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palavras-chave 
 
 
resumo 
 

Costa Moçambicana, mudanças climaticas, sobrelevação do nivel do 
mar, series temporais. 
 
Moçambique é afetado por ciclones tropicais que se formam na bacia 
do Oceano Índico. Cerca de dois terços da população total de 
Moçambique vive ao longo da costa que se estende por 2700 km e 
que cuja região, com altitude inferior a 50 m, ocupa várias dezenas 
de quilómetros em direção ao interior. O aumento do nível médio do 
mar e um aumento provável da intensidade e/ou frequência de 
ciclones tropicais, associados a alterações climáticas de origem 
antropogénica, podem aumentar o risco de cheias ao longo da 
costa.Neste estudo, estamos principalmente preocupados com a 
estimativa de alterações das propriedades da sobrelevação do nível 
do mar ao longo da costa de Moçambique, sob o cenário de 
mudança do clima RCP8.5. Para atingir tal objetivo, aplicamos um 
modelo analítico a dados observados de ventos e pressão 
atmosférica, para estimar a maré meteorológica e a sobrelevação do 
nível do mar na região. O modelo analítico é validado por 
comparação dos seus resultados com dados semelhantes obtidos 
por marégrafos em alguns locais na costa. De seguida, é usado um 
conjunto de simulações climáticas realizadas pelo modelo climático 
MPI-ESM-LR. Dados de pressão atmosférica e ventos simulados 
foram usados no modelo analítico e séries temporais da maré 
atmosférica foram produzidas para sete locais ao longo da costa. As 
propriedades estatísticas destas séries e as sobrelevações  do nível 
do mar associadas foram comparadas com aqueles obtidos usando o 
mesmo modelo analítico e dados meteorológicos observados. Isto foi 
feito para o período histórico de 1986-2005.  Após uma validação 
com sucesso de ambos os modelos, o analítico e o climático, o 
modelo analítico foi utilizado com dados meteorológicos simulados 
pelo MPI-ESM-LR para o cenário RCP8.5, para três períodos 
distintos nomeadamente, futuros próximo (2016-2035), médio (2046-
2065) e distante (2081-2100). As propriedades da sobrelevação do 
nível do mar para estes períodos foram comparadas com aqueles 
relativos ao período histórico. Os resultados sugerem um aumento da 
intensidade da sobrelevação do nível do mar ao longo de toda costa 
de Moçambique sobretudo devido aos aumento da intensidade dos 
ciclones tropicais. Com a subida do nível medio do mar, espera-se 
que aumente a altura do qual o STS inicia a sua propagação. O nivel 
do mar calculado (STS+TC+SLR) para o período historico, futuro 
proximo, medio e longo são iguais a 0.93 m, 1.19 m, 1.42 m e 1.74 m 
respectivamente. Esta metodologia é útil porque se recorre a um 
modelo analítico simples e dados meteorológicos na ausência 
frequente de dados de nível do mar registados por marégrafos. 
Permite também a estimativa de alterações futuras de sobrelevação 
do nível do mar com recurso a variáveis meteorológicas simuladas 
por modelos climáticos, facilmente disponíveis, em vez de recorrer a 
modelos físicos ao cálculo da sobrelevação do nível do mar. 
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Mozambique coast, climate change, storm surge, time series. 

Mozambique is affected by tropical cyclones which are formed in 
the Indian Ocean basin. About two-thirds of total population of 
Mozambique lives along the coast which has 2700 km long and 
low lying areas (below 50 m height) extend several tens of 
kilometers inland. Sea level rise and the eventual increase of the 
intensity and/or frequency of tropical cyclones expected to occur 
in the future, associated with anthropogenic climate change may 
increase the risk of coastal flooding. Here, we are mainly 
concerned with the estimation of changes of storm surge 
properties along the coast of Mozambique under the RCP8.5 
climate change scenario. To achieve this we applied an 
analytical model which uses observed winds and atmospheric 
pressure near the surface data to estimate the meteorological 
tide and storm surges in the region. This model is validated 
against atmospheric tides obtained from sea level measured by 
tide gauge observations at some locations along the coast. Next, 
we used a set of climate simulations performed by the MPI-
ESM-LR earth systems model. Simulated winds and 
atmospheric pressure data were used with the analytical model 
and atmospheric tide time series were constructed for seven 
locations along the coast. The statistical properties of these 
series and the associated storm surges were compared with 
those obtained by using the same analytical model and 
meteorological observed data. This was done for the 1986-2005 
historical period. After a successful validation of both the 
analytical and the climate model, the analytical model was used 
with meteorological data simulated by the MPI-ESM-LR for the 
RCP8.5 scenario for three distinct periods, namely, near-term 
(2016-2035), medium-term (2046-2065) and long-term (2081-
2100). The storm surge properties for these periods were 
compared to those from the historical period. The results 
suggest an enhancement of storm surge intensity along the 
whole coast of Mozambique mainly due to an increase of 
tropical cyclone intensity. The SLR will add the point by which 
the STS starts its propagation. The calculated SL (STS+ 
TC+SLR) for the historical, near tem, medium and long term are 
equal to 0.93 m, 1.19 m, 1.42 me 1.74 m respectively. This 
methodology is very useful since it uses a simple analytical 
model and meteorological data in the absence of tide gauge 
records. It can also be used to estimate future storm surge 
climate changes using meteorological variables easily available 
rather than using storm surge physical models. 
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Chapter I – Introduction 

 

 

1.1 Motivation 

In areas affected by Tropical Cyclones (TC), storm surges cause more fatalities than any 

other natural hazard. Storm surge is one of the main causes of coastal inundation. 

Another effect is the occurrence of strong currents, which can affect oil rigs and pipelines 

(Pugh, 1987). 

Nowadays, storm surges and coastal flooding pose a threat to 40 million people globally 

and this Figure could grow to 150 million people by 2070  due to population growth and 

sea level rise.  Storm surge are oscillations of the water level in a coastal or inland body of 

water in the time range of few hours to a few days, resulting from forcing of atmospheric 

weather systems (Murty, 1984). Therefore, the simultaneous occurrence of sea level rise 

associated to a storm surge with TC, may affect parts of the coast, which usually are not, 

through overtopping and flooding events. Considering that coastal areas and flood plains 

contain often fertile soils and are generally densely populated, this fact can increases the 

economic risk of a storm surge (Hinton et al., 2007).  

A number of high profile events have raised the awareness of storm surges as the critical 

factor in coastal hazard, disaster risk reduction and coastal management in a changing 

climate. The consequences of storm surge associated with climate change, which are in 

turn related to the mean-sea level rise, are inter-related and are illustrated in Figure 1. 

According to Turner et al. (1996), the greatest impacts of those consequences will occur 

on small islands in developing states, followed by low lying deltas in low-income 

developing states, and coastal lowlands throughout the developing countries. 

While storm surges, astronomical tides and tsunamis are all classed as long waves, there 

are at least two important differences between the former and the two latter types (WMO-

N.1067, 2011). First, whereas tides and tsunamis occur on the oceanic scale, storm 

surges are predominantly a coastal phenomenon. Second, significant tsunamis and tides 

cannot occur in a completely enclosed small coastal or inland body of water, but storm 

surges can occur in completely enclosed lakes, canals and rivers. 
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The scientific evidence indicates that increased surface temperature will intensify cyclone 

activity and heighten storm surges. These surges will, in turn, create more damaging flood 

conditions in coastal zones and adjoining low-lying areas. The destructive impact will 

generally be greater when storm surges are accompanied by strong winds and large 

onshore waves. The historical evidence highlights the danger associated with storm 

surges (Dasgupta et al. 2009a). 

 

Figure 1.  Effects of climate change and their interactions. 

 

Mozambique is an African country located in the east coast of Southern Africa between 

parallels 10 ° 20ʹS and 26 ° 50’S. The coast is about 2700 km long and is the third largest 

coastline in Africa and is intensely occupied by population that gains their livelihood by 

exploiting the resources existing in the sea. 

As it has been mentioned before, the study area lies along the coastal zone of 

Mozambique (Figure 2). In this figure, the topography features of Mozambique are 

represented.  It is clear that the coastal areas less than 50 m height occupy most of the 
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coast and extend several tenths of kilometers inland. These features are of great concern 

in the presence of sea level rise (SLR), particularly if associated to storm surges. The 

coastal zone is economically characterized by the main cities, services and industries 

such as tourism, trade and ports. The population gains their livelihood at the expense of 

the resources existing there. The ports are strategically associated with roads, providing 

services in transportation with intense movement of loads from national clients as well as 

for neighboring countries. 

The detailed characteristics of the area of study are given in Chapter III and the locations 

from which the data will be used are given later, in Chapter IV. Regarding to storm surge 

knowledge, this geographical area is a scientifically mostly unknown area so far and, as 

such, a study on storm surges is highly recommended.  

 

Figure 2. The study area and topography. Source: Reliefweb.int - Adapted.  



I. Introduction 

_______________________________________________________________________ 

4 

 

The low-lying nature of its coastal zone combining with the nearly two-thirds of 

Mozambique total population which lives along the coast, have made this country one of 

the most vulnerable to natural disasters (INGC, 2009). 

In what concerns vulnerability and natural disasters, Mozambique occupies the 44th place 

in a rank of 171 countries, with 70.89 % of vulnerability and a World Risk Index of 9.03 % 

(Mucke et al., 2014). This situation is crucial for Mozambique if compared with other 

countries.  According to the same author, despite the exposure of 12.73 %, the country 

has got a susceptibility of 65.89 % and a lack of coping capacities and adaptive capacities 

of 84.15 % and 62.64 % respectively. In turn, the country is located in a favorite path of 

potentially deadly TCs which eventually causes storm surge where it makes landfall. Their 

susceptibility to high impact weather like TCs and storm surges, compounds the poverty 

issues. 

From a universe of 80 developing countries studied, one of the top 10 countries at risk 

from intensification of storm surges is Mozambique, occupying the 10th place with 51.7% 

due to coastal population, 5th place with 55% due to coastal Gross Domestic Product 

(GDP) and 8th place with 55.1% due to coastal urban areas (Dasgupta et al. 2009b).  

The projections for future climate scenarios, shows that the mean-sea level by 2100 will 

globally rise to 0.98 m according to Church et al. (2011) and, TCs intensity may increase 

by +2 to +11% (IPCC, 2013) in general. Therefore, it can be concluded that storm surge 

intensity in the future climate scenarios will also increase. This situation will represent 

potential disaster conditions for the population and infrastructures along the coast, taking 

in consideration that the more intense is the wind, the greater is the amount of water 

dragged to the coast. The lack of resources for mitigation, or relocation, can cause great 

political and economic stresses in poorer states.  

The South West Indian Ocean (SWIO) cyclonic basin has garnered less attention from the 

scientific community, in spite of accounting for 10% of cyclone activity worldwide. The 

same happens for storm surge studies. Nevertheless, important research has been 

accomplished in the SWIO basin. For example, Dasgupta et al (2009b) and Mavume et al. 

(2009) studied storm surge in the Mozambican coast.  Neumann et al (2013) assessed 

the risk of cyclone-induced storm surges and sea level rise in Mozambique. The results 

found from those studies are discussed later in the chapter IV of this thesis.   
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As concluded by Dasgupta et al. (2009a), Mozambique will experience significant 

increases in the percentage of their coastal urban extent, falling within surge zones with 

SLR and intensified storm surges (see Figure 3). According to this author, the results 

indicate that areas prone to storm surge in Mozambique  account for more than 50% of 

GDP generated in their coastal regions. As far as coastal wetlands are concerned, 

Mozambique is in the group of countries where the absolute impacts will be largest, 

encompassing 1.318 km2. Despite the interested work done, that study does not quantifies 

the storm surge heights associated with those impacts. 

 

Figure 3.  Percentage increase in storm surge zone for Africa region. Source: Dasgupta et al. 2009a - 

Adapted. 

According to INGC (2009), in the period 1980-2007, 56 TCs and tropical storms entered 

the Mozambique Channel. Fifteen (25%) of them made landfall on the coast of 

Mozambique. From these, four cyclones hit the North, eight hit the Centre and three hit 

the South. Only four occurred in the period 1980-1993, whilst the other eleven occurred in 

the later period from 1994-2007. Two cyclones in the period 1980-1993 were classified as 

category 3-5 compared to seven in the period 1994-2007. Observations also suggest a 

recent southward shift in TC trajectories and landfall locations (INGC, 2009). From 2007 

to 2014, 21 TCs and tropical storms entered the Mozambique Channel, where ten (47%) 

of then made landfall on the coast of Mozambique. TCs are more frequent between 

January and February and cause rains accompanied by thunderstorms, strong winds and 

stormy, sometimes reaching over 100 km/h.  

Although the 4-year average return period of cyclones affecting Mozambique is relatively 

modest, Vitart et al., (2003),  occasional storms moving in unusual directions, such as TC 
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Favio in February 2007, can cause surprising damage (Klinman and Reason, 2008). The 

damages of some TCs from the period 1994-2012 are presented in Table 1 (Fitchett and 

Grab, 2013). 

Table 1. Reported damages done by some TC that landed in Mozambique from 1994 to 2012. 

TC Month  TC Name  

TC 

Category  TC Deaths TC Damages 

TC  

Homeless 

1994, March. Nadia 4 204 dead,  $240 million damage 
1.5 million 

homeless, 

1996, 

January. 
Bonita 4 11 dead. - - 

2000, 

February. 
Eline 4 150 dead, 4 ships sunk. 

1000 
casualties, 
300.000 
displaced from 
flooding 

2001, March. Dera 2 100 deaths, severe flooding. 
250.000 

displaced, 

2003, 

January. 
Delfina 

Tropical 

Storm 

47 deaths,  

19 deaths 

from flooding.  

several days power 

outage in Nampula, 

$3.5 million in 

damage. 

22.000 

displaced, 

2003, March. Japhet 4 17 dead. 

237.000ha cropland 

destroyed, livestock 

losses. 

23.000 

homeless, 

2007, 

February. 

 

Favio 

4 
10 dead and 

100 injured. 

$71 million in 

damage. 

33.000 

homeless, 

2008, March. Jokwe 3 16 dead 
75% of power lines in 

Nampula destroyed. 

55.000 

homeless 

2012, 

January. 
Funso 4 

15 dead from 

ship sinking,   

70.000 with no 
access to clean 
drinking water. 

56.000 

homeless,  
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TC Favio made landfall in Vilanculos village, on the coast of southern Mozambique as 

category 3 cyclones after genesis over a week earlier in the central tropical South Indian 

Ocean. Compounding an already devastating season of floods, Favio led to the death of 

10 people and injuries of 100 more. Schools, businesses and hospitals were destroyed as 

well as a prison from which 600 inmates escaped (Figure 4). In all, the flooding season up 

to 2007, had caused the displacement of over 120,000 people in Mozambique (Padgett, 

2007). It exhibited a highly unusual track after approaching the southeastern tip of 

Madagascar because, instead of moving back out into the SWIO as is typical, it turned 

northwestwards and impacted the Mozambique coast about 300 km further equatorward. 

For further reading about TC damages, see (du Plessis, 2002; Reason and Keibel, 2004; 

Reason, 2007; Klinman and Reason, 2008; Malherbe et al., 2012).  

In addition to its unusual track, this TC made landfall in Mozambique during an El Nino 

year, an occurrence that has been reported once. The simultaneous occurrence of TC 

and El Niño generates higher storm surge heights. 

Due to the scarcity and dispersion of tide gauge station localization, most of TC storm 

surge induced are not registered. This is because either the TC makes its land fall in the 

city where there is no tide gauge station to register the height reached by storm surge, or 

the TC makes land fall in the bush area where there is no population nor tide gauge 

station.  

From empirical knowledge, historical storm surges have affected the coast of 

Mozambique, information about flooded areas or damages are available,  however, there 

are no records about the heights reached.   

Despite this fact, no scientific field survey was carried out to register the height of storm 

surge reached, after a TC passed through a certain region. The surge can move coastal 

structures and soil several miles inland.  
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Figure 4.  Damages and inundations caused by Tc Favio, 2007. Source: INGC–Adapted. 

 

Coastal storms in Mozambique Channel have highlighted the need for more proactive 

management of the coastline. The uncertainty of knowledge on effects of a combination of 

severe sea storms and future climate change in the coast of Mozambique, is the greatest 

gap of information which creates a barrier to informed decision making. 

The motivation for this study comes from the need to raise human preparedness and 

adaptation to storm surge events, considering the future climate scenarios. Also, 

motivation comes from the need to provide a series of technical tools to the members of 

the Government of Mozambique, mainly to the Instituto Nacional de Meteorologia (INAM) 

and the Instituto Nacional de Gestão de Calamidades (INGC),  to better understand the 

effects of storm surge coupled with sea level rise and increase of Tc intensity in the coast 

of Mozambique. Additionally, understanding storm surge behavior is important for isolating 

potentially predictable features of TCs, with benefits for risk assessment and planning in 

countries lying along their preferred paths. We focus on the distribution of storm surge 

height and wind, because knowledge of their changes  will be useful for local and national 

planners.  

Also, the study may demonstrate that a relatively simple approach on the knowledge 

about the storm surge in the future, can provide valuable information about the current 
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and future risk of storm surge and coastal erosion under climate change, to infrastructure 

as well as natural features along the coast. 

 

1.2 Objectives 

 
The ability to forecast storm surge impacts to those coastal regions severely affected by 

tropical cyclone  flooding, can be greatly improved by a better understanding the behavior  

or the  dynamics of storm surge over the coast. 

This study is mainly concerned with the evaluation of the impact of climate change on 

storm surges along the cost of Mozambique. This is performed by using an analytical 

model which has to be validated against observed data. Storm surge is calculated by 

using meteorological forcing data, namely wind speed and sea level pressure (SLP). With 

this, we may understand the future properties of storm surges along the coast of 

Mozambique, by estimating the climate change effects on storm surges. This will be done 

for the near-term (2016-2035), medium-term (2045-2065) and long-term (2081-2100) 

future climate scenarios, relative to the historical period (1986-2005). 

This work regards the risks inherent of the coastal occupation, and is pretended to be an 

useful tool that  may help decision makers in their planning activities in Mozambique. This 

effort will also improve the knowledge to estimate on how to determine where to invest in 

designing storm surge applications. 

 

1.3 Thesis Structure 

 
This thesis includes five chapters, which summarize the different aspects of the study:  

Chapter 1 – Introduction: Provides a general overview of storm surge, TC and SLR 

studies information for the area of study, in terms of their generation, causes and 

consequences.  

Chapter 2 – Theoretical Framework: Here it is discussed the existing literature putting the 

remaining chapters in context with the present knowledge. The processes which 

contribute to storm surges are described. It also presents the current state of knowledge 
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of storm surge, TC and sea level variability (SLV) in the world, particularly for SWIO, 

concretely in the Mozambique Channel. 

Chapter 3 – Methodology: This chapter covers the methods and approaches used in this 

study.  It also, explains the data compilation, the building, testing and validation of the 

model.  

Chapter 4 - Results and Discussion: An entirely results are discussed, focused on the 

storm surge model validation and sensitivity analysis. An intensive analysis of changes in 

the statistics of storm surges is undertaken, following a robust quality control of the data. 

Statistical calculations are presented. Storm surge heights for the future climate scenario 

are calculated and results thoroughly analyzed. Here we compare the effect on storm 

surge for different future climate scenarios, taking into account both coastal peak surge 

heights and the direction of wind. Also, it is shown the wind blowing quadrant that has 

more influence in generating maximum storm surge heights. The influence of future 

climate scenarios and the dynamics of the storm surge within the stations in Mozambique 

coast are also described. The storm surge statistical properties are investigated. 

Chapter 5 – Summary and Conclusion: This chapter provides the overall achievements of 

the current work before presenting the general conclusions. Also, it presents a summary 

of all the work, final conclusions and recommendations for further studies. 
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Chapter II - Theoretical Framework 

 

 

2.1  Meteorological Description 

The weather in Mozambique is determined by the location of the equatorial low pressure 

zone, tropical anticyclone cells and Antarctic polar fronts. Anticyclonic cells are located on 

both sides of the southern Africa over the Atlantic and Indian oceans.  

According to Tinley (1971), northern Mozambique is affected by the extension of the East 

African monsoon system with winds blowing north to northeast during the southern 

summer and south to southwest during the southern winter. Central and southern 

Mozambique is affected by the Southeast Trade Wind System and receives easterly 

prevailing winds throughout the year.  

The annual average near-surface atmospheric temperature is about 23°C, but for the 

coastal zones of southern and northern Mozambique is about 26°C. The climate in the 

south of the Zambezi River is influenced by subtropical anti-cyclonic zone. North of Sofala 

along the Zambezi River lays a transitional zone, the Intertropical Convergence Zone 

(ITCZ), with high rainfall (Saetre and Silva, 1979). The average annual precipitation is 

about 1200 mm, and occurs mainly during the summer, between the months of November 

and April. The climate in the region north of the Zambezi River is under the influence of 

the equatorial low-pressure zone with the NE monsoon in the warm season.  The climate 

is generally tropical humid with two distinct seasons: dry or winter and wet or summer.  

  

2.1.1    Tropical Cyclones   

A tropical cyclone is a non-frontal cyclone of synoptic scale developing over tropical 

waters and having a definite organized wind circulation with average wind of 63 km/h or 

more, surrounding the center (Elsberry, 1995). 

There are three components of a cyclone that combine to make up the total cyclone 

hazard. Those components are strong winds, intense rainfall and oceanographic features 

including high energy waves, strong currents, storm surge and resulting storm tide. The 

destructive force of cyclones, however, is usually expressed in terms of the strongest wind 
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gusts experienced. Maximum wind gust is related to the central pressure and structure of 

the system, whilst the storm surge is linked closely to the combination of surface wind 

speed, central pressure and local bathymetry. Rainfall intensity varies considerably, with 

the heaviest rain typically associated with the system after it decays into a tropical low, or 

rain depression, as it loses intensity over land.  

The eye of a full matured cyclone is surrounded by a 10-15 km thick wall of convective 

clouds where the maximum wind occurs. The height of the wall goes up to 15 km and is 

the most dangerous part of a cyclone storm. The entire TC system moves only at about 

20-25 Km/h along with the large-scale atmospheric flow around it, however, it is 

characterized by strong winds of the order of 100 to 200 Km/h. (Pradhan et al. 2012). 

By far, storm surge associated with severe tropical cyclone are the most damaging. The 

intense winds that are characteristic of tropical cyclone, blowing over a large surface of 

water where the TC lies  cause the sea water to pile up to coastal and lead to the sudden 

inundation and flooding of coastal regions. According to Valdivia (2004), about 90% of the 

damage is due to inundation of land by sea water. Most of the world´s greatest human 

disasters associated with the tropical cyclones have been directly attributed to storm 

surges and storm waves. 

In addition, in river delta areas, flooding can occur from the combined effects of tides and 

surge from the sea that penetrates into the rivers and the excess of water in the river due 

to heavy rains from the cyclone that flow down the river into the sea.  

Mozambique lies in the favorite path of TCs which are formed in the SWIO basin, Figure 

5. According to Palmén (1948) and McBride (1995), TCs are formed in equatorial regions, 

where SST exceeds 26ºC to 27°C. Rarely this phenomenon is formed within less than 4º 

to 5° latitude from the Equator (Anthes, 1982). There are several other conditions favoring 

the genesis of TCs, listed by Henderson-Sellers et al. (1998) namely: The large values of 

low level relative vorticity, the weak vertical and horizontal wind shear, the conditional 

instability through a deep atmospheric layer, the large relative humidity in the lower and 

middle troposphere and the deep oceanic mixed layer. The large relative humidity in the 

lower and middle troposphere is fulfilled within the ITCZ. The frequency and intensity of a 

TC may depend on natural cycles such as the El Niño-Southern Oscillation (ENSO), the 

Quasi-Biennial zonal wind Oscillation (QBO) and the Madden-Julian Oscillation (MJO), 

according to Pielke and Landsea (1999), Landsea et al. (1999) and Madden and Julian 

(1994), respectively.  
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Figure 5. Southern Indian Ocean tropical cyclone tracks, 2004-2007. (Source:  NOAA- Adapted) 

 

The country is located in a path of potentially deadly TCs, (INGC, 2009).  TCs forming in 

the SWIO repeatedly affect island nations and countries on the mainland of Africa (Vitart 

et al., 2003; Malherbe et al., 2012). According to Matyas (2015), in the period of 1948 to 

2010, about half of the 94 tropical systems that developed in the small area of water in the 

SWIO, made landfall.  On average, each year, 14% of the global TCs are formed in the 

SWIO basin (Jury, 1993; Ho et al., 2006; Mavume et al., 2009). The tropical cyclone 

season in Mozambique starts in October and ends in April. However, they are more 

frequent between January and February. According to Vitart et al. (2003), storms 

generated within the Mozambique Channel represent about 10% of the total number of 

SWIO tropical cyclones and they are generally short lived and weak in comparison to 

storms generated east of Madagascar.  

Several TC such as Eline, Dera, Favio and Funso have devastated the country in the 

recent years of 2000, 2001, 2007 and 2012 respectively  (du Plessis, 2002; Reason and 

Keibel, 2004; Reason, 2007; Klinman and Reason, 2008; Malherbe et al., 2012). The 

forecasted maximum storm surge height due to TC Funso in 2012, GDACS (2012), was 
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1.3 meters, which failed to be confirmed against the observation because of lack of tide 

gauge. That is why there is a need for a countrywide survey on high water mark collection.   

As stated by Knutson et al (2010), some increase in the mean maximum wind speed of 

tropical cyclones is likely (+2 to +11% globally) with projected twenty-first-century 

warming, although increases may not occur in all tropical regions. Based on analysis of 

observations and experiments with the ECMWF atmospheric model, Vitart et al. (2003) 

suggested that the most important factor in determining the risk of landfall on Mozambique 

in a given SWIO TC season is the zonal steering current or steering flow.  

According to the study of Vitart et al. (2003), the probability of a TC making landfall in 

Mozambique is five times higher in years with a zonal steering flow of at least one 

standard deviation below average. These results lead to a conclusion that the increased 

TC activity in the west site of Madagascar was more likely to increase the risk of landfall 

over Mozambique.  

Fitchett and Grab (2014) in their study concluded that from the total TCs that made its 

landfall over Mozambique, 34.5% are developed within the Mozambique Channel and the 

remaining 65.4% developed within the greater SWIO.  From those that developed within 

the SWIO basin, 44.1% pass to the north of Madagascar and subsequently moved in a 

south-westerly direction to make landfall over Mozambique, 20.6% pass to the south of 

Madagascar and move in a north-westerly direction toward Mozambique and the 

remaining 35.3% continue over the island of Madagascar through the Mozambique 

Channel to make landfall over Mozambique (Appendix A).  

The relatively weak easterly vertical wind shear and high sea surface temperatures, 

averaging 28 ºC during the austral summer, characterize the Mozambique Channel. 

Those conditions conduct to tropical cyclone formation (Jury and Pathack, 1991; Suzuki et 

al., 2004; Mavume et al., 2009).  

Gray (1968) stated that this area of wind shear, along the ITCZ, provides cyclonic vorticity 

at low levels and divergent anticyclonic outflow aloft to aid tropical cyclogenesis. 

TCs are categorized by its wind intensity, which is defined as the maximum mean wind 

speed over open flat land or water. This is sometimes referred to as the maximum 

sustained wind and will be experienced around the eye-wall of the cyclone. The common 

indicator of the intensity of the storm associated with a tropical cyclone is the maximum 

sustained wind. The definition of sustained winds recommended by WMO and used by 

https://en.wikipedia.org/wiki/Maximum_sustained_wind
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most weather agencies is that of a 10-minute average at a height of 10 m. It is found 

within the eyewall at a distance defined as the radius of maximum wind (RMW), within a 

mature TC. The value of sustained winds are determined via their sampling and averaging 

the sampled results over a period of time (Matyas, C. J., 2015). 

From satellite imagery it is possible to determine  the value of the maximum sustained 

winds within a TC over the ocean. When available, Land, ship, aircraft reconnaissance 

observations, and radar imagery can also estimate this quantity. This value helps to 

determine damage expected from a TC, through use of such scales as the Saffir-Simpson 

scale.  

 For the SWIO, the intensity scale used to quantify the magnitude of the tropical cyclone is 

shown in the Table 2. 

 

Table 2.  TC Intensity Scale for the SWIO. 

 Category Sustained Winds (Km/h) 

1 Tropical disturbance < 51 

2 Tropical depression 51-63 

3 Moderate tropical storm 63-88 

4 Severe tropical storm 89-117 

5 Tropical cyclone 118-165 

6 Intense tropical cyclone 166-212 

7 Very intense tropical cyclone >212 

 

 

 

 

https://en.wikipedia.org/wiki/Metre
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2.2   Oceanographic Description  

2.2.1 Sea Surface Temperature - SST 

The Mozambique Channel displays a strong seasonal sea surface temperature (SST) 

contrast of about 5°C between summer and winter. SST minima of about 25°C occurs in 

late austral winter, from June to September, while maxima of about 30°C occurs in austral 

summer, from December to February, yielding an annual mean SST of about 27.6°C 

(Fallet et al., 2010). Following Crimp et al. (1998), an increase in sea surface temperature 

of 2 °C at the Agulhas current Retroflection can substantially affect the atmospheric 

circulation over the whole southern African subcontinent. An increase in SST over the 

South Indian Ocean will statistically lead to an increase in rainfall over regions that form 

the drainage regions for some of the main rivers of the South African east coast (Walker, 

1990). 

There is also a distinct wet and dry season in western tropical Indian Ocean, which is 

concomitant with the sea surface annual cycle and it is associated with cross-equatorial 

heat and moisture advection (Fallet et al., 2010). During the wet season, prevailing 

northeasterly winds originating from northern tropics bring moisture from the tropical 

Indian Ocean to the African continent when SST maxima and its ITCZ are situated in the 

Southern tropics. In contrast, the dry season is dominated by less humid south easterly 

winds originating from the southern hemisphere mid latitudes as the sea surface 

temperature maxima and the intertropical convergence zone are positioned in the 

northern tropics.  

 

 2.2.2 Tides, Waves and Oceanic Currents 

Tides are long waves that result from the gravitational attraction of the moon and sun 

acting on the water bodies on the earth. The mutual attraction between the earth and 

moon must be balanced by a centrifugal force, which results in a rotating system with an 

axis of rotation located within the earth (Dean et al., 2002). The rotation of the earth 

causes the cyclical rise and fall of the ocean levels on a daily (diurnal) and half-daily 

(semidiurnal) basis. Variations in the relative positions of the earth, moon, and sun cause 

fluctuations in the strength of the astronomical forcing. The periods of the interactions 

between the oceans, moon and sun range from a few hours to somewhat more than a day 
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and their wave lengths, accordingly, vary between a few hundred and a few thousand 

kilometers (Holthuijsen, 2007). 

When the wind starts to blow over a calm sea, as summarized by Miles (1960), the 

resonance mechanism would come in to action first, producing an initial rate of growth of 

wave energy linearly with time. As the wave becomes larger, the instability mechanism 

becomes more effective and the wave energy increases exponentially. The wind set-up is 

caused by the wind blowing across the surface of the water over hundreds of square 

kilometers, while wave set-up is caused by the generation and then release of wave 

momentum in the water column as waves are formed, shoal, and then break. 

The continental shelf of Mozambique up to 200 meter isobaths has an area of 104 km2 

(Figure 6). It is narrow in the south and in the North, with two banks of ecological 

importance (Hoguane and Pereira, 2003). The tides behave like a standing wave, i.e. the 

tidal current changes direction in high tide and at low tide, and the high currents speeds 

are observed during intermediate periods. The tides are semi-diurnal with fairly significant 

diurnal inequality (Hoguane, 1999). 

Ocean surface waves are propagating oscillations on the ocean-atmosphere interface. 

The extent to which tropical cyclones contribute to extreme wave conditions is not much 

studied in the SWIO. Yet, waves of 10 m are reported hitting the coast of Madagascar, 

indicating a potential contribution to extreme wave events (Chang-Seng and Jury, 2010).  

All Mozambican coastline, is subject to the influence of the warm current of the 

Mozambique Channel-Agulhas and the corresponding maritime, prevailing East quadrant 

winds (Muchangos, 1999). The pattern of movement of ocean water along the coast of 

Mozambique, according to Saetre and Silva (1982), is characterized by three anticyclone 

cells, which vary its position throughout the year, and by small wind vortices between the 

large, anti-cyclonic eddies. During the austral summer the vortices, anti-cyclonic eddies 

seem to be separated by a cyclone and vortex during the austral winter the two vortexes 

seem to merge into a single, extending in the form of language to the central part of 

Mozambique. 

Over the shelves of the Mozambique Channel, according to Saetre (1985), the nature of 

the waters is characterized by the average drift patterns at the sea surface, which indicate 

a strong movement pole ward along the eastern shelf of Mozambique. However, in some 

places in the channel, the average flow is small and the respective direction is not distinct. 
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Figure 6.  The dashed line represents the 200 m isobaths. Source: Hoguane & Pereira (2003). 

 

The flow has a very high variability in the western side of the channel, but low in the 

eastern side, which is evident in analyses done from altimetric observations (Lutjeharms 

et al., 2000b). The Mozambique current is derived from the North East Madagascar 

current, a branch of South Equatorial current (New et al., 2006). The Mozambique 

Channel is dominated by the discontinuous surface Mozambique current that mainly 

constitutes of southward propagating anticyclonic eddies. 
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2.3 Climate Change 

Climate change is defined as a change in the state of the climate that can be identified by 

changes in the mean and/or the variability of its properties and that persists for an 

extended period, typically decades or longer (IPCC, 2014). This may be due to natural 

internal processes or external forcing such as modulations of the solar cycles, volcanic 

eruptions, and persistent anthropogenic changes in the composition of the atmosphere or 

in land use.  

The coastal flooding is often caused by extreme events, such as storm surges. So, 

climate change poses risks for human and natural systems. The impacts, adaptation, and 

vulnerability of climate change span a vast range of topics (Figure 7). With the global 

warming inducing increases in mean sea level and possible changes to weather patterns 

that drive extreme of sea level, such as storms surge, are likely to increase the frequency 

and severity of coastal flooding and erosion in the future (AR5, 2014).  

Information about the present threat about the storm surge and how this threat will change 

in the future is essential to assess the impact of climate change on the coast and to 

subsequently formulate adaptation responses to changing climate conditions. The United 

Nations Framework Convention on Climate Change (UNFCCC) thus makes a distinction 

between climate change attributable to human activities altering the atmospheric 

composition, and climate variability attributable to natural causes. 
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Figure 7.  Implication of climate in society. Source: IPCC (2014). 

 

When trying to predict how future global warming will contribute to climate change and 

develop mitigation strategies, many factors have to be taken into account. The key 

variable is the amount of future greenhouse gas emissions. Other variables are 

developments in technology, changes in energy generation and land use, global and 

regional economic circumstances and population growth (IPCC 2007). 

In order to the research between different groups be complementary and comparable, a 

standard set of scenarios are used to ensure that starting conditions, historical data and 

projections are employed consistently across the various branches of climate science. 

Those scenarios are called Representative Concentration Pathways (RCPs). They are 

representative in that they are one of several different scenarios that have similar radiative 

forcing and emissions characteristics. The RCP are based on selected scenarios from 

four modelling teams/models working on integrated assessment modelling, climate 

modelling, and modelling and analysis of impacts. There are four RCPs namely RCP8.5, 

RCP6, RCP4.5 and RCP2.6, which were selected, defined and named according to their 

total radiative forcing in 2100 (Table 3). 
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Table 3. The RCP and the related total radiative forcing. 

RCP Total Radiative Forcing  

RCP 8.5 Rising radiative forcing pathway leading to 8.5 W/m² in 2100. 

RCP 6 Stabilization without overshoot pathway to 6 W/m² at stabilization after 

2100 

RCP 4.5 Stabilization without overshoot pathway to 4.5 W/m² at stabilization 

after 2100 

RCP 2.6 or 

3-PD2 

Peak in radiative forcing at ~ 3 W/m² before 2100 and decline 

 

The RCPs form a set of greenhouse gas concentration and emissions pathways designed 

to support research on impacts and potential policy responses to climate change (Moss et 

al. 2010; van Vuuren et al. 2011a).  

According to Fisher et al. (2007) and IPCC (2008), the RCPs 8.5 corresponds to a high 

greenhouse gas emissions pathway, the reason why is so-called ‘baseline’ scenario, that 

does not include any specific climate mitigation target. It combines assumptions about 

high population and relatively slow income growth with modest rates of technological 

change and energy intensity improvements, leading in the long term to high energy 

demand and GHG emissions in absence of climate change policies. Compared to the total 

set of RCPs, the RCP8.5 corresponds to the pathway with the highest greenhouse gas 

emissions (Riahi et al., 2011). 

According to Dasgupta, et al. (2009b) and Rahmstorf (2007), the scientific evidence 

indicates that climate change will intensify storm surges and there are evidences which 

suggest that sea-level rise could reach 1 meter or more during this century. The IPCC 

(2013) also reports that change will affect sea levels extremes and ocean waves in two 

principal ways. First: Due to the extratropical and tropical storms that are one of the key 

drivers of sea level extremes and waves. So, future changes in intensity, frequency, 

duration, and path of these storms will impact them. Second: Sea level rise adds to the 

heights of sea level extremes, regardless of any changes in the storm-related component. 
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2.3.1 Mean Sea Level Rise 

Rising sea level represents a serious hazard for coastal communities. Changes in 

extreme sea levels occur due to mean sea level rise or changes in storminess. Changes 

in mean sea level are more or less understood, and there is a consensus that sea level 

will rise during the 21st Century.  

According to Neumann et al (2013), sea level rise as a result of climate change may also 

have an important effect on the damage that could result from cyclones. Higher sea levels 

provide a higher launch point for storm surges in the region. This increases both the areal 

extent of surge and the depth of surge in areas already vulnerable to coastal storms. In 

addition, future sea level rise, while uncertain, is more reliably forecast to 2050 than future 

storm activity. In general, the increase in sea level would make existing storms 

significantly more damaging, even for minimal changes in storm activity.  This analysis 

focuses on the more reliably forecast marginal effect of sea level rise on the extent and 

effective return period of these already damaging storms.  

According to Nicholls and Cazenave (2010), several regions are vulnerable to coast 

flooding caused by future relative or climate-induced sea level rise. At highest risk are 

coastal zone with dense populations, low elevations, appreciable rates of subsidence, and 

or inadequate adaptive capacity. Figure 8 shows the vulnerability of the coast of 

Mozambique to coast flooding caused by future relative or climate-induced sea level rise. 

 

Figure 8.  Coastal zones at highest risk of flooding due to SLR. Source: Nicholls and Cazenave (2010). 
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From the projections of IPCC (2013), is very likely that the rate of global mean sea level 

rise during the 21st century will exceed the rate observed during 1971–2010 for all RCPs 

scenarios, due to increases in ocean warming and loss of mass from glaciers and ice 

sheets. The assessment report five, states that for the period 2081–2100, compared to 

1986–2005, global mean sea level rise is likely to be in the 5 to 95% range of projections 

from process based models, which give 0.26 to 0.55 m for RCP2.6, 0.32 to 0.63 m for 

RCP4.5, 0.33 to 0.63 m for RCP6.0, and 0.45 to 0.82 m for RCP8.5.  For RCP8.5, the rise 

by 2100 is 0.52 to 0.98 m with a rate during 2081–2100 of 8 to 16 mm yr -1 (Figure 9). 

 

 

Figure 9. Likely ranges for projection of global mean sea level rise for RCP2.6 (blue) and RCP8.5 (red) 
Scenarios. Source: IPCC, 2013. 

The sum of thermal expansion simulated by Coupled Model Intercomparison Project 

phase 5 (CMIP5) Atmosphere–Ocean General Circulation Models (AOGCMs), glacier 

mass loss computed by global glacier models using CMIP5 climate change simulations, 
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and estimates of land water storage explain 65% of the observed global mean sea level 

rise for 1901–1990 and 90% for 1971–2010 and 1993–2010.  

The results from the study of Church et al.( 2011)  shows that the global sea level is rising 

and is expected to continue to rise on a multi-centennial to millennial time scale (Yin 2012, 

IPCC 2013). However, sea level is not rising at the same rate globally but exhibits 

significant spatial variations (Cazenave et al., 2008, Cazenave and Llovel, 2010, Stammer 

et al., 2013).   

The latest Assessment Report (IPCC 2013), accounted for the projections of sea level rise 

(Figure 9), of 0.12, 0.32 and 0.72 m for the periods 2016-2035, 2046-2065 and 2081-2100 

respectively, relative to 2000. Those values were obtained through interpolation in the 

graphic of Figure 9. These SLR values were used in this present study. 

 

2.3.2 Tropical Cyclones 

Emanuel (2008) showed that for the Indian Ocean, models results suggest that there is an 

overall tendency toward a decreasing frequency of tropical cyclones but increasing 

cyclone intensity. In this context, tropical cyclones will represent potential disaster 

condition for the population and infrastructures along the coast, taking in consideration 

that the more intense is the wind, the greater is the amount of water dragged to the coast. 

Twenty century reanalysis points to an increase in annual wind storms since 1871,   

(Donat et al. 2011). 

The projections based on the SRES A1B scenario, assessed by Knutson et al. (2010), 

concluded that it is likely that the global frequency of tropical cyclones will either decrease 

or remain essentially unchanged while mean intensity (as measured by maximum wind 

speed) increases by +2 to +11% . However, by using available modelling studies that are 

capable of producing very strong cyclones typical project, other authors projected a 

substantial increases in the frequency of the most intense cyclones and it is more likely 

than not that this increase will be larger than 10% in some basins (Emanuel et al., 2008; 

Bender et al., 2010; Knutson et al., 2010, 2013; Yamada et al., 2010; Murakami et al., 

2012). 

Projections for the 21st century, IPCC (2013), indicate that it is likely that the global 

frequency of tropical cyclones will either decrease or remain essentially unchanged, 



II. Theoretical Framework   

_______________________________________________________________________ 

25 

 

concurrent with a likely increase in both global mean tropical cyclone maximum wind 

speed and rain rates. The influence of future climate change on tropical cyclones is likely 

to vary by region, but there is low confidence in region-specific projections. The frequency 

of the most intense storms will more likely than not increase in some basins. 

 

2.3.3 Storm Surges 

Climate change is expected to accelerate sea level rise and increase storm events, which 

will subsequently impact the coastlines and their coastal systems. This process will 

exacerbate the economic and social vulnerability of the growing populations in coastal 

regions, increasing the pressures that already exist in these environments. 

Seneviratne et al., (2012), concluded that it is very likely that mean sea level rise will 

contribute to an increase in future sea level extremes. Projected changes in storm surges, 

relative to mean sea level, have been assessed by applying climate–model forcing to 

storm-surge models. Those results are in concordance with the study by Dasgupta et al. 

(2009b), that demonstrates that there is a risk of intensification of storm surge impacts in 

Mozambique by considering coastal occupation, coastal urban areas and coastal gross 

domestic product. However, this study does not quantifies the future storm surge heights.  

Dasgupta et al. (2009a) have considered a 10 percent future intensification of storm 

surges compared to a 1-in-100-year historical storm surge. They examined the impacts of 

sea level rise with these intensified storm surges in developing countries, assessing 

impacts in terms of land area, population, agriculture, urban extent, major cities, wetlands, 

and local economies.  

They concluded that Sub-Saharan African countries will suffer considerably from these 

changes. For Mozambique alone, the study estimates an incremental impact loss of 3,268 

km2
 land area (over 40 percent of coastal land area) of which approximately 291 km2

 is 

agricultural land (about 24 percent of coastal agricultural land), 78 km2 is urban (over 55 

percent of coastal urban land) and 1,318 km2 is wetland (over 45 percent of coastal 

wetlands). In addition, the study estimates that over 380,000 people (51percent of the 

coastal population) and US$140 million GDP (55 percent of coastal GDP) could be lost.  

In sub-Saharan Africa, storm surge zones are concentrated in Madagascar, Mauritania, 

Mozambique and Nigeria. These countries alone account for about half (53 %) of the total 
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increase in the region’s surge zones resulting from sea level rise and intensified storms 

(Dasgupta et al., 2009a). According to the same study, Mozambique is between the 

countries of the Sub-Saharan Africa region that will experience significant increases in the 

percentage of their coastal urban extent falling within surge zones with SLR and 

intensified storm surges. 

Depending of the research objectives as well as the kind of data available, the  

methodology for STS calculation differ. For instance, Lee et al. (2009), has used sea level 

data from the National Oceanographic Research Institute to calculate storm surges along 

the Korean Peninsula. The STS were obtained by calculating the difference between the 

observed and predicted sea level. The tide analysis method, harmonic or response, were 

applied and compared at Masan and Yeosu during Typhoons Maemi and Ewiniar, in order 

to find the influences of the surface elevation data and tide analysis method on calculated 

storm surge.  

According to the same author, depending on the sea level data and tidal prediction 

method used, calculated surge heights differed by as much as 70 (50) cm for the 

maximum surge of 211 (168) cm at Masan (Yeosu) during Typhoon Maemi.  They have 

used the harmonic method with 1 year of data which produced the most reliable surge 

calculations. However, the extended response method using a 1-month record was almost 

as accurate as the harmonic method using the 1-year record. The extended response 

method might offer a good alternative for tidal prediction when a 1-year record is 

unavailable. They also concluded that the sampling interval of sea level data was more 

important for surge calculations, especially for sharply peaked surges, than was the sea 

level record length.  

Dasgupta et al. (2009) used another different methodology for STS calculation. They 

primarily followed the method outlined by Nicholls (2008). Then, with the method in a 

slightly modified version, surges for the two storm surge scenarios  ( with and without 

climate change) were calculated as follows: 

Current storm surge = S100 

Future storm surge = S100 + SLR + (UPLIFT * 100 yr ) / 1000 + SUB + S100 * x 

 Where: 
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 S100 = 1 in 100 year surge height (m);  SLR = 1 m; UPLIFT = continental 

 uplift/subsidence in mm/yr; SUB = 0.5 m (applies to deltas only); x = 0.1, or 

 increase of 10%, applied only in coastal areas currently prone to cyclones or 

 hurricanes. Surges were calculated using data associated with the coastline. 

Neuman et al. (2013) by using a simulated dataset of storms and surges along with three 

alternative forecasts for future SLR in Mozambique, has estimated the effect of climate 

change induced SLR on surge risk from cyclones. The overall method involves four steps: 

Simulate storm generation activity over the 21st century; Use wind fields as inputs to a 

storm surge model;  Generate a cumulative distribution function of storm surge heights for 

selected locations in the SLOSH domain: SLOSH results generated without SLR for each 

of the simulated events provide a ‘base case’ of surge heights against which future storms 

can be evaluated;  Estimate the effect of SLR on the return-time of storms: using the 

distribution of storm surges in the base case, the study estimates how SLR effectively 

increases the frequency of damaging storm surges; comparing three scenarios of future 

SLR magnitude in 2050.  

 

The global vulnerability analysis done by Hoozemans et al. (1993) and Nicholls and Tol 

(2006), shows that East Africa, including small island states and countries with extensive 

coastal deltas, is one of the more problematic regions and could experience severe loss of 

land. These studies demonstrate Mozambique’s troubling exposure to impacts of tropical 

cyclones, from the high vulnerability of long stretches of coastline and the low adaptive 

capacity due to poverty in the country.  

 

 

2.3.4 Sea Level Pressure 

What concern to the response to atmospheric pressure changes, sea level pressure is 

projected to increase over the subtropics and mid-latitudes (depressing sea level) and 

decrease over high latitudes (raising sea level), especially over the Arctic, by the end of 

the 21st century, associated with a poleward expansion of the Hadley Circulation and a 

poleward shift of the storm tracks of several degrees latitude (Held and Soden, 2006).  
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Chapter III – Methodology 

 

 

 
This chapter briefly discusses the methodology and data sources pertaining to the 

calculation of storm surge. It starts by summarizing the approaches that have been used 

to analyze the SLV and atmospheric condition data, obtained for the study. Then, it 

explains how these data were applied to the different datasets. 

In science, a model is a representation of an idea, an object or even a process or a 

system that is used to describe and explain phenomena that cannot be experienced 

directly. Analytical models are mathematical models that have a closed form solution, i.e. 

the solution to the equations used to describe changes in a system can be expressed as a 

mathematical analytic function.  

The difference between an analytical model and numerical model is that, numerical 

methods use exact algorithms to present numerical solutions to mathematical problems, 

while analytical methods use exact theorems to present formulas that can be used to 

present numerical solutions to mathematical problems with or without the use of numerical 

methods.  

In the past, before the computer era, the techniques used for storm surge prediction were 

analytical, empirical, graphical and statistical. Electrical analog methods were also 

occasionally used (WMO-N.1076, 2011). With the advent of computers, numerical 

methods are now used almost exclusively. However, for the sake of simplicity, simple 

analytical and graphical methods are still used occasionally. For site specific purposes, 

empirical and statistical methods are also used (WMO-N.1076, 2011). 

Analytical models can quite naturally complement empirical data, whether archival or 

experimental (Dikolli et al., 2012). Combining theoretical and empirical analyses also 

imposes structure on the reporting of results, which makes the study more focused and 

clear regarding its main contribution. 

. 
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3.1. Data Source and Collection 

Data are essential for scientific research and policy planning. However, there needs to be 

attention to data quality and the estimates and models based on those data. That is why 

data is an integral part of research. The results of research and its methods are directly 

dependent on the collected data and its analysis. 

We have to mention that at the outset, we acknowledged the limitations in the availability 

of data from TG, storm surge heights records, which somehow contributes for  limitations 

when comes the stage  of  data analysis.  

The sea level records database of Mozambique is not continuous since it has many 

missing data and, the ones that exist, present a lot of gaps in the data time series. These 

missing data vary from a few hours to more than one month and the corresponding 

periods of available data differ from station to station. There is also limited network 

coverage of TG for a long coast with an extension of about 2700 km. The installed TGs 

are operated by the National Institute of Hydrography and Navigation (INAHINA), with a 

network which consists of thirteen stations from which, only three (Maputo, Inhambane 

and Pemba) are operational, despite the irregularity that it works with. The station of 

Inhambane and Pemba are in the GLOSS network of TG. 

The station of Maputo is the only one with nearly completed data for about 13 years, 

although, there are gaps in the time series which ranges from 1 day to Months. The TG 

station of Maputo, Beira and Pemba are spaced equally along the coastline of 

Mozambique Channel with a distance of about 1300 km between then, for a coast of 

about 2700 km long. Those stations have got at least one year with almost complete time 

series for 1974, 1996 and 1998 respectively.  Those are the TG stations used in this study 

for the calculation of storm surge from TG time series. 

As mentioned in the theoretical framework chapter of this thesis, by using sea level 

information, storm surge can be calculated by subtracting the observed sea level from the 

predicted sea level. However, taking in consideration the deficient coverage of TG 

network as well as the scarcity of TG data availability, has leaded us to use data sets of 

sea level pressure, wind speed and direction to proceed with this study, following the 

availability of this type of data. 
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The observed data of atmospheric pressure, wind direction and intensity of 7 

meteorological stations, namely Maputo, Xai-Xai, Inhambane, Beira, Quelimane, Angoche 

and Pemba were used as input for running the analytical model to calculate storm surge.  

The historical atmosphere data, wind and SLP, from 1973 to 2011, was downloaded from 

the Climate Data Online (CDO) site, at National Climate Data Center (NCDC) of the 

National Oceanic and Atmospheric Administration (NOAA). The data are hourly observed 

and despite that, it contains gaps of observation which ranges from 1 (one) to 24 hours. 

The 1973-2011 period of the data, covers the historical period used for this study which is 

1986-2005. The choice of period 1973-2011 atmospheric data was done taking in 

consideration the period of availability of TG data, which are 1974 for Maputo TG station,  

1996 for Beira TG station, 1998 for Pemba TG station, to allow the respective comparison 

or validation against the TG results. The wind was measured at height of 10 meters.  

The hourly sea level records data used to validate the analytical model are from Maputo, 

Beira and Pemba TG stations for the period of data availability. According to Pugh (1987), 

the longer is the data period used in the estimation of the harmonic constants, the more 

accurate will be the results.  

For the study of future climate scenarios of storm surge, namely the near term future 

(2016-2035), medium term future (2046-2065) and long term future (2081-2100), 

climatological data scenarios of sea level pressure and wind speed and direction, were 

obtained from the low resolution version of the Max Planck Institute of Meteorology Earth 

System Model (MPI-ESM-LR) model which participated in the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012). The model has 1.9º 

horizontal resolution and 47 hybrid sigma-pressure levels (Giorgetta et al., 2013). The 

time period 1986-2005 is the reference time period for the present-day. All projections in 

the IPCC AR5 WGI report are given relative to this period. The difference between the 

average for the period 2081- 2100 and the present-day reference time period constitutes 

the 21st century projections. The year 2100 is the upper reference time period, long term 

parameters. 

The RCP8.5 scenario was chosen since it is the most widely studied and eventually the 

most probable future scenario. The downloaded data are daily sampled, in NetCDF format 

and regards the RCP8.5, which corresponds to the pathway with the highest greenhouse 

gas emissions (Riahi et al., 2011). The tropical cyclone data, wind intensity and sea level 

pressure, of each tropical cyclone event were collected from the Regional Specialised 
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Meteorological Centre (RSMC) in Reunion, which is the tropical cyclone center for the 

South West Indian Ocean - SWIO. The period that the data refer to is from 1985 to 2015, 

corresponding to 30 tropical cyclone seasons, in the South West Indian Ocean. The SLR 

data were calculated based on the IPCC AR5 report. 

 

3.1.1 MPI-ESM-LR Model and CMPI5 Project 

The MPI-ESM-LR, is a coupled model from ECHAM atmosphere, JSBACH land and 

MPIOM ocean (Figure 10).The MPI-ESM-LR is a comprehensive Earth-System Model, in 

the sense that it couples the ocean, atmosphere and land surface through the exchange 

of energy, momentum, water and important trace gases such as carbon dioxide. As such 

it reflects the interests and expertise of the three departments that constitute the MPI-M. 

The MPI-ESM was used as the basis for the MPI contribution to the fifth phase of the 

Coupled Model Intercomparison Project (CMIP5), and is the current workhorse of Max 

Planck Institute Scientists. 

 

Figure 10. MPI-ESM coupled from ECHAM6, JSBACH and MPIOM. Source: MPI. 

 

The CMIP5 is meant to provide a framework for coordinated climate change experiments 

and thus includes simulations for assessment in the Fifth Assessment Report (AR5) as 

https://en.wikipedia.org/wiki/R%C3%A9union
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well as others that extend beyond the AR5. It is a project that promotes a standard set of 

model simulations in order to evaluate how realistic the models are in simulating the 

recent past, provide projections of future climate change on two time scales, near term 

(out to about 2035) and long term (out to 2100 and beyond) and, understand some of the 

factors responsible for differences in model projections, including quantifying some key 

feedbacks (Taylor et al., 2012). 

The study done by Brands et al. (2013) has assessed the ability of seven Earth System 

Models (ESMs) from the CMIP5 to reproduce present climate conditions in Europe and 

Africa. These authors analyzed only seven ESMs from CIMP5 that were representative of 

the full ensemble of the models used in that program. This is done from a downscaling 

perspective, taking into account the requirements of both statistical and dynamical 

approaches. They concluded that the MPI-ESM-LR reproduces well the projections of 

wind and sea level pressure, which are the parameters that are used in this study for the 

analyze of future climate scenario. According to the same study, the models HadGEM2-

ES and MPI-ESM-LR generally outperform the remaining models along the lateral 

boundaries of the Euro-CORDEX, Med-CORDEX and CORDEX Africa domains, which is 

in qualitative agreement with the study done by Brands et al. (2011a), who validated the 

former versions of these models over southwestern Europe. This fact leaded as to use the 

MPI-ESM-LR model for the present study.  

 

3.2 Storm Surge 

The sea level oscillations responds continuously to astronomical, oceanographic and 

atmospheric (pressure and near-surface winds) interactions over a wide range of periods 

(Pugh, 1987).  The combined effects of atmospheric pressure and wind forcing on sea 

level produce oscillations known as meteorological tides or low frequency sea level 

oscillations (storm surge). 

Bowden (1983) defines storm surge as a disturbance of sea level, relative to that due to 

tides alone, produced by meteorological causes. The term storm surge is normally 

reserved for the excess sea levels generated by severe storm. The surge is strongest 

where the winds are enhanced by the motion of the tropical cyclone, therefore, the left 

forward quadrant of the storm is the most dangerous storm surge region.   
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The general representation of the observed sea level 𝜁 (t) which varies with time may be 

written as:  

𝜁(𝑡) = 𝑍0(𝑡) + 𝑇(𝑡) + 𝑆(𝑡)                                              (3.1) 

 Where 𝑍0(𝑡) is the mean sea level which changes slowly with time, 𝑇(𝑡)  is 

 the tidal part of the variation and 𝑆(𝑡) is the meteorological surge  component. 

From the rearrangement of the equation (3.1), storm surge may be defined as the 

difference between the observed and predicted levels (Pugh, 1987):  

𝑆(𝑡) = 𝜁(𝑡) − 𝑍0(𝑡) − 𝑇(𝑡)                                               (3.2) 

The time scale, of storm surge may range from a few hours to several days. A surge of 

several days duration could be identified by subjecting the sea level data to a low-pass 

numerical filter which would eliminate oscillations of frequencies within the diurnal, semi-

diurnal and high harmonic tidal bands, which are terrestrial harmonic components M4, M6 

and M8. 

Storm surge is usually considered to be driven by two meteorological processes namely 

the atmospheric pressure and extreme wind stress (Pugh, 2004). These processes bring 

the water of the seas into motion. When a high-pressure area moves over a free water 

surface, it originates an additional weight on it, causing a water out-flow (low 

meteorological tide), which is a potential shipping hazard (Faggioni et al. 2006). On the 

contrary, when a perturbed front produces a drop in atmosphere weight, the hydrostatic 

compensation adjustment will be realized in a bump produced by a flow of incoming tide 

(high meteorological tide). The second way by which the weather affects the sea level is 

by wind drag at the water surface. The extent to which they are felt at depths below the 

surface is determined by the length of time of which they act and by density stratification 

of water column, which controls the downward transfer of momentum (Pugh, 2004).  

 For a given site and time, according to Santos and Miranda (2006), the sea level is 

determined by the combination of two effects: the astronomical and meteorological tide. 

By neglecting resonances and second-order effects, the storm surge can be determined 

by wind and atmospheric pressure. While the astronomical tide is deterministic, the 

meteorological effects have a stochastic nature.  
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According to Pugh (2004), there is a natural distinction between the effects of storm at low 

latitude (tropical surges) and those at higher latitudes (extra-tropical surges). The latter 

are slower to develop and more widely spread in their impact than the intense local 

impacts of tropical surges. The same author states that, if a time series of the hourly 

residuals is computed by subtracting the predicted tide and the mean sea level from the 

observed levels, several useful statistics may be derived. One of those is the standard 

deviation of the time series from the mean value of zero which  is a general measure of 

the magnitude of the weather effects. It varies from a few centimeters at tropical ocean 

islands to tens of centimeters in areas of extensive shallow water subject to storm 

weather. 

The motion of water is described by hydrodynamic processes and, the basic dynamical 

equations are as follow (Bowden, 1983): 
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For momentum in the x and y direction, with the continuity equation 
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By integrating through a vertical column from the bottom 𝑧 =  −ℎ to the surface 𝑧 =  𝜁 and 

defining components u, v of the volume transport by 
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The depth-integrated equations may be written as 
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In these equations the elevation ζ, the velocity components u and v and the transport 

components U, V refer to the resultant values due to tidal constituents and the 

meteorological effects. In coastal waters of limited extent the direct effects of the tide-

generating potential, represent by 𝜁,̅ can often be neglected. The tangential shearing 

stress of the wind on the sea surface is represented by the components  𝜏𝑠𝑥  and  𝜏𝑠𝑦 

while 𝜏𝑏𝑥 and 𝜏𝑏𝑦 represent the components of bottom stress.  

The most important parameter in determining storm surge amplitude Pugh (1987), is the 

wind speed and the water depth. The surge amplitude is directly proportional to the 

square of the wind speed. So, if the wind speed doubles, the surge heights increase 

fourfold. In addition, the surge amplitude is inversely proportional to the water depth. 

Thus, the shallower is the water, the greater the surge amplitude. This happens because 

as shallow waters are entered, approximately the same energy is compressed into a 

shorter, vertical column of water. 

Interactions with tides, wind waves or river flow, as well as the effects of precipitation on 

surges in rivers, lakes and estuaries are among other factors that can increase the storm 

surge amplitude (WMO-N.1076, 2011).  

TC storm surges, respond very strongly to meteorological reinforcement, despite not been 

freely propagating waves. Nevertheless, in regions outside of intense wind forcing, 

coastally trapped waves emerge that progress along the shoreline, with crests normal to 

the coastline. 

On the word of Tang et al. (1997), the wave height decreases exponentially from the coast 

with an e-folding length scale equal to the Rossby radius of deformation c/f, in which f is 

the Coriolis parameter and c is the phase speed of the wave in the alongshore direction. 

This feature is important for the storm surge the relaxation phase, after a tropical cyclone 

makes landfall, or for the case of a TC traveling parallel to the coast in the areas upstream 

or downstream of the storm’s center (Tang et al., 1997). 

As said by Flather (2001), storm surge is a long gravity wave with a length scale similar to 

the size of the generating tropical cyclone, which lasts for several hours depending on the 

size of the cyclone and speed of movement. The surge usually consists of a single 

passing wave that elevates or depresses the sea surface height. 

https://www.google.pt/search?biw=853&bih=454&q=define+nevertheless&sa=X&sqi=2&ved=0ahUKEwjmrqaultzKAhUL2RoKHYKrA_0Q_SoIHDAA
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When extreme storm winds act over extensive regions of shallow water, as stated by 

Simpson and Riehl (1981) and Gornitz (2005), major destructive storm surges are known 

to occur. Since in the governing equations the wind stress term is divided by the total 

depth whereas the surface pressure gradient force is not, it follows that wind forcing 

increases importantly in shallower water (Flather, 2001). In other hand, according to 

Jelesnianski (1972), coastal peak surges created by a given TC over wide continental 

shelves can be up to three times greater than those created by the same TC over 

narrower shelves. 

Under ideal and steady-state conditions in deep water, the net transport of water by the 

wind occurs at a 90angle to the right of the wind vector in the Northern hemisphere, and 

the alongshore component of wind stress causes a storm surge if the coast is to the right 

of  the wind, following Ekman setup (Shen and Gong, 2009). For the Southern 

Hemisphere it happen the opposite side, the net transport of water by the wind occurs at a 

90angle to the left of the wind vector, and the alongshore component of wind stress 

causes a storm surge if the coast is to the left of  the wind, Ekman setup (Shen and Gong, 

2009). 

The across-shore component of wind stress becomes more important as the water depth 

decreases, since the bottom stress diminishes the Coriolis tendency for transport to be to 

the right or left of the wind (Northern or Southern Hemisphere). Winds blowing onshore 

over shallow water will pile water up along the coast (Weisberg and Zheng, 2006b). 

By combining the three forcing, the meteorological tide time series can be calculated by 

using equation (3.10): 

𝑆 = ∆𝜁+𝜻𝑧+ 𝜻𝑚                           (3.10) 

 Where S is meteorological surge, ∆𝜁 is the displacement of water level from the 

 mean due to pressure disturbance, 𝜻𝑧 is the displacement of water level from 

 the mean due to onshore wind and 𝜻𝑚 is the displacement of water level 

 from the mean due to alongshore wind. 
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3.2.1 Inverted Barometer Effect 

The inverted barometric effect is the response of sea level to changes in atmospheric 

pressure perturbation.  

According to Wunsch  and Stammer (1997), the first serious dynamical discussion may be 

that of Jeffreys (1916), who was interested in the polar motion problem and who 

concluded that the oceanic response should be an essentially static one. 

If the level in a mercury barometer increases, the sea level is depressed and vice versa 

(Pugh, 2004). This response is explained through a theoretical model derived from the 

equations of hydrodynamics, considering an ocean with constant depth (Proudman, 

1953). The level of the sea surface, for local variation of atmospheric pressure, will 

change relative to the mean sea level. The equation representing the inverted barometer 

effect, can be derivate from the schematic Figure 11 and reads: 

 

 

Figure 11. Schematic diagram of the parameters to determine the displacement of water level from the mean, 
due to inverted barometer effect. Source: Nadao Kono – JCOMM 2012 - adapted. 
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∆𝜁 = −
1

𝑔𝜌𝑤
∆𝑝𝑎                                               ( 3.11) 

Where ∆𝜁 is the displacement of water level from the mean due to pressure 

disturbance, ∆Pa is the atmospheric pressure disturbance relative to a long-term 

time average at the gauge location,  𝝆𝒘 the sea water density and g the 

gravitational acceleration.  

The inverted barometer effect specifies that a 1 hPa decrease of atmospheric pressure, 

below a reference pressure, results in approximately 1 cm increase in water level (Kantha 

and Whitmer, 1994). When a low atmospheric pressure system coincides with a high 

water spring tide, extreme sea level can be expected. 

As argued by Pugh (2004), atmospheric pressure in tropical regions has a much smaller 

range, their characteristics being a 12-hour cycle with amplitudes around 1 hPa and 

maximum pressure at 1000 and 2200 hours. The inverted barometer response of the sea 

levels to these pressure cycles produces a non-gravitational local tide with the same 

frequency as the gravitational solar diurnal tide, S2. 

 

3.2.2 Wind Stress  

As stated by Pugh (2004), when two layers of moving fluid are in contact, energy and 

momentum are transferred from the more rapidly moving layer to the slower layer. The 

physics of this transfer process is very complicated. However, basic functional relationship 

can be combined with empirical constants to give useful formulae for calculating some of 

the effects. 

In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted 

by the wind on the surface of large bodies of water. It is the force component parallel to 

the surface, per unit area and is assumed proportional to the square of the wind speed. 

The equation of wind stress is mathematically written as:  

𝜏𝑠 = 𝐶𝐷𝜌𝑤2                                                          (3.12) 

 where w is the wind speed measured  at a given height, usually taken as 10 m, 

 above the sea surface,  𝑪𝑫 is a drag coefficient and ρ, the air density. 
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This means that although wind effects on sea level are small for normal winds, they can 

become very significant during big storms.  

The wind blows either onshore or alongshore. The onshore and alongshore wind stress 

are represented by equations (3.13) and (3.14) respectively.   

                                                          𝜏𝑠𝑥 = 𝐶𝐷𝜌|𝑤|𝑢                                               (3.13) 

𝜏𝑠𝑦 = 𝐶𝐷𝜌|𝑤|𝑣                                                    (3.14) 

 Where 𝝉𝒔𝒙 and 𝝉𝒔𝒚 are the onshore and alongshore wind stresses, u and v are 

 wind  components in i and j directions and w is the wind speed at height of 10 

 meters.  

 

3.2.3 Drag Coefficient 

As the link between the easily measured wind velocity and the more difficult direct 

measurement of wind stress, the drag coefficient (𝐶𝐷) is the key parameter for the 

determination of the momentum transfer between atmosphere and ocean. The drag 

coefficient for the ocean surface is found to increase with wind speed (Smith, 1980). 

Bowden (1983), stated that the value of 𝐶𝐷 depends on the height at which the wind is 

measured, the stability of the lowest few meters of the atmosphere and the roughness of 

the sea surface, as affected by waves. The value of 𝐶𝐷 also depends on the wind itself, 

but the dependence of wind stress on wind is not strictly quadratic.  

Considering what was mentioned about the relation between the drag coefficient and wind 

speed, for different range of wind speed the 𝐶𝐷 can be calculated in different ways, 

according to different authors such as: 

  𝐶𝐷 = 1.1 ∗ 10−3       If 1 m s-1 ≤|w|< 6 m s-1      (Large and Pound, 1981)           (3.15) 

 𝐶𝐷 = (0.061 + 0.063𝑤)10−3      If 6 m s-1 ≤|w|< 22 m s-1     (Smith, 1980)          (3.16) 

  𝐶𝐷 = 2.5 ∗ 10−3                            If |w|> 22 m s-1      (Powell et al., 2003)           (3.17) 
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3.2.4 Alongshore and Onshore Wind 

The wind that blows parallel or perpendicular to the coast is called alongshore or onshore 

wind, respectively. The flow produced by a balance between the pressure gradient force 

and the Coriolis force, is frictionless flow. However, momentum from the wind field is 

transferred into the ocean by friction. Due to the interaction between ocean and 

atmosphere, the drag of the wind in the sea surface moves the water in ways that 

changes sea levels. The biggest effects are observed when strong wind blows over 

shallow water (Pugh, 2004). The schematic diagram of the parameters to determine the 

displacement of water level from the mean due to onshore wind is shown in the Figure 12.  

 

Figure 12.   Schematic diagram of the parameters to determine the displacement of water level from the mean 
due to onshore wind. Source: Nadao Kono – JCOMM 2012 - adapted. 

 

When a component of wind stress acts parallel to a coast line, the onset of Ekman 

transport is followed by development of water level differences (Pugh and Woodworth, 

2014). Those differences have their own influence on the water movements, distorting the 

simple Ekman transport dynamics. Therefore, a successful storm surge modeling greatly 

depends on an accurate estimate of the wind stress (Doyle 2002; Moon 2005; Xie et al. 

2008).  
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The parameters which must be known to determine the displacement of water level from 

the mean, due to alongshore wind, can be seen through the schematic diagram in the 

Figure 13.  

 

 

 

Figure 13. Schematic diagram of the parameters which must be known to determine the displacement of water 
level from the mean due to alongshore wind. Source: Nadao Kono – JCOMM 2012 – Adapted. 

 

By considering that Mozambique is affected by the southeast trade wind system and 

receives easterly prevailing winds throughout the year (Tinley, 1971), in conjunction with 

the clockwise rotation of TC winds, the winds from the South and Southeast quadrants 

have more influence on storm surge generation, because the wind forcing produces an 

Ekman current to the left side of the wind propagation (Colling, 2001). This fact leads the 

water to pile up higher than the ordinary sea level.  

From the schematic Figure 12, considering a continental shelf of width L and constant 

water depth h, no SLP variation and no alongshore wind component, a steady-state 

balance with null current is quickly established between the surface wind stress (
𝜏𝑠

𝜌ℎ
)  and 
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the pressure gradient force (−𝑔
𝜕𝜻

𝜕𝑥
), due to the slope of the sea surface (Csanady, 1982). 

This relation can be mathematically written as: 

𝑔
𝜕𝜻

𝜕𝑥
=

𝜏𝑠𝑥

𝜌ℎ
  ↔

𝜕𝜻

𝜕𝑥
=

𝜏𝑠𝑥

𝜌𝑔ℎ
                                           (3.18) 

By integrating equation (3.18) through the horizontal length L, leads us to equation (3.19) 

and the final result is the equation (3.19) which is used for the wind setups due to onshore 

wind.    

𝜻 = ∫
𝜏𝑠𝑥

𝜌𝑔ℎ
𝑑𝑥 =

𝜏𝑠𝑥

𝜌𝑔ℎ
𝐿

𝐿

0
                                            (3.19)   

𝜻 =
𝜏𝑠𝑥

𝜌𝑤𝑔ℎ
𝐿    ↔      𝜻𝑧 =

𝜏𝑠𝑥

𝜌𝑤𝑔ℎ
𝐿                                (3.20) 

From the schematic Figure 13, when the wind blows parallel to the  to the coast, it tends 

to turn the water to the left or right (South Hemisphere or North Hemisphere), due to 

Coriolis force and Ekman transport.  Considering a continental shelf of width L and 

constant water depth h, no SLP variation and no onshore wind component, the 

geostrophic balance is established between the pressure gradient force and the Coriolis 

force. The equation (3.7) is reduced to: 

 𝑔
𝜕𝜁

𝜕𝑥
= 𝑓𝑉                                                 (3.21) 

At same time, it is assumed equilibrium between the surface shears stress 𝜏𝑠𝑦 and the 

bottom shear stress  𝜏𝑏𝜏𝑦 in the Y direction. The equation (3.8) is reduced to (3.22): 

𝜏𝑠𝑦 = 𝜏𝑏𝜏𝑦                                                          (3.22) 

 𝜏𝑏𝜏𝑦 = 𝜌
𝑤

𝐶𝐷𝑉2                                                     (3.23)  

 𝜏𝑠𝑦 = 𝜌
𝑤

 𝑐𝐷𝑉2                                                      (3.24) 

𝑉 = √
𝜏𝑠𝑦

𝜌𝑤𝐶𝐷
                                                            (3.25) 

𝑔
𝜕𝜁

𝜕𝑥
= 𝑓√

𝜏𝑠𝑦

𝜌𝑤𝐶𝐷
    ⇒   

𝜕𝜁

𝜕𝑥
=

𝑓

𝑔
(

𝜏𝑠𝑦

𝜌𝑤𝐶𝐷
)

1/2

                          (3.26) 
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By integrating through the continental shelf from x=0 to x=L, the final result is equation 

(3.28): 

𝜻 = ∫
𝑓

𝑔
(

𝜏𝑠𝑦

𝜌𝑤𝐶𝐷
)

1/2

𝑑𝑥 
𝐿

0
                                           (3.27) 

. 

               𝜻 =
𝑓

𝑔
(

𝜏𝑠𝑦

𝜌𝑤𝐶𝐷
)

1/2

𝐿      ↔     𝜻𝑚 =
𝑓

𝑔
(

𝜏𝑠𝑦

𝜌𝑤𝐶𝐷
)

1/2

𝐿         (3.28)                                                         

 Where 𝜻𝑧 is the displacement of water level from the mean due to onshore wind, 

 𝜏sx the onshore surface wind stress, L the platform width, ρw the sea water density, 

 g the gravitational acceleration, h the depth of the  water column, 𝜻𝑚 is the 

 displacement of water level  from the mean due to alongshore wind, ƒ the Coriolis 

 parameter, v is the current, 𝜏sy the alongshore surface wind stress and 𝑪𝑫 is 

 the bottom drag coefficient considered as 0.002 (Menemenlis et al. 2007). 

Santos and Miranda (2006) in their STS study and Menemenlis et al. (2007) have used 

equations (3.20) and (3.28) to calculate the displacement of water due to on shore and 

alongshore wind setup. 

 

3.3. Data Processing and Analysis 

With a view to reach to a certain conclusion for a given situation or problem, data analysis 

is used as a process to revise, transform and remodel certain information or data.  One of 

the most important uses of data analysis is that it helps in keeping human bias away from 

research conclusion with the help of proper statistical treatment. Data analysis helps a 

researcher to filter both qualitative and quantitative data for an assignment research. 

Thus, it can be said that the process is of utmost importance for both the research and the 

researcher.  

Due to the scarcity of historical storm surge data in Mozambique, extrapolation of trends 

in past storm activity is generally not a useful approach. TG stations measure the variation 

in water level along the coast. Since tidal cycles are predictable, storm surge can be 

calculated by subtracting what the water level would have been in the absence of the 

storm from the measured water level.  
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Atmospheric pressure and extreme wind stress processes are usually considered to be 

the source of storm surge generation. The combination of astronomical tide and storm 

surge determines the sea level (Santos and Miranda, 2006). In this study we do not 

assess the relative likelihoods of inundations zones affected by those storm surge 

scenarios. 

The proposed methodology does not pretend to assess the inundation in the coast due to 

storm surge. The basic methodology presented here however could be extended to 

assess a range of different impacts areas or sectors. 

 

3.3.1 Storm Surge Calculation from TG data 

Hourly values of 3 TGs distributed along the coast of Mozambique namely in Pemba, 

Beira and Maputo, the North, Center and South region respectively (Figure4), are used to 

validate model results, specifically for large and extreme SL anomalies. The period 

considered for the validation is integrated in the time series of atmospheric data from 

NOAA which is from 1973 to 2011. However the length of time series differ from station to 

station, spanning from few years to the whole considered period, as clearly depicted in 

Appendix B.  

Based on storm surge definition, in line with Pugh (1987), the storm surge is calculated by 

subtracting the harmonic tidal predictions from the observed sea level. This was done by 

means of a harmonic analysis carried out with the standard program T-Tide (Pawlowicz et 

al., 2002). The program T_Tide, Harmonic Analysis Toolbox for Matlab, developed by 

Rich Pawlowicz at UBC, takes a raw tidal time series as input and outputs the amplitude 

and phase of the harmonic constituents for the time series, along with error estimates. Is a 

package of routines that can be used to perform classical harmonic analysis with nodal 

corrections, inference, and a variety of user specified options. Predictions can also be 

made using the analyzed constituents. The data used in the study were quality checked and 

the null values (NaN) were used in the gapes of data where it was needed.  

In this way, the validation of the meteorological tide data was done by following the steps 

below: 

 To obtain the harmonic constants of each TG; 
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 To forecast the astronomical tide for the same period, measured by TG through 

the harmonic constants obtained in step before; 

 To calculate the difference between the predicted and the measured 

value of astronomical tide. This residual value corresponds to the series 

of meteorological tide;  

 To compare the meteorological tide values obtained from reanalysis with those 

obtained from TG. 

 

Here we have considered meteorological tide as the residual from the observed and 

predicted tide. The storm surges are identified by considering higher percentiles of the 

meteorological tide distribution. 

Post-processing of the data was accomplished using T_Tide software developed in the 

Matlab® (http://www.mathworks.com/) programming language. Most Matlab® M-files used 

for post-processing are available via the World Wide Web (WWW).  

 

3.3.2 Storm Surge calculation from Atmospheric forcing from NOAA  

Storm surge is usually considered to be driven by two processes namely the atmospheric 

pressure and extreme wind stress. An analytical model was used, which consider the 

atmospheric pressure and wind components. The inverted barometric effect, which is the 

response of sea level to changes in atmospheric pressure was used with sea level 

pressure data to estimate the perturbations of the sea level by using equation (3.11) and 

the result was added to the one obtained from the wind setup effects, which was 

decomposed into an onshore and alongshore components, equations (3.20) and (3.28) 

respectively (Santos and Miranda, 2006; Wannawong and Ekkawatpanit, 2012). Those 

equations represent the three main storm surge forcing used in the study.          

For validation of this step, storm surge results from TG and from analytical model were 

compared, through the statistical analysis by calculating error measures, correlation and 

an index of agreement. To best evaluate differences of the distributions between the 

analyzed results of storm surge obtained from TG and from analytical model (by using 

data from NOAA), the probability density functions (PDFs) have been estimated and 

compared. The PDFs were estimated using the Kernel method, following Silverman 

(1986), with a normalized Gaussian as the Kernel function.  
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A kernel distribution is a nonparametric representation of the PDF of a random variable. It 

can be used when a parametric distribution cannot properly describe the data, or when is 

needed to avoid making assumptions about the distribution of the data. This distribution is 

defined by a smoothing function and a bandwidth value that controls the smoothness of 

the resulting density curve. In kernel estimation, the choice of the smoothing parameter is 

much more critical than the choice of the kernel. Yet, for each PDF in this study, a default 

bandwidth was used which is optimal for normal densities. 

The provided wind data from NOAA consists of the wind speed and wind direction. 

Nevertheless, the calculation of wind components “u” and “v” had to be done. By having 

the wind speed and direction, “u” and “v” wind vector components can be calculated. 

The wind components “u” and “v” used in equations (3.13) and (3.14) were calculated by 

applying trigonometric equations, taking in consideration the wind direction: 

φmet ≤ 90° : wind blowing from  Quadrant I  to  Quadrant III 

u= -W sin (180°- φmet)    v = - W cos (180° - φmet)                    (3.29) 

90° < φmet ≤ 180°: wind blowing from   Quadrant II to Quadrant IV 

u= W cos (φmet - 90°)    v = -W sin (φmet-90°)                           (3.30) 

180° < φmet ≤ 270°: wind blowing from Quadrant III to Quadrant I 

u= W sin (φmet-180°)    v = W cos (φmet-180°)                         (3.31) 

270° < φmet ≤ 360°: wind blowing from Quadrant IV to Quadrant II 

u= -W cos (φmet-270°)    v = W sin (φmet-270°)                       (3.32) 

 where φmet is the meteorological wind direction, W is the wind speed, u and v are 

 the zonal and meridional wind components, respectively. 

Cross correlations among the sea level, atmospheric pressure and wind stresses were 

calculated. The meteorological forcing contains the wind stress and sea level pressure 

data at specified time intervals. The zonal and meridional wind stress are computed from 

the wind speed and direction using equations (3.13) and (3.14). 

In order to make this conversion, there is a need to decide on the equation to use for the 

drag coefficient because there are numerous relationships that attempt to parameterize 
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the drag coefficient. Without further insight into the optimal drag coefficient response to 

high winds, we accept the formulation from specific author (Large and Pound, 1981; 

Smith, 1980 and Powell et al., 2003) for specific wind intensity also, as it is simple and 

seems to capture the middle of the road solution. The drag coefficient is calculated by 

considering wind intensity according to equations (3.15), (3.16) and (3.17).  

 

3.3.3 Storm Surge calculation from Atmospheric forcing from CIMP5 

The analytical model was used with sea level atmospheric pressure and wind data 

generated by the MPI-ESM-LR model, to evaluate changes in the statistical properties of 

storm surges for future climate change scenarios along the Mozambican coast. The data 

for the present climatological period, from 1986-2005, were computed by using the 

validated analytical model. Then, the results were compared with the one obtained by 

using data from NOAA, to see whether the MPI-ESM-LR model data can reproduce the 

NOAA data. The results are shown later for percentiles 95 (P95), 99 (P99) and 99.9 

(P99.9) associated with significant, very significant and highly significant storm surges, 

respectively.  

 

3.3.4 Tropical Cyclone Climate Intensity at SWIO basin 

When examining the scientific literature, it is apparent that the frequency, distribution and 

intensity of cyclones are major fields of interest (Terry, 2007). However, for this study only 

the intensity is considered because the study concerns the STS height for the future and 

not the return time of STS with such height. 

Considering that climate models do not fully resolve the characteristics of TCs due to their 

relatively low spatial resolutions (Camargo and Wing, 2016), there is a need to consider 

this with further calculations. 

The calculation is done again, considering the average wind intensity from tropical 

cyclone. The average intensity of TC in SWIO is calculated based on the historical data of 

major TC that occurred in SWIO basin. The period is from 1985 to 2015 and the related 

data are shown in Appendix C.  
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From here on we assume that the MPI-ESM-LP is not able at all to resolve TC. Indeed, 

Camargo and Wing (2016) mention that TC-generated STS simulated by climate models 

constitute a small part of the real STS. Therefore, we added the TC cyclone generated 

STS to P95, P99 and P99.9 which define the STS in this study, namely, the contribution 

due to the TC climatological values of a sea-level pressure of 940 hPa and a wind speed 

of 160 km/h, as mentioned before 

Following the projections by Knutson et al. (2010), it is likely that the global frequency of 

tropical cyclones will either decrease or remain essentially unchanged while the mean 

intensity (as measured by the maximum wind speed) increases by +2 to +11% . Other 

authors concluded that the intensity will be larger than 10% in some basins (Emanuel et 

al., 2008; Bender et al., 2010; Knutson et al., 2010, 2013; Yamada et al., 2010; Murakami 

et al., 2012). In the study done by Dasgupta et al. (2009a) they also used a range of 10% 

increase of TC intensity. 

For this study were considered the 10% increase on TC intensity. This percentage was 

added to the average climate TC intensity obtained from 1985-2015. Those TC intensity 

values were used to aggregate in the calculation of storm surge for future climate 

scenarios. 

 

3.3.5 Inclusion of Future Sea Level Rise in Storm Surge Calculation 

Sea Level Rise, as a result of climate change may also have an important effect on the 

damage that could result storm surge. In addition, future SLR, while uncertain, is more 

reliably forecasted to 2050 than future storm activity. In general, the increase in sea level 

would make existing storms significantly more damaging, even for minimal changes in 

storm activity. The results from the study of Church et al. (2011)  show  that the global sea 

level is rising and is expected to continue to rise on a multi-centennial to millennial time 

scale (Yin 2012, IPCC 2013). 

Taking in consideration this future behavior of the sea, the projections for the future storm 

surge scenarios have to consider the SLR. Considering the uncertainty on future sea 

level, this analysis is not based on a single SLR scenario. Instead, three possible 

amplitudes of SLR are considered and results are presented for all these cases without 

trying to aggregate results for these possible futures.  
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The projections scenarios of SLR used in this study to incorporate in a storm surge 

calculation for near, medium and long term future climate scenarios are 0.12, 0.39 and 

0.72 m, respectively.  

Dasgupta et al. (2009a), in their study, have considered one unique value of 1 meter for 

SLR for 2100, while  Neumann et al. (2013) have considered three SLR scenarios as  low 

(0.156 meters), medium (0.285 meters), and high (0.378 meter) based on the work of the 

IPCC (Meehl et al., 2007) and Rahmstorf (2007). Both studies were used in analyses 

supporting the World Bank’s Economics of Adaptation of Climate Change (EACC). Local 

SLR may differ from global average SLR due to local factors such as change in bed 

elevation, coastal geometry, glacial isostatic adjustment and land water sources, amongst 

others. However this represents typically a small variation relative to the global average 

and are, therefore, not considered here. As such, we have used the global average SLR 

and not the local SLR. This can be clearly seen in Figure 14 which shows the spatial 

distribution of SLR in 2081-2100 relative to 1986-2005 for the RCP8.5 scenario. Local 

SLR along the coast of Mozambique is indeed similar and even greater that the global 

average of SLR shown in Figure 9 which means that we can even be underestimating the 

SLR in the region. 

 

Figure 14. Mean regional relative sea level change evaluated from 21 CMIP5 models for RCP8.5. Source: 
IPCC, 2013 - Adapted.  
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3.3.6 Statistical Analyses 

As a tool for the classification of storm surge and validation of the analytical model, three 

classes of storm surges namely significant, very significant and highly significant were 

defined for sea levels above P95, P99 and P99.9, respectively (Gama et al., 1994; Marcos 

et al., 2011, Gaslikova et al., 2011). Statistics for the evaluation and comparison of 

models were done accordingly by using Root Mean Square Error – RMSE, equation 

(3.33) and index of agreement, equation (3.34) 

  

RMSE = √
1

𝑛
∑ (𝑓𝑛 − 𝑟𝑛)2𝑛

𝑖=1                                                                   (3.33) 

 

  where ƒ is the predicted value, r is the observation value and n is the total number 

 of points in a spatial-temporal combined space. 

Following Willmott (2012), the index of agreement “d” is used especially for validating 

prediction models. It represents the ratio of the mean square error and the potential error 

and is defined by the equation (3.34), where “o”, “p”, “�̅�” and “�̅�”  represents observed, 

predicted, average of observed and average of predicted data respectively,  The index of 

agreement is a bounded and non-dimensional measure. 

𝑑 = 1 −
∑ (𝑜𝑖−𝑝𝑖)2𝑛

𝑖=1

∑ (|𝑝𝑖−�̅�|+|𝑜𝑖−�̅�|)2𝑛
𝑖=1

                                                     (3.34) 
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Chapter IV – Results and Discussion  

 

4.1 Results for the Historical Period 

4.1.1 Storm Surge from Sea Level Variability - Tide Gauges. 

 

We analyzed TG data from the three stations namely from Maputo in the south, Beira in 

the center and Pemba in the north of Mozambique Channel. In the analysis of TG data all 

events, positive and negative residuals were considered. 

The meteorological tides were obtained by applying the T_Tide Software to filter the 

observed sea level time series at the three stations. Figures 15, 16 and 17, show the 

results from Maputo, Beira and Pemba stations respectively. The observed sea level are  

represented in the black, the predicted in green, the meteorological tide in red and the day 

moving average of meteorological tide in blue color. The calculated difference between 

the TG observed and predicted time series, resulted in a time series of the sea level due 

to meteorological forcing. The time series filtered with the moving average of 24 hours, 

are only shown here for the purpose of identifying more clearly the lower frequency 

oscillation of the time series. They are not used later in the analysis. This is accomplished 

using the unfiltered time series (red curves). The harmonic constituents used to predict 

the tide for Maputo, Beira and Pemba are presented in Appendix D, E and F respectively.  

Three classes of storm surges (STS), are defined, namely significant, very significant and 

highly significant associated with percentiles P95, P99 and P99.9, respectively. The 

results are shown in  Figure 18.                                                                                                                                                                                                                                              

From the meteorological tide calculated with the analytical model for the three TG station, 

the maximum values obtained are 0.39 m, 1.06 m and 0.58 m for Maputo, Beira and 

Pemba, respectively. The maximum observed sea levels for the stations were 1.9 m, 3.59 

m and 2.25 m, respectively. For the period that the analyses refer to, for Maputo and 

Pemba stations, there is no tropical cyclone event associated. So we did not expect large  

variations in the TG registrations for this period.  
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Figure 15. Oscillations of observed (black), predicted (green), filtered (red) and moving average (blue) of sea 
level time series for Maputo TG station, for 1974. 
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Figure 16. Same as Figure 15, but for Beira Station. 
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Figure 17. Same as Figure 15, but for Pemba Station. 
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Time Series of Observed Tide, for Pemba TG Station, 1998.
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For Beira station, the period of analysis coincides with the passage of an intense TC 

named Bonita, in January 1996 (Appendix G.3), in the north part of Beira, not far away 

from the TG station of Beira. Yet, the Beira TG station registered the changes in sea level 

due to the passage of this TC, which proved destructive in northern Mozambique, notably 

in the provinces of  Cabo Delgado, Nampula and Zambezia. The storm extensively 

damaged about 400 houses in the city of Quelimane, which was left with severely 

impaired electric facilities. At the time no TG were operational in Quelimane. Appendix H 

presents a detailed list of TC landed in Mozambique where TC Bonita is included. 

This is explained by looking at the calculated STS from TG for Beira for 1996 which has 

higher values, 0.83 m for the class of P99.9 and a maximum of 1.06 m if compared with 

Maputo and Pemba stations. The STS values obtained from observed meteorological data 

from NOAA also features the same, despite presenting relatively  lower values ( Figure 

18), yet the values are close.  

 

 

Figure 18.  STS percentiles,  P95 (significant), P99 (very significant) and) P99.9  (highly significant) as defined 

in section 3.2.3, for TG data and NOAA derived data. 
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From the analysis done, this fact took place because, while the TC was affecting the near 

province of Zambezia causing disturbance in the sea levels, the weather parameters at 

Beira station did not change much. This can be explained by considering the distance at 

which the TC eye made its landfall. Nevertheless, the propagation of sea level disturbance 

has reached Beira station TG, resulting in an observed maximum of 1.06 m storm surge. 

This category IV TC was characterized by sustained winds of 185 km/h and the SLP 

dropped to 920 hPa. The maximum storm surge height registered by this TG does not 

represent the maximum STS that a TC can cause for Beira station. Other TC track that 

crossed near the TG station are shown in Appendix  G1, G2 and G4. 

By analyzing and considering a normal behavior of sea level variation, for the stations of 

Maputo, Beira and Pemba, it can be seen that the STS calculated for Beira, from TG data 

for 1996, shows an abnormal variation of sea level which coincides with the passage of 

TC Bonita in this period. This fact is found also in STS calculated from observed data from 

NOAA, despite the value being relatively smaller. This STS  comparison between TG and 

NOAA derived data is shown in Figure 18 using the percentile defined in section 3.2.3, 

namely P95 for significant, P99 for very significant and P99.9 for highly significant STS.  

As mentioned before, at this stage we want to verify whether the observed atmospheric-

derived meteorological tide using data from NOAA with the analytical model can 

reproduce the behavior of meteorological tide obtained from TG. The objective is to 

validate the analytical model to be used later with atmospheric data simulated by the MPI-

ESM-LR model in climate change studies. After obtaining the results of meteorological 

tide from TG, the analytical model was used with atmospheric observed data, wind and 

sea level pressure, to obtain meteorological tide.  

Figure 19 shows the PDFs of meteorological tide for Maputo, Beira and Pemba using both 

methods. It is clear that, for each local, there is a very good agreement between the PDFs 

of the meteorological tide calculated (NOAA derived) and observed (TG) .  

Small differences between PDFs may be due to the fact  that the analytical model only 

considers the influence of wind and atmospheric pressure whereas the observed 

meteorological tide from TG  considers also other local factors such as batimetry and 

wave setup. Figure 20 shows the dispersion graphics and the respective linear fits of 

meteorological tide obtained from both methods. Again, the match is strong. 
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The correlation coefficients between the meteorological tides obtained from both methods 

are 0.98, 0.97 and 0.98 for Maputo, Beira and Pemba station, respectively. Those 

correlations are in line with the index of agreement between them with values equal to 

0.98, 0.96 and 0.97, respectively. Both are highly statistical significant. Table 4 shows 

these measures together with the RMSE which is also very small confirming that the 

analytical method used with meteorological observed data from NOAA agree well with TG 

data. 

 

 

Figure 19 (Continued on next page, see caption) 
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Figure 19. Probability density function (PDFs) of Meteorological tide from TG (red) and analytical model 

(black), for Maputo (a), Beira(b) and Pemba(c) Station. 
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Figure 20 (Continued on next page, see caption) 
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 Figure 20. Dispersion graphics and respective linear fits of meteorological tides  obtained  from  both 

methods, namely from TG and the analytical model, for Maputo 1974 (a), Beira 1996 (b) and Pemba 1998 

(c) Station. 

 

Table 4. Statistical analysis of Meteorological Tide from TG and  NOAA for Maputo, Beira and Pemba stations. 
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RMSE 0.02 0.03 0.01 
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4.1.2 Storm Surge From Analytical Model, by Using Historical Wind and SLP 

Data from NOAA and MPI-ESM-LR 

After the first validation stage, the next stage is to evaluate if the meteorological tide 

calculated using the analytical model, with the historical observed atmospheric data from 

NOAA and atmospheric data from the MPI-ESM-LR model, agree. If this second validation 

stage is passed, one may use the analytical model  with future climate data scenarios 

simulated by the MPI-ESM-LR model.  

The meteorological tide data for the historical period, from 1986-2005, were computed by 

applying the analytical model to near surface atmospheric pressure and winds simulated 

by the MPI-ESM-LR model. The calculations were performed for all seven stations, for 

which sea level pressure and winds are available from NOAA.  

Figure 21 shows the STS for both datasets using the percentiles defined in section 3.3.3, 

for highly significant STS. The TC effect has not been considered here. The results 

obtained shows STS heights much higher for NOAA than for MPI-ESM-LR, despite the 

good agreement between the STS percentiles. However, except for Quelimane, the three 

SST percentiles are slightly underestimated by the MPI-ESM-LR when compared to 

NOAA. 
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Figure 21. Significant (P95), very significant (P99) and highly significant (P99.9) storm surge for NOAA 

Observed and from MPI-ESM-LR, for the seven stations. 
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MPI model did not capture the TC at all, one would consider an underestimation of about 

10% in the simulation of its intensity. However, climate models simulate partially the TC 

and, as such, some of the underestimation of the STS simulated by the MPI-ESM-LR 

model, as seen in figure 21, may be attributed to this fact. Overall, we consider that STS 

are reasonably well simulated by the MPI-ESM-LR model when compared to NOAA 

derived STS which, in principle consider the effect of TC on STS. 
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4.1.3 Tropical Cyclone STS Estimation 

The calculation of STS for future climate required the knowledge of the historical situation. 

The data used to study future climate scenarios are derived from the MPI-ESM-LR model 

simulations. As it has been said before, TCs are fairly small and dynamic atmospheric 

phenomena with relation to the spatial resolution of climate models. Therefore, the 

cyclone-generated STS are not well represented by the MPI-ESM-LR data. 

Here, we try to estimate the missing TC information on STS as simulated by climate 

models. 

An idealized radial wind profile, fitted to the analytical model output, were used to estimate 

maximum storm surge.  

We have compiled historical data of tropical cyclone intensities from the annual tropical 

reports maintained by the Joint Typhoon Warning Centre, 

https://metoc.ndbc.noaa.gov/JTWC/. 

These records typically contain storm center positions every six hours together with a 

single intensity estimate, maximum wind speed and central seal level pressure every time 

period.  

As stated by Neumann et al. (2013), many wind risk assessment techniques rely directly 

on historical tropical cyclone track data to estimate the frequency of storms passing close 

to points of interest, and must assume that the intensity evolution is independent of the 

particular track taken by the storm. For this study we have calculated the average 

maximum sustained wind intensity and central SLP for the storm surge calculation for the 

1985 to 2015 period that occurred in the SWIO basin (Appendix A). For these cyclones, 

no storm surge data were available. Extreme wind intensity and atmospheric pressure of 

these tropical cyclones were used to estimate, with the analytical model, the extreme 

cyclone generated STS. 

A statistical analysis was performed for a better understanding of the frequency 

distribution of the maximum sustained wind of the TC events. Figure 22 shows a 

histogram of TC for four wind speed classes.  Similar information is shown in Figure 23 for 

as TC distribution by category. 

From an universe of 129 TC events used for this study, 10.9% are severe tropical storm 

with wind speed ranging from 80-117 km/h, 45% are TC with wind speed ranging from 
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118-165 km/h, 36.4% represents intense TC wind speed ranging from 166-212 km/h and 

7.8% are very intense TC wind speed ranging from greeter than 212 km/h. Despite the 

low occurrence of very intense TC, if compared with tropical and intense TC, due to the 

wind category associated with them, the level of damage when it makes its landfall in the 

coast is very substantial.  

The average historical wind intensity of SWIO tropical cyclone is 160 km/h and the center 

sea level pressure average is 940 hPa. 

 

 

Figure 22. Frequency distribution of TC wind speed, 1985-2015, SWIO basin. 
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Figure 23. Distribution of TC events within 4 categories of TC, 1985-2015. 
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Figure 24. Significant (P95), very significant (P99) and highly significant (P99.9) storm surge for historical 
period (1986-2005). STS were corrected for the effect of TC-induced STS of +0.8 m. 
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Figure 25 (Continued on next page, see caption) 
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Figure 25 (Continued on next page, see caption) 
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Figure 25 (Continued on next page, see caption) 
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Figure 25. PDF graphical comparison between historical meteorological tide from NOAA  (black) and MPI-
ESM-LR (red) data series, for station of Maputo (a), Xai-Xai (b), Inhambane (c), Beira (d), Quelimane (e), 
Angoche (f) and Pemba (g). The TC correction as well as SLR were not applied. 

 

The wind is the most important parameter for the storm surge generation because more 

than 85% of storm surge generation is due to wind and 5% to 10% due to sea level 

pressure. A strong wind blowing onshore induces sea level rise and, consequently, water 

heights higher than those blowing from any other direction with the same intensity. To 

gain a better insight on the prevailing winds we have calculated the wind roses for all 

locals, for the historical period, which are shown in Figure 26, 27 and in Appendix I, for 

NOAA and in for the MPI-ESM-LR model. The intensity and frequency scales are the 

same for each station but may differ amongst the stations since the objective here is to 

compare, for the same station the winds generated from NOAA and the MPI-ESM-LR 

model. 

In general, the wind intensity and frequency properties are similar from both datasets. We 

note, however, that NOAA winds are recorded at meteorological stations whereas those 

simulated by the MPI-ESM-LR model are downloaded from the model grid to the nearest 

coordinates of each station.  This introduced error may be amplified by the fact that all 

stations are located along the coast where horizontal gradients are stronger. The complex  
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configuration of the coastline at some locations may also contribute to the uncertainty of 

the downscaling process. But, clearly, the most frequent winds blow from the south/east 

quadrant. Cyclones reaching the coast come from the Indian Ocean and produce very 

strong winds also from south to the east. These are the directions which, for the same 

sea-level pressure, generate the most strong meteorological tides and, therefore, STS. 

For example, for a sea-level pressure of 940 hPa and a wind speed of 160 km/h 

(climatological values for TC reaching the coast of Mozambique) the meteorological tides 

for the most predominant directions are, 1.16 m, 1.18 m and 0.80 m, for winds blowing 

from south, southeast and east, respectively. For the other directions the meteorological 

tides are much inferior and eventually negative (i.e. wind blowing from north and west). 

 As it has been explained above, in the methods section, this is based on the effect of 

Coriolis force as well as the Ekman theory for the southern hemisphere. These wind roses 

are also in line with well-known  synoptic processes occurring in the region. 
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Figure 26. Wind speed and direction for historical data from NOAA (a) and MPI-ESM-LR (b), Maputo station. 
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Figure 27. Wind speed and direction for historical data from NOAA (a) and MPI-ESM-LR (b), Xai-Xai station. 
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4.2 Results for Near Term Future Period 

Is this section we evaluate the near-term future (2016-2035) changes of STS relative to 

the historical period, simulated by the MPI-ESM-LR model.  As for the historical period,  

the STS identified in the meteorological tide time series for the near term period were 

corrected for the TC effect (see 4.1.3). As mentioned in the theoretical framework chapter 

of this study, the global mean sea level will continue to rise during the 21st century. Under 

all RCP scenarios, the rate of SLR will very likely exceed that observed during 1971 to 

2010 due to increased ocean warming and increased loss of mass from glaciers and ice 

(IPCC, 2013). In this regard, aside  from considering TC intensity, the SLR was also 

considered for the STS calculation. For the near term future, a SLR scenario of 0.12 

meters was considered. This value was obtained by interpolation of Figure 9, for the 

RCP8.5.  Also, we have considered an increase of TC intensity of +10 percent, relative to 

the historical scenario (Emanuel et al., 2008; Bender et al., 2010; Knutson et al., 2010, 

2013; Yamada et al., 2010; Murakami et al.,2012 ). This corresponds to a wind speed of 

176 km/h, compared to 160 km/h used for the historic period. We considered, as for the 

historic period the east wind direction. Such a wind of 176 km/h blowing from east 

generate a STS of 0.9 m. We maintained the sea level pressure of 940 hPa used for the 

historic period. By doing this, we might be underestimating the intensity of future TCs. The 

references cited above do not distinguish between the near term future, medium term 

future and long term future. Therefore, the same wind and sea level pressure were used 

for the three future periods. Also, as for the historic period, we considered the east wind 

direction in these corrections.  

Figure 28 shows SL for the near term period and the respective changes relative to the 

historical period.  The SL exceed 1.0 m at all locations. STS changes are positive for all 

locations and the respective changes increase from south to North up to Quelimane and 

then decrease. Also of note is a maximum increase for very significant SL (red bars) in the 

south (Maputo, Xai-Xai and Inhambane) and for extremely significant (green bars) in the 

north (Angoche and Pemba). The explanation for this behavior has to do with the natural  

characteristics and geographical orientation of the Mozambican coast, which is north-

south oriented, as well as the latitude at which the stations are located.  Also, the equation 

(3.28), to determine the displacement of water level from the mean due to alongshore 

wind, is directly proportional to the Coriolis parameter.  
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Figure 28. Significant (P95), very significant (P99) and highly significant (P99.9) for (a) SL and (b) SL variation 

(future minus historic), for the near future period (2016-2035). STS were corrected for the effect of TC 

correction by considering a +10% increase in intensity, which correspond to +0.9 m. A SLR of +0.12 m was 

added for the near term future period. 

 

Climate change may alter the wind patterns in the future with an increase of wind intensity 

or the frequency of severe winds, which may have implications in storm surge generation. 

The wind characteristics projected for near term future, according to the MPI-ESM-LR 

(Figures 29, 30 and Appendix J), show prevailing winds from East to Southeast quadrant. 
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The wind from this quadrant is known to be favorable for the piling up the water in the 

coast, considering the Ekman theory when applied to the southern hemisphere. 

 

 

 

Figure 29. Wind speed and direction for near term future (a) and historical (b), from MPI-ESM-LR for  Maputo 
station. 
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The wind roses shown consider all wind observations and not just those for extreme winds 

which generate STS. Since the wind effect on STS depends both on wind speed and 

direction, it is not clear which of these properties are responsible for the positive STS 

intensity changes shown in Figure 28. We also have to consider the contributions from 

SLR of +0.12 m that was added to P95, P99 and P99.9. Apart from TC and SLR changes, 

the residual STS changes  which are also positive for all locations (not shown) may be 

related to changes in the synoptic setting in the future scenario. We anticipate more 

extreme southward excursions of the ITCZ position in summer which is expected to occur 

in a warmer world (Weller et al., 2014). 
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Figure 30. Wind speed and direction for near term future (a) and historical (b), from MPI-ESM-LR for Xai-Xai 
station. 
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4.3 Results for Medium Term Future Period 

 

Is this section we evaluate the medium term future (2046-2065) changes of STS relative 

to the historical period, simulated by the MPI-ESM-LR model.  As it was done for the near 

term period,  the same wind and sea level pressure correction due to TC intensification 

was added to the STS. For the medium term future, a SLR scenario of 0.39 meters was 

considered. This value was, again, obtained by interpolation from Figure 12, for the 

RCP8.5 scenario. 

Figure 31 shows SL for the medium term period and the respective changes relative to the 

historical period. The SL exceed 1.30 m at all locations. The structure of the changes are 

similar to those for the near-term, but of larger magnitude. 

Neumann et al. (2013) combined a range of SLR scenarios for 2050 for Beira. Their study  

suggests that the potential maximum storm surge level for 100-year return storm in Beira, 

currently estimated to be 1.9 m may occur every 40 years in the medium term future (i.e. 

2050). According to the same study, the results for Maputo show similar and even more 

dramatic changes. For a potential maximum storm surge of 1.1 m the return period of 100 

may reduce to 20 years.  

Our results in this study are in accordance with Neumann et al (2013), suggesting for 

Maputo and Beira STS of the order of 1.70 m (adding the P99.9 values from Figure 24 

and the STS changes of P99.9 in Figure 31, for Maputo and Beira), for the 20-year period 

of this study.  
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Figure 31. Significant (P95), very significant (P99) and highly significant (P99.9) for (a) SL and (b) SL variation 

(future minus historic), for medium term future period (2046-2065). STS were corrected for the effect of TC 

correction by considering a +10% increase in intensity, which correspond to +0.9 m. A SLR of +0.39 m, was 

added for the medium term future period. 

 

Figures 32, 33 and Appendix K show the projected wind roses for the medium term future 

for the seven location. For sake of a quick comparison, the historical wind roses are 

shown again. In the seven stations the wind direction is projected for the quadrant 

Southeast, varying from East to South through Southeast.  With the exception of Xai-Xai 

and Inhambane station, it is noted that the projection for all remain stations shows no 

substantial increase or decrease in wind speed, comparing to the near term future studs.  
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The Station of Xai-Xai have increased the amount of days with high magnitude wind while 

the Inhambane station did the opposite.    

 
 

 

Figure 32. Wind speed and direction for medium term future (a)  and historical (b), from MPI-ESM-LR for 
Maputo station. 
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Figure 33. Wind speed and direction for medium term future (a) and historical (b), from MPI-ESM-LR for Xai-
Xai station. 

 

5%

10%

15%

20%

Medium Term Future Wind, Xai-Xai Station.

WEST
EAST

SOUTH

NORTH

00 - 04
04 - 08
08 - 12
12 - 16
16 - 20
20 - 24
24 - 28
28 - 32
32 - 36
>=36

Wind Speed
    (km/h)

(a)

5%

10%

15%

20%

Historical Wind from MPI-ESM-LR, Xai-Xai Station.

WEST EAST

SOUTH

NORTH

00 - 04
04 - 08
08 - 12
12 - 16
16 - 20
20 - 24
24 - 28
28 - 32
32 - 36
>=36

Wind Speed  
      (km/h)

(b)



IV. Results and Discussion 

_______________________________________________________________________ 

83 

 

4.4 Results for Long Term Future Period 

Following the same methodology applied for the near and medium term periods, a SLR of 

0.72 meters was added to the STS of the long term period. Again, this value was obtained 

by interpolation of SLR for the RCP8.5 shown in Figure 9. The same TC corrections, 

corresponding to an intensification of +10%, were also applied, namely, a climatological 

wind of 176 km/h) and the climatological sea level pressure of 940 hPa. 

Figure 34 shows the STS and the respective changes, relative to the historical period, for 

the long term period. As for the other periods, all changes are positive. Changes decrease 

from south to north and the magnitude of the changes are similar for the three types of 

STS, except for Maputo where the largest changes are simulated for highly significant 

STS. 

In average, for long term future climate changes, all stations show SL heights  of about 

greater than 1.6 meter. As for the other future periods, the high point by which the STS 

will be launched is mostly due to SLR. SL of this order clearly cause damages in coastal  

regions, mainly in low-lying land which occupies nearly the whole coastal region, even if 

the corresponding STS is of a small magnitude. The evaluation  of our results are 

consistent with previous studies by Dasgupta et al (2009a) which suggested an increase 

of storm surge in 30% in the future due to climate change (Figure 3). 

Figures 35, 36 and Appendix L, show that the wind properties do not change significantly 

relative to the medium term future. Clearly, changes in the STS appear to be mostly 

associated to the TC, however the SLR plays important role by increasing the height by 

which the STS starts its propagation. 
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Figure 34.  Significant (P95), very significant (P99) and highly significant (P99.9) for (a) SL and (b) SL 

variation (future minus historic), for Long term future period (2081-2100).  STS were corrected for the effect of 

TC correction by considering a +10% increase in intensity, which correspond to +0.9 m. A SLR of +0.72 m 

was added for the long term future period. 
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Figure 35. Wind  speed and direction for long term future (a) and historical (b), from MPI-ESM-LR for Maputo 
station. 
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Figure 36. Wind  speed and direction for long term future (a) and historical (b), from MPI-ESM-LR for Xai-Xai 
station. 
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Chapter V – Summary and Conclusion  

  

The present  study was mainly concerned with climate change on storm surges properties 

along the cost of Mozambique. This was done by using an analytical model which 

estimates the local meteorological tide based on sea level pressure and the cross and 

along shore wind components near the surface. The analytical model proposed here does 

not couple the mechanisms of hydrodynamics. It  is a purely static method and, as such, it 

does not consider the cyclonic system dynamics itself. Everything else being equal, the 

meteorological tide and STS at the coast are different for fast-moving and slow-moving 

systems.  

The meteorological data used by this model is generated by the MPI-ESM-LR model 

which is a global, low resolution model and, therefore, does not capture the full 

characteristics of extreme winds and pressure mainly associated with TCs (Hamilton, 

2008; Flato et al., 2013). The global models used for recent climate assessments have 

exhibited tropical cyclone intensity statistics which were biasedly weak, since models 

cannot adequately resolve the dynamics of tropical cyclone. In particular, wind speed, 

pressure gradients and, consequently, the minimum pressure of TC are underestimated 

by climate models (Camargo and Wing, 2016). 

 

To minimize this problem, we corrected extreme winds and sea level pressure associated 

with TCs by adding (subtracting) 10% to the winds (sea level pressure). Firstly,  we 

calculated the climatological wind and minimum sea level pressure for all cyclones which 

occurred in the 1985-2015 period. The values of wind speed and sea level pressure are 

160 km/h and 940 hPa, respectively. These values were used with the analytical model to 

obtain an estimation of the TC effect. Since most TC are associated to easterly winds 

along the coast of Mozambique, we only considered the cross shore sea level component. 

The obtained values were, then, added to the percentiles corresponding to the three 

categories of STS but not to the full meteorological tide time series. This was equally done 

for the seven locations and for the historical period. 

For the future climate scenarios a further +10% TC correction was applied based on 

estimates of increased TC intensity in the future. This is a crude estimate since it is not 

referred to which regions and future periods this estimates correspond. Therefore, we 
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considered the same TC effect for the three periods and for all seven locations. On top of 

this, SLR estimates for the future scenarios were added to the same percentiles.  These 

were obtained from global SLR projections shown in Figure 9. Local SLR for this region 

was not considered but it was shown to be similar, or even slightly higher, than global 

SLR. 

Next, we validated the analytical model, using atmospheric NOAA-derived data, against 

TG observed data. The astronomical tide was removed from the TG data. Since TG data 

are scarce in Mozambique, the best data were chosen. The TG dataset comprised data 

for one full year recorded at three stations located along the coast of Mozambique. Small 

differences found between both approaches may be partly due to the fact that TG records 

inherently includes the local effects of the bathymetry and the instantaneous wave setup 

in sea level measurements. Overall, the analytical model simulated well the PDFs and the 

STS of meteorological tide data when compared to those calculated for TG derived data. 

In some cases, sea level extremes were not captured by the analytical model but we 

attribute this to the fact that, at that stage, we had not considered the effects of TC. 

After, we performed the validation of the MPI-ESM-LR model by comparing the 

meteorological tide series derived using the analytical model with simulated 

meteorological data with similar time series using the analytical model with meteorological 

data observed and similar data obtained from NOAA. Results show that, except for 

Quelimane, the three STS percentiles are slightly underestimated by the MPI-ESM-LR 

when compared to NOAA but, overall, the MPI-ESM-LR estimated STS are in good 

agreement with those obtained using NOAA data. 

Next, the analytical model was applied with meteorological data simulated by the MPI-

ESM-LR model for three future climate periods, namely, near term (2016-2035), medium 

term (2046-2065) and long term (2081-2100), for the RCP8.5 scenario. This was 

performed for the seven locations for which there are meteorological observed data 

available (i.e. obtained from NOAA). At this moment, TC and SLR corrections were not 

applied. The meteorological tide  and STS characteristics for the three future periods were 

compared to those for the historical period (1986-2005). The main conclusion is that there 

are no significant differences in the meteorological tides along the cost of Mozambique. 

This means that meteorological conditions, which are considered the forcing, do not 

change in the future when ignoring the TCs effects. 
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Next, after the calculation of P95, P99 and P99.9 of the meteorological series, which 

correspond to significant, very significant and highly significant STS, respectively, the TC 

(for historic and future periods) and SLR (only for future periods) corrections were applied.  

This was equally done for the seven locations. For the three future periods the 10% TC 

intensity increase results in a wind speed of 176 km/h. The minimum sea level pressure 

was maintained at 940 hPa. As a result, similar sea level corrections of +0.9 m were 

added to all STS. By considering the same climatological TC correction for the future 

periods we may be underestimating TC effect. 

For the RCP8.5, SLR is expected to be 0.12 m, 0.39 m and 0.72 m for near, medium and 

long-term future, respectively. This results from interpolation of SLR in Figure 9. The 

uncertainty range for these values are 0.09 m to 0.19 m for the near future, 0.29 m to 0.49 

m for the medium term future and 0.51 m to 0.99 m for the long future. 

Finally the STS changes were estimated for the three periods, relative to the historical 

period, and for the seven locations. 

Results show that, considering the SLR scenarios, STS, which include the TC correction, 

increase in the three future periods. The degree of risk of STS occurring in the future are 

mainly due to SLR and not to the STS themselves. The second most important 

contribution is the estimated 10% intensity increase of TC that were added to STS. The 

remaining contributions are due to small changes in the synoptic future settings which are 

identified in this study by changes in the wind roses in the future. 

This is clearly seen in Figure 37 which shows, for each location, the PDFs of 

meteorological tide for the historic and future periods considering also the SLR and its 

uncertainty range mentioned above. The dotted lines represent the uncertainty lower limits 

and the dashed-point lines the uncertainty upper limits for the respective future scenarios. 

There is a clear shift of all PDFs to the right and very little change in the format shape of 

the PDF. This means that changes in the impact of the STS are mainly due to systematic 

differences which arise from an intensification of TC and SLR and not due to the changes 

of wind and atmospheric forcing directly obtained from the MPI-ESM-LR model and that 

were used to generate the meteorological tide data.  

In summary, STS, which inherently include the TC correction applied, for the historic 

period are slightly less than 1 m (see Figure 24). Considering the SL for the future 

periods, STS plus SLR, for the near term future the SL variation and  SL is estimated in 
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0.26 and 1.19 m respectively (Figure 28). Estimated values for SL change and SL, also 

considering SLR rise, for the medium term future period is 0.49 m and 1.42 m (Figure 31), 

respectively.  For the long term period, considering SLR, the respective values are 0.81 m 

and 1.74 m (Figure 34). Table 5 summarizes the final results considering also the 

uncertainty of SLR. 

Table 5.   Sea Level (SL) and its change due to each contributing factor for each climatic period. 

SL Projections (m) 

  
Historical 

Near Term Medium Term Long Term 

SL (m) Δ SL (m) SL (m) Δ SL (m) SL (m) Δ SL (m) 

STS (no TC) 0.13 0.17 0.04 0.13 0.00 0.12 -0.01 

TC 0.80 0.90 0.10 0.90 0.10 0.90 0.10 

STS (w/TC) 0.93 1.07 0.14 1.03 0.10 1.02 0.09 

SLR   0.12   0.39   0.72   

STS 
w/TC+SLR 0.93 1.19 0.26 1.42 0.49 1.74 0.81 

  
      

  

SL Uncertainty (m) 

  
Historical 

SL Near Term SL Medium Term SL Long Term 

Lower Upper Lower Upper Lower Upper 

SLR   0.09 0.19 0.29 0.49 0.51 0.99 

STS 
w/TC+SLR 0.93 1.16 1.26 1.32 1.52 1.53 2.01 

  
      

  

SL Relative Contributions (%) 

  

SL ΔSL 

Historical 
Near 
Term 

Medium 
Term 

Long 
Term 

Near 
Term 

Medium 
Term 

Long 
Term 

STS (no TC) 14.0 14 9 7 15 0 -1 

TC 86.0 76 63 52 38 20 12 

                

SLR   10 27 41 46 80 89 

 

The analytical model used here, corrected with TC and with added SLR estimates, can be 

expected to be a useful tool for generating and analyzing the impact of meteorological tide 

series and STS, since it is based on solid physical principles. The added value of this 

approach is that it can be applied to meteorological data rather than to be restricted to sea 

level data either obtained from TG or simulated by appropriate ocean models. We note 
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that TG records are much more scarce than meteorological data. This is, indeed, the case 

of Mozambique where few TG records are available and with a questionable quality. 

 

 

Figure 37. (Continued on next page, see caption) 
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Figure 37.  PDFs of meteorological tide (solid line) for the historic and future periods (with uncertainties) for (a) 
Maputo, (b) Xai-Xai, (c) Inhambane, (d) Beira, (e) Quelimane, (f) Angoche and (g) Pemba. The dotted lines 
and dash-dotted lines represent the lower and upper uncertainty limits. SLR of 0.12 m, 0.39 m and 0.72 m 
were considered for the near, medium and long term future, respectively.   

 

Notwithstanding its great simplicity, the method of STS estimation from meteorological 

information data, allows to obtain useful results with a minimum calculation effort. The 

analytical model used in this study simulates well the storm surge events in the 

considered locations.  

The results achieved in this study contain important conclusions of interest to flood risk 

managers, coastal engineers and other decision makers. It follows from this work that any 

risk analysis must recognize the dependence of tide and STS.  

Dasgupta et al (2009b) studied climate change and the future impacts of storm-surge 

disasters in developing countries. They report that in Mozambique, the cities of Nacala, 
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Quelimane and Beira, are in a rank of top 10 cities of southern Africa region, with severe 

impacts of future storm surge on coastal areas, with rank of 1.0, 2.5 and 4.0, respectively. 

Despite the impacts in cities observed from their study, the study does not mention the 

heights that the storm surge will reach in the future climate, unlike our present study. 

Although the methodologies applied in both studies were different, there is an agreement 

with respect to the storm surge height obtained from the present study and the expected 

impacts in the study of Dasgupta et al (2009b). Neumann et al (2013) also suggest an 

enhancement of storm surge in the future. In summary, model results suggest that for the 

future climate change scenario, in the coast of Mozambique, the storm surges will be 

characterized by an enhancement of intensity.  

This analysis demonstrates a proof of concept for storm surge and SLR risk analysis for 

seven stations along the coast of Mozambique. The method developed for this analysis 

has the advantage of being able to be applied in areas where tide gauge data are 

relatively sparse.  

Considering the height of storm surge for future climate change scenarios along the coast 

can reach more than 1.0 m, the major impact to Mozambique would be a possible 

increase in frequency and scale of sea flooding from storm surges brought about by 

tropical cyclones, mainly if the STS arrive at the coast  during spring tide. These events 

are of practical significance for flood risk, particularly at central region of Mozambique 

where low-lying land areas are frequent (see Figure 2). 

This confirms the necessity to assess the socio-economic impacts of coastal floods based 

on the combination of SLR and storm surge projections, as the common effect is 

nonlinear.  

 

5.1 Directions for Further Research 

One of major uncertainties in the results of this study is related to the properties of TCs 

and their association with STS. Here, a correction was used to minimize two aspects: the 

low horizontal resolution of the MPI-ESM-LR model which underestimates those 

properties, and the future climate scenarios of TCs. A more realistic approach, which 

eliminates this problem consists of performing a dynamical downscaling simulations with 

the MPI-ESM-LR forcing a high-resolution regional model such as the WRF model. 
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Therefore, one could generate TC climate data which would allow to correctly identify the 

properties of TCs and their suggested increase of intensity for the future.  

This study does not include an assessment on flood and inundation due to storm surge. 

The further research will consist on the assessment of the risk of inundation due to storm 

surge caused by extreme events like tropical cyclone.  

 

5.2.  Recommendation 

Taking into account the difficulties we went through for the calculation, validation and work 

comparison with other authors studies, due to lack of TG data we recommend: 

 A countrywide survey on high water mark collection for the storm surge due to 

tropical cyclones is required; The wind and pressure observations for TCs is 

required. 

 A local storm surge database needed to be developed. A collection of Tide gauge 

records should be collected for all storm surge prone areas along the coast and 

the tide should be removed from these records, the residual must be very well 

organized in database.  

Despite this study not include the inundation level, nevertheless, our recommendation 

goes to: the structural options, for adapting the areas to address the risks of inundation 

and episodic flooding. This includes constructing or reinforcing new and existing levees 

and, elevating vulnerable structures in low-lying areas subject to episodic flooding;  the 

nonstructural approaches, include planning a managed retreat from the areas which 

probably face the most severe risks, and utilization of financial mechanisms, such as crop 

and property insurance programs. 

This study gives a vision of likely changes in storm-surge return levels of coastal storm 

surges in the future. Depending on the location, these estimates may significantly alter 

risk assessment related to high water levels and should be considered a relevant result for 

stakeholders and policy makers involved in decisions about coastal infrastructure and 

environmental protection decisions. 
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Appendix A – The predominant tropical cyclone trajectories before 
making landfall on Madagascar and Mozambique.  

Source: Fitchett and Grab (2014). 
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Appendix B - Available Observed data from TG, NOAA and MPI-ESM-LR 
for the study stations. 

Station 

Name 

Tide Gauge  Data  
From    INAHINA 

(Hourly) 

Atmospheric Data 

from NOAA (Hourly) 
Atmospheric Data from                                        

MPI-ESM-LR (Daily)  

Period 

Range 

Missing 

Data( %) 

Period 

Range 

Amount of 

data 

Period 

Range 

Amount of 

data 

Maputo 

1974, 1980-

1986, 1995-

2002 

33 

1973-2011 

1986-2005 

148,230 

89,106 

 

1986 - 2005       

2016 - 2035      

2045 - 2065      

2081 - 2100 

7,300       

7,300       

7,300      

7,300 

Xai-Xai No data 100 

1973-2011 

1986-2005 

46,289 

29,208 

1986 - 2005       

2016 - 2035      

2045 - 2065      

2081 - 2100 

7,300       

7,300       

7,300      

7,300 

Inhambane 1994-1995 71 

1973-2011 

1986-2005 

60,143 

25,617 

1986 - 2005       

2016 - 2035      

2045 - 2065      

2081 - 2100 

7,300       

7,300       

7,300      

7,300 

Beira 
1996-2000, 

2002 
29 

1973-2011 

1986-2005 

97,388 

53,813 

1986 - 2005       

2016 - 2035      

2045 - 2065      

2081 - 2100 

7,300       

7,300       

7,300      

7,300 

Quelimane 1995 25 

1973-2011 

1986-2005 

92,484 

42,398 

1986 - 2005       

2016 - 2035      

2045 - 2065      

2081 - 2100 

7,300       

7,300       

7,300      

7,300 

Angoche No data 100 

1973-2011 

1986-2005 

19,545 

7,683 

1986 - 2005       

2016 - 2035      

2045 - 2065      

2081 - 2100 

7,300       

7,300       

7,300      

7,300 

Pemba 

1984, 1996-

2004, 2007-

2010 

39 

1973-2011 

1986-2005 

77,392 

38,735 

1986 - 2005       

2016 - 2035      

2045 - 2065      

2081 - 2100 

7,300       

7,300       

7,300      

7,300 
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Appendix C -  Major Tropical Cyclone in Indian Ocean Basin, 1985-2014. 

Period Nº of 

Events 

Event 

name 
Date 

Maximum 
 10 minute 
sustained 

wind (Km/h) 

SLP (hPa) 

 

1985/1986 

 

4 

Deleninina Jan 10-19 135 954 

Erinesta Jan 29-Feb4 170 927 

Honorinina Mar 7-23 170 927 

Jefotra Mar 27-April 5 135 954 

1986/1987 
 

2 

Clotilda Feb 9-22 110 970 

Daoda Mar 2-18 135 954 

 

1987/1988 

 

4 

Doaza Jan 31- Feb 1 135 954 

Gwenda Feb 12-18 150 914 

Filão Fev26-Mar 1 135 954 

Gasitão Mar 19-25 170 927 

1988/1989 6 

Barisoana Nov 12-23 135 954 

Galasanjy Jan 6-15 135 955 

Edme Jan 20-27 115 966 

Firinga Jan 24-Feb 1 135 954 

Leon Feb 19-Mar 1 150 940 

Krissy Mar28-Apr 11 150 940 

 

1989/1990 

 

6 

Alibera Dec 16-Jan 5 140 954 

Baomavo Jan 2-9 150 940 

Dety Feb 2-11 135 954 

Edisoana Mar 1-8 135 954 

Walter-Gre Mar 13-27 170 927 

 

1990/1991 

 

3 

Cynthia Fev 16 - 19 125 970 

Fatima Fev22-Mar 02 135 954 

Bella Jan 18-Feb 4 155 936 

 

1991/1992 

 

3 

Farida Feb 23-Mar 4 150 941 

Harriet Mar 1-7 165 930 

Jane-Irra April 14-19 140 950 

 

1992/1993 

 

4 

Colina Jan 13-20 135 970 

Edwina Jan 19-29 170 925 

Jourdace April 2-10 165 930 

Konita May 2-7 130 955 

 

1993/1994 

 

5 

Geralda Jan 26-Feb 8 205 905 

Hollanda Feb 6-14 155 940 

Litane Mar 7-19 195 910 

Nadia Ma 16-19 175 925 

Odile Mar29-Apr4 175 925 

 

1994/1995 

 

6 

Albertine Nov22- Dec 3 175 925 

Dorina Jan 18- Feb1 175 925 

Fadah January 24-
29 

100 920 

Gail Jan 31-Feb 11 120 970 

Ingrid Feb 22-Mar 3 150 945 

Marlene Mar29-Apr 11 185 920 

1995/1996 6 Daryl-Agniel Nov 19-27 175 925 
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Bonita Jan 3-15 185 920 

Edwige Feb 19-29 150 945 

Flossy Feb 25-Mar 6 150 945 

Hansella April 2-10 120 962 

Itelle April 6-19 175 925 

1996/1997 6 

Melanie Nov 1-11 175 925 

Daniala Dec 2-10 185 915 

Gretelle Jan 19-31 140 950 

Pancho-Hel Jan 23-31 185 915 

Josie Feb 5-16 140 950 

Liset  Feb 28-Mar3 95 950 

1997/1998 2 

A1 Jan 6-13 - 950 

Anacelle Feb 6-13 140 950 

Elsie Marc 9-18 100 975 

 

1998/1999 

 

3 

Alda Jan 14 - 18 95 975 

Davina Marc 2-19 165 930 

Frederic April 1-10 175 925 

1999/2000 5 

Babiola Jan 3-12 155 950 

Connie Jan 25-Feb1 185 930 

Eline Feb 8-29 185 930 

Felicia Feb 18-24 110 975 

Hudah Mar 25-Apr 9 220 905 

2000/2001 5 

Ando Dec 31- Jan 9 195 925 

Bindo Jan 3-17 150 955 

Charty Jan 17-31 185 930 

Dera Marc4-12 150 955 

Evarist April 2-8 110 973 

2001/2002 7 

Bessi-Bako Nov 30- Jan 3 120 968 

Dina Jan 16-25 215 910 

Eddy Jan 22-25 130 965 

Francesa Jan 22-30 195 925 

Guillaume Feb 14-23 205 920 

Hary Mar 3-13 220 905 

Ikala Mar 21-29 165 945 

2002/2003 6 

Delfina Dec14-Jan 8 100 985 

Boura Nov 14-27 130 965 

Gerry Feb 5-15 165 940 

Japhet Fev 25-Mar 5 175 935 

Kalunde Mar 3-14 215 910 

Manou May 1-13 155 950 

2003/2004 5 

Beni Nov9-25 175 935 

Cela Dec 4-20 120 975 

Elita Jan 24-Feb 4 120 970 

Frank Jan 26-Mar 6 185 930 

Gafilo c Mar 8-9 120 970 

2004/2005 

 

4 

 

 

Bento Nov19 –Dec 4 220 915 

Chambo Dec 22-28 155 950 

Ernest Jan 16-23 165 950 

Adeline April 12 220 905 

2005/2006 3 Boloetse Jan 30-Fev 04 155 950 
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Diwa Marc3- Mar 9 110 980 

Carine Feb 23- Mar 3 205 915 

2006/2007 6 

Bondo Dec 15 – 28 205 930 

Dora Jan 26- Feb 8 195 925 

Favio Fev 19 - 23 195 925 

Gamede Feb 19- Mar 1 165 935 

Ndlala Mar 9-19 175 935 

Jaya Mar 26-Apr 8 185 935 

2007/2008 5 

Fame Jan 22- Feb 1 130 972 

Gula Jan 25-Feb 1 155 950 

Hondo Feb 2-29 215 915 

Ivan Feb 5-27 185 930 

Jokwe Mar 6 – 15 105 930 

Kamba Marc 5-14 185 930 

2008/2009 4 

Fanele Jan 16-22 185 930 

Izilda Mar 22-27 110 978 

Gael Feb 1-9 185 930 

Jade April 3-10 110 975 

2009/2010 4 

Joel May 25-26 100 990 

Cleo Dec 6-14 195 925 

Gelane Feb 1-3 205 930 

Edzani Jan 15 220 910 

2010/2011 2 
Abele Nov29- Dec 3 130 973 

Bingiza Feb 8-18 155 958 

 

2011/2012 

 

4 

Dando Jan 15-17 85 992 

Funso Jan 19 – 28 205 925 

Giovanna Feb 7-22 195 935 

Irina Feb25-Mar 12 95 978 

2012/2013 4 

Anais Oct 12-19 185 945 

Claudia Dec 6 – 13 165 950 

Falleng Jan26 – Febr3 165 950 

Haruna Feb 18-25 150 965 

2013/2014 4 

Amara Dec 14 – 27 205 933 

Basija Dec27 – Jan 4 175 950 

Coling Jan 9-14 185 930 

Hellen Mar 27- Apr 1 150 965 

2014/2015 4 

Kate Dec30 – 31 175 947 

Bansi Jan 10-18 220 923 

Chedza Jan 10-18 100 975 

Eunice Jan 26- Feb 1 240 900 
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Appendix D - Tidal Constituents for Maputo Station, 1974. 

Tidal amplitude and phase with 95% of confidence interval estimates, 

for Maputo 1974. Tidal constituents (tide), frequency of oscillation 

(freq), amplitude (amp), error of amplitude calculation (amp_err), 

phase lag (pha), error of phase lag calculation (pha_err) and the signal 

to noise ratio (snr).  

  
     

  

tide freq amp amp_err pha pha_err 
                 

snr 

SSA 0.000228 0.0036 0.019 183.06 306.72 0.035 

MSM 0.00131 0.007 0.019 73.23 156.64 0.13 

MM 0.001512 0.0181 0.019 272.27 60.32 0.9 

*MSF 0.002822 0.0213 0.019 273.23 51.27 1.2 

MF 0.00305 0.0083 0.019 39.84 131.62 0.19 

ALP1 0.034397 0.0016 0.004 138.52 149.6 0.15 

2Q1 0.035706 0.0031 0.004 99.45 78.37 0.55 

SIG1 0.035909 0.0019 0.004 124.07 128.28 0.21 

*Q1 0.037219 0.0075 0.004 118.58 32.26 3.3 

RHO1 0.037421 0.0014 0.004 266.25 169.58 0.11 

*O1 0.038731 0.0229 0.004 167.83 10.53 31 

*TAU1 0.038959 0.0059 0.004 21.02 37.88 2 

BET1 0.04004 0.004 0.004 25.04 60.94 0.92 

NO1 0.040269 0.0029 0.004 230.86 75.18 0.49 

*CHI1 0.040471 0.0044 0.004 36.25 54.2 1.1 

P1 0.041553 0.0037 0.004 40.18 63.7 0.81 

*P1 0.041553 0.0101 0.004 339.46 23.4 6 

*K1 0.041781 0.0306 0.004 332.39 7.83 55 

*PHI1 0.042009 0.0065 0.004 86.39 36.91 2.4 

THE1 0.043091 0.0024 0.004 155.74 96.29 0.34 

J1 0.043293 0.0022 0.004 26.05 107.1 0.29 

*SO1 0.044603 0.0049 0.004 38.96 49.19 1.4 

OO1 0.044831 0.004 0.004 42.9 61.15 0.94 

UPS1 0.046343 0.0008 0.004 126.51 296.46 0.04 

OQ2 0.075975 0.0032 0.008 43.18 124.36 0.17 

*EPS2 0.076177 0.0147 0.008 125.82 28.97 3.6 

*2N2 0.077487 0.0263 0.008 61.66 15.89 12 

*MU2 0.07769 0.0614 0.008 135.41 7.11 63 

*N2 0.078999 0.1413 0.008 66.4 3.11 3.30E+02 

*NU2 0.079202 0.0344 0.008 34.43 12.81 20 

*M2 0.080511 0.9402 0.008 74.42 0.47 1.50E+04 

*MKS2 0.08074 0.0324 0.008 216.35 14.2 18 

*LDA2 0.081821 0.0194 0.008 62.53 22.67 6.3 

*L2 0.082024 0.0423 0.008 69.95 10.35 30 
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*S2 0.083333 0.5528 0.008 104.18 0.8 5.10E+03 

*K2 0.083562 0.1511 0.008 99.89 3.07 3.80E+02 

*K2 0.083562 0.1504 0.008 126.58 3.08 3.80E+02 

MSN2 0.084846 0.0074 0.008 235.62 59.29 0.91 

*ETA2 0.085074 0.0081 0.008 100.65 52.95 1.1 

*MO3 0.119242 0.0039 0.001 301.24 20.94 7.6 

*M3 0.120767 0.0052 0.001 347.77 15.29 14 

*SO3 0.122064 0.0031 0.001 57.98 26.71 4.8 

MK3 0.122292 0.0012 0.001 349.39 65.74 0.76 

*SK3 0.125114 0.004 0.001 76.97 20.52 7.9 

*MN4 0.159511 0.0031 0.001 308.92 21.45 6.9 

*M4 0.161023 0.0058 0.001 72.89 11.32 25 

SN4 0.162333 0.001 0.001 246.94 67.47 0.71 

*MS4 0.163845 0.0123 0.001 177.19 5.36 1.10E+02 

*MK4 0.164073 0.0037 0.001 197.39 18.48 10 

*S4 0.166667 0.0014 0.001 82.68 47.24 1.5 

SK4 0.166895 0.0002 0.001 4.28 430.44 0.019 

*2MK5 0.202804 0.0008 0.001 201.02 50.74 1.3 

*2SK5 0.208447 0.0008 0.001 250.03 51.13 1.3 

*2MN6 0.240022 0.0045 0.001 273.7 17.73 10 

*M6 0.241534 0.0101 0.001 288.77 7.92 50 

*2MS6 0.244356 0.0209 0.001 304.41 3.87 2.10E+02 

*2MK6 0.244584 0.0035 0.001 334.52 24.35 5.9 

*2SM6 0.247178 0.009 0.001 335.09 9.1 39 

*MSK6 0.247406 0.0046 0.001 345.93 18.37 10 

*3MK7 0.283315 0.0005 0 76.86 50.79 1.2 

*M8 0.322046 0.0024 0.001 169.53 11.93 22 

*M10 0.402557 0.0006 0.001 44.83 49.42 1.2 
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Appendix E - Tidal Constituents for Beira Station, 1996. 

Tidal amplitude and phase with 95% of confidence interval estimates, 

for Beira 1996. Tidal constituents (tide), frequency of oscillation 

(freq), amplitude (amp), error of amplitude calculation (amp_err), 

phase lag (pha), error of phase lag calculation (pha_err) and the 

signal to noise ratio (snr). 

  
     

  

tide freq amp amp_err pha pha_err 
                              
snr 

*SA 0.000114 0.1277 0.024 29.61 10.72 29 

*SSA 0.000228 0.0298 0.024 269.64 45.95 1.6 

MSM 0.00131 0.0155 0.024 281.79 88.52 0.42 

*MM 0.001512 0.0377 0.024 266.07 36.33 2.5 

MSF 0.002822 0.0231 0.024 18.05 59.37 0.93 

MF 0.00305 0.0152 0.024 10.74 89.99 0.41 

ALP1 0.034397 0.0036 0.004 112.34 72.45 0.91 

2Q1 0.035706 0.0021 0.004 279 121.47 0.32 

*SIG1 0.035909 0.005 0.004 293.02 52.93 1.7 

*Q1 0.037219 0.0141 0.004 15.51 18.59 14 

*RHO1 0.037421 0.0098 0.004 324.26 26.07 6.8 

*O1 0.038731 0.0461 0.004 17.26 5.75 1.50E+02 

*TAU1 0.038959 0.0045 0.004 324.17 39.94 1.5 

*BET1 0.04004 0.0041 0.004 222.98 67.25 1.2 

*NO1 0.040269 0.0164 0.004 298.34 18.53 19 

CHI1 0.040471 0.0035 0.004 127.31 74.47 0.89 

PI1 0.041439 0.0017 0.004 117.95 124.76 0.21 

*P1 0.041553 0.012 0.004 351.3 17.73 10 

P1 0.041553 0.0015 0.004 49.31 143.06 0.16 

*S1 0.041667 0.065 0.004 323.34 4.58 3.00E+02 

*K1 0.041781 0.0045 0.004 42.24 54.15 1.4 

*PSI1 0.041895 0.0059 0.004 114.18 37.41 2.4 

PHI1 0.042009 0.0037 0.004 162.74 58.42 0.97 

*THE1 0.043091 0.0146 0.004 310.31 17.36 15 

J1 0.043293 0.0026 0.004 123.15 98.02 0.46 

*SO1 0.044603 0.0071 0.004 311.04 37.54 3.5 

*OO1 0.044831 0.0116 0.004 52.97 39.91 9.6 

*UPS1 0.046343 0.0078 0.004 79.66 56.48 4.3 

OQ2 0.075975 0.0067 0.015 115.15 128.77 0.21 

*EPS2 0.076177 0.0382 0.015 158.28 21.6 6.9 

*2N2 0.077487 0.0497 0.015 90.72 16.78 12 

*MU2 0.07769 0.1327 0.015 177.42 6.1 83 

*N2 0.078999 0.2741 0.015 109.49 2.93 3.50E+02 

*NU2 0.079202 0.0697 0.015 82.5 11.64 23 
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*H1 0.080397 0.0186 0.015 92.01 45.8 1.6 

*M2 0.080511 1.7502 0.015 124.56 0.46 1.40E+04 

H2 0.080626 0.0138 0.015 171.66 59.39 0.89 

*MKS2 0.08074 0.0184 0.015 325.2 58.18 1.6 

*LDA2 0.081821 0.0421 0.015 116.48 19.01 8.3 

*L2 0.082024 0.0754 0.015 145.81 9.99 27 

*T2 0.083219 0.0626 0.015 157.35 13.33 18 

*S2 0.083333 1.0216 0.015 171.86 0.82 4.90E+03 

*R2 0.083447 0.017 0.015 94.36 39.26 1.4 

*K2 0.083562 0.3026 0.015 167.55 3.65 4.30E+02 

*K2 0.083562 0.278 0.015 194.26 3.98 3.60E+02 

*MSN2 0.084846 0.0245 0.015 331.16 31.69 2.8 

*ETA2 0.085074 0.0201 0.015 125.64 67.28 1.9 

*MO3 0.119242 0.0115 0.008 88.78 45.54 2.2 

*M3 0.120767 0.0698 0.008 296.53 6 82 

SO3 0.122064 0.0061 0.008 175.01 89.11 0.63 

*MK3 0.122292 0.009 0.008 349.7 53.75 1.4 

*SK3 0.125114 0.0586 0.008 82.21 8.53 58 

*MN4 0.159511 0.0497 0.005 190.93 5.56 91 

*M4 0.161023 0.1001 0.005 210.46 2.77 3.70E+02 

*SN4 0.162333 0.0148 0.005 210.51 19.36 8.1 

*MS4 0.163845 0.1005 0.005 213.28 2.87 3.70E+02 

*MK4 0.164073 0.0235 0.005 225.23 16.22 20 

*S4 0.166667 0.0486 0.005 272.77 6.17 87 

*SK4 0.166895 0.026 0.005 284.84 15.25 25 

*2MK5 0.202804 0.0031 0.003 42.79 50.52 1.4 

*2SK5 0.208447 0.0029 0.003 196.69 58.17 1.2 

*2MN6 0.240022 0.0058 0.002 55.35 19.81 6.7 

*M6 0.241534 0.0172 0.002 72.67 6.65 60 

*2MS6 0.244356 0.0361 0.002 126.57 3.29 2.60E+02 

*2MK6 0.244584 0.0082 0.002 138.45 19.19 14 

*2SM6 0.247178 0.0221 0.002 183.19 5.58 99 

*MSK6 0.247406 0.0126 0.002 182.92 12.95 32 

*3MK7 0.283315 0.0022 0.001 28.22 29.86 3.8 

*M8 0.322046 0.0042 0.001 126.18 11.42 19 

M10 0.402557 0.0005 0.001 35.54 101.6 0.22 
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Appendix F - Tidal Constituents for Pemba Station, 1998. 

Tidal amplitude and phase with 95% of confidence interval estimates, for 

Pemba 1998. Tidal constituents (tide), frequency of oscillation (freq), 

amplitude (amp), error of amplitude calculation (amp_err), phase lag (pha), 

error of phase lag calculation (pha_err) and the signal to noise ratio (snr). 

              

tide freq amp amp_err pha pha_err 
            
snr 

*SSA 0.000228 0.0238 0.02 351.87 47.8 1.4 

*MSM 0.00131 0.0235 0.02 180.67 48.3 1.4 

*MM 0.001512 0.0389 0.02 7.95 29.23 3.8 

MSF 0.002822 0.0091 0.02 253.31 125.12 0.21 

MF 0.00305 0.0054 0.02 353.59 209.34 0.075 

ALP1 0.034397 0.0015 0.004 219.29 181.32 0.15 

*2Q1 0.035706 0.0063 0.004 314.77 43.27 2.6 

*SIG1 0.035909 0.0055 0.004 8.19 49.72 2 

*Q1 0.037219 0.0224 0.004 17.09 12.22 32 

*RHO1 0.037421 0.0058 0.004 74.37 49.13 2.2 

*O1 0.038731 0.0916 0.004 34.61 2.98 540 

*TAU1 0.038959 0.0053 0.004 19.37 33.94 1.8 

*BET1 0.04004 0.0042 0.004 67.64 66.64 1.1 

*NO1 0.040269 0.0075 0.004 42.65 24.87 3.6 

CHI1 0.040471 0.0023 0.004 162.12 115.97 0.35 

*P1 0.041553 0.0462 0.004 37.94 4.84 140 

*P1 0.041553 0.0444 0.004 34.87 5.04 130 

*K1 0.041781 0.1342 0.004 27.8 1.88 1200 

PHI1 0.042009 0.0036 0.004 201.86 61.63 0.82 

THE1 0.043091 0.0034 0.004 339.65 77.67 0.76 

*J1 0.043293 0.0098 0.004 32.52 27.92 6.1 

SO1 0.044603 0.0037 0.004 83.33 73.82 0.88 

*OO1 0.044831 0.0054 0.004 75.34 63.51 1.9 

UPS1 0.046343 0.0025 0.004 169.98 151.34 0.4 

OQ2 0.075975 0.0006 0.008 17.6 699.61 0.006 

EPS2 0.076177 0.003 0.008 17.85 152.16 0.13 

*2N2 0.077487 0.0172 0.008 23.01 26.07 4.4 

*MU2 0.07769 0.0262 0.008 77.28 17.34 10 

*N2 0.078999 0.1811 0.008 65.38 2.51 490 

*NU2 0.079202 0.0438 0.008 70.55 10.32 29 

*M2 0.080511 1.1245 0.008 85.46 0.4 19000 

*MKS2 0.08074 0.014 0.008 214.7 42.05 2.9 

*LDA2 0.081821 0.0191 0.008 97.61 23.67 5.4 

*L2 0.082024 0.0222 0.008 78.6 23.59 7.4 

*S2 0.083333 0.573 0.008 125.88 0.82 4900 
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*K2 0.083562 0.1892 0.008 125.17 3.22 530 

*K2 0.083562 0.1559 0.008 148.28 3.9 360 

MSN2 0.084846 0.0012 0.008 249 360.52 0.022 

ETA2 0.085074 0.0078 0.008 228.46 88.68 0.91 

MO3 0.119242 0.0025 0.003 257.09 77.97 0.74 

*M3 0.120767 0.0102 0.003 223.81 15.61 12 

*SO3 0.122064 0.0084 0.003 340.5 24.22 8.2 

*MK3 0.122292 0.0073 0.003 317.18 24.68 6.3 

*SK3 0.125114 0.0073 0.003 26.23 25.75 6.2 

*MN4 0.159511 0.0023 0.002 157.04 37.72 2 

*M4 0.161023 0.0026 0.002 213.94 33.83 2.5 

SN4 0.162333 0.0015 0.002 98.8 58.02 0.92 

*MS4 0.163845 0.0033 0.002 183.52 27.45 4.1 

*MK4 0.164073 0.0041 0.002 333.43 28.55 6.3 

S4 0.166667 0.0005 0.002 273.77 205.9 0.078 

SK4 0.166895 0.0007 0.002 97.63 173.68 0.18 

2MK5 0.202804 0.0005 0.001 308.83 138.42 0.19 

*2SK5 0.208447 0.0017 0.001 200.9 42.05 2.3 

*2MN6 0.240022 0.0011 0.001 262.69 50.75 1 

*M6 0.241534 0.0016 0.001 316.38 34.89 2.2 

2MS6 0.244356 0.001 0.001 46.12 56.53 0.9 

2MK6 0.244584 0.001 0.001 320.28 71.8 0.94 

*2SM6 0.247178 0.0035 0.001 234.08 17.16 10 

*MSK6 0.247406 0.005 0.001 12.98 15.27 22 

3MK7 0.283315 0.0004 0.001 328.9 93.82 0.38 

*M8 0.322046 0.0009 0.001 6.74 36.32 1.9 

M10 0.402557 0.0003 0.001 94.09 110.64 0.19 
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Appendix G  – The tropical cyclone affected Mozambique from 1986 to 
2005 ( historical period in study). Source: JTWC – Adapted 

Appendix G. 1:  Tropical Cyclone Filão, February/March of 1988. 

 

Appendix G. 2 : Tropical Cyclone Bonita, January of 1996. 
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Appendix G. 3: Tropical Cyclone Nadia, January of 1994. 

 

 

Appendix G. 4: Tropical Cyclone Leon - Eline, February of 2000. 
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Appendix H – The tropical cyclone that made landfall in Mozambique, 
from 1986 to 2005 ( historical period in study).  

 

Period Nº of 

Events 

Event 

name 
Date Affected 

region  
(Land fall)  

 
Wind 

 
SLP 

1987/1988 2 

Doaza Jan 31- Feb 1 Sofala, 

Zambezia and 

Cabo Delgado 

135 954 

Filão Fev26-Mar 1 Quelimane 135 954 

1990/1991 1 
Cynthia Fev 16 - 19 Between Beira 

and Quelimane 

125 970 

1993/1994 1 
Nadia Marc 16-19 Nampula 

Angoche 

175 925 

1994/1995 1 Fadah Mar29-Apr 11 Nampula  920 

1995/1996 1 
Bonita Jan 3-15 Quelimane  

Pebane 

185 920 

1996/1997 1 Liset Feb 5-16 Beira 95 950 

1997/1998 1 
A1 Jan 6-13 Angoche and 

Quelimane 

.... 950 

1999/2000  2 

Eline Feb 8-29 Between Beira 

and Vilanculo 

185 930 

Hudah Mar 25-Apr 9 Pemba 220 905 

2000/2001 1 Dera Marc4-12 Angoche  925 

2002/2003 2 

Delfina Nov 14-27 Angoche  

Pemba 

150 965 

Japhet Fev 25-Mar 5 Zambezia 175 935 

2004/2005 1 Ernest Jan 16-23 Zambezia 165 950 
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Appendix I - Wind speed and direction for historical data from NOAA (a) 
and MPI-ESM-LR (b). 
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Appendix J - Wind speed and direction for Near Term Future and 
historical  from  MPI-ESM-LR  
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Appendix K - Wind speed and direction for Medium Term Future and 
historical  from  MPI-ESM-LR  
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Medium Term Future Wind, Pemba Station.
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Appendix L - Wind speed and direction for Long Term Future and 
historical  from  MPI-ESM-LR  
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Long Term Future Wind from MPI-ESM-LR, Beira Station.
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Long Term Future Wind, Quelimane Station.

WEST
EAST

SOUTH

NORTH

00 - 04
04 - 08
08 - 12
12 - 16
16 - 20
20 - 24
24 - 28
28 - 32
32 - 36
>=36

Wind Speed
    (km/h)

(a)

2%

4%

6%

8%

10%

Historical Wind from MPI-ESM-LR, Quelimane Station.

WEST
EAST

SOUTH

NORTH

00 - 04
04 - 08
08 - 12
12 - 16
16 - 20
20 - 24
24 - 28
28 - 32
32 - 36
>=36

Wind Speed 
     (km/h)

(b)



Appendix 
______________________________________________________________________________ 

141 

 

 

 

 

5%

10%

15%

Long Term Future, Wind Angoche Station.

WEST
EAST

SOUTH

NORTH

00 - 04
04 - 08
08 - 12
12 - 16
16 - 20
20 - 24
24 - 28
28 - 32
32 - 36
>=36

Wind Speed
     (km/h)

(a)

5%

10%

15%

Historical wind from MPI-ESM-LR, Angoche Station.

WEST
EAST

SOUTH

NORTH

00 - 04
04 - 08
08 - 12
12 - 16
16 - 20
20 - 24
24 - 28
28 - 32
32 - 36
>=36

Wind Speed
    (km/h)

(b)



Appendix 
______________________________________________________________________________ 

142 

 

 

 

 

2%

4%
6%

8%

10%

Long Term Future Wind, Pemba Station.
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