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Resumo 

 

interferão alfa-2b, produção recombinante, Escherichia coli, biofármacos, 

hepatite C crónica, purificação, cromatografia aniónica, sistemas aquosos 

bifásicos, líquidos iónicos.  

 

A indústria biofarmacêutica tem vindo a desenvolver diferentes tipos de 

biofármacos para o tratamento de diversas doenças. A maioria das 

proteínas terapêuticas são produzidas através da tecnologia do DNA 

recombinante, e purificadas utilizando técnicas convencionais, tais como 

a precipitação com sais, eletroforese e cromatografia. O interferão alfa-2b 

(IFNα-2b) é uma proteína terapêutica de ação imunomoduladora com 

atividade antiviral e antiproliferativa, que é geralmente obtida a partir de 

culturas de Escherichia coli, e utilizada no tratamento de doenças 

humanas, tais como a hepatite C, melanomas, alguns linfomas e 

leucemias, entre outras. Embora a fase de produção recombinante do 

IFNα-2b já tenha sido amplamente estudada e otimizada, a sua 

recuperação e purificação assumem-se como os passos economicamente 

limitantes do processo global de produção. Neste estudo, o IFNα-2b foi 

produzido na forma de corpos de inclusão utilizando culturas de BL21, no 

meio SOB, após 3 h de indução. A recuperação desta fração englobou 

vários passos, tendo sido alcançado um protocolo final que inclui: 1) 

Lavagem com Triton-X a 1%; 2) Lavagem com ureia a 4 M; e 3) 

Solubilização em meio alcalino, com ureia a 8 M. Alterando as condições 

de produção conseguiu-se também produzir e recuperar parte da proteína 

alvo na forma solúvel, embora com menor rendimento. O IFNα-2b 

previamente solubilizado foi purificado através de cromatografia 

aniónica, tendo sido obtido na sua forma biologicamente ativa com uma 

pureza superior a 95%. Como técnica alternativa de purificação 

utilizaram-se sistemas aquosos bifásicos constituídos por vários líquidos 

iónicos e tampão fosfato. Apesar de os resultados serem menos 

promissores, este estudo permitiu estudar plataformas alternativas para a 

recuperação e purificação do IFNα-2b através da aplicação de sistemas 

aquosos bifásicos. 
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The biopharmaceutical industry has been developing various 

biopharmaceutical possibilities for the treatment of several diseases. Most 

therapeutic proteins are produced through the recombinant protein 

technology and purified using traditional techniques, such as precipitation 

with salts, electrophoresis and chromatography. Interferon alfa-2b (IFNα-

2b) is a therapeutic protein with immunomodulatory action and antiviral 

and antiproliferative activities, usually produced by Escherichia coli 

cultures, and used in the treatment of several human diseases, such as 

hepatitis C, melanomas, some lymphomas and leukemias, among others. 

Although the recombinant production of IFNα-2b has already been 

extensively studied and optimized, its recovery and purification 

correspond to the economically limiting steps of the overall production 

process. In this study, IFNα-2b was produced in the form of inclusion 

bodies using BL21 cultures, in SOB medium, after 3 h of induction. The 

recovery of this fraction involved several steps, and a final protocol was 

developed: 1) Washing with Triton-X at 1%; 2) Washing with urea at 4 

M; and 3) Solubilization in alkaline medium with urea at 8 M. By 

changing the production conditions, it was also possible to produce and 

recover part of the target protein in the soluble form, yet with a lower 

yield. The solubilized IFNα-2b was purified using anion-exchange 

chromatography, and obtained in a biologically active form with a purity 

higher than 95 %. As an alternative purification technique, aqueous two-

phase systems composed of several ionic liquids and a phosphate buffer 

were investigated. Although the results obtained are less promising, this 

study allowed the evaluation of alternative platforms for the recovery and 

purification of IFNα-2b by the application of aqueous two-phase systems. 
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1. General Introduction 

1.1. Scope and objectives 

 Human ageing is continuously advancing and will become one of the key driving 

forces of medical and societal changes in the decades ahead (1). Therefore, specific needs 

of new and effective biopharmaceuticals to treat age- and prosperity-related diseases will 

considerably increase (2). Biopharmaceuticals have largely improved the treatment of 

many diseases and, in some cases, are the only approved therapies available for specific 

human disorders. These biologic-based products are used in several areas, such as 

vaccination, immunization, oncology, autoimmune, cardiovascular, inflammatory and 

neurological diseases (3).  

Biopharmaceuticals are products of biological origin, with high molecular weight 

(Mw), and with a molecular composition difficult to define, as they are derived from 

heterogeneous mixtures of living organisms, cells, animals or plants (4). These include 

cytokines, enzymes, hormones, clotting factors, monoclonal antibodies, cells, 

recombinant proteins, nucleic-acid-derived products, among others (3). Protein 

therapeutics already reached a significant role in several medicine fields, accounting with 

more than 200 therapeutic proteins approved for clinical use, including interferons (IFNs) 

(5). Interferons are immunomodulatory molecules that have been used to treat several 

malignancies; in particular, interferon alpha-2b (IFNα-2b) has been used to treat not only 

viral infections, such as chronic hepatitis C, but is also considered in the therapy regimens 

of some cancers, and thus was considered in 2015 an essential therapeutic option by the 

World Health Organization (WHO) (6). Commercial preparations of IFNα-2b for clinical 

use were initially obtained from mixtures of many subtypes isolated from human 

lymphoblastoid cells or primary human blood leucocytes stimulated with Sendai virus 

(7). However, the major improvements achieved in the last decades in the recombinant 

bioprocessing of biomolecules shifted the paradigm and allowed to use Escherichia coli 

(E. coli) as the main source of IFNα-2b for clinical applications. Currently, there are 

different recombinant unpegylated IFNα-2b (e.g. Intron-A®, Locteron®) and pegylated 

(e.g. PEG-Intron™) preparations marketed for clinical use (8, 9). 

 The general strategy employed in a bioprocess to obtain a recombinant 

biopharmaceutical includes two major stages: (i) the upstream steps associated to cell 

culture and maintenance, followed by the scale up enhancements; and (ii) the downstream 

steps associated with the recovery and purification of the target biomolecule from an 
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heterogeneous and highly complex biological matrix (10). Although the production of 

IFNα-2b has been extensively studied and optimized (11, 12), this biopharmaceutical is 

still quite expensive due to difficulties on its recovery and purification. Currently, it is 

purified using packed-bed chromatographic techniques (13). However, these 

chromatographic-based downstream processes are responsible for 50–80% of the final 

cost of production of biopharmaceuticals (4, 10). Thus, it is of crucial relevance to 

develop cost-effective purification strategies feasible of application by the biotechnology 

and pharmaceutical industries.  

 Recently, conventional aqueous two-phase systems (ATPS) were described as an 

efficient alternative technique for IFNα-2b purification (14, 15). Compared with 

conventional purification procedures, the advantages of ATPS include short processing 

times, high capacity loading, high yields, low environmental toxicity, high 

biocompatibility, and possibility of scale-up (14). In addition to the typical polymer-

polymer and polymer-salt ATPS largely investigated in the past decades, the introduction 

of ionic liquids (ILs) as phase-forming components in ATPS amplified their range of 

applications. Indeed, IL-based ATPS show an enhanced capacity to tailor the polarities 

of the coexisting phases, and thus to obtain high extraction efficiencies and purification 

factors (16).  

Based on the exposed, the main objective of this dissertation consists on the 

production and development of an alternative and cost-effective strategy for human 

recombinant IFNα-2b purification from E. coli cultures using IL-based ATPS, while 

envisaging their widespread use at a lower cost. For comparison purposes, 

chromatographic-based purification techniques were also investigated. Although IL-

based ATPS have been described as a promising alternative for the purification of 

therapeutic proteins (16), to the best of our knowledge there are no studies in the literature 

describing their use for the purification of IFNα-2b. 
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1.2. Biopharmaceuticals industry and market 

 The biopharmaceutical industry is the most important sector in industrial 

biotechnology, and is one of the most rapidly growing high-tech industries (3). The first 

recombinant biopharmaceutical approved by the Food and Drug Administration (FDA) 

was human insulin for diabetes treatment, in 1982 (17). Between 1980 and 1990, the 

biopharmaceutical industry experienced a significant growth in the production and 

approval of recombinant proteins, including IFNs, growth hormones, monoclonal 

antibodies (mAbs) and related products (5). In 1993, the global sales value of 

biopharmaceuticals reached $5 billion, and after ten years, this value increased to $35 

billion, which represented about 15% of the total global pharmaceutical market (18). 

Currently, the total market sales from microbial recombinant products reaches 

approximately $50 billion, representing one-third of the total sales of biopharmaceuticals 

(10). Although significant progresses have been done in the past years, drug development 

is an extremely complex and expensive process. Analysis from the Tufts Center for the 

Study of Drug Development showed that it may take approximately 15 years of intense 

research and approximately $2.6 billion to develop and implement a pharmaceutical in 

the market (19). Biopharmaceuticals manufacturing is even more expensive than common 

pharmaceuticals, mostly due to the high cost technology involved in their production and 

further steps of recovery/purification from a biological-derived complex medium (3).  

 Figure 1 presents a flowchart on the global process of biopharmaceuticals 

manufacturing, from the production stage to the recovery, and further downstream 

processing. Essential steps on the upstream stages involve the selection of the cell clone, 

culture media, growth parameters, and the optimization of the process in large-scale 

bioreactors (10). Downstream processing usually encompasses three main steps, namely 

recovery, purification and polishing (20). While the technological efforts in scaling up 

the production processes can be considered as rather straightforward, downstream 

processing is still facing some challenges (20). In early steps, rapid volume reduction and 

product concentration are the major issues. For this purpose, the main techniques used 

are centrifugation, filtration, precipitation and/or chromatography (10). Chromatography 

also dominates the later steps, the selective purification steps, accounting for more than 

70% of the downstream costs, mainly owing to media cost and relatively long cycle times 

(20). Several alternatives have generated long-standing interest either to replace 

chromatography or to eliminate the chromatography dependency by reducing the load of 
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impurities in the feed stream. Some examples include ATPS, induced precipitation, 

crystallization, membrane filtration and membrane chromatography (21). 

 

 

Figure 1: General flowchart of the biopharmaceuticals manufacturing process, adapted 

from (10). 

 

1.2.1. Interferons market trends 

1.3. Interferons 

 Interferon sales reached a peak between the 1980’s and 2000, as it was severely 

marketed and branded as a “multi-drug” with a growing range of therapeutic effects. The 

worldwide market for IFNs expanded from $13.6 million in 1986 to $751 million in 1992 

(18). In 2003, the worldwide sales for therapeutics of interferon alpha (IFNα) 

(+pegylated) was estimated to be approximately $2700 million as an antitumor/anti-HIV 

therapy (22). At the present, the IFN segment covers few diseases due to which they have 

a limited number of products and modest market shares in the biopharmaceutical industry. 

Between them, hepatitis and AIDS-related Kaposi's sarcoma disease are the main diseases 

which generate significant revenues (23). As IFNs can be applied in different diseases, it 

is expected that they would be able to occupy major market shares across the globe with 

the developing research. As a result, several interferon therapeutic products are at 

different stages of clinical trials and will be introduced in the global market in the coming 

years (23), therefore highlighting the clinical importance of this biomolecule. 
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1.3.1. Classification of human interferons 

 Interferons are a multigene family of homologous proteins produced in 

vertebrates’ cells as the body’s most rapidly produced defense from the innate non-

specific immune system. Most of them have an average Mw in the order of 20 kDa and 

are involved in cell signaling pathways response, being therefore classified as cytokines 

(24). In the 80’s, Pestka and collaborators (25–27) addressed the molecular 

characterization and biological activities of IFNs. In humans, although many different 

types of interferons are produced, the main classes are IFNα, interferon beta (IFNβ) and 

interferon gamma (IFNγ). Based on their structural and functional properties, IFNs have 

been classified in three main types and several subtypes (28). 

 Interferons type I [IFNα, IFNβ and interferon omega (IFNω)] are produced in 

almost all cell types and are considered the primary line of defense against infectious 

agents and tumour progression (25). IFNω display a 60–70% amino acid sequence 

similarity to IFNα sequences, while IFNβ only shares 35% (26). The IFNα family is 

expressed by 18 human genes, 4 of which are pseudogenes, encoding 12 different IFNα 

proteins subtypes (IFNα1, IFNα2… IFNα21 - gaps in the sequence are due to postulated 

sequences now known to be erroneous), with one pseudogene and two genes coding for 

identical IFNα proteins (24, 29). These variants are similar in structure (70-80% 

homology) with 189 amino acids (188 for IFNα2) in common. Consequently, they all 

bind to the IFNα/β receptor (IFNAR), as interferon beta, and exert similar biological 

activities (30). Some of these subtypes have allelic variants, designated α-2a, α-2b, and 

α-2c, which differ in only one amino acid at position 23 (arginine in the case of IFNα-2b 

and lysine in the case of IFNα-2a) (31). There are about 23 different sequences of natural 

IFNα as well as several recombinant IFNα molecules with novel properties for potential 

therapeutic applications (8). 

 Interferons type II only include IFNγ, also known as immune IFN, which binds to 

the γ receptor (24). It was initially reported by Wheelock (32) in 1965 and shows 

considerable differences from the remaining ones regarding its biological activity, being 

induced in response to antigenic or mitogenic stimuli of T cells and natural killer (NK) 

cells. Finally, interferon lambda (IFNλ) was recently introduced in the interferon family 

and it was classified as type III. This classification is related with the fact that its structure 

is more similar to cytokines than other IFNs types, although it shares many functional 

characteristics with IFNα/β (33). 
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1.3.2. Interferons as biopharmaceuticals 

 Interferons were first described in 1957 by Alick Isaacs and Jean Lindenmann as 

agents that could act against the infection caused by influenza virus (34). The emerging 

recombinant DNA technology in the 70s and the development of efficient molecular 

biology tools allowed the production of recombinant IFNs in a larger scale and a broader 

study of their characteristics, biological activities, and therapeutic potential (35). In 1977, 

Pestka and collaborators (36) published the first attempts on the purification of IFNα and 

IFNβ from Xenopus laevis oocytes. In 1980, Nagata (29) described the successful cloning 

of at least two distinct sequences corresponding to α-IFNs in E. coli. Further studies 

revealed that these molecules have not only antiviral properties but also potent 

immunomodulatory and antitumoral activities, allowing broader clinical applications 

(37). 

 The production process of the recombinant form of human IFNα-2b was 

developed by Merck (previously Schering–Plough, Kenilworth, NJ, USA) during the 

middle 80s, and the genetically engineered protein was first approved by the FDA in 1986 

and named as “Intron A” for the treatment of hairy cell leukemia (38). Currently, all 3 

types of IFNs are considered as biopharmaceuticals and are applied in monotherapy or in 

combination with other medicines (39). From the type I IFN, IFNβ is extensively used; 

yet, from the IFNα family, only IFNα2 is in therapeutic use (39). The formulations of 

IFNβ , such as Betaseron® and Reabif®, are used in the treatment of multiple sclerosis 

(40), while the formulations of IFNα-2b have been used to treat viral hepatitis infections 

(41, 42), condylomata acuminata (43), Kaposi's sarcoma (44) and a range of neoplasms, 

such as melanoma (45), non-Hodgkin’s lymphoma (46), chronic myeloid and hairy cell 

leukaemia (47, 48), and renal cell carcinoma (49) (Table 1). 

IFNα2 is poorly absorbed in the gastrointestinal tract, and its formulations are 

mainly based on solutions that are administrated parenterally by subcutaneous injection 

(39). In addition, the conjugation of IFNα with polyethylene glycol (PEG) increases the 

therapy efficacy. PEG increases the solubility and stability of IFNα by decreasing the 

proteolysis degradation and renal clearance (50). Moreover, it increases the circulation 

time from 5 to 90 h, thereby decreasing the amount of protein required for therapeutic 

efficacy or dosing frequency (42). The pegylated forms of IFNα, with ribavirin as 

adjuvant, are the currently cornerstone for the treatment of chronic hepatitis C infection, 

while peginterferon monotherapy is important for the treatment of chronic hepatitis B 

(51). However, because pegylated forms of IFNs have consequences on 

https://www.britannica.com/biography/Jean-Lindenmann
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pharmacokinetics, drug dose and patient management, it is important to recognize their 

differences to ensure an effective treatment (50). Pegylated interferon alpha-2b (PEG-

IFNα-2b) is constituted by IFNα-2b and a linear 12 kDa monomethoxylated PEG 

conjugate (52). It is quickly absorbed, circulates widely, and declines to undetectable 

serum levels within few days. On the other hand, the PEG conjugate of pegylated 

interferon alpha-2a (PEG-IFNα-2a) is a larger branched 40 kDa monomethoxylated PEG 

(53). Therefore, as PEG-IFNα-2a is absorbed slowly, it is largely restricted to the 

vasculature and well-perfused organs, such as the liver, and is still detectable in serum 

after a week (50). Compared with peginterferon, hepatitis C treatment with Locteron®, a 

slow-release microsphere preparation of plant-derived recombinant human IFNα-2b, 

appears to have comparable efficacy, fewer side effects and reduced dose frequency (51). 

An estimate of 123 to 170 million people have been infected with hepatitis C virus (HCV) 

worldwide, and the average cost worldwide for a single treatment using the pegylated 

interferon and ribavirin can reach $29,000 (54). 

 Type II IFN plays a significant role in cellular immune modulation through its 

effects on T cells and on macrophages. However, its therapeutic potential is currently 

restricted to use in chronic granulomatous disease (55) and osteopetrosis (56). Ongoing 

studies have revealed that IFN λ can be important in the treatment of some infections 

caused by viruses, particularly against chronic hepatitis C. Peginterferon λ1 is currently 

at phase III clinical trials (57). 

 Table 1 shows a summary of commercial formulations and therapeutic 

applications of IFNs currently used in clinical practice. Most of the formulations are 

derived from bacterial sources, like E. coli, except Locteron®. The patents of first-

generation formulations, as Intron-A® and Ropheron-A®, have expired in the United 

States and Europe countries since 2007, but they are still produced and sold in ‘‘off-patent 

countries’’. However, the longer acting pegylated forms of IFNs are the standard therapy 

in the market (39).  
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Table 1: Commercial formulations and therapeutic applications of interferons commonly 

used in clinical practice, extended from (39). 

 IFNα IFNβ IFNγ IFNλ 

Commercial 

formulations 

Peginterferonα-2a 

(Pegasys® (58)) 

Peginterferonα-2b 

(PEG-Intron™ (59)) 

Interferonα-2a 

(Ropheron-A® (60)) 

Interferonα-2b 

(Intron-A® (61), 

Locteron® (62)) 

Interferonβ-1a 

(Avonex® (63), 

Rebif® (64)) 

Interferonβ-1b 

(Betaseron® 

(65), Extavia® 

(66)) 

Interferonγ-1b 

(Actimmune® 

(67)) 

Peginterferonλ1 

(in clinical 

trials) 

Uses 

Chronic hepatitis 

Hairy cell leukemia 

Chronic myeloid 

leukemia 

Renal cell 

carcinoma 

Multiple 

sclerosis 

Chronic 

granulomatous 

disease 

Osteopetrosis 

 

Novel therapy 

for chronic 

hepatitis C 

 

 

 The therapeutic potential of IFNs is widely recognized; yet, as they are 

immunomodulatory molecules involved in several cell signaling pathways, their side 

effects have limited the effectiveness of treatment leading to decreased adherence and 

dose-reductions (39). Common side effects are flu-like symptoms (malaise, weakness, 

fevers, fatigue and headache), neuropsychiatric and dermatological consequences, 

myelosuppression and the development or exacerbation of autoimmune diseases, 

specially thyroiditis (39, 68). Furthermore, harmful pulmonary effects are becoming more 

familiar. Dyspnea is frequently reported (69) and cough in patients infected with HCV is 

common (70, 71). Other rare but significant side effect is pulmonary arterial hypertension 

that has been reported to be irreversible in some patients, despite the discontinuation on 

the IFN therapy (72, 73). 
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1.4. Interferon alpha-2b molecular characteristics and physiological role 

IFNα-2b is a glycoprotein with 165 amino acids, an isoelectric point (pI) of 5.9 

(74), and a Mw ranging between 19 and 26 kDa, mainly due to variations in the C-

terminal amino acids processing and post-translational modifications (75). The molecule 

is O-glycosylated at Thr106 (76). According to the tridimensional structure of IFNα-2b 

depicted in Figure 2, two intramolecular disulfide bonds are formed between four 

conserved cysteines: Cys1-Cys98 and Cys29-Cys138 (77). The bond formed at the 

positions 1 and 98 is not essential, while the bond formed at the positions 29 and 138 is 

essential for biological activity. Other amino acid residues that are important in the 

biological activity of IFNα-2b are Leu30, Lys31, Arg33, His34, Phe36, Arg120, Lys121, 

Gln124, Tyr122, Tyr129, Lys131, Glu132, Arg144, and Glu146 (78). 

 

 

Figure 2: On the left: tridimensional structure of recombinant IFNα-2b. On the right: 

disulfide patterns of IFNα-2b and its isoforms. The solid line indicates the disulfide bond 

formation, whereas the dashed line indicates partial disulfide bond formation. Adapted 

from (79, 80). 

 

Based on the crystal secondary structure mediated by zinc dimer, IFNα-2b can be 

presented as a monomer or as a non-covalent dimer, being the monomer the active form 

(78). IFN𝛼-2b monomer consists of five α helices (called helix A to E) that are connected 

by loops AB, BC, CD, and DE (78). The Cys29-Cys138 disulfide bond connect helix E 

to the AB loop and helix C to the N-terminal end. Phe36, Tyr122, and Tyr129 are residues 

important in the structural integrity. Residues that are important in receptor binding are 
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the AB loop (Arg22, Leu26, Phe27, Leu30, Lys31, Arg33, and His34), helix B (Ser68), 

helix C (Thr79, Lys83, Tyr85, and Tyr89), D helix (Arg120, lys121, Gln124, Lys131, 

and Glu132), and helix E (Arg144 and Glu 146) (78, 79).  

Since IFNα-2b can be produced by genetically modified cells, it exists as different 

isomers. The monomethioninesulfoxide IFNα-2b variant was identified in 1996, and the 

Met111 residue of the protein did not seem to have a detectable effect on the biological 

activity of the molecule (81). Other variants of IFNα-2b were identified through reverse-

phase high-performance liquid chromatography (RP-HPLC) – Iso-2, Iso-3, and Iso-4 – 

and further characterized through mass spectrometry (MS) (80).  

Human IFNα-2b is encoded by the intronless IFNA2 gene. This gene is located 

on the short arm of Homo sapiens chromosome 9 (9p22) and belongs to the 400 kb alpha 

interferon gene cluster (82, 83). Its transcription is regulated by several transcription 

factors including IRF-3 and IRF-7 (IFN-regulatory factor 3 and 7, respectively) (84). The 

open reading frame of IFNA2 codes for a pre-protein of 188 amino acids, containing a 23 

amino acid signal peptide that allows the secretion of the mature protein to the cytosol 

afterwards (75). 

 Pathogens induce the production of proinflammatory cytokines and IFNs in host 

cells, envisaging to protect them from infection. In particular, IFNα is physiologically 

produced by plasmacytoid dendritic cells (85). Pathogen-associated molecular patterns 

(PAMPs) and damage-associated molecular patterns (DAMPs) influence the host cell 

response, thereby leading to alterations in gene expression, causing the start of infectious 

or non-infectious immune effector mechanisms (86). PAMPs are molecules associated to 

a group of pathogens that include nucleic acids (RNA and DNA), bacterial 

lipopolysaccharides, endotoxins, lipoteichoic acid, peptidoglycans and glycoproteins (87) 

that are recognized by several classes of host pattern recognition receptors (PRRs), 

including Toll-like receptors (TLRs), RIG-like receptors (RLRs), NOD-like receptors 

(NLRs) and C-type lectin receptors (86). 

 TLRs are the best characterized family of receptors. They have differing amino-

terminal leucine-rich repeat domains and a carboxyl-terminal intracellular tail with a 

conserved region, named the Toll/interleukin-1 receptor (TIR) domain. From the 13 TLRs 

described, only 10 can be found in humans. TLRs 3, 7, 8 and 9 are intracellular and 

recognize viral PAMPs, whereas the remaining TLRs are involved in bacterial 

recognition. The recognition by a specific TLR, intra or extracellularly, leads to the 

activation of MyD88- or TRIF-mediated signaling pathways (88). TRIF-mediated 

https://en.wikipedia.org/wiki/Amino_acids
https://en.wikipedia.org/wiki/Signal_peptide
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signaling pathways lead to the translation of inflammatory cytokines such as TNF-α, IL-

6, IFNγ and to the activation of transcription factors, like NF-κB and IRF-3, that lead to 

the expression of several other genes (89). After activation, these transcription factors 

translocate to the nucleus and bind to the IFNβ promotor leading to the expression of the 

IFNβ and IFNα4 genes. These are considered the ‘primary’ IFN genes since their 

expression is necessary for the subsequent production of other IFNs (84, 90). Moreover, 

the induction of all other IFNα subtypes, including IFNα-2b, requires the production of 

other proteins and transcription factors. IFNβ and IFNα4 bind to IFNAR in an autocrine 

loop and induce IRF-7 expression, which in turn leads to the expression of other IFNα 

genes, including IFNA2, and the expression of various IFN-stimulated genes (ISGs) (84). 

This initiates a positive feedback loop that amplifies the type I IFN response, and rapidly 

releases a large number of immune effectors (91, 92).  

After biosynthesis, the started cascades result in alterations of gene expression by 

new factors that influence their regulation. This sets up a defensive state both in the cell 

and in the neighboring cells, through numerous autocrine and paracrine processes 

ongoing. IFNs exert their actions in the surrounding cells through binding to the cell 

surface receptors that are specific for each type (30). The alpha, beta, and omega IFNs 

have a common receptor that is ubiquitously expressed - IFNR. The IFNR have two 

subunits, IFN-AR1 that is important in signal transduction, and IFN-AR2 which is 

important in IFN-receptor complex binding (30). A study on the different receptor subunit 

affinities from various human type I IFNs subtypes led to the conclusion that the binding 

affinities to the IFN-AR2 domain are higher than that to IFN-AR1 (93). Therefore, as 

different IFNs will compete for binding to the same receptor, the relative binding 

affinities and interaction kinetics of each IFN will determine which one will bind to the 

receptor and, consequently, which signal activation will be developed, thereby explaining 

the different biological activities (93). Although the affinities were later associated to the 

anti-proliferative potency of the different IFNα subtypes, no correlation with the anti-

viral activities of the subtypes was found (94). The stability of the ternary IFN-receptor 

complex was later recognized to dictate the biological activity, particularly the anti-

proliferative capacity, rather than the affinity to each receptor subdomain (95).  

After IFN-receptor binding, signals are send from the cell surface to the nucleus 

through different signaling transduction pathways and transcriptional activations. The 

JAK-STAT pathways, which mechanism is described in Figure 3, is the most common. 

JAKs are a family of four tyrosine kinases, namely JAK-1, JAK-2, JAK-3 and tyrosine 
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kinase-2 (TYK-2), each one associated to a corresponding receptor, that are activated 

through the IFN-receptor binding. Their activation leads to the phosphorylation of 

STATs, a family of seven cytoplasmic transcription factors: STAT-1, STAT-2, STAT-3, 

STAT-4, STAT-5a, STAT-5b, and STAT-6. IFN α activates Jak-1 and Tyk-2 kinases that 

phosphorylate STAT-1 and STAT-2, along with interferon-regulatory factor 9 (IRF-9 or 

p48), and are translocated to the nucleus while constituting a trimeric complex known as 

IFN-stimulated gene factor 3 (ISGF-3). The ISGF-3 binds to a cis-acting DNA element, 

found in the promoter of some IFNα/β-regulated genes, designated interferon stimulating 

response element (ISRE) and induce the transcription of hundreds of IFNα inducible 

genes (30, 96, 97). 

 

 

Figure 3: General scheme of the transcriptional activation of JAK-STAT pathways by 

IFNα, adapted from (96). 

 

IFNs𝛼 regulates more than 300 genes of signal transduction pathways in cells (79). 

Individual IFNα subtypes lead to different pathways, different expression of a certain ISG 

group and different activities, also depending on the cell type (92). The actions of all the 

IFNα subtypes are pleiotropic and redundant, they are involved in various biological 

functions (e.g. antiviral, antiproliferative, antitumor and immunomodulatory) and have 

synergistic or additive effects between them and with other biological response modifiers. 

Therefore, their individual specific physiological roles are not fully defined. Despite of 
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IFNα-2b being used mainly in viral and cancer therapy, its major activity is in the 

modulation of the immune system (30, 92).  

Regarding the anti-proliferative capacity, IFNα-2b can either directly inhibit the 

cancer cell growth through apoptosis or differentiation, or act indirectly on the cancer 

cells through the activation of immune cells such as T cells, natural killer cells, inhibition 

of vascularization (anti-angiogenesis) and cytokines induction (79). The molecular 

mechanisms involved in this process were well described earlier (79), being related with 

the regulation of proteins translation involved in the MAPK pathway, which control a 

variety of processes inside the cell, such as proliferation, differentiation, survival and 

apoptosis.  

On the other hand, the IFNs antiviral response strongly depends on the virus, the 

host cell and the IFN type. For instance, RNA viruses have been reported to induce higher 

levels of IFN type I transcription than DNA viruses (86). Figure 4 summarizes the 

mechanisms involved in an antiviral action provided by IFN α, β and γ.  

 

 

Figure 4: Schematic summary of the IFN antiviral action. Open hexagons represent 

virion particles and open circles, IFN proteins. Adapted from (98). 

 

 The virus induces the cell to synthesize IFNα which exerts a paracrine action on 

the surrounding cells, further leading to the expression of IFN-regulated proteins which 

collectively constitute the antiviral response that is responsible for the inhibition of virus 

multiplication. IFNs may also act in an autocrine manner on the IFN-producer cell. The 

best-characterized ISG-encoding proteins implicated in the antiviral actions of IFNs in 



14 

 

virus-infected cells are protein kinase (PKR), the 2’,5’-oligoadenylate synthetase (OAS) 

and RNase L, the RNA-specific adenosine deaminase (ADAR), and the Mx protein 

GTPases, which directly inhibit viral replication. Their functions and mechanisms of 

action are revised in the literature (98). 

 

1.5. Recombinant proteins - upstream processing 

 Considering recombinant proteins as a class of biopharmaceuticals, the upstream 

processing aims to provide large quantities of the target protein, through genetic or 

chemical engineering, while keeping and/or enhancing their biological characteristics 

(99). In general, the upstream steps within the recombinant protein manufacturing 

encompass the isolation of the target gene, cloning this gene into an expression vector, 

the transformation of the expression host with the recombinant vector, and the 

biosynthesis of the desired protein in the chosen system (100). 

 

1.5.1. Expression vectors and host expression cells 

Any expression vector includes a transcriptional promoter, an origin of 

replication, the target gene, a selection marker, a 5’ untranslated region (5’UTR) and 

translation initiation site (101). It usually includes fusion tag(s) that can improve protein 

expression and folding, increase protein solubility or facilitate downstream processes, 

such as purification and recovery (99). Among these, the promoters, 5’UTR, N-terminal 

codons and fusion tags, strongly affect protein transcription and translation, protein 

yields, protein solubility and purification (101).  

An effective promoter for heterologous protein expression should be sufficiently 

strong to allow the accumulation of the target protein to more than (or equal to) 10–30% 

of the total cellular proteins. It should be tunable, enable simple and inexpensive induction 

and exhibit minimal basal transcriptional activity in order to avoid transcription before 

induction (102). Examples of strong promoters used for protein expression in E. coli are 

T7 promoter, the Arabinose promoter, hybrid promoters (trc and tac promoters) and the 

cspA promoter (102). The pET expression vector featuring the T7 promoter is by far the 

most widely used system for heterologous protein expression in E. coli (103).  

The 5’UTR is an untranslated sequence involved in translation initiation and 

protein expression (104). 5’UTR includes the Shine-Dalgarno (SD) sequence which is 

responsible for the connection to the ribosome. Therefore, nucleotides and spacing 
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differences in this region will form different mRNAs, thus affecting the initiation step of 

protein translation as well as its efficiency, and consequently, production levels (105). 

The expression vector can be constructed through the insertion of the target gene 

into a vector, which can be done by high-throughput cloning-systems: restriction enzyme 

(RE)-based cloning, recombination-based cloning, annealing-based or ligation-

independent cloning. The advantages and disadvantages of each system were revised in 

the literature (106, 107). 

 Recombinant proteins can be expressed in prokaryotic, eukaryotic or cell-free 

systems depending on a variety of biological and technical reasons. The choice of the 

right host as well as the host strain takes into account: i) security factors, such as 

pathogenicity and the generally recognized as safe (GRAS) status; ii) protein stability and 

susceptibility, final quality and functionality; iii) production yield and speed; iv) 

physicochemical and biological properties of the target protein and host cells; v) 

expression and regulation of the vector; vi) cell maintenance factors; vii) recovery of the 

protein; and viii) the desired application (108). 

 Eukaryotic systems include yeasts (e.g. Saccharomyces cerevisiae and Pichia 

pastoris), mammalian cell cultures [e.g. chinese hamster ovary (CHO) cells, murine 

myeloma (NS0) cells, baby hamster kidney (BHK) cells and human embryonic kidney 

(HEK) cells], insect cells and plant cells (100). These are usually used to express large 

proteins, while prokaryotic systems are used to express the smaller ones. Large proteins 

usually require post-translational modifications, such as disulfide bond formation, 

phosphorylation or/and glycosylation, that dictate the correct fold of the protein, thus 

affecting protein stability and biological function (108). Yeasts are the simplest 

eukaryotic systems. Saccharomyces cerevisiae has been used for decades, and its main 

advantages include: the ability to grow rapidly in cheap media, to perform proteolytic 

processing, protein folding, disulfide bond formation, and simple post-translational 

modifications (100). Moreover, it has been accepted as a GRAS organism, which is 

beneficial in the production of recombinant therapeutic proteins from the regulatory point 

of view. On the other hand, it is unable to reach high cell densities, and exhibits limited 

secretion and excessive/irregular glycosylation (109). In contrast with Saccharomyces 

cerevisiae, Pichia pastoris can grow up to very high cell densities, performs a less 

extensive/erroneous glycosylation pattern, and offers higher yields and secretion capacity 

(Table 2) (110). It should be remarked that the ability of the expression system to produce 

and secrete soluble folded proteins avoids costly downstream processes of cell rupture, 
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denaturation and refolding. Mammalian cells are the best option for the production of 

biologically active proteins since they have a superior ability to perform post-translational 

modifications. Indeed, most of the therapeutic proteins are produced in mammalian 

systems (109). While protein quality is an advantage of mammalian cells, protein 

productivity is not. Moreover, the manipulation of these cells is difficult and expensive 

since they are suitable to viruses and DNA contamination and require relatively complex 

culture media (100). 

 

Table 2: Comparison between different expression systems for the production of 

recombinant proteins (100, 108–110). 

 
Escherichia 

coli 

Pichia 

pastoris 

Saccharomyces 

cerevisiae 

Mammalian 

cells 
Plant cells 

Growth rate ++ + + - - 

Protein 

productivity 
+ ++ + - -- 

Glycosylation -- + ++ + + 

Disulfide 

bonds 
-- + + + + 

Secretion - ++ + +/++ +/++ 

Cost -- -- - ++ ++ 

Examples of 

produced 

proteins 

Hirudin 

Insulin 

Interferons 

Calcitonin 

Growth 

factors 

Human 

serum 

albumin 

Collagen 

Trypsin 

Insulin 

Hepatitis B 

surface antigen 

Urate oxidase 

Eutropin 

Blood 

coagulation 

factors 

Erythropoetin 

Gonadotropin 

mABs 

β-D-

glucuronidase 

Avidin 

Laccase 

Trypsin 

Legend: ++ high; +/++ medium to high; + medium; - low; -- very low/absent. 

 

 The production of recombinant proteins in plants has also been go through 

considerable progress. Plant cells have simple growth requirements, an unlimited 

scalability, and they are versatile production systems able to provide full post-

translational modifications (111). The major limiting issues in its commercial application 

within the biopharmaceuticals industry are the potential immunogenicity of plant-specific 

glycosylation, the intense surveillance of the transgenic plants varieties by regulatory 

agencies, and the high costs associated to their regulatory approval (112). The least 
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expensive, easiest and quickest expression system for recombinant proteins is the 

bacterium E. coli, being the second most popular host for the production of 

biopharmaceuticals (109). E. coli presents the ability to grow on inexpensive carbon 

sources in short periods of time, it can accumulate recombinant proteins up to 80% of its 

dry weight, survives in a wide variety of conditions, and its fermentation processes are 

easily scaled-up (100, 113). 

 Even though the use of E. coli as an expression system has some advantages, there 

are also some limitations on its use, mainly connected to the protein folding, lack of post-

translational modifications, endotoxins contamination and poor secretion (109). Some 

strains were genetically modified to enhance protein production, as well as the E. coli 

expression strain and culture conditions (e.g. medium density, nutrients, diffused oxygen, 

pH, temperature, culture by-products, salinity, etc.) (101). In addition, different strains 

can reduce the potential toxicity exerted by some heterologous proteins on the cell culture 

itself, increase the stability of mRNA, facilitate cytoplasmic disulfide bond formation, 

improve the expression of post-translationally modified proteins or facilitate the 

expression of genes that contain rare codons (114). BL21 strains, which are the most 

routinely used E. coli strains for protein production, contain a chromosomal copy of the 

T7 RNA polymerase gene and lack the genes for the expression of proteases Lon and 

OmpT. As a result, they guarantee a simple and efficient expression of the genes under 

the control of isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible promoters, thus 

increasing the protein stability (101).  

 

1.5.2. Recombinant interferon alpha-2b biosynthesis 

 There are several expression vectors described in the literature (Table 3) for 

recombinant IFNα-2b biosynthesis (13, 74, 113, 115–123). There are also commercially 

available vectors, such as pGL2BIFN, pALCA1SIFN, PP324, PP326 and pENTR223.1, 

that already include the IFNA gene and can be found in plasmid repositories (124, 125) 

or in sellers of biological materials (126). 
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Table 3: Host systems, expression nature, expression vectors and production yield of 

recombinant IFNα-2b. 

 

Host Expression nature 
Expression 

vector 
Yield Ref. 

Escherichia coli Intracellular, insoluble pAE 0.2 g/L (116) 

Escherichia coli Intracellular, insoluble 

T7 RNA 

polymerase-based 

vector pRSET 

3 g/L (74) 

Saccharomyces 

cerevisiae 
Extracellular, soluble YRp7 variants 

Not 

reported 
(115) 

Streptomyces 

lividans 
Extracellular, soluble 

pADXS, 

pUCIAS, 

pOVsiIFN and 

pOW15 

Max 0.58 

µg/L 
(113) 

Pichia pastoris Extracellular, soluble pPICZα-hIFNα2b 0.6 g/L (117) 

Pichia pastoris Extracellular, soluble pPICZaA 0.298 g/L (13) 

Lactococcus 

lactis 

Intra- or extracellular, 

soluble 

pNZ-ifnm and 

variants 
0.024 g/L (118) 

Yarrowia 

lipolytica 
Extracellular, soluble 

PICZα and JME 

variants 
0.43 g/L (122) 

Mouse cells Extracellular, soluble pEE12 0.12 g/L (123) 

Trichoderma 

reesei 
Extracellular, soluble pTTv254 variants 2.4 g/L (119) 

Trichoderma 

reesei 
Extracellular, soluble pTTv254 variants >4.5 g/L (119) 

Plant 

chloroplasts 
Intracellular, soluble pLD-CtV 

0.003 g/g of 

plant leaf 
(120) 

Transgenic 

plants cells 
Intracellular, soluble 

pCB124 and 

pCB161 

Not 

reported 
(121) 
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 IFNα-2b was produced and isolated for the first time in 1980 using E. coli (127), 

and since then, although several host systems have been employed for their biosynthesis 

(Table 3), E. coli is still the current choice for the recombinant production of IFNα-2b. 

Recently, Trichoderma reesei appeared as a potential competitor host of E. coli in the 

production of IFNα-2b (119). Considering that therapeutic proteins, including the IFNα-

2b, are naturally unstable and very susceptible to endogenous proteases, these strains can 

contribute to overcome a relevant drawback in protein production that is the proteolytic 

degradation. The strains generated have a producing potential upward, from 2.5 g/L to 

4.5 g/L, with the addition of proteases inhibitors (119).  

 

1.6. Recombinant proteins - downstream processing 

After recombinant proteins production, the downstream stages foresee the 

extraction of the target protein from the harvested cells, followed by its purification in a 

cost-effective way. The final purification level and yield depend not only on the 

purification strategy, but also on the upstream stage that consequently influences the 

initial concentration of the protein and its purity. A discussion on the critical factors that 

influence the early steps of downstream processing and a comparison between traditional 

purification techniques and ATPS, including IL-based ATPS, will be presented below, 

focusing on IFNα-2b purification.  

 

1.6.1.  Primary recovery and isolation 

The recovery of recombinant proteins depends on the physicochemical properties 

of the protein, expression host and protein location (128). IFNα-2b can be secreted or 

recovered from the cell, in a soluble or insoluble form, according to the host 

characteristics, as summarized in Table 3.  

From the downstream point of view, secreted proteins are preferred over 

cytoplasmic ones because of the additional steps involved in their purification. On the 

other hand, cytoplasmic proteins allow higher production yields (114). In E. coli, 

heterologous proteins like IFNα-2b are often produced intracellularly in the form of 

inclusion bodies, which are amorphous insoluble aggregates of proteins (74, 116). As an 

alternative, they can also be expressed intracellularly in a soluble state or be exported to 

the periplasm (12). Since the cytoplasm is a reducing environment, the inclusion bodies 

formed are usually inactive and possess non-native intra- and inter-molecular disulfide 
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bonds and unusual free cysteines (129). The mechanisms of their formation are related 

with protein properties such as charge, hydrophilicity, cysteine and proline fractions, total 

number of residues, and culture and folding conditions (temperature, pH, and nutrients) 

(11). The inclusion bodies formation may also present some advantages: their 

composition is usually highly enriched in the target heterologous protein, the proteins are 

less susceptible to the activity of proteases, and can be readily separated from bacterial 

cytoplasmic proteins through centrifugation (101). The strategies for protein extraction 

from inclusion bodies are quite common, but to obtain the active protein the aggregates 

must be removed from the cells, solubilized and refolded. This not only extends the 

downstream stage, but also affects the integrity and yield of the refolded protein (130).  

It has been reported that insoluble recombinant proteins can be overexpressed in 

E. coli, in the soluble form, by adding compatible solutes, such as sorbitol, arginine, and 

trehalose, to the culture medium (131). Moreover, several approaches have been 

undertaken to avoid inclusion bodies formation in E. coli, including periplasmic secretion, 

lower culture temperatures, lower inducer concentrations, and lower induction periods, 

and the use of fusion tags such as glutathione S-transferase (GST) and maltose-binding 

protein (MBP) (130). High-throughput methods for inclusion bodies purification can also 

be performed using a robotic microfuge. This automated approach excludes the need of 

using tags and allows the protein expression, recovery and purification alongside, because 

inclusion bodies can be readily separated from soluble proteins through centrifugation 

(101). 

In a typical procedure of inclusion bodies recovery, the harvested E. coli cells are 

firstly separated from the culture medium through centrifugation. Further, the cells are 

disrupted either by mechanical forces (e.g. high-pressure homogenization, sonication, 

glass beads, liquid homogenization, freeze-thaw cycles), chemical methods (e.g. osmotic 

lysis, organic solvents, surfactants) and enzymatic methods (e.g. lysozyme) (100). 

Regarding this step, the optimized conditions should maximize cell lysis, the extraction 

yield and stability of the recombinant protein, while minimizing protein oxidation, 

unwanted proteolysis and sample contamination with genomic DNA through the addition 

of reducing agents, proteases inhibitors and DNases/Benzonase, respectively (103). Then, 

the inclusion bodies are removed from the cell lysate by centrifugation and the pellet is 

washed from adhering impurities and solubilized in a high concentration of denaturant, 

such as urea and guanidine hydrochloride (GdnHCl), or ionic detergents, such as N-

lauroylsarcosine, Triton X-100 and sodium deoxycholate, or with phosphate-buffered 
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saline (PBS). In addition, dithiothreitol (DTT), 2-mercaptoethanol (2-ME),), or 

dithioerythritol (DTE) are commonly added to reduce the non-native disulfide bonds (11, 

132). Finally, after solubilization, the inclusion bodies are refolded using refolding 

techniques that take into account several factors, such as protein concentration, co-

aggregation of protein contaminants, temperature, pH, and ionic strength. The yield of 

the refolded protein decreases with the increasing concentration of the solubilized 

proteins undergoing renaturation and with the aggregation of contaminant proteins (11). 

Therefore, some purification protocols of inclusion bodies include a purification step 

prior to refolding (11, 132, 133). Conventional refolding techniques are based on the 

gradual decrease of the denaturant concentration through dilution on a refolding buffer or 

dialysis. Other alternatives, such as the co-expression of chaperones and foldases, the 

addition of small chemical molecules and the refolding on a laminar flow in microfluidic 

chips, have been also attempted aiming to decrease the degree of aggregated and/or 

misfolded proteins (132). Dashbolaghi and co-workers (134) described an improved 

refolding method of IFNα-2b via pH modulation. In this study (134), although an increase 

in the pH of the refolding buffer from 7 to 8.5 led to an improvement in the refolding 

efficacies from 42.28 % to 71.22 %, the highest biological activity of IFNα-2b was 

achieved at pH 8.  

Valente and colleagues (11) described an optimized protocol for the primary 

recovery of IFNα-2b from E. coli inclusion bodies. Based on the sequential evaluation of 

the parameters involved in the aforementioned recovery steps – cell lysis, inclusion body 

isolation, washing and solubilization – the authors were able to maximize both the IFNα-

2b recovery yield and purity (11). 

 

1.6.2.  Chromatographic-based purification processes 

 Conventional chromatography is a well-established technique that is widely 

applied in biomolecules separation/purification, and is based on differences in the 

movement rate of the species carried by a fluid mobile phase toward a solid stationary 

phase. In a packed bed chromatography, the sample is introduced and transported by the 

eluent along the column. The sample components will percolate the chromatographic 

column at different speeds, according to the degree/strength of interaction, and will 

eventually allow the separation and collection of products of interest in a high purity 

degree (135). Based on the type of interactions established between the solid stationary 

phase and biomolecules, chromatographic techniques can be summarized into five 
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classes: i) affinity; ii) ion-exchange; iii) hydrophobic interactions; iv) size exclusion; and 

v) mixed-mode chromatography (135). 

 Chromatography presents high resolution, being often applied in therapeutic 

proteins purification. However, despite chromatography has been the workhorse of 

protein separation, it is the main responsible for the major drawback in 

biopharmaceuticals production, i.e. the high cost (20). Upstream developments that end 

with processes capable of delivering higher-titers have been pushing chromatography 

beyond their physical and economical limitations and, consequently, the current platforms 

have reached their limits of throughput and scalability (20, 136). Scaling up problems are 

related with the optimization of column size and operation conditions, as well as column 

stability during the processing. Large columns can be as robust and reliable as small ones, 

but require larger media and longer cycle times. The high costs of the resins, buffers, and 

other consumables may also exceed the upstream gains (136). Furthermore, there are 

some mass transfer limitations involving key parameters as flow-rate, average pore size 

and solute diffusion coefficient in solid chromatographic columns (137), which may 

result in unpredictable fluid distribution and pressure drops. Moreover, due to the batch 

mode, separation usually requires long times of operation because successive steps of 

extraction, purification and polishing are required (21). 

 

1.6.3.  Aqueous two-phase systems 

 ATPS were found by Beijerinck in 1869 (138), by mixing agar and gelatin at 

certain concentrations in aqueous media, from which two fully separated aqueous phases 

were formed. The extractive potential of ATPS was only explored almost a century later, 

when Albertsson (139) studied the possibility of using these systems for the fractionation 

of cell walls materials from microorganisms. Since then, ATPS have been largely 

investigated (140). 

 ATPS are established above certain concentrations of two solutes dissolved in 

aqueous media, resulting in the formation of two phases, each one enriched in one of the 

solutes. Since two aqueous phases exist, these systems are promising strategies within 

liquid-liquid extraction approaches. ATPS have been already applied in the separation 

and purification of different biological materials, such as cells, virus, organelles, nucleic 

acids, lipids, amino acids, proteins, antibodies and enzymes from complex mixtures (16). 

Nevertheless, to apply ATPS in the extraction and purification of distinct compounds, 

their phase diagrams and respective tie-lines should be determined and known in advance. 
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Phase diagrams are specific for each ATPS, under certain conditions of temperature and 

pH (140). They provide information about the concentration of components to form a 

two-phase system, the concentration of the phase components in the top and bottom 

phases, and the ratio of phases volume or weight. In Figure 5 it is presented the schematic 

representation of an ATPS phase diagram, in an orthogonal representation for which the 

amount/content of water is omitted. The binodal curve TCB separates the concentrations 

that form immiscible phases (above the curve – biphasic region) from the concentrations 

that are miscible and form only one phase (below the curve – monophasic region) (16). 

The larger the biphasic region, the higher the ability of the phase-forming components to 

undergo liquid-liquid demixing. The TB line is the tine-line (TL) that connects two nodes 

of the binodal curve, and gives the composition of each phase for mixtures prepared along 

the given TL. The tie-line length (TLL) is a numerical indicator of the composition 

difference between the two phases and is generally used to correlate trends in the 

partitioning of solutes between both phases (16). S1, S2 and S3 represent three mixture 

compositions; because they are on the same tie-line, they have the same top phase and 

bottom phase equilibrium compositions, although differing in their volume ratio. The 

point C on the binodal curve is the critical point (140). 

 

 

Figure 5: Schematic representation of a phase diagram, adapted from (140). 
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 ATPS are mainly composed of water and overcome several limitations of other 

separation techniques, namely the conventional liquid-liquid systems which use volatile 

organic solvents that easily promote proteins denaturation, in addition to the low protein 

solubility in these organic media and environmental and human safety concerns (16). 

ATPS display a higher biocompatibility due to their predominantly water-based nature, 

that provides a good environment for biomolecules, allowing them to maintain their 

characteristics (141). Moreover, organic solvents are volatile, toxic and inflammable, 

making them difficult to handle considering the security measures that have to be adopted 

(142). In addition to liquid-liquid extraction strategies, ATPS also present some 

advantages over chromatographic-based techniques, since the scale-up of ATPS is simple 

and can be done in a single-step (143). In fact, their technical feasibility has been reported 

up to a 100000 L scale for the purification of proteins (136).  

A study comparing the performance of ion-exchange chromatography with an 

ATPS composed of PEG1450/phosphate for the partial purification of penicillin acylase, 

confirms that ATPS is a more cost-effective technique and can significantly reduce the 

unit operation steps (144). Other comparative studies between ATPS and other techniques 

revealed a higher capacity, higher biomolecules recovery (145), higher purities (146), and 

a reduction in investment and operational costs. The integration of ATPS with other 

processes and tools can be the breakthrough in the downstream processing of 

biopharmaceuticals (140). ATPS are already used in extractive fermentation, integrated 

with other separation techniques or integrated with other analytical techniques to reduce 

the number of individual processing steps and to improve the overall performance of 

manufacturing (21). Besides penicillin purification with ATPS, alcohol dehydrogenase 

was also efficiently purified using an integrated process of PEG precipitation and ATPS 

(147). Furthermore, centrifugal partition chromatography (CPC) in combination with 

ATPS was demonstrated to be a promising separation technique for biomolecules (148). 

The general characteristics of phase formation in ATPS have been largely 

explored (149); however, the physicochemical interactions involved are very complex, 

making the partition behavior of biomolecules poorly understood. In fact, the partitioning 

of a target biomolecule into one specific phase is a complex process that depends on the 

surface properties of all molecules involved in the system and their interactions. These 

properties include size [Mw, surface area], charge, hydrophobicity, and structural 

conformation of the target molecule, as well as the type, size, concentration and 

characteristics of the phase-forming components (140). The interactions that influence 
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the partitioning in ATPS are usually short-range (van der Waals) and long-range 

electrostatic interactions between the biomolecule and the surrounding phases (150), as 

well as excluded volume effects (16). Ideally, at the end, the target biomolecule should 

be concentrated in one phase and the contaminants in the other, in one-step extraction 

(141).  

Regarding proteins partitioning in ATPS, most of the proteins tend to concentrate 

in the most hydrophobic and less polar phase (151). Hydrophobic interactions are 

considered the most important effects in protein separation in ATPS, particularly in 

polymer/salt systems (152). However, the partitioning trend of proteins depends on the 

ATPS constituents, and electrostatic interactions were also considered by other authors 

as the driving forces for separation (153). Although ATPS is a promising technique, the 

main limitations in downstream processing at an industrial scale is the poor understanding 

of the partition mechanism and the handling, storage and disposal of residues (136). 

Modern high throughput screening platforms can be a viable option to reduce the 

laborious and time consuming screening of the various variables involved in the 

partitioning (143). 

The most common ATPS investigated are constituted by polymer/polymer 

(usually PEG and dextran), polymer/salt or salt/salt (e.g. potassium phosphate, potassium 

sulfate or sodium citrate) combinations in aqueous media. Other types of ATPS include 

ILs, short-chain alcohols (e.g., propanol and ethanol), surfactants, thermo- or pH-

sensitive polymers, modified affinity polymers, among others. All of these systems were 

developed to upgrade their performance in what concerns the recovery of the target 

biomolecule with a high purification level and yield (21, 140). 

 Polymer-based ATPS composed of PEG are largely studied, not only because 

PEG is commercially available at low prices in a large range of Mw, but also because it 

is biodegradable, presents low toxicity, as well as low volatility (141). Polypropylene 

glycol (PPG) has an additional methyl group than PEG, and is thus more hydrophobic 

and tend to form ATPS with a wider range of other phase-forming components. PPG is 

also biodegradable and can be easily recovered by heating (thermoseparating polymer) at 

low working temperatures (154). It has been demonstrated that PEG stabilizes the protein 

three-dimensional structure through the formation of a non-associating PEG-intermediate 

complex and therefore contributes to proteins refolding and reestablishment of their 

biological activities (155). However, most of these polymer-based ATPS have a restricted 

polarity difference between the coexisting phases and thus lead to low extraction 
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efficiencies and low selectivity values. To overcome this drawback, IL-based ATPS were 

proposed in the last decade as a more efficient alternative for the extraction and 

purification of a wide plethora of compounds (16). 

 ILs are molten salts with a melting temperature below 100 ºC, usually formed by 

an asymmetric organic cation and an organic or inorganic anion (156). Figure 6 depicts 

the chemical structures of some ILs extensively investigated. Although they were 

reported for the first time in the beginning of the 20th century by Paul Walden (157), few 

interest was devoted at that time on these new solvents. Some years later, new families of 

ILs were developed through the combination of the 1-ethyl-3-methylimidazolium cation 

and a large range of anions (e.g. ethanoate, sulfate, nitrate, biscyanamide, etc), and further 

combination of these anions with new classes of cations (e.g. phosphonium and 

pyrrolidinium) (158). Currently, there are more than two thousand reported ILs (156). 

The ILs properties are mainly related with their ionic character: negligible vapor pressure, 

high thermal and chemical stabilities, and an enhanced solvation ability for organic, 

inorganic and organometallic compounds. Their negligible volatility and non-

flammability have contributed to their common designation of “green solvents” (16). 

“Designer solvents” is also a common designation of ILs since their physical and 

chemical properties can be adjusted by appropriate anion/cation pairs for a specific 

application (156). Although ILs have been considered as non-toxic solvents due to their 

negligible vapor pressure, studies demonstrated that many ILs display some toxicity 

(159). Their toxicity is already known to be associated to the hydrophobic character of 

the IL. The ILs toxicity is primordially determined by the cation nature and it is directly 

correlated with the length of the alkyl side chain as well as with the number of alkyl 

groups at the cation (160). For instance, imidazolium-based ILs are more toxic than 

cholinium-based, which are usually derived from choline chloride, a vitamin/nutrient that 

can be found in different food sources, either vegetables or animals, and supports several 

essential biological functions (161).  

In 2003, the Rogers research group (162) reported for the first time that it was 

possible to create an ATPS by the addition of an inorganic salt (K3PO4) to an aqueous 

solution of ionic liquid (1-butyl-3-methylimidazolium chloride). Figure 6 shows the 

chemical structures of the ILs commonly used for ATPS formation. It has been latter 

found that the formation of an IL-based ATPS follows the decrease in the hydrogen-bond-

accepting strength or the decrease in the hydrogen-bond basicity of ILs anions (163). The 
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increase of the number of alkyl groups present in the cation also enhances the formation 

of IL-based ATPS, whereas the insertion of a double bond has the opposite effect (164). 

 

 

Figure 6: Chemical structures of the ionic liquids commonly used for aqueous two-phase 

systems, extended from (165). 

 

 Compared with polymer-based ATPS, IL-based ATPS have a relatively lower 

viscosity due to the IL nature (165). The decrease of viscosity allows overcoming mass 

transfer limitations for extraction purposes, allowing a rapid phases separation (16). 

Furthermore, polymer/polymer and polymer/salt ATPS have a restricted polarity range 

that can be only manipulated by the polymer and salt type, and their composition, or 

through the addition of adjuvants or polymer chemical modifications (166). IL-based 

ATPS overcome this issue since ILs can be tuned by the manipulation of the anion/cation, 

allowing to enhance the differences in polarities between the two phases and to enhance 
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the selectivity for the extraction of a target compound (167). Accordingly, the partition 

coefficients of L-tryptophan in IL-based ATPS are higher than those typically obtained 

with polymer-inorganic salts or polymer-polysaccharides aqueous systems (163, 164). 

The addition of ILs as adjuvants in conventional ATPS was also demonstrated, being a 

determinant factor in the biomolecules partitioning trend during extraction (166, 168–

171). Pereira and collaborators (166) demonstrated that the partition behavior of L-

tryptophan depends mainly on the IL employed. The addition of imidazolium-based ILs 

at 5 %wt to a PEG-based ATPS increased the extraction performance from 175.6 ± 2.4 to 

245.0 ± 9.5 of lypolitic lipase produced from Bacillus sp. (168). On the other hand, the 

addition of polymers to IL-ATPS was also recently reported (172), where PEG was 

investigated as adjuvant, allowing to increase the partition coefficients of α-amylase. In 

general, larger differences in polarity result in larger partition coefficients of 

biomolecules in IL-based ATPS, as demonstrated by Ruiz-Angel and colleagues (173). 

Moreover, some studies also demonstrated that ILs used in ATPS formation can be 

recycled and reused after extraction procedures (174). 

 PEG/IL ATPS were reported for the first time by Freire and collaborators (175), 

who suggested that the occurrence of these biphasic systems is dependent on the 

interactions between the polymer and the ionic species, and not only on the hydration 

forces of the individual IL or salt ions as typically observed in IL/salt ATPS. Further 

works on this line have been recently published (176–179). 

 It is important to guarantee that proteins maintain their native conformation in 

order to be biologically active, after the purification step using IL-based ATPS. In 2007, 

Du and co-workers (180) tested, for the first time, ATPS based on the 1-butyl-3-

methylimidazolium chloride IL and K2HPO4 for the extraction of proteins, demonstrating 

that IL-based ATPS are enhanced extraction platforms for proteins (165). In the 

purification of dehydrogenases with IL-based ATPS, their specific activity was shown to 

increase in presence of ILs (181). Several IL-based ATPS have been successfully used in 

the extraction of folded model proteins (182–186), as well as from complex matrices (161, 

187), but since ILs inevitably affect the pH of the aqueous solution, phosphate-based 

buffered solutions were usually used (16). Nevertheless, phosphate ions can bind with 

metal ions (calcium, zinc or magnesium) and interfere with the integrity of some 

proteins/enzymes (188). Therefore, a novel class of ILs named Good’s buffer ILs (GB-

ILs) were recently used to form IL-based ATPS with aqueous solutions of inorganic or 

organic salts (189), with outstanding stabilizing characteristics on the protein secondary 
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structure. In this work (189), GB-ILs were able to extract folded bovine serum albumin 

(BSA) with 100% efficiency in a single step. GB-ILs were also demonstrated to be an 

excellent stabilizing medium for enzymes, independently of temperature, while showing 

the capacity to form ATPS with a biodegradable citrate salt, with significant selectivity 

for the extraction of lipase (190).  

 In addition to the largely investigated imidazolium-based ATPS, the employment 

of cholinium-based ILs in ATPS not only results in more biocompatible systems, but also 

have been proved to be efficient in the extraction and purification of proteins/ 

biopharmaceuticals, such as BSA (182), trypsin, papain and lysozyme (183), and 

immunoglobulin G (IgG) (191). The GB anions tricine, TES, CHES, HEPES, and MES 

were combined with cholinium cations (184, 192), resulting in self-buffering ILs able to 

form ATPS with higher biocompatibilities and non-toxic character. The use of cholinium 

instead of imidazolium cations allowed to form ATPS with biodegradable polymers as 

substitutes of high-charge density salts. This favored the partition of proteins since it also 

increased the difference of the ionic strength between the phases (184). The use of self-

buffering ILs and PPG 400, as phase constituents in polymer/GB-IL ATPS, allowed to 

stabilize and extract immunoglobulin Y (IgY) to the GB-IL rich phase from the water 

soluble fraction of proteins from egg yolk with extraction efficiencies ranging from 79-

94% (184), while the extraction of BSA was completely achieved in a single-step (192). 

Therefore, GB-IL-based ATPS are currently considered one of the most biocompatible 

systems for the efficient separation and extraction of biologically active biomolecules, 

including therapeutic proteins (184). 

 

1.6.4.  Purification of the recombinant interferon alpha-2b 

 Since IFNα-2b is obtained from a heterologous matrix of biological compounds, 

the purification ratio depends not only on the initial concentration of the IFNα-2b in the 

crude feedstock but also on the concentration of other biological components, which 

depend on the host expression system and on the existence, or not, of prior recovery and 

isolation procedures. There are some studies that report the purification of IFNα-2b. Ion-

exchange chromatography (13, 74, 116, 117, 193) and affinity chromatography (123, 130, 

194) are the most reported methods, as single methods or in combination with other 

techniques. A summary of the host, extraction yield, specific activity and purity of 

different purification methods for recombinant IFNα-2b is provided in Table 4. 
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 In general, the purification yield seems to be proportional to the initial 

concentration of IFN and its purity, with higher purification yields achieved when the 

initial concentration and purity of IFNα-2b is higher (13, 74). The highest extraction yield 

(64%) was achieved with two chromatographic steps, the first with a Q-Sepharose ion-

exchange column, followed by ultrafiltration, and the second with a SuperdexTM 75 size-

exclusion column (13). The IFNα-2b was obtained directly from the fermentation 

supernatant of Pichia pastoris, with a final purity higher than 95 % in RP-HPLC (13). 

Pichia pastoris is capable of secreting IFN, and since it does not secrete a large amount 

of intrinsic proteins, higher purity levels are expected. However, the recovery yields 

depend on the applied purification/recovery procedure (13, 117). The second highest 

extraction yield (58 %) was obtained in a single-chromatographic step with a Q-

Sepharose ion-exchange column (74). In this study (74), extra steps of cell lysis, 

washing/denaturation, solubilization and refolding were used in order to obtain the 

refolded IFNα-2b from the intracellular inclusion bodies produced by E. coli. However, 

since the inclusion bodies constituted more than 40 % of the total cellular proteins, these 

could be recovered without significant loss by pelleting them out from the total cell lysate 

followed by washing with a deoxycholate buffer (74). These steps allowed to obtain initial 

IFNα-2b purities of 80 % and simultaneously lead to the concentration of the protein prior 

to the principal purification step. The purity was evaluated through silver-stained sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE), with a final reported 

purity of 99 % (74). Although the extraction yield was lower than the one mentioned 

previously, a single ion-exchange chromatography step was sufficient to eliminate the 

remaining contaminants. In addition, the specific activity of the IFNα-2b was higher in 

the single-step chromatographic procedure than in the two-step chromatographic 

procedure: 3 × 109 IU/mg and 1.9 × 109 IU/mg, respectively (Table 4). Beldarraın and 

colleagues (194) reported a similar study where the IFNα-2b was obtained from the 

refolding of inclusion bodies. Although the purities of the IFNα-2b obtained were high, 

the renaturation procedure led to a 50 % loss of the protein, with a significantly low 

recovery yield (12 %). Moreover, in this study (194), the effect of the pH and temperature 

on the conformational stability of the IFNα-2b was evaluated. The thermal unfolding as 

a function of the pH showed only one endotherm at a temperature higher than 45 ºC, an 

irreversible phenomenon at pH values ranging between 4 and 10. The most suitable 

condition was obtained at pH 7.0, but the conformational stability depends on the protein 

concentration and ionic strength (194). 



31 

 

Table 4: Comparison between host, extraction yield, specific activity and purity of 

different purification methods for the recombinant IFNα-2b. 

Purification steps Host 

Extraction/

Recovery 

yield (%) 

Specific 

Activity 

(IU/mg) 

Purity 

(%) 
Ref. 

Single step ATPS 

(alcohol/salt) 

Escherichia 

coli 
74.64 Not reported 

Not 

reported 
(15) 

Anion-exchange 

chromatography, 

ultrafiltration and gel 

filtration 

Pichia 

pastoris 
64 1.9 × 109 >95 (13) 

Anion-exchange 

chromatography 

Escherichia 

coli 
58 3 × 109 ~99 (74) 

Single step ATPS (PEG/salt) 
Escherichia 

coli 
40.7 Not reported 

Not 

reported 
(14) 

Filtration, desalting and ion-

exchange chromatography 

Pichia 

pastoris 
30 1.5 × 108 100 (117) 

Immobilized metal-ion-

affinity chromatography, 

RP-HPLC and 

ion-exchange 

chromatography 

Escherichia 

coli 
12 >1 × 108 100 (194) 

Immuno-affinity 

chromatography 
Mouse cells 

Not 

reported 
2 × 108 

Not 

reported 
(123) 

Two immobilized metal-

affinity chromatographies, 

anion-exchange 

chromatography 

Escherichia 

coli 
10.5 Not reported 99.8 (130) 

Cation-exchange 

chromatography 

Escherichia 

coli 

92.1 Not reported 91.7 
(193) 

72 Not reported 56.8 

Immunomagnetic separation, 

size-exclusion HPLC 

Pseudomonas 

sp. 
89.5 2.7 × 108 92.9 (195) 
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 Xu and collaborators (193) reported both soluble and insoluble production of 

endogenous recombinant IFNα-2b in E. coli. Although the expression level of the soluble 

protein was lower than the insoluble fraction, their results suggest that the soluble 

expression have more advantages than the insoluble one. The soluble IFNα-2b could be 

purified directly by chromatography, while the insoluble fraction had to be dissolved with 

guanidinium hydrochloride and refolded by dilution. The soluble protein expression 

could facilitate the downstream process and allow higher recovery yields, higher purities 

and higher biological activities (Table 4) (193). Is important to notice that the extraction 

yield in this study (193) was calculated based on the biological activity, and not in mass 

percentage. Therefore, this yield cannot be compared with the ones discussed before. 

Moreover, it was found that the use of three protein fusion tags, namely the b’a’ domain 

of human protein disulfide isomerase (PDIb’a’), MBP and NusA, increased the 

intracellular soluble expression of IFNα-2b from 30 to more than 45 % of total proteins 

(130). Nevertheless, the fusion tag can facilitate the initial steps of affinity purification 

but also requires an additional step of cleavage of the tag. It should be remarked that 

clinical applications of bacterially produced biopharmaceuticals may be affected by the 

potential presence of endotoxins, sometimes present in E. coli expressed protein 

preparations. These endotoxins are contaminants of expressed protein preparations, and 

thus should be considered in the determination of the purity level of IFNα-2b, and 

additional care has to be taken into account (130). 

Cao and colleagues (195) reported the purification of IFNα-2b using magnetic 

microspheres coupled with anti-IFNα-2b mAb for immunomagnetic separation. This 

technique takes advantage of the selectivity of immunoaffinity chromatography 

combined with the efficiency of magnetic response. In this study (195), the purity of 

IFNα-2b obtained was of 92.9 %, and the extraction yield, which was calculated regarding 

the biological activity, was lower than the one obtained with a cation-exchange 

chromatography (88.5 % and 92.1 %, respectively). 

Chromatographic-based techniques present high resolution, leading to purities 

near 100% required for the commercial application of IFNα-2b as a biopharmaceutical. 

However, these techniques are laborious and high-cost procedures. To overcome these 

drawbacks, ATPS have been also investigated as alternative purification techniques. Lin 

and collaborators (14, 15) investigated, for the first time, the use of ATPS for the 

purification of IFNα-2b. In both studies, IFNα-2b was obtained from the periplasm of E. 

coli after osmotic shock, centrifugation, and two sequential cell pellets resuspension in a 
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cold buffer solution comprising 20 % (w/v) sucrose, 0.03 M Tris-HCl, 5 mM sodium 

EDTA (pH 8.0) and cold ultra-pure water. Compared to conventional chromatographic 

purification methods, the IFNα-2b extraction yields obtained with ATPS composed of 

PEG/potassium phosphate or 2-propanol/ammonium sulfate were outstanding: 40.7 % 

and 74.64 %, respectively (Table 4). The purity of IFNα-2b was evaluated by SDS-PAGE, 

and provided as purification factor (PF). The PF obtained with polymer/salt ATPS was 

26.30, while the PF obtained with alcohol/salt ATPS was lower (16.24), meaning that the 

latest system was less efficient for the purification of IFNα-2b. ATPS were also 

investigated as concentration techniques, as demonstrated by the SDS-PAGE results in 

which the IFNα-2b band was shown to be significantly more intense in the top phase than 

in the crude stock sample (14). Although the specific activity of the IFNα-2b was not 

reported and its conformational stability was not studied, these results suggest that 

polymer/salt and alcohol/salt ATPS are a valuable alternative for IFNα-2b extraction and 

purification since they are a simpler, cheaper and fast one-step methods.  

To the best of our knowledge, the investigation on the addition of ILs as adjuvants 

in these ATPS or the use of IL-based ATPS still remain uncovered in the recovery and 

purification of IFNα-2b. Taking into account the high complexity and disadvantages of 

conventional chromatographic methods, as well as the limitation of conventional 

polymer/polymer and polymer/salt ATPS, the introduction of ILs as phase-forming 

components of ATPS to develop cost-effective platforms for the purification of IFNα-2b 

seems feasible of further investigation. 
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2. Experimental section 

2.1. Recombinant interferon alpha-2b production and recovery 

2.1.1. Chemicals 

 Tryptone and yeast extract were obtained from Biokar diagnostics (Allonne, 

France). Sodium chloride (≥ 99.0 % purity), dextrose (D-Glucose), 

trismethylolaminomethane (Tris base, ≥ 99.8 % purity), hydrochloric acid, Triton™ X-

100, urea (99.5 % purity) and tetramethylethylenediamine (TEMED) were obtained from 

Thermo Fisher Scientific (Waltham, MA, USA). Ampiciline and DNase (DNase I 200U, 

from bovine pancreas recombinantly produced in Pichia pastoris), IPTG (> 99 % purity) 

and SDS were acquired from Nzytech (Lisbon, Portugal). E. coli BL21 cells, magnesium 

chloride (MgCl2 anhydrous line, ≥ 98 % purity), magnesium sulfate heptahydrate 

[MgSO4.7H2O BioUltra line, ≥ 99.5 % purity (KT)], phenylmethylsulfonyl fluoride 

(PMSF) and EDTA-free Protease Inhibitor Cocktail, lysozyme from chicken egg white 

(protein lyophilized powder ≥ 90 % purity, ≥ 40.000 U/mg protein), L-Glutathione 

reduced (GSH, > 98.0 % purity), L-Glutathione oxidized (GSSH, > 98 % purity), 

ammonium persulfate (APS) and rabbit anti-chicken were bought from Sigma-Aldrich 

(St Louis, MO, USA). The chicken polyclonal to IFNα-2b antibody was obtained from 

Abcam (London, United Kingdom). DTT was acquired from Himedia (Einhausen, 

Germany). Penicillin/Streptomycin solution (10000 U/mL Penicillin and 10 mg/mL 

Streptomycin in 0.9 % NaCl), fetal bovine serum (FBS with origin in South America) and 

acrylamide were obtained from Grisp (Porto, Portugal). pET-3a containing the codon 

optimized sequence of IFNα-2b was acquired from Genscript (Piscataway, NJ, USA). 

Polyvinylidene Difluoride (PVDF) membrane and ECL substrate were brought from GE 

Healthcare Biosciences (Uppsala, Sweden). 

 

2.1.2. Experimental procedure 

 The plasmid pET-3a containing the human IFNα-2b gene (Figure 7) was 

employed for the expression of the target protein in its native form. This plasmid is based 

on the pBR322 plasmid, and it contains the T7 promoter, which is inducible by IPTG, the 

target gene and the ampR gene, which was used as a selectable marker as it confers 

resistance to ampicillin. E. coli BL21 cells were transformed with the target recombinant 

plasmid by heat-shock. Moreover, to favor the expression of IFNα-2b onto this bacterial 

host, the human IFNA2 gene, without any glycosylation signal, was codon-optimized to 
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E. coli codon usage bias (OptimumGeneTM algorithm, Genscript). The main constituents 

of the plasmid are illustrated in Figure 7. 

 

 

Figure 7: General scheme of the pET-3a plasmid; it includes the T7 promoter and 

terminator, the ribosomal binding site (RBS), the target IFNα-2b gene, the ampicillin 

selection marker (ampR) and the pBR322 origin of replication. 

 

 Unless otherwise stated, the recombinant biosynthesis of IFNα-2b was performed 

according the following protocol: E. coli BL21 cells containing the expression construct 

were grown overnight at 37 ºC in Luria Broth (LB) (1 % w/v tryptone, 0.5 % w/v yeast 

extract, and 1 % w/v NaCl, supplemented with ampicillin 100 µg/mL) plates. Then, for 

the pre-fermentation, colonies were picked and used to inoculate 62.5 mL of SOB 

medium (2 % w/v tryptone, 0.5 % w/v yeast extract, 0.05 % w/v NaCl, supplemented 

with ampicillin 100 µL/mL) in 250 mL shake-flasks at 37 ºC and 250 rpm, until the optical 

density at 600 nm (OD600) reached 2.6. Then, and according to Equation 1, a certain 

volume obtained from the pre-fermentation was added to 125 mL of SOB medium in 500 

mL shake-flasks, since the inoculation volume was fixed to achieve an initial OD600 of 

0.2 units. When the culture reached an OD600 of 0.6 units, the induction was initiated 

through the addition of 0.5 mM IPTG. Finally, after a 3 h growth period at 37 ºC and 250 

rpm, cells were harvested by centrifugation (3900 g, 20 min, 4 ºC) and stored at – 20 ºC 

until use. The LB and SOC (SOB supplemented with 2 % w/v glucose) media were also 

tested for the expression of the target protein.  
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 𝑂𝐷600 𝑃𝑟𝑒 − 𝐹𝑒𝑟𝑚 × 𝑉𝑃𝑟𝑒 − 𝐹𝑒𝑟𝑚

= (𝑉𝑃𝑟𝑒 − 𝐹𝑒𝑟𝑚 + 𝑉𝐹𝑒𝑟𝑚)× 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝐷600𝐹𝑒𝑟𝑚  

(1) 

where 𝑂𝐷600 𝑃𝑟𝑒 − 𝐹𝑒𝑟𝑚 corresponds to the OD600 values in the pre-fermentation, 

𝑉𝑃𝑟𝑒 − 𝐹𝑒𝑟𝑚 is the volume of the pre-fermentation medium used to initiate the 

fermentation, 𝑉𝐹𝑒𝑟𝑚 is the volume of fermentation medium, and 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝐷600𝐹𝑒𝑟𝑚 

corresponds to the OD600 values at the beginning of the fermentation. 

 All measurements of optical densities were performed at 600 nm, while 0.8 % 

NaCl was used as the blank since it reflects the sterile media. E. coli was produced at 37 

ºC and 250 rpm, until the cell culture suspension reached an OD600 near 2.6. All the 

employed materials and media were autoclaved at 120 ºC during 15 min, while all the 

manipulations were performed using aseptic techniques in a laminar flow cabinet, or 

otherwise using flame. 

 The bacterial cell pellets were resuspended in a lysis buffer composed of 50 mM 

Tris-HCl pH 7.5, 150 mM NaCl, and 5 mM DTT in a ratio of 20:1. A protease inhibitor 

cocktail (10 uL/mL) and 1 mM PMSF were also added to inhibit the activity of the host 

proteases over the IFN. The cellular lysis was accomplished either with a mechanical 

method using glass beads, or with an enzymatic method using lysozyme. Regarding the 

mechanical method, a ratio of 1:2:2 was employed, namely to 0.5 g of wet cells, 1 g of 

glass beads and 1 mL of lysis buffer were added; then, the lysis was accomplished by 

vortexing the mixture during 7 cycles of 1 min, spaced with 1 min incubations in ice. 

Regarding the enzymatic method, the cells were incubated with 10 mg/mL lysozyme and 

stirring at 4 ºC during 3 h.  

 After the lysis process, and envisaging the decrease of the sample contamination 

with genomic DNA, the mixture was incubated during 20 min with DNase (1 µL) on ice, 

until it was centrifuged (5000 g, 10 min, 4 ºC). Then, a subcellular fractionation was 

performed and the samples classified as soluble and insoluble – inclusion bodies. As it 

was verified that the target protein is mainly produced in the form of inclusion bodies, the 

experimental procedure adopted for the recovery of IFNα-2b was based on that previously 

reported by the Valente research group (11). Briefly, the cells were centrifuged at 5000 

g, 4 ºC, during 10 min and further resuspended, washed and solubilized in specific buffer 

formulations at different conditions. In particular, different solubilization buffers were 

applied for IFNα-2b extraction, composed of 50 mM Tris-HCl buffers at distinct pH 
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values – 8.0 and 12.5 -, 10 uL/mL protease inhibitor cocktail, 1 or 20 mM DTT and 

supplemented with 2, 4, 6 or 8 M urea. It should be remarked that 6 M GdnHCl was also 

evaluated as an alternative to urea. Several washing buffers were also screened, namely 

with 50 mM Tris-HCl buffers at pH 8, 10 uL/mL of protease inhibitor cocktail, 1 % 

deoxycholic acid, H2O Mili-Q, Triton X-100 0.5 % or 1 %, and 2, 4 and 8 M urea at pH 

8. Between and in the end of the extraction/washes, centrifugations of 15000 g, 4 ºC, 

during 10 min were performed. The ability of the washing buffers to remove 

contaminants, the IFNα-2b yield and the ability of the extraction buffer to promote the 

fully extraction of the target protein from the insoluble fraction, were evaluated by SDS-

PAGE and Western-Blot assays. At the end, the supernatant corresponding to the 

solubilized inclusion bodies (SIB) was stored at 4 ºC for further refolding and 

purification. The SIB fraction was refolded through successive dialysis against refolding 

buffers containing 10 mM Tris pH 8, 50 mM NaCl, 1 mM GSH, 0.1 mM GSSH and 

decreasing concentrations of urea. The first dialysis was performed during 6 h with 4 M 

urea, the second during 8 h with 2 M urea, the third during 6 h with 1 M urea, the fourth 

during 6 h with 0.5 M urea, and the fifth overnight using 0 M of urea.  

The experimental procedure adopted for the SDS-PAGE and Western-Blot analysis 

is as follows: the samples were boiled for 5 min in a loading buffer containing 0.5 M 

Tris–HCl pH 6.8, 10 % SDS (w/v), 0.02 % bromophenol blue (w/v), 0.2 % glycerol (v/v), 

31 % DTT (w/v) and then run on SDS gels (4.7 % stacking, 15 % resolving) at 90 V for 

15 min and at 110 V for 2 h. The stacking gel was prepared with 1.25 M Tris-HCl pH 6.8, 

0.05 % acrylamide (v/v), 0.28 % Mili-Q H2O (v/v), 0.001 % SDS (v/v) and the resolving 

gel was prepared with 1.875 M Tris-HCl pH 8.8, 0.15 % acrylamide (v/v), 0.60 % Mili-

Q H2O and 0.01 % SDS (v/v). Both gels were supplemented with 50 µL TEMED and 200 

µL APS and placed in a Bio-Rad Mini Protean 3 Cell Gel Electrophoresis System. After 

running, the gels were stained by Comassie brilliant blue or transferred to a PVDF 

membrane to perform the Western-Blots. The transference of the proteins was done in a 

Bio-Rad Criterion™ Blotter during 30 min at 200 mA, at 4 °C, in a buffer containing 0.58 

% 50 mM Tris-HCl pH 7.5 (w/v), 0.29 % 380 mM glycine (w/v) and 20 % methanol 

(v/v). After the blotting, the membranes were blocked with TBS-T (pH 7.4) containing 5 

% (w/v) non-fat milk for 1 h at room temperature and exposed overnight at 4 °C to a 

chicken polyclonal antibody (AB14039), that cross reacts with the IFNα-2b, at 1:2000 

dilution in TBS-T 0.5 % of non-fat milk. Then, the membranes were washed three times, 

during 15 min each, with TBS-T 0.1 % and incubated with rabbit anti-chicken IgY 
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secondary antibody, during 1 h, at a 1:10000 dilution in TBS-T 5% of non-fat milk. After 

antibody adherence, the membranes were washed again with TBS-T 0.1 %, as mentioned 

before, and finally observed by incubation with 300 µL of ECL substrate and exposure to 

chemiluminescence’s detection. 

 

2.2. Chromatographic purification of interferon alpha-2b  

2.2.1. Chemicals 

 L-Arginine-Sepharose 4B gel and HiTrap Desalting column (5 mL) were obtained 

from GE Healthcare Biosciences (Uppsala, Sweden). CIM® DEAE-1 monolithic tube 

column was obtained from BIASeparations (Ajdovščina, Slovenia).  

2.2.2. Experimental procedure 

 All the chromatographic experiments were performed in an ÄKTA Avant system 

with UNICORN 6 software (GE Healthcare, Uppsala, Sweden). The SIB of IFNα-2b were 

purified using an arginine column, a HiTrap Desalting containing Sephadex G-25 

Superfine column and on a CIM DEAE monolith.  

 The L-arginine-Sepharose 4B gel was packed within a 10 mm diameter × 20 mm 

long (about 4 mL) column. All solutions were filtered through a 0.20 µm pore size 

membrane. Chromatographic runs were performed at room temperature. Unless 

otherwise stated, for the experiments performed with L-arginine-Sepharose and CIM 

DEAE monolith, the column was initially equilibrated with 50 mM Tris buffer (pH 8.0). 

The E. coli SIBs were applied onto the column using a 1.0 mL loop at a flow rate of 1.0 

mL/min. After the elution of unbound species, the ionic strength of the buffer was 

increased to 0.35 M of NaCl and then to 1 M NaCl in 50 mM Tris buffer (pH 8.0). The 

absorbance of the eluate was continuously monitored at 280 nm. In what concerns the 

HiTrap Desalting experiments, the isocratic elution of the different protein species was 

performed at 0.3 mL/min with 50 mM Tris buffer (pH 8.0). 

 Fractions were pooled according to the chromatograms obtained, concentrated and 

desalted with Vivaspin concentrators (10,000 MwCO), and further analyzed by SDS-

PAGE and Western-Blot.  

 

2.3. Biological activity of interferon alpha-2b 

 The biological activity of IFNα-2b was measured through its anti-proliferative 

capacity against MCF-7 cells, based on the protocol previously reported by the Ningrum 
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research group (196). MCF-7 adenocarcinoma cells from human mammary glands were 

brought from ATCC® HTB-22™ (Barcelona, Spain). These were cultured in Dulbecco's 

Modified Eagle's Medium (DMEM) high glucose, containing 10 % of Fetal Bovine 

Serum (FBS) and 1 % of streptomycin/penicillin. After 90 % of confluency, the cells were 

washed with phosphate buffer saline (1.15 g Na2HPO4; 0.2 g KH2PO4; 8 g NaCl and 0.2 

g KCl per liter, pH 7.2), and detached with 500 µL of trypsin at 37 °C for 5 min. Then, 

the cells were seeded in 96 well plates (2000 cells/well) and further grown until a 

confluency of 40-60 % was reached. Then, chromatographic-purified IFNα-2b at a 

concentration of 50 µg/mL was used for transfection that lasted 5 days. The IFNα-2b 

biological activity was measured by its ability to induce cell death, measured as 

cytotoxicity in the MTS cell proliferation assay acquired from Promega (Madison, USA). 

The absorbance was measured at 490 nm. Ethanol was used as the positive control. 

Circular Dichroism (CD) experiments were performed in a Jasco J-815 

spectrapolarimeter (Jasco, Easton, MD, USA), using a Peltier-type temperature control 

system (model CDF-426S/15). CD spectra were acquired at a constant temperature of 25 

°C using a scanning speed of 10 nm/min with a response time of 1 s over wavelengths 

ranging from 190 to 260 nm. The results were expressed as the molar mean residue 

ellipticity (mdeg) at a given wavelength. The recording bandwidth was 1 nm with a step 

size of 1 nm using a quartz cell with an optical path length of 1 nm. Three scans were 

averaged per spectrum to improve the signal to-noise ratio and the spectra were smoothed 

by using the noise-reducing option in the operating software of the instrument. 

 

2.4. Purification of interferon alpha-2b using IL-based ATPS 

2.4.1. Chemicals 

 The salt di-potassium hydrogen phosphate (K2HPO4, 99.0 ≥ wt% purity) was 

brought from Panreac (Barcelona, Spain) and the salt potassium dihydrogen phosphate 

(KH2PO4, purity ≥ 99.5 wt%) was obtained from Sigma-Aldrich (Sintra, Portugal). The 

2-(N-morpholino)ethanesulfonate hydrate (99.5 % purity), tetramethylammonium 

hydroxide (25 wt% in H2O), tetrabutylammonium hydroxide (40 wt% in H2O), 

tetrabutylphosphonium hydroxide (40 wt% in H2O), choline hydroxide (45 %wt in 

methanol) and deuterium oxide (D2O > 99.9 wt% purity) were also acquired from Sigma. 

Ethyl acetate (> 99.0 % purity) was obtained from Carlo Herba (Lisbon, Portugal). 

Methanol (HPLC grade, purity > 99.9 %) was obtained from Chem-Lab. Acetonitrile 
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(HPLC grade, purity > 99.9 %), acetic acid (> 99.99 %) and the L(+)-arginine amino acid 

(> 98 %) were obtained from Thermo Fisher Chemical. 1-butyl-3-methylimidazolium 

methylcarbonate (30 wt% in methanol) was obtained from Proionic (Grambach, Austria). 

Sodium hydroxide pellets were acquired from Eka Chemicals (Lisbon, Portugal).  

2.4.2. Experimental procedure 

2.4.2.1. Synthesis and characterization of ionic liquids 

 In this work, fifteen ILs were investigated, namely tetrabutylammonium acetate 

([N4444][Ac]), tetrabutylammonium 2-(N-morpholino)ethanesulfonate ([N4444][MES]), 

tetrabutylammonium arginine ([N4444][Arg]), tetrabutylphosphonium acetate 

([P4444][Ac]), tetrabutylphosphonium 2-(N-morpholino)ethanesulfonate ([P4444][MES]), 

tetrabutylphosphonium arginine ([P4444][Arg]), 1-butyl-3-methylimidazolium acetate 

([C4mim][Ac]), 1-butyl-3-methylimidazolium 2-(N-morpholino)ethanesulfonate 

([C4mim][MES]), 1-butyl-3-methylimidazolium arginine ([C4mim][Arg]), 

tetramethylammonium acetate ([N1111][Ac]), tetramethylammonium 2-(N-

morpholino)ethanesulfonate ([N1111][MES]), tetramethylammonium arginine 

([N1111][Arg]), choline acetate ([Ch][Ac]), choline 2-(N-morpholino)ethanesulfonate 

([Ch][MES]) and choline arginine ([Ch][Arg]), and their chemical structures are shown 

in Figure 8. These ILs were synthesized via neutralization of the base with the 

corresponding acid, and as described in detail in the literature (184, 197, 198). For 

instance, to synthesize [N1111][Ac], an aqueous solution of acetic acid was added through 

repetitive drop-wise into an aqueous solution of tetramethylammonium hydroxide. Then, 

the mixture was stirred at room temperature during 24h. To guarantee the formation of 

the IL, a 1:1.1 mole relation between the base and the acid was considered, and the 

precursors were added by weight. The water or methanol solvents obtained as an excess 

were evaporated at 50-60 ˚C under reduced pressure. The amino-acid-based ILs were 

washed with a mixture of acetonitrile and methanol (1:1, v/v) while vigorously stirred. 

Since arginine is not soluble in this solvent, the excess buffer was removed through 

filtration followed by solvent evaporation. The other ILs were washed three times with 

ethyl acetate, which was also removed by evaporation. After eliminating most of the 

impurities, the ILs were dried in vacuum (10 Pa) for a maximum of 6 days at 25-50 ˚C to 

remove all the remaining volatile solvents. The chemical structures of the ILs were 

confirmed by 1H and 13C NMR spectroscopy (Bruker AMX 300) operating at 300.13 and 

75.47 MHz, respectively. Chemical shifts are expressed in δ (ppm) using 
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tetramethylsilane (TMS) as internal reference and D2O as deuterated solvent. The water 

content of the synthesized ILs was determined by coulometric Karl Fischer titration 

(Mettler Toledo DL 39) with the Hydranal Coulomat AG reagent (Riedel de Haën), 

except for [N4444][Arg] and [P4444][Arg] which water content was determined by dry 

weight. 

 

 

Figure 8: Chemical structure and abbreviation of the synthesized ILs. 
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2.4.2.2. ATPS ternary phase diagrams 

 The new ATPS phase diagrams of the ILs + K2HPO4/KH2PO4 + H2O were 

determined at room temperature (≈ 25 ºC) and at atmospheric pressure. The ILs used were 

[N4444][MES], [P4444][MES], [P4444][Ac], [N4444][Ac], [C4mim][MES], [N1111][Ac] and 

[P4444][Arg]. The potassium buffer used was a mixture of two aqueous solutions of 

potassium phosphate dibasic and monobasic at a ratio of 20.05, resulting in an aqueous 

solution with a pH of 8.2. The aqueous inorganic salt solution was added to an IL rich 

solution using the drop-wise addition method until the detection of a cloudy biphasic 

solution. Then, the drop-wise addition of water was done until the formation of a clear 

monophasic region. The opposite addition, i.e. a repetitive drop-wise addition of the IL 

aqueous solution to the potassium phosphate solution until the detection of a cloudy bi- 

phasic solution, followed by the drop-wise addition of water until the detection of a 

monophasic region, was also carried out to obtain more complete phase diagrams. The 

pH values of both the IL-rich and salt-rich aqueous phases were determined at (25 ± 1) 

ºC using a METTLER TOLEDO SevenMulti pH meter within an uncertainty of ± 0.02. 

 The binodal data obtained for the systems composed of H2O, K2HPO4/KH2PO4 

and the ILs [N4444][MES], [P4444][MES], [C4mim][MES], [N4444][Ac], [N1111][Ac], 

[P4444][Ac] and [P4444][Arg] were fitted using Equation 2 (199): 

 

 [IL] = Aexp[(B[𝑆𝑎𝑙𝑡]0.5) − (C[𝑆𝑎𝑙𝑡]3)] (2) 

 

where [IL] and [𝑆𝑎𝑙𝑡] are the IL and salt concentrations, respectively, and A, B and C are 

fitted constants obtained by least-squares regression. Each individual TL was determined 

by the application of the lever-arm rule to the relationship between the weight of the top 

and bottom phases and the overall system composition. For the determination of the TLs, 

the following system of four equations (Equations 3-6) (199) was solved to estimate the 

four unknown values (𝐼𝐿𝑇, 𝐼𝐿𝐵, 𝑆𝑎𝑙𝑡𝑇, 𝑆𝑎𝑙𝑡𝐵): 

 

 [𝐼𝐿𝑇] = 𝐴𝑒𝑥𝑝[(𝐵[𝑆𝑎𝑙𝑡𝑇
0.5]) − (𝐶[𝑆𝑎𝑙𝑡𝑇

3])] (3) 

 [𝐼𝐿𝐵] = 𝐴𝑒𝑥𝑝[(𝐵[𝑆𝑎𝑙𝑡𝐵
0.5]) − (𝐶[𝑆𝑎𝑙𝑡𝐵

3]) (4) 

 
[𝑆𝑎𝑙𝑡𝑇] =

[𝑆𝑎𝑙𝑡𝑀]

𝛼
−  

1 −  𝛼

𝛼
[𝑆𝑎𝑙𝑡𝐵] 

(5) 
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where the subscripts [IL] and [𝑆𝑎𝑙𝑡] designate the salt- and IL-rich phases, respectively, 

M, T, and B denote respectively the mixture, the top phase and the bottom phase. The 

parameter α is the ratio between the top weight and the total weight of the mixture. The 

solution of this system results in the concentration (wt%) of the IL and salt in the top and 

bottom phases, and thus the, TLs can be easily represented.  

For the calculation of the TLL, Equation 7 was applied: 

 

 

 All the calculations considering the mass fraction or molality of the 

K2HPO4/KH2PO4 buffer were carried out discounting the complexed water in the salt. In 

all systems, the IL-rich phase corresponds to the top phase while the bottom phase 

corresponds to the K2HPO4/KH2PO4 phase. 

 

2.4.2.3. Extraction of interferon alpha-2b using IL-based ATPS 

 The ATPS composed of ILs + K2HPO4/KH2PO4 + H2O were used to purify the 

IFNα-2b SIB; however, before any experiment and to remove any possible interferences, 

urea was removed using the HiTrap dessalting matrix in an Akta system, as mentioned 

above.  The total protein concentration in these samples was determined using Pierce™ 

BCA Protein Assay Kit (Thermo Scientific, USA), using bovine serum albumin as the 

standard (0.025–2.0 mg/mL), according to manufacturer’s instructions.  

In general, ATPS with 0.8 g of total weight were prepared, and the chosen extraction 

point for the experiments was 40 wt% IL + 9 wt% K2HPO4/KH2PO4. At this mixture point 

all systems form two-phases that could be easily separated. The IL and the phosphate salt 

aqueous solutions were gravimetrically added and stirred in an orbital rotator overnight. 

Then, the IFNα-2b SIB was weighted and added to the mixture. After 10 min of contact 

in an orbital rotator at room temperature, the ATPS were centrifugated at 5000 g, at room 

temperature during 10 min. The systems were left in equilibrium at the workbench for 

more 10 min to guarantee the equilibration of the coexisting phases at the target 

temperature, and to achieve the complete partitioning of IFNα-2b and the remaining 

 
[𝑆𝑎𝑙𝑡𝐵] =

[𝐼𝐿𝑀]

𝛼
−  

1 −  𝛼

𝛼
[𝐼𝐿𝐵] 

(6) 

 [IL] = √([𝑆𝑎𝑙𝑡𝑇] − [𝑆𝑎𝑙𝑡𝐵])2 + ([𝐼𝐿𝑇] − [𝐼𝐿𝐵])2 (7) 
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contaminant proteins between the two phases. The phase’s separation was then carefully 

performed, using disposable syringes of 1 mL, and both phases were weighted. In some 

systems, there was the formation of an interphase precipitate – three-phase partitioning –

which was isolated and solubilized with 75 µL 50 mM Tris-HCl, during 2 h under soft 

stirring. All the resulting samples (i.e. top phase, bottom phase, and solubilized 

precipitate) were analyzed by SDS-PAGE.    

 

3. Results and Discussion 

3.1. Recombinant interferon alpha-2b production 

3.1.1. Optimization of the experimental conditions for interferon alpha-2b 

production 

 The cellular growth of E. coli BL21 harboring the plasmid pET 3-a_IFNα2b over 

the fermentation time in three different compositions media (LB, SOB and SOC) is shown 

in Figure 9. The experimental data are reported in Appendix A. All culture media are 

suitable for E. coli proliferation, once the three microbial cultures are able to achieve the 

exponential phase, although the growth is less pronounced for LB. Moreover, the highest 

biomass levels (OD600 = 4.13) were obtained using the SOC medium after 9 h of 

fermentation; yet, the production levels were distinct.  

 

 

Figure 9: Growth profile of E. coli BL21 harboring the plasmid pET-3a_IFNα-2b at 

different incubation periods (ranging from 0 to 9 hours) on LB, SOC and SOB media. 

Fermentation was initiated at an OD600 of 0.2 and the cultures were induced with 0.5 mM 

IPTG at an OD600 of approximately 0.6, as indicated by the arrow. 
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 In the earlier steps, using 0.5 mM IPTG and an induction temperature of 37 ºC, 

assays were carried out with the three-culture media, and a subcellular fractionation into 

soluble and insoluble samples was performed. These results are depicted in Figure 10, 

demonstrating that IFNα-2b is not detected in the soluble fraction, which corresponds to 

the supernatant of the centrifuged extract; indeed, as expected [72], the IFNα-2b appeared 

with a Mw between 17-20 kDa exclusively in an insoluble form as inclusion bodies.  

 

 

 

A 

 

 

 

 

B 

 
 

 

 

C 

 
 

Figure 10: SDS-PAGE (left) and Western-Blot (right) analysis of the different samples 

obtained after the subcellular fractionation of E. coli BL21 cultures (37 ºC and 250 rpm) 

in distinct culture media: A – SOB, B – LB, C – SOC, after 0-7 h of induction. 

Fermentation was initiated at an OD600 of 0.2 and the cultures were induced with 0.5 mM 

IPTG at an OD600 of approximately 0.6. Samples were lysed using glass beads and the 

inclusion bodies solubilized in extraction buffer containing 8 M urea, pH 12.5. 

 Following these initial results, where it was verified that IFNα-2b was produced 

exclusively in an insoluble form as IB, experiments were conducted to find out which 
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culture medium and which induction period would be more suitable for maximizing the 

expression of this protein. In these experiments, the typical fermentation features were 

maintained, and the outlines are described in Figure 10 A, B and C, respectively, for the 

media SOB, LB and SOC. After analyzing these media and induction periods ranging 

from 0 to 7 h, the SDS-PAGE and Western Blot analysis of the SIB fraction showed that 

IFNα-2b is expressed in its monomeric form with a Mw ranging between 17 and 20 kDa 

(74). However, a higher band of approximately 35 kDa, which may correspond to dimers, 

was also obtained (Figure 10). The estimation of the quantification of the expression 

levels of the target protein was based on a densitometric analysis of the IFNα-2b bands 

obtained in the Western-Blot analysis. 

 In the LB and SOC media, the highest level of protein production was obtained 

after 3 h of fermentation. The presence of dimers is always noticed over time in the LB 

medium, but on the SOC medium, both the monomeric and dimeric forms of IFNα-2b are 

no longer produced or are at low and non-detectable levels. In the SOB medium (Figure 

10), the highest levels of protein production are recorded at 3 h and 5 h of induction, and 

the dimerization seems to increase over time. However, since the active form of the IFNα-

2b is its monomeric form and that the dimerization is undesirable, the SOB medium and 

3 h of induction were the experimental conditions adopted in the next steps since they 

lead to higher protein yields in a monomeric and active form. However, by decreasing 

both the IPTG concentration and the induction temperature down to 16 °C and increasing 

the fermentation period to 24 h, a portion of the target protein in the soluble fraction was 

recovered in the absence of chaotropic agents, which were necessary to recover/solubilize 

the inclusion bodies. According to Figure 11, using a concentration of 0.1 or 0.5 mM of 

IPTG, the immunologically active IFN was detected in the soluble fraction.  Still, the 

highest production yield was obtained while producing the IFNα-2b in the form of 

inclusion bodies, in the SIB fraction. 
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Figure 11: SDS-PAGE (left) and Western-Blot (right) of the soluble fraction (S) and 

inclusion body fraction (IB) obtained after the subcellular fractionation of E. coli BL21 

cultures, induced with different concentrations of IPTG. Samples were lysed using glass 

beads and the inclusion bodies solubilized in extraction buffer containing 8 M urea, pH 

12.5. Induction temperature was set at 16 ºC. 

 

3.2. Primary recovery of the active form of interferon alpha-2b 

3.2.1. Cellular disruption 

 The disruption of E. coli cells was accomplished using two distinct methods, 

namely by a mechanical procedure using glass beads and by an enzymatic method using 

lysozyme. In general, the results show that both lysis methods allow to recover the IFNα-

2b in an immunologically active form, as shown in Figure 12. However, the presence of 

dimers is more accentuated in the enzymatic method.  

 

 

Figure 12: Western-Blot analysis of the cellular extract of E. coli BL21 cultures (37 ºC 

and 250 rpm) obtained either using 7 cycles of mechanical lysis (M), with glass beads, 

and using the enzymatic lysis (E), with lysozyme. 
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 The secondary structure of the recovered/purified IFNα-2b and its 

antiproliferative activity against MCF-7 cells was then analyzed. The 

recovery/purification protocol used will be discussed in the next sections of this work.  

The secondary structure was evaluated through CD. For comparison purposes, a 

denaturated form of the IFNα-2b, previously submitted to 100 °C (IFNα-2b + 100 °C) 

was included in the analysis. The resulting CD spectra are illustrated in Figure 13, which 

are in agreement with the CD results presented in the literature for commercial IFNα-2b 

(200). Thus, it can be concluded that in the end of the lysis process, IFNα-2b keeps its 

proper structure.   

 

 

Figure 13: Evaluation of the secondary structure of IFNα-2b using Circular Dichroism 

(CD). The IFNα-2b was obtained from E. coli BL21 cells using the enzymatic lysis. 

 

 After cell lysis, the extract was submitted to optimized protocols of recovery and 

purification. One important aspect to mention is that the recovery procedure includes the 

dialysis against decreasing concentrations of a chaotropic agent, in the presence of GSH 

and GSSH, which promote the formation of IFNα-2b disulfide bonds, important for its 

biological activity. As demonstrated in Figure 14, it was observed that the IFNα-2b 

derived from an enzymatic lysis was obtained with high biological activity, thus being 

capable of promoting more than 50 % of cell death of the breast cancer cells, as measured 

by the MTS assay. On the other hand, when the mechanical lysis procedure was used, no 

biological activity was registered. Indeed, this method seems to be more aggressive for 

cells, and as it leads to an efficient lysis by releasing all the intracellular content, it can 

also cause the destruction of the IFNα-2b structure. The enzymatic lysis is a common 
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procedure at the laboratory scale but it has to be taken into account that the introduction 

of an extra contaminant/protein in the lysate can influence further purification assays. 

Even so, in this work, this method was chosen for further assays due to the advantage of 

allowing to obtain the target protein with biological activity. 

 

 

Figure 14: Evaluation of IFNα-2b anti-proliferative activity against MCF-7 cells. 

 

 Taking into account that the ultimate goal of this work is to study alternative 

platforms of purification of IFNα-2b in order to apply them at the industrial level as new 

methodologies to the downstream production of this biopharmaceutical, the enzymatic 

lysis using lysozyme was the chosen method adopted for the next experiments. 

 

3.2.2. Inclusion bodies washing, solubilization and interferon alpha-2b extraction 

 The extract obtained by cellular disruption is a complex matrix that contains 

several contaminants and various host proteins, apart from the target IFNα-2b. Therefore, 

envisaging the IFNα-2b recovery from the insoluble fraction with less contaminants, the 

extract was centrifuged, washed and solubilized at different conditions. In initial steps, 

the optimization aimed the removal of adherent impurities from the inclusion bodies. To 

this end, the cellular extract was centrifuged and resuspended in several washing buffers, 

sometimes two or three consecutive washes were used, according to the description given 

in Table 5. After washing, all the washed fractions were solubilized in the extraction 

buffer (50 mM Tris-HCl pH 12.5, 8 M urea, 1 mM DTT, protease inhibitor cocktail) 
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during 1 h at room temperature, centrifuged, concentrated and analyzed through SDS-

PAGE. 

 

Table 5: Inclusion bodies washing buffers composition used for IFNα-2b recovery. 

Conditions 1st Wash 2nd Wash 3rd Wash 

1 
50 mM Tris pH 8;  

1% deoxycholic acid 

50 mM Tris pH 8; 

1% deoxycholic acid 
̶ 

2 
50 mM Tris pH 8;  

1% deoxycholic acid 

50 mM Tris pH 8; 

1% deoxycholic acid 
Mili-Q H2O 

3 
50 mM Tris pH 8;  

Triton X-100 0.5 % 
̶ ̶ 

4 
50 mM Tris pH 8;  

Triton X-100 1 % 
̶ ̶ 

5 50 mM Tris pH 8; 2 M urea ̶ ̶ 

6 50 mM Tris pH 8; 6 M urea ̶ ̶ 

7 
50 mM Tris pH 8;  

Triton X-100 1 % 

50 mM Tris pH 8;  

8 M urea 
̶ 

8 
50 mM Tris pH 8;  

Triton X-100 1 % 

50 mM Tris pH 8;  

4 M urea 
̶ 

 

 The results obtained from each washing condition are depicted in Figure 15. The 

1% deoxycholic acid is able to remove a fraction of the high Mw contaminants in the first 

washing step (condition 1 and 2, 1st wash), but the second wash does not remove the 

remaining ones (condition 2), and the Mili-Q H2O is unable to remove any contaminant. 

The condition 2 was previously studied by Srivastava and co-workers (74) who described 

it as an effective washing method, resulting in approximately 80 % of purity prior to 

chromatographic purification. However, their results were not reproducible in this work. 

The wash with Triton X-100 0.5 % (condition 3) seems to be more efficient than the 1% 

deoxycholic acid approach, and an increase to 1 % in Triton X-100 concentration 

enhanced the recovery (condition 4, 1st wash). Triton X-100 is a non-ionic surfactant that 

promotes the solubility and the disaggregation of proteins and it has already been applied 

in the optimization of IFNα-2b recovery (11). Moreover, the use of urea at pH 8.0 has 

also being reported for the removal of some contaminants (11). However, since part of 
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the target protein is solubilized either with 6 and 8 M urea, thereby leading to losses in 

the washing step (condition 6, 1st wash and condition 7, 2nd wash), we chose to reduce the 

urea concentration to 4 M.  

 

 

Figure 15: SDS-PAGE analysis of the different washing buffers used for the IFNα-2b 

recovery. Each condition is highlighted at a different color. Each lane is identified with 

the numbers 1, 2 and/or 3 corresponding to the 1st, 2nd and 3rd wash, respectively, and 

with the SIB abbreviation corresponding to the solubilized inclusion body fraction. 

 

 The experimental condition that led to the best results in terms of higher IFNα-2b 

extraction yields was obtained in a less contaminated sample, obtained from two 

successive washes, first with Triton X-100 1 % and then with 4 M urea, both in Tris 50 

mM pH 8 (condition 8). The results obtained are shown in Figure 16. 

 

 

Figure 16: SDS-PAGE analysis of the inclusion bodies’ washes using first Triton X-100 

1 % (lane 1), and then 4 M urea (lane 2), both in 50 mM Tris, at pH 8. 
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 The next step aimed to evaluate different extraction buffers concerning their 

ability to extract the target protein, as summarized in Table 6. After solubilization, the 

samples were centrifuged to separate the SIB fraction from the remaining cell debris and 

non-solubilized proteins. Both samples were analyzed through SDS-PAGE and Western-

-Blot. 

 

Table 6: Extraction buffers compositions and respective time used for IFNα-2b 

solubilization, at 25 °C. 

Conditions Time (h) Extraction buffer composition 

1 1 8 M Urea, pH 7.4, 20 mM DTT 

2 1 2 M Urea, pH 12.5, 20 mM DTT 

3 16 8 M Urea, pH 7.4, 1 mM DTT 

4 1 8 M Urea, pH 7.4, 1 mM DTT 

5 1 4 M Urea, pH 12.5, 1 mM DTT 

6 1 2 M Urea, pH 12.5, 1 mM DTT 

7 1 6 M GdnHCl, pH 7.5, 20 mM DTT 

8 1 6 M Urea, pH 12.5, 1 mM DTT 

9 1 8 M Urea, pH 12.5, 1 mM DTT 

 

 The SDS-PAGE results in Figure 17 show that despite 8 M urea was included in 

the solubilization buffers of conditions 1, 3 and 4, the IFNα-2b was poorly extracted and 

detected only in the non-soluble pellet. However, using the 2 M urea buffer at pH 12.5, 

with 20 mM DTT (condition 2), it was possible to solubilize a part of the target protein 

from the inclusion body fraction. This led us to infer that a more alkaline pH is important 

to solubilize IFNα-2b, in addition to the presence of a chaotropic agent. Moreover, the 

incubation period does not seem to enhance the solubilization (the SIB lanes of condition 

3 and 4 are similar); therefore, a solubilization time of 1 h was maintained in the following 

experiments.  
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Figure 17: SDS-PAGE analysis of the conditions 1-4 applied to extract IFNα-2b from 

the IB fraction. Both soluble and insoluble fractions were analyzed and are represented 

as SIB and P, respectively. 

 

 According to the results depicted in Figure 18, the target protein appears in two 

soluble fractions, conditions 5 and 6, meaning that 2 M of urea buffer at pH 12.5 is capable 

to solubilize the IFNα-2b independently of the DTT concentration. However, the 

importance of DTT should not be depreciated. DTT is a reducing agent that in denatured 

samples helps to avoid the formation of erroneous disulfide bonds, being therefore 

important to maintain the protein biological activity. Moreover, the buffer containing 4 

M urea, pH 12.5 with 1 mM DTT, is also able to solubilize IFNα-2b. In the condition 7, 

wrapped bands are seen, which are related with the precipitation of GdnHCl in the 

presence of SDS, hampering electrophoresis. Although GdnHCl has been described as a 

good solubilizing agent of IFNα-2b’ inclusion bodies by Valente and co-workers (11), a 

poor solubilization was observed in this work.  
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Figure 18: SDS-PAGE analysis of the conditions 1 and 4-7 applied to extract IFNα-2b 

from the insoluble fraction. Both soluble and insoluble fractions were analyzed and are 

represented as SIB and P, respectively. 

 

 In the following assays, the urea concentration was increased, while the pH 12.5 

and 1 mM of DTT were maintained. The results obtained are illustrated in Figure 19, 

demonstrating that the best result was obtained using 8 M urea, pH 12.5 (SIB, condition 

9). However, the IFNα-2b was also successfully solubilized with 4 M and 6 M urea (SIB 

conditions 5 and 6, respectively). The precipitation of the GdnHCl samples were 

attempted with ethanol and ressuspended in 50 mM Tris, pH 8, before injection in the 

SDS-PAGE gel, but since no protein was detected in both fractions, we may conclude 

that the precipitation was not effective. These results were further confirmed through the 

repetition of these assays. 
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Figure 19: SDS-PAGE analysis of the conditions 5 and 7-9 applied to extract IFNα-2b 

from the insoluble fraction. Both soluble and insoluble fractions were analyzed and are 

represented as SIB and P, respectively. 

 

 In addition to RT (≈ 25 ºC), other solubilization temperatures, namely 37 and 50 

°C, were also tested. Nevertheless, an increase in the solubilization temperature does not 

favor the extraction of IFNα-2b, as shown in Figure 20. Therefore, the solubilization 

temperature adopted was kept at 25 °C throughout this work. 

 

 

Figure 20: SDS-PAGE analysis of the soluble (SIB) and insoluble (P) fractions of the 

IFNα-2b extracted with a 50 mM Tris buffer containing 8 M urea, pH 12.5 and 1 mM 

DTT, at 25, 37 and 50 ˚C. 
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 After the optimization of the recovery step, the IFNα-2b was refolded using 

dialysis against decreasing concentrations of urea, and reduced and oxidized glutathiones, 

a redox system that enhances the catalysis of the IFNα-2b disulfide bond formation. The 

final optimized protocol adopted for the primary recovery of IFNα-2b is presented in 

Figure 21. 

 

 

Figure 21: Optimized protocol for IFNα-2b recovery from E. coli BL21.  

 

3.3. Interferon alpha-2b purification  

3.3.1. Chromatographic purification of interferon alpha-2b 

 Envisaging the separation of IFNα-2b from the remaining host proteins present in 

the crude SIB, conventional chromatographic matrices, such as Arginine and a CIM 

DEAE monolith, were used. A Hi-Trap Desalting matrix was also used as an intermediate 

step prior to purification. The flow-rates, the protein mass of SIB and the elution methods 

were optimized to improve capacity, recovery, and resolution of the chromatographic 

separation.  

 The first strategy explored for IFNα-2b purification was arginine affinity 

chromatography; this technique has been extensively used in the purification of 
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biomolecules from biological matrixes (201), and therefore can be an interesting 

alternative for IFNα-2b purification. In the SIB fraction (pH 12.5), the IFNα-2b is 

negatively charged (pI = 5.9 (74)), while arginine has a positive charge. Therefore, non-

covalent electrostatic interactions between the chromatographic ligands and the target 

molecule are expected to exist. As the sample passes through the column, some proteins 

will be retained depending on their interactions with arginine. There are however several 

proteins in the medium and their type of interactions are not fully known. Size, charge 

and hydrophobicity between the column and ligands are some factors that additional 

affect affinity (202). Ideally, all the target protein will bind to the matrix in a first step 

and the elution occurs at a certain ionic strength that disrupts non-covalent interactions 

(201, 202). The arginine column was initially loaded with 0.5 mL of SIB fraction, at 1 

mL/min. After elution of the unretained species using 50 mM Tris buffer, pH 8, the NaCl 

concentration was increased in a stepwise mode up to 0.5 M, and then to 2 M, according 

to that described in Figure 22.  

 

 

 

Figure 22: Chromatographic profile of the SIB fraction by arginine-Sepharose 

chromatography 1. 0.5 mL of the crude SIB fraction was injected and the elution was 

performed at 1 mL/min by increasing NaCl concentration from 0 M to 0.5 M, and then to 

2 M in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected fractions 

of each step are represented as I, II and III (A). The SDS-PAGE and Western-Blot results 

of the collected fractions are represented in B. 
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 According to the chromatogram depicted in Figure 22, there is a considerable 

amount of proteins eluted within the binding step, while the increase of the ionic strength 

up to 0.5 M NaCl promotes the elution of the proteins bounded to the matrix; the final 

elution step with 2 M NaCl ensures that the matrix capacity is not reduced in consecutive 

chromatographic assays - “regeneration step”. Each of these chromatographic peaks were 

separately collected, concentrated, and analyzed by SDS-PAGE and Western-Blot. 

Despite some contaminants that are eluted in the binding step, a considerable amount of 

the target protein was also eluted, leading to significant losses in the target protein 

recovery yield. In what concerns the fraction eluted with 2 M NaCl, no proteins were 

visualized in the SDS-PAGE. As the matrix binding capacity may have been exceeded, 

in an attempt to improve the amount of IFNα-2b that bind to the matrix, a new assay was 

performed (A2), where a smaller amount of sample (100 µL) was loaded. The stepwise 

gradients employed were the same as in assay 1: 50 mM Tris buffer, pH 8, followed by 

500 mM and 2 M NaCl, in Tris 50 mM pH 8. As expected, the intensity of the peaks 

(Abs280) decreased, that is related with the smaller volume injected. According to Figure 

23 B, less proteins were eluted in the binding step, but the target protein is eluting in equal 

amounts with 50 mM Tris and 500 mM NaCl (I and II), meaning that the problem is, at 

least, not exclusively related with the matrix capacity nor with the injected volume. 
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Figure 23: Chromatographic profile of the SIB fraction by arginine-Sepharose 

chromatography 2. 0.1 mL of the crude SIB fraction was injected and the elution was 

performed at 1 mL/min by increasing NaCl concentration from 0 M to 0.5 M, and then to 

2 M in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected fractions 

of each step are represented as I, II and III (A). The SDS-PAGE results of the collected 

fractions are represented in B. 

 

 Since the pKa of arginine is 12.48 (203), and due to the high alkaline pH-

microenvironment surrounding the arginine ligands, in the previous assay there is the 

possibility of having the uncharged form of arginine, thereby not establishing electrostatic 

interactions with IFN. An additional experiment consisting in the injection of a sample 

for which HCl was added to a pH below 10 was carried out, mainly to ensure that the 

arginine side chain is positively charged and thereby available for interacting with the 

negatively charged target protein. At this pH, the target protein (pI = 5.9 (74)) is 

negatively charged while arginine should be positively charged. In a third assay (A3), 100 

µL were injected using the same chromatographic buffer compositions and stepwise 

gradients. However, the A3 chromatogram illustrated in Figure 24 is similar to the 

chromatogram of A2 shown in Figure 23. Again, the IFNα-2b equally eluted with 50 mM 

Tris and with 500 mM NaCl, meaning that it is not binding to the column, and the problem 

is not related with the pH of the initial sample. However, is worthwhile to notice that in 

step 2 the high Mw contaminant proteins were also eluted in high quantities. 
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Figure 24: Chromatographic profile of SIB fraction by arginine-Sepharose 

chromatography 3. 0.1 mL of the crude SIB fraction was injected and the elution was 

performed at 1 mL/min by increasing NaCl concentration from 0 M to 0.5 M, and then to 

2 M in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected fractions 

of each step are represented as I, II and III (A). The SDS-PAGE results of the collected 

fractions are represented in B. 

 

 Motivated by the idea of improving the recovery yield, additional experiments 

were performed maintaining the stepwise gradients and buffers compositions. The urea 

of the extraction buffer may be interfering in binding since it causes a decrease in the 

conductivity. Thus, two distinct assays were performed with 200 µL of sample, either 

solubilized at pH 12.5 with 4 M urea or in the absence of urea at pH 12.5. However, the 

chromatographic profiles were similar to the ones previously obtained, and lower 

extraction efficiencies of the target protein were obtained using concentrations of urea 

lower than 8 M, thereby compromising the initial recovery yield. Moreover, despite the 

changes in the solubilization buffer compositions, the IFN also eluted almost equally in 

the binding and in the first elution steps. 

 Despite the optimization efforts, the arginine Sepharose matrix did not provide the 

desired selectivity to separate the IFN from the host contaminants. Moreover, the 

recovery yield was always low. Therefore, alternative strategies based on ion-exchange 

chromatography were adopted for IFNα-2b purification, namely by the use of a CIM 
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DEAE monolith. However, prior the application of any of these chromatographic 

separations, a method based on a HiTrap Desalting column was employed, envisaging the 

removal of urea from the sample and, simultaneously, to proceed to the buffer exchange 

to Tris buffer at pH 8.  A 1 mL sample was injected at a flow rate of 0.3 mL/min, while 

an isocratic elution was performed with Tris 50 mM pH 8. According to the 

chromatograms shown in Figure 25, two major peaks were obtained.  

 

 

Figure 25: Chromatographic profile of the SIB fraction obtained with the HiTrap 

Desalting column. 1 mL of the crude SIB fraction was injected and the elution was 

performed with 50 mM Tris, at pH 8. The two maximums of absorbance are highlighted 

as peak 1 and peak 2. 

  

 The majority of the proteins present in the SIB fraction were desalted and eluted 

in peak 1, resulting in a small decrease of the contaminant proteins or/and an enhancement 

of the IFNα-2b concentration (Figure 26). Also, it was possible to observe that the protein 

target was obtained in a high purity degree in peak 2, although with a low recovery yield. 

The IFNα-2b present in peak 1 was successfully collected in an urea-free buffer composed 

of 50 mM Tris pH 8, and therefore was considered for further chromatographic studies. 
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Figure 26: SDS-PAGE analysis of different eluted fractions with 50 mM Tris pH 8, 

resulting from the HiTrap Desalting chromatography. The lanes correspond to: 1) initial 

sample, 2) peak 1, 3) peak 2. 

 

 In order to evaluate if the size exclusion separation could be more effective with 

improved IFN-α2b recovery yield, an assay where the sample was loaded at 0.2 mL/min 

was carried out. However, this flow-rate was too low and it did not work as expected. 

Thus, the conditions of the first assay at 0.3 mL/min were the protein is desalted were 

considered satisfactory and further applied to remove urea in subsequent studies. 

 The fractions collected from the HiTrap Desalting column were concentrated and 

1.0 mL was injected in CIM DEAE monolith. The flow-rate was 1 mL/min and the 

chromatographic buffers used were 50 mM Tris pH 8, 1 M and 2 M NaCl. The first assay 

conducted in the CIM monolith consisted in the injection of a 0.5 mL SIB fraction at 1.0 

mL/min in 20 mM NaCl, followed by two stepwise gradients at 1 M and 2 M NaCl in 

Tris 50 mM, pH 8. According to Figure 27, it was found that all the target protein bind to 

the monolith, being eluted at 1 M NaCl, as well as the majority of the remaining 

contaminants present in the initial sample.  
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Figure 27: Chromatographic profile of the SIB fraction obtained from the CIM DEAE 

monolith chromatography 1. 0.5 mL of the crude SIB fraction was injected and the elution 

was performed at 1 mL/min by increasing NaCl concentration from 20 mM to 1 M, and 

then to 2 M in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected 

fraction is represented as II (A). The SDS-PAGE results of the II fraction are represented 

in B. 

 

 After the previous optimization assays, the following set of experiments were 

designed to evaluate the maximum of the NaCl concentration employed in the binding 

step where only the protein contaminants could be eluted. In assays 2, 3 and 4 the sample 

load and flow rate were maintained, while new stepwise gradients were studied: 200 mM, 

1 M, and 2 M NaCl; 100 mM, 1 M and 2 M NaCl, and 60 mM, 1 M and 2 M NaCl, 

respectively. The chromatograms referring to each assay are illustrated in Figures 28-30. 

Assays 1 and 2 have different chromatographic profiles; in assay 2 three different peaks 

are seen. Furthermore, with 200 mM NaCl, a considerable amount of the IFN-α2b does 

not bind to the matrix, thus leading to low recovery yields (Figure 28). 
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Figure 28: Chromatographic profile of the SIB fraction obtained from the CIM DEAE 

monolith chromatography 2. 0.5 mL of the crude SIB fraction was injected and the elution 

was performed at 1 mL/min by increasing NaCl concentration from 200 mM to 1 M, and 

then to 2 M in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected 

fractions are represented as I, II and III (A). The SDS-PAGE results of the collected 

fractions are represented in B. 

 

 In assay 3, the employment of 100 mM NaCl allowed to increase the recovery, 

but a portion of the target was still detected in the SDS-PAGE, as illustrated in Figure 29. 
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Figure 29: Chromatographic profile of the SIB fraction obtained from the CIM DEAE 

monolith chromatography 3. 0.5 mL of the crude SIB fraction was injected and the elution 

was performed at 1 mL/min by increasing NaCl concentration from 100 mM to 1 M, and 

then to 2 M in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected 

fractions are represented as I and II (A). The SDS-PAGE results of the collected fractions 

are represented in B. 

 

 Comparing the SDS-PAGE results of Figures 29 and 30 it is seen that a decrease 

of the ionic strength in the binding step, from 100 – 60 mM, allows to enhance the 

recovery of IFNα-2b, since no proteins were detected in the first eluted fraction. 
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Figure 30: Chromatographic profile of the SIB fraction obtained from the CIM DEAE 

monolith chromatography 4. 0.5 mL of the crude SIB fraction was injected and the elution 

was performed at 1 mL/min by increasing NaCl concentration from 60 mM to 1 M, and 

then to 2 M in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected 

fractions are represented as I and II (A). The SDS-PAGE results of the collected fractions 

are represented in B. 

 

 To guarantee the complete binding of the target to the column, in a subsequent 

assay, the NaCl concentration was decreased to 50 mM NaCl in the binding step, followed 

by two stepwise gradients at 150 mM NaCl and 2 M NaCl, as demonstrated in Figure 31. 

As expected, no IFNα-2b was eluted in the binding step (I). On the other hand, the fraction 

obtained with 150 mM NaCl seems to contain more than one protein and was treated as 

two independent samples - II and III. The majority of IFN-α2b is present in the first peak 

obtained with 150 mM NaCl in a more purified degree, although contaminants with high 

Mw were still in this fraction. Part of the target is still observable in the last step (IV), 

meaning that it remains attached to the column until a higher ionic strength is applied. 
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Figure 31: Chromatographic profile of the SIB fraction obtained from the CIM DEAE 

monolith chromatography 5. 0.5 mL of the crude SIB fraction was injected and the elution 

was performed at 1 mL/min by increasing NaCl concentration from 50 mM to 150 mM, 

and then to 2 M in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected 

fractions are represented as I, II, III and IV (A). The SDS-PAGE results of the collected 

fractions are represented in B. 

 

 After the optimization of the NaCl concentration in the binding step, the next step 

aimed the optimization of the elution steps to obtain IFNα-2b in a high-purity degree. 

Therefore, an additional chromatographic experiment was performed, where the NaCl 

concentration in the binding buffer was maintained at 50 mM, followed by an increasing 

linear gradient from 50 to 150 mM NaCl during 10 min, and a final elution step with 1 M 

NaCl. The results obtained are depicted in Figure 32. Three different samples were 

defined and collected separately (II, III, IV). Although there is some loss of the target 

protein in the further steps, it is lower than in previous assays, and the IFN-α2b was 

recovered in the linear gradient with high purity, as demonstrated in Figure 32 B (II). 
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Figure 32: Chromatographic profile of the SIB fraction obtained from CIM DEAE 

monolith chromatography 6. 0.5 mL of the crude SIB fraction was injected and the elution 

was performed at 1 mL/min by increasing NaCl concentration in a stepwise gradient from 

50 mM to 200 mM, during 10 min. Subsequently, the concentration was increased to 1 M 

in 50 mM Tris buffer (pH 8), as represented by the arrows. The collected fractions are 

represented as II, III, IV and V (A). The SDS-PAGE results of the collected fractions are 

represented in B. 

 

 The degree of purity obtained with the CIM monolith seems to be similar to the 

one reported by other authors (Please see Table 4 for a complete review). Therefore, it 

can be considered that we have developed an effective chromatographic strategy for the 

IFNα-2b purification. However, an important drawback still remains - the low recovery 

yield of IFNα-2b. It is known that in order to make the production of IFNα-2b cost-

effective, so that it can be easily applied at the industrial level, the outcome amount should 

provide higher profits than the expenses related with the process. Indeed, the downstream 

processing of recombinant proteins is the major bottleneck associated to their high cost 

(10). The removal of different impurities usually requires different unit operations and 

although other options are starting to being considered, chromatography is still mastering 

the downstream stage due to its highly selective character (20). In this work, two 



69 

 

chromatographic steps were used, the HiTrap Desalting column and the CIM monolith. 

Although these matrixes are well known, and the IFNα-2b was obtained with a high purity 

degree, the chromatography application at higher scales is expensive, and additionally 

comprises the need of batch operation and pressure drops (140). 

 In order to overcome the shortcomings of chromatographic techniques, ATPS 

systems have been investigated as alternative methods for the purification of a wide 

variety of biomolecules (141). Comparing with the currently established packed-bed 

chromatography, ATPS have been shown to display good performance and have 

important economic and technological advantages, such as simplicity, higher 

biocompatibility and an easy scale-up (143). Taking this into account, in the next chapter, 

the use of IL-based ATPS for the purification of IFNα-2b will be presented and discussed.    

 

3.3.2. Non-chromatographic strategies for interferon alpha-2b purification using 

ionic-liquid-based aqueous two-phase systems 

3.3.2.1. Synthesis and characterization of ionic liquids 

 The ILs synthesized in this work were obtained via neutralization of the base with 

the corresponding acid. The 1H and 13C NMR spectra were recorded to confirm the 

formation of the target ILs, and are presented in Appendix B. Their appearance at room 

temperature was appraised, and their water content determined. The description of the 

synthesized ILs, chemical structures, 1H and 13C NMR data, water content, and their 

appearance at room temperature are given in Table 7. 
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Table 7: Appearance, water content, chemical structure, and 1H, 13C RMN characterization of the synthetized ILs.  

IL 

Appearance 

at room 

temperature 

Water 

content 

(wt%) 

1H NMR (D2O, 300 MHz, 

[ppm]) 

13C NMR 

(D2O, 75.47 

MHz, [ppm]) 

Chemical structure 

[N1111][Ac] White liquid 2.02 
3.192 (s, 12H, NCH3), 1.917 (s, 

3H, CH3-CO2) 

181.38; 55.15; 

23.20 

 

[N4444][Ac] 

Yellow 

viscous 

liquid 

3.54 

3.205 (t, 8H, NCH2CH2CH2CH3), 

1.917 (s, 3H, CH3-CO2), 1.659 (p, 

8H, NCH2CH2CH2CH3), 1.369 (h, 

8H, NCH2CH2CH2CH3), 0.952 (t, 

12H, NCH2CH2CH2CH3) 

181.34; 58.12; 

23.22; 23.06; 

19.09; 12.75 
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[N4444][MES] White solid 4.17 

3.763 (t, 4H, O-CH2CH2-N), 

3.318-3.040 (m, 10H, 

NCH2CH2CH2CH3, N-CH2CH2-

SO3), 2.832 (p, 2H, N-CH2CH2-

SO3), 2.607 (t, 4H, O-CH2CH2-N), 

1.659 (p, 8H, NCH2CH2CH2CH3), 

1.369 (h, 8H, NCH2CH2CH2CH3), 

0.954 (t, 12H, NCH2CH2CH2CH3) 

66.03; 58.09; 

52.51; 52.20; 

47.25; 23.09; 

19.10; 12.77 

 

[N1111][Arg] 

Yellow 

viscous 

liquid 

2.19 

3.18-2.93 (d, 15H, N-CH3 e NH-

CH2CH2CH2CH-CO2), 1.477 (s, 

4H, NH-CH2CH2CH2CH-CO2) 

183.21; 

157.47; 55.53; 

55.14; 40.94; 

31.69; 24.53 
 

[N4444][Arg] Yellow solid 3.11 

3.316-3.092 (m, 11H, NH-

CH2CH2CH2CH-CO2 and 

NCH2CH2CH2CH3), 1.75-1.52 (m, 

12H, NH-CH2CH2CH2CH-CO2 e 

NCH2CH2CH2CH3), 1.367 (h, 8H, 

NCH2CH2CH2CH3), 0.954 (t, 

12H, NCH2CH2CH2CH3 

183.21; 

157.47; 58.09; 

55.53; 40.95; 

31.69; 24.53; 

23.09; 19.10; 

12.77 
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[N1111][MES] White solid 3.08 

3.766 (t, 4H, O-CH2CH2-N), 

3.193 (s, 12H, NCH3), 3.140 (m, 

2H, N-CH2CH2-SO3), 2.832 (m, 

2H, N-CH2CH2-SO3), 2.607 (t, 

4H, O-CH2CH2-N) 

66.03; 55.16; 

52.50; 52.19; 

47.25 

 

[P4444][MES] White solid 2.05 

3.765 (t, 4H, O-CH2CH2-N), 

3.134 (t, 2H, N-CH2CH2-SO3), 

2.837 (t, 2H, N-CH2CH2-SO3), 

2.607 (t, 4H, O-CH2CH2-N), 

2.270-2.082 (m, 8H, 

PCH2CH2CH2CH3), 1.639-1.400 

(m, 16H, PCH2CH2CH2CH3), 

0.933 (t, 12H, PCH2CH2CH2CH3) 

66.03; 52.50; 

52.24; 47.27; 

23.35; 23.14; 

22.68; 22.62; 

17.92; 17.25; 

12.49 

 

[P4444][Ac] White solid 2.68 

2.270-2.082 (m, 8H, 

PCH2CH2CH2CH3), 1.918 (s, 3H, 

CH3-CO2), 1.639-1.400 (m, 16H, 

PCH2CH2CH2CH3), 0.934 (t, 12H, 

PCH2CH2CH2CH3) 

181.32; 23.34; 

23.18; 23.14; 

22.68; 22.62; 

17.89; 17.26; 

12.48  
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[P4444][Arg] Yellow solid 2.40 

3.297-3.137 (m, 3H, NH-

CH2CH2CH2CH-CO2), 2.270-

2.082 (m, 8H, PCH2CH2CH2CH3), 

1.882-1.745 (m, 4H, NH-

CH2CH2CH2CH-CO2), 1.726-

1.335 (m, 16H, 

PCH2CH2CH2CH3), 0.932 (t, 12H, 

PCH2CH2CH2CH3) 

183.37, 

157.32, 55.68, 

41.00, 31.63, 

25.20, 23.34, 

22.74, 17.91, 

17.25, 12.736, 

12.50 
 

[C4mim][Ac] 
Yellow 

liquid 
1.27 

8.731 (s, 1H, N-CH-N), 7.493 (t, 

1H, N-CH-CH-N), 7.443 (t, 1H, 

N-CH-CH-N), 4.210 (t, 2H, 

CH3CH2CH2CH2-N), 3.903 (s, 

3H, N-CH3), 1.925 (s, 3H, CH3-

CO2), 1.863 (quint, 2H, 

CH3CH2CH2CH2-N), 1.332 (sext, 

2H, CH3CH2CH2CH2-N), 0.936 (t, 

3H, CH3CH2CH2CH2-N) 

181.18; 

135.76; 

123.39; 

122.12; 49.36; 

45.49; 31.18; 

23.17; 18.65; 

12.53 
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[C4mim][MES] White solid 4.22 

7.496 (t, 1H, N-CH-CH-N), 7.435 

(t, 1H, N-CH-CH-N), 4.380 - 

4.480 (quad, 4H, O-CH2CH2-N), 

4.241 (quad, 2H, 

CH3CH2CH2CH2-N), 3.978 (s, 

2H, N-CH2CH2-SO3), 3.902 (s, 

3H, N-CH3), 3.774 (t, 2H, N-

CH2CH2-SO3), 3.09-3.19 (m, 4H, 

O-CH2CH2-N), 2.79-2.89 (m, 2H, 

CH3CH2CH2CH2-N), 2.614 (t, 2H, 

CH3CH2CH2CH2-N), 1.512-1.405 

(m, 3H, CH3CH2CH2CH2-N) 

123.32; 

121.74; 

121.20; 66.01; 

52.52; 52.27; 

47.26; 45.06; 

44.66; 36.41; 

35.46; 15.03; 

14.38  

[C4mim][Arg] White solid 1.99 

7.488 (d, 1H, N-CH-CH-N), 7.427 

(d, 1H, N-CH-CH-N), 4.232 

(quad, 2H, CH3CH2CH2CH2-N), 

3.896 (s, 3H, N-CH3), 3.441-3.145 

(m, 3H, NH-CH2CH2CH2CH-

CO2), 1.791-1.569 (m, 2H, 

CH3CH2CH2CH2-N), 1.505 (t, 3H, 

CH3CH2CH2CH2-N) 

181.19; 

180.95; 

162.59; 

156.69; 67.33; 

56.18; 55.52; 

55.20; 53.78; 

40.77; 30.63; 

30.06; 24.24 
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[Ch][MES] Yellow solid 4.89 

4.067 (m, 2H, OH-CH2CH2-N), 

3.778 (t, 4H, O-CH2CH2-N), 

3.524 (m, 2H, OH-CH2CH2-N), 

3.207 (s, 9H, N-CH3), 3.152 (m, 

2H, N-CH2CH2-SO3), 2.870 (m, 

2H, N-CH2CH2-SO3), 2.651 (t, 

4H, O-CH2CH2-N) 

67.35; 65.90; 

55.55; 53.79; 

52.49; 52.18; 

47.11; 

 

[Ch][Arg] White solid 5.09 

4.067 (m, 2H, O-CH2CH2-N), 

3.522 (quint, 2H, O-CH2CH2-N), 

3.405-3.353 (m, 3H, NH-

CH2CH2CH2CH-CO2), 3.208 (s, 

9H, N-CH3), 1.812-1.543 (m, 4H, 

NH-CH2CH2CH2CH-CO2) 

181.19; 

162.59; 67.33, 

56.18; 55.52; 

55.20; 53.78; 

40.77; 30.64; 

24.25  

[Ch][Ac] Brown liquid 2.38 

3.903 (m, 2H, OH-CH2CH2-N), 

3.359 (m, 2H, OH-CH2CH2-N), 

3.045 (s, 9H, N-CH3), 1.825 (s, 

3H, CH3-CO2) 

179.51; 67.38; 

55.69; 53.77; 

22.32 
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3.3.2.2. Phase diagrams of aqueous two-phase systems 

 After confirming the chemical structures and purity of all ILs, they were further 

tested for their water miscibility at 25 °C. [N4444][Arg] shown to be insoluble in water and 

therefore is not able to form an ATPS, while [C4mim][Ac] forms a solid-liquid system in 

the presence of aqueous solutions of K2HPO4/KH2PO4 (at 14 wt%). The other synthesized 

ILs are water-soluble at 25 °C, and were used thereafter to explore their suitability 

towards the formation of ATPS with K2HPO4/KH2PO4 at pH 8.2. It was observed that the 

ILs [N4444][MES], [P4444][MES], [C4mim][MES], [N4444][Ac], [N1111][Ac], [P4444][Ac] 

and [P4444][Arg] were able to form ATPS with K2HPO4/KH2PO4 + H2O (Please see Table 

7); the respective phase diagrams were determined and are shown in Figures 33 and 34. 

The experimental data is shown in both percentage weight fraction and in molality units. 

The molality units are given since they allow a better understanding of the impact of the 

ILs nature on the phase diagrams behavior, avoiding differences that could result from 

different Mws. The detailed experimental data corresponding to the determined ternary 

phase diagrams are presented in Appendix C. In all the studied ATPS, the top phase 

corresponds to the IL-rich aqueous phase while the bottom phase is mainly composed of 

salt and water. The biphasic or two-phase regime is localized above the solubility curve; 

the larger this region, the higher is the ability of the IL to induce liquid-liquid demixing 

with K2HPO4/KH2PO4. 

 

Table 8: Identification of the systems able ( ) and not able ( ) to form aqueous two-

phase systems with aqueous solutions of K2HPO4/KH2PO4 at pH 8.2. 

 
N1111 N4444 P4444 C4mim Ch 

Ac MES Arg Ac MES Arg Ac MES Arg Ac MES Arg Ac MES Arg 

K2HPO4/

KH2PO4                

   

 The formation of IL-based ATPS usually occurs due to a salting-out effect exerted 

by the inorganic salt over the IL in aqueous media. This salting-out effect is mainly 

explained by the stronger hydration capacity of the salt ions when compared with the IL 

ions, resulting thus in the exclusion of the IL to a different phase and in the formation of 

two liquid phases in equilibrium. In this phenomenon, the charge of the anions in the salt 

mixture (HPO4
2-/H2PO4

-) plays a major role (204). Despite the ionic hydration, ionic 

speciation in aqueous media has been evidenced by Kurnia et al. (205) as an important 
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factor in IL-based ATPS formation, being in some cases responsible for deviation from 

the Hofmeister series (206). 

 

 

Figure 33: Ternary phase diagrams for systems composed of IL + K2HPO4/KH2PO4 + 

H2O, in wt%. [N4444][Ac] ( ), [P4444][Ac] ( ), [N1111][Ac] ( ), [N4444][MES] ( ), 

[P4444][MES] ( ), [C4mim][MES] ( ), and [P4444][Arg] ( ), with the corresponding binodal 

fitting using Equation 2.   

 

 The phase-forming ability of each ATPS depends on the competing interactions 

occurring between the solutes (IL and salt ions) and water or/and between the phase-

forming components. Moreover, it is also influenced by the temperature, pH and ionic 

strength of the aqueous medium (16). According the Figure 34, the ability of the 

investigated ILs to form ATPS in presence of a fixed amount of K2HPO4/KH2PO4, e.g. at 

0.4 mol.kg-1, increases in the following order: [N1111][Ac] < [C4mim][MES] < [N4444][Ac] 

≈ [P4444][Ac] < [N4444][MES] ≈ [P4444][MES] < [P4444][Arg]. 
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Figure 34: Ternary phase diagrams for ATPS composed of distinct ILs + 

K2HPO4/KH2PO4 + H2O, in mol.kg-1. [N4444][Ac] ( ), [P4444][Ac] ( ), [N1111][Ac] ( ), 

[N4444][MES] ( ), [P4444][MES] ( ), [C4mim][MES] ( ) and [P4444][Arg] ( ).   

 

 The first diagram corresponding to the system with [N1111][Ac] is located more 

far from the axis, while the one comprising [P4444][Arg] is the closest. The closer to the 

axis is located the binodal curve, the easier it is to separate the IL from the aqueous 

solution, meaning that the system formed by [P4444][Arg] requires lower amounts of salt 

or IL to create ATPS in aqueous medium.  

 For acetate-based ILs, the capability to induce ATPS follows the order: 

[N1111][Ac] <  [N4444][Ac] ≈ [P4444][Ac], and for the MES-based ILs the trend is according 

to: [C4mim][MES] < [N4444][MES] ≈ [P4444][MES]. Tetrabutylammonium and 

tetrabutylphosphonium cations have more ability to form ATPS with the phosphate buffer 

used. These ILs present distinct atom cores, [N4444]
+ and [P4444]

+, yet both composed of 

four alkyl chains of similar size which assign them low affinity for water. Phosphonium-

based ILs were described by Neves et al. (164) as the most effective ILs in ATPS 

formation, independently of the salt employed and of the pH of the aqueous media. In this 

work, the effect of the nitrogen and the phosphorous atoms seems to be negligible. An 

increase in the alkyl chains, from [N1111]
+ to [N4444]

+, or the use of ILs with an 

imidazolium leads to a decrease on the ability for the formation of ATPS, as typically 

described in the literature (164). 

0

1

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

[I
L

]/
(m

o
l.

k
g

-1
)

[K2HPO4/KH2PO4]/(mol.kg-1)



79 

 

 Regarding the anion effect, the ability to form ATPS follows the trend: [Ac]- < 

[MES]- < [Arg]-. As described in the literature, the capacity of ILs anions for accepting 

or receiving protons is connected with the ATPS formation (163, 204), as verified in this 

work.  

 For the studied systems, the experimental binodal data were further fitted by the 

empirical relationship described by Equation 2 (199). The regression parameters were 

estimated by least-squares regression, and their values and corresponding standard 

deviations (σ) and correlation coefficients are provided in Table 9. Their representation 

is shown in Figure 33. The experimental TLs, along with their TLLs, are reported in Table 

10, as well as the initial composition of each system.  

  

Table 9: Correlation parameters used to describe the experimental binodal data fitted by 

Equation 2 and respective standard deviations (σ) and correlation coefficients. 

ILs A ± σ B ± σ 10-5 (C ± σ) R2 

[N1111][Ac] 86.07 ± 1.41 -0.286 ± 0.009 1.6 × 10-10 ± 1.9 0.9961 

[P4444][Ac] 74.75 ± 1.08 -0.357 ± 0.007 4.6 ± 0.8 0.9967 

[N4444][Ac] 81.22 ± 0.44 -0.396 ± 0.003 6.0 ± 0.3 0.9998 

[N4444][MES] 75.14 ± 0.23 -0.342 ± 0.001 5.8 ± 0.2 0.9997 

[P4444][MES] 77.65 ± 0.21 -0.352 ± 0.002 7.8 ± 0.3 0.9997 

[C4mim][MES] 88.90 ± 0.58 -0.294 ± 0.003 4.6× 10-9 ± 0.6 0.9997 

[P4444][Arg] 20.96 ± 0.32 -0.441 ± 0.012 90 ± 9.9 0.9993 

  

 Some standard deviations for parameter C were found, but in general good 

correlation coefficients were obtained for the fitting by Equation 2, meaning that these 

fittings could be used to determine the system composition at given mixtures of interest. 
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Table 10: Tie-lines (TLs) and tie-line lengths (TLLs). Initial mixture points are 

represented as ILM and SaltM; ILT and SaltT are the composition of IL and 

K2HPO4/KH2PO4 at the IL-rich phase (top phase), and ILB and SaltB are the composition 

of IL and salt at the K2HPO4/KH2PO4-phase (bottom phase). 

IL 
Weight fraction composition/ wt% 

TLL 
ILT ILB ILM SaltM SaltB SaltT 

[N1111][Ac] 41.40 10.15 39.92 8.91 55.97 6.56 58.47 

[P4444][Ac] 47.15 0.02 40.08 8.89 49.82 1.67 67.38 

[N4444][Ac] 44.95 40.06 40.04 8.89 63.54 2.23 76.02 

[N4444][MES] 48.08 0.04 40.04 8.89 44.67 1.70 64.46 

[P4444][MES] 48.80 0.03 40.00 8.91 41.50 1.74 62.93 

[C4mim][MES] 41.38 10.74 39.95 8.90 51.72 6.77 54.40 

 

3.3.2.3.Purification of interferon alpha-2b using aqueous-two phase systems 

 The ILs that formed ATPS with K2HPO4/KH2PO4 and H2O, described in Table 7, 

were used aiming at purifying IFNα-2b from the urea-SIB fraction, desalted with HiTrap 

Desalting as previously described. In general, the initial mixture composition of 40 wt% 

of IL + 9 wt% of K2HPO4/KH2PO4 was used, and the composition of each phase is given 

in the TLs provided in Table 10. The exact composition of the initial mixture of each 

ATPS is given in Appendix D. 

 Due to the different phase diagrams and TLs composition, the volume of the 

phases is different for the diverse ATPS. In the purification assays, and in each ATPS, a 

concentration between 100-600 µg/mL of total proteins was used, as determined with the 

Pierce™ BCA Protein Assay Kit. In general, in the ATPS composed of [N1111][Ac] and 

[N4444][Ac] a precipitate was formed in the interface, meaning that neither the salt-rich 

phase or the IL-rich phase are able to solubilize all proteins. The presence of a third (solid) 

phase in IL-based ATPS was recently described by Alvarez-Guerra et al. (207) as “Ionic-

Liquid-Based Three Phase Partitioning” (ILTPP). ILTPP combines the easiness of 

recovery of a third phase that can contain the target protein together with the advantages 

associated with IL-based ATPS. It is known that protein concentration is one of the factors 

that influence their partitioning in ATPS, and that partitioning between the coexisting 

phases only occurs at relatively low protein concentrations (151).  
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 The top phase, the bottom phase and the precipitate (when it occurred, further 

solubilized in aqueous solutions of Tris-HCl at 50 mM) were analyzed through SDS-

PAGE. Commercial PAGEr™ Gold Precast gels (Lonza, Sweden) were used, while the 

gels used in the first chapters of the thesis were formed in situ. Although there are not 

significant differences in the composition of the gels, it has to be taken into account that 

each gel may lead to differences on the protein migration according to the pores size. The 

lab-made gels seem to be more appropriate than the commercial gels used in this section, 

since it was difficult to detect any protein in the latest. Other possible explanation is the 

decrease of the proteins content when diluted in ATPS for the purification assays, as well 

as the salt and IL presence which enhance the viscosity and ionic strength of the sample. 

The obtained bands in the SDS-PAGE gels are very light, not fully defined and band shifts 

were also observed in some situations.  

 The partitioning of proteins in ATPS is a complex process which depends on the 

phase-forming components nature and content. Some interaction between the protein and 

the IL and salt may occur, such as hydrogen-bonding, electrostatic interactions, van der 

Waals forces and hydrophobic interactions, as well as steric effects. Hitherto and to the 

best of our knowledge, no studies on the IFN-α2b interactions with ILs are available. 

Even so, the target protein is negatively charged (pI = 5.9 (74)), and thus electrostatic 

interactions may occur between IFN-α2b and the IL or salt ions.  

 In the first results illustrated in Figure 35, a total weight of the ATPS of 0.6 g was 

used, but few bands corresponding to proteins are visible and few conclusions can be 

taken. Since proteins were mainly found in the top phases of all the systems, and in the 

precipitated phase of the [N1111][Ac] and [P4444][Ac] ATPS, it is observed a preferential 

partitioning of the proteins to the top phase (IL-rich). 
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Figure 35: SDS-PAGE results of the IL-based ATPS purification assay 1, where the 

ATPS constituted by the ILs [N4444][Ac], [P4444][Ac], [N1111][Ac] (left), [N4444][MES], 

[P4444][MES], [C4mim][MES] (right) and + K2HPO4/KH2PO4 + H2O with a total mass of 

0.6 g were tested for the partition of the IFNα-2b. The initial sample, the top phase, the 

bottom phase and the precipitate phase are represented as I, T, D and P, respectively. 40 

wt% of IL + 9 wt% of K2HPO4/KH2PO4. 

 

 The next experiments were carried out aiming at optimize the total weight of the 

ATPS in order to ensure a proper phase-separation while minimizing the dilution of the 

sample. With the attempt of enhance the SDS-protein detection, we decided to increase 

the system total weight up to 0.8 g, where the respective results are given in Figure 36. In 

these experiments proteins were mainly found in the precipitate of [N1111][Ac] and 

[N4444][Ac] ATPS, in the bottom phase of the ATPS formed by [C4mim][MES], and in 

the top phase of the remaining systems. However, the IFN-α2b is shown to be present in 

the top phase of the [C4mim][MES] ATPS and in the precipitate formed in the [N1111][Ac] 

ATPS. An interesting result was achieved with the [N1111][Ac] system, where IFNα-2b 

seems to selectively precipitate at the interphase. Since some selectivity was obtained, 

further assays must be carried out in order to see if the trend is maintained and if better 

results of purification can be achieved.  
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Figure 36: SDS-PAGE results of the IL-based ATPS purification assay 2, where the 

ATPS constituted by the ILs [P4444][MES], [N4444][MES], [C4mim][MES] (left) 

[P4444][Ac], [N4444][Ac] and [N1111][Ac] (right) + K2HPO4/KH2PO4 + H2O with a total 

mass of 0.8 g were tested for the partition of the IFNα-2b. The initial sample, the top 

phase, the bottom phase and the precipitate phase are represented as I, T, D and P, 

respectively. The mixture point used in this assay was 40 wt% of IL + 9 wt% of 

K2HPO4/KH2PO4. 

 

 Aiming at increasing the purity and yield of the target protein, in a further 

experiment, assay 3, it was used a new mixture composition with the [N1111][Ac] ATPS 

(40 wt% of IL + 8 wt% of phosphate buffer). The total mass of the [N1111][Ac] ATPS was 

decreased to 0.6 g, while for the [N4444][Ac] ATPS, 0.8 g of total mass and the previous 

mixture composition were maintained to evaluate the reproducibility of the previous 

results. Proteins were found in the top phase of the [N1111][Ac] ATPS and in the 

precipitate of [N4444][Ac] and [N1111][Ac] systems (Figure 37). IFNα-2b is mainly found 

in the precipitates, when compared to these systems top phases. In the [N1111][Ac] ATPS, 

the target protein is mostly present in the precipitate; yet, the change of the mixture point 

to a lower amount of salt seems to decrease the system selectivity. Regarding the 

[N4444][Ac] ATPS, few conclusions can be taken since no SDS bands were found in either 

phase. This trend was previously observed in assay 2 where the proteins in the top phase 

appeared in very light bands. A possible explanation to these results is that the protein 

concentration of the top phase can be very low, being untraceable in assay 3. On the other 
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hand, the increase of the sample introduced in the [N1111][Ac] ATPS can be a possible 

explanation for the intensification of the SDS bands and consequently, protein 

concentration. However, with this increase, in the top phase of [N1111][Ac] ATPS, apart 

from the IFN-α2b, some high weight contaminants are visible. 

 

 

Figure 37:  SDS-PAGE results of the IL-based ATPS purification assay 3, where the 

ATPS constituted by the ILs [N4444][Ac] and [N1111][Ac] + K2HPO4/KH2PO4 + H2O with 

a total mass of 0.8 and 0.6 g, respectively, were tested for the partition of the IFNα-2b. 

The initial sample, the top phase, the bottom phase and the precipitate phase are 

represented as I, T, D and P, respectively. The mixture point used for [N4444][Ac] ATPS 

was 40 wt% of IL + 9 wt% of K2HPO4/KH2PO4, while in [N1111][Ac] ATPS the weight 

fraction of K2HPO4/KH2PO4 was reduced to 8 wt%. 

 

 The purification of IFN-α2b was attempted using six different IL-based ATPS, in 

all the systems, similar difficulties were encountered which were related with the SDS-

PAGE experiments. The most promising result relies with the [N1111][Ac] ATPS in which 

the target protein showed, at least to some degree, some selectivity while precipitating in 

the interface. This IL was showed to be the one with the lowest capacity to form ATPS, 

and therefore, it is the most hydrophilic IL of the six studied systems. In this case, 

hydrophilic interactions can occur and can be exploited in the future. However, first these 

experiments should be repeated to ascertain reproducibility. As future work, an important 

starting point is the maximization of the IFN-α2b concentration in the system. 
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4. Final remarks 

4.1. Conclusions and future work 

 In this work, an optimized protocol for the recombinant biosynthesis and recovery 

of human IFNα-2b was successfully developed. IFNα-2b was produced from E. coli BL21 

cells in the insoluble form as inclusion bodies, using the SOB culture medium after 3 h 

of induction with 0.5 mM IPTG at 37 ˚C. The optimized primary recovery of IFNα-2b 

from the inclusion bodies includes two successive washes with Triton-X at 1% and urea 

at 4 M at pH 8, a solubilization with urea at 8 M at pH 12.5, and a dialysis against 

decreasing concentrations of urea in presence of the glutathione redox system.  

IFNα-2b was also produced in the soluble form using the SOB culture medium after 

16 h of induction with IPTG, through the decrease of the temperature down to 16 ˚C. The 

soluble expression of IFN should be however further exploited due to its advantage 

regarding the downstream step.  

A two-step chromatographic procedure based on the CIM DEAE monolith for the 

purification of IFNα-2b was developed. The recovery yields and the purities obtained 

with this process are similar to those reported by other authors (13, 193). It was verified 

that the purified IFN displays anti-proliferative activity against tumor breast cells, proving 

that it is biologically active.  

IL-based ATPS were finally investigated as alternative purification platforms for 

IFNα-2b. However, several obstacles have been found during the optimization of the 

purification strategy. One of the major limitations found is associated with the 

quantification of IFNα-2b, particularly due to its low amount which has hampered the use 

of SE-HPLC for this purpose. In the same line, most of the ILs investigated absorb in the 

UV region, not allowing the protein quantification by UV spectroscopy. An additional 

obstacle was found with the heterogeneous protein profile of E. coli extracts, reflected in 

different protein concentrations in the several samples, thus resulting in several failed or 

inconclusive results by SDS-PAGE analysis. Additional interferences of the IL and salt 

may also hampered an accurate SDS-PAGE analysis. 

Finally, the overall process of bioprocessing described in this work can be further 

optimized. Aiming at finding alternative platforms for the purification of 

biopharmaceuticals, further assays should be carried out to confirm the partition behavior 

of IFNα-2b in the studied ILs-based ATPS. As long as the contaminants or the target 

protein are selectively precipitated, ILTPP can be used as a cost-effective purification 

technique. Furthermore, IL-based ATPS can be used if a selective partitioning of IFNα-
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2b is found for a given phase. An increase in the protein concentration in the initial SIB 

fraction may also improves the results of the ATPS-based purification procedures, 

particularly regarding further decisions on the best systems to investigate and additional 

optimization steps on the operational conditions. Other ILs and salts, as well as polymers, 

could be investigated to extract/purify IFNα-2b. 
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Appendix A 

Experimental data of the growth profile of E. coli, in the LB, SOC and SOB media. 

Time (h) OD600 LB medium OD600 SOC medium OD600 SOB medium 

0 0.21 0.23 0.23 

1 0.53 0.58 0.69 

2 0.99 1.48 1.40 

3 1.20 1.76 1.78 

4 1.34 2.10 2.00 

5 1.48 2.49 2.21 

6 1.66 2.94 2.32 

7 1.80 3.52 2.52 

8 - 3.82 2.70 

9 - 4.13 2.84 
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Appendix B 

1H and 13C RMN spectra of the synthetized ILs 
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Appendix C 

Experimental weight fraction data of the ternary phase diagrams of ATPS of composed of ILs + K2HPO4/KH2PO4 + H2O, at pH 8.2. 

[N1111][Ac] 

Mw = 132.2 g.mol-1 

[N4444][Ac] 

Mw = 300.6 g.mol-1 

[P4444][Ac] 

Mw = 317.5 g.mol-1 

[N4444][MES] 

Mw = 436.7 g.mol-1 

[P4444][MES] 

Mw = 453.7 g.mol-1 

[C4mim][MES] 

Mw = 333.4 g.mol-1 

[P4444][Arg] 

Mw = 432.7 g.mol-1 

100wSalt 100wIL 100wSalt 100wIL 100wSalt 100wIL 100wSalt 100wIL 100wSalt 100wIL 100wSalt 100wIL 100wSalt 100wIL 

9.27 36.96 13.75 16.03 12.87 19.01 13.06 19.27 13.27 18.17 9.12 36.81 0.59 14.55 

8.71 37.63 13.27 16.65 12.50 19.35 12.66 19.72 12.82 18.66 8.70 37.31 0.87 14.01 

8.23 38.14 12.76 17.37 12.06 19.82 12.20 20.63 12.17 20.03 8.27 38.07 1.25 12.90 

7.73 39.15 12.30 17.94 11.50 20.86 11.82 21.10 11.74 20.49 7.85 38.89 1.44 12.46 

7.50 39.37 11.74 19.17 11.19 21.25 11.57 21.33 11.35 20.98 7.44 39.89 1.70 11.89 

7.24 39.73 11.37 19.55 10.90 21.47 11.20 22.21 11.16 21.70 6.86 41.20 1.90 11.46 

6.94 40.44 10.86 20.55 10.49 22.13 10.94 22.39 10.88 22.16 6.57 41.87 2.18 11.00 

6.66 41.08 10.51 20.75 10.08 22.90 10.68 22.71 10.53 22.39 6.30 42.56 2.50 10.49 

6.49 41.40 10.11 21.67 9.71 23.66 10.18 23.59 10.08 23.31 6.05 43.15 2.78 9.74 

6.25 41.89 9.72 22.47 9.45 23.77 9.86 24.20 9.66 24.23 5.80 43.84 3.08 9.33 

6.05 42.39 9.34 23.27 9.12 24.48 9.53 24.70 9.42 24.45 5.57 44.39 3.39 8.89 

5.87 42.87 8.99 23.96 8.80 25.14 9.24 25.17 9.07 25.30 5.34 45.04 3.71 8.45 

5.62 43.50 8.47 24.78 8.61 25.35 8.87 26.05 8.86 25.54 5.15 45.58 3.94 8.13 

5.45 43.98 8.08 25.64 8.37 26.04 8.64 26.57 8.55 26.33 4.97 46.18 4.21 7.82 

5.17 44.87 7.69 26.51 7.97 26.69 8.41 27.28 8.28 27.06 4.85 46.55 4.57 7.44 
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4.92 45.48 7.22 27.47 7.75 27.24 8.03 27.85 8.10 27.31 4.67 47.13 4.87 7.11 

4.78 45.89 6.85 28.22 7.53 27.69 7.38 28.93 7.83 27.96 4.55 47.44 5.14 6.80 

4.66 46.26 6.45 29.30 7.32 28.19 7.15 29.41 7.60 28.58 4.38 48.04 5.42 6.50 

4.53 46.75 6.13 29.99 7.18 28.28 6.95 29.94 7.44 28.71 4.22 48.57 5.81 6.02 

4.33 47.40 5.87 30.72 6.98 28.71 6.76 30.11 7.20 29.30 4.06 49.13 6.30 5.61 

4.25 47.54 5.51 31.63 6.89 28.93 6.54 30.98 6.99 29.79 3.88 49.87 6.72 5.26 

3.98 48.35 5.23 32.64 6.69 29.45 6.27 31.62 6.75 30.21 3.76 50.31 7.22 4.90 

3.77 49.17 4.89 33.39 6.51 29.80 5.97 32.16 6.55 30.71 3.65 50.65 7.86 4.44 

3.56 50.05 4.66 34.31 6.34 30.23 5.81 32.48 6.39 31.11 3.48 51.57   

3.37 50.81 4.40 35.08 6.20 30.62 5.68 32.81 6.23 31.56 3.33 51.85   

3.20 51.64 4.23 35.76 6.04 30.99 5.44 33.49 6.07 31.98 9.12 36.81   

2.92 53.13 3.99 36.64 5.89 31.29 5.32 33.71 5.92 32.40 8.70 37.31   

2.67 54.57 3.81 37.30 5.66 31.72 5.22 34.09 5.78 32.82 8.27 38.07   

2.50 55.49 3.63 38.11 5.49 32.23 5.05 34.67 5.63 33.15 7.85 38.89   

  3.48 38.74 5.34 32.63 4.93 34.88 5.48 33.71 7.44 39.89   

  3.30 39.52 5.09 33.21 4.84 35.14 5.19 34.58 6.86 41.20   

  3.14 40.25 4.96 33.51 4.76 35.44 5.03 34.78 6.57 41.87   

  2.97 40.95 4.82 33.85 4.60 35.85 4.90 35.31 6.30 42.56   

  2.88 41.57 2.99 39.03 4.49 36.19 4.81 35.51 6.05 43.15   

  2.73 42.39 2.72 40.49 4.39 36.47 4.63 36.04 5.80 43.84   

    1.66 48.42 4.28 36.87 4.55 36.32 5.57 44.39   
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      4.21 37.04 4.46 36.50 5.34 45.04   

      4.10 37.45 4.37 36.90 5.15 45.58   

      3.99 37.79 4.27 37.31 4.97 46.18   

      3.92 38.07 4.12 37.78 4.85 46.55   

      3.81 38.53 4.02 38.06 4.67 47.13   

      3.69 38.98 3.89 38.58 4.55 47.44   

      3.55 39.43 3.71 39.25 4.38 48.04   

      3.46 39.75 3.64 39.50 4.22 48.57   

      3.41 39.94 3.58 39.76 4.06 49.13   

      3.34 40.28 3.48 40.09 3.88 49.87   

      3.25 40.64 3.42 40.37 3.76 50.31   

      3.14 41.14 3.36 40.58 3.65 50.65   

      3.06 41.48 3.31 40.82 3.48 51.57   

      2.99 41.81 3.21 41.27 3.33 51.85   

      2.96 41.77 3.10 41.78     

      2.89 41.68 3.01 42.15     

      2.83 41.98 2.92 42.55     

      2.77 42.29 2.83 42.90     

      2.73 42.57 2.77 43.19     

      2.65 42.86 2.71 43.49     

      2.60 43.15 2.66 43.74     
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      2.54 43.38 2.61 43.98     

      2.47 43.82 2.54 44.33     

      2.43 44.03 2.47 44.71     

      2.39 44.26 2.44 44.90     

      2.36 44.41 2.40 45.11     

      2.31 44.73 2.36 45.19     

      2.27 44.82 2.30 45.54     

      2.23 45.03 2.27 45.77     

      2.18 45.21 2.21 46.06     

      1.67 48.41 2.17 46.30     

        2.14 46.58     

        2.09 46.80     

        2.04 47.07     

        2.00 47.25     

        1.95 47.55     

        1.90 47.91     

        1.86 48.14     

        1.82 48.47     

        1.55 49.39     

        1.35 50.85     

        0.87 55.49     
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Appendix D 

Composition of each ATPS used to purify the IFNα-2b, at pH 8.2. 

Assay IL 
ILM K2HPO4/KH2PO4M ExtractM 

(g) (wt%) (g) (wt%) (g) (wt%) 

1 

[N4444][Ac] 0.2404 39.29 0.3205 9.00 0.0510 8.33 

[P4444][Ac] 0.2400 39.89 0.3123 8.92 0.0494 8.21 

[N1111][Ac] 0.3214 39.97 0.4164 8.90 0.0663 8.24 

[N4444][MES] 0.2404 39.77 0.3145 8.94 0.0496 8.20 

[P4444][MES] 0.2406 39.86 0.3138 8.94 0.0492 8.15 

[C4mim][MES] 0.2402 40.05 0.3102 8.89 0.0493 8.22 

2 

[N4444][Ac] 0.3203 39.93 0.4161 8.92 0.0657 8.19 

[P4444][Ac] 0.3209 40.08 0.4143 8.89 0.0655 8.18 

[N1111][Ac] 0.3205 39.89 0.4174 8.93 0.0656 8.16 

[N4444][MES] 0.3207 39.77 0.4199 8.95 0.0657 8.15 

[P4444][MES] 0.3207 40.00 0.4155 8.91 0.0655 8.17 

[C4mim][MES] 0.3202 39.95 0.4152 8.90 0.0661 8.25 

3 
[N4444][Ac] 0.3600 44.47 0.3815 8.10 0.0681 8.41 

[N1111][Ac] 0.2400 39.92 0.3115 8.91 0.0497 8.27 

 


