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Abstract. In this paper we aim to proof the possibility to reconstruct a bicomplex sparse signal,

with high probability, from a reduced number of bicomplex random samples. Due to the idempotent

representation of the bicomplex algebra this case is similar to the case of the standard Fourier basis,

thus allowing us to adapt in a rather easy way the arguments from the recent works of Rauhut and
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1. Introduction

An important problem in signal processing is the possibility of reconstruction of a given signal

from a few of its samples. This problem is closely related to nonlinear and adaptive approximation.

Indeed, classic linear schemes in general do not apply here. One way to overcome this difficulty is

to search for the atom which has a locally optimal fit at each step - the so called greedy algorithm.

However, this procedure has exponentially growing computational costs and does not necessarily

lead to exact (or even to optimal) reconstructions. In the last decades several approaches were

developed to overcome this shortness. One such approach is Compressed Sensing (CS) [6, 3]. The

main idea behind CS is that under certain conditions on the sampling matrix one can obtain a

sparse reconstruction of the signal, i.e., if we have an a-priori knowledge that the representation of

the signal in a given dictionary has only a few non-zero coefficients then we can reconstruct it from

those few samples by means of a simple basis pursuit procedure. The condition on the sampling

matrix, or RIP condition, states that the matrix behaves almost like an isometry. Now, this also

represents a problem since in practice this is almost never the case (e.g. [15]). However, and as

suggested by Rauhut in [14], this requirement can be lowered to be fulfilled with a certain (high)

probability. This is a more realistic scenario since in many application the worst-cases are seldom

or can entirely be avoided. Hereby, we propose to follow the idea of the reconstruction of the signal

by basis pursuit via a `1-minimization procedure [2, 4, 5].

In this paper we are interested in the case of bicomplex signals depending on two variables.

The motivation comes from the fact that higher-dimensional algebraic structures can be used to

represent color image encoding in image processing which has attracted a lot of attention during

the last decade. In [12] the authors point out that the so-called IHS-color spaces representation

(i.e., Intensity-Hue-Saturation) which has broad applications, particularly in human vision, can be

mathematically represented by having values in bicomplex numbers. This means that a color image

based on this coding scheme can be represented by a function depending on two variables and taking
1
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values in the bicomplex numbers. Another possible application of these kind of bicomplex signals

can be found in multi-channel information [11] which can easily be adapted to our setting.

The paper is organized as follows. In Section 2. we introduce the necessary tools. In Section

3. we present the setting of our problem, the main theorems and prove some auxiliary lemmas.

Finally, Section 4. is dedicated to the detailed proof of the main theorems.

2. Preliminaries

As a realization of a commutative 4D real algebra, which is not a division algebra, we have the

commutative ring of bicomplex numbers, denoted as BC. Here, i and j are commuting imaginary

units, i.e.,

(2.1) ij = ji = k, i2 = j2 = −1, whereas k2 = +1,

and

(2.2) BC := {ζ = a+ bi + cj + dk, a, b, c, d ∈ R}.

Based on identities (2.1) we decompose BC into two ways. Indeed, BC = C(i) + jC(i), that is

(2.3) ζ = a+ bi + cj + dk = z1 + z2j, with z1 = a+ bi, z2 = c+ di ∈ C(i),

where C(i) is the set of complex numbers with the imaginary unit i. We introduce the automorphism,

or conjugation, given by

(2.4) ζ := z1 + z2j 7→ ζ := z1 − z2j,

where zj , j = 1, 2, denotes the usual complex conjugation in C(i).

Likewisely, we have BC = C(j)+iC(j). Also the set of hyperbolic numbers D := {a+dk : a, d ∈ R}
can be embed into BC as follows: z = a+ dk ∼ a+ 0i + 0j + dij ∈ BC.

Every bicomplex number ζ = z1 + z2j satisfying to z21 + z22 6= 0 is invertible, and its inverse is

given by ζ−1 = z1−z2j
z21+z

2
2
. If, on the other hand, z21 + z22 = 0 then ζ is a zero divisor in BC. In fact,

there are no other zero divisors in BC. We turn our attention to two special zero divisors. We define

(2.5) e+ =
1

2
(1 + ij) , e− =

1

2
(1− ij) .

Straightforward computations show that they are zero divisors as well as mutually complementary

idempotent elements

(2.6) e+e− = e−e+ = 0, e+ + e− = 1,
(
e+
)2

= e+,
(
e−
)2

= e−.

Thus, the two sets BCe+ := BCe+ and BCe− := BCe− are principal ideals in the ring BC. Given

an open set X ⊂ BC, we shall denote its projections Πe± into the principal ideals BCe± , resp.,

as X1 = Πe+X ⊂ BCe+ , X2 = Πe−X ⊂ BCe− . Taking this decomposition into account we have

X = X1e
++X2e

−, with X1e
+ = Xe+ and X2e

− = Xe−. This leads to the following representation

(2.7) ζ = z1 + z2j = β1e
+ + β2e

−, where β1 = z1 − iz2, β2 = z1 + iz2 ∈ C(i).
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Moreover, if both β1, β2 are invertible in C(i) then ζ is invertible, and we have

ζ−1 = β−11 e+ + β−12 e− =
β1
|β1|2

e+ +
β2
|β2|2

e−.

Based on representation (2.7) we have the so-called hyperbolic norm (see [1])

(2.8) |ζ|k = |β1|e+ + |β2|e−.

Let us point out that although (2.8) is not a norm strictly speaking its real part induces a norm

| · | : BC→ R+
0 given by

(2.9) |ζ| := Re(|ζ|k) = Re(|β1|e+ + |β2|e−) :=
1

2
(|β1|+ |β2|) .

We now look into idempotent representations of matrices taking values in BC. We denote by

BCm×n the set of m × n matrices with bicomplex entries. As in the scalar case, the operations

over the matrices can be realized component-wise keeping in mind the non-commutativity of matrix

multiplication. Note that BCm×n is not a vectorial space, but a BC-module.

Given such a matrix A = (ai,j) ∈ BCm×n its idempotent representation is obtained by accordingly

decomposing each of its entries by (2.7), that is,

(2.10) A = [A]1e
+ + [A]2e

−,

where [A]1 = Πe+A, [A]2 = Πe−A are now m×n matrices taking values in C(i). In consequence, we

shall write [A]1, [A]2 ∈ Cm×n(i), and we have BCm×n = Cm×n(i)e+ + Cm×n(i)e−.

Definition 2.1. Given a square matrix A = [A]1e
+ + [A]2e

− ∈ Cn×n(i)e+ + Cn×n(i)e− = BCn×n,
we define its determinant detA by detA := (det[A]1)e

+ + (det[A]2)e
−.

Lemma 2.1 ([1], Corollary 2.2.2). Let be A and B be two square bicomplex matrices. Then

det (AB) = detAdetB.

Lemma 2.2 ([1], Proposition 2.2.3). A square bicomplex matrix A = [A]1e
++[A]2e

− ∈ Cn×n(i)e++

Cn×n(i)e− = BCn×n is invertible if and only if [A]1, [A]2 are invertible in Cn×n(i).

3. Sparse sampling of Bicomplex signals

We now consider the problem of reconstructing a sparse bicomplex signal. We shall begin with a

description of our setting, after which we present our main results.

3.1. The Bicomplex Setting. We consider bicomplex trigonometric waves of type

(3.1) ζk,k̃(x, y) = eikxe+ + eik̃ye−, x, y ∈ [0, 2π],

with k, k̃ ∈ Z. As in [14], we denote by
∏
ρ the space of all bicomplex trigonometric polynomials of

maximal order ρ ∈ N0 in two real variables. For convenience, we use Z2
ρ = [−ρ, ρ]2 ∩ Z2. Thus, an

element f ∈
∏
ρ is of the form

(3.2) f(x, y) =
∑

(k,k̃)∈Z2
ρ

ck,k̃

(
eikxe+ + eik̃ye−

)
=

∑
(k,k̃)∈Z2

ρ

(
cke

ikxe+ + ck̃e
ik̃ye−

)
,
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with (x, y) ∈ [0, 2π]2, and some sequence of coefficients c = (ck,k̃)k,k̃, where

(3.3) ck,k̃ = cke
+ + ck̃e

− ∈ C = C(i)e+ + C(i)e−.

Furthermore, we assume that the sequence c of coefficients has support on a set T ⊂ Z2
ρ which is

much smaller than the dimension D = (2ρ + 1)2 of
∏
ρ . In other words, the finite combination in

(3.2) is sparse, that is, only a few coefficients ck,k̃ are non-zero.

As we do not possess any information on T except its maximum size, we introduce the auxiliary

(non linear) space
∏
ρ(M) of all polynomials of type (3.2) such that the sequence of coefficients c

has support on a set T ⊂ Z2
ρ satisfying to |T | ≤M, i.e., f ∈

∏
ρ(M) ⊂

∏
ρ is of the form

(3.4) f(x, y) =
∑

(k,k̃)∈T, |T |≤M

ck,k̃

(
eikxe+ + eik̃ye−

)
, (x, y) ∈ [0, 2π]2,

and we say f has sparsity M.

We now state our problem: given a sampling set of N independent random variables having

uniform distribution on [0, 2π]2, and assuming the signal f to be sparse, that is f ∈
∏
ρ(M), (M �

D), we wish to reconstruct f from its known samples at the chosen sampling set.

3.2. Main theorems. As indicated before, we avoid the usage of basis pursuit methods as they are

in general too restrictive and computationally expensive for most applications. Instead, we provide

a probabilistic answer to our problem. The theorems below are analogues to the ones in Candés,

Romberg, and Tao [3] and in Rauhut [14].

First, we state the following `1−minimization problem: given a set of samples {f(xj , yj), j =

1, . . . , N} we wish to find a sequence c = (ck,k̃) ∈ `2(Z
2
ρ) solving

(3.5) min ‖c‖`1 s.t. g(xj , yj) :=
∑

(k,k̃)∈Z2
ρ

ck,k̃

(
eikxje+ + eik̃yje−

)
= f(xj , yj),

for all j = 1, . . . , N, and where

‖c‖`1 :=
∑

(k,k̃)∈Z2
ρ

2Re(|ck,k̃|k) =
∑

(k,k̃)∈Z2
ρ

(|ck|+ |ck̃|).

The following theorems state when the signal f can be reconstructed by means of solving this

minimization problem.

Theorem 3.1. Assume f ∈
∏
ρ(M) and let X = {(x1, y1), . . . , (xN , yN )} ⊂ [0, 2π]2 be a set of

independent random variables having uniform distribution on [0, 2π]2.

Choose n ∈ N, β > 0, κ > 0 and K1, · · · ,Kn ∈ N such that

(3.6) a :=
n∑

m=1

βn/Km < 1 and
κ

1− κ
≤ 1− a

1 + a
M−3/2.
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Set θ := N/M. Then, f can be reconstructed exactly from its sample values f(x1, y1), . . . , f(xN , yN )

by solving the `1-minimization problem (3.5) with a probability of, at least,

(3.7) 1−
(
Dβ−2n

n∑
m=1

G2mKm(θ) + κ−2M G2n(θ)

)
,

where, we recall, D = (2ρ + 1)2 and G2s(θ) := θ−2s
∑s

k=1 S2(2s, k)θk for s ∈ N, and where S2(·, ·)
denotes the Stirling numbers of second order.

While the above theorem provides exact constants we can give a version of the theorem which is

somewhat easier to apply.

Theorem 3.2. Assume f ∈
∏
ρ(M) and let X = {(x1, y1), . . . , (xN , yN )} ⊂ [0, 2π]2 be a set of

independent random variables having uniform distribution on [0, 2π]2.

If for some ε > 0, there exists a constant C > 0 such that it holds

(3.8) N ≥ CM log(D/ε),

then, with a probability at least 1−ε, the signal f can be recovered from its sample values f(x1, y1), . . . , f(xN , yN )

by solving the minimization problem (3.5).

The proof of these two theorems requires several additional lemmas. These will be presented and

proved in the next subsection. Although some parts follow closely Rauhut [14], we have emphasize

the need to adapt many of the tools to our own bicomplex case, since the algebraic construction is

quite different.

3.3. Additional Lemmas. We begin by introducing the spaces of functions: let `2(Z2
ρ), `2(T ), and

`2(X), denote the `2−spaces w.r.t. the norm (2.9) of sequences indexed by the grids Z2
ρ, T, and X,

respectively.

Secondly, we consider the sampling operator FX : `2(Z2
ρ)→ `2(X) given by

FX(c)(xj , yj) :=
∑

(k,k̃)∈Z2
ρ

ck,k̃

(
eikxje+ + eik̃yje−

)
j=1,...,N

,

as well as its restriction, FTX , to sequences with support on T. Thus, FTX is an operator acting

from `2(T ) in `2(X). Also, we consider their adjoint operators, F∗X : `2(X) → `2(Z2
ρ) and F∗TX :

`2(X)→ `2(T ).

Finally, as an abuse of language, and when clear from the context, we shall denote the sample

sequence by the same letter of the original signal, that is to say, f = (f(xj , yj))j=1,...,N ∈ `2(X).

So we reformulate our problem: we want to reconstruct a sequence c ∈ `2(Z2
ρ) from the data

FXc = f, where f is the sample sequence of the signal in `2(X), by solving the following `1-

minimization problem

(3.9) min ‖c‖`1 subject to FXc = f.
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We start by define the analogue to sign function in the bicomplex case as

(3.10) sgn(ζ) = sgn(β1e
+ + β2e

−) := sgn(β1)e
+ + sgn(β2)e

−,

where sgnβ, for β ∈ C(i), is the complex sign function sgnβ = β
|β| , if β 6= 0, and 0 otherwise. For an

arbitrary sequence of coefficients c := (ck,k̃)k,k̃ = (cke
++ck̃e

−)k,k̃ then sgn ck,k̃ = 0 if (k, k̃) /∈ supp c,

while |sgn ck,k̃| = 1 for all (k, k̃) ∈ supp c where the norm | · | is given by (2.9).

Lemma 3.1. Given two bicomplex numbers c = c1e
+ + c2e

− and g = g1e
+ + g2e

−, such that both

c1, c2 are non-zero, then it holds

(1) |sgnc|k = 1;

(2) c sgnc = |c|k;

(3) |g|k |sgnc|k = |g sgnc|k.

Proof. By (3.10) we have sgnc = (sgnc1)e
++(sgnc2)e

−, so that by (2.8) we get |sgnc|k = |sgnc1|e++

|sgnc2|e−. Hence, when both c1, c2 are non-zero we obtain

|sgnc|k = |sgnc1|e+ + |sgnc2|e− =

∣∣∣∣ c1|c1|
∣∣∣∣ e+ +

∣∣∣∣ c2|c2|
∣∣∣∣ e− = e+ + e− = 1,

which proves (1).

For (2) we observe that e± = e± and so

c sgnc =
(
c1e

+ + c2e
−)( c1

|c1|
e+ +

c2
|c2|

e−
)

=

(
c1c1
|c1|

e+ +
c2c2
|c2|

e−
)

= |c1|e+ + |c2|e− = |c|k.

Finally, for (3) we have for the left hand side,

|g|k |sgnc|k = |g|k,

due to (1), while for the right hand side,

|g sgnc|k =

∣∣∣∣(g1e+ + g2e
−)( c1

|c1|
e+ +

c2
|c2|

e−
)∣∣∣∣

k

=

∣∣∣∣g1c1|c1| e+ +
g2c2
|c2|

e−
∣∣∣∣
k

=

∣∣∣∣g1c1|c1|
∣∣∣∣ e+ +

∣∣∣∣g2c2|c2|
∣∣∣∣ e− = |g1|e+ + |g2|e− = |g|k.

�

The following lemma is an adaptation of [3], Lemma 2.1, to our setting.

Lemma 3.2. Let c = (ck,k̃) ∈ `2(Z
2
ρ) be a sequence with support on T and satisfying to FTXc = f.

Also, assume FTX : `2(T ) → `2(X) to be injective. If there exists a sequence P ∈ `2(Z2
ρ) with the

following properties:

(1)
∣∣Pkk̃∣∣ = 1 for all (k, k̃) ∈ T ;

(2)
∣∣Pkk̃∣∣ < 1 for all (k, k̃) /∈ T ;

(3) there exists a λ = λ1e
+ + λ2e

− ∈ `2(X) such that P = [F∗X ]1 λ1e
+ + [F∗X ]2 λ2e

−,

then c is the unique minimizer to problem (3.9).
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Proof. First, we recall that |·| := Re(|·|k) denotes the norm (2.9) while [F∗X ]1 , [F
∗
X ]2 denote the

components of the idempotent representation F∗X = [F∗X ]1 e+ + [F∗X ]2 e−.

The case where T is empty is trivial. The same happens if f is zero everywhere on X. Therefore,

we assume f = (f(xj , yj), j = 1, . . . , N) to be a non-zero vector.

Let h = (hk,k̃) ∈ `2(Z
2
ρ) be an arbitrary vector such that FXh = FXc. Take g = h − c. Then,

FXg = 0 on X and |hk,k̃|k = |ck,k̃ + gk,k̃|k for all (k, k̃) ∈ T.
First, we assume (k, k̃) ∈ T such that both ck, ck̃ are non-zero. Then,

sgnck,k̃ sgnck,k̃ =

(
ck
|ck|

e+ +
ck̃
|ck̃|

e−
)(

ck
|ck|

e+ +
ck̃
|ck̃|

e−
)

= e+ + e− = 1,

so that

|hk,k̃|k = |(ck,k̃ + gk,k̃)sgnck,k̃ sgnck,k̃|k

= |
(
ck,k̃ sgnck,k̃ + gk,k̃ sgnck,k̃

)
sgnck,k̃|k

= | |ck,k̃|k + gk,k̃ sgnck,k̃|k|sgnck,k̃|k Lemma 3.1, (2) and (3)

= | |ck,k̃|k + gk,k̃ sgnck,k̃|k,(3.11)

We apply the idempotent decomposition (2.7) to each sequence, namely,

ck,k̃ = cke
+ + ck̃e

−, gk,k̃ = gke
+ + gk̃e

−, hk,k̃ = hke
+ + hk̃e

−.

Since the norm (2.9) is given by |z1e+ + z2e
−| := Re (|z1e+ + z2e

−|k) = 1
2 (|z1|+ |z2|) , for all

z1, z2 ∈ C(i), expression (3.11) can be further simplified as

2Re
(
|hk,k̃|k

)
= 2Re

(
| |ck,k̃|k + gk,k̃ sgnck,k̃|k

)
= 2Re

(
| |ck|e+ + |ck̃|e

− + gk sgncke
+ + gk̃ sgnck̃e

−|k
)

= | |ck|+ gk sgnck|+ | |ck̃|+ gk̃ sgnck̃|.

Moreover,

| |ck|+ gk sgnck|+ | |ck̃|+ gk̃ sgnck̃| ≥ |ck|+ Re (gk sgnck) + |ck̃|+ Re
(
gk̃ sgnck̃

)
= |ck|+ |ck̃|+ 2Re

(
gk sgncke

+ + gk̃ sgnck̃e
−)

= 2|ck,k̃|+ 2Re
(
gk,k̃ sgnck,k̃

)
.

Now, we consider the case where (k, k̃) ∈ T and one (and only one) of the coefficients ck, ck̃ is

zero. Without lost of generality, we assume ck 6= 0 and ck̃ = 0. In this case we have

|hk,k̃|k = |ck,k̃ + gk,k̃|k = |cke+ + gk,k̃|k.

We introduce the auxiliar element dk,k̃ := cke
+ + cke

− (that is to say, we replace the k̃−coefficient

by ck). Then,

|hk,k̃|k = |(ck,k̃ + gk,k̃)sgndk,k̃sgndk,k̃|k

= |
(
ck,k̃ sgndk,k̃ + gk,k̃ sgndk,k̃

)
sgndk,k̃|k
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We have that

ck,k̃ sgndk,k̃ = cke
+

(
ck
|ck|

e+ +
ck
|ck|

e−
)

= |ck|e+ + 0e− = |ck,k̃|k,

and, therefore,

|hk,k̃|k = | |ck,k̃|k + gk,k̃ sgndk,k̃|k|sgndk,k̃|k
= | |ck,k̃|k + gk,k̃ sgndk,k̃|k,

so that (3.11) holds with sgndk,k̃ replacing sgnck,k̃.

Hence, for (k, k̃) ∈ T we fix Pk,k̃ = ck,k̃ if both ck, ck̃ are non-zero, and Pk,k̃ = dk,k̃ otherwise. In

this case the elements of the sequence P = (Pk,k̃)k,k̃ satisfies (1) and (3) and we get

2Re(|hk,k̃|k) ≥ 2Re(|ck,k̃|k) + 2Re
(
gk,k̃ Pk,k̃

)
= |ck|+ |ck̃|+ 2Re

(
gk,k̃ Pk,k̃

)
.

Thus, we have obtained that for all (k, k̃) ∈ T it holds

|ck|+ |ck̃|+ 2Re
(
gk,k̃ Pk,k̃

)
≤ |hk|+ |hk̃| = 2Re

(
|hk,k̃|k

)
.

For (k, k̃) 6∈ T we choose Pk,k̃ = ck,k̃ so that (2) is satisfied and by direct calculations (recall,

ck,k̃ = 0) we get

2Re(hk,k̃) = 2Re(gk,k̃) ≥ 2Re
(
gk,k̃ Pk,k̃

)
.

Hence, we get

‖h‖`1 ≥ ‖c‖`1 +
∑

(k,k̃)∈Z2
ρ

2Re
(
gk,k̃ Pk,k̃

)
,

Using the Plancherel formula for the discrete Fourier transform (see [7]) we have

(3.12)
∑

(k,k̃)∈Z2
ρ

Re
(
gk,k̃ Pk,k̃

)
=

1

N

N∑
j=1

Re
(
FXg(xj , yj)FXP (xj , yj)

)
.

Taking in account that gk,k̃ Pk,k̃ = gk Pke
+ + gk̃ Pk̃e

− we obtain∑
(k,k̃)∈Z2

ρ

Re
(
gk,k̃ Pk,k̃

)
=

∑
(k,k̃)∈Z2

ρ

Re
(
gk Pke

+ + gk̃ Pk̃e
−)

=
∑

(k,k̃)∈Z2
ρ

Re
(
gk [F∗X ]1λ1]ke

+ + gk̃ [F∗X ]2λ2]k̃e
−
)

=
1

N

N∑
j=1

Re
(
FXg(xj , yj)λ(xj , yj)

)
= 0,

since FXg(xj , yj) = 0, j = 1, . . . , N. Therefore, ‖h‖`1 ≥ ‖c‖`1 and equality holds for 2Re
(
gk,k̃ Pk,k̃

)
=

2Re
(
|gk,k̃|k

)
. Since |Pk,k̃| < 1, this forces g to vanish outside T. Taking into account the injectivity

of FTX we get that if FXg vanishes on X, g vanishes identically there and, therefore, h = c. This

shows that c is the unique minimizer to the problem (3.9). �
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4. Proof of Main Theorems

We are now in conditions to prove Theorem 3.1. First, we show that for every sequence c =

(ck,k̃) ∈ `2(Z2
ρ) with support on T with high probability there exists a sequence P satisfying to

Lemma 3.2, (1)-(3).

4.1. Existence with High Probability of a Sequence P . We introduce the restriction oper-

ator RT : `2(Z2
ρ) → `2(T ), which maps c ∈ `2(Z2

ρ) into RT c := (ck,k̃)(k,k̃)∈T . Its adjoint R∗T =

ET : `2(T )→ `2(Z2
ρ) is the operator which extends the restricted sequence RT c = (ck,k̃)(k,k̃)∈T to a

sequence d ∈ `2(Z2
ρ) where dk,k̃ = ck,k̃ for (k, k̃) ∈ T, and dk,k̃ = 0 otherwise.

Let us assume that F∗TXFTX : `2(T )→ `2(T ) is invertible. This is true almost surely if N ≥ |T |
since FTX is injective. Moreover, its inverse is given by the following lemma.

Lemma 4.1 (see [9]). For a non-singular matrix F∗TXFTX we have

(F∗TXFTX)−1 = [F∗TXFTX ]−11 e+ + [F∗TXFTX ]−12 e−.

We set P := F∗XFTX(F∗TXFTX)−1RT sgnc. Clearly, P verifies (1) and (3) of Lemma 3.2, with

λ := FTX(F∗TXFTX)−1RT sgnc ∈ `2(X).

It remains to prove that P satisfies (3) with high probability. We begin with the idempotent

decomposition of our bicomplex matrices I = Ie+ + Ie− (I identity matrix), ET = ETe+ + ETe−,

and

F∗XFTX = [F∗XFTX ]1 e+ + [F∗XFTX ]2 e−, F∗TXFTX = [F∗TXFTX ]1 e+ + [F∗TXFTX ]2 e−.

We introduce the auxiliary operators

H := NET −F∗XFTX : `2(T )→ `2(Z2
ρ),(4.1)

H0 := RTH = NI −F∗TXFTX : `2(T )→ `2(T ).(4.2)

Obviously, H0 is self-adjoint, and both operators admit the following idempotent decompositions

H = (NET − [F∗XFTX ]1) e+ + (NET − [F∗XFTX ]2) e−(4.3)

H0 = (NI − [F∗TXFTX ]1) e+ + (NI − [F∗TXFTX ]2) e−.(4.4)

We remark that we are particularly interested in the entries of these matrices. For the first matrix

we have

(4.5) H =

(1− δ`,k)
N∑
j=1

ei(`−k)xje+ + (1− δ˜̀,k̃)
N∑
j=1

ei(
˜̀−k̃)yje−


(`,˜̀),(k,k̃)∈Z2

ρ

,

which acts on a sequence c = (ck,k̃) with support in T as

(4.6) (Hc)`˜̀ = −
N∑
j=1

∑
(k,k̃)∈T

(
cke

i(k−`)xje+ + ck̃e
i(k̃−˜̀)yje−

)
.
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Using these operators and Lemma 4.1, we get

(4.7) P = F∗XFTX(F∗TXFTX)−1RT sgnc = (NET −H)(NI −H0)
−1RT sgnc,

where we recall H0 = RTH. Since we aim to prove that P satisfy Lemma 3.2, (2), we restrict

ourselves to T c := Z2
ρ \ T. In this case, RT cET = 0 and

(4.8) Pk,k̃ = (RT cP )k,k̃ = −
(
H (NI −H0)

−1RT sgnc
)
k,k̃
,

for all (k, k̃) ∈ T c. Since (1− γ)−1 = (1− γn)−1(1 + γ + · · ·+ γn−1) we can write(
I − 1

N
H0

)−1
=

(
I −

(
1

N
H0

)n)−1 n−1∑
m=0

(
1

N
H0

)m
,

while by the von Neumann series we have

(4.9)

(
I −

(
1

N
H0

)n)−1
= I +

∞∑
r=1

(
1

N
H0

)rn
:= I +An

under the assumption that the last series converges. Therefore, for all (k, k̃) ∈ T c we get

Pk,k̃ = −

(
1

N
H(I +An)

n−1∑
m=0

(
1

N
H0

)m
RT sgnc

)
k,k̃

= −(P (1) + P (2))k,k̃,

where (recall, H0 = RTH)

P (1) =
n∑

m=1

(
1

N
HRT

)m
sgnc, P (2) =

1

N
HAnRT

(
I +

n−1∑
m=1

(
1

N
HRT

)m)
sgnc.

Our goal is show that the probability of |Pk,k̃| < 1 is low for (k, k̃) outside T. For that effect, we

estimate the probability P
(

sup(k,k̃)∈T c |Pk,k̃| ≥ 1
)
.

Let a1, a2 > 0 be non-negative real numbers satisfying to a1 + a2 = 1. Then,

P

(
sup

(k,k̃)∈T c
|Pk,k̃| ≥ 1

)
≤ P

({
sup

(k,k̃)∈T c
|P (1)

k,k̃
| ≥ a1

}
∪

{
sup

(k,k̃)∈T c
|P (2)

k,k̃
| ≥ a2

})
.

Now, we have

P
(
|P (1)

k,k̃
| ≥ a1

)
= P

∣∣∣∣∣∣
(

n∑
m=1

( 1

N
HRT

)m
sgnc

)
k,k̃

∣∣∣∣∣∣ ≥ a1


≤ P

(
n∑

m=1

∣∣∣∣∣
(( 1

N
HRT

)m
sgnc

)
k,k̃

∣∣∣∣∣ ≥ a1
)

:= P(Ek,k̃).(4.10)
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For the term P (2) we obtain

sup
(k,k̃)∈T c

∣∣∣P (2)

k,k̃

∣∣∣ ≤ ‖P (2)‖∞

≤ ‖ 1

N
HAn‖∞

1 +

∥∥∥∥∥RT
n−1∑
m=1

( 1

N
HRT

)
sgnc

∥∥∥∥∥
`∞(T )

 .(4.11)

where ‖ · ‖∞ := ‖ · ‖`∞(T )→`∞(Z2
ρ)
, and `∞(Z2

ρ) denote the space of sequences indexed by Z2
ρ with the

supremum hyperbolic norm. We have, by (4.10),

P

∣∣∣∣∣∣
(
n−1∑
m=1

( 1

N
HRT

)m
sgnc

)
k,k̃

∣∣∣∣∣∣ ≥ a1
 ≤ P

(
n−1∑
m=1

∣∣∣∣∣
(( 1

N
HRT

)m
sgnc

)
k,k̃

∣∣∣∣∣ ≥ a1
)

≤ P

(
n∑

m=1

∣∣∣∣∣
(( 1

N
HRT

)m
sgnc

)
k,k̃

∣∣∣∣∣ ≥ a1
)

= P(Ek,k̃).

Now, we analyse the operator norm in (4.11) in terms of the Frobenius norm (see [10] and [8]). First

of all, we have

(4.12)

∥∥∥∥ 1

N
HAn

∥∥∥∥
∞
≤
∥∥∥∥ 1

N
H

∥∥∥∥
∞
‖An‖`∞(T ) =

∥∥∥∥ 1

N
H

∥∥∥∥
∞

∥∥∥∥∥
∞∑
r=1

(
1

N
H0

)rn∥∥∥∥∥
`∞(T )

.

Given a square matrix B, with bicomplex entries, it holds for its Frobenius norm defined with

respect to the hyperbolic norm, the equality ‖B‖2F := Re (tr(BB∗)) =
∑

r,s 2Re
(
|Brs|2k

)
, where

tr(BB∗) denotes the trace of BB∗. Assume now that

(4.13)

∥∥∥∥( 1

N
H0

)n∥∥∥∥
F

≤ κ < 1.

From (4.9) we obtain

‖An‖F =

∥∥∥∥∥
∞∑
r=1

(
1

N
H0

)rn∥∥∥∥∥
F

≤
∞∑
r=1

∥∥(N−1H0)
n
∥∥r
F
≤
∞∑
r=1

κr =
κ

1− κ
.

Also, by Cauchy-Schwarz inequality we get

(4.14) ‖An‖2`∞(T ) ≤ |T |

(
2 sup

r

∑
s

Re
(
|[An]r,s|k

)2) ≤ |T | ‖An‖2F .
Under the assumptions (4.13), and

∥∥∥∑n−1
m=1

(
1
NHRT

)m
sgnc

∥∥∥
∞
< a1, it holds

(4.15) sup
(k,k̃)∈T c

|P (2)

kk̃
| ≤ (1 + a1)

κ

1− κ
|T |

3
2 .

Moreover, if κ
1−κ ≤

a2
1+a1

|T |−
3
2 then, we have sup(k,k̃)∈T c |P

(2)

kk̃
| ≤ a2. Also, it implies that κ < 1

and |T | ≥ 1 (note that if T = ∅ then c = 0 and obviously the `1-minimization problem recovers

the sequence). This concludes the proof of the existence with high probability of a sequence P

satisfying to the conditions of Lemma 3.2. As an additional consequence, it also ensures that FTX
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is injective almost surely.

Next, we proceed with the analysis of the above probability bearing in mind that T is a deter-

ministic variable, as seen in Theorem 3.2. We have

P

(
sup

(k,k̃)∈T c
|Pk,k̃| ≥ 1

)
≤

∑
(k,k̃)∈T c

P
(
Ek,k̃

)
+ P

(∥∥∥∥( 1

N
H0

)n∥∥∥∥
F

≥ κ
)
.(4.16)

In conclusion, the probability of the existence of a sequence P depends on the estimates for P(Ekk̃)

and for P
( ∥∥( 1

NH0

)n∥∥
F
≥ κ

)
.

4.2. Analysis of the Powers H2n
0 . We now compute the expectation of ‖Hn

0 ‖
2
F with respect to

the sampling set {(xj , yj), j = 1, . . . , N}.

Lemma 4.2. It holds

EX
[
‖Hn

0 ‖
2
F

]
=

min{n,N}∑
t=1

N !

(N − t)!
∑

A∈P (2n,t)

C(A, T ),

where P (2n, t) denotes the set of all partitions A = (A1, ..., At) of the set 1, ..., 2n and

C(A, T ) :=
∑

(k1, k̃1), · · · , (k2n, k̃2n) ∈ T

kr+1 6= kr, k̃r+1 6= k̃r

k2n+1 := k1, k̃2n+1 := k̃1

∏
A⊂A

(
δ

(∑
r∈A

(kr+1 − kr)

)
+ δ

(∑
r∈A

(k̃r+1 − k̃r)

))
(4.17)

Proof. We remember the operator (4.2) with an idempotent decomposition at each entry [(`, ˜̀), (k, k̃)]

H0

[
(`, ˜̀), (k, k̃)

]
= H0,1(`, k)e+ +H0,2(˜̀, k̃)e−.

Hence, its adjoint is

H∗0

[
(`, ˜̀), (k, k̃)

]
= H0,1(k, `)e

+ +H0,2(k̃, ˜̀)e−,

where H0,1, H0,2 represent the matrices with complex conjugated entries. Therefore, at the main

diagonal we have

H2
0

[
(k, k̃), (k, k̃)

]
=

∑
(`,˜̀)∈T

H0

[
(k, k̃), (`, ˜̀)

]
H∗0

[
(`, ˜̀), (k, k̃)

]
=

∑
(`,˜̀)∈T

(
H0,1(k, `)e

+ +H0,2(k̃, ˜̀)e−
)(

H0,1(k, `)e
+ +H0,2(k̃, ˜̀)e−

)

=

N∑
j1,j2=1

∑
(`, ˜̀) ∈ T
` 6= k, ˜̀ 6= k̃

[
ei(`−k)xj1ei(k−`)xj2e+ + ei(

˜̀−k̃)yj1ei(k̃−
˜̀)yj2e−

]
.(4.18)

For the generalization to an arbitrary power H2n
0 = (H0H

∗
0 )n, we shall calculate its trace as the

sum of the entries
[
(k1, k̃1), (k1, k̃1)

]
, and will denote the auxiliary entries (`, ˜̀) by (ks, k̃s), s =
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2, . . . , 2n. Hence, (4.18) becomes

H2
0

[
(k1, k̃1), (k1, k̃1)

]
=

N∑
j1,j2=1

∑
(k2, k̃2) ∈ T

k2 6= k1, k̃2 6= k̃1

[
ei(k2−k1)xj1ei(k1−k2)xj2e+ + ei(k̃2−k̃1)yj1ei(k̃1−k̃2)yj2e−

]
,

while for the n-th power of our matrix we get

H2n
0

[
(k1, k̃1), (k1, k̃1)

]
=

 ∑
(`,˜̀)∈T

H0

[
(k1, k̃1), (`, ˜̀)

]
H∗0

[
(`, ˜̀), (k1, k̃1)

]n

=
∑

(k2, k̃2), · · · , (k2n, k̃2n) ∈ T

k2 6= k1, k̃2 6= k̃1

kr+1 6= kr, k̃r+1 6= k̃r, r = 2, · · · , 2n− 1

k2n 6= k1, k̃2n 6= k̃1

H2
0

[
(k1, k̃1), (k2, k̃2)

]
· · ·H2

0

[
(k2n, k̃2n), (k1, k̃1)

]
,

and the trace of H2n
0 = (H0H

∗
0 )n becomes

trH2n
0 =

∑
(k1,k̃1)∈T

H2n
0

[
(k1, k̃1), (k1, k̃1)

]
=

∑
(k1, k̃1), · · · , (k2n, k̃2n) ∈ T

kr+1 6= kr, k̃r+1 6= k̃r, r = 1, · · · , 2n
k2n+1 := k1, k̃2n+1 := k̃1

H2
0

[
(k1, k̃1), (k2, k̃2)

]
· · ·H2

0

[
(k2n, k̃2n), (k1, k̃1)

]

=

N∑
j1,··· ,j2n=1

∑
(k1, k̃1), · · · , (k2n, k̃2n) ∈ T

kr+1 6= kr, k̃r+1 6= k̃r

k2n+1 := k1, k̃2n+1 := k̃1

[
ei(kr+1−kr)xjr ei(kr−kr+1)xjr+1e+ + ei(k̃r+1−k̃r)yjr ei(k̃r−k̃r+1)yjr+1e−

]

=
N∑

j1,··· ,j2n=1

∑
(k1, k̃1), · · · , (k2n, k̃2n) ∈ T

kr+1 6= kr, k̃r+1 6= k̃r

k2n+1 := k1, k̃2n+1 := k̃1

[
ei
∑2n
r=1(kr+1−kr)xjre+ + ei(

∑2n
r=1 k̃r+1−k̃r)yjre−

]
.
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In consequence, its mean value is given by

EX
[
‖Hn

0 ‖2F
]

= EX [2Re (tr((H0H
∗
0 )n))]

=
N∑

j1 = 1
...

j2n = 1

∑
(k1, k̃1), · · · , (k2n, k̃2n) ∈ T

kr+1 6= kr, k̃r+1 6= k̃r

k2n+1 := k1, k̃2n+1 := k̃1

EX
[
2Re

(
ei
∑2n
r=1(kr+1−kr)xjre+ + ei(

∑2n
r=1 k̃r+1−k̃r)yjre−

)]
.

Now, we have to keep in mind that some of the indices jr might coincide, in which case the

multiplying terms (kr+1−kr), etc. should be added. The idea to solve this problem comes from [14]

where the author introduced a rearrangement based on set partitions. Here, we follow that idea by

associating a partition A = (A1, . . . , At) of the set {1, . . . , 2n} to a certain vector (j1, . . . , j2n) such

that jr = jr′ if and only if r and r′ are contained in the same set A ⊂ A. This will allow us, in an

unambiguous way, to write jA instead of jr if r ∈ A. The independence of the sampling variables

leads to

EX
[
2Re

(
ei
∑2n
r=1(kr+1−kr)xjre+ + ei(

∑2n
r=1 k̃r+1−k̃r)yjre−

)]
= EX

[
2Re

(
ei
∑
A⊂A

∑
r∈A(kr+1−kr)xjAe+ + ei(

∑
A⊂A

∑
r∈A(k̃r+1−k̃r)yjAe−

)]
= EX

[
2Re

(∏
A⊂A

ei
∑
r∈A(kr+1−kr)xjAe+ +

∏
A⊂A

ei(
∑
r∈A(k̃r+1−k̃r)yjAe−

)]

=
∏
A⊂A

EX
[
2Re

(
ei
∑
r∈A(kr+1−kr)xjAe+ + ei(

∑
r∈A(k̃r+1−k̃r)yjAe−

)]
(4.19)

Finally, taking into account that the variables (xjA , xjA) have uniform distribution on [0, 2π]2 we

conclude that the expectation value is

EX
[
2Re

(
ei
∑
r∈A(kr+1−kr)xjAe+ + ei(

∑
r∈A(k̃r+1−k̃r)yjAe−

)]
= EX

[
ei
∑
r∈A(kr+1−kr)xjA

]
+ EX

[
ei(
∑
r∈A(k̃r+1−k̃r)yjA

]
=

1

2π

∫ 2π

0
ei
∑
r∈A(kr+1−kr)xdx+

1

2π

∫ 2π

0
ei(
∑
r∈A(k̃r+1−k̃r)ydy

= δ

(∑
r∈A

(kr+1 − kr)

)
+ δ

(∑
r∈A

(k̃r+1 − k̃r)

)
.(4.20)

If A ⊂ A contains only one element then (4.20) vanishes taking in account our conditions kr+1 6=
kr, k̃r+1 6= k̃r. Hence, |A| > 1 for all A ∈ A, i.e., partitions in P (2n, t). Furthermore, note that

for each t the number of vectors (jA1 , . . . , jAt) ∈ {1, . . . , N}t with different entries is precisely

N(N − 1) · · · (N − t+ 1) = N !
(N−t)! if N ≥ t and 0 if N < t. �

4.3. Further Necessary Estimates. In order to obtain estimates for P(Ek,k̃) in (4.16) we require

a priori estimations for the expectation of Re

(∣∣∣((HRT )msgn(c))k,k̃

∣∣∣2K
k

)
.



BICOMPLEX SIGNALS WITH SPARSITY CONSTRAINTS 15

Lemma 4.3. Let c := c1e
+ + c2e

− ∈ `2(Z2
ρ) be a sequence with support supp c = T. Then, for every

(k, k̃) ∈ Z2
ρ it holds

EX
[
2Re

(∣∣∣((HRT )msgn(c))k,k̃

∣∣∣2K
k

)]

≤
min{mK,N}∑

t=1

N !

(N − t)!
∑

A∈P (2mK,t)

∑
(k

(1)
1 , k̃

(1)
1 ), . . . , (k

(1)
m , k̃

(1)
m ) ∈ T

...

(k
(2K)
1 , k̃

(2K)
1 ), . . . , (k

(2K)
m , k̃

(2K)
m ) ∈ T

k
(p)
j−1 6= k

(p)
j , k̃

(p)
j−1 6= k̃

(p)
j , j ∈ [m]

×

∏
A⊂A

δ
 ∑

(r,p)∈A

(−1)p
(
k(p)r − k

(p)
r−1

)+ δ

 ∑
(r,p)∈A

(−1)p
(
k̃(p)r − k̃

(p)
r−1

)
with (k

(p)
0 , k̃

(p)
0 ) := (k, k̃), p = 1, . . . , 2K. Hereby, we identified the partitions of [2mK] in P (2mK, t)

with partitions of [2K]× [m] in A.

Proof. Again, we recall the idempotent decomposition∣∣((HRT )msgnc)kk̃
∣∣2K
k

=
∣∣((H1RT )m sgnc1)k e+ + ((H2RT )m sgnc2)k̃ e−

∣∣2K
k

=
(
|((H1RT )m sgnc1)k| e

+ +
∣∣((H2RT )m sgnc2)k̃

∣∣ e−)2K
= |((H1RT )m sgnc1)k|

2K e+ +
∣∣((H2RT )m sgnc2)k̃

∣∣2K e−.(4.21)

As the treatment of both terms in the idempotent decomposition (4.21) is identical we will omit

the second case.

Take σ1 := sgn c1. For the first term we have

((H1RT )m σ1)k = (−1)m
N∑

j1,...,jm=1

∑
k1, k2, . . . , km ∈ T1

kr−1 6= kr, r = 1, . . . ,m

σ1(km)
(
ei(km−km−1)xjm · · · ei(k1−k0)xj1

)
,

with k0 := k and T1 = Proj1T, the set of all first coordinates of T. Thus,

|((H1RT )m σ1)k|
2 =

∣∣((H1RT )m σ1)k0
∣∣2

=
N∑

j
(1)
1 , . . . , j

(1)
m = 1

j
(2)
1 , . . . , j

(2)
m = 1

∑
k
(1)
1 , . . . , k

(1)
m ∈ T1

k
(2)
1 , , . . . , k

(2)
m ∈ T1

k
(p)
j−1 6= k

(p)
j , j ∈ [m], p = 1, 2

σ1(k
(1)
m )σ1(k

(2)
m )

×e
i
∑m
r=1

(
k
1(1)
r −k1(1)r−1

)
x
j
(1)
r e
−i
∑m
r=1

(
k
1(2)
r −k1(2)r−1

)
x
j
(2)
r



16 P. CEREJEIRAS, Y. FU, AND N. GOMES

where k
(1)
0 = k

(2)
0 = k0 = k. For the 2K-th power we obtain

|((H1RT )m σ1)k|
2K =

N∑
j
(1)
1 , . . . , j

(1)
m = 1

...

j
(2K)
1 , . . . , j

(2K)
m = 1

∑
k
(1)
1 , . . . , k

(1)
m ∈ T1

...

k
(2K)
1 , , . . . , k

(2K)
m ∈ T1

k
(p)
j−1 6= k

(p)
j , j ∈ [m], p = 1, . . . , 2K

σ1(k
(1)
m )σ1(k

(2)
m )×

· · ·σ1(k(2K−1)m )σ1(k
(2K)
m ) e

i

(∑2K
p=1(−1)p

∑m
r=1(k

(p)
r −k

(p)
r−1)xj(p)r

)

with k
(p)
0 = k, for p = 1, . . . , 2K.

From (4.21) we obtain

EX
[
2Re

(∣∣∣((HRT )msgn(c))k,k̃

∣∣∣2K
k

)]
=EX

[
|((H1RT )m sgnc1)k|

2K +
∣∣((H2RT )m sgnc2)k̃

∣∣2K]

≤
N∑

j
(1)
1 , . . . , j

(1)
m = 1

...

j
(2K)
1 , . . . , j

(2K)
m = 1

∑
(k

(1)
1 , k̃

(1)
1 ), . . . , (k

(1)
m , k̃

(1)
m ) ∈ T

...

(k
(2K)
1 , k̃

(2K)
1 ), . . . , (k

(2K)
m , k̃

(2K)
m ) ∈ T

k
(p)
j−1 6= k

(p)
j , k̃

(p)
j−1 6= k̃

(p)
j j ∈ [m], p = 1, . . . , 2K

×

(
EX

[
e
i

(∑2K
p=1(−1)p

∑m
r=1(k

(p)
r −k

(p)
r−1)xj(p)r

)]
+EX

[
e
i

(∑2K
p=1(−1)p

∑m
r=1(k̃

(p)
r −k̃

(p)
r−1)yj(p)r

)])
,(4.22)

since |σk,k̃| = 1 for all (k, k̃) ∈ T.
We further analyze the obtained expected value. As in the proof of Lemma 4.2 we have to

take into account that some of the indices j
(p)
r might coincide. This affords to introduce some

additional notation. Let (j
(p)
r )p=1,...,2K

r=1,...,m ⊂ {1, . . . , N}2mK be some vector of indices and let A =

(A1, . . . , At), Ai ⊂ {1, . . . ,m}×{1, . . . , 2K} be a corresponding partition such that (r, p) and (r′, p′)

are contained in the same block if and only if j
(p)
r = j

(p′)
r′ . For some A ∈ A we may unambiguously

write jA instead of j
(p)
r if (r, p) ∈ A. Like in (4.19), using that all are different and that the variables

(xjA , yja) are independent we may write the expectation in (4.22) as

EX

[
e
i

(∑2K
p=1(−1)p

∑m
r=1(k

(p)
r −k

(p)
r−1)xj(p)r

)]
+ EX

[
e
i

(∑2K
p=1(−1)p

∑m
r=1(k̃

(p)
r −k̃

(p)
r−1)yj(p)r

)]

=
∏
A⊂A

(
EX
[
e
i
(∑

(r,p)∈A(−1)p(k
(p)
r −k

(p)
r−1)xjA

)]
+ EX

[
e
i
(∑

(r,p)∈A(−1)p(k̃
(p)
r −k̃

(p)
r−1)yjA

)])

=
∏
A⊂A

δ
 ∑

(r,p)∈A

(−1)p(k(p)r − k
(p)
r−1)

+ δ

 ∑
(r,p)∈A

(−1)p(k̃(p)r − k̃
(p)
r−1)

 .
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Once again, if A ⊂ A contains only one element then the last expression vanishes due to k
(p)
r 6= k

(p)
r−1

or k̃
(p)
r 6= k̃

(p)
r−1. Thus, we only need to consider partitions A ∈ P (2mK, t). Now, we can rewrite the

inequality in (4.22) as

EX
[
2Re

(∣∣∣((HRT )msgn(c))k,k̃

∣∣∣2K
k

)]
≤

mK∑
t=1

∑
A∈P (2mK,t)

N∑
j(1), . . . , j(t) = 1

all different

∑
(k

(1)
1 , k̃

(1)
1 ), . . . , (k

(1)
m , k̃

(1)
m ) ∈ T

...

(k
(2K)
1 , k̃

(2K)
1 ), . . . , (k

(2K)
m , k̃

(2K)
m ) ∈ T

k
(p)
j−1 6= k

(p)
j , k̃

(p)
j−1 6= k̃

(p)
j j ∈ [m], p = 1, . . . , 2K

×

∏
A⊂A

δ
 ∑

(r,p)∈A

(−1)p(k(p)r − k
(p)
r−1)

+ δ

 ∑
(r,p)∈A

(−1)p(k̃(p)r − k̃
(p)
r−1)



=

min{mK,N}∑
t=1

N !

(N − t)!
∑

A∈P (2mK,t)

B(A, T ),

where

B(A, T ) :=
∑

(k
(1)
1 , k̃

(1)
1 ), . . . , (k

(1)
m , k̃

(1)
m ) ∈ T

...

(k
(2K)
1 , k̃

(2K)
1 ), . . . , (k

(2K)
m , k̃

(2K)
m ) ∈ T

k
(p)
j−1 6= k

(p)
j , k̃

(p)
j−1 6= k̃

(p)
j j ∈ [m], p = 1, . . . , 2K

×

∏
A⊂A

δ
 ∑

(r,p)∈A

(−1)p(k(p)r − k
(p)
r−1)

+ δ

 ∑
(r,p)∈A

(−1)p(k̃(p)r − k̃
(p)
r−1)

 .

�

4.4. Proof of Theorem 3.1. The goal is to complete the proof of Theorem 3.1 with the help of

Lemma 4.2 and subsequent results.

Proof. First, we take a closer look into expression (4.2) for C(A, T ), where A ∈ P (2n, t). Here,

the indices
(

(k1, k̃1), . . . , (k2n, k̃2n)
)
∈ T 2n

1 × T 2n
2 are subjected to the |A| = t linear constraints∑

r∈A (kr+1 − kr) = 0 and
∑

r∈A

(
k̃r+1 − k̃r

)
= 0 for all A ∈ A. These constraints are independent

except for
∑2n

r=1 (kr+1 − kr) = 0 and
∑2n

r=1

(
k̃r+1 − k̃r

)
= 0. Thus, we get for (4.2) the estimate

C(A, T ) ≤ |T |2n−t+1 ≤M2n−t+1,(4.23)
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in terms of the sparsity M. We remark that in Theorem 3.1 T is not random, so that E = EX . By

Lemma 4.2 we obtain

E
[
‖Hn

0 ‖
2
F

]
≤

min{n,N}∑
t=1

N !

(N − t)!
∑

A∈P (2n,t)

|T |2n−t+1 ≤M2n+1
n∑
t=1

(
N

M

)t
S2(2n, t),

where S2(n, t) = |P (2n, t)| are the associated Stirling numbers of the second kind. We define the

auxiliar function Fn, n ∈ N, by Fn(θ) :=
∑[n/2]

k=1 S2(n, k)θk, and we set θ = N
M . Then,

P
(∥∥∥∥( 1

N
H0

)n∥∥∥∥
F

≥ κ
)

= P

(∥∥∥∥( 1

N
H0

)n∥∥∥∥2
F

≥ κ2
)
≤ κ−2 E

[∥∥∥∥( 1

N
H0

)n∥∥∥∥2
F

]
≤ κ−2M θ−2nF2n(θ) = κ−2 M G2n(θ).

So,
∥∥( 1

NH0

)n∥∥
F
≤ κ < 1 implies that

(
I −

(
1
NH0

)n)
is invertible by the von Neumann series and,

therefore, also [F∗TXFTX ] = N
(
I − 1

NH0

)
is invertible. In particular, we conclude that FTX is

injective. This proves that the injectivity condition in Lemma (3.2) is satisfied automatically with

a probability that can be derived from the estimation above.

Now, we turn our attention to the terms P(Ekk̃). By Lemma 4.3 we need to bound B(A, T ),

i.e., the number of vectors
(
k
(p)
j , k̃

(p)
j

)
∈ T 2mK satisfying

∑
(r,p)∈A(−1)p(k

(p)
r − k

(p)
r−1) = 0 and∑

(r,p)∈A(−1)p(k̃
(p)
r − k̃(p)r−1) = 0 for all A ∈ A with A ∈ P (2mK, t). As these are t independent

linear constraints the number of these indices is bounded from above by |T |2mK−t ≤ M2mK−t .

Thus, taking θ = N
M , we obtain (similar as above)

E

[∣∣∣∣(( 1

N
HRT

)m
sgn c

)
kk̃

∣∣∣∣2K
]
≤

mK∑
t=1

N tS2(2mK, t)M
2mK−t

= M2mKF2mK(θ).(4.24)

Now, let K1, · · · ,Kn be natural numbers and choose β > 0 such that
∑n

m=1 β
n/Km = a1 (where

a1 is as in (4.10)). Then, for every (k, k̃) ∈ T it holds for P(Ek,k̃) that

P(Ek,k̃) = P

(
n∑

m=1

∣∣∣((N−1HRT )m sgnc
)
k,k̃

∣∣∣ ≥ a1)

≤
n∑

m=1

P
(
N−m

∣∣∣((HRT )m sgnc)k,k̃

∣∣∣ ≥ βn/Km)
=

n∑
m=1

P
(
N−2mKm

∣∣∣((HRT )m sgnc)k,k̃

∣∣∣2Km ≥ β2n) .
Since P(|x| ≥ γ) = P( 1γ |x| ≥ 1) ≤ E[ 1γ |x|] = 1

γE[|x|], (γ > 0), we conclude

P(Ek,k̃) ≤
n∑

m=1

P
(
N−2mKm

∣∣∣((HRT )m sgnc)k,k̃

∣∣∣2Km ≥ β2n)

≤ β−2n
n∑

m=1

N−2mKmE
[∣∣∣((HRT )m sgnc)k,k̃

∣∣∣2Km] .(4.25)
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From (4.24) we finally obtain

(4.26) P(Ek,k̃) ≤ β
−2n

n∑
m=1

(
M

N

)2mKm

F2mKm

(
N

M

)
= β−2n

n∑
m=1

θ−2mKmF2mKm(θ).

Let P(failure) denote the probability that an exact reconstruction of f by `1-minimization fails.

By Lemma 4.2, it follows

P(failure) ≤ P

(
{FTX is not injective} ∪

{
sup

(k,k̃)∈T c
|Pkk̃| ≥ 1

})

≤
∑

(k,k̃)∈Z2
ρ

P(Ekk̃) + P
(∥∥(N−1H0

)n∥∥ ≥ κ) ≤ Dβ−2n
n∑

m=1

G2mKm(θ) + κ−2 M G2n(θ)

under the conditions a := a1
∑n

m=1 β
n/Km < 1, a2 = 1− a, and

κ

1− κ
≤ a2

1 + a1
M−3/2 =

1− a
1 + a

M−3/2.

�

Let us remarks that, given n, it is reasonable to take Km ≈ m/n, m = 1, . . . , n. Then, β is

chosen quite close to the maximal value such that a1 =
∑n

m=1 β
n/Km < 1. By our choice of Km we

approximately get
n∑

m=1

βn/Km ≈
n∑

m=1

βm ≈ β

1− β
.

Thus, the optimal β will always be close to 1/2.

4.5. Proof of Theorem 3.2. The proof of the Theorem 3.2 is the same as in [14], due to the

fact that it depends only on the set partition and it does not enter into account with the algebraic

structure of the bicomplex numbers. Therefore, the proof of this theorem is essentially the same as

in as [14]. For the sake of convenience for the reader we present it in this subsection.

Proof. We will refine the probability bound (3.7) of Theorem 3.1 in order to obtain Theorem 3.2.

First, we proof that the associated Stirling numbers satisfy the estimate

(4.27) S2(n, k) ≤ (3n/2)n−k for all k = 1, . . . , bn/2c.

Indeed, S2(1, k) = 0 and S2(2, 1) = 1. By induction over n and using the recursion formula ((2.3)

in Set Partitions), namely

S2(n, k) = kS2(n− 1, k) + (n− 1)S2(n− 1, k − 1),

it follows

S2(n, k) = kS2(n− 1, k) + (n− 1)S2(n− 2, k − 1)

≤ k(3(n− 1)/2)n−k−1 + (n− 1)(3n/2− 3)n−k−1 ≤ (n− 1 + k)(3n/2)n−k−1

≤ (3n/2)n−k,
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since (n− 1 + k) ≤ 3n/2. Plugging (4.27) into the definition of G2n yields

G2n(θ) = θ−2n
n∑
k=1

S2(2n, k)θk ≤ θ−2n
n∑
k=1

(3n)2n−kθk = (3n/θ)2n
n∑
k=1

(θ/3n)k

= (3n/θ)2n−1
1− (θ/3n)n

1− (θ/3n)
= (3n/θ)n

1− (3n/θ)n

1− 3n/θ

≤ δn

1− δ
,

for n chosen in such way that 3n/θ ≤ δ < 1. Now consider the term Dβ−2n
∑n

m=1G2mKm from the

probability bound (3.7). We choose Km = r(n/m) where r(x) denotes the function that rounds x

to the nearest integer. Then,

mKm ∈ {d2n/3e, . . . , b4n/3c}, m ∈ {1, . . . , n},

and, thus,

n∑
k=1

G2mKm(θ) ≤ max
k∈{d2n/3e,...,b4n/3c}

G2k(θ) ≤ max
k∈{d2n/3e,...,b4n/3c}

δk

1− δ
≤ nδ

2n/3

1− δ

provided 3k/θ ≤ δ for all k ∈ {d2n/3e, . . . , b4n/3c}. This yields

Dβ−2n
n∑

m=1

G2mKm(θ) ≤ Dn 1

1− δ
(
β−3δ

)2n/3
.

In order to make this expression small enough we choose δ := β3e−3τ/2, for some τ > 0. Then,

Dβ−2n
n∑

m=1

G2mKm(θ) ≤ Dn

1− δ
e−nτ .

The last term in this inequality is smaller than ε/2 if

ln(D/ε) ≤ nτ + ln

(
1− δ
2n

)
.

Let us assume n ≥ S. Then,

nτ + ln

(
1− δ
2n

)
≥ n

(
τ +

ln
(
1−δ
2S

)
S

)
.

Since 3n/θ ≤ δ, we choose now

(4.28) n = bδθ/4c ≥ S − 1

S
δθ/4 =

S − 1

4S
β3e−3τ/2θ,

and for those chosen values, we obtain a constant Q(β, τ, S) such that

nτ + ln

(
1− δ
2n

)
≥ Q(β, τ, S)θ.

Moreover,

Dβ−2n
n∑

m=1

G2mKm(θ) ≤ ε/2 if θ ≥ ln(D/ε)

Q(β, τ, S)
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Recalling that θ = M/N it follows that there exists a constant C1 such thatDβ−2n
∑n

m=1G2mKm(θ) ≤
ε/2 provided

N ≥ C1M ln(D/ε).

Now consider the other term Mκ−2G2n(θ) in the probability bound (3.7). We choose κ such that

κ =
(1− a)/(1− a)M−3/2

1 + (1− a)/(1 + a)M−3/2
≥ 1− a

2(1 + a)
M−3/2.

Hence,

Mκ−2G2n(θ) ≤
(

1− a
2(1 + a)

)2

M4G2n(θ).

Now we do not have the freedom anymore to choose n. We have to make the same choice as in

(4.28). This yields

Mκ−2G2n(θ) ≤
(

2(1 + a)

(1− a)

)2

M4

(
3β3

8

)n(θ)−1
.

Requiring that the latter expression is less than ε/2 is equivalent to

(n(θ)− 1) ln

(
8

3β3

)
≥ ln

(
8

(
1 + a

1− a

)2
)

+ 4 ln(M) + ln(ε−1).

As in [14] a simple numerical test shows that a valid choice for β = 0.47. This results in a ≤ 0.957

and n(θ) ≈ b0.013θc. Hence, ln(8/(3β3)) ≈ 3.2459 and ln(8((1 + a)/(1 − a))2) ≈ 9.7153. Since

M ≤ D there exists a constant C2 (whose precise value may be calculated from the numbers above)

such that Mκ−2G2n(θ) ≤ ε/2 provided

N ≥ C2M(ln(D) + ln(ε−1)).

Choosing C := max{C1, C2} completes the proof of Theorem 3.2. �

5. Numerical examples

To illustrate our theoretical results we present the image of Lena with N2 = 262144 pixels (512×
512) and its subsequent reconstruction with 15%, 30%, 50% and 75% of the total data information.

Figure 1. Original Lena image.
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The computations were made on a computer with Intel(R) Core(TM) i7-4790U CPU 3.60 GHz,

RAM 16GB, Windows 8.1, OS 64-bit(win64) and running Matlab R2012b. Figure 1 corresponds to

the original image.

Figure 2. Top left: reconstruction with ≈ 15% of the total information; top right:
reconstruction with ≈ 30%; bottom left: reconstruction with ≈ 50%; bottom right:
reconstruction with ≈ 75%.

Figure 2 represents the different levels of reconstruction. Respectively, from left to right, top to

bottom, the different sub-images correspond to reconstruction with approximately 15%, 30%, 50%,

and 75% of the total data information. The reconstructed images are blurred as expected but

contain all relevant details. This shows that the concept of compressive sensing algorithms can be

applied with a high probability of success in the bi-complex setting.
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