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Resumo 
 
 

NIPP1, inhibidor nuclear da protein phosphatase 1 (PP1), é uma proteina 
multifuncional que regula a sinalização celular, splicing do pre-mRNA e 
transcrição mediante o direcionamento da PP1 para substratos nucleares 
específicos. A deleção global da NIPP1 é letal durante o desenvolvimento 
embrionário no início da gastrulação, impedindo assim a sua análise funcional 
em tecidos de adultos. Este facto incitou-nos a gerar um modelo de ratinho 
knockout induzível (iKO) para a NIPP1. Inesperadamente, a remoção da 
NIPP1 não foi eficiente na maioria dos órgãos analisados, com exceção do 
testículo. A deleção da NIPP1 causou uma perda progressiva de células 
germinativas do testículo dependente da idade, culminando num fenótipo 
denominado Sertoli cells-only phenotype. O testículo adulto nos ratinhos iKO 
apresentaram uma diminuição na proliferação das espermatogónias 
(in)diferenciadas e aumento dos níveis de apoptose. De modo análogo, o 
testículo dos neonatos exibiu uma perda quase completa das espermatogónias 
(in)diferenciadas derivadas de gonócitos, durante o primeiro ciclo de 
espermatogénese. Adicionalmente, culturas celulares enriquecidas em células 
progenitoras GFRA1+ isoladas do testículo dos ratinhos iKO apresentaram uma 
diminuição do seu potencial proliferativo. Estes resultados sugerem que a 
NIPP1 é necessária para a manutenção das espermatogónias indiferenciadas. 
Demonstrámos também que fenótipo observado está associado à 
desregulação de genes implicados no controlo da proliferação e viabilidade 
celular. No que concerne o mecanismo molecular, a deleção da NIPP1 resultou 
na perda dos componentes centrais do complexo PRC2 (Polycomb Repressive 
Complex 2), o que afetou a expressão genética através da trimetilação da 
histone H3 no resíduo Lys27 (H3K27me3). A perda dos componentes 
integrantes do complexo PRC2 foi explanada pela hiperfosforilação e 
degradação da proteína EZH2, o componente catalítico central do complexo 
PRC2, resultando na subsequente destabilização de outros componentes 
deste complexo. Em conformidade, o fenótipo foi reproduzido através da 
inibição química da proteína EZH1/2 em culturas organotípicas de testículos. 
De modo geral, este estudo revela a importância da fosfatase PP1-NIPP1 para 
a regulação da fosforilação e estabilização da proteína EZH2, essencial para a 
manutenção das células germinativas.  
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Abstract 
 
 
 
 
 

NIPP1, for nuclear inhibitor of protein phosphatase 1 (PP1), is a multifunctional 
scaffold protein that regulates cell signaling, pre-mRNA splicing and 
transcription by targeting PP1 to specific nuclear substrates. The global 
deletion of NIPP1 in mice is embryonic lethal at the onset of gastrulation, 
precluding its functional analysis in adult tissues. This prompted us to generate 
a tamoxifen-inducible NIPP1 knockout (iKO) mouse model. Unexpectedly, the 
deletion of NIPP1 was not efficient in the examined organs except for testis. 
The loss of NIPP1 caused an age-dependent progressive loss of testicular 
germ cells, culminating in a Sertoli cells-only phenotype. iKO testis showed a 
decreased proliferation of (un)differentiated spermatogonia and an increased 
level of apoptosis. Likewise, neonatal iKO testis exhibited an almost complete 
loss of gonocyte-derived (un)differentiated spermatogonia during the first wave 
of spermatogenesis. In addition, GFRA1+ progenitor cells isolated from induced 
iKO testis displayed a reduced proliferation potential. These data suggest that 
NIPP1 is required for the maintenance of undifferentiated spermatogonia. We 
also found that the observed phenotype was associated with the deregulation 
of genes that are implicated in the control of cell proliferation and survival. At 
the molecular level, the deletion of NIPP1 was associated with the loss of core 
components of the Polycomb Repressive Complex 2 (PRC2), which affects 
gene expression through trimethylation of histone H3 at Lys 27. The loss of 
PRC2 components could be explained by the hyperphosphorylation and 
degradation of EZH2, the catalytic subunit of the PRC2 complex, resulting in 
the destabilization of other PRC2 core components. The testis phenotype of the 
iKOs could be phenocopied by the chemical inhibition of EZH1/2 in organotypic 
testis cultures. Overall, our study uncovers a key function for PP1-NIPP1 in the 
regulation of EZH2 phosphorylation and stability, which is essential for the 
maintenance of germ cells.  
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1.1 Testis structure and function 
The testicles are paired organs that perform two essential functions: sex steroid hormone 

secretion and production of spermatozoa. A testis consists of seminiferous tubules 

surrounded by a specialized interstitial space containing steroidogenic Leydig cells (LC), 

the vasculature, immune cells (macrophages and lymphoid cells) and rare fibroblast-like 

cells. Within the tubules the highly organized seminiferous epithelium consists of a layer of 

polarized Sertoli cells (SC) that sustain germ cells at all stages of maturation (Figure 1A) 

[1–3]. Sertoli cells cease to divide by birth in humans and their numbers remain relatively 

constant through adulthood at about 130 million per testis [4]. Each SC supports 

approximately 30-50 germ cells [5,6]. The seminiferous epithelium is compartmentalized 

by tight junctions between Sertoli cells that create the blood-testis barrier (BTB). The BTB 

segregates the events of meiotic and post-meiotic germ cell development from the 

systematic circulation, conferring immune privilege to the testis by avoiding immune 

responses against gametogenic antigens [7]. 

1.1.1 Spermatogenesis: the male gametogenic process 
The development of haploid mature spermatozoa from diploid spermatogonial cells after 

puberty is known as spermatogenesis. This process is one of the most productive cell-

proliferating systems in adult mammalian, generating about 100 million spermatozoa each 

day in man [8]. It takes approximately 75 days in man and 35 days in mice to complete one 

spermatogenic cycle [9] (Figure 1B). During spermatogenesis, maturation of germ cells is 

subdivided in three-phases: (1) a replicative/mitotic phase where spermatogonia (see 

section 1.2.4) undergo a series of mitotic divisions [10], (2) a meiotic phase in which 

meiosis and genetic recombination occurs resulting in the formation of haploid spermatids 

from spermatocytes [11] and (3) spermiogenesis, involving the transformation of round 

germ cells into specialized spermatozoa [9]. Finally, spermatozoa are released into the 

lumen of the seminiferous tubules, a process called spermiation [8], and ejaculated via the 

epididymis and vas deferens.  
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Figure 1: Organization and regulation of germ cell development in the testis. (A) Cross-section 

of the testis showing the localization of the vas deferens, epididymis and the seminiferous tubules. 

Enlarged representation of the seminiferous tubules surrounded by interstitial cells and 

magnification of a single Sertoli cell with associated germ cells at different stages of development. 

(B) Representation of the proliferation, differentiation and maturation of germ cells during one 

murine spermatogenic cycle. Spg, spermatogonia; Spc, spermatocytes; Spt, spermatids; SC, Sertoli 

cells; LC, Leydig cells. Adapted from [12]  

1.2 Regulators of germ-cell fate decision  
Primordial germ cells (PGCs) are derived from the epiblast and are maintained throughout 

life [13,14]. This formation of PGCs requires both cell intrinsic and extrinsic factors, as 

summarized below.  
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1.2.1 Initiation of fetal germ-cell development  
PGCs are formed through the specification of embryonic cells, which is induced by signals 

from the extraembryonic ectoderm and the visceral endoderm. In mice, this process 

involves bone morphogenic proteins (BMPs), such as BMP4 and BMP8B, which initiate 

the formation of PGC precursors at embryonic day 6.25 (E6.25) [15,16] (Figure 2A). 

Subsequently, these sexually undifferentiated PGCs start migrating towards the genital 

ridge at embryonic day 10.5 (E10.5), a process that involves the interaction of the receptor 

KIT (mast/stem cell growth factor receptor) and the CXCR4 (C-X-C chemokine receptor 

type 4)/G-protein ligand complex, associated with their corresponding ligands, SCF (stem 

cell factor) and SDF1 (stromal cell-derived factor 1), respectively [17]. PGC migration also 

requires the pluripotency-associated genes Pou5f1 (aka: Oct3/4; POU domain class 5 

transcription factor 1) and Nanog 3 (nanog homeobox 3) [18,19]. Once PGCs have reached 

the genital ridge they become surrounded by differentiating SC, forming the testicular 

cords at E12.5. As soon as testicular cords have been formed, PGCs are called gonocytes 

[20–22] (Figure 2B). Thereafter, masculinization signals from somatic cells in the gonad 

direct gonocytes towards a path of male development [23–25].  

1.2.2 Gonadal sex determination  
The gonad is an organ primordia with bipotential capacity: a testis or ovary can develop 

from a single primordium. The expression of several genes is required between 10.5 dpc 

and 11.5 dpc for the outgrowth of the early bipotential gonad, including Nr5a1 (aka Sf1, 

steroidogenic factor 1) [26], Wt1 (Wilms tumor 1) [27], Lhx9 (Lim homeobox 9) [28], 

Emx2 (empty spiracles homeobox 2) [29] and Igfr1 (insulin-like growth factor 1 

receptor)/Ir (insulin receptor)/Irr (insulin receptor-related receptor) receptor family [30] 

(Figure 2B).  

In mammals, sex determination is genetically controlled by the presence or absence 

of the Y chromosome. The initiation of the male pathway at E10.5 depends on gonadal 

expression of Sry (sex-determining region Y), a gene located in the male specific region of 

the Y chromosome [31–38]. The expression of Sry in the genital ridges is regulated by 

transcription (co)factors (WT1, GATA4 and FOG2) and typically results in their 

development into testis, whereas absence or dysfunction of Sry leads to development of 

ovaries [39,40]. Accordingly, XY mice with no functional Sry develop ovaries and the 

addition of Sry to XX mice triggers the testis pathway [32,34,38]. In humans, patients who 

show partial to complete sex reversal carry mutations in SRY gene [41].  
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Sry encodes a transcriptional factor that binds to and activates the testis-specific gene 

Sox9 (Sry-box 9) [42–44], Fgf9 (fibroblast growth factor 9) [45], Dax1 (nuclear receptor 

subfamily 0 group B member 1) [46] and Nr5a1 [43], thereby directing the supporting cells 

of the genital ridges towards the fate of SC. These cells start to differentiate at E12.0-E12.5 

[36] and aggregate around germ cells that separate the gonads into two compartments: the 

tubular testis cord composed of SC and germ cells, and the interstitial space between the 

cords which include LC and fibroblasts [47]. The maintenance of the SC phenotype is 

driven by Dmrt1 (double sex and mab-3 related transcription factor 1), a transcription 

factor that is responsible for sex determination in metazoa. Strikingly, the expression of 

Dmrt1 in a XX mouse fetal gonad is sufficient to drive testicular differentiation and male 

secondary sex development [48–50].  

 
Figure 2: Schematic representation of germ-cell development during murine embryogenesis 

and early post-natal life. (A) Male germ cells start developing shortly after fertilization, when a 
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population of pluripotent cells form precursors of primordial germ cells (PGCs) in the epiblast at 

embryonic day E3.5-6.25. Mature PGCs are formed by embryonic day E7.5. They form a cluster of 

cells in the fetal gonads that proliferate rapidly and migrate to the genital ridge, where sex 

determination takes place at E12.5. At embryonic day 13.5, PGCs are called gonocytes and are 

mitotically arrested. Shortly after birth, the first wave of spermatogenesis starts in the neonatal 

testis and lasts 35 days in mice. Pro-spermatogonia develop into spermatogonial stem cells (SSCs), 

which proliferate by consecutive mitotic divisions to maintain the SSC population (self-renewal) or 

differentiate into spermatocytes during the first postnatal week. Spermatocytes enter meiosis and 

cross the blood barrier established by Sertoli cells to form post-meiotic cells (round spermatids) 

around day P20-P22. These cells differentiate into elongating spermatids and finally mature into 

functionally inactive sperm cells. Male mice become fertile five to six weeks after birth. In rodents, 

the first wave of spermatogenesis is synchronous, but in adulthood, the germ cells of the 

seminiferous epithelium exist at defined cellular stages. (B) Formation of the XY gonad and 

gonocytes at E6.25-E13.5. P, postnatal; E, embryonic day; PGCs, primordial germ cells; SSC, 

spermatogonia stem cell; ICM, inner cell mass; TE, trophectoderm; ExE, extra embryonic 

ectoderm; AVE, anterior visceral endoderm; Epi, epiblast. Adapted from [2,51–53].  

1.2.3 Signals regulating the switch from gonad to spermatogonia  
Shortly after reaching the genital ridges and their maturation into male germ cells, the 

PGCs (gonocytes) in mice continue to proliferate until they enter quiescence at E15-16 

[21,54–56] (Figure 2). Some authors propose that gonocytes give rise to a special type of 

stem cells, termed pro-spermatogonia, that subsequently generate the adult-type 

spermatogonia stem cells (SSC) [57–59]. In any case, this period is marked by changes in 

expression of cell-cycle proteins and numerous signaling pathways are involved in the 

inhibition of gonocyte proliferation, including the transforming growth factor beta (TGFb) 

pathway [56,60,61].  

After birth, gonocytes start moving from the center of the seminiferous tubules 

towards the basement membrane, a process that involves the KIT/SCF signaling pathway 

[62]. Concomitantly, proliferation resumes and male SSC are formed [54,57,63] (Figure 2). 

In male mice, transformation of gonocytes into SSCs occurs between 0 and 6 days post-

partum (dpp) and the first appearance of active SSC occurs between 3-4 dpp [21,57,58,64]. 

Signaling from somatic cells markedly influences the molecular mechanism governing the 

transition from gonocytes to SSC. SIN3A (swi-independent 3a), a component of a large 

transcriptional remodeling complex in SCs, is specifically required to retain SSC 

pluripotency, since its deletion from perinatal male gonocytes results in the downregulation 
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of the SSC genes Oct3/4, Gfra1 (GDNF family receptor alpha-1), c-Ret (proto-oncogene 

tyrosine kinase receptor RET) and Plzf (zinc finger and BTB domain containing 16) [65–

67] (see section 1.2.4).  

1.2.4 Postnatal germ-cell development  
The early postnatal gonad contains a heterogeneous group of germ cells with respect to 

morphology, gene-expression pattern and function. As described above, SSCs are derived 

from a population of perinatal germ cells that migrate during prepubertal development 

from their perinatal luminal position in the seminiferous tubule to the basal lamina. Here, 

they remain in a functional niche that is established to maintain self-renewal of SSCs 

during spermatogenesis. I will elaborate here on the hormonal control of spermatogenesis 

(1.2.4.1) and the regulation of spermatogonial-cells identity (1.2.4.2), including extrinsic 

and intrinsic factors that influence self-renewal and differentiation of spermatogonia in 

mice. Epigenetic regulation and the importance of reversible protein phosphorylation in 

germ-cells development will be discussed in sections 1.2.5 and 1.2.6, respectively.  

1.2.4.1 Hormonal and germ-cell-soma regulation 
Testicular function is influenced by endocrine (extra-testicular) and paracrine (intra-

testicular) factors. The endocrine pathway involves a hypothalamic-pituitary-testicular axis 

that functionally interconnects the brain and testis [12,68–70] (Figure 3), while the 

paracrine pathway comprises interactions between germ cells and somatic testis cells that 

are essential for normal spermatogenesis.  

The endocrine pathway is tightly regulated by a complex network of hormones, 

involving the gonadotropin-releasing hormone (GnRH) produced by the hypothalamus, 

which stimulates the production of the follicle-stimulating hormone (FSH) and luteinizing 

hormone (LH) by the pituitary gland. FSH regulates SC replication before puberty and 

functions in the seminiferous epithelium throughout adulthood. LH regulates the 

steroidogenic activity of LCs, leading to the secretion of testosterone and estradiol-17β in 

the interstitial space [71–74]. FSH and LH signal through specific receptors (FSHR and 

LHR) that are expressed by SCs and LCs, respectively. LHR knockout mice are 

phenotypically characterized by spermatogenic arrest [75], while the deletion of FSHR 

results in a reduced testis size and lower testosterone levels [76]. The production of 

testosterone and estradiol-17β by LCs, and the secretion of inhibin by SCs [69,70] provide 

a negative feedback loop that reduces the secretion of LH and FSH. This maintains a fine 
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hormonal homeostasis within the hypothalamic-pituitary-testicular axis [69,70,74,77]. In 

addition, the inhibin-antagonist activin hormone, produced by a wide variety of tissues 

besides gonads, has a positive endocrine effect on FSH stimulation and a paracrine effect 

on germ-cell maturation [78].  

The paracrine regulation is provided by steroids (e.g. testosterone) and growth 

factors (see next section) produced by testicular somatic cells. The function of testosterone 

in the maintenance of spermatogenesis, development of reproductive organs and secondary 

sex characteristics is well understood [79]. LC-secreted testosterone binds to androgen 

receptors (AR) expressed by SCs, LCs and peritubular myoid cells, to regulate androgen 

responsive genes [69]. Genetic ablation of AR in mice results in infertility due to loss of 

spermatids [80]. In human males, hypogonadism is a clinical syndrome that results from 

the failure to produce normal levels of testosterone (primary hypogonadism) or 

dysfunction of the hypothalamic-pituitary-testicular axis (secondary hypogonadism) [81].  

 

Figure 3: Hormonal control of spermatogenesis. The figure shows the main endocrine factors 

secreted by the pituitary gland (LH, luteinizing hormone; FSH, follicle-stimulating hormone) and 
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local regulators of testis function (androgens and estrogens). SC, Sertoli cell; LC, Leydig cell. 

Adapted from [12]. 

1.2.4.2 Regulation of spermatogonial-cell identity and fate  
Spermatogenesis in mammals is a continuous process throughout adulthood that depends 

on a lasting supply of self-dividing and differentiating SSCs. The latter cells are rare, 

representing only 0.03% of the total testicular germ cells [82]. In adult male mice, SSCs 

represent a small set of spermatogonia that are referred to as undifferentiated 

spermatogonia. They divide with incomplete cytokinesis to form clusters of interconnected 

spermatogonia. The most primitive SSC type, spermatogonia A single (As), divides to 

form two new As cells, or divides to form paired spermatogonia (Apr) cells connected by 

an intercellular bridge. Apr spermatogonia further divide to form a chain of aligned cells 

(Aal 1-4), which can divide to form large syncytial chains of 8 (Al-8), 16 (al-16) and even 

32 (Al 32) cells [64,83,84] (Figure 4A-C). All these cell types have been shown to have 

stem cell potential, since they can form colonies that repopulate a recipient testis after 

transplantation [85–88]. In primates, there are three morphologically distinct 

spermatogonia: dark type A (Ad), pale type A (Apr) and type B [89].  

In addition to self-renewing, mouse undifferentiated spermatogonia generate 

differentiated spermatogonia (A1-A4), intermediate (In) and spermatogonia B, which then 

differentiate into meiotic spermatocytes. SSCs are therefore capable of undergoing self-

renewal and differentiation, but whether their division is symmetric or asymmetric in 

mammals is still a topic of debate. As most stem cells, SSCs can presumably divide by 

either asymmetric or symmetric modes of division and the balance between those modes is 

controlled by developmental and environmental signals [90]. When dividing 

symmetrically, each stem cell generates either self-renewing or differentiating daughter 

cells [90,91] (Figure 4A). During asymmetric division, each stem cell divides to generate 

one daughter cell with a stem cell fate (self-renewal) and one daughter cell committed to 

differentiate (Figure 4B). The balance between self-renewal and differentiating SSC is 

regulated by both micro-environmental stimuli (niche) and gene expression (see next 

sections).  
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Figure 4: Germline stem-cell lineage. (A-B) Possible cell division modes that maintain the 

balance between stem cells and differentiating progeny of spermatogonial stem cells (SSCs). (A) 

Symmetrical division: each SSC generates either two SSC daughter cells or two differentiating 

cells (Apr spermatogonia). (B) Asymmetrical division: each SSC can divide to generate one 

daughter stem cell and one daughter cell destined to differentiate (Apr spermatogonia). (C) 

Schematic representation of the spermatogonial development. (Left) Cross-section of a mouse 

seminiferous tubule and associated Sertoli cells showing the localization of SSCs and differentiated 

spermatogonia near the basal membrane. (Middle) Self-renewal and differentiation of different 

spermatogonia pools. (Right) Main genes expressed by undifferentiated and differentiated 
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spermatogonia. As, A single; Aal, A aligned; Apr, A paired; SC, Sertoli cell; Spc, spermatocyte; 

Spt, spermatid; I, intermediate [91–93]. 

1.2.4.2.1 Extrinsic regulation of spermatogonia proliferation  
Factors within specialized microenvironments, referred to as niches, provide support to 

SSCs through architectural support and growth-factor stimulation [94,95]. In mammalian 

testis, SCs are the major contributor to the SSCs niche, but contributions from other 

testicular somatic cells are likely to occur, as LCs and myoid cells produce the cytokine 

colony-stimulating factor 1 (CSF-1), which influences SSC self-renewal [96].  

Sertoli cells express GDNF (glial cell-line derived neurotrophic factor), a supporting 

factor of SSC self-renewal [1,97–102]. The GDNF receptor in SSCs consists of RET and 

GFRA1 (encoded by the Gfra1 gene) [103], and target disruption of this receptor impairs 

spermatogenesis [104]. GDNF activation upregulates expression of the transcriptional 

factors Bcl6 (B-cell leukemia/lymphoma 6) and Lhx1 (LIM homeobox 1), which influence 

SSC self-renewal [97,105]. Other growth factors, including IGF-1 (insulin-like growth 

factor 1 precursor) and FGF2 (fibroblast growth factor 2) have been implicated in the 

survival or expansion of SSCs in culture [100,101].  

1.2.4.2.2 Intrinsic regulation of spermatogonia proliferation  
SSCs are unipotent stem cells that, similarly to embryonic stem cells (ESCs), grow on 

feeder cells in islands or clumps, and express the Oct3/4 gene. However, unlike ESCs, 

transplanted SSCs do not rapidly generate teratocarcinomas [1,85,101]. In fact, 

pluripotency was for many years believed to be limited to the embryogenic stage [106–

108]. In addition, Nanog regulation by Oct3/4 and Sry-box containing gene 2 (Sox2), a key 

determinant of ESC self-renewal and pluripotency [109], is not explicitly required for SSC 

maintenance [1,110,111], indicating that SSCs and ESCs have distinct signaling 

mechanisms of self-renewal [1].  

Several SSC-expressed genes are essential for the autonomous maintenance of stem-

cell identity (Table 1). Most of the genes expressed in undifferentiated spermatogonia are 

also expressed in gonocytes [91,94], with exception of the transcription factor Ngn3 

(neurogenin 3) [112]. A small subset of Ngn3- gonocytes can bypass the SSC phase to 

directly differentiate into Ngn3- spermatogonia during the first wave of spermatogenesis. 

This contrasts with the pool of Ngn3+ spermatogonia that originate from SSCs during 



CHAPTER	1:	General	Introduction	
	

	 23	

subsequent waves of spermatogenesis [112,113]. As a result, a heterogeneous pool of 

gonocyte-derived spermatogonia can be found in the neonatal testis.  

 

Table 1: Genes involved in spermatogonial stem-cell maintenance  

Gene  Knockout phenotype Proposed function in germ cells 

Dazl Failure of spermatogonia Aal-A1 transition 
[114]  

Encodes a RNA binding protein essential for 
differentiation of spermatogonia Aal [114] 

Gfra1 SSC depletion [104] Component of GDNF receptor required for 
spermatogonial self-renewal [104] 

Nanos2 Gradual loss of spermatogonia by apoptosis 
[110] 

Maintenance of stem-cell population and 
germ-cell differentiation [110,115]  

Ngn3 Failure of embryonic-cell specification and 
differentiation [112] 

SSC fate specification during early stages of 
spermatogenesis [112] 

Oct3/4 Loss of pluripotency in embryonic stem cells 
[116] 

Regulation of spermatogonia pluripotency 
[117], fate commitment [118] and germ-line 
development [119,120]  

Plzf (aka 
Zbtb16) 

SSC depletion and increased apoptosis [121] Transcription factor required for 
spermatogonia self-renewal [121,122] 

Ret SSC depletion [104]  Component of GDNF receptor required for 
spermatogonial self-renewal [104] 

Sall4 Embryonic germ cells loss. Postnatal deletion 
causes tubular degeneration in adulthood 
[123]. 

Maintenance of SSC pool homeostasis [123] 

Taf4b Spermatogonia depletion in adulthood [124] SSC specification and proliferation [124] 
   
Dazl, deleted in azoospermia like; GDNF, glial cell-derived neurotrophic factor; Gfra1, GDNF 

family receptor alpha 1; Nanos2, nanos homolog 2; Ngn3, neurogenin 3; Oct3/4, POU class 5 

homeobox 1; Plzf, zinc finger and BTB domain containing 16; Ret, c-Ret proto-oncogene; Sall4, 

spalt-like transcription factor 4; Taf4b, transcription initiation factor TFIID subunit 4B. SSC, 

spermatogonial stem cells; al, A aligned. 

1.2.4.2.3 Differentiation of spermatogonia  
Compared to the regulation of SSC maintenance, the transition from undifferentiated to 

differentiated spermatogonia is regulated by fewer genes [125]. Retinoic acid (RA), the 

active metabolite of vitamin A, is required for the differentiation of spermatogonia and the 

onset of meiosis. Whereas the expression of RA during male fetal development is 

prevented by the expression of the RA-degrading enzyme CYP26B1 (cytochrome P450 

family 26 subfamily B member 1) by SCs (Figure 5), RA-stimulated retinoic acid 8 (Stra8) 

expression induces spermatogonia differentiation and meiotic entry during puberty [126–

128]. Other RA-induced genes are regulated during spermatogonia differentiation, such as 

Kit and the spermatogenesis- and oogenesis-specific basic helix-loop-helix genes 1 and 2 

(Sohlh1 and Sohlh2). Additionally, RA downregulates Plzf during SSCs differentiation 

[129]. Plzf acts as a transcriptional repressor of Kit, a key regulator of spermatogonial 
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differentiation [130]. Likewise, reduction of Nanos2 expression by RA is concomitant with 

induced Kit and Stra8 expression [131]. RA also regulates the expression of BMP4 in 

mouse testis [132], which decreases the maintenance of adult SSCs. RA-regulated BMP4 

induces differentiation by promoting Sohlh2 and Kit expression [129,133,134]. Ngn3 was 

also proposed to drive differentiation of mouse SSCs as a downstream effector of the 

signal transducer and activator of transcription 3 (STAT3)-regulated differentiation 

[135,136]. Additional genes, including the spermatogonial doublesex-related transcription 

factors (DMRTs), regulate the transition between mitotic and meiotic developmental 

programs during spermatogenesis (Figure 5) [49,129,137–139]. In conclusion, multiple 

signaling pathways modulate SSC self-renewal and commitment to differentiate.  

 

 
Figure 5: Schematic representation of the spermatogonial differentiation program. Retinoic 

acid (RA) in mice is required for the postnatal differentiation of spermatogonia, which is kept 

inactive due to the catabolic effect of CYP26B1 during testis embryonic development. CYP26B1 is 

a cytochrome P450 enzyme that oxidizes RA to its hydroxylated forms [140]. RA responsive genes 

(e.g. Stra8) and other genes (e.g. Dmrt1) dictate the spermatogonial differentiation fate and 

regulate the switch from mitosis (spermatogonia) to meiosis (spermatocytes) programs. DMRT1 

acts in spermatogonia to restrict RA responsiveness, directly repress Stra8 transcription, and 

activate transcription of the spermatogonial differentiation factor Sohlh1, thereby preventing 

meiosis and promoting spermatogonial development. RA, retinoic acid; E, embryonic day. Adapted 

from [49,128,141,142].  
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1.2.4.2.4 Potential pluripotency of germ stem cells  
Embryonic germ cells and SSCs from neonatal mouse testis have a similar pluripotency 

and differentiation potential [106,143,144]. Indeed, embryonic-like stem cells (ES-like 

cells) have been derived from mouse SSCs [100,145–148] that can differentiate into cells 

of three embryonic germ layers [147]. However, these ES-like multipotent cells can not 

contribute to spermatogenesis in the seminiferous tubules after transplantation, hinting at a 

loss of their SSC potential [143], possibly caused by an altered DNA methylation pattern. 

Remarkably, the plasticity of these SSC unipotent cells is not limited to pluripotency 

reversal. In fact, direct conversion of SSC cells into somatic cells has been reported [149–

151]. SSC-derived ES-like cells can potentially be used for purposes of regenerative 

medicine [143,144,152,153]. However, a key question is whether results obtained in mice 

also apply to humans, in particular since spermatogonial self-renewal in primates is still 

poorly understood [64,154].  

1.2.5 Epigenetic control of germ-cell development  
The process of germ-cell development is regulated by both genetic and epigenetic 

mechanisms. Epigenetics is defined by chromatin modifications, including DNA 

methylation, histone modifications (Figure 6), remodeling of the nucleosomes and 

chromatin reorganization, thereby regulating gene expression without changes in DNA 

sequence. In germ cells, the epigenetic program contributes to the gene-expression 

program required for germ-cell development and genomic integrity.  

Polycomb group (PcG) proteins are a family of epigenetic regulators of transcription 

that have roles in stem-cell identity, differentiation and disease. PcG proteins were first 

described in Drosophila melanogaster as silencers of homeobox (Hox) genes expression 

[155–157]. PcG proteins can alter the chromatin environment by their catalytic activity, 

imposing post-translational modifications (PTMs) such as phosphorylation, ubiquitination, 

acetylation and methylation. In addition, PcG proteins can also induce chromatin 

condensation by mechanisms that do not require catalytic activity [158–160], thereby 

restricting the action of the ATP-dependent chromatin remodeling complexes [158,159].  
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Figure 6: DNA methylation and the histone code. DNA is epigenetically modified by 

methylation on CpG (cytosine-phosphate-guanine) dinucleotides, promoting epigenetic silencing. 

Moreover, the N-terminus of histone tails protrude from the nucleosome and can be post-

translationally modified, determining the chromatin structure. The histone modifications thus act in 

a combinatorial manner, referred as the histone code. H, histone; Me, methylation; ph, 

phosphorylation; ac, acetylation; ub: ubiquitination. Adapted from [161–163].  

 

Distinct subsets of PcG proteins associate to form multiprotein complexes called 

Polycomb repressive complexes (PRCs), which modify histones and mainly silence target 

genes. PRCs belong to two major families: the polycomb repressive complexes 1 and 2 

(PRC1 and PRC2) (Figure 7). PRC1 complexes have E3 ligase activity and their main 

substrate is histone H2A that is mono-ubiquitinated at lysine 119 (H2Au119) [164–167]. 

PRC2 complexes contain methyltransferase activity and are mainly involved in the di-

trimethylation of histone H3 at lysine 27 (H3K27me2/3) [168]. PRC1 core components 
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include the E3 ubiquitin protein ligase RING1, BMI1 (aka PCGF4, polycomb group of 

RING finger 4) and the chromodomain-containing protein Pc (CBX homologue, Homo 

sapiens). The core components of the PRC2 complex are SUZ12 (suppressor of zeste 12 

protein homolog), EED (embryonic ectoderm development), RbAp48 (retinoblastoma-

associated protein 48) and EZH1/2 (enhancer of zeste homolog 1/2), which contains a SET 

domain that is responsible for the methyltransferase activity of the complex [156,164,169–

176]. EZH1 and EZH2 proteins are mutually exclusive in the complex, but their expression 

is complementary: EZH2 is highly expressed in embryonic tissues and proliferating cells, 

whereas EZH1 is mostly present in adult tissues and differentiating cells [174,177–179]. 

Also, EZH1 has only a minor methyltransferase activity as compared to that of PRC2 

[173,177]. PRC2 is important both for the maintenance of embryonic stem (ES) cell 

pluripotency [180,181] and as a regulator of cell differentiation [182–184] .  

 
Figure 7: Epigenetic gene silencing by PcG proteins. Gene silencing is mediated by tri-

methylation of H3 (H3K27me3) by the SET domain of the methyltransferase EZH2, one of the 

core components of the polycomb repressive complex 2 (PRC2). DNMTs can be recruited to PRC2 
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target genes via direct interaction with EZH2 to promote DNA methylation. Trimethylated H3K27 

(H3K27me3) is recognized by the polycomb repressive complex 1 (PRC1). RING1, a component 

of the PRC1 complex, catalyzes the monoubiquitination of H2AK119, a histone mark associated 

with the inhibition of RNA polymerase II binding and progression. In addition, the PRC1 complex 

induces chromatin compaction independent of RING1. SET, (Su-[var]3-9; E(z); Thrithorax) 

domain family of proteins; CD, Chromodomain; me, methylation; Ub, ubiquitination. Adapted 

from [185,186].  

 

Germ cells have specific fates and go through a series of epigenetic events that are 

unique to this cell type [187]. DNA methylation is particularly important for early testis 

development due to its role in germline programming, which involves erasure and re-

establishment of DNA methylation patterns in germ cells [187,188]. There are two critical 

stages that require extensive epigenetic regulation during germ-cell development: the 

genome-wide epigenome reprograming event during PGCs development before birth and 

the epigenomic fine-tuning that occurs in SSCs postnatally [187,189] (Figure 8).  

When germ cell-fate is established at E7.25, the level of DNA methylation is similar 

to those in the surrounding somatic cells, but decreases as PGCs proliferate and migrate by 

undergoing a genome-wide DNA demethylation (Figure 8). Methylation in PGCs 

decreases from »70% at E6.5 to »30% at E9.5, and is further reduced to »10% in male 

PGCs after gonad formation at E13.5 [190–193]. Subsequently, global DNA methylation 

by the DNMT3 methyltransferases (DNA (cytosine-5)-methyltransferases 3A/3B/3L) 

[194,195] rises by some 40% from PGCs at E13.5 to gonocytes at E16.5 to re-establish the 

epigenome at perinatal germ cells [172,191,196]. Additional histone modifications occur 

during prenatal development, including repressive H3K27me3, H3K9me3 and H2AK119 

monoubiquitination marks, and activating H3K4me3 marks [197–199]. The erasure and 

establishment of parental imprints1 occur in PGCs when they arrive in the genital ridges at 

E11.5 [187], as reflected by demethylation of the imprinted loci [200]. New imprints 

involving DNMT3 [196,201–204] are established after sex determination has been initiated 

in G1-arrested gonocytes between E14.5 and birth [192,196,201,205], and are maintained 

throughout male germ-cell development [206].  

1Genomic imprinting refers to the selective inactivation of paternal or maternal genes/chromosomes by 
epigenetic modifications. 
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Figure 8: Chronology of mouse epigenetic regulation of germ-cell development. After 

fertilization, the imprinting marks are erased by the epigenetic machinery of the zygote and new 

paternal imprints are established in a unique pattern dependent on the sexual fate. During neonatal 

and postnatal testis development, dynamic epigenetic events involve erasure and re-establishment 

of DNA methylation patterns to guarantee the correct germ-line programming. Adapted from 

[51,206]. MSCI, meiotic sex-chromosome inactivation.  

 

Postnatally, differential gene expression patterns among undifferentiated 

spermatogonia subpopulations suggest a modification in the epigenetic programming 

related to cell-fate determination [207–209] (Figure 8). This is also suggested by 

differences in DNA methylation [210,211] between self-renewing spermatogonia and those 

committed to differentiate. In addition, the latter cells exhibit chromatin bivalency (the co-

occurrence of H3K4me3 and H3K27me3) at promoters of developmental genes [210–212]. 

Indeed, conditional mutagenesis of the PRC2 subunits EED and SUZ12 during perinatal 

germ cell development results in a paucity of mutant SSCs in testis, suggesting a role for 

PRC2 in the maintenance of these cells [213].  

Male germ cells also express a high number of testis-variant histones (e.g. TH2B, 

TH3, H3.3 and HT1), which are incorporated in the nucleosomes of spermatogonia and 

spermatocytes [214–217] and probably contribute to meiosis and the subsequent 
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maturation of gametes [214]. There also exists a mechanism of meiotic sex-chromosome 

inactivation (MSCI) involving a H2A variant (H2Ax), which includes the condensation of 

chromatin in a macrochromatin body (XY body) to form transcriptionally silenced 

chromosomes [218,219] (Figure 8). After meiosis, haploid round spermatids undergo 

morphological and epigenomic changes to allow fertilization [220,221], where the testis-

specific histone variant H1T2 has a function in chromatin condensation [222]. A later 

process involves the histone-protamine exchange to facilitate DNA compaction, where 

histones are first almost completely replaced by spermatid nuclear transition proteins 1 and 

2 (TPN1 and TPN2), and are subsequently replaced by highly basic protamines 1 and 2 

(PRM1 and PRM2) [214,223–227] (Figure 2 and 8). The retained spermatid histones 

represent a mechanism to transfer epigenetic information to the offspring [206]. 

1.2.6 Regulation of germ-cell function by protein phosphorylation  
Reversible protein phosphorylation is an important process for the control of virtually all 

biological processes, including spermatogenesis (Figure 9). Although in the last decades a 

series of protein kinases and phosphatases have been shown to be crucial during 

spermatogenesis, only a few of these enzymes have been functionally characterized in 

spermatogonia (Table 2). Most phosphorylations occur on serine or threonine residues and, 

to a lesser extent, on tyrosine residues [228].  
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Figure 9: Schematic representation of the cellular processes controlled by reversible protein 

phosphorylation during spermatogenesis. SCn, Sertoli cell nucleus; Spg, spermatogonia; Spc, 

spermatocytes; rSpt, round spermatids; eSpt, elongated spermatids.  
 

Many serine/threonine protein kinases play pivotal roles in mitosis, meiosis and the 

post-meiotic differentiation of germ cells. For instance, Aurora like kinase 3 (ALK3) is 

involved in chromosome segregation, the microtubule associated polo-like kinases (Plks) 

are required for the organization of the meiotic apparatus [229], and the cAMP dependent 

protein kinase A (PKA) functions in sperm motility, capacitation and acrosome reaction 

[230–232]. Other kinases, such as the cell-cycle checkpoint protein kinases (Chk1 and 

Chk2), prevent cell cycle progressing of germ cells as a result of extrinsic or intrinsic 

(meiotic recombination) DNA damage events. This process also involves the upstream 

DNA sensing kinases ATM/ATR, that operate in the recognition and initiation of the DNA 

damage-repair pathway in testicular cells [233–235], including undifferentiated 

spermatogonia [236]. Another group of serine/threonine protein kinases, including mitogen 

activated protein-kinases (MAPKs) such as ERK1/2, are essential for the growth, division 

and differentiation of both somatic and germ cells. MAPKs also play a role in the 

capacitation [237] and acrosome reaction of spermatozoa [238,239]. An important 

spermatogonia signaling pathway involves the growth factor GDNF, as shown by studies 

on cultured SSCs. Downstream GDNF effectors include members of the Src family of 

tyrosine protein kinases and the Ras/ERK1/2 signaling pathway. In addition, 

phosphoinositide 3-kinase and AKT are components of the pathway that is activated by 

GDNF [101,105,240–242]. Several other tyrosine kinases have been implicated in sperm 

motility, capacitation and acrosome reaction [243,244].  

Compared to protein kinases, little is known about the counteracting protein 

phosphatases (PPs) in spermatogenesis, particularly in spermatogonia (Table 2). 

Nevertheless, tyrosine protein phosphatases and serine/threonine protein phosphatases, 

including the protein phosphatase PP1, have established functions in meiosis, spermatid 

elongation and sperm acquisition of motility during epididymis maturation [245–248]. 

(Figure 9).  
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Table 2: Kinases and phosphatases involved in spermatogonial development 
Sub-family/Name  Proposed function 

Kinases   
Serine/threonine protein kinases   
 MAPK (ERK1/2) SSC proliferation and self-renewal 

[98,101,242] 
 Akt SSC proliferation and self-renewal [241]  
 Cyclin A1, 2/ CDK 1, 2 Cell cycle regulation [229] 
 Cyclin D 1, 2, 3/ CDK 4, 6 Cell cycle regulation [249] 
 ATM  Maintenance of SSC [236] 
Tyrosine protein kinases   

 Src SSC proliferation and self-renewal 
[105,240] 

Phosphatases   

Tyrosine protein phosphatases   
 PTPRE ND [250]  
 SHP2 SSC maintenance [251] 

Serine/threonine protein 
phosphatases 

  

 PP1a, b and g1 ND [252,253] 
 PP2A Present but no spermatogonial 

phenotype was observed after Ppp2ca 
CKO in mice [61,254] 

Threonine/tyrosine protein 
phosphatases  

  

 DUSP1 ND [250] 
 CDC25A Mitotic regulation [255] 
 PTEN ND [256] 

SSC, spermatogonial stem cells; MAPK, mitogen-activated protein kinase; ERK, extracellular 

signal regulated kinase; Akt (aka PKB), protein kinase B; CDK, cyclin dependent kinase; ATM, 

ataxia-telangiectasia mutated; Src, proto-oncogene tyrosine-protein kinase; PTPRE, Receptor-type 

tyrosine-protein phosphatase epsilon; SHP2 (Aka PTP-1D), protein-tyrosine phosphatase 1D; 

PP1C, protein phosphatase 1 catalytic subunit; PP2CA, protein phosphatase 2 catalytic subunit; 

DUSP1, dual specificity protein phosphatase 1 (aka: MKP1, MAP kinase protein phosphatase); 

CDC25A, cell division cycle 25A phosphatase; PTEN, phosphatidylinositol 3,4,5-trisphosphate 3-

phosphatase and dual-specificity protein phosphatase; ND, not determined; CKO, conditional 

knockout.  

 

The catalytic-subunit of PP1 is encoded by three different genes; Ppp1ca, Ppp1cb and 

Ppp1cc encoding the PP1α, PP1β and PP1γ isoforms, respectively. PP1γ undergoes tissue 

specific splicing, giving rise to a ubiquitously expressed isoform, PP1γ1, and the testis-

enriched isoform PP1γ2. These two splice variants differ in the amino-acid sequence of the 

C-terminus. The localization of each PP1 isoform in testis has been determined in detail 

[247,252]. PP1α, PP1β and PP1γ1 are expressed in both somatic cells and germ cells 
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(spermatogonia and pre-meiotic cells), while PP1γ2 is only present in post-meiotic cells 

(secondary spermatocytes, round spermatids and elongated spermatids). The redundancy of 

PP1 isoforms in all testicular cells, except for PP1γ2, explains why the only phenotype 

associated with the deletion of  Ppp1cc in mouse males is infertility, mostly due to 

impaired sperm morphogenesis and motility [247,252,253,257–259]. This observation 

prompted the identification of several PP1γ-interacting proteins (PIPs) that modulate sperm 

motility. A large number of testis/sperm-specific PIPs have been identified [260–262], 

including the spermatogenic zip protein 1 (Szp1), which binds specifically to the PP1γ2 

isoform [263]. Conversely, the function of the other PP1 isoforms and isoform-specific 

PP1-PIP complexes in testis have not been explored yet [252,253].  

 

In Chapter 2, the activity regulation of PP1 by associated proteins is described in the 

review manuscript entitled ‘Biogenesis and activity regulation of protein phosphatase 1’.  

 

 

  



CHAPTER	1:	General	Introduction	
	

	 34	

1.3 NIPP1, a nuclear targeting subunit of Protein Phosphatase 1  
NIPP1 is a regulatory subunit of PP1, initially identified in bovine thymus nuclear extracts 

[264]. Further studies demonstrated that NIPP1 is ubiquitously expressed in multicellular 

eukaryotes (see section 1.3.1) and recruits a subset of substrates for regulated 

dephosphorylation by associated PP1 (see section 1.3.3). In this final introductory section, 

I will elaborate on the structure, interactome and functions of NIPP1. 

1.3.1 NIPP1 is a nuclear PIP  
NIPP1 is one of the most ancient regulators of PP1 (Figure 10). It is expressed in both 

animals and plants, but not in fungi [265]. The most conserved domain of NIPP1 is the N-

terminal ForkHead-associated (FHA) domain, which serves as a platform for the 

phosphorylation-dependent recruitment of PP1 substrates (see below).  

 

 
Figure 10: The phylogenetic tree of NIPP1. Shown are NIPP1 orthologues in various metazoa. 

The phylogenetic tree was built by multiple protein sequence alignments and pairwise similarity 

analyses using the software version MEGA 7.0.21 (www.megasoftware.net). The latter software is 

based on the CLUSTEL OMEGA multiple sequence alignment. Sequences were retrieved from the 

database https://www.ncbi.nlm.nhi.gov. 
 

NIPP1 is encoded by PPP1R8, localized to chromosome 1p35 and composed of 7 

exons in human (Homo sapiens). One processed pseudogene (PPP1R8P) was mapped to 

chromosome 1p33. PPP1R8 encodes 5 distinct transcripts generated by alternative 
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splicing: NIPP1a, b, g, d, and the testis-specific variant NIPP1T/e [266,267]. By far the 

most abundant transcript encodes NIPP1a, further referred to as NIPP1. It encodes a 

polypeptide of 351 residues (38.5 kDa). The other transcripts, termed NIPP1 b, g and d are 

generated by alternative 5’ splice site usage, exon skipping and/or alternative 

polyadenylation [266]. The testis-specific NIPP1 isoform, NIPP1T/e, is generated by 

intron retention and has a different C-terminus. 

NIPP1 is enriched in the nucleus. Its nuclear targeting is mediated by two 

independent polybasic nuclear localization signals (NLS) in the central domain of NIPP1, 

comprising residues 185-209 and 210-240. These NLSs overlap with a PP1-binding 

domain (see below), but the nuclear targeting of NIPP1 does not depend on its interaction 

with PP1 [268]. In the nucleus, NIPP1 is excluded from the nucleoli and is enriched in the 

nuclear ‘speckles’, which represent storage sites for pre-mRNA splicing factors. The 

enrichment in the nuclear speckles is mediated by the FHA domain [268]. NIPP1 contains 

three functional domains: an N-terminal domain (residues 17-126) largely consisting of a 

substrate recruiting FHA domain, a central PP1-regulatory domain (residues 134-225), and 

a C-terminal PP1-inhibitory and RNA-binding domain (residues 226-351) [269–271] 

(Figure 11). A number of substrates have been identified for the PP1-NIPP1 holoenzyme, 

which determine PP1-dependent functions of NIPP1 in transcription, pre-mRNA splicing, 

cell cycle progression and chromatin remodeling [272–274]. The diversity of cellular 

functions via interaction with many functionally distinct interactors suggests that NIPP1 

functions as a scaffold protein. Among its established interaction partners are PP1 (see 

section 1.3.3), the Polycomb proteins EZH2 [275] and EED [276], the protein kinase 

MELK (maternal embryonic leucine zipper kinase) [277], and the splicing factors CDC5L 

(cell division cycle 5-like) [278] and SAP155 (spliceosome-associated protein of 155 kDa) 

[278]. Besides its interaction with proteins, NIPP1 can also bind to RNA, preferentially 

A/U reach sequences, via a lysine-rich motif in its C-terminal domain [269,271,279] 

(Figure 11A). The C-terminal two-thirds of NIPP1 is intrinsically disordered but partially 

folds into a defined secondary structure upon binding to PP1 [280] (Figure 11B).  
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Figure 11: Domain structure, conservation and interaction partners of NIPP1. (A) The N-

terminal domain of NIPP1 (residues 17-126) largely consists of a highly conserved and well folded 

ForkHead-associated domain (FHA domain) that binds to pThr-Pro dipeptide motifs (pTP) of the 

indicated proteins. The intrinsically disordered central and C-terminal domains contain binding 

sites for PP1 (a- helix, polybasic stretch, RVTF motif, jj and C-terminus) and EED (residues 143-

224 and 310-329). The C-terminus (residues 330-351) is also known to bind nucleic acids. 

Phosphorylation of NIPP1 at Ser199, S204 and Y335 decreases its interaction with PP1. Colored 

bars represent aminoacid sequences and conservation based on multiple sequences alignment of 

metazoa species using ConSurf (www.consurf.tau.ac.il/2016). (B) PONDR score indicating that the 

N-terminal third of NIPP1 is well folded and the C-terminal two thirds are disordered. 

(www.pondr.com).  

1.3.2 Structure and function of the FHA domain  
FHA domains are present in hundreds of different proteins and have a binding loop for 

phosphorylated Thr residues in a specific sequence context [281–284]. For example, 

RAD53 contains two FHA domains, FHA1 and FHA2, that bind a pThr followed at 

position +3 by an Asp or Ile/Leu/Val, respectively [285]. Other FHA domains make 



CHAPTER	1:	General	Introduction	
	

	 37	

additional contacts with residues that are both N- and C-terminal to pThr (e.g. the FHA 

domain of PNK) or with residues that are remote from pThr (e.g. the FHA domain of Ki67) 

[282,286,287].  

Despite their different binding specificity FHA domains adopt a similar fold: eleven 

b-strands (b1-b11) form two b-sheets, one containing six antiparallel strands (b1-2, b7-8 

and b10-11) and the other containing five mixed b strands (b3-6, b9) [282,288] (Figure 

12). 

 
Figure 12: The FHA domain of NIPP1. (A) The core structure of the FHA domain of NIPP1 

(residues 17-126) comprises 11 b-strands linked by several loops to form two antiparallel b-sheets. 

(B) Structure showing the binding of residues 470-487 of MELK to the FHA domain of NIPP1. 

The pThr binding loop resides between b-strands 4 and 5. The residues of this loop that are 

involved in the binding of pThr are indicated [288]. The structure was drawn using PyMOL 

(www.pymol.com; PDB ID:2JPE).  

 

The FHA domain of NIPP1 binds ligands with a pThr that is followed by a Pro 

[277,278,289,290]. In this sense, the FHA domains of NIPP1 and Ki67 have a similar 

specificity. Interestingly, the FHA domain of Ki67 not only binds to a pTP but also 

interacts with an extended binding surface of 44 residues of NIFK, one of its ligands [291]. 

Together these two binding sites account for the high-affinity interaction between Ki67 and 

NIFK. The FHA domain of NIPP1 also interacts rather poorly (Kd » 1mM) with pThr416 

of EZH2, one of its established ligands [290]. Yet, mutation of Thr416 completely 

abolishes the interaction with NIPP1. This suggests that Thr416 is essential but not 

sufficient to account for the high-affinity binding of EZH2 to NIPP1. The same reasoning 
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applies to Thr478 of MELK, which also binds to the phosphate binding loop of the NIPP1 

FHA domain [288]. The available data suggest that secondary interactions are important to 

account for the stable interactions between NIPP1 and its FHA ligands. However, sequence 

alignments of established FHA ligands of NIPP1 (Figure 13A) or a comparison with other 

pTP containing FHA ligands (Figure 13B) did not reveal additional conserved features 

close to the FHA binding pThr-Pro that could mediate additional interactions.  

 
Figure 13: Binding preference for the NIPP1 FHA domain. (A) Alignment of established 

NIPP1 FHA ligands (EZH2, MELK, CDC5L and SAP155) shows that the FHA domain of NIPP1 

binds to pThr-Pro dipeptide motifs. (B) Alignment of NIPP1 FHA ligands EZH2 and MELK with 

other pTP-containing FHA ligands (NIFK, Hklp2 and NDD1) indicates that close to the pTP-

dipeptide motif there are no other predicted common motifs. Weblogo 

(http://weblogo.berkeley.edu/logo.cgi) was used to predict the conservation motifs.  

1.3.3 NIPP1 modulates the activity of associated PP1 
NIPP1 was originally identified as a potent inhibitor of PP1 [292]. However, the central 

domain of NIPP1 only inhibits the dephosphorylation of a subset of substrates by a non-

competitive mechanism [269,280]. The PP1-binding module in the central domain of 

NIPP1 (residues 159-214) (Figure 14) is intrinsically disordered but becomes partially 

structured when bound to PP1 [280]. The central domain of NIPP1 has three binding sites 

for PP1: (1) residues 199SRVTFS204 dock to the hydrophobic RVxF-binding groove on 

PP1, (2) residues Ile209 and Ile210 bind to another hydrophobic pocket, known as the jj-

binding pocket, and (3) residues 160-175 fold into a four turn a-helix that docks onto the 

bottom surface of PP1, mainly via electrostatic interactions (Figure 14). Strikingly, a 
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polybasic stretch (residues 185-198) that is important for the non-competitive inhibition of 

associated PP1 [269] is not visible in the crystal structure, indicating that it remains 

unstructured (Figure 14). The binding of the central domain of NIPP1 to PP1 has a 

significant impact on its overall surface charge, which may contribute to substrate selection 

by the PP1-NIPP1 holoenzyme.  

The C-terminal segment of NIPP1 contains a PP1-binding site that causes the 

inhibition of PP1 towards all substrates. It acts as a competitive inhibitor, indicating that it 

binds at or close to the active site [269].  

 
Figure 14: The crystal structure of PP1 complexed to the central domain of NIPP1. Cartoon 

representation of the three primary PP1-binding regions of NIPP1 (blue) and PP1 (gray surface) 

complex. The Mn2+ ions located at the active site of PP1 are represented as red spheres. The 

residues V201 and F203 of the NIPP1 RVxF (RVTF) motif and residues 209-210 of the jj motif is 

shown as sticks. The blue dotted lines represent NIPP1 residues 185-198 that were not visible. 

Cartoon representation was drawn using PyMOL (www.pymol.com; PDB ID:3v4y).  

1.3.4 NIPP1 regulates Polycomb-mediated gene silencing  
NIPP1 functions as a PRC2-dependent transcriptional repressor by forming a complex with 

PP1 and the PRC2 components EZH2 and EED [274–276] (see Introduction). Previous 

studies indicated that NIPP1 is required for the global trimethylation of H3K27 and is 

implicated in gene silencing [293]. This transcriptional repression was alleviated by the 

RNAi-mediated knockdown of EED and EZH2, or by overexpression of a catalytically 
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dead mutant of EZH2 [275]. Moreover, EZH2 and NIPP1 silence a common set of genes, 

as revealed by gene-expression profiling in human cells [293]. Accordingly, NIPP1-/- 

embryos exhibited a reduced global trimethylation of histone H3 at Lys27 [294]. More 

recent studies have shown that pThr416 of EZH2 binds to the phosphate-binding loop of 

the FHA domain of NIPP1 (Figure 11A, 12 and 13). In HeLa cells, the recruitment of 

NIPP1 was found to be essential to maintain the CDK-mediated phosphorylation of EZH2 

at this site by opposing dephosphorylation by PP1 [290]. Accordingly, a NIPP1-binding 

mutant of EZH2 was hypophosphorylated and the knockdown of NIPP1 resulted in a 

reduced phosphorylation of endogenous EZH2. Conversely, a loss of PP1 was associated 

with a hyperphosphorylation of EZH2 [290]. NIPP1 has also been implicated in the 

targeting of EZH2 to specific PcG target genes [274,290,293]. Indeed, a genome-wide 

promotor profiling in HeLa cells revealed that NIPP1-binding mutants of EZH2 show a 

deficient association with proliferation-enriched Polycomb target genes [290]. The binding 

of EED to NIPP1 occurs via two regions in the central and C-terminal thirds of NIPP1 

(Figure 11A), but it is not known yet how this contributes to PRC2 signaling.  

1.3.5 NIPP1 regulates (pre)mRNA splicing  
The enrichment of NIPP1 in the nuclear speckles is mediated by its FHA domain, possibly 

because it binds to phosphorylated forms of the splicing factors SAP155 and CDC5L 

(Figure 11A) [268,289]. The FHA domain of NIPP1 is essential for the recruitment of 

phosphorylated forms of SAP155 and CDC5L. Accordingly, mutation of the pThr-binding 

loop of the FHA domain (Figure 11B, 12 and 13) abrogates their binding to NIPP1 and the 

targeting of NIPP1 to the nuclear speckles and spliceosomes [268,295]. Mechanistically, 

NIPP1 recruits PP1 to SAP155, an essential component of the U2 small ribonucleoprotein 

particle [289,296,297], and promotes subsequent SAP155 dephosphorylation [273]. The 

expression of a C-terminally truncated NIPP1 (NIPP1-∆C) that forms a hyperactive PP1-

NIPP1 holoenzyme (see previous sections), results in SAP155 hypophosphorylation and 

splicing inhibition [273]. Similarly, NIPP1 stimulates SAP155 dephosphorylation by PP1 

in vitro. The dephosphorylation of SAP155 by PP1 further stimulates dissociation from 

NIPP1 FHA domain [273]. The stimulating effect of NIPP1 on SAP155 dephosphorylation 

by PP1 suggests that the inhibitory activity of NIPP1 is substrate-dependent and is subject 

to regulation. This resembles the PP1-regulatory protein MYPT1, which inhibits PP1 

activity against non-physiological substrates (e.g. phosphorylase a), but stimulates PP1 

activity towards myosin light chain [298].  
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Protein kinase MELK has also been implicated in the early spliceosome assembly 

(inhibitory activity) independently of its kinase activity [277]. MELK binds to the FHA 

domain of NIPP1 via pThr478 residue (Figure 11A, 12 and 13) [277,288]. The inhibition 

of spliceosome assembly by MELK depends on this binding, indicating that MELK 

probably competes with other splicing factors (SAP155 and CDC5L) for binding to the 

FHA domain of NIPP1 thereby preventing the recruitment of NIPP1 to the spliceosomes 

[277].  

1.3.6 NIPP1 is required for early embryonic development  
As described above, NIPP1 emerges as an integrator of transcription, RNA processing and 

cell signaling. To study the in vivo function of NIPP1 in mammals, a global mouse 

knockout for the NIPP1 encoding gene (Ppp1r8) was generated by homologous 

recombination [294]. NIPP1 knockout (Ppp1r8-/-) embryos showed growth retardation and 

died at around embryonic day 6.5 (E6.5), coinciding with the onset of gastrulation. A 

decreased proliferation was also noted in NIPP1 deficient blastocyst outgrowths for both 

cells from the inner cell mass and trophoblast giant cells. Since the latter cells grow by 

repeated replication without an intervenient mitosis, this hints at a role for NIPP1 in the 

G1/S transition or DNA replication.  

1.3.7 The C-terminus of NIPP1 displays RNA-binding and endoribonuclease 

activities 

The C-terminal third of NIPP1a corresponds to the NIPP1g/ARD-1 isoform, which 

displays an endoribonuclease activity with a specificity that is similar to that of bacterial 

RNAse E [266,299,300]. Strikingly, ARD-1 was originally identified as a human protein 

that can rescue lethal mutations in the Escherichia. coli (E. coli) RNase E encoding gene 

rne [299,301]. Additional studies revealed that ARD-1 displays RNA-binding and 

endoribonuclease activities [271,279]. However, NIPP1a does not display an 

endoribonuclease activity, indicating that this activity is either not biologically relevant or 

subject to inhibitory regulation by the N-terminal two thirds of the protein. ARD-1 and 

RNase E both bind preferentially to U-rich sequences. In bacteria RNAse E cleaves short 

oligonucleotides and complex RNAse E substrates in A/U-rich regions and generates 5’-

phosphate termini [299]. RNAse E is an essential part of the RNA degradosome which is 

involved in the turnover of mRNAs [302–304]. In addition, RNAse E has been implicated 

in the processing of precursor RNAs [305–308]. Orthologues of RNAse E are expressed in 
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the chloroplasts of higher plants where they participate in endonucleolytic cleavage of the 

polyadenylation stimulated RNA-degradation process [309].  

PP1-binding to the C-terminal segment of NIPP1 is controlled by both 

phosphorylation and electrostatic interaction between nucleic acids and basic residues. 

Phosphorylation of NIPP1 at Tyr-335 by protein kinase LYN only occurs in the presence 

of RNA, and reduces the affinity of the C-terminal domain of NIPP1 for PP1, resulting in a 

‘de-inhibition’ of the PP1-NIPP1 holoenzyme [269].   
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2.1 Abstract 
Protein phosphatase-1 (PP1) is expressed in all eukaryotic cells and catalyzes a substantial 

fraction of phospho-serine/threonine dephosphorylation reactions. It forms stable 

complexes with PP1-interacting proteins (PIPs) that guide the phosphatase throughout its 

life cycle and control its fate and function. The diversity of PIPs is huge (»200 in 

vertebrates) and most of them combine short linear motifs to form large and unique 

interaction interfaces with PP1. Many PIPs have separate domains for PP1 anchoring, PP1 

regulation, substrate recruitment and subcellular targeting, which enable them to direct 

associated PP1 to a specific subset of substrates and mediate acute activity control. Hence, 

PP1 functions as the catalytic subunit of a large number of multimeric holoenzymes, each 

with its own subset of substrates and mechanism(s) of regulation. 

2.2 Introduction  
PP1 belongs to the phosphoprotein phosphatase (PPP) superfamily of hydrolases [1–3]. It 

catalyzes the hydrolysis of serine/threonine-linked phosphate monoesters by a nucleophilic 

attack of the incoming phosphorus atom with a metal-activated water molecule. PP1 

increases the reaction rate by a staggering 1021 fold, making it one of the most proficient of 

all known enzymes [4]. It also ranks among the structurally and functionally most 

conserved proteins: PP1 from yeast and man show >80 % sequence identity and human 

PP1 can rescue the lethal phenotype associated with the deletion of PP1 in yeast [5]. PP1 is 

expressed in all eukaryotic cells at moderately high levels. Human U2OS and HeLa cancer 

cells, for example, contain about 250,000 copies of PP1 isoforms a, b and g, corresponding 

to a calculated concentration of » 0,2 µM [6,7]. Biochemical data indicate that PP1 

catalyzes a major fraction of all protein dephosphorylation events in eukaryotic cells and 

regulates a wide array of processes [8]. Consistent with its pleiotropic action PP1 displays 

a broad substrate specificity. However, PP1 is not completely aspecific and shows a 

substrate preference that is different from that of the other PPP-type phosphatases, namely 

PP2A, PP2B and PP4-7 [8]. The recently published structure of a PP5-substrate complex 

sheds some light on the molecular basis of substrate recognition by PPP phosphatases [9]. 

The side chains of the peptide substrate engage in water-mediated hydrogen bonds with 

residues in pockets that radiate from the catalytic site and are known as the hydrophobic 

and C-terminal grooves (Figure 1). These pockets are spacious and can accommodate 

highly divergent sequences, accounting for the sequence plasticity of PPP substrates. Most 
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phosphatase residues that mediate substrate binding are highly conserved among PPP 

phosphatases. However, a residue that interacts with the substrate -2 position differs 

between PPP members and therefore probably functions as a substrate-specifying element.  

There is no evidence for the existence of cellular pools of unbound PP1. In fact, 

artificially generated free PP1 causes uncontrolled protein dephosphorylation and results in 

cell death [10]. Cells prevent the accumulation of unleashed PP1 by expressing PP1 

interacting proteins (PIPs) in a large molar excess [3,6,7]. From a biological perspective it 

is therefore only meaningful to discuss the properties and regulation of PP1 as the catalytic 

subunit of a large array of multi-subunit complexes or holoenzymes. In general, PIPs guide 

PP1 throughout its life cycle and determine when and where the phosphatase acts. In the 

following sections we will consecutively describe PP1-PIP interaction modes, the 

involvement of PIPs in the biogenesis and turnover of PP1, their role in substrate selection, 

and their contribution to holoenzyme abundance and activity regulation. The available data 

suggest that most PIPs serve a dual function: they restrain PP1 and enable the controlled 

dephosphorylation of a small subset of PP1 substrates.  
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Figure 1: PIP docking sites on PP1. The figure shows a surface model of four different 

orientations of mammalian PP1b (PDB 1S70). Indicated are the two metals in the active site (red 

circles) and the substrate-binding channels that emanate from the active site. The residues of PP1 

that mediate binding to SLiMs are colored: violet, RVxF motif; magenta, Ki67-RepoMan SLIM 

(KIR-SLiM) motif; green, SILK motif; dark blue, Myosin phosphatase N-terminal element 

(MyPHONE) motif; yellow, NIPP1 a-helix motif; wheat, jj motif; cyan, Inhibitor-2 SLiM for 

docking at the hydrophobic and acidic grooves (IDoHA); Brown, Spinophilin SLiM for docking at 

the C-terminal groove (SpiDoC). Also shown are the residues in the C-terminus of PP1b that 

interact with the ankyrin-repeat domain (AnkCap) of MYPT1 (orange). Overlapping binding 
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residues for the SpiDoC, KIR-SLIM and jj motifs are depicted in white. Figures were made using 

PyMOL (www.pymol.com).  

2.3 PP1-PIP interaction modes  
More than 200 mammalian genes encode validated PIPs [1,3]. Some are ubiquitously 

expressed (e.g. Inhibitor-2), others show a more restricted expression (e.g. Spinophilin in 

neurons) or are expressed conditionally (e.g. Ki-67 in proliferating cells). Most PIPs have 

an intrinsically disordered domain of 40-60 residues that mediates binding to PP1 with 

high affinity, as reflected by Kd values of 5-200 nM [11–16]. These PP1-anchoring 

domains contain short linear motifs (SLiMs) that dock to surface grooves of PP1 (Figure 

1). PIPs typically combine several SLiMs to create an interaction area of 1,500-5,000 Å2, 

thereby covering 5-20% of the surface of PP1. Nearly a dozen PP1-binding SLiMs have 

already been identified but it seems likely that additional SLiMs remain to be discovered 

that bind to surface areas of PP1 that have no known interaction partner (Figure 1). Some 

of the well-characterized SLiMs are present in many PIPs but others are less widespread. 

For example, the RVxF-type PP1-binding motif is shared by 70% of all known PIPs, while 

the recently discovered KiR-SLiM motif is only found in the nuclear proteins RepoMan 

and Ki-67 [3,14,16].  

The diversity and concomitance of PP1-binding SLiMs creates a huge combinatorial 

potential that has been referred to as the ‘PP1-binding code’ [1,3,17]. This code enables 

PIPs to create unique interaction interfaces with PP1 and has particular properties (for 

references and more details see [3]). First, the code is specific in that PP1-binding SLiMs 

do not interact with other phosphatases. Second, it is universal and applies to all 

eukaryotes. Third, the code is partially overlapping as it excludes combinations of SLiMs 

that bind to the same PP1 surface residues. Fourth, it is degenerate, implying that SLiMs 

come in sequence variants that differ in their affinity for PP1. Fifth, the code is non-

exclusive, allowing two PIPs to bind simultaneously to the same molecule of PP1 as long 

as they have at least one non-shared SLiM. Sixth, it is dynamic and tolerates competition 

between PIPs within and between PP1 holoenzymes for the same binding sites. The 

elucidation of the SLiM-based PP1-binding code is yielding structural insights that 

gradually make it feasible to predict the PP1-interaction mode of poorly characterized 

PIPs. It can also be expected that the obtained insights will inspire investigators to design 

artificial PIPs that can be used as tools to explore PP1 signaling and its therapeutic 

potential. 
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In addition to the SLiMs in PP1-anchoring domains some PIPs also have PP1-binding 

SLiMs in regulatory domains. Biochemically well-defined examples are the 

phosphorylation-regulated PP1-inhibitory SLiMs of Inhibitor-1 and NIPP1 [18,19]. The 

prevalence and importance of PP1-binding SLiMs in regulatory PIP domains has probably 

been grossly underestimated because they contribute little to the overall binding affinity for 

PP1 and are therefore easily overlooked using classical mapping strategies for PP1-binding 

domains. SLiMs in PP1-regulatory domains add to the flexibility of the PP1-binding code 

and are important mediators of acute activity regulation (see below). Further diversification 

of PP1-PIP interaction modes comes from the existence of highly structured PP1-binding 

domains. For example, Sds22 has a PP1-binding domain that consists of an array of well-

folded leucine-rich repeats [20]. Another example is the ankyrin-repeat domain of MYPT1, 

which specifically binds to the intrinsically disordered C-terminus of PP1b (Figure 1), 

accounting for the PP1-isoform binding specificity of this myosin-targeting PIP [11]. 

Interestingly, recent data show that the PP1 isoform selectivity of some PIPs is not only 

achieved through interactions with the C-terminus but also through interactions with the 

structured catalytic domain [16]. Thus, the L1 loop of PP1b/g is ordered by an arginine-

mediated salt bridge (Arg19 for PP1b and Arg20 for PP1g), making it more available for 

binding of Ki67 and RepoMan. The corresponding residue of PP1a (Gln20) does not order 

this pocket, explaining why Ki67 and RepoMan preferentially bind to the b/g isoforms.  

2.4 PIPs in the biogenesis and turnover of PP1  
At an early point in the PP1 biogenesis process, during or shortly after translation, the 

metal ions Fe2+ and Zn2+ are incorporated into the active site to generate a catalytically 

competent enzyme [21]. Eukaryotes probably have dedicated chaperones for Fe2+ and Zn2+ 

loading of PP1 that are absent in bacteria because the latter can express eukaryotic PP1 but 

erroneously incorporate two Mn2+ ions in the active site, even when Fe2+ and Zn2+ are 

abundant. The nature of the incorporated metals is important because PP1 with Mn2+ in its 

active site has a manifold lower specific activity than native PP1 and is less specific, as it 

also dephosphorylates tyrosine residues and even non-protein substrates [21]. The identity 

of the putative PP1 metal-loading chaperones is still unknown but Inhibitor-2 is an 

excellent candidate (Figure 2). Actually, an in vitro reconstituted inactive complex of PP1 

and Inhibitor-2, known as the MgATP-dependent phosphatase, can be reactivated by the 

transient phosphorylation of Inhibitor-2 and considerable biochemical evidence suggests 
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that this activation process involves the incorporation of metal(s) in the active site 

(reviewed in [22]).  

In yeast, also Sds22 and Ypi1 have been identified as PIPs that are required for an 

early step in the biogenesis of PP1 [23]. In the absence of functional Sds22 or Ypi1 newly 

translated PP1 forms aggregates that require the proteasome for clearance. Sds22 and Ypi1 

(or its orthologue Inhibitor-3 in vertebrates) form a heterotrimeric complex with PP1, both 

in vitro and in vivo ([24,25], Figure 2). Sds22 and Ypi1 also interact with each other. 

Intriguingly, the assembly of the Sds22-PP1-Ypi3 complex requires a chaperone complex 

consisting of the AAA-ATPase Cdc48 and its adaptor Shp1, which transiently binds to 

Sds22 [23]. Sds22 has a structured PP1-binding domain but the binding of Ypi1/Inhibitor-3 

to PP1 is SLiM-based [3,20]. The combined binding of Sds22 and Ypi1/Inhibitor-3 is 

expected to cover a large part of the surface of PP1. Ypi1/Inhibitor-3 inhibits PP1 [24,25], 

while Sds22 stabilizes a partially unfolded form of PP1 [24], hinting at its preferential 

binding to newly translated, incompletely folded PP1. Hence, Sds22 and Ypi1/Inhibitor-3 

probably serve to keep newly synthesized PP1 soluble and inhibited. We speculate that the 

resulting heterotrimeric complex is used as a source of PP1 for the assembly of functional 

holoenzymes.  

Virtually nothing is known about the mechanisms underlying the formation and 

turnover of PP1 holoenzymes. Possibly, the biogenesis factors Sds22, Ypi1/Inhibitor-3 and 

Inhibitor-2 are also implicated in these processes. It is indeed striking that Sds22 can be 

present as a ‘third’ subunit in at least some PP1 holoenzymes and that Inhibitor-3 competes 

with other PIPs for binding to PP1-Sds22 [26]. Does Sds22 in these complexes serve to 

recruit an AAA-ATPase complex that extracts PP1 for recycling or degradation (Figure 2)? 

In vitro, Inhibitor-2 removes Fe2+ from the active site of PP1 [21] and the bacterially 

expressed PP1/Inhibitor-2 complex lacks one or both metals [27]. Does Inhibitor-2 remove 

metals from PP1 once the catalytic subunit is extracted from a holoenzyme and does this 

represent a key step in its degradation process (Figure 2)?  

Sds22, Inhibitor-2 and Ypi1/Inhibitor-3 are the most ancient PIPs [28], suggesting that 

their functions in the biogenesis and turnover of PP1 are possibly also phylogenetically 

conserved. Strikingly, the much better studied biogenesis factors of the PPP-type PP2A 

phosphatase are structurally unrelated to those of PP1 but nevertheless appear to fulfill 

similar functions. During or shortly after its translation the catalytic subunit of PP2A also 

forms a heterotrimeric complex with polypeptides that stabilize its inactive conformation 

(the a4 protein, similar to Sds22 for PP1) and inhibit is activity (the TIPRL protein, similar 
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to Inhibitor-3 for PP1) [29–32]. Moreover, a chaperone complex (TriC/CCT, similar to 

AAA-ATPases for PP1) may be involved in the assembly of this complex [30]. In addition, 

the PP2A interactor PTPA appears to be functionally equivalent to Inhibitor-2 as it has 

been demonstrated to play a role in the metal-loading of PP2A [33].  

 

 
 

Figure 2: The hypothetical life cycle of PP1. During or shortly after the translation of PP1 the 

metals Fe2+ and Zn2+ are incorporated into the active site by a mechanism that probably involves 

the transient phosphorylation of Inhibitor-2 by protein kinase GSK-3. Subsequently, PP1 is 

extracted by an AAA-type ATPase (Cdc48 and the cofactor Shp1 in yeast) to form a soluble, 

inhibited trimeric complex with Sds22 and Ypi1 (Inhibitor-3 in vertebrates). This complex serves 

as the source of PP1 for the assembly of PP1 holoenzymes. At least some PP1 holoenzymes can 

recruit Sds22 as a third subunit. It is suggested that Sds22 mediates the recruitment of an AAA-
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ATPase to extract PP1 from these holoenzymes, either for (phosphorylation-independent) metal 

unloading by Inhibitor-2 and its subsequent proteolytic degradation or for recycling to form a 

trimeric complex with Sds22 and Ypi1/Inhibitor-3. 

2.5 PIPs as substrate-specifiers  
Eukaryotic cells contain hundreds if not thousands of distinct PP1 substrates, in various 

amounts. A key function of PIPs is to limit the action of associated PP1 to a subset of 

substrates or (transiently) inhibit PP1 altogether. PIPs have evolved multiple strategies to 

restrain PP1 (Figure 3A). The SpiDoC SLiM of Spinophilin docks to the C-terminal 

groove of PP1 (Figures 1 and 3A) and sterically hinders the dephosphorylation of 

substrates that are recruited via this groove [12]. PNUTS occludes the same groove using a 

different SLiM that has, however, an Arg in common with the SpiDoC motif and was 

therefore termed the Arg motif [14]. The PP1-anchoring central domain of NIPP1 inhibits 

the dephosphorylation of many but not all PP1 substrates [19]. A key inhibitory element in 

this domain was mapped to a polybasic region close to the PP1-binding RVxF-type SLiM. 

Interestingly, this polybasic stretch of residues was not visible in the electron density map 

of the PP1-NIPP1 heterodimer, suggesting that it remains flexible in the complex and 

prevents the dephosphorylation of a subset of substrates through dynamic electrostatic 

interactions with PP1 (Figure 3A). NIPP1 also has a PP1-regulatory C-terminal domain 

that prevents the dephosphorylation of all substrates, possibly because it binds at or near 

the catalytic site [19]. The IDoHA motif of Inhibitor-2 adopts a largely a-helical structure 

that occupies the acidic and hydrophobic grooves of PP1 but also occludes the active site 

(Figures 1 and 3A, [27]). In addition, local interactions at the active site cause the 

displacement of one or both metals. Other PIPs (e.g. Inhibitor-1, CPI-17, MYPT1) have a 

PP1-regulatory domain that inhibits PP1 but only when it is phosphorylated [1,18,34,35]. 

Probably these PIPs inhibit PP1 by binding as pseudosubstrates.  

Many PIPs have also acquired structural features for positive substrate selection 

(Figure 3B). They often contain a domain that mediates binding to a specific subcellular 

compartment. This enhances the local concentration of PP1 and thereby promotes the 

dephosphorylation of resident substrates. PIPs target PP1 to a wide range of subcellular 

structures [3], including centrosomes (e.g. Cep192), chromosomes (e.g. RepoMan), 

endoplasmic reticulum (e.g. GADD34), glycogen particles (e.g. PTG), microtubules (e.g. 

Kif18A), actin (e.g. Spinophilin), myofibrils (e.g. MYPT1), nuclear speckles (e.g. NIPP1), 

nucleoli (e.g. NOM1) and the plasma membrane (e.g. TIMAP). Some PIPs have multiple 
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subcellular targeting domains (e.g. a few glycogen-targeting subunits also have a 

membrane-targeting domain), which enables them to function as signal integrators [1].  

Substrate-recruitment domains of PIPs also contribute to substrate selection and 

dephosphorylation (Figure 3B). This is because substrates bind relatively poorly to PP1 

itself (Km in the micromolar range, often far above the cellular concentration of the 

substrate), but their binding affinity and dephosphorylation rate is massively increased if 

the associated PIP contains an additional substrate-binding site. Examples of substrate-

recruitment domains are the ForkHead-associated domain (FHA) of NIPP1 and two eIF2a-

binding elements of GADD34 [13,15,36]. Subcellular-targeting and substrate-recruitment 

domains may be different or the same. Thus, the targeting of NIPP1 to the nuclear speckles 

is mediated by its substrate-binding FHA domain [37], but GADD34 has distinct binding 

domains for the endoplasmic reticulum and eIF2a (Figure 3B, [15,36,38]). Some PIPs may 

simply enhance the affinity for a subset of substrates by extending a substrate-binding 

groove of PP1. For example, some ankyrin-repeats of MYPT1 lengthen the acidic groove 

of PP1, which has been suggested to promote the recruitment of a subset of substrates 

(Figure 3B, [11]).  

 
Figure 3: Mechanisms of substrate selection by PP1. The figure shows strategies for restricted 

(A) and facilitated (B) substrate recruitment by PIPs. (A). The SpiDoC motif (cyan) sterically 

hinders the recruitment of PP1 substrates via the C-terminal groove. The IDoHA motif of Inhibitor-

2 (yellow) prevents the dephosphorylation of all substrates by occluding the hydrophobic and 

acidic grooves as well as the active site. A polybasic stretch in the PP1-anchoring domain of NIPP1 
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(purple) hampers the dephosphorylation of a large subset of substrates through dynamic 

electrostatic interactions, as suggested by the dotted lines. (B) Some ankyrin-repeats of MYPT1 

(light grey) may promote the binding of a subset of PP1 substrates through extension of the acidic 

groove (acidic residues highlighted in red). GADD34 (green) promotes the dephosphorylation of 

eIF2a by providing binding domains (BD) for the endoplasmic reticulum (ER- BD) and eIF2a 

itself (PEST-BD + eIF2a BD). 

2.6 Determinants of PP1-holoenzyme abundance  
PIPs compete with each other for binding to the limited cellular pool of PP1 (Figure 4). 

This is nicely illustrated by repeated observations that the overexpression of a single PIP 

results in a reduced association of PP1 with endogenous PIPs [39–41] (Figure 4A). The 

measles virus escapes sensing by the host cell using a similar competition strategy. Indeed, 

the viral V protein titrates PP1 away from the sensor protein MDA5, thereby preventing its 

PP1-mediated activation [42]. Similarly, a prolonged unfolded-protein-response triggers 

the assembly of the PP1-GADD34 complex at the endoplasmic reticulum [43]. This 

reduces the nuclear accumulation of PP1, resulting in the hyperphosphorylation of the 

Hippo signaling effector Yap and apoptosis. There are also examples of competition 

between PP1 and other signaling molecules for binding to overlapping PIP binding sites 

(Figure 4B). Thus, PP1 and cyclin-dependent kinases compete for an overlapping binding 

motif on the Retinoblastoma protein [44]. Likewise, PP1 and protein tyrosine phosphatase 

Shp1 compete for binding to Spinophilin [45].  

Since the global cellular level of PP1 is kept more or less constant during the cell cycle 

[46,47], its distribution between PIPs is determined in the first place by the relative 

abundance of PIPs. Numerous data show that the concentration of PIPs is tightly regulated 

at multiple levels. Their expression is regulated in a cell-type (e.g. glycogen targeting G-

subunits [48]) or cell-cycle (e.g. PNUTS [49]) dependent manner, but can also be induced 

by specific stimuli (e.g. GADD34 by stress signals [15]). In addition, the level of PIPs can 

be adjusted post-translationally through regulated proteolysis by caspases (e.g. Inhibitor-3, 

[50]), the proteasome (e.g. MYPT1 [51]) or lysosomes (e.g. glycogen-targeting R6 [52]) 

(Figure 4C). The abundance of specific PP1-PIP complexes is also affected by the binding 

affinity of the components, which is subject to regulation (Figure 4D). Many PIPs show a 

reduced affinity for PP1 after phosphorylation of residues in or near PP1-binding SLiMs in 

PP1-anchoring domains (e.g. RepoMan, CENP-E and KNL1 in the first half of mitosis 
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[16,53–55]). Conversely, microtubule binding by the spindle- and kinetochore-associated 

(SKA) complex possibly serves to promote the recruitment of PP1 by SKA [56].  

 

 
Figure 4: Regulation of PP1 holoenzyme abundance. The concentration of PP1 holoenzymes is 

regulated by different mechanisms. (A) PIPs compete with each other for binding to PP1. (B) PP1 

can compete with other PIP-binding proteins (PIP-BPs) for binding to PIPs. (C) The cellular 

abundance of PIPs can be modulated post-translationally by proteolysis. (D) The binding affinity of 

PIPs for PP1 is regulated by phosphorylation (P). 

2.7 Acute activity regulation of PP1 holoenzymes 
Most if not all PP1-PIP complexes, similar to the PPP-phosphatases PP2B and PP5 [9,57], 

are (largely) inactive under basal circumstances. Phosphatase assays have indeed revealed 

that a majority of bacterially expressed PP1-anchoring domains are inhibitory [40]. In 

addition, many PIPs also have a PP1-regulatory domain that is inhibitory under basal 

conditions [18,19]. Furthermore, at least some PP1-holoenzymes can recruit inhibitory 

proteins (e.g. Inhibitor-1, CPI-17) as a second regulatory subunit [58–60]. If PP1-PIP 
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complexes are mostly kept inactive in the cell, specific signaling mechanisms must exist 

for their transient and controlled (in)activation. It indeed appears that multiple, 

holoenzyme-specific strategies have evolved for acute phosphatase activity regulation 

(Figure 5), although the underlying molecular mechanisms are often still poorly 

understood. 

Some PP1 holoenzymes are activated by the (de)phosphorylation-regulated release of 

an inhibitory subunit (e.g. CPI-17 [35]) or dissociation of an inhibitory SLiM (e.g. NIPP1 

[19]) (Figures 5A and 5B). Other holoenzymes are activated by the transfer of PP1 from an 

inhibitory to an activatory PIP within the same complex. For example, the 

dephosphorylation of protein kinase Raf by the SHOC2-PP1-SCRIB complex is regulated 

by internal competition between the inhibitory SCRIB and activatory SHOC2 for binding 

to PP1 [61] (Figure 5C). Activation of PP1-PNUTS requires both its recruitment to target 

genes via non coding RNAs and the reversal of PP1 inhibition through binding of PNUTS 

to acetylated histones [62]. Other (in)activation mechanisms target the catalytic subunit 

itself. GADD34 can recruit the NADPH oxidase 4, which inhibits GADD34-associated 

PP1 via oxidation of active site metal(s) [63]. It is not clear whether such oxidation is 

reversible but if it is, this would be an elegant mechanism for acute activity regulation. In 

addition to metal oxidation, metal (un)loading by Inhibitor-2 may also represent an 

efficient mechanism for the transient (in)activation of PP1 holoenzymes [22], (Figure 5D). 

Finally, the inhibitory phosphorylation of the C-terminus of PP1 by cyclin-dependent 

kinases can be reversed by autodephosphorylation, which appears to be modulated by 

Inhibitor-2 [64] (Figure 5E). 

Another type of PP1 holoenzyme regulation concerns substrate recruitment. 

Phosphorylation of PIPs has been associated with an altered substrate binding affinity (e.g. 

binding of phospholamban to glycogen-targeting GM in heart [65]) (Figure 5F). Sometimes 

substrate recruitment depends on covalent modifications or allosteric regulation of the 

substrates themselves. For example, the FHA domain of NIPP1 only binds substrates for 

dephosphorylation by associated PP1 when they are phosphorylated on a threonine that is 

followed by a proline ([66], Figure 5G). The recruitment of the glycogen-degrading 

enzyme phosphorylase a by the liver-specific PP1-GL phosphatase is enhanced by the 

glucose-induced acetylation of phosphorylase a, which increases its affinity for the 

substrate-binding site of GL [67]. Interestingly, the GL subunit also has a second, higher-

affinity binding site for phosphorylase a and the occupation of this site allosterically 

prevents the dephosphorylation (and activation) of glycogen synthase by PP1-GL [68]. This 
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substrate-level control mechanism serves to prevent glycogen synthesis as long as the 

glycogenolytic phosphorylase a is present. Yet another mechanism of substrate-recruitment 

regulation relates to conformational changes within a pre-existing complex. For example, 

ligand binding to the NMDA-receptor complex induces conformational changes that bring 

PP1 within reach of its substrate protein kinase CaMKII ([69], Figure 5H).  

 

 
Figure 5: Activation mechanisms of PP1 holoenzymes. Different modes of PP1 holoenzyme 

activation are depicted. (A) Dephosphorylation of an inhibitory PIP causes its dissociation and 

activation of a PP1 holoenzyme. (B) Phosphorylation-dependent dissociation of an inhibitory SLiM 

activates a PP1-complex. (C) A PP1 holoenzyme can be activated by transfer of PP1 from an 

inhibitory to an activatory PIP. (D, E) Targeting of the catalytic subunit of PP1 itself can modulate 

activation, e.g. by metal loading of PP1 (D) or by autodephosphorylation of an inhibitory site in the 

C-terminus of PP1 (E). (F) The phosphorylation state of PIPs determines their binding affinity for 

substrates. (G) Substrate recruitment can depend on its prior phosphorylation state. (H) Ligand 

binding to a receptor complex can induce conformational changes that brings PP1 within reach of 

its substrate. P, phosphorylation; SUB, substrate; i, inhibitory; a, activatory; R, receptor; L, ligand. 
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2.8 Conclusions  
The ubiquitous expression and low in vitro substrate specificity of PP1 originally led to the 

widespread belief that it is a constitutively active phosphatase that only serves to end 

kinase signaling. This is clearly a misconception as it is now firmly established that PP1 

forms stable complexes with a large variety of PIPs that direct the phosphatase to a small 

subset of substrates and tightly regulate its activity. PP1 holoenzymes have turned out to be 

as specific and tightly regulated as any protein kinase. Recently acquired insights in PP1-

PIP interaction modes and mechanisms of activity regulation and substrate recruitment 

offer exciting perspectives for the development of PP1-holoenzyme specific small-

molecule inhibitors or activators that can be used therapeutically. Once named an ugly 

duckling [70], PP1 has truly become a beautiful swan. 
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The scaffold protein NIPP1 is ubiquitously expressed in eukaryotic cells and is one of the 

most ancient regulators of protein phosphatase PP1. Initial in vitro and cell-based studies 

revealed that the central domain of NIPP1 is an inhibitor of PP1 towards a subset of 

substrates. Besides PP1, several other NIPP1 interacting partners have been identified, 

suggesting that it is a multifunctional protein implicated in processes as diverse as 

transcription, pre-mRNA splicing and DNA replication. The role of NIPP1 in transcription 

is at least partially mediated by its ability to interact with the Polycomb group proteins 

EZH2 and EED. EZH2 binds to the N-terminal ForkHead-associated (FHA) domain of 

NIPP1 as a substrate for dephosphorylation by associated PP1. EED binds to the central 

and C-terminal domains of NIPP1. The latter domain also harbors RNA-binding and an 

additional PP1-inhibitory site.   

At the start of my research project, it was already known that NIPP1 is essential 

during early embryonic development and cell proliferation. Indeed, NIPP1-null embryos 

die at the onset of gastrulation, resembling the phenotype observed in EZH2- or EED-null 

embryos. This precluded further exploration of the postnatal in vivo functions of NIPP1. 

Therefore, the main objective of my thesis was to generate and phenotype an inducible 

NIPP1 knockout (iKO) mouse model. Since of all the examined tissues the deletion of 

NIPP1 was only efficient in testis, I further focused the phenotyping on neonatal and adult 

testis where NIPP1 is abundantly expressed in all cell types except elongated spermatids 

and spermatozoa.  

 

In Chapter 4, entitled ‘Protein phosphatase PP1-NIPP1 maintains spermatogonia through 

stabilization of the Polycomb Repressive Complex 2’ the postnatal function of NIPP1 in 

testis was explored by generating and phenotyping an inducible NIPP1 knockout mouse 

model. This model was based on the use of a tamoxifen-dependent Cre recombinase. 

Histological and histochemical analysis of the testis at several stages of development 

disclosed a likely function for NIPP1 in the survival of germ cells, including 

(un)differentiated spermatogonia.  

To examine if the phenotype could be an extrinsic defect, we have investigated the 

contribution of Sertoli cells, which normally provide a sustentacular microenvironment 

(niche) for spermatogonia. These studies were complemented with proliferation assays 

performed in organotypic testis cultures. Next, we evaluated the effect of the deletion of 

NIPP1 on GFRA1+-enriched cultures of undifferentiated spermatogonia, using 
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proliferation and viability assays. These studies revealed that the loss of germ cells was an 

intrinsic defect caused by the loss of NIPP1 from germ cells. 

Additional experiments were performed to shed light on the molecular mechanism 

underlying the observed phenotype. First, we investigated by RNA sequencing and 

chromatin immunoprecipitation (ChIP) assays the effect of deletion of NIPP1 on EZH2-

mediated gene silencing in testis. Second, immunohistological and biochemical studies 

were performed to examine whether the PP1-dependent phosphorylation status of EZH2 

was compromised in the iKO spermatogonia. Finally, we evaluated whether the phenotype 

could be mimicked in organotypic testis cultures by the chemical inhibition of the EZH 

core components of the PRC2 complex. The data indicated that the observed phenotype is 

caused by the hyperphosphorylation of EZH2, resulting in its proteasomal degradation and 

the subsequent loss of associated regulatory subunits. 
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4.1 Abstract 
The Polycomb Repressive Complex 2 (PRC2) is required for spermatogonial stem-cell 

maintenance because it suppresses inappropriate gene expression via trimethylation of 

histone H3 at Lys27 (H3K27me3). Enhancer of zeste homolog 2 (EZH2), the canonical 

catalytic subunit of the PRC2 complex, is a substrate for phosphorylation by cyclin-

dependent kinases 1/2 (CDK1/2) and dephosphorylation by protein phosphatase 1 (PP1). 

EZH2 also binds directly to NIPP1, a nuclear regulator of PP1, but the biological relevance 

of this interaction is not clear because NIPP1 has properties of both an inhibitor and 

facilitator of dephosphorylation by PP1. To study the in vivo function of NIPP1 we have 

generated an inducible knockout model. Here we show that the postnatal deletion of NIPP1 

in mouse testis results in a decreased proliferation and survival capacity of 

(un)differentiated spermatogonia and meiotic spermatocytes, culminating within a couple 

of months in a Sertoli cells-only phenotype. The development of this phenotype is 

preceded by the proteasomal degradation of EZH2 and an associated loss of other PRC2 

core components, resulting in a decreased trimethylation of H3K27 at target loci. 

Consistent with a contribution of PRC2 malfunction to the NIPP1 deletion phenotype, we 

find that it can be phenocopied by the chemical inhibition of H3K27 trimethylation. 

Mechanistically, the loss of NIPP1 destabilizes EZH2 due to a deficient dephosphorylation 

of CDK sites (Thr345 and Thr487) by PP1. Accordingly, non-phosphorylatable EZH2 

mutants have a prolonged lifetime in spermatogonia. Our results show that NIPP1 is key 

regulator of PRC2 stability and the maintenance of male germ cells, at least in part because 

it controls the timely dephosphorylation of EZH2 at CDK sites by associated PP1.  

 

Keywords: EZH2, NIPP1, Polycomb Group Proteins, Protein Phosphatase 1, Proliferation, 

Spermatogonia.  
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4.2 Introduction  
Continuous sperm production in adult males depends on a tight balance between the 

proliferation and differentiation of undifferentiated spermatogonia [1,2]. Spermatogonial 

stem cells (SSCs) divide to generate more stem cells (self-renewal) or progeny committed 

to differentiate into primary spermatocytes. The latter cells undergo a first meiotic division 

to form secondary spermatocytes, which rapidly enter the second meiotic division to 

produce spermatids. Finally, spermatids develop into spermatozoa during a differentiation 

process that involves major morphological changes. The postnatal proliferation and 

differentiation of spermatogonia is epigenetically controlled, mainly through DNA 

methylation and covalent histone modifications [3–6]. This implies a tight regulation of the 

concentration, chromatin targeting and catalytic activity of DNA- and histone-modifying 

enzymes.  

The key epigenetic regulators of self-renewal and differentiation in spermatogonia of 

postnatal testis are still poorly defined [6–9]. One notable exception is the Polycomb 

Repressive Complex 2 (PRC2), which is essential for the maintenance of male germ cells 

[10,11]. The PRC2 complex contributes to the transcriptional silencing of Polycomb group 

(PcG) target genes, which control pluripotency, cell proliferation and differentiation 

[12,13]. EZH (enhancer of zeste homolog) proteins, i.e. EZH1 and EZH2, function as 

mutually exclusive catalytic subunits of the PRC2 complex and trimethylate histone H3 at 

Lys27 (H3K27me3). EZH2 appears to be the major H3K27 methyltransferase but its loss 

in some cell types can be compensated for by EZH1 [11]. The non-catalytic PRC2 core 

components comprise SUZ12 (suppressor of zeste 12 homolog), EED (embryonic 

ectoderm development), and RBAP48 (retinoblastoma associated protein 48), which all 

promote methylation by EZH2. PRC2 represses the transcription of PcG targets mainly 

because the deposited H3K27me3 hampers the recruitment of ATP-dependent chromatin-

remodeling complexes and RNA polymerase II [12–14].  

In cultured cells PRC2-mediated gene silencing is antagonistically regulated by cyclin-

dependent kinases 1/2 (CDK1/2) and protein phosphatase 1 (PP1), which 

(de)phosphorylate EZH2 at Thr345, Thr416 and Thr487 (mouse residues used throughout 

this manuscript) [15–18]. Phosphorylation at Thr345 increases the targeting of EZH2 to 

chromatin, resulting in enhanced H3K27 trimethylation of target loci [15,16]. EZH2 

phosphorylation at Thr487 (and Thr345) is linked to its proteasomal degradation in late 

mitosis [19]. Thr487 phosphorylation has been reported to disrupt the interaction of EZH2 
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with other PRC2 components [20], but this is not a general finding [16]. Anyhow, free 

EZH2 is ubiquitinated by the SCF-type E3-ubiquitin ligase ß-TrCP (FBXW1), in particular 

when it is also phosphorylated by Jak2 at Tyr641, leading to its proteasomal degradation 

[21]. Finally, the CDK-mediated phosphorylation of EZH2 at Thr416 creates a docking site 

for NIPP1 (nuclear inhibitor of PP1), which transiently inhibits the dephosphorylation of 

CDK sites by PRC2-associated PP1 [17]. The essential role of NIPP1 in PRC2 signaling is 

also underscored by other studies. Thus, NIPP1 has independent interaction sites for both 

EZH2 and EED [17,22], and acts as a transcriptional repressor in a PRC2-dependent 

dependent manner [22,23]. In addition, NIPP1 binds to a subset of PcG target genes and 

promotes the association of EZH2 with proliferation-related target genes [17,24,25].  

NIPP1, encoded by Ppp1r8, is one of nearly 200 known vertebrate regulators of PP1 

[26]. It is a nuclear protein of 38 kDa and consists of an N-terminal ForkHead-associated 

(FHA) domain, a central PP1-anchoring domain and a C-terminal PP1-inhibitory domain. 

The FHA domain has a phosphate-binding loop that binds proteins, including EZH2, that 

are phosphorylated on specific phospho-Thr-Pro (pTP) dipeptide motifs by CDKs [17]. 

Purified NIPP1 is a potent inhibitor of PP1 towards all tested substrates, including FHA 

ligands. However, the deletion or allosteric removal of the C-terminal PP1-inhibitory 

domain allows the dephosphorylation of FHA ligands by NIPP1-associated PP1 [27–29]. 

The trigger and molecular details of this allosteric ‘de-inhibition’ mechanism are poorly 

understood but preliminary data suggest that it involves C-terminal phosphorylation and 

RNA binding [27]. Collectively, these data strongly suggest that NIPP1 inhibits associated 

PP1 but is also required to allow the timely dephosphorylation of FHA-ligands. 

The genetic deletion of NIPP1 in mice is early embryonic lethal [30]. To study the 

postnatal functions of NIPP1 we have generated an inducible knockout model. Here, we 

show that the knockout of NIPP1 in mouse testis causes the hyperphosphorylation of 

EZH2 at CDK sites, confirming that NIPP1 is not only a PP1 inhibitor but is also required 

for the timely dephosphorylation of EZH2 by PP1. Hyperphosphorylated EZH2 is targeted 

for proteasomal degradation, which is associated with a diminished proliferation and 

survival potential of (un)differentiated spermatogonia, eventually leading to the total loss 

of germ cells. Our data identify PP1-NIPP1 as a key regulator of PRC2 signaling and 

spermatogenesis.  
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4.3 Results  

4.3.1 Generation of an inducible NIPP1-knockout model  
To study the postnatal functions of NIPP1 we developed an in vivo model for the inducible 

inactivation of Ppp1r8. Mice with floxed Ppp1r8 alleles (Ppp1r8fl/fl) were crossed with 

transgenic mice expressing tamoxifen-activated CRE-ERT2 recombinase under control of 

the Ubiquitin C (UBC) promotor (Figure S1A-C) [31]. Offspring with the UBC-Cre-

ERT2+/-; Ppp1r8fl/+ genotype was crossed with heterozygous mice (Ppp1r8+/-). The 

resulting UBC-Cre-ERT2+/-; Ppp1r8fl/- mice were used as tamoxifen-inducible NIPP1 

knockouts or iKOs (Figure 1A, Figure S1A-C). Since the deletion of one Ppp1r8 allele 

does not affect the expression level of NIPP1 [30], the heterozygous UBC-Cre-ERT2+/-; 

Ppp1r8fl/+ mice were used as controls (CTRs). The adopted knockout strategy avoids 

phenotypic artefacts induced by CRE recombinase because one Ppp1r8 allele is inactivated 

by recombination in both the CTRs and iKOs [32].  

Following 4 consecutive tamoxifen injections at the age of 4 weeks, the CTR and iKO 

mice were sacrificed 2-16 weeks later (Figure 1B). The iKO mice appeared healthy and 

showed a normal growth (Figure S1D). In fact, the only macroscopic phenotype in the 

male iKOs was a gradually developing smaller testis size (Figure 1C and D). This 

correlated with a loss of NIPP1 from the testis, as shown by both immunohistochemistry 

(Figure 1C) and immunoblotting (Figure 1E and F). At the age of 12 weeks the expression 

level of NIPP1 in the iKO testes was reduced by ~80%, as compared to that in CTR mice. 

The remaining NIPP1 in the iKOs was mainly expressed in interstitial cells (Figure 1C). 

We confirmed that the expression level of NIPP1 in testis from wild-type and Ppp1r8+/- 

mice was about the same (Figure S1E and F), justifying the use of heterozygotes as 

controls. Remarkably, in the accessory sex glands (seminal vesicles and agglutination 

glands) and the epididymis, a depletion of NIPP1 was only detected in limited histological 

areas and this had no effect on the histological organization and size of these glands 

(Figure S2).  
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Figure 1. The postnatal inactivation of Ppp1r8 causes a reduced testis size. (A) Ppp1r8 alleles 

in control (CTR) and inducible NIPP1 knockout (iKO) mice. The exon numbers are indicated. (B) 

CTR and iKO mice express CRE-ERT2 recombinase under control of the UBC promoter (UBC-

Cre-ERT2). Scheme of the 4-consecutive intraperitoneal tamoxifen (TM) injections at the age of 4 

weeks (W) and the subsequent testes sampling. d, days. (C) Macroscopic view of tamoxifen-

injected testes from control and iKO mice at the age of 6, 9, 12 and 20 weeks (upper panels). The 

lower panels show immunostainings of NIPP1 in testis from tamoxifen-treated CTRs and iKOs at 

the indicated ages. Scale bar, 50 µm. (D) Testes gonadosomatic index, as determined by the 

percentage of total testis weight (g) over the body weight (g) of 6, 9, 12 and 20 weeks-old adult 

CRT and iKO mice. (E-F) The level of NIPP1 in total testis extracts from tamoxifen-injected CTR 
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and TKO mice was visualized by immunoblotting (E) and quantified (F). GAPDH was used as a 

loading control. Data are represented as means ± SEM (n=4). **, p<0.01; ***, p<0.001. 

4.3.2 The deletion of NIPP1 leads to a loss of male germ cells  
In adult mouse testis NIPP1 is expressed in both germ cells and somatic cells, including 

Sertoli cells (Figure S3). Strikingly, the level of NIPP1 decreases upon spermatogenic 

differentiation and is nearly undetectable in terminally differentiated elongated spermatids, 

hinting at a key role of NIPP1 in the maintenance of male progenitor cells. This incited us 

to explore the fate of germ cells and the supporting Sertoli cells in the NIPP1 iKOs. The 

number of Sertoli cells (SOX9 staining) was not affected by the deletion of NIPP1 (Figure 

2A and B). Moreover, the expression of factors secreted by Sertoli cells, including inhibins 

(Inhba and Inha) and the SSC self-renewal factor Gdnf (Figure 2C), was the same in the 

CTRs and iKOs, indicating that the function of Sertoli cells is probably not affected by the 

deletion of NIPP1. In contrast, H&E stainings revealed that the diameter of the 

seminiferous tubules gradually decreased due to a loss of germ cells (Figure 2A and D). In 

testis of 9 weeks, i.e. 5 weeks after the administration of tamoxifen, the seminiferous 

tubules already showed a clear decrease in the number of germ cells. The most severely 

affected tubules showed gross vacuolization and only contained occasional germ cells. By 

the age of 12 weeks most seminiferous tubules were agametic and only contained Sertoli 

cells. Quantitative RT-PCR for specific germ-cell markers confirmed the progressive loss 

of all types of germ cells in the iKOs (Figure 2E-G).  
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Figure 2. The testicular deletion of NIPP1 leads to a loss of germ cells. (A) Testis sections of 

tamoxifen-injected CTR and iKO mice at the indicated ages were stained with Hematoxylin-Eosin 

(H&E) and a Sertoli-cells (SOX9) marker. Scale bar, 50 µm. (B) The number of Sertoli cells per 

seminiferous tubule. (C, E-G) qRT- PCR analysis of the indicated genes, including markers for the 

different types of germ cells, at the indicated ages. Sox9 or Hprt were used as housekeeping gene 

for normalization. Spg. A, spermatogonia A; Spg. B, spermatogonia B; Spc., spermatocytes; Spt., 

spermatids. (D) Quantification of cross-sectional diameter of the seminiferous tubules. The results 

are means ± SEM (n=4). *, p<0.05; **, p0.01; ***, p<0.001. 
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4.3.3 NIPP1 is required for the proliferation and survival of spermatogonia 

and (pre)leptotene spermatocytes  
We subsequently examined whether the testis phenotype in the iKOs can be explained by a 

reduced proliferation and/or increased apoptosis of germ cells. For these experiments, we 

used tamoxifen-treated mice of 6 weeks, when a testis phenotype is not yet histologically 

apparent. Stainings for the spermatogonia marker PLZF (promyelocytic leukemia zinc 

finger) did not yet show a significantly reduced number of PLZF-positive cells per tubule 

at this age (Figure 3A and B), in accordance with qRT-PCR data (Figure 2E). However, 

both BrdU (5’-bromo-2’-deoxyuridine) incorporation assays (Figure 3A and C) and PCNA 

(proliferating cell nuclear antigen) stainings (Figure 3A and D) disclosed a twofold lower 

proliferation rate of spermatogonia and (pre)leptotene spermatocytes in the iKOs. These 

conclusions were validated by stainings for cyclin D2 and histone H3 phosphorylation at 

Ser10 (H3S10P), which are markers for G1 and mitotic cells, respectively (Figure S4A-C). 

In contrast, TUNEL assays revealed a 3-fold increased level of apoptosis in germ cells 

from 7 weeks-old iKO mice (Figure 3A and E). Apoptosis was particularly increased in 

germ cells from the basal layers of the seminiferous epithelium, comprising spermatogonia 

and early meiotic spermatocytes. Stainings for the senescence marker p16INK4a (Figure S4A 

and D) and for fibrosis (Figure S4E) did not disclose differences between the CTRs and 

iKOs. Also, both groups contained similar proportions of tubules at different stages of 

development (Figure S4F). Collectively, our data indicate that the gradual loss of male 

germ cells after the deletion of NIPP1 is explained by their reduced proliferation and 

increased apoptosis rather than by the induction of senescence or fibrosis.   

We have also investigated whether the loss of germ cells in the iKOs could be an 

indirect effect caused by the depletion of NIPP1 in peripheral tissues. For example, it could 

be argued that the deletion of NIPP1 from the brain interferes with the level of circulating 

testosterone, which is required for germ-cell survival [33]. However, the expression of 

NIPP1 in the iKOs was only marginally affected in the brain cortex and hypothalamus, and 

only reduced in a scattered fashion in the cerebellum (Figure S5A-D). Also, the levels of 

circulating testosterone were similar in the CTRs and iKOs and there was no correlation 

between testosterone levels and testis weight in 9 weeks-old mice (Figure S5E and F). To 

further differentiate between intrinsic and extrinsic defects, we aimed to generate a testis-

specific NIPP1 mouse KO model by recombination with Cre under control of the 

gonocyte-specific Vasa promotor (Figure S5G and H). However, the CRE-recombinase 
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was expressed precociously, resulting in the global deletion of NIPP1. Such global 

recombination with Vasa-controlled CRE recombinase has also been noted for other genes 

(Diego Castrillon, personal communication). As an alternative approach to determine 

whether the testis phenotype was mediated by the loss of NIPP1 from peripheral tissues, 

we performed organ cultures using testis that were isolated from tamoxifen-treated mice of 

6 weeks (Figure S6A), or testis isolated at the age of 4 weeks and treated in vitro with 

hydroxytamoxifen (Figure S6D). Under in vitro outgrowing conditions, BrdU 

incorporation (Figure S6A-C) and the level of PCNA (Figure S6D-F) were severely 

decreased in the iKOs, demonstrating that the observed phenotype is an intrinsic defect 

caused by the testicular depletion of NIPP1.  

Although PLZF is predominantly expressed in undifferentiated spermatogonia, recent 

studies showed that PLZF can also be detected in differentiating spermatogonia [34]. 

Therefore, it was not clear whether the decreased number of PLZF-positive cells in the 

iKOs (Figure 2E-G) also reflected a loss of undifferentiated spermatogonia, which only 

represent a small fraction of the total pool of spermatogonia. Therefore, we also performed 

stainings for GFRA1, a specific marker for undifferentiated spermatogonia (Figure 3F and 

G). The number of GFRA1 positive cells (GFRA1+) was not significantly affected in iKOs 

of 6 weeks, but was reduced by »50% and »90% at 9 and 12 weeks, respectively. To 

explore whether GFRA1+ spermatogonia have a reduced proliferation capacity after the 

deletion of NIPP1, we isolated GFRA1+-enriched testicular cells from CTR and iKO mice 

(Figure 3H and I). The 4-OHT-induced deletion of NIPP1 in GFRA1+-enriched cultures 

reduced their proliferation by some 40%, as demonstrated by BrdU incorporation assays 

(Figure 3J and K), and increased the number of apoptopic cells, as shown by TUNEL 

assays (Figure 3L and M). We also examined testis of tamoxifen-treated neonates of 7 

days. At this age, the seminiferous tubules only contain a heterogeneous pool of gonocyte-

derived (un)differentiated spermatogonia and Sertoli-cells (Figure S7). In the neonatal 

iKOs NIPP1 was successfully deleted while the number of Sertoli cells (SOX9) was not 

significantly affected. Also, proliferation was reduced by some 50%, as determined by 

PCNA stainings. Strikingly, the number of GFRA1+ cells was decreased by about 80%, 

showing that undifferentiated spermatogonia are also depleted in the first wave of 

spermatogenesis.  
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Figure 3. Ppp1r8-/- testes show reduced proliferation and survival of germ cells. (A) Testis 

sections of tamoxifen-treated mice of 6 weeks were stained for spermatogonia (PLZF), 

proliferation of spermatogonia and (pre)leptotene spermatocytes (BrdU incorporation, PCNA) and 

apoptosis (TUNEL) (7 weeks) in DAPI or propidium iodide (PI) stained nuclei. Scale bar, 50 µm. 

(B-E) Quantifications of the stainings as shown in panel (A) (n=4) (D) represents the total 

expression of PCNA per tubule. (F) Testis sections of tamoxifen-treated mice of the indicated age 
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were stained for the undifferentiated spermatogonia marker GFRA1. Scale bar, 50 µm. (G) 

Quantification of the relative number of undifferentiated spermatogonia (GFRA1+ cells) per 

seminiferous tubule. **, p<0.01; ***, p<0.001. (H) Analysis of GFRA1+-enriched cells isolated 

from CTR and iKO testis at 12 days after birth (P12), using the laminin selection method. GFRA1+ 

cells immunostained for NIPP1 and GFRA1 show the efficient deletion of NIPP1 after treatment of 

GFRA1+ (Ppp1r8fl/+) (CTR) and GFRA1+ (Ppp1r8fl/-) (iKO) cells with 1 µM of 4-OHT during 72h. a, 

GFRA1+-paired spermatogonia; b, GFRA1+-aligned spermatogonia; c, GFRA1+ spermatogonia 

colony. Arrows indicate GFRA1+ colonies formed after 96h. *, mouse embryonic fibroblast (MEF) 

nucleus. Scale bar, 10 µm. (I) The relative enrichment of GFRA1+ cells is represented by the 

expression of gene markers for the different populations of Gfra1+, Plzf+ or Stra8+ spermatogonia 

and Sertoli cells (Sox9+) after laminin selection, using Vasa as housekeeping gene. BLS, before 

laminin selection; ALS, after laminin selection. (J) BrdU incorporation assay for GFRA1+-enriched 

cultures. Representative images are shown. Arrows indicate GFRA1+ colonies. *, mouse embryonic 

fibroblast (MEF) nucleus. Scale bar, 10 µm. (K) Quantification (n=3) of the proportion of BrdU-

incorporated nuclei. Scale bar, 10 µm. (L) Immunocytochemistry of apoptotic cells (green) using 

the TUNEL assay. Scarce apoptotic positive cells were nearly only observed in GFRA1+ (Ppp1r8fl/-) 

(iKO) cells after 4-OTH treatment for 72 hours. *, mouse embryonic fibroblast (MEF) nucleus. 

Scale bar, 10 µm. (M) Quantification of the apoptotic cells as shown in (L). All data in this figure 

are represented as means ± SEM. *, p<0.05; **, p<0.01. DIC, differential interference contrast.  

4.3.4 The deletion of NIPP1 results in the destabilization of EZH2  
NIPP1 has an FHA-domain that recruits phosphoproteins for regulated dephosphorylation 

by associated PP1 (see Introduction). One of the established NIPP1 FHA-ligands is the 

histone methyltransferase EZH2. Double immunostainings showed a co-localization of 

NIPP1 and EZH2 in GFRA1+-enriched cells (Figure S8A). Also, NIPP1 co-

immunoprecipitated with EZH2 from total testis nuclear extracts and GFRA1+-enriched 

cell lysates (Figure S8B), confirming that they are part of the same complex in germ cells, 

in particular in spermatogonia.  

EZH2 is the catalytic subunit of the PRC2 complex. The non-catalytic core subunits of 

the PRC2 complex include EED, SUZ12 and RBAP48. Interestingly, the loss of any of 

these PRC2 subunits also destabilizes the other core components [35–38]. Since the 

deletion of PRC2 core components in mouse testis results in a loss of spermatogonia 

[10,11], we speculated that the testis phenotype of the NIPP1 iKOs might be caused by a 

phosphorylation-regulated degradation of EZH2, culminating in the destabilization of other 

PRC2 components. Consistent with this notion, we found that the levels of EZH2, 

RBAP48 and SUZ12, as determined by both immunohistochemistry and immunoblotting, 
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were reduced by 30-40% in iKOs of 6 weeks, when the seminiferous tubules still contain a 

normal number of germ cells (Figure 4A-G). Close inspection of the immunehistochemical 

pictures (see insets) revealed that the PRC2 components were mainly expressed in 

proliferating germ cells and were lost from a subset of these cells. RNA sequencing did not 

disclose changed transcript levels of the PRC2 core components in NIPP1 iKOs (Table 

S1), suggesting that their downregulation involves a (post)translational process. 

Intriguingly, we found that EZH2 from testis lysates migrated as two bands during SDS-

PAGE and that the upper band was relatively more prominent (~40%) in the iKOs (Figure 

4B and D). Since the slower migration of the upper band was abolished by a pre-treatment 

with lambda phosphatase (Figure S9A), we conclude that it represents 

hyperphosphorylated EZH2. Finally, we also examined the fate of other NIPP1 FHA-

ligands (SAP155 and CDC5L) and PP1 (all isoforms), but their level was not affected in 

testis lysates of iKOs of 6 weeks (Figure S9B-G). In conclusion, our data suggest that the 

deletion of NIPP1 results in the hyperphosphorylation and destabilization of EZH2, which 

contributes to the (expected) destabilization of other PRC2 core components.  
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Figure 4. The loss of NIPP1 is associated with the destabilization of PRC2 core components. 

(A) Testis sections of tamoxifen-injected mice of 6 weeks were immunostained for EZH2, 

RBAP48 and SUZ12. Scale bar, 50 µm. (B) NIPP1 and EZH2 levels were detected by 

immunoblotting. TBP was used as a loading control. (C) Quantification of the EZH2 levels, as 

shown in panel (B). (D) Ratio of the higher and lower bands of EZH2, as shown in panel (B). (E) 

The same testis lysates (~100 µg) were immunoblotted for RBAP48 and SUZ12. (F-G) 

Quantifications of panel (E). All bar data are means ± SEM (n=4). *, p<0.05; **, p<0.01.  
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4.3.5 NIPP1 stabilizes EZH2 by promoting PP1-mediated dephosphorylation of 

CDK sites 

Since EZH2 in HeLa cells is targeted for proteasomal degradation by its CDK1/2-mediated 

phosphorylation at Thr345 and Thr478 [19,20], we hypothesized that EZH2 in 

spermatogonia is also destabilized by phosphorylation of these residues. Therefore, we first 

compared the half-lives of EGFP-tagged EZH2-wildtype (WT), EZH2-T345A and EZH2-

T487A in a spermatogonia-A cell line (C18-4) after the addition of the protein synthesis 

inhibitor cycloheximide (Figure 5A-C). EZH2-WT had a half-life of approximately 2 hours 

but this increased to about 6h for the non-phosphorylatable alanine mutants, similar to the 

half-life of EGFP. Thus, EZH2 in spermatogonia A is stabilized by preventing its 

phosphorylation at Thr345 or Thr487. We proceeded to examine whether these sites are 

hyperphosphorylated in the testes of the iKOs. Since Thr345 and Thr487 are followed by a 

proline, their phosphorylation status can be derived from immunoblotting with a pan pTP 

antibody, in particular since Thr345 and Thr487 represent the major TP-phosphorylation 

sites of EZH2 [15–18]. EZH2 that was immunoprecipitated from testis lysates (Figure 5D 

and E) or GFRA1+-enriched cell lysates (Figure S9H and I) was hyperphosphorylated at 

pTP motifs in the iKOs. Moreover, EGFP-EZH2 that was ectopically expressed in 

spermatogonia-A showed a reduced phosphorylation at TP-dipeptide motifs after the co-

expression of a Flag-PP1-NIPP1 fusion (Figure 5G-H), indicating that EZH2 is a potential 

substrate for dephosphorylation by PP1-NIPP1. This is in accordance with previous in vitro 

data showing that the TP-dipeptide motifs of EZH2 are dephosphorylated by purified PP1 

[17]. We also found that the incubation of GFRA1+-enriched cells with the CDK inhibitor 

roscovitin severely decreased the phosphorylation of EZH2 at TP-dipeptides (Figure S9H 

and J), in accordance with previous data that identified EZH2 as a CDK substrate 

[15,19,20]. Collectively, our data strongly indicate that the loss of EZH2 in the testis of the 

NIPP1 iKOs is due to a deficient dephosphorylation of CDK sites, resulting in its 

proteasomal degradation. 
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Figure 5. NIPP1 regulates the dephosphorylation and stability of EZH2. (A) Schematic 

representation of EGFP and the indicated EGFP-tagged EZH2 variants. (B) Non-synchronized 

C18-4 cells were transfected with EGFP or the EGFP-tagged EZH2 variants and treated with 

cycloheximide (CHX; 50 µg/ml) for the indicated time points. The fate of EGFP and the EGFP 

fusions was determined by immunoblotting with an anti-EGFP antibody. Data are represented as 

means ± SEM (n=3). *, p<0.05; **, p<0.01. (C) Representative example of the turnover of EGFP 

and EGFP-EZH2 fusions in the presence of cycloheximide. α-Tubulin was used as a loading 

control. (D) EZH2 was immunoprecipitated (IP) from testis extracts of tamoxifen-treated mice of 6 



CHAPTER	4:	Results	
	

	 85	

weeks. The IP loading was corrected for equal amounts of immunoprecipitated EZH2 in the CRT 

and iKO conditions. For the input, ~10 µg protein was loaded and IgGs were used as negative 

control. The blots were stained for total EZH2 and TP-dipeptide phosphorylated EZH2 (pTP). 

EZH2 immunoprecipitation (IP) and detection were performed with distinct antibodies from Cell 

signaling with catalog numbers 5246 and 3147, respectively, which were raised in different species. 

(E) Quantification of relative amounts of phosphorylated EZH2 (n=4). (F) Scheme of Flag and 

Flag-tagged PP1-NIPP1 fusion. (G) EGFP-EZH2 and either Flag or Flag-PP1-NIPP1 were 

transiently expressed in spermatogonia-A cells (C18-4) for 48h. The cells were synchronized in 

mitosis by a treatment with nocodazole for 16h. Cell lysates were analyzed for the presence of 

EGFP-EZH2 and Flag-PP1-NIPP1 (Flag). EGFP-traps were immunoblotted for EGFP-EZH2 and 

phosphorylated EZH2 (pTP). (H) Quantification of the relative amounts of phosphorylated EZH2 

(n=3). *, p<0.05; **, p<0.01.  

4.3.6 The loss of PRC2 affects the expression of proliferation and survival 

genes  
We subsequently explored the consequence of the gradual loss of the PRC2 core 

components in the testes of the NIPP1 iKOs. The major substrate of EZH2 is histone H3, 

which is trimethylated at Lys27 (H3K27me3). Consistent with the decreased concentration 

of EZH2 in the iKOs, the testicular level of H3K27me3 in mice of 6 weeks was reduced, as 

shown by both immunostaining (Figure 6A) and immunoblotting (Figure 6B-C). Closer 

inspection of the stainings revealed that the loss of H3K27me3 in the iKOs was 

particularly strong in seminiferous tubules containing spermatogonia and (pre)leptotene 

spermatocytes (Figure 6A, panels 1-2), but was less obvious in tubules at later stages 

(Figure 6A, panel 3). A decreased H3K27me3 level was also observed in neonatal testis of 

tamoxifen-induced mice (Figure S10A-C) and tamoxifen-treated testis cultures from mice 

of 4 weeks (Figure S10D-F).  

The histone methyltransferase EZH2 regulates cell proliferation and survival mainly 

by transcriptional repression of target genes via trimethylation of H3K27. To identify the 

transcriptome profile of CTR and iKO testis from mice of 6 weeks, we performed a 

comparative RNA sequencing. Data analysis identified 122 upregulated and 152 

downregulated genes in the iKOs (Figure 6D, Table S2). Among the downregulated targets 

were genes that contribute to cell-cycle progression (Cdkn2a, Kntc1), MAP kinase 

signaling (Dusp 9), PcG signaling (Dnmt3l) and spermatogenesis (Nanos 1) (Figure 6E). 

The upregulated genes included pro-apoptotic genes (Parp8, Bbc3, Ccnb3), genes involved 

in cell-cycle progression (Tnk, Ptprt, Kif2b) and gonadal development genes (Lhx9). In 
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general, these altered expression profiles are consistent with the observed decreased 

proliferation and survival potential of testicular cells in the iKOs. The RNA sequencing 

data were largely confirmed by qRT-PCR (Figure 6F). Further analysis revealed that about 

12% of the genes that were mapped in the RNA seq data are previously described PcG 

targets, based on PcG target lists [10,39–41]. Interestingly, 26% of the genes affected in 

the iKOs are established PcG targets (Figure S11A), reflecting a twofold enrichment. We 

have also verified by ChIP analysis that H3K27me3 was enriched at or around the 

promoter region of affected PRC2 target genes in testis (Figure 6G and Figure S11B) and 

that the deletion of NIPP1 was associated with decreased H3K27 trimethylation at these 

loci, except for CDKn2a (Figure 6H). Paradoxically, the decreased H3K27me3 level of 

Pou3f3 correlated with a decreased transcript level, indicating that Pou3f3 expression is 

also regulated by non-PcG related mechanisms or belongs to the subgroup of PcG targets 

that are activated by EZH2 [24,42].  
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Figure 6. PRC2 destabilization results in the deregulation of PcG target genes. (A) 

Testis sections of tamoxifen-treated mice of 6 weeks were immunostained for histone H3 

and H3K27me3. Shown are seminiferous tubules at different stages (1, Stage V-VIII; 2, 

Stage VIII-IX; 3, Stage X-XI). Scale bar, 50 µm. (B) Total H3 and H3K27me3 in histone 

extracts of testis were visualized by immunoblotting. (C) Quantification of H3K27me3, as 

shown in panel (B) (n=4). (D) Comparative RNA-sequencing profiling in testis of 
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tamoxifen-treated mice of 6 weeks. The figure shows the heat map of the significantly up- 

and downregulated genes. (E) Analysis of RNA-sequencing data showing changes in the 

level of the indicated transcripts in the iKOs. (F) qRT-PCR analysis of the same 

transcripts. The indicated genes encode proteins with the same name except for Bbc3 and 

Cdkn2a, which encode PUMA and p16/INK4a, respectively. (G) ChIP assays for 

H3K27me3 of the indicated genes in testis of tamoxifen-treated CTR mice of 6 weeks. 

ChIPs with IgGs served as negative controls. Cdc6 gene was used as non-PcG target 

control gene. ChIP enrichments were calculated as a percentage of the total input signal 

(n=6). (H) Comparison of the H3K27me3 ChIP data between CTR and iKO mice. 

H3K27me3 enrichment in the iKOs is presented as a percentage of the corresponding CTR 

value (n=6). Data are represented as means ± SEM. *, p<0.05; **, p<0.01; ***, p<0.001.  

4.3.7 The Ppp1r8-/- testis phenotype can be phenocopied by the chemical 

inhibition of EZH proteins  
EPZ011989 is an inhibitor of both EZH1 and EZH2, but is about 15 times more selective 

for EZH2 [43]. We have independently validated the importance of EZH1/2 for 

spermatogenesis by examining the effect of EPZ011989 on proliferation in cultured testis 

slices from mice that had not been pretreated with tamoxifen and, hence, contained 1 (iKO) 

or two (CTR) functional Ppp1r8 alleles [43]. The addition of EPZ011989 reduced the level 

of both H3K27me3 and the proliferation marker PCNA by some 60% (Figure 7A-C), 

which is identical to the results obtained after the deletion of NIPP1 (Figure 3 and Figure 

S6). Thus, the testis hypoproliferation phenotype induced by the deletion of NIPP1 can be 

phenocopied by the chemical inhibition of EZH1/2.  
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Figure 7. The chemical inhibition of EZH1/2 in testis organ cultures mimics the Ppp1r8-/- 

phenotype. (A) Testis slices from CTR and iKO mice of 4 weeks were cultured for 96 hours in the 

presence of vehicle (DMSO) or the EZH inhibitor EPZ011989 (EZHi), but in the absence of 4-

OHT. Subsequently, testis sections were stained with DAPI and immunostained for H3K27me3 

and PCNA. Scale bar, 50 µm. (B) Quantification of H3K27me3. Data are means ± SEM (n=4). (C) 

Quantification of PCNA. Data are means ± SEM (n=4). **p<0.01, ***p<0.001. (D) Model of the 

regulation of EZH2 by CDKs and PP1-NIPP1. CDKs phosphorylate EZH2 at Thr345, Thr416 and 

Thr487. Thr345 phosphorylation targets EZH2 to chromatin via non-coding RNAs, while Thr487 

(and Thr345) phosphorylation results in the proteasomal degradation of EZH2. The 



CHAPTER	4:	Results	
	

	 90	

phosphorylation of EZH2 at Thr416 creates a docking site for the N-terminal FHA-domain of 

NIPP1. EZH2-recruited NIPP1 prevents the immediate dephosphorylation of EZH2 by PRC2-

associated PP1. However, the inhibition of PP1 by NIPP1 can be alleviated (de-inhibition) by the 

allosteric disruption of the interaction between PP1 and the C-terminal PP1-inhibitory domain of 

NIPP1, resulting in the dephosphorylation of EZH2. In vitro such de-inhibition is seen after the 

binding of RNA to the C-terminus of PP1, even when de-inhibited NIPP1 remains tightly 

associated with PP1 via its PP1-anchoring domain.  

4.4 Discussion  
The inactivation of both Ppp1r8 alleles in mice is early embryonic lethal [30]. This 

prompted us to develop an inducible knockout model to study postnatal functions of 

NIPP1. The only macroscopic consequence of the deletion of NIPP1 in adult mice was a 

reduced testis size (Figure1C and D). However, this does not preclude key functions for 

NIPP1 elsewhere as inactivation of the floxed Ppp1r8 allele by UBC-CRE recombination 

was incomplete or patchy in all other examined tissues. Tamoxifen-induced UBC-CRE 

recombination is indeed known to be variable due to CRE expression in a tissue-dependent 

manner or mosaic fashion [32,44]. Nonetheless, UBC-CRE recombination was very 

efficient in the seminiferous tubules and the deletion of NIPP1 led to a reduced 

proliferation of spermatogonia and (pre)leptotene spermatocytes, culminating in the 

disappearance of all germ cells (Figure 2). The loss of the male germline was associated 

with the hypoproliferation of progenitor spermatogonia, comprising undifferentiated 

spermatogonia, as shown by tamoxifen-induced deletion of NIPP1 in GFRA1+-enriched 

cell populations (Figure 3J-K). Although our data identify NIPP1 as a key regulator of the 

proliferation of spermatogonia and (pre)leptotene spermatocytes, they do not exclude 

additional functions for NIPP1 in other germ-cell processes, such as meiosis.  

We have explored the events leading up to the testis phenotype in Ppp1r8-/- mice. For 

this purpose, we mainly analyzed testes of mice of 6 weeks, i.e. two weeks after the 

administration of tamoxifen, when the seminiferous tubules still appeared normal and the 

number of germ cells had not yet significantly decreased. Strikingly, at this age we already 

observed a reduced proliferation and increased apoptosis of spermatogonia and meiotic 

spermatocytes, and this correlated with a decreased level of EZH2 and other PRC2 core 

components (Figure 3 and 4). Importantly, none of the other examined NIPP1 interactors 

showed an altered expression in the iKOs. The lower concentration of EZH2 was clearly 

the consequence of a deregulated post-transcriptional control mechanism because the 
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EZH2 transcript level was not affected. PRC2 core components are well known to stabilize 

each other [35–38]. Accordingly, we found that the loss of EZH2 was associated with a 

similarly decreased level of other PRC2 components (Figure 4). Several independent lines 

of evidence indicate that the loss of PRC2 components can account for the testis phenotype 

in Ppp1r8-/- mice. First, the genetic deletion of EZH1/2, SUZ12 or EED in mice has also 

been shown to result in a loss of germ cells [10,11]. Second, the chemical inhibition of 

EZH1/2 causes a hypoproliferation phenotype similar to that observed after the deletion of 

NIPP1 (Figure 7A-C). Third, the loss of PRC2 components in Ppp1r8-/- mice was 

associated with a reduced H3K27 trimethylation and altered expression of PcG targets that 

are important for proliferation and cell survival (Figure 6). Importantly, it has recently 

been demonstrated that the loss of EZH2 in male germ cells can be compensated for by 

EZH1 [11]. Since the deletion of NIPP1 reduced the global trimethylation of H3K27 

(Figure 6A-C), this suggest that EZH1 is probably also lost in Ppp1r8-/- testis. Consistent 

with this notion, the TP-dipeptide motif that mediates the binding of EZH2 to the FHA 

domain of NIPP1, termed TP5 in [17], is conserved in EZH1.  

Our data suggest that the decreased level of EZH2 in spermatogonia of the iKOs is 

caused by its deficient PP1-NIPP1 mediated dephosphorylation at CDK sites (Figure 5). 

The activity modulation of the PP1-NIPP1 holoenzyme is complex. Indeed, NIPP1 has 

both a PP1-anchoring and PP1-inhibitory domain which, together, fully block the activity 

of PP1 (Figure 7D). This is particularly relevant for ligands of the FHA domain of NIPP1, 

including EZH2, that are recruited in a phosphorylation-dependent manner. CDKs 

phosphorylate EZH2 at Thr345, Thr416 and Thr487. Phosphorylation of Thr416 serves to 

recruit NIPP1, which inhibits PRC2-associated PP1 and thereby opposes the immediate 

dephosphorylation of EZH2 [17]. However, NIPP1 is not always inhibitory as it also 

enables the timely dephosphorylation of FHA ligands by associated PP1 [28]. The trigger 

and mechanism of this ‘de-inhibition’ are still unclear but we speculate that it involves the 

allosteric disruption of the interaction between PP1 and the C-terminal inhibitory domain 

of NIPP1. In vitro, such ‘de-inhibition’ is detected after the binding of the C-terminus of 

NIPP1 to RNA [27]. Intriguingly, the phosphorylation of EZH2 at Thr345 has been shown 

to promote its recruitment via non-coding RNAs (Figure 7D). Possibly, these non-coding 

RNAs or their degradation products also trigger the dephosphorylation of EZH2 by PP1-

NIPP1, eventually resulting in the release of EZH2 from chromatin. Consistent with the 

notion that NIPP1 is an allosterically controlled facilitator of the dephosphorylation of 

EZH2 by associated PP1, we found that the deletion of NIPP1 causes the 
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hyperphosphorylation of EZH2 at CDK sites. The consequence of this 

hyperphosphorylation was difficult to predict since CDK-mediated phosphorylation of 

EZH2 has been linked to both its enhanced chromatin targeting (Thr345) and proteolytic 

degradation (Thr487 and Thr345) [15,16,19,20]. Possibly, the outcome depends on the 

cell-cycle regulated timing or duration of these phosphorylation events, or is determined by 

additional components that are (transiently) recruited to the PRC2 complex [45,46]. In any 

case, the permanent and complete deletion of NIPP1 causes the hyperphosphorylation and 

degradation of EZH2 in spermatogonia. At first glance, it may come as a surprise that the 

inactivation of Ppp1cc, encoding PP1g1 and the testis-specific splice variant PP1g2, does 

not cause a similarly strong phenotype as seen after deletion of the PP1 interactor NIPP1 

[47–49]. However, spermatogonia also express other PP1 isoforms (PP1a and PP1b) and 

NIPP1 binds equally well to all of them [50]. Therefore, the deletion of PP1g does not 

preclude the formation of the PP1-NIPP1 holoenzyme and is not expected to cause the 

same phenotype as seen after the deletion of NIPP1.  

We have shown here that the postnatal deletion of NIPP1 in testis leads to the 

hypoproliferation and apoptosis of spermatogonia, and culminates within a few months in 

the loss of all germ cells. This phenotype stems from the loss of PRC2 core components, 

resulting in a reduced H3K27 trimethylation and altered expression of target genes that 

regulate cell survival and proliferation. The destabilization of PRC2 components is 

initiated by the proteasomal degradation of EZH2, and possibly also EZH1, caused by a 

deficient dephosphorylation of CDK sites by PP1-NIPP1.  

4.5 Methods  
Handling of mice  

Mice were housed in a specific-pathogen free facility under standard 12h light/dark cycles 

with water and food ad libitum. All experiments were approved by the KU Leuven Ethical 

Committee and executed according to their guide of care of experimental animals. Ubc-

Cre-ERT2/Ppp1r8fl/+ (CTR) and Ubc-Cre-ERT2/Ppp1r8fl/- (iKO) mice were generated 

using the breeding scheme shown in Fig. S1A, involving previously described Ppp1r8+/- 

[30], Ppp1r8fl/fl [51] and Ubc-Cre-ERT2 mice [31](gift from Dr. M. Baes, KU Leuven, 

Belgium). A testis-specific NIPP1 mouse KO model was generated as detailed in (Figure 

S5G), using transgenic Vasa-Cre mouse [52] (a gift from Dr. D.H. Castrillon, University of 

Texas Southwestern Medical Center. USA). For genotyping, tail-clip DNA was amplified 



CHAPTER	4:	Results	
	

	 93	

by PCR, using the primer sets described in Table S3. The PCR conditions are available on 

request.  

Tamoxifen (Sigma-Aldrich) was dissolved in 10% (v/v) ethanol in oil at a 

concentration of 20 mg/ml. Deletion of the floxed Ppp1r8 allele in adult males and 

neonates was induced by 4 intraperitoneal or 3 subcutaneous injections, respectively, of 0.2 

mg tamoxifen/g body weight (Figure 1B and Figure S4G). BrdU (Sigma) was dissolved in 

phosphate-buffered saline (PBS) and injected intraperitoneally at 100 mg per kg mouse 

body weight. Testes were harvested 2h following BrdU injections. The testes from 

anaesthetized animals were either directly frozen in liquid nitrogen, fixed in Bouin’s 

(Sigma-Aldrich) or 4% Paraformaldehyde (PFA) solutions.   

Organ and cell culture 

Testis organ culture was performed as described [53,54]. Briefly, a testis from adult male 

mice was sliced into four pieces and placed on agarose gels soaked in the organ culture 

medium containing 2x alpha-MEM (Sigma), 10% knockout serum replacement KSR 

(Sigma), 100 U/ml penicillin, 100 µg/ml streptomycin and 7% w/v sodium bicarbonate. 

Testis slices were maintained in culture for 4 days and 10 µM BrdU (Sigma) was added to 

the medium 6 hours before harvesting (Table S4). EZH1/2 was inhibited in cultured testis 

by treatment with 20 µM EPZ011989 (Tocris) [43]. In vitro deletion of the floxed Ppp1r8 

allele was done by addition of 2 µM (Z)-4-Hydroxytamoxifen (OHT) (Sigma-Aldrich) to 

the medium for 96h.  

C18-4 cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium/F12 

(DMEM/F12), supplemented with 10% fetal bovine serum, 100 U/ml penicillin and 100 

µg/ml streptomycin. Transfections were performed using Lipofectamine 2000 (Invitrogen) 

or JetPrime kit (Polyplus). Nocodazole (Sigma-aldrich) was used at a concentration of 0.3 

µg/ml for 16h (M-phase). Cycloheximide (Sigma-aldrich) was used at a concentration of 

50 µg/ml. 

GFRA1+-enriched cells (undifferentiated spermatogonia) were isolated from 12 days-

old CTR and iKO mice, as described by Guan et al. (2009). Briefly, testicular cells were 

isolated by an enzymatic procedure using collagenase IV (Worthinghton biochem corp.) 

and dispase (Invitrogen), followed by enrichment of GFRA1+-enriched spermatogonia 

through laminin (Sigma) selection. After enrichment, cells were co-cultured with freshly 

prepared MEF (mouse embryonic fibroblasts) as feeding cells. The MEFs had been pre-

incubated with Mitomycin C (Sigma) and maintained in spermatogonia stem cells (SSCs) 
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growth medium, containing MEM alfa medium (Thermo fisher scientific) and 

supplemented with 10% FBS, 100 U/ml penicillin, non-essential amino acids (Thermo 

fisher scientific), β-Mercaptoethanol (Sigma), N2-1 supplement (Thermo fisher scientific), 

4 ng/ml of recombinant GDNF (R&D systems) and 103 U/ml of recombinant LIF (Sigma). 

NIPP1 deletion was induced by addition of 1 µM 4-OHT to the medium for 72h. For the 

proliferation assay, 15 µM BrdU was added to the medium 5 hours before harvesting cells.  

Immunohistochemistry  

Testes fixed in Bouin’s (6h) or 4% PFA (24h) were embedded in paraffin and sectioned at 

a thickness of 6 µm. Testis sections were stained with Hematoxylin and Eosine (H&E) or 

the fibrosis marker Sirius red according to standard protocols. TUNEL assays were 

performed using the In-Situ-Cell-Death-Detection-Kit and Fluorescein (Roche) on 

paraffin-embedded testis tissue following the instructions of the manufacturer. Testis 

sections were stained using the antibodies listed in (Table S4) and using the TSATM 

Fluorescein or TSATM Biotin system (PerkinElmer). Detailed immunostaining protocols 

are available on request. The immunofluorescence images were acquired with a Leica TCS 

SPE laser scanning confocal system mounted on a Leica DMI 4000B microscope and 

equipped with a Leica ACS APO 20X objective. Quantifications shown in Figure 2B, 3B-

C, E-G and Figure S4B-C were performed by counting the number of cells stained with the 

indicated cell markers per seminiferous tubule (30 randomly selected tubules per mouse, 

n=4). Leica MM AF 2.1 software was used for quantification (10 pictures of 10x objective 

magnification were randomly selected per mouse testis) of the relative expression of 

PCNA (Figure 3D, 7C, S6F, S7B), NIPP1 (Figure S1F, S6B and E), SOX 9 (Figure S7B), 

EZH2 (Figure S10B and E), H3K27m3 (Figure 7B, S10C and F) and p16 (Figure S4D) 

over DAPI (nucleus) signal.  

Plasmids  

Plasmids encoding eGFP-tagged mouse wild-type EZH2, EZH2-T345A and EZH2-T487A 

have been described [17]. The plasmid encoding Flag-tagged PP1g-NIPP1 fusion was 

generated in three cloning steps. First, a flexible linker encompassing the sequence 

LSGGGGSGGGGSGGGGSGGGGSAAA [55] was C-terminally fused to PP1g by an 

adapter-based cloning strategy. Second, cDNA encoding bovine NIPP1 was cloned in open 

reading frame with the cDNA encoding the PP1g-linker at its 3’ end. Finally, cDNA that 
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encodes PP1g-linker-NIPP1 was cloned via XhoI and SacII in the eGFP-C1 vector 

(Clontech), in which the eGFP-tag had been replaced by a 3x Flag-tag. 

Biochemical procedures  

Testes were homogenized using a dounce homogenizer (Sigma) and incubated in lysis 

buffer for 20 min at 4°C. The lysis buffer comprised modified RIPA buffer (50 mM Tris-

HCl at pH 7.4, 1% Triton-X 100, 0.2% sodium deoxycholate, 0.2% sodium dodecyl sulfate 

(SDS), 1 mM EDTA, 0.3 M NaCl) or SDS-lysis buffer (50 mM Tris-HCl at pH 7.4, 2% 

SDS, 12% glycerol, 100 mM ß-mercaptoethanol). Lysis buffers were supplemented with 

20 mM NaF, 5 µM leupeptin, 0.5 mM phenylmethanesulfonyl fluoride, 0.5 mM 

benzamidine and 1 mM orthovanadate. The lysates were centrifuged for 5 min at 1800 x g 

and the supernatant was used for immunoblotting or immunoprecipitation. The testis 

extracts for immunoblotting in Figure 1E, 4B and E, Figure 5B, D and G, Figure S9A, B, 

D and F were prepared with modified RIPA, while SDS-lysis buffer was used in Figure 6B 

and S7C. For in vitro dephosphorylation with lambda phosphatase, samples were incubated 

for 30 minutes at 30°C with 400 units of lambda phosphatase (Santa Cruz) in the presence 

of 5 mM DTT and 2 mM MnCl2. For the immunoprecipitation assays in testis extracts, the 

supernatant was pre-cleared with 30 µl of protein-A-Sepharose beads (1:1 suspension in 

TBS) for 1 h at 4°C. After centrifugation (30 s at 425 x g) the supernatant was incubated 

overnight at 4°C with antibodies against EZH2 (Table S4) or anti-mouse IgG for control 

(Dako). Subsequently, 30 µl of protein-A-Sepharose (1:1 suspension in TBS) was added 

for 1 h at 4°C. After centrifugation for 30 s at 425 x g the pellet was washed five times 

with Tris-buffered saline (TBS), supplemented with 0.1% Triton X-100 and 0.25% NP-40, 

and subjected to SDS-PAGE.  

C18-4 cells were harvested and lysed for 30 minutes at 4°C in 50 mM Tris-HCl at pH 

7.4, 0.3 M NaCl, 0.5% Triton-X 100, 20 mM NaF, 5 µM leupeptin, 0.5 mM 

phenylmethanesulfonyl fluoride, 0.5 mM benzamidine and 1 mM orthovanadate. After 

centrifugation (10 min at 1800 x g), the supernatant was used for immunoblotting or 

EGFP-trapping [56].  

To examine the interaction of NIPP1 and EZH2, isolated cells and testis nuclear 

extracts were prepared as described by Prieto et al. (2002). The nuclear extracts were used 

for immunoprecipitation studies as described above. GFRA1+-enriched cells were pre-

incubated with dimethylsulfoxide (DMSO) or 150 µM of the CDK-inhibitor roscovitine 

(LC Laboratories) for 2 h before immunoprecipitation.  
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Immunoblotting was performed following 10% SDS- PAGE with the indicated 

antibodies (Table S4). Immunoblots were visualized using ECL reagent (Perkin Elmer) in 

an ImageQuant LAS4000 imaging system (GE Healthcare) and were quantified using 

ImageQuant TL software (GE Healthcare). 

RNA sequencing and Quantitative Reverse Transcriptase PCR (qRT-PCR)  

Total RNA was isolated from 40 mg of snap-frozen mouse testis using the GenEluteTM 

Mammalian Total RNA Miniprep kit (Sigma-aldrich). RNA integrity of the samples used 

for RNA sequencing was assessed using a Bioanalyser 2100 (Agilent). Library preparation, 

sequencing and statistical analysis of the RNA sequencing data were performed by VIB 

Nucleomics Core, as detailed in the Supplemental information.  

Complementary DNA (cDNA) was synthetized from 2 µg of total RNA using oligo dT 

primers (Sigma-aldrich) RevertAid Premium Reverse Transcriptase and RiboLock RNase 

inhibitor enzymes (Fermentas). About 1.2% of the cDNA was amplified by PCR in 

duplicate using SYBR Green qPCR Mix (Invitrogen) and a Rotorgene detection system 

(Corbett Research). To compare the relative amount of target genes in different samples, 

values were normalized to the housekeeping gene Hprt (Hypoxanthine-guanine 

phosphoribosyltransferase). qRT-PCR primers are listed in Table S5.  

Chromatin immunoprecipitation (ChIP) 

ChIP assays were performed according to the protocol of Upstate with some modifications, 

as described in the section with Supplemental information. The immunoprecipitated DNA 

was quantified by real-time qPCR. Gene-specific primers for qChIP analysis are listed in 

(Table S6). Selection of the likely PcG target genes was performed by a comparative 

analysis of the top list (Log2 (FC) > ±0.58; FDR < 0.05) genes derived from RNA-seq data 

and a list composed of PcG target genes that were previously described [10,39–41].  

Statistics 
All statistical analysis was performed using GraphPad Prism software. Two-way unpaired 

(Figure 1-2, 3B-E and G, Figure 4C-G, Figure 5E, Figure 6, Figure S1-S3, Figure S4-S5E, 

Figure S6-S7, Figure S9C-G, Figure S10) or paired (Figure 3J-M and Figure 5C and H) 

student’s t-test, and Pearson’s correlation test (Figure S5F) were used.  
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4.7 Supplemental Information 

4.7.1 Additional Experimental Procedures  

Testosterone assay 

Serum testosterone was determined at the Centre for Laboratory Medicine 

(Laboratoriumgeneeskunde UZ-KU Leuven, Belgium). Blood was extracted by cardiac 

puncture from male mice of 9 weeks that had been housed with an adult female for 2 

weeks.  

Chromatin immunoprecipitation (ChIP) 

ChIP assays were performed as described [1]. Briefly, 100 mg of testis was cross-linked 

with 1% paraformaldehyde (PFA) in PBS during 10 min at room temperature before 

stopping the reaction with 250 mM glycine. After centrifugation (425 x g) for 5 minutes at 

4°C, the pellet was dissolved in SDS lysis buffer (50 mM Tris/HCl at pH 8.0, 1% SDS, 10 

mM EDTA), supplemented with 20 mM NaF, 5 µM leupeptin, 0.5 mM 

phenylmethanesulfonyl fluoride, 0.5 mM benzamidine and 1 mM orthovanadate, and 

sonicated in the Bioruptor sonicator with 30 sec on/30 sec off cycles during 35 minutes at 

4°C. 500 µg of sheared chromatin (OD260) was pre-cleared with 35 µl of pre-blocked 

Protein-A-Sepharose for 2 hours at 4°C. Protein-A-Sepharose was blocked with 1 mg/ml 

BSA, 1 mg/ml salmon sperm DNA and 1% Triton X-100. 150 µg of pre-cleared chromatin 

was incubated overnight at 4°C with 3 µl of anti-H3K27me3 antibody (1 mg/ml; Table S4) 

or with polyclonal rabbit anti-mouse immunoglobulins (IgG). Then 30 µl pre-blocked 

protein-A-Sepharose was added for 1h. The beads were washed once with low salt buffer 

(16.7 mM Tris-HCl at pH 8.1, 1% Triton X-100, 167 mM NaCl, 1.2 mM EDTA and 0.01% 

SDS), once with high salt buffer (20 mM Tris-HCl at pH 8.1, 1% Trition X-100, 500 mM 

NaCl, 0.1% SDS and 2 mM EDTA), once with LiCl buffer (10 mM Tris-HCl at pH 8.1, 

0.25 M LiCl, 1% NP-40 and 1% Na-deoxycholate), and twice with TE buffer (10 mM 

Tris/HCl at pH 8.0, 1 mM EDTA). The histone/DNA complex was twice eluted at 65°C 

with fresh elution buffer (0.1 M NaHCO3 at pH 8.0, 1% SDS). After reversing the cross-

links by incubation with 0.2 M NaCl and RNAase A for 4h at 65°C, the samples were 

treated with Proteinase K. Subsequently, the DNA was purified using the GenEluteTM PCR 

Clean-up kit (Sigma).  
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RNA sequencing 

The Nanodrop ND-1000 (Nanodrop Technologies) was used to determine the RNA 

concentration and purity and the Bioanalyser 2100 (Agilent) to assess the RNA integrity of 

all RNA samples. Library preparation, sequencing and analysis were performed by the VIB 

Nucleomics Core (www. nucleomics.be) according to their standard protocols. Briefly, 5 

µg of total RNA per sample was used as input. rRNA was depleted using Illumina 

TruSeq® Stranded Total RNA Sample Prep Kit with Ribo-Gold (Illumina). cDNA was 

generated using random primers and double stranded cDNA was synthesized using DNA 

polymerase I and RNAase H. Next, multiple indexing adapters were ligated to introduce 

different barcodes for each sample, followed by an enrichment PCR. The sequence 

libraries of each sample were equimolarly pooled and sequenced (1/2 run of iIllumina 

NextSeq500 flow-cell at 2x 75 bp). Preprocessing was performed using FastX 0.013, 

Cutadapt 1.7.1 and Short read 1.16.3 to remove mainly low quality ends, adaptor 

sequences and unreliable reads [2–5]. For the mapping of the reads alignment with Tophat 

v2.0.13 to the reference genome of Mus musculus (GRCm38.73) was performed [6]. Reads 

with a mapping quality smaller than 20 were removed from the alignments using Samtools 

1.1 [7]. Transcript coordinates were extracted from the GRC reference annotation (Gffread 

from the Cufflinks v2.1.1 suite), and merged to gene coordinates (mergeBed from the 

Bedtools v2.17.0 toolkit). Next, the number of aligned reads per gene was counted 

(HTSeq-count v0.6.1p1) [8,9]. Genes for which all samples had less than 1 cpm (count-

per-million) were removed. Raw counts for the retained 17.344 genes were further 

corrected within samples for GC-content and between samples using full quantile-

normalization, according to the EDASeq package from Bioconductor [10]. Differential 

gene expression was determined with the EdgeR 3.4.0 package by fitting a negative 

binomial generalized linear model (GLM) against the normalized counts [11]. Differential 

expression was tested for with a GLM likelihood ratio test and the resulting p-values were 

corrected for multiple testing with Benjamini-Hochberg to control the false discovery rate 

[12]. 
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4.7.2 Additional Figures and Tables  

 
Figure S1. Breeding strategy and mice genotyping for inducible deletion of NIPP1. (A) 

Scheme of crossing strategy for the generation of the inducible Ppp1r8 knockout mice (iKO) and 

their controls (CTR). The administration of tamoxifen causes the nuclear translocation of CRE-

ERT2 [13]. (B) Scheme of the localization of the primers used for PCR-based genotyping of the 

CTR and iKO. (C) Representative example of PCRs on genomic tail DNA used for genotyping 
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CTR and iKO. The primer sequences are shown in Table S3. Also indicated are frequencies of the 

offspring from the Ubc-Cre-ERT2+/-, Ppp1r8fl/+ and Ppp1r8+/- mice crosses. (D) Body mass of 

tamoxifen-injected CTR and iKO mice at 6, 9, 12 and 20 weeks. (E) Hematoxylin-Eosin staining 

(left panels) and immunostainings of NIPP1 (right panels) in testis from wild-type (WT) mice and 

Ppp1r8+/- mice at 9 weeks. Bar, 50 µm. (F) Quantification of NIPP1 immunostainings as described 

in panel (E). The data represent means ± SEM. (n=4).  
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Figure S2. The somatic index of the epididymis and the male accessory glands are not 

affected by the tamoxifen-induced deletion of NIPP1. (A) Sections of the epididymis head and 

cauda from tamoxifen-injected mice at the age of 9 weeks were stained for Hematoxylin-Eosin 

(H&E) and NIPP1. Scale bars represent 50 µm in all panels of this figure. (B) The epididymis 

somatic index of tamoxifen-injected CTRs and iKOs at the indicated timepoints. The somatic index 

was determined by the percentage of total organ weight (g) over the body weight (g), and was 

expressed as a % of the value for the CTRs. All data are represented as means ± SEM. (n=4). (C) 

Sections of seminal vesicles (SV) and agglutination glands (AG) from tamoxifen-injected CTR and 

iKO mice at the age of 9 weeks were stained for H&E and NIPP1. (D) The SV somatic index of 

tamoxifen-injected CTRs and iKOs at the indicated time points. (E) The AG somatic index of 

tamoxifen-injected CTRs and iKOs at the indicated time points.  
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Figure S3. Expression of NIPP1 in testis of adult mice. (A) Immunostainings of NIPP1 in testis 

from wild-type mice at the age of 6 weeks. Scale bar, 25 µm. (B) Higher amplification of the 

square from panel (A).  LC, Leydig cells; MC, Myoid cells; SC, Sertoli cells; Spc, spermatocytes; 

pSpg, pachytene spermatocytes; lSpc, leptotene spermatocytes; eSpt, elongated spermatids; rSpt, 

round spermatids. White triangle, lumen. (C) Magnifications of CTR and iKO testis sections 

immunostained for NIPP1, showing that NIPP1 is expressed in germ cells and somatic cells of the 

seminiferous tubules in the CTR mice and is efficiently deleted in the iKO mice. SC, Sertoli cells; 

LC, Leydig cells.  
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Figure S4. The testicular loss of NIPP1 results in hypoproliferation but not senescence or 

fibrosis. (A) Testis sections of tamoxifen-treated mice of 6 weeks were stained for Cyclin D2, 

phospho-Ser 10 of Histone H3 (H3S10P) and p16. Scale bar, 50 µm. (B) Quantification of G1-

phase cells by counting the number of Cyclin D2 positive cells per seminiferous tubule of 

immunostainings as shown in panel (A). All data are represented as means ± SEM (n=4). *, 

p<0.05; **, p<0.01. (C) Quantification of mitotic cells by counting the number of H3S10P positive 
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cells in the immunostaining from panel (A). (D) Quantification of the immunostainings of the 

senescence marker p16 from panel (A). (E) Testis sections of tamoxifen-treated mice of 6 weeks 

were stained for fibrosis with Sirius red. Scale bar, 50 µm. (F) Quantification of the indicated 

seminiferous tubule stages (I-XII) stained testis sections of tamoxifen-treated mice at the age of 6 

weeks [14]. (G) Scheme of tamoxifen induction and sampling of testis from neonates. UBC-CRE-

ERT2 driven deletion of Ppp1r8 was induced by the subcutaneous injection of 0.2 mg tamoxifen/g 

mouse in 1 dpp-old newborns. W, weeks; dpp, days post-partum; TM, tamoxifen.  
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Figure S5. The testis phenotype is an intrinsic testicular defect. (A) Brain cortex sections of 

tamoxifen-treated mice of 6 weeks were stained for hematoxylin & eosin (H&E) and NIPP1. Scale 

bars represent 100 µm in all panels of this Figure. (B) Hypothalamus sections of tamoxifen-treated 

mice of 6 weeks were stained for H&E and NIPP1. (C) Cerebellum sections of tamoxifen-treated 

mice of 6 weeks were stained for H&E and NIPP1. (D) The brain somatic index of tamoxifen-

treated CTR and iKO mice at the indicated timepoints. (E) Testosterone levels in blood serum of 

tamoxifen-treated mice of 9 weeks. Data are means ± SEM (n=6). (F) Scatter plot of the correlation 
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between testis weight (g) and blood testosterone basal levels (ng/dl). Pearson’s correlation test: r, 

correlation coefficient; p, p value. (G) Scheme of breeding strategy for the generation of the testis 

specific Ppp1r8 knockout mice using the transgenic Vasa-Cre mice. (H) Representative example of 

the PCR amplicons derived from PCR on tail DNA from mice with the indicated genotypes. The 

following primers were used: primers VasaCre forward and VasaCre reverse in lanes 2-4, primers 

NIPP1 KO forward and NIPP1 KO reverse in lanes 6-8 and primers LoxP1 forward, LoxP1 reverse 

and LoxP2 reverse in lanes 10-12. The efficiency and specificity of the Vasa-Cre recombinase is 

shown in lanes 10-12, where the resulting PCRs amplicons which correspond to NIPP1 wild-type 

(WT; 267 bp), no recombined NIPP1fl (No Rec; 329 bp) and recombined NIPP1fl (Rec; 389 bp) are 

represented. The sequence and location of the primers are indicated in Supplemental information. 

bp, base pairs; fl, loxP allele.  
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Figure S6. The deletion of NIPP1 leads to a reduced proliferation of germ cells in cultured 

testis slices. (A) Testis from tamoxifen-treated CTR and iKO mice were isolated at 5 weeks and 3 

days, and cultured for 4 days. After incubation with BrdU for 6 hours, testis sections were prepared 

and stained for H&E, NIPP1 and incorporated BrdU. Scale bar, 50 µm. (B) Quantification of 

NIPP1 immunostainings as shown in panel (A). All data in this Figure are represented as means ± 

SEM (n=4). *, p<0.05; **, p<0.01. (C) Quantifications of BrdU immunostainings of panel (A). *, 

p<0.05. (D) Organ culture of testis slices that were isolated from non-treated CTRs and iKOs of 4 

weeks. (Z)-4-Hydroxytamoxifen (4-OHT) was added to the slices for 96 hours to delete the floxed 

Ppp1r8 allele. Subsequently, testis sections were stained for NIPP1 and PCNA. Scale bar, 50 µm. 

(E, F) Quantification of stainings as shown in (D) (n=4). **, p<0.01; ***, p<0.001.  
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Figure S7. The removal of NIPP1 from neonatal testis decreases the proliferation of gonocyte-

derived cells. (A) Testis sections from neonates of 7 days (dpp, days post-partum) that had been 

treated with tamoxifen were stained for H&E, SOX9, PCNA and GFRA1. Scale bar, 50 µm. (B) 

Quantifications of stainings as shown in panel (A) (n=4). (C) Testis lysates from the same mice 

were used for immunoblotting with the indicated antibodies. TBP was used as a loading control. 

(D) Quantifications of NIPP1 expression as shown in panel (C) (n=4).  
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Figure S8. NIPP1 forms a complex with EZH2 in testis and GFRA1+ cells. (A) Co-localization 

of NIPP1 (green) and EZH2 (red) in the nucleus of GFRA1+-enriched cultured cells. Arrows 

indicate GFRA1+ colonies formed after 96h. *, mouse embryonic fibroblast (MEF) nucleus. 

GFRA1+, undifferentiated spermatogonia. (B) Endogenous EZH2 was immunoprecipitated from 

testis nuclear extracts and GFRA1+-enriched cell lysates and, examined for associated NIPP1 by 

immunoblotting. IP, immunoprecipitation; W, weeks; + Ab, EZH2 antibody added; - Ab, no 

antibody added. Scale bar, 10 µm.  
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Table S1. Expression of the indicated genes in tamoxifen-treated CTR and iKO mice of 6 

weeks, as derived from the RNA sequencing data. FC, Fold-change; FDR, False Discovery 

Rate.  

 
GENE ID DESCRIPTION  FC FDR 
Ezh2 enhancer of zeste homolog 2  0.892 0.183 
Eed embryonic ectoderm development  0.988 0.954 
Suz12 suppressor of zester 12 homolog 0.978 0.902 
Rbbp4 retinoblastoma binding protein 4  0.892 0.121 
Cdc5l cell division cycle 5-like     1.066 0.705 
Sf3b1 splicing factor 3b, subunit 1 0.960 0.811 
Melk maternal embryonic leucine zipper kinase  0.789 0.615 
Ppp1ca protein phosphatase 1, catalytic subunit, alpha isoform 0.919 0.200 
Ppp1cb protein phosphatase 1, catalytic subunit, beta isoform 0.854 0.385 
Ppp1cc protein phosphatase 1, catalytic subunit, gamma isoform  0.918 0.559 
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Figure S9. The deletion of NIPP1 destabilizes EZH2 but has no effect on the level of other 

NIPP1 ligands. (A) Lysates from tamoxifen-treated mice of 6 weeks were pre-incubated with 

phosphatase-inhibitors or with lambda phosphatase (PP) and the level of EZH2 was verified by 

immunoblotting. TATA-binding protein (TBP) was used as a loading control. (B) The level of PP1 

in total testis extracts from tamoxifen-treated mice of 6 weeks was visualized by immunoblotting. 

β-actin was used as a loading control. (C) Quantifications of PP1 levels from panel (B). All bar 

data in this Figure are means ± SEM (n=4). (D) The level of CDC5L in total testis extracts from 

tamoxifen-treated mice of 6 weeks was detected by immunoblotting. TBP was used as a loading 
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control. (E) Quantifications of CDC5L levels from panel (D). (F) The level of SAP155 in total 

testis extracts from tamoxifen-treated mice of 6 weeks was visualized by immunoblotting. TBP was 

used as a loading control. (G) Quantifications of SAP155 levels from panel (F). (H) Endogenous 

EZH2 was immunoprecipitated from GFRA1+-enriched cell lysates out of a pool of CTR and iKO 

12 days-old mice (n=3). Cells were pre-incubated with 4-OTH for 72 hours and later with either 

dimethylsulfoxide (DMSO) or 150 µM of the Cdk-inhibitor roscovitine for 2 hours. 

Phosphorylation was further analyzed by immunoblotting with pan-pTP antibodies. (I) 

Quantification of pTP levels in CTR and iKO, as shown in panel (H). (J) Quantification of 

pTP/EZH2 ratio in CTR and iKO, before and after preincubation of the cells with roscovitine, as 

shown in panel (H). 
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Figure S10. The loss of NIPP1 is associated with decreased H3K27me3 levels. (A) Testis slices 

from tamoxifen-treated CTR and iKO neonates of 7 days (dpp, days post-partum). Testis sections 

were immunostained for EZH2 and H3K27me3. Scale bar, 50 µM. (B) Quantifications of EZH2 

immunostainings as shown in panel (A). All bar data in this Figure are represented as means ± 

SEM (n= 4). ***, p<0.001. (C) Quantifications of H3K27me3 immunostainings as shown in panel 

(A). *, p<0.05. (D) Organ culture of testis slices that were isolated from non-treated mice of 4 

weeks. Hydroxytamoxifen (HTO) was added to the slices for 96 hours to delete the floxed Ppp1r8 

allele in CTRs and iKOs. Subsequently, testis sections were stained for EZH2 and H3K27me3. 

Scale bar, 50 µM. (E) Quantifications of EZH2 immunostainings as shown in panel (D). *, p<0.05. 

(F) Quantifications of H3K27me3 immunostainings as shown in panel (D). ***, p<0.001.  
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Table S2. Differentially expressed genes in iKO mice of 6 weeks, as derived from the 

RNA sequencing data. Genes are arranged by descendent order of FDR value. 

 
UPREGULATED GENES 

 
DOWNREGULATED GENES  

GENE ID FC FDR GENE ID FC FDR 
 

GENE ID FC FDR GENE ID FC FDR 
Sgsh 3.814 4.344E-18 Phkg1 3.296 1.177E-02 

 
Cuzd1 0.1858 6.6E-27 Try5 0.4637 5.1E-03 

Adh1 2.150 5.919E-14 Wfs1 2.731 1.217E-02 
 

Slc9c1 0.5227 2.0E-25 Cenpt 0.5038 5.1E-03 
C1qtnf4 1.611 2.010E-12 Adamtsl1 1.547 1.224E-02 

 
Gmcl1 0.5875 2.0E-20 Gipc2 0.4858 5.2E-03 

Rgs9 3.396 2.942E-10 Arhgap30 1.545 1.263E-02 
 

Tdrd9 0.6161 4.3E-18 Nlrp4c 0.4366 5.3E-03 
Ccnb3 2.184 1.857E-09 Nlrp10 4.526 1.424E-02 

 
Lrpprc 0.5435 7.5E-18 Dnph1 0.2875 5.3E-03 

Nmnat3 1.592 1.708E-07 Lrsam1 1.559 1.501E-02 
 

Gm13941 0.6049 2.8E-17 Pigv 0.6283 5.4E-03 
Ttn 1.559 2.245E-06 Otud6a 1.509 1.547E-02 

 
Cpsf1 0.6317 1.7E-13 A1cf 0.5035 6.0E-03 

Leng8 1.565 2.356E-06 Ptprt 1.533 1.586E-02 
 

Hist1h1t 0.5530 7.4E-12 Hist1h2ak 0.4407 6.1E-03 
Ppp1r1c 1.617 2.501E-06 Npr2 1.855 1.615E-02 

 
Kntc1 0.5816 7.5E-12 Myh13 0.3547 6.7E-03 

Zfp940 1.955 4.534E-06 Slc1a4 2.774 1.624E-02 
 

Tuba3a 0.6482 3.4E-10 Pop5 0.5532 6.7E-03 
Prss35 1.716 7.238E-06 Nfatc2 1.862 2.087E-02 

 
Wdr63 0.6622 1.6E-09 Mal 0.5788 8.0E-03 

Pmp2 2.266 9.900E-06 Bbc3 2.758 2.172E-02 
 

Abca2 0.3703 2.7E-09 Large 0.6120 9.8E-03 
Prdm8 2.630 1.032E-05 Abcg8 2.100 2.260E-02 

 
Zbtb17 0.6102 4.0E-09 Adam7 0.0867 1.1E-02 

Nsun5 1.931 1.131E-05 Mypn 1.588 2.465E-02 
 

Ces5a 0.1387 6.4E-09 Jph1 0.3192 1.1E-02 
Trpv1 2.573 1.962E-05 Icam2 3.094 2.479E-02 

 
Wdr11 0.6369 6.6E-09 Rundc3b 0.5938 1.1E-02 

Slc1a3 1.801 3.031E-05 Agmo 2.574 2.527E-02 
 

Daw1 0.6004 7.4E-09 Cdkn2a 0.3445 1.1E-02 
Pet2 1.788 3.566E-05 Xrcc3 1.729 2.527E-02 

 
Ercc2 0.6209 1.7E-08 Hist1h2bj 0.3960 1.1E-02 

Dact1 1.979 3.605E-05 Dtx3l 1.650 2.664E-02 
 

Dnhd1 0.6257 2.3E-08 Prtg 0.2723 1.1E-02 
Hist2h2be 1.566 3.615E-05 Hsd3b6 1.947 2.740E-02 

 
Sord 0.4173 4.6E-08 Prpsap2 0.6400 1.2E-02 

Ndufs5 8.252 5.923E-05 Atn1 2.221 2.794E-02 
 

Suox 0.4370 1.2E-07 Kctd4 0.3809 1.3E-02 
Farp1 2.226 8.815E-05 Mmp15 2.186 2.884E-02 

 
Hspa12a 0.5700 1.4E-07 Dnd1 0.4309 1.3E-02 

Bdkrb2 6.224 1.513E-04 Unc79 1.761 2.941E-02 
 

Spink8 0.0417 1.4E-07 Trim71 0.5301 1.4E-02 
Slc35c1 2.907 1.720E-04 Hcn1 3.993 2.983E-02 

 
Cd52 0.1227 1.7E-07 Hist2h3b 0.2816 1.4E-02 

Agr3 9.795 2.367E-04 Sema4g 1.877 2.983E-02 
 

Crisp1 0.0396 2.7E-07 Wfdc13 0.0965 1.4E-02 
Fam115a 1.552 2.397E-04 Csmd2 1.550 3.014E-02 

 
Hist1h2ba 0.6530 5.1E-07 Wfdc15b 0.1410 1.4E-02 

Ltbr 1.511 2.445E-04 Deaf1 1.565 3.075E-02 
 

Glb1l2 0.3709 6.5E-07 Lin28b 0.6467 1.4E-02 
Pmfbp1 1.600 2.700E-04 Krt10 1.681 3.089E-02 

 
Haghl 0.6367 9.4E-07 Grik3 0.3156 1.5E-02 

Ipo5 1.787 2.728E-04 Car3 3.403 3.179E-02 
 

Pnkp 0.5810 1.9E-06 Hist1h2bk 0.4319 1.5E-02 
Sult1e1 2.590 3.008E-04 Cml1 2.105 3.262E-02 

 
Prss56 0.5915 2.3E-06 Cdc42bpg 0.6516 1.5E-02 

Gfap 1.846 3.140E-04 Casp1 2.764 3.527E-02 
 

Epsti1 0.6406 4.1E-06 Gpr82 0.3505 1.5E-02 
Gldn 5.541 3.745E-04 Cuedc1 2.108 3.679E-02 

 
Gclc 0.6557 5.7E-06 Kifc5b 0.5568 1.6E-02 

Acp1 2.832 4.015E-04 Fbln2 1.811 3.829E-02 
 

Gm4735 0.3668 6.7E-06 Apoa2 0.2225 1.6E-02 
Chgb 1.635 4.518E-04 Fancb 3.216 3.892E-02 

 
Rrm2 0.6324 1.8E-05 Sarm1 0.2913 1.6E-02 

Jph2 1.763 4.561E-04 Lhx9 1.799 3.939E-02 
 

Hba-a1 0.3332 2.1E-05 Ccdc36 0.6671 1.7E-02 
Ptchd3 1.847 5.655E-04 Myh14 1.810 3.973E-02 

 
Guca2b 0.1137 3.1E-05 Park2 0.6201 1.8E-02 

Clec11a 1.910 6.322E-04 C8a 3.194 3.978E-02 
 

Orc2 0.6620 6.7E-05 Defb23 0.0968 1.8E-02 
Pdlim7 2.526 6.996E-04 Anks4b 1.846 3.978E-02 

 
Smco2 0.6298 1.3E-04 Hbb-b1 0.5176 1.9E-02 

Kitl 1.522 8.880E-04 Nfic 1.548 4.068E-02 
 

Hist3h2ba 0.2640 1.3E-04 Cbx2 0.5446 2.0E-02 
Klk1b21 2.018 9.406E-04 Arhgef15 1.602 4.129E-02 

 
Serpina1f 0.1382 1.6E-04 Zfp524 0.6491 2.1E-02 

Flot2 1.551 9.491E-04 Pyroxd2 1.881 4.143E-02 
 

Spc25 0.6449 1.6E-04 Acad10 0.6039 2.2E-02 
Asb2 1.780 9.541E-04 Camk1g 1.694 4.143E-02 

 
Hist1h2bm 0.3920 2.0E-04 Grtp1 0.1032 2.2E-02 

Adam23 1.845 9.798E-04 Glipr2 1.714 4.353E-02 
 

Krt18 0.1505 2.5E-04 Spint5 0.3962 2.4E-02 
Agt 1.736 1.058E-03 Gapt 3.653 4.458E-02 

 
Plekhg4 0.5809 2.7E-04 Hist1h2ai 0.4636 2.4E-02 

Col17a1 1.979 1.417E-03 Dsp 1.503 4.572E-02 
 

Spint1 0.2862 4.3E-04 Plekha4 0.6682 2.4E-02 
Cacng5 5.934 1.940E-03 Loxl2 1.691 4.834E-02 

 
Gucy2g 0.4166 4.8E-04 Trpv6 0.3154 2.4E-02 

Gjd3 2.242 1.988E-03     
Cpn1 0.1024 5.1E-04 Itpa-ps1 0.6288 2.4E-02 

Artn 1.803 2.096E-03     
Spdyb 0.6366 5.1E-04 Grm6 0.4034 2.5E-02 

Parp8 1.647 2.148E-03     
Myh6 0.3827 6.2E-04 Dnmt3l 0.6592 2.7E-02 

Adprm 1.544 2.611E-03     
Hist1h4n 0.4344 7.5E-04 Nlrp4f 0.4994 2.8E-02 

Gipc3 4.025 2.611E-03     
Thoc6 0.4894 7.5E-04 Nanos1 0.3539 2.9E-02 

Mageb3 1.918 2.615E-03     
Ddx43 0.6380 1.0E-03 Pcyox1l 0.4139 2.9E-02 

Pomc 1.627 2.615E-03     
Myoc 0.2787 1.1E-03 Dhps 0.6467 3.0E-02 

Klk1b27 2.600 2.902E-03     
Cdo1 0.5676 1.1E-03 Cx3cr1 0.6635 3.1E-02 

Vat1l 2.216 2.922E-03     
Pold1 0.4964 1.2E-03 Grb7 0.1383 3.1E-02 

Rbp7 3.346 2.991E-03     
Hmga1 0.5587 1.4E-03 Gpm6a 0.5665 3.1E-02 

Man1a 1.549 3.087E-03     
Pate2 0.5182 1.4E-03 Hist1h4j 0.5316 3.1E-02 

Zbtb39 1.609 3.213E-03     
Ros1 0.5719 1.6E-03 Cd247 0.5862 3.2E-02 

Wdr91 2.126 3.709E-03     
Uba1y 0.6377 1.6E-03 Hbb-b2 0.3539 3.4E-02 

Cd93 1.663 4.431E-03     
Tyk2 0.6678 1.7E-03 Abcb5 0.1381 3.5E-02 

Ryr1 1.595 4.544E-03     
Hist1h2aa 0.6413 1.7E-03 Sall4 0.3891 3.6E-02 

Eps8l2 2.111 4.713E-03     
Wdhd1 0.6007 1.9E-03 Trhde 0.5816 3.7E-02 

Dsc3 1.584 5.123E-03     
Mast3 0.5393 3.0E-03 Cdhr2 0.4974 3.8E-02 

Tnk1 2.320 5.138E-03     
Cdca7 0.4558 3.0E-03 Tmem25 0.5274 4.1E-02 

Il21 2.612 5.369E-03     
Hmga1-rs1 0.5868 3.1E-03 Gprc5c 0.5132 4.1E-02 
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Tktl1 1.874 5.394E-03     
Lat2 0.5559 3.3E-03 Prom2 0.1414 4.2E-02 

Klk1b24 2.113 5.617E-03     
Defb28 0.1006 3.5E-03 Nkx2-4 0.6329 4.2E-02 

P4htm 1.781 6.112E-03     
Dusp9 0.2509 3.5E-03 Bbox1 0.5955 4.3E-02 

Wdsub1 1.540 6.112E-03     
Ap4s1 0.6326 3.5E-03 Ankrd13d 0.4343 4.4E-02 

Otog 6.190 6.112E-03     
Fancl 0.6688 3.6E-03 Elovl7 0.3663 4.4E-02 

Il20rb 2.986 6.658E-03     
Car4 0.3578 3.7E-03 Kifc1 0.6595 4.4E-02 

Myo7b 1.851 8.051E-03     
Hist1h2bb 0.3460 3.9E-03 Hist1h2ah 0.3186 4.5E-02 

Slc6a15 4.248 8.599E-03     
Polr3gl 0.6650 4.2E-03 Mcm2 0.6028 4.5E-02 

Ampd3 1.656 9.019E-03     
Spocd1 0.5582 4.2E-03 Wfdc6b 0.3801 4.6E-02 

Cdsn 2.581 9.706E-03     
Hist1h4i 0.6000 4.3E-03 Gpr68 0.4121 4.9E-02 

Slc38a6 1.632 9.706E-03     
Rpia 0.6292 4.7E-03 Defb22 0.1461 5.0E-02 

Kcnn3 2.462 1.102E-02     
Hist1h1a 0.5801 4.7E-03 

   Kif2b 1.762 1.109E-02     
Pou3f3 0.15101 4.9E-03 

    
  *FC, fold change; FDR, false discovery rate.  
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Figure S11. The loss of NIPP1 from testis deregulates the expression of PcG targets. (A) Bar 

chart of the RNA sequencing data showing the expression levels of the indicated PcG target genes 

represented as Log2 fold-change. FC, fold change; FDR, False Discovery Rate. (B) The positions of 

the PCR-amplicons are indicated on each gene that is analyzed for H3K27me3 by chromatin 

immunoprecipitation (ChIP). The schemes of the genes are based on data generated by the Mouse 

Genome Browser (https://genome.ucsc.edu/; Mus musculus GRCmi37/mm10). 
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Table S3. Primers used for genotyping CTR and NIPP1 iKO mice.   
 
UbcCre forward GCCTGCATTACCGGTCGATGCAACGA 

UbcCre reverse GTGGCAGATGGCGCGGCAACACCATT 

VasaCre forward CACGTGCAGCCGTTTAAGCCGCGT 

VasaCre reverse TTCCCATTCTAAACAACACCCTGAA 

LoxP1 forward CTTACAAGGAGTGGTATTCGAACC 

LoxP1 reverse ACTGTCTAGCAGGGCATAGTGTTG 

LoxP2 forward CCACCCTCTCCTTTACTTTGTCTTC 

LoxP2 reverse GGAGAGGAGTAATGAGAGGAGTTGTG 

NIPP1 KO forward CCTCAGCAGATAGCCCACGG 

NIPP1 KO reverse CGCATCGCCTTCTATCGCCTTCTTGAC 
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Table S4. List of antibodies used in this study. 
 
Antibodies Company (catalog 

no./ref)  
Dilution used 

NIPP1 Sigma (HPA027452) IF 1:250; WB 1:1000 

GAPDH Cell Signalling (2118) WB 1:5000 

SOX9 Millipore (AB5535) DAB 1:100 

p16
INK4A

 Cell Signalling (4824) IF 1:50 

PLZF Santa Cruz (SC-28319) IF 1:50; WB 1:1000 

Cyclin D2 Cell Signalling (3741) IF 1:75 

BrdU BD Biosciences (347580) IF 1:100 

H3S10P Upstate (06-570) IF 1:500 

EZH2 Cell Signalling (5246) IF 1:50; WB 1:1000 

EZH2 Home made [15,16] IP 1:50  

EZH2 Cell signalling (3147) WB 1:1000 

SUZ12 Abcam (ab12073) IF 1:50; WB 1:1000 

RBAP48 GenTex (GTX0232) IF 1:50; WB 1:1000 

TBP Abcam (ab51841) WB 1:5000 

CDC5l Home made [17]  WB 1:2500 

SAP155 MBL (D221-3) WB 1:2500 

FCM Home made [7] WB 1:2500 

β-Actin Abcam (ab6276) WB 1:10000 

Pan-pTP Cell Signalling (9391) WB 1:1000 

H3K27me3 Upstate (07-449) IF 1:50; WB 1:1000 

H3 Santa Cruz (SC 10809) IF 1:50; WB 1:5000 

α-Tubulin Sigma (T6074) WB 1:10000 

eGFP Santa Cruz (SC-8334) WB 1:1000 

Flag Stratagene (200472) WB 1:1000 

PCNA Upstate (07-2162) IF 1:100 

GFRA1 R&D systems (AF560) IF 1:50 
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Table S5. q-RT PCR primers used in this study 
 
 
Gene mRNA Forward primer  mRNA Reverse primer  

Hprt CTGGTGAAAAGGACCTCTCG TGAAGTACATTATAGTCAAGGGCA 

Ppp1r8 
(Nipp1) AGCGCTGGTGTACCACAAACA TTGTGAGGTTCCAGCCGAATGT 

Ddx4 
(Vasa) TGGCAGAGCGATTTCTTTT CGCTGTATTCAACGTGTGCT 

Plzf GAGCACACTCAAGAGCCACA  GTGGCAGAGTTTGCACTCAA 

Stra8 GCTTTTGACGTGGCAAGTTT AACACAGCCAAGGCTTTTGA 

Tacstd1 CAGAATACTGTCATTTGCTCCA GTTCTGGATCGCCCCTTC 

Sycp3 GGACAGCGACAGCTCACC TTCCCAGATTTCCCAGAATG 

Stmn1 CTGCAGAAGAAAGACGCAAGT TGCTGAAGTTGTTGTTCTCCTC 

Prm2 CAGAAGGCGGAGGAGACAC CTCCTCCTTCGGGATCTTCT 

Tpn1 AGCCGCAAGCTAAAGACTCA CGGTAATTGCGACTTGCAT 

Tnk1 CTCAAGTGTCTGATTCCAGAGG CCACTGGGTAGTGTCCATAAC 

Ptprt TTACCTGGGAGCAGATTAACAC CCAGAGCTGTTCACCATCAT 

Dusp9 CTTGAGCTGTGGCCTAGATT TAGGTAGAGATTGGGCAGGA 

Nanos1 CTACACCACACACATCCTCAA CTTTGGAGAGCGGGCAATA 

Pou3f3 AGCAGTTCGCTAAGCAGTT CGAGAACACGTTGCCATAGA 

Lhx9 CCGAGACTCTGTCTACCATCT GCTGTCCTTCATCCCGAAAT 

Parp8 GGATCACTTCCGAAACCACTT TCTCTCTTGCCTTGAACACATC 

Bbc3 GTCTAGCCCGCGACAGT CGCAAAGGCTGCAGGATAC 

Cdkn2a GAACTCTTTCGGTCGTACCC GTTCGAATCTGCACCGTAGT 

Ccnb3 GCTGGTGGAGACTGAAGATTAC CTCCTCAATGATGGTTGGATCTT 

Kntc1 TCCGAAGATCCAAGCATTCAG GACCACATCCACGTCAGTATC 

Kif2b GGATCTGTGTGTGTGTGAGAA ACTACATTGTGCGAGGGAATAG 

Dnmt3l GAGACACCTTCTTCTTGCTCTAA GGATTTCAGCCATTGCTCTTC  

Ggra1 AAGAGAAGAATTGTCTGCGTATCT CTGCTGTTAACCGGCTCAT 

Gdnf GCTGACCAGTGACTCCAATATG CGCTGCCGCTTGTTTATCT 

Inhba AGAACGGGTATGTGGAGATAGA GACTCGGCAAAGGTGATGAT 

Inha TCTGAACCAGAGGAGGAAGAT GGGATGGCCGGAATACATAAG 

Shbg CACAGTAGGCTTTGGTCCTC CTCAGGCATAGCATCTCCTTC 
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Sox9 GAAGGAGAGCGAGGAAGATAAG TGACGTGTGGCTTGTTCT 
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Table S6. ChIP primers used in this study 
 

Gene ChIP Forward primer  ChIP Reverse primer  

Bbc3  gcagcaaggtgcctcaata gcatgaacactccggagaaa 

Pou3f3  ccacaggagttggttgtgtat ggagaaggaggaggaagaaga 

Dtx3l  gcagggcgacaggtttaata gccatctctccagaacatgaa 

Tnk1 gggtatctcagtttcccttctg tgcctcctgtctcactctat 

Lhx9 ctctgcatctgtagggagaatg gtcggctccttccttagtaatc 

Kif2b cgtacactttgccaccataga  ctcaggatgtcttcctcctact   

Cdkn2a  tccagtctctgatacccgttag ggctttgagtcctggttctt 

Cdc6  ggccttgtagccctcttaaa gcctaacgtcctcattctactg 

Hoxa11 aggagaaggggttccttcaa ctccgcggtttgtcaataat 
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NIPP1 forms a heterodimeric complex with a quantitatively important fraction of the 

nuclear pool of PP1 and affects key processes such as transcription, pre-mRNA splicing 

and chromatin remodeling, through regulated dephosphorylation of a subset of PP1 

substrates [273,274,295,310]. NIPP1 is a conserved PIP with three functional domains: (1) 

a substrate recruiting N-terminal FHA domain, (2) a central PP1-anchoring domain, and 

(3) a C-terminal PP1-inhibitory and RNA binding domain [269–271]. The established 

FHA-ligands of NIPP1 include the chromatin modifier EZH2, the pre-mRNA splicing 

factors SAP155 and CDC5L, and protein kinase MELK [277,288–290].  

In mammals, NIPP1 is already expressed during early embryonic development and in all 

adult tissues but its expression level is cell-type dependent. In this study, we focused on the 

in vivo function of NIPP1 in adult tissues by generating and phenotyping an inducible 

NIPP1 knockout (iKO) mouse model. Hereby, we identified NIPP1 as an essential factor 

for the maintenance of the spermatogenic lineage, including different pools of 

(un)differentiated spermatogonia.  

5.1 NIPP1 regulates the expansion of specific pools of progenitor cells  
I have found that the ablation of NIPP1 in mouse testis is associated with a progressive loss 

of germ cells from the seminiferous epithelium, resulting in a Sertoli cells-only phenotype. 

The observed phenotype resulted from the almost complete loss of both undifferentiated 

spermatogonia (GFRA1+ spermatogonia [93]) and differentiating spermatogonia. To 

examine whether hypoproliferation of GFRA1+ spermatogonia results from an intrinsic 

proliferative defect or from a deficient signaling by surrounding NIPP1 depleted 

sustentacular cells (e.g. Sertoli cells), we performed in vitro deletion of NIPP1 in GFRA1+ 

spermatogonia isolated from CTR and iKO testis. Our results indicated that the deletion of 

NIPP1 in cultured GFRA1+ cells also resulted in a reduced proliferation, indicating that it 

represents an intrinsic defect. Nevertheless, this effect could only be studied for a short 

period, which did not enable us to explore whether NIPP1 is also important for the self-

renewal of spermatogonial stem cells (i.e. spermatogonia Asingle; see Introduction), which 

only represent a small population of GFRA1+ cells. This can be further explored by 

transplantation assays, where GFRA1+ cells isolated from CTR and iKO mice carrying a 

reporter gene (GFP or LacZ), are transplanted into a histocompatible recipient testis that 

has been pretreated with a chemical agent (Busulfan) that impairs spermatogenesis 

[85,311]. This assay would enable us to examine whether GFRA1+ stem cells from iKOs 
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can repopulate the recipient testis in vivo. The function(s) of NIPP1 in the spermatogenic 

lineage could also be further addressed by generating an inducible gonocyte-specific 

NIPP1 knockout using available Vasa-CreERT2 inducible recombinases [312].  

Gene-expression profiling by RNA sequencing showed that the deletion of NIPP1 

from adult testis results in the deregulation of genes that are important for the proliferation 

and survival of germ cells. These included the upregulation of genes encoding pro-

apoptotic factors such as PARP8 and BBC3/PUMA, in accordance with the increased level 

of apoptosis in the iKO testis. Importantly, p53-activated PUMA is involved in p53-

dependent and p53-independent apoptotic pathways and is epigenetically regulated by 

Polycomb Group proteins (PcG) [313]. It will be important to explore whether this 

deregulation of apoptotic factors also applies to GFRA1+ cells isolated from iKOs. For that 

purpose, GFRA1+ cells can be isolated by FACs sorting prior to RNA sequencing [314].  

The proliferation defects observed in undifferentiated spermatogonia did not come as a 

surprise since the global deletion of NIPP1 is embryonic lethal at E6.5-7.5 and also 

associated with a deficient proliferation [294]. In addition, Ppp1r8-/- embryonic stem cells 

(ES) could not be derived indicating that NIPP1-null ES cells are not viable. Other data 

from the host laboratory also support a role for NIPP1 in the proliferation of progenitor 

cells (Figure 15). Thus, the deletion of NIPP1 from liver-epithelial cells triggers the 

proliferation of perivenous (biliary) progenitor cells [315], but preliminary results suggest 

a partial loss of pericentral Axin2+ progenitor cells. Likewise, the deletion of NIPP1 from 

keratinocytes results in an increased proliferation of transit amplifying cells but a loss of 

slow-cycling stem cells, most likely Axin2+ cells, in the hair follicles and the interfollicular 

epidermis (Verbinnen et al., unpublished data). Interestingly, Axin2 is also expressed in 

undifferentiated spermatogonia, including stem cells, and contributes here to proliferation 

regulated by the Wtn/β-catenin pathway [316]. Wtn6 is specifically secreted by Sertoli 

cells and is essential to create a niche for undifferentiated spermatogonia [316]. Since 

genes of the Wtn/β-catenin pathway are epigenetically repressed by PcGs [180,181], it 

would be worthwhile to analyze whether the Wtn/β-catenin signaling pathway is disturbed 

in progenitor cells that lack NIPP1. Overall, our data suggest that NIPP1 is required for the 

maintenance of tissue-specific subpopulations of progenitor cells (Figure 15). 
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Figure 15: Effects of the deletion of NIPP1 on the maintenance of progenitor cells during 

embryogenesis and in adult tissues. (A) The global deletion of NIPP1 (Ppp1r8-/-) is embryonic 

lethal at the onset of gastrulation. (B) Ppp1r8-/- livers show an expansion of perivenous progenitor 

cell compartment [315], but a loss of pericentral stem cells (preliminary unpublished data). Skin 

NIPP1 KO mice show a hyperproliferation of transit amplifying cells in the hair follicles and the 

interfollicular epidermis, but a loss of slowly cycling stem cells. Ppp1r8-/- testis exhibit a complete 

loss of germ cells associated with hypoproliferation of (un)differentiated spermatogonia. KO, 

knockout; Peric. cells, pericentral cells; BEC, Biliary epithelial cells; CV, central vein; PV, portal 

vein; IFE, Interfollicular epidermis; SCC, slowly cycling stem cells; Spg. As, Spermatogonia A 

single; Spg. Ap, Spermatogonia Apaired.  

5.2 PP1-NIPP1 regulates the stability of EZH2  
NIPP1 forms a complex with PP1 and the PRC2 core components EED and EZH2. Also, 

NIPP1 is associated with a subset of PRC2 target genes [274,290] and functions as a 

PRC2-dependent transcriptional repressor [274,275,290]. Phosphorylation of EZH2 by 
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cyclin dependent kinases (CDK1/2) at Thr416 creates a docking site for the recruitment of 

NIPP1 [290], which then enables the regulated dephosphorylation of EZH2 by associated 

PP1.  

We found that the deletion of NIPP1 in mouse testis results in the downregulation of 

EZH2 and a global reduction of H3K27 trimethylation in seminiferous tubules at early 

stages of development. It remains to be established whether NIPP1 also stabilizes EZH1. 

Consistent with our observations, we noted an altered expression of PcG target genes and a 

decreased H3K27 trimethylation at these loci. These results are in accordance with 

previous observations demonstrating that Ppp1r8-/- blastocyst outgrows show a reduced 

trimethylation of H3K27 and a de-repression of PcG target genes [293,294]. In addition, 

mouse embryos lacking NIPP1 die at around the gastrulation stage, a phenotype that is 

similar to that observed after the loss of the PRC2 core components EZH2, EED or SUZ12 

[317]. Collectively, these data suggest that NIPP1 affects the expression of proliferation-

related genes, not only during embryogenesis but also postnatally in actively proliferating 

tissues like testis. Notably, recent studies have established the importance of the PRC2 

complex in testis, as the gonocyte-specific deletion of either EZH1/2, EED or SUZ12 

causes a postnatal testicular phenotype characterized by exhaustion of progenitor cells and 

a meiotic arrest [213,318]. Surprisingly, the single deletion of EZH1 or EZH2 has no effect 

on spermatogenesis, suggesting that EZH1 and EZH2 act redundantly. Further experiments 

are required to determine whether Sertoli cells-only phenotype after the deletion of NIPP1 

can be rescued by the ectopic expression of EZH1/2 in GFRA1+ cells. To this end, 

GFRA1+ cells isolated from CTR and iKO mice can be treated in culture with 

hydroxytamoxifen to remove NIPP1 and transfected or transduced with EZH1/2 

constructs. Another strategy involves the crossing of the CTR and iKO mice with mice that 

inducible overexpress EZH1/2 in testis.  

We demonstrated that NIPP1 stabilizes EZH2 in spermatogonia by enabling the timely 

dephosphorylation of CDK1/2 sites by PP1. In addition to Thr416, EZH2 is also 

phosphorylated at Thr345 and Thr487 by CDK1/2 [290,319–322]. We found that the 

deletion of NIPP1 causes a hyperphosphorylation of EZH2 at these sites, whereas the 

overexpression of a PP1-NIPP1 fusion causes the hypophosphorylation of EZH2 at TP-

dipeptide motifs. The hyperphosphorylation of EZH2 in the absence of NIPP1 was not 

expected as NIPP1 was previously reported to inhibit the dephosphorylation of EZH2 by 

PP1 in HeLa cells [290]. However, our results are in agreement with the global nuclear 
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hyperphosphorylation on threonine observed in the Ppp1r8-/- mouse embryos [323]. These 

paradoxal data can be rationalized by the view that NIPP1 is an inhibitor of PP1 under 

basal circumstances but can be ‘de-inhibited’ by poorly understood mechanisms (see 

below), resulting in the timely dephosphorylation of EZH2. We found that the persistent 

hyperphosphorylation of EZH2 at Thr345 and Thr487 results in its proteasomal 

degradation, consistent with previous reports [319].  

5.3 NIPP1 is a modulator of associated PP1 
NIPP1 is a very potent and highly specific inhibitor of PP1, preventing the 

dephosphorylation of all substrates except those are recruited by the FHA domain 

[277,292]. Consistent with this notion, EZH2 is hyperphosphorylated in the absence of 

NIPP1 in testis and the overexpression of a PP1-NIPP1 fusion in HeLa cells causes the 

hypophosphorylation of all known FHA ligands (Winkler et al, unpublished data). 

However, NIPP1 has also been found to inhibit the dephosphorylation of EZH2 by 

associated PP1 [290]. Collectively, these data suggest that NIPP1 is an inhibitor of 

associated PP1 but also allows the dephosphorylation of FHA ligands in a context-

dependent manner. We propose that the dephosphorylation of FHA ligands requires the 

removal of the C-terminus of NIPP1 from the active site of PP1. In vitro data suggest that 

this ‘de-inhibition’ mechanism possibly involves an allosteric mechanism, induced by the 

RNA-dependent phosphorylation of NIPP1 at Tyr335 [269] (Figure 16). At present it is not 

clear which RNA is bound to NIPP1 in vivo.  However, since EZH2 interacts with RNA to 

promote repression or PRC2-independent activation of genes [321,324,325] and since 

phosphorylation of EZH2 promotes its chromatin targeting via non-coding RNAs, it is 

tempting to speculate that these are also the RNAs that are recognized by NIPP1. In view 

of the latent endoribonuclease activity associated with NIPP1, we speculate that these 

RNAs may also be processed by NIPP1, possibly as a first step to re-(in)activate the PP1-

NIPP1 complex.  

Intriguingly, the testis-specific NIPP1ε/NIPP1T isoform lacks the C-terminal PP1-

inhibitory and RNA-binding sites. Therefore, this isoform may represent a constructively 

‘de-inhibited’ variant of NIPP1 that allows the persistent dephosphorylation of FHA 

ligands, including EZH2. A comparative analysis of EZH2 (de)phosphorylation after the 

knockdown of endogenous NIPP1 and the inducible expression of siRNA resistant NIPP1α 

or NIPP1ε/NIPP1T could be used to explore this hypothesis.  
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Figure 16: Regulation of NIPP1 ligands by PP1-NIPP1. NIPP1 restricts the PP1-dependent 

dephosphorylation to substrates with phosphorylated TP-dipeptides that are recruited by the FHA 

domain of NIPP1. Dephosphorylation of FHA ligands by the PP1-NIPP1 holoenzyme is suggested 

to be dependent on the allosteric removal (de-inhibition) of the C-terminal domain of NIPP1 from 

PP1, which is suggested to be induced by phosphorylation and/or RNA-binding. P, phosphate.  

5.4 A role for NIPP1 in male infertility?  
We have demonstrated that the targeted deletion of NIPP1 in murine adult testis culminates 

in a complete loss of germ cells. This phenotype resembles the Sertoli cells-only (SCO) 

syndrome in men. It cannot be excluded that some types of SCO are caused by mutations 

in the NIPP1 encoding gene (PPP1R8), which could be screened for by DNA sequence 

analysis of patients with the SCO syndrome. However, mutations in PPP1R8 are likely to 

cause also dramatic effects in other tissues, unless they only affect the C-terminus of the 

testis-specific NIPP1e/NIPP1T. The effects of such mutations are difficult to predict as the 

function of the C-terminus of NIPP1e/NIPP1T remains to be explored. Also, it cannot be 

excluded that such mutations are compensated for by an increased expression of NIPP1a. 
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