiy| = 5. Let us assume,
by contradiction, that ||, |8] and || are not pairwise distinct. Without loss of
generality we may assume that o = —8. Thus, FinNFig = @ and, consequently,
|Fia U Fig| = 10. As |F;| = 13, then |Fiay| = | Figy| = 1 and s0 F; = Fn U
Fig U Fsy. Prom Lemma 8, |F®)| = 4. That is, |F9 N (Fia UFig UF)| = 4.
Consequently, there exists w € {, 8, v} such that IFfz)anl > 2, contradicting
Lermma, 7. Therefore, ||, | 8| and |4| are pairwise distinct.

‘We have just seen that if F; = FioUF;5UF,,, then Lemma 7 is contradicted.
w € {e, B,v}, by Lemma 6 we get |F,,,| = 1 for all u € T\{i, —i,w, ~w}. As a
consequence, |Fiag| = |Fioy| = |Figy| = 1. That is, there are U3, Us, Us € F;
satisfying:

AT S & | B ey
Ul @ o | v | 22
Ml v | P 7|2

Tab. 1: Partial index distribution of Uy, U, Us € F,.

where 21, 22, 23 € I\{{, —%, ¢, B,7}. As |Fin UFg U Fyy| =12 and | F| = 13,
there exists Uy ¢ Fio U Fig U Fiy, that is, Uy € Fiy goye Where g1, 40,93 €
(i, 5,0, 8,7} 0
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Next results are proved in [4] and characterize partially the codewords of the
sets F?) and §;, respectively.

Corollary 1. In the considered conditions .7:;.(2) = {Ug, U, 0", U™}, where
U € Fiu\(FpUFE,), U € Fig\(Fa U F,) and U” € F\(Fa U Fg).

Proposition 4" If I-Fial = I}:')Gl _— |};T| = 5, Hieﬂ |gw| = |§¢ﬁ| = Igwl = 0
Purthermore, there are §,2,8 € T\{3, —1i,c, B,v} so that |Gis| = |Gie| = |G| = 2
and |Giy| = 1 for allw € I\{i, —4, @, B, §,¢,8}. The index distributions of the
three codewords Wy, Wo, W3 € G, satisfy:

i [] £ | wy | Wy
6 | 6| ws | wy
i £ g | wg | we

where 6,¢,8,wy, ..., we € I\{i, —1, &, 8,7} ere pairwise distinci.
Let us consider
I= {‘i) —i, 7, -7 k: _k) a; ‘_aams —m, 1, N, 0, —O}-

Since the index distribution of Uy, Uy, Ua, Uy € JF; is the one illustrated in Propo-
sition 3, we may assume, without loss of generality, that o = 4, § = k and
" Uy € Fig, that is:

1 7 k11
1 4 ) I
2 KNy 1o
2 Y1l %2 s

Tab. 2: Partial index distribution of Uy,...,Us € F;.

where %1, 22 € T\{4, —4,5, &k, 7, 1} and y1, 90,18 € I\{4, —5, 5, &, ¥}

In what follows, the index distribution of the codewords of §; and Uy, Us, Us,
U4 codewords of F; are the ones given in Proposition 4 and Table 2, respectively.
Next results, proved in [4], allow us to analyze how the codewords of G; and F;
fit together.

Proposition 5. Ifl # & ¢,0, then, without loss of generality, Wy € Gizet, and
either = -l or 8§ = — or § = —k.

Proposition 8. Uy € Fiy,upys f07 41, 42,18 € {—7, =k, —,}, 21,20}, where z1
and zp are such that Uy € Fijyw, and Uz € Fipqw, (see Table 2).

Proposition 7. If [Gi| = 2 for some w € T\{i, —1,4,—4, k, =k, v, =7, 1}, then
eifher W = o1 Or @ = T,

Proposition 8. The indices §,¢,8 € {—4, —k, =7, 1, 21, 2a}\{y1, ¥, ya} further-
more |{ —74 —k, - ;': 1, mQ}l = 6.
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We have characterized the partial index distributions of the codewords of G,
and the codewords Uy, U, Uz, Uy € F;. From this characterization we can get
the complete index distribution of all codewords of G; U F; which apparently
do not contradict the definition of PL(7,2) code. There exist only two possible
index distributions, however, considering other elements w € T\{:}, analyzing
the complete index distribution of all codewords of G, UF,,, we conclude that is
not possible to describe the set GU.F without superposition between codewords.
This analysis is extensive and can be checked in [4].

4 Proof of [Gi| #4 forany i € T

Here, we restrict even more the range of variation of |G;| for any ¢ € Z. Such as
in the previous section, we assume, without loss of generality, that there exists
an i € T such that |G;| = 4. We focus our attention on the codewords of G; U F;
and deduce some necessary conditions which must be satisfied by them.

Let i € Z be so that |G;] = 4, by Lemma 9, 10 < |F;| € 11. The first result
characterize the partial index distribution of the four codewords of G;.

Proposition 0. If |G| = 4, for i € I, then |Gia| < 2 for any o € T\{4, —1}.

Proof. By Lemma 5 we know that |G;,] < 3 for all & € T\{4, —i}. Suppose, by
contradiction, that § € T\{i, —i} is such that |G;;| = 3.

As [G;] = 4, from Lemma 9 it follows that |F;| = 10 or | F;| = 11. Next, we
anslyze, separately, these two hypotheses: |F;| = 10 and |F;| = 11.

Suppose fizst that |F;| = 10. Then, by Lemma 9, |B,UC,U &, = 0. Con-
sidering Lemma 5 and taking into account that, by hypothesis, |G| = 3, then
|Ds; U &yl + 2|Fi;| = 1. Since |&;] = 0, it follows that |Dy;| = 1 and |F;;| = 0.

Let us consider two words Vi = (v11,v12, ..., ¥17) and Vo = (vat, v, ..., voy)
such that |vis| = 2, |vy;| = 1, Jups| = 1 and |ug;| = 2. These words must be
covered by codewords of By; U Cy; UDy U &y UFy. As [By| = [Cyl = [€4] =
|Fis| = 0, then V4 and V5 must be covered by the unique codeword in D,;, which
is not possible since the codewords of D are of type [£3, £1?].

Now assume that |F;| = 11. Since we are under the assumption [G;;| = 3, let
us consider Wy, W, Wa € G;; such that Wi € Cijuyunuwss W2 € Cijuguwsws and
W3 € Gyuwrwgwe, With wy, ..., we € T\{i, —1,4, —§}. We note that, by Lemma
3, wy,...,we must be pairwise distinct. As |G| = 4, let Wy € G;\G; so that
Wi € Givsowsswiawsey Where wig, w1y, wis, wis € I\{{, —1,4}. In Table 3, the
codewords Wi, ..., Wy € G; are schematically represented,

Since wy, ..., we C IN{i, —i,4, —j} with wy, ..., we pairwise distinct, taking
into account that |T| = 14, let {8} = T\{i, =, 4, —f, w1, ..., wg}. Note that,
s, =i} = {G3u{—7 U {BtU{wy,...,we}. Considering Wy € Giwipwiswmawis;
W10, ..., Wis € I\{i,—%, 7}, we conclude that [{w1o,...,wiz} N {wy,...;we}| > 2.
On the other hand, |{wig,..., w1z} N{w1,...,we}| < 3, otherwise Lemma 3 is con-

tradicted. Consider the cases: ) |[{wio,...,wiz} N {wy,...,we} = 2;
i) {wio, ..., wia} N {wy,..., we}| = 3.
Suppose that |{wio,.... w1z} N {wi,.,we}| = 2, in these conditions

Wy € Gi_j8uwomy With wio, w1y € {wy,...,we}. Accordingly, we have
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g, Wy wa Wy
7 g wg wg
X} wy wsg Wg
wio Wiy wig Wia

Tab. 3: Partial index distribution of the codewords of G;.

G| = 3, |Gowss| = |Gewns| = 2 80d |Gins| = 1 for all w € T\{§, 1,5, w10, w11}
Consequently, from Lemma 5 it follows that |Fy| = 0, |Fiwols [Fiw| £ 2 and
[Fiw] < 3 for all w € I\{i, — j,wm,w“}. As |Fi| = '§ZaeI\{£,—:’} | Fic| and
we are assuming |Fi = 11, then 3 cz\ (i~ [Fial = 33. However, taking into
account what was been said before, 3 e\ (5, —i) [ Fial < 31, Which is a contra-
diction.

Now consider that |{wig,...,wia} N {ws,...,we}| = 3. Thus, we have
Wi € Givwigwisma, With z € {—7, B} and wio, wis, wiz € {wy,...,we}. In
these conditions, |G| = 3, |Gauw,ol| = [Ciwas|l = 1Giwia] = 2 |Gsg| = O for
{y} — {"_.7)16}\{3} and |gt'w| =1lforalwe I\\.{i) —f;f,y,wm:wu,wm}-
Consequertly, by Lemma 5, we get |[Fy| = 0, |Fiwiols [Firwgsls [Firwa] £ 2,
! |‘F’&"| < 5 and |]:w.| __<__ 3forall w e I\{‘L, ‘—“i,:}',y, wig,wn,wm}. Accordingly,
Zoez\{il_‘.} |Fia] < 32, obtaining again a contradiction. 0O

We have just proved that for any & € T\{4, —i} we get |Gin| < 2. Let us
consider the subset 7 € I\{i, —¢} so that: J = {& € I\{i, —i} : |Gi| = 2}.
The following result, proved in [4], restricts the variation of | 7}.

Proposition 10. The cardinality of J satisfies 4 < |J| < 6.

Next, we establish conditions which must be verified by the codewords of
G U F; when |.7| assumes each one of the possible values.

Proposition 11. If |7| = 4, then |G| = 1 for any o € T\({§, i} U J) and
Bl = 10,

Proof. By assumption |G;| = 4, consequently Y- ez ;s [Gial = 16. That is,
Za(—}l\({i,‘-—i}UJ) |Qw| +Eu€3|giﬁl = 16. A.S |Qm| = 2 for all ¢ € .,7 and,
by assumption, |J| = 4, it follows that 3 cn (i—sjug) |Gial = 8 Taking
into account Proposition 9, |Gia| < 1 for all & € T\({%, —i} U J). Since that
|I\({#, =i} U J)| = &, we must imposs |Gin| = 1 for all @ € T\({§, -} U T).
From Lemma 9 we know that |F| = 10 or |F| = 11. Let us
suppose that |F;] = 11. In these conditions, taking into account that
[F = %Eaez\{e.—s} | Ficl, we have 3= oz g5, —sy [Fial = 33. Having in mind
what was proved before, from Lemma 5, we get |Fiu| < 2 for all « € J and
|Fia] < 8 for any o € T\({i,~¢} U J). That is, 3 eq 5,4} [Fial < 32, which
is an absurdity. Therefore, |F;| = 10. 0
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Next, following a similar reasoning, we derive equivalent results whose proofs
can be checked in [4].

Proposition 12. If |[J| = 4, with T = {,v,6,&}, then |Fia| > 1 for all
o € I\{4, —i} and there exist, at least, two elemenis o € J such that |Fip| = 2.
Furthermore:

£) if B,y € T are the unique elements in J satisfying |Fig| = | Fiy| = 2, then
|Fis| = |Fiel = 1 and | Fia| = 3 for all @ € T\({3, =i} U T,

i) if B,v,d € J are the unique elements in T which satisfy
[Figl = |Feyl = |Fis| = 2, then |Fie| = 1 and there are seven elements
o € I\({4,—i} U J) such that | Fia| = 3;

iif) if |Fia| = 2 for all @ € J, then there are, at least, siz elements
o € T\({£, -1} UJ) satisfying |Fia| = 3.

Proposition 13. If [J| = 5, there exists 2 € T\({{, —i} U J) so that |Gy = 0.
Furthermore, |Gia| = 1 for any a € I\({3, -4, 2} U ).

Since by Lemma 8 we have |F;| = 11 or |F;| = 10, the following two propo-
sitions give us conditions for the index distribution of the codewords of F; when
|7| = 5 and |.F;| assumes each one of these values.

. Proposition 14. Let |J| = 5 and » € I\({i, =i} U.T) be such that |Gi| = 0.
If|FR] = 11, then: |Fi| = 2 for any o € J; |Fio| = 5; |Fia| = 3 for any
e e I\{i, iz} U T).

Proposition 15. Let |.T| = 5, with T = {f,,4,¢,6}, and z € T\({1, -1} U J)
such thal |G| = 0. If |F;| = 10, then there are, at least, two elements o € J
such that | Fi,| = 2. Furthermore:

i) if B,y € T are the unigue elements in J satisfying | Fig| = [ Fiyl = 2, then
[Fis| = | Fiel = |Fig| = 1, | Fia] = 5 and | Fia| = 3 for any a € T\({i, —i, 2} U T);

i) if B,7,0 € J are the unique elements in J which satisfy |Fig| = |Fiy] =
| Fisl = 2, then one of the following conditions must occurs: |Fiy| = 5 and
|Fia| = 3 for, at least, five elements o € T\({i, —i, 2} U J); | Fe| = 4, |Fic| =
|Fis|l = 1 and |Fia| = 3 for any o € T\({, —4, 2} U T);

i) if B,v,8,£ € J are the unigue elemenis in J satisfying |Fig| = |Fiy| =
|Fis| = | Fiel = 2, then one of the following conditions must occurs: |Fi| = B _
and | Fin| = 3 for, at least, four elements o € T\({i, —1, 2} U.J); |Fix| = 4 and
|Fial = 3 for, at least, five elements a € I\({i, 1,2} UT); |Fiu| =3, | Fus| = 1
and |Fial = 3 for any o € I\({i, 4,2} U T);

@) if |Fia| = 2 for any o« € J, then one of the following conditions must ocours:
|Fie| = & and |Fia| = 3 for, at least, three elements o € T\({i, —i,2} U J);
|Fia| = 4 and |Fia| = 3 for, ot least, four elements o & T\({i, ~i, 2} U J);
|Fia| = 3 and |Fia| = 3 for, ot least, five elements o € I\({i,—i, 2} U J);
[Fig|l = 2 and |Fia| = 3 for any o € T\({{, —i, 2} U T).
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Proposition 16. If |J| = 6, then there exist =,y ¢ T\({i, —i} U J) such that
|Giz| = |Ciy| = 0. Furihermore, |Gio| =1 for any « € I\({i, -1, 2,4} U J).

Proposition 17. Let |J| = 8, with T = {B,,8,&,60,p}, end 5,y € T\[{i, —i}U
T) such that |Gi| = |Gyy| = 0. If | Fi| = 11, then there are, at least, five elements
o € J satisfying |Fia| = 2. Furthermore, if there exist exactly five elements in
these conditions, then: |Fig| = |Fu| = |Fis| = |Fae| = |Fig) = 2; |Fin| = 1;
| Fi| = |Fay| = 5; | Fia| = 3 for any o € I\({, =4, 2, y} U T ).

Proposition 18. Let |J| =6, with 7 = {8,+,4,£,8, u}, and z,y € T\({i, —i}U
J) be such that |G| = |Giy| = 0. If |F| = 10, then there are, at least, three
elements o € J satisfying | Fio| = 2. Furthermore:

) if B,,8 € J are the unique elemenis in J salisfying |Fig| = | Fy| =
Fal = 3, then 1Ful = | Fal = [Fyl = 1, [Ful = 5, [Pl = 4 and
| Fia| = 3 for any & € I\({1, -4, 2,5} UT);

i) if B,v, 8,6 € T are the unigue elements in J satisfying |Fig| = |Fin| =
[Fa|l = |Fel = 2, then |Fu| + |Fig| 2 8 if |Fia| + | Fiy| = 8, then
| Fisl = |Fil =1 and |Fia| = 3 for any o € T\({i, —i, 2,5} UT),

iid) if B,v,8,6,0 € T ore the unigue elements in J satisfying |Fig| = |Fin| =
|Fis| = | Fiel = |Fas| = 2, then |Fia| + | Foy| 2 7, if | Fia| + | Figl = 7, hen
|Finl = 1 and | Fin| = 3 for any o € I\({i, —i, 2,4} U T);

f‘!.l) ‘Sf !‘?:WI = 2 fCﬂ" any o .j‘r, then |.}C;;;,| + I.ngl Z 6,’ 3f|.?:w| + !.Fg_.yl = 61
then |Fio| = 8 for any o e IN({i, —i, 2,9} U T).

From the presented results is possible to describe the index distribution of
all codewords of §; UJF;, i € I. The strategy applied to verify that any index
distribution of such codewords contradicts the definition of PL(7,2) code is the
same referred in the last part of the Section 3 and can be conferred in [4].

5 Proof of |G;|#A5 foranyic T

Here, we analyze the hypothesis |G;| = 5 for some i € T. Let us assume |G;| = 5
for i € Z. Since, from Lemma 5, |G,.| < 8 for any a € T\{1, —i}, we distinguish
the cases:

1) |Gia| = 3 for some a € T\{i, —i};
2) |Gia| £ 2 for any o € I\{i, —i}.

For each one of these cases, we derive, initially, some conditions which will
be useful for the characterization of the codewords of §; UF,. Here, we only
present the analysis of the hypothesis 1), being the hypothesis 2) analyzed in
{4].

Let us consider |G| = 5 and |G| = 3 for some 4 € T\{i, —i}. Then, by
Lemma 10, 7 < |F;] < 10. The following proposition restricts even more the
variation of | 5.
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Proposition 18. If|G;| = 5 and [Gi;| = 3, then | Fy;| =0 and 8 < | Fy| < 0.

Proof. Since |Gy;| = 3, from Lemma 5 it follows that | Dy UEy| +2|F4|+9 = 10,
implying |F| =0 and |Dy U&y) = 1.

As |G| = 5 and |G| = 3, by Lemma 13 we get 8 < |Fi| < 10. Supposing
|Fi| = 10, by Lemma 4 we must impose [D; U &;| = 0, which contradicts |Dy U
&i| = 1. Therefore, 8 < |F| < 8. 0

It is possible, up to an equivalent index distributions, to characterize all
codewords of Gy, as we will see in the next proposition proved in [4].

Proposition 20. The index distridution of the codewords Wi, Wo, W3 € Gi;
satisfies:

4 & i m
7 —k —i n
il =m | —n 0

The index distribution of the codewords of G;; presented in Propasition 20
induces a partition P of T\{{, —, 4}

Py={k,l,m}; Po= {—k,—I,n}; Ps={-m, —n,0}; Py={-0}; Ps= {—4}.
(5.)
Let us consider the subssts of, respectively, G; and F;:

H={W € Giviwwsuws W1 €P1 A wp €Pp A wa €Ps A wy € {—0,—5}}
and
Jz{UEFimugus:“iepi A g € Py A uaePg}.

Taking into account the partition of T\{i, —4,4}, see (5.1), we get GN\G,; =
HU g,;l_p,_é and F; = JUF_, U.F"'_j.

Next results, proved in [4], impose conditions on the index distribution of
the codewords of (G;\G,) U F; by the establishment of relations between the
cardinality of the sets #, J, %, _, and F; _;. The following proposition will be
useful to obtain the refereed relations.

Proposition 21. The set Dy, U &y, satisfies |Dsj, o U&;j—o| = 1.

Proposition 22. The sets H and J satisfy [HU J| < 6. Furthermore, 1 <
|H| <2 and |T| <5.

Proposition 23. If|H| = 1, then 3 < |J| < 5 and | F; _, ;| = 0. In particular,
constdering Wy € H one has:

i) if Wy € Gi,—, then & < |J| < 5. Moreover, if || = 4, then |Fi_o| = 1,
[Fymsl = 3 and || = 8;
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i) if Wy € iy, then 3 < |TJ| < 5. Moreover, if |T| = 3, then |F;_o| = 3,
|Fiesl = 2 and | 5| = 8.

Proposition 24. If|H| = 2, then |G; —o,—;| = 0 and 3 < |J| < 4. In particular,
if |J| = 3, then |.F;| = 8 and considering Wy, Ws € H:

i) if Wa, Ws € Gsi o, then either |F; ;| =5, or, |Fi—;| = 4, |Fi—o| = 1 and
|f*r“ﬂy‘—:§| = 0;

i1) if Wa, Wy € Gi _;, then either |F; _o| = 4, |Fy—sl = 2 and | F5,—0,—5| = 1,
ory |Fi—o| =4, [Fi—5l =1 and |F; 5| =0;

iit) if Wy € Gi_, and Wg € Gi,_;, then either |F; | = 3, |Fi—;| = 3 and
I‘Fi,_cs".’jl = 1J Or) |'?: _°| = 2, |F‘I_‘7| = 3 and |Fi:_°|_3| = U

The index characterization of the codewords of G; U F; i mostly based in
Propositions 23 and 24. However, as in the previous cases, all possible index
characterizations lead to contradictions, as can be conferred in [4]. The proof of
|G:| # 5 for any ¢ € T is completed with the analysis of the condition |Gia] < 2
for any « € T\{4, —i}. The study of this condition can be checked in [4], where
its impossibility is proved.

6 Conclusion of the proof of the non-existence of PL(7,2)
codes

In the previous sections we have proved that if there exists a PL(7, 2) code M,
then ¢ C A is such that 6 < |G;] £ 7 for any i € I. Here, we show that
this assumption leads us to contradictions, proving thus the non-existence of
PL(7,2) codes. Under this condition we derive the following result.

Proposition 256, There exists & € T such that |G| = 7. Furthermore, if
|Gal = T, for some a € I, then there exist, at least, four elements B € T\{o, —a}
satisfying |Gap| = 3.

Proof. We have proved that 6 < |Ga| <7 for any o € T. We recall that

g=101=3 3 Idal. (6.1

acl

Let us suppose, by contradiction, that |G,| = 6 for any oo € T. As |I] = 14,
by (6.1) we conclude that ¢ = %‘!, which it is not possible since g must be an
integer number. Therefore, there exists o« € I such that |G| =7.

Let & € T be such that |Ga| = 7. We note that |G| = § z |Gasls

peIN{o—a}

3> |Gapl = 8. (6.2)
ﬂeI“l{al_-a}

that is,
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From Lemma 5 it follows that [Cag| < 3 for any 8 € T\{a, —a}. If we suppose,
by contradiction, that, at most, there are three elements 8 € 7\ {a, —a} satisfy-
ing |Gop| = 3, then from (6.2) it follows that 2opet\ja,~a} [Gapl < 27, facing up
a contradiction. Accordingly, there are, at least, four elements § € T\{e, —c}
such that |Gop| = 3. 0

Consider T = {4, —1, 4, 4, k, —k,{, =, m, —m, n, —n, 0, —0}. Taking into ac-
count the previous proposition, let us assume |G;| = 7 and |G| = 3. From
Proposition 20 it follows that the codewords Wi, W, W3 € Gy; satisfy the fol-
lowing index distribution:

=W i g k 14 m
g RN —k —1 n
e il 4 —-m | —n o

Tab. 4: Index distribution of the codewords of Gij.

The index distribution of the codewords of G;; induces the following partition
P of I\{i, —4, 5}:

Pr={kl,m}; Po={-k—ln}; Pa={-m,—n,0}; Py={-4}; Ps={—o}
(6.3)
Having in view Proposition 25 and the partition of P, next result, proved in
[4], imposes conditions on the elements o € I\{i, —%, 4} which satisfy |Gin| = 3.

Proposition 26. There are, at least, two elemenis o, B € PiUP,UP: satisfying
|Gia| = [Gagl = 3.

By Proposition 26, let us consider @ € Py U P, U Py such that |Gia| = 3.
Analyzing the partition P of Z\{i, —3, §}, see (8.3), we distinguish, without loss
of generality, the hypotheses: & = k; @ = m; @ = —m; @ = 0. Our aim is to
characterize all possible index distributions for the codewords of G;. For that,
we analyze each one of the referred hypotheses. This analysis is presented in [4]
and follows the same idea described in the last part of the Section 3. For any
index distribution of the codewords of §;, the description of other codewords
of the set §UF implies always superposition between codewords, contradicting
the definition of PL(7,2) code. Thus, we establish the main theorem: :

Theorem 2. There exisi no PL(7,2) code.

7 Conclusion

The Golomb-Welch conjecture states that there is no PL(#n, ) code for n > 3
and r > 2. Here, we reinforce the conjecture proving the non-existence of
PL(7,2) codes. The way how the proof was built reveals how difficult was to

180



Conference Proceedings, Paris France Nov 08-09, 2018, 20 (11) PartIl

solve the case. We have focused our attention on words which dist three units
from O = (0,...,0). Actually, there exist many ways to try to cover all these
words by codewords, and although we have obtained many results which restrict
the number of such hypotheses, in many cases, to achieve contradictions we had
to apply exbaustion methods to study a large number of cases. This was the
major hard work of the proof. In some cases we have tried to use computational
methods having in view a guick analysis of the many cases we had to deal with,
however, it would be necessary to implement an algorithm requiring a lot of
information, not being easy to do it, at least, with our knowledge.
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