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resumo 
 

 

Pretendeu-se, com este trabalho, avaliar o efeito de uma nova metodologia de 
conservação alimentar, designada armazenamento hiperbárico (AH), à 
temperatura ambiente variável (≈ 18-23 °C, AH/TA) como possível alternativa 
aos convencionais processos de refrigeração (RF), em estruturas de 
resistência bacteriana, nomeadamente endósporos de Bacillus subtilis e 
Alicyclobacillus acidoterrestris. 
Os endósporos de B. subtilis foram inoculados em sumo de cenoura (alimento 
perecível) enquanto os endósporos de A. acidoterrestris foram inoculados em 
sumo de maçã comercial. As amostras foram armazenadas à pressão 
atmosférica (PA) e TA variável (≈ 18-23 °C, PA/TA), RF (≈ 4 °C, PA/RF e sob 
AH/TA (25, 50 e 100 MPa), até 60 dias. Adicionalmente, inocularam-se 
esporos de B. subtilis em duas matrizes nutricionalmente distintas (tampão 
McIlvaine e meio de cultura líquido, BHI-broth, a pH 6.00) a fim de averiguar se 
a composição da matriz de inoculação poderia influenciar o comportamento 
dos esporos em condições de AH/TA (50 e 100 MPa). 
A composição da matriz de inoculação provou influenciar o comportamento 
dos endósporos de B. subtilis em condições de AH/TA. Em tampão McIlvaine, 
os endósporos não germinaram nem se desenvolveram em condições de 
PA/TA e PA/RF devido à carência de nutrientes, verificando-se o mesmo a 
AH/TA a 50 MPa. No entanto, uma pressão de armazenamento de 100 MPa 
resultou na redução da carga microbiana total e de esporos. 
O sumo de cenoura armazenado a 50 e 100 MPa, sofreu uma redução da 
carga microbiana total (vegetativos e esporos) de ≈ 5.4 unidades logarítmicas 
e abaixo do limite de quantificação (2.00 log CFU/mL), respetivamente, ao 
sexagésimo dia de AH/TA, permitindo aumentar o prazo de validade quando 
comparado com o armazenamento à AP/TA e AP/RF, em que os esporos 
germinaram e se desenvolveram ao final de 9 e 60 dias, respectivamente, 
enquanto o AH/TA a 25 MPa despoletou a germinação e desenvolvimento dos 
esporos logo no primeiro dia de armazenamento, resultando na deterioração 
do sumo. 
Quando inoculados em BHI-broth, os esporos germinaram e desenvolveram-se 
à PA/RT e PA/RF ao final de 1 e 9 dias, respetivamente, enquanto sob pressão 
(50 e 100 MPa) se verificou uma redução da carga microbiana total de ≈ 5.1 
unidades logarítmicas e abaixo do limite de quantificação, respetivamente. 
Os esporos de A. acidoterrestris em sumo de maçã foram inativados em todas 
as condições de AH/TA, especialmente a 50 e a 100 MPa (em que e atingiu o 
limite de deteção, 1.00 log CFU/mL, ao fim de 2 e 30 dias de armazenamento, 
respetivamente). A 25 MPa, a carga microbiana total também diminuiu, 
contrariamente ao observado no sumo de cenoura, possivelmente devido à 
acidez da matriz. Estes resultados indicam que o AH/TA é uma alternativa 
potencial aos processos convencionais de PA/RF relativamente ao controlo da 
presença de esporos nos produtos alimentares. 
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abstract 

 
This work aimed to evaluate the effect of a new preservation methodology, 
known as hyperbaric storage (HS) at variable/uncontrolled room temperature (≈ 
18-23 ºC, HS/RT) as a possible alternative to the conventional refrigeration 
(RF), in bacterial resistance structures, namely endospores, of Bacillus subtilis 
and Alicyclobacillus acidoterrestris. 
The B. subtilis endospores were inoculated in carrot juice (highly perishable 
food product), while A. acidoterrestris endospores were inoculated in 
commercial apple juice. Then, samples were stored at atmospheric pressure 
(AP) at variable RT (≈ 18-23 ºC, AP/RT), RF (≈ 4 ºC, AP/RF) and under HS/RT 
(25, 50 and 100 MPa) up to 60 days. Moreover, B. subtilis endospores were 
also inoculated in two nutritionally distinct matrices (McIlvaine buffer and brain-
heart infusion broth, BHI-broth, at pH 6.00) to ascertain if the composition of the 
inoculation matrix could influence the endospore behaviour at HS/RT 
conditions (50 and 100 MPa). 
The matrix composition has proved to influence the B. subtilis endospores 
behaviour under HS/RT conditions. In McIlvaine buffer, the endospores did not 
undergo germination and outgrowth at both AP/RT and AP/RF storage 
conditions, due to the absence of nutrients, similarly to HS/RT at 50 MPa. A 
storage pressure of 100 MPa yielded total microbial and endospore loads 
reductions.  
The carrot juice kept at 50 and 100 MPa underwent total microbial load 
(vegetatives and endospores) reductions along storage, being reduced ≈ 5.4 
log units and to the quantification limit (2.00 log CFU/mL), respectively, at the 
60

th
 day of HS/RT, allowing a shelf-life extension when compared with AP/RT 

and AP/RF storage, wherein endospores germinated and outgrowth after 9 and 
60 days of storage, respectively, while HS/RT at 25 MPa quickly triggered 
endospore germination and outgrowth right on the first day of storage, thus 
yielding juice spoilage. 
While inoculated in BHI-broth, the endospores germinated and outgrew at 
AP/RT and AP/RF conditions right after 1 and 9 days, respectively, while 
HS/RT at 50 and 100 MPa resulted in total microbial loads reductions of ≈ 5.1 
log units and to the quantification limit, respectively. 
The A. acidoterrestris endospores in commercial apple juice faced a sharp total 
microbial load reduction at 100 MPa (below the detection limit, 1.00 log 
CFU/mL) after 2 days of storage, while at 50 MPa the detection limit was 
reached by the thirtieth day of HS/RT. A storage pressure of 25 MPa was also 
feasible to preserve apple juice, contrarily to the carrot juice, probably due to 
the acidity hurdle of the matrix.  
These results hint HS/RT as a possible preservation procedure, and a potential 
replacement of the conventional AP/RF processes, regarding the presence of 
endospores on food products. 
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Contextualization and thesis structure 

 This thesis is composed of six chapters, wherein the first one comprises a literature 

review regarding the subject of food preservation techniques, with special focus on storage 

under pressure (hyperbaric storage, HS), as well some features regarding endospores and 

their response against hydrostatic pressure, followed by the work objectives and the 

schedule adopted. Then, on the second chapter, a detailed description of the materials and 

methods used in the aim of this thesis is provided. The third chapter presents and discusses 

the results obtained for B. subtilis endospores inoculated in three different matrices. On the 

fourth chapter, the results obtained for A. acidoterrestris endospores in commercial apple 

juice are presented and discussed, followed by the main conclusions (chapter fifth), 

proposed future work (chapter six) and the list of the consulted literature in the aim of the 

present work. Finally, an appendix section is provided, concerning data that, due to its 

extension, could not be presented on the corresponding chapters. 
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I. Introduction 

The survival and evolution of mankind was possible due to several factors, being 

one of them the ability of feeding themselves, as well as the development of techniques to 

preserve food products for later consumption. The food preservation techniques used back 

then (and still being used) relied, mainly, on water content depletion, food matrix 

acidification, temperature control and, more recently, pressure control. This literature 

review will briefly mention the basis concept inherent to some of the conventional food 

preservation techniques, with special focus to pressure control (hyperbaric storage, HS), 

then, a second topic regarding the role of endospores on food industry and its behaviour 

under different pressure conditions will be discussed.  

The salting process consists on keep food products involved on edible salt in order 

to dry perishable food products. This process relies on the reduction of the water activity 

(aW) of a food product in order to inhibit the development of both deteriorative and 

pathogenic microorganisms, as well preventing degradative biochemical reactions 

(Sperber, 1983). It is thought to be the oldest preservation technique (Li et al., 2016), 

which was used by the Egyptians to preserve fish and meat products in clay plots full of 

salt (Ordóñez et al., 1998).  

Dehydrating food products using the fire heat or the sun light was also used as a 

food preservation technique on dried fruits, since the water of the foodstuff is evaporated, 

which causes the reduction of the aW to levels that do not allow the development of 

deteriorative and pathogenic bacteria and moulds (Sperber, 1983). 

The exposure of food products to wood smoke is quite popular among food 

preservation procedures, allowing to obtain products with exceptional organoleptic 

characteristics, such as chorizos, along with other smoked meat and fishery products. The 

shelf-life improvement of smoked food products is due to a combined effect of the 

bacteriostatic effect of phenols on the endogenous microflora (Løvdal, 2015), as well by 

the reduction of the aW of such products. 

Acidification is also a very popular food preservation technique, that relies on the 

depletion of the food product endogenous pH to a lower value (usually below 4.5), by 

direct addition of an acidic matrix, such as vinegar (pickling) or by consortia of 

microorganisms, in a process known as fermentation, to avoid the proliferation of 

pathogenic microorganisms, such as Bacillus cereus or Clostridium botulinum. 
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Also known as an ancient preservation technique for edible products, pickling 

consists on the direct addition of an acid solution, such as vinegar, or a salt solution as 

brine, to lower its endogenous pH or to change the osmolarity, respectively, to inhibit the 

development of both deteriorative and pathogenic microorganisms. The pickling process is 

commonly used to preserve vegetables, meat and fishery products. Despite its feasibility 

for food preservation, it is responsible for severe changes on food texture, flavours, 

aromas, etc., and loss of nutritional content (Montaño et al., 2016). Fermentation was also 

popular between the firstly employed food preservation strategies, mainly on milk, fruit 

juices, meat products and cereals. It is thought to have been discovered by accident, 

probably by storing sour milk for a period of time long enough to obtain a fermented 

product (Ordóñez et al., 1998), being this process based, as aforementioned, on the 

depletion of the original pH of the food product to a lower value, carried out by a consortia 

of microorganisms such as bacteria (lactic acid, propionic, acetic bacteria) and fungi 

(Saccharomyces spp., Aspergillus spp., etc.), which inhibits the development of pathogenic 

bacteria and moulds (Russell and Diez-Gonzalez, 1997). 

The aforementioned food preservation techniques, in spite of being generally safe 

and cheap to use, are also responsible for changes on texture, flavour, aromas and 

nutritional content of foodstuff, especially on meat and fishery products. These were the 

factors, along with many others, that led to the development of alternative and with minor 

impact on food products, relying on temperature control. 

Food storage below 0 ºC yields longer shelf-lives when compared to other food 

preservation techniques, since the available water undergoes its solid state, allowing to 

inhibit microbial proliferation, the majority of biochemical reactions, as well the death of 

worms and other organisms that can contaminate food products. Although, this process is 

responsible for structural changes on animal and vegetal cells (lysis) caused by the ice 

crystals, resulting in loss of water and solutes after thawing, a phenomenon known as drip 

loss (Hundy et al., 2016). 

Food preservation at low temperatures is thought to have been firstly performed 

using ice from the mountains by the Persians, later by the Egyptians and then by the 

Romans. Only in 1800 the first refrigeration (RF) units were developed (Briley, 2004) and 

revolutionized the cold-chain preservation industry, that was still dependent on the ice 

harvest from the mountains and glaciers. The RF feasibility as a preservation strategy relies 
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on the effect of low temperatures (1–7 ºC) on the endogenous microflora of food products, 

retarding its development, as well the majority of deteriorative biochemical reactions (both 

enzymatic and non-enzymatic reaction) (Ashie et al., 1996). 

Quickly, RF began to replace the conventional preservation techniques, since it 

allowed to preserve foodstuff with minimal impact on flavour, texture, nutritional value 

and aromas, when compared to salting, smoking and fermentation, and became the most 

used preservation technology (along with freezing) for both industrial and domestic use, 

with a current (2016) market value of 167.24 billion dollars, being thought that it will have 

an economic impact of 234.49 billion dollars by 2020 (Marketandmarkets, 2017). 

Nonetheless, with the increase of Earth population, which is predicted to reach 9 billion 

people by the end of 2045 (Van Bavel, 2013), the environmental concerns regarding the 

use of fossil fuels to generate energy to sustain the food cold-chain industry are being 

considered, since 35–50% of the total energy consumed in super and hypermarkets is 

attributed to both RF and freezing equipment, contributing for approximately 1% of the 

carbon dioxide (CO2) emissions worldwide (James and James, 2010), being the third major 

source of CO2 of all food industry (with 490 megatons of CO2 released to the atmosphere 

in 2008) (Gilbert, 2012). For so, it is convenient to invest on strategies that can decrease 

energy consumption in order to reduce the carbon footprint associated with food 

preservation, without compromising food safety, quality, and sustainability, being the 

storage pressure control a possible alternative, as will be furtherly discussed. 

I.1. Food preservation by pressure control 

Recently, a new preservation methodology was proposed, relying on an emergent 

food processing technology. Under the name of HS, it states that instead of controlling the 

temperature of the container where the food product is stored, it is advantageous to control 

the pressure level that the food product is subjected (Fernandes et al., 2014). But first, a 

contextualization regarding the involved technology (high pressure processing, HPP) will 

be given and discussed. 

I.2. High pressure processing 

HPP is a non-thermal food processing technology that makes use of elevated 

hydrostatic pressure (up to 600 MPa) for inactivation of vegetative microorganisms on 
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food products. This technology relies on two essential principles. The first one is the Le 

Chatelier’s principle, which states that any change made in an equilibrium system 

(chemical reaction, phase transition or modifications of molecular configurations) 

accompanied by a volume decrease is compensated by a pressure increase, and vice-versa. 

The second one is the isostatic principle, which claims that pressure is uniformly 

distributed by the entire sample whether in direct contact or in a flexible container, 

regardless of its shape or size (Smelt, 1998).  

HPP is currently being employed as a cold pasteurization procedure of acidic fruit 

juices, ready-to-eat meals, fishery, and meat products worldwide (Bermúdez-Aguirre and 

Barbosa-Cánovas, 2011). The next topics will focus a few historic facts concerning HPP, 

as well its evolution throughout time and its application as an assistant of sterilization 

procedures to destroy endospores (that will be detailed on the endospore features 

section).The first scientific report concerning the effect of high hydrostatic pressure on 

microorganisms belongs to Certes (1884), who found viable bacteria on deep sea 

sediments collected at a depth of 5,000 m (≈ 50 MPa). Bert Hite was the first author 

reporting the use of high pressure for food processing. In fact, Hite (1899) proved that it 

was possible to extend raw milk shelf-life for 4 days after a pressure treatment of 1 hour at 

600 MPa at room temperature (RT), inasmuch the milk suffered a microbial reduction 

between 5 to 6 logarithmic cycles. It was also observed that the souring process was 

retarded for about 24 h after a pressure treatment of 200 MPa. 

Later, in 1914, Hite, Giddings, and Weakley (1914) verified that several HPP pre-

treated fruits (400–820 MPa) remained commercially stable at least for 5 years, not being 

found the same effect in vegetables due to spore-forming bacteria that were able to survive 

over the pressure treatment and grew in low acidic vegetables. 

Many other studies were performed concerning the use of HPP to inactivate both 

deteriorative and pathogenic microorganisms, although, it took almost a century between 

Bert Hite’s studies and the commercialization of HPP food products (Patterson, 2005) due 

to the lack of adequate of commercial equipment (Torres and Velazquez, 2005). In fact, the 

first food product processed by HPP was commercialized in 1990 by the Japanese retail 

company Meidi-ya, which introduced a line of acidic jams that, according with the 

Japanese patent no. 1991-219844 (Hori et al., 1991), were processed at a pressure level 

between 392–588 MPa during 10 to 30 minutes (min) (Meidi-ya, 1991). 
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From that moment, many other companies worldwide rushed to introduce new food 

products processed by this innovative technology, being even initiated research programs 

in Europe and in the United States of America between industrial consortia and research 

institutes (Williams, 1994). Since the first HPP industrial application, the number of 

equipment and products processed by this technology have been increasing, mainly due to 

consumer requirements for fresher, tastier and minimally processed foods (Huang et al., 

2013). Moreover, the HPP effects are instantaneous and independent of the shape and size 

of the food or the package, resulting in a more smooth transition from laboratorial studies 

to industrial applications (Thakur and Nelson, 1998). 

 Regarding HPP feasibility against vegetative cells, it relies on the interruption of 

cellular functions that are essential for reproduction and survival of microorganisms. In 

fact, HPP is responsible for changes on the microorganism’s membranes, resulting in 

leakage of the inner cell content and interference on nutrient uptake mechanisms (Mújica-

Paz et al., 2011), as well solute lost during the pressurization steps, protein denaturation 

and enzymatic inactivation (Shimada et al., 1993). The inactivation of gram-positive 

bacteria normally requires more intense pressure treatments than gram-negative bacteria 

due to the rigidity of teichoic acids present on the peptidoglycan layers of gram-positive 

bacteria (Heinz & Buckow, 2010). 

Nowadays, HPP is a well-established technology that has been widely used as a 

non-thermal food pasteurization procedure, with particular emphasis on fruit juices and 

beverages, meat and fishery products, vegetables and ready-to-eat meals, as aforesaid 

(Bermúdez-Aguirre and Barbosa-Cánovas, 2011), since it allows the maintenance of foods 

attributes (vitamins, proteins, flavour and taste) inasmuch heat is not applied.  

At an industrial level, among other novel processing technologies, HPP seems to be 

one of the most promising due to the high number of equipment operating worldwide 

(Mújica-Paz et al., 2011), as seen in Figure 1. Furthermore, Visiongain (2016) predicted 

that, by the end of 2016, the HPP food marked worth more than 11 billion dollars and the 

equipment market of about 0.47 billion dollars. 
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Figure 1: Total number of high pressure processing equipment currently operating on food industry and its use according 

with product typology. Courtesy of Hiperbaric. 

The major HPP disadvantage still relies on the equipment costs, although this can 

be surpassed as new manufacturers starts to operate on the market, as well new and 

cheaper materials are developed (Gupta and Balasubramaniam, 2012). 

HPP at cold or RT, similarly to thermal pasteurization, only inactivates vegetative 

microorganisms, which means that both fungal and bacterial spores are able to survive, 

germinate and outgrowth once the conditions are more propitious (Kort et al., 2005), even 

after intense processing at very high pressures (up to 1,200 MPa) (Reineke et al., 2013a). 

Thus, food products processed by HPP are, generally, to be kept at RF conditions (1–7 ºC) 

to inhibit the development of spores on high and low-acidic food products (Mújica-Paz et 

al., 2011). Moreover, acidic food products, such as apple or orange juices, have the acidity 

hurdle that intrinsically allows a longer shelf-life under RF and require less intense HPP 

treatments (Heinz and Buckow, 2010). 

As food industries are interested on the development and commercialization of 

shelf-stable high perishable food products with superior quality, while ensuring microbial 

safety (Barbosa-Cánovas et al., 2014), research on food sterilization using different 

technologies (sequentially or simultaneously) have been intensified to test its feasibility 

(Park et al., 2014). The possibility of combine HPP along with other thermal and/or non-

thermal technologies will be a reality on the food industry, with potential economic and 

financial gains, since new food products, with greater quality, will be available on the 

markets. 
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I.3. Hyperbaric storage 

I.3.1. Definition and background 

HS is a new preservation methodology that consists on food storage under a 

pressure range up to 220 MPa for a certain period of time, from several hours (h) to days or 

even months, being pressure the hurdle to the microbial development, as well it enhances 

the preservation of several biochemical characteristics and other attributes (Fernandes et 

al., 2014). 

In October of 1968, the research submarine Alvin sank due to a failure on its 

support cables while being launched. Almost one year later (September of 1969), Alvin 

was recovered and, surprisingly, after being on deep seawater at 1540 meters (≈ 15 MPa 

and 3-4 ºC), some foodstuff from the crew (namely two thermos bottles containing 

bouillon and a plastic box with apples and sandwiches) seemed edible despite being soggy 

(Woods Hole Oceanographic Institution, 2014).  

The recovered food products (Figure 2) seemed well preserved when it comes to 

general appearance, texture, smell, taste, and biochemical and bacteriological assays, 

opening the possibility of store food products under pressure at RF temperatures to extend 

their shelf-lives. It was also observed that after keeping these materials at RF conditions (3 

ºC) they spoiled in a few weeks, as normally observed (Jannasch et al., 1971). 

 

Figure 2: On the left, Alvin research submarine recovery in 1969. On the right, food products recovered after being 

almost one year at deep sea. Adapted from Woods Hole Oceanographic Institution (2014) and Smith (2012). 

Two strategies to generate pressure within a container were employed on HS 

studies, using air or water (or another pressurization fluid – hydrostatic pressure, up to 220 

MPa, which is the most used strategy). Pressure generated by gaseous systems will not be 

discussed, since hydrostatic pressure is the most used on the food industry, as well the 

equipment used on the aim of this thesis uses a pressurization fluid. Moreover, the pressure 
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levels used on gaseous systems are normally much lower when compared to hydrostatic 

pressure. 

 Several studies regarding HS at subzero (<0 ºC), refrigerated (1-5ºC), at and above 

RT were performed over the years. Since all the HS experiments on the scope of this thesis 

were performed at naturally variable/uncontrolled RT, a special focus will be given to the 

studies made over the years at such conditions, while HS below and above RT will be 

briefly described. Respecting the chronological arising of HS studies, the following 

sections will aim HS at RF temperatures (1-5 ºC), HS subzero (<0 ºC), HS at and above 

RT. 

I.3.2. Hyperbaric storage at refrigeration temperatures (1 to 4 ºC) 

In order to simulate the conditions at which the research submarine Alvin was 

sunken, Jannasch et al. (1971) performed an experiment wherein the same food products 

were kept under pressure (15 MPa at 3-4 ºC) for 10 months, demonstrating that the 

combination of pressure with low temperatures was more efficient than RF alone (at 0.1 

MPa) retarding the degradation (microbial and enzymatic) of food products. Then, other 

studies were performed at RF temperatures, as summarized in the Table 1. 

 

Table 1: Studies concerning HS performed at refrigerated temperatures. Adapted from Fernandes et al. (2014) with 

modifications. 

Product Conditions Period Outcomes Reference 

Apples, 

bouillon 

and 

sandwiches 

15 MPa/3–4 ºC 
10 

months 

Stable after 10 months under deep 

sea, when stored at 0.1 MPa at 

refrigerated conditions, they quickly 

spoiled 

Jannasch et 

al. (1971) 

Rice, wheat 

and soy 

beans 

3.5 MPa/1 ºC 1 year 

Stable for 1 year. Lower changes in 

seed moisture, fatty acids and 

reducing sugars. Improved 

germinative capacity 

Mitsuda et 

al. (1972) 

Dressed cod 

24.12 MPa/1 ºC 

21 days 

Stable and consumable after 2 days, 

while samples stored at 0.1 MPa 

were unacceptable  
Charm et al. 

(1977) 

Pollock 12 days 

Stable and consumable after 12 days 

with higher quality than those at 0.1 

MPa 

Cape hake 

loins 
50 MPa/5 ºC 7 days 

Shelf-life extension, total volatile 

basic-nitrogen was kept stable. Drip 

loss, shear resistance and whiteness 

increment 

Otero et al. 

(2017) 
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Despite HS feasibility at RF temperatures, another strategy of food preservation 

using hydrostatic pressure was used by means of temperature control, i.e. as pressure can 

depress the freezing point of water, allowing the maintenance of its liquid state at 

temperatures below 0 ºC, a new concept of HS arose, known as HS subzero. 

I.3.3. Hyperbaric storage at subzero temperatures (<0 ºC) 

As seen in the Figure 3, pressure can depress the water freezing point, keeping it 

on its liquid state when below 0 ºC. 

 

Figure 3: Water phase diagram according with pressure (MPa) and temperature (ºC). The Roman numbers (I, II, III, IV 

and V) represent different types of ice that are formed under pressure. Adapted from Kalichevsky et al. (1995). 

Taking the aforementioned into account, it was expected that HS could be 

performed at freezing temperatures, without freezing food products, with advantages over 

the conventional freezing process, since texture damages caused by the formation of ice 

crystals (that disrupts the tissues of solid food products such as fish and meat) are not 

verified (Kalichevsky et al., 1995). Thus, it was important to ensure the microbial safety 

and physicochemical stability of foodstuff at HS subzero. Concerning the given examples 

in Table 2, it was proved that HS at subzero temperatures could be as efficient or even 

better than conventional freezing (at 0.1 MPa). 
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Table 2: Studies concerning HS subzero performed at freezing temperatures. Adapted from Fernandes et al. 

(2014). 

Product Conditions Period Outcomes Reference 

Cod fish 

fillets 
22.8 MPa/–3 ºC 36 days 

Stable and consumable for at least 36 

days. Similar in quality to frozen 

samples at 0.1 MPa 

Charm et al. 

(1977) 

Beef 
200 MPa/–20 

ºC 
(*) 

Microbial load reduction and 

inactivation of yeasts and some 

bacteria 

Deuchi and 

Hayashi 

(1990) 

Strawberry 

and 

tomatoes 

50–200 MPa/–5 

and –20 ºC 
(*) 

Stable for a few more days/ weeks. 

Fresh flavor and colour preserved. 

Catalase, β-amylase, cathepsin and 

lactate dehydrogenase inhibition by 

pressure 

Deuchi and 

Hayashi 

(1992) 

Chicken 

and carp 

170 MPa/–8 

and –15 ºC 
50 days 

Stable for 50 days. Enzymatic 

activity associated to nucleic acids 

degradation reduced 

Ooide et al. 

(1994) 

(*) The authors did not precisely report the storage period, describing it as “a few days or weeks”. 

Despite subzero HS seems a reliable alternative to store food products at freezing 

and refrigerated temperatures, both techniques have as major disadvantage the highly 

energetic costs involved on the temperature control (Fernandes et al., 2014). 

As aforesaid, RF is responsible for the consumption of about 35–50% of the total 

energy in super and hypermarkets, contributing for approximately 1% of the CO2 emissions 

worldwide, being also the third major source of CO2 emissions in food industry (Gilbert, 

2012; James and James, 2010). Thus, it is convenient to invest on strategies that can 

decrease the energy spent to reduce the carbon footprint, without compromising food 

safety and quality. As HS can be feasible as a RF improvement, it was hypothesized if it 

could be performed at and above RT, as described and discussed on the next section. 

I.3.4. Hyperbaric storage at and above RT 

 HS at and above RT seems to be a promising food preservation procedure due to 

the reduced energetic costs associated, as well by many other advantages brought by this 

technique as several studies have been performed in the last 4 to 5 years, which have 

revealed a positive impact of use HS at and above RT and showing outcomes such as 

improvement on the quality characteristics on food products along storage, as well shelf-

life extensions over RF (Freitas et al., 2016; Lemos et al., 2017; Pinto et al., 2017, 2016), 

among others, as displayed in the Table 3. The major advantages of HS/RT are the 
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reduced energetic spends, since energy is only required on the compression and 

decompression phases (of the pressure vessel) and no temperature control is needed 

(Fidalgo et al., 2014; Moreira et al., 2015; Pinto et al., 2016; Queirós et al., 2014; Santos et 

al., 2015). 
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Table 3: Studies concerning HS at and above room temperature (RT) up to 220 MPa. Adapted from Fernandes et al. (2014) with modifications. 

Product Conditions Period Outcomes Reference 

Tilapia filets 203 MPa/25 ºC 12 h 
Improved freshness than those stored at 0.1 MPa. Microbial count reduction 

of about 2.0 log CFU/g 
Ko et al. (2006) 

Sea cucumber 

guts 
60 MPa/30 ºC 24 h Reduction of the psychotrophic counts of about 0.9 log CFU/mL 

Okazaki et al. 

(2007) 

Watermelon 

juice 

100 MPa/18–21 ºC 60 h 
Inactivation plus inhibition of microbial growth up to 60 h. Extended shelf-

life at 0.1 MPa after HS 

Fidalgo et al. 

(2014) 

25–150 MPa/20–37 ºC 8 h 
Microbial growth inhibition at 75 MPa and inactivation at 100 and 150 

MPa. No significant changes on the physicochemical parameters 

Santos et al. 

(2015) 

100 MPa/18–21 ºC 7 days Shelf-life extension when compared to the juice kept at 4 ºC and 0.1 MPa 
Pinto et al. 

(2016) 

50–100 MPa/18-23 ºC 10 days 

Shelf-life expansion at 75 and 100 MPa, feasible inhibiting pathogenic 

surrogated microorganisms (E. coli and L. innocua) growth, minimal impact 

on enzymatic activities, mainly at 75 MPa 

Pinto et al. 

(2017) 

50–75 MPa/10–25 ºC  58 days 
Shelf-life extension at 50 MPa/10 ºC, 62.5 and 75 MPa. Colour parameters 

and pH less affected by HS than at 0.1 MPa (4 and 15 ºC) 

Lemos et al. 

(2017) 

Melon juice 25–150 MPa/20–37 ºC 8 h 

Stability verified at all temperatures for pressures above 50 MPa. Microbial 

growth inhibition achieved at 50/75 MPa and inhibition plus inactivation at 

100/150 MPa 

Queirós et al. 

(2014) 

Requeijão 

(Portuguese 

whey cheese) 

100-150 MPa/25–37 ºC 8 h 

Microbial load reduction after HS. Pressure retained the colour, pH and aW 

of the whey cheese. Lipid oxidation levels stable when compared to RF at 

0.1 MPa 

Duarte et al. 

(2014) 

Carrot soup 100-150 MPa/25-30 ºC  8 h 
Microbial growth inhibition at 100 MPa and inactivation at 150 MPa after 

HS. General physicochemical parameter similar to RF 

Moreira et al. 

(2015a) 
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Table 3: Studies concerning HS at and above room temperature (RT) up to 220 MPa. Adapted from Fernandes et al. (2014) with modifications (continued). 

Product Conditions Period Outcomes Reference 

Sliced cooked 

ham 
25–150 MPa/23–37 ºC 8 h 

HS was efficient to inhibit microbial growth at pressures above 50 MPa for 

similar levels of RF. Microbial inactivation at 100 and 150 MPa 

Fernandes et al. 

(2015) 

Caldo verde 

and bacalhau 

com natas 

50–150 MPa/21 ºC 12 h 
Microbial growth inhibition at 100 MPa and inactivation at 150 MPa. No 

significant changes on the physicochemical parameters evaluated 

Sílvia A. 

Moreira et al. 

(2015) 

Raw bovine 

meat 

50–150 MPa/21 ºC 12 h 

At 50 MPa it was faced a similar microbial development inhibition when 

compared to RF storage, while at 100 and 150 MPa it was verified an 

additional microbial inactivation effect Freitas et al. 

(2016) 

100 MPa/21 ºC 10 days 
The raw bovine meat shelf-life was extended over RF at 0.1 MPa and no 

significant differences were found on the quality parameters of the meat 

Strawberry 

juice 

25- 220 MPa/20 ºC 

15 days 

Samples stable for 15 days during HS and for more 15 days at RF (PHS)*. 

Microbial loads (yeasts and moulds and total aerobic mesophiles) below the 

detection limit after HS at 100 and 220 MPa 

Segovia-Bravo et 

al. (2012) 

50–200 MPa/20 ºC 

Pressure avoided spoilage of samples stored at 20 ºC for 15 days and kept 

the volatile profile of the strawberry juice similar to the initial samples 
Bermejo-Prada et 

al. (2015) Neither pectin-methylesterase (PME) catalytic activity was affected by 

pressure on strawberry extract, nor PME inactivation was found up to 200 

MPa 

Significant peroxidase inactivation on longer storage periods (5, 7 and 15 

days) and lower percent of polymeric colour at the 5
th
, 7

th
 and 10

th
 days at 

200 MPa, compared to samples stored at 0.1 MPa 

Bermejo-Prada 

and Otero (2016) 

25–200 MPa/20 ºC 

At 25 MPa the microbial growth was retarded, while at 50 MPa a microbial 

growth reduction was observed while higher pressures resulted in higher 

microbial loads reductions 

Bermejo-Prada et 

al. (2016) 

*PHS – Post-hyperbaric storage assay consisting on store a food product at RF conditions for an additional period of time after being subjected to HS conditions. 
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I.3.5. Storage costs estimations 

The potential energetic savings allowed by HS/RT were referred by several authors, 

such as Fernandes et al. (2014), Fidalgo et al. (2014), Freitas et al. (2016), Moreira et al. 

(2015), Pinto et al. (2016) and Segovia-Bravo et al. (2012), among others, with inherent 

economic and environmental gains, stating that energy would be only needed to compress 

and decompress the pressure vessel, since when the desire pressure was achieved, energy 

would not be needed to keep it during storage, along with the needless temperature control, 

thus, virtually, with no energetic costs. Although, until now this statement was only deeply 

investigated by Bermejo-Prada et al. (2017), who estimated that the energetic costs 

inherent to HS of 800 kg of strawberry juice at 25 MPa and RT (20 ºC) for 15 days was 

0.001 €/kg against 0.026 €/kg of RF. 

Although a great reduction of the energetic costs is associated to this new food 

preservation methodology, the equipment price can overlap that potential, mainly due to 

the costs of the pressure vessel, intensifiers and hydraulic pumps, which are considerably 

higher than the conventional RF facilities, which resulted, as estimated by Bermejo-Prada 

et al. (2017), in a total storage cost for HS of about 0.291 €/kg of strawberry juice, against 

0.081 €/kg for conventional RF. These costs include equipment maintenance and 

amortization (a measure of the initial investment depreciation), as well the inherent 

energetic costs (this last parameter seems to be the trump of HS/RT against RF). In 

addition, this study estimated HS/RT costs considering a completely loaded vessel 

(maximum mass of 2,000 kg) so it could be moved to a warehouse with a forklift. 

Moreover, as the storage pressure increases, the pressure vessel thickness required 

to keep it for long periods of time also increases, thus increasing the storage costs. As 

mentioned, despite the HPP equipment high initial cost, it did not stop its implementation 

in the food industry as a non-thermal pasteurization method, and as result, a decreasing 

trend in equipment costs was observed from 1996 until now. Innovations related to the 

HPP technology, such as HS, might lead to the arising of new manufacturers, which could 

also lower the price of these units (Mújica-Paz et al., 2011), even if specifically designed 

for HS, that would require less resistant units once the pressure levels employed on HS are 

considerably lower than in HPP. 
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I.3.6. Carbon footprint assessment 

As mentioned before, RF is the third major source of CO2 of all food industry (with 

490 megatons of CO2 released to the atmosphere in 2008), being even estimated that 35 to 

50% of the energetic consumptions in super and hypermarkets is due to RF and freezing 

facilities, representing 1% of the CO2 emissions worldwide (Gilbert, 2012; James and 

James, 2010). Thus, more environmentally friendlier food preservation methodologies are 

to be considered, in order to reduce the carbon foot-print related with RF, being HS a 

possible solution for this situation. Besides CO2, RF facilities are also responsible for 

considerable emissions of greenhouse effect gases, which are used as refrigerant on these 

facilities, belonging to a class of compounds known as chlorofluorocarbons (CFC’s) and 

hydrochlorofluorcarbons, which are responsible for ozone degradation (James and James, 

2010).  

The carbon footprint associated with HS of 800 kg of strawberry juice for 15 days 

was assessed by Bermejo-Prada et al. (2017) and compared with RF storage. The outcomes 

revealed that RF had a 26-fold higher carbon footprint when compared to HS (0.1085 kg 

CO2/kg against 0.0042 kg CO2/kg of strawberry juice, respectively). In what concerns RF, 

the two main sources of CO2 were the energetic consumption and the refrigerant leakage, 

while for HS the main source of CO2 emission was attributed to the hyperbaric chamber 

material, with an estimated emission of 0.0041 kg CO2/kg of strawberry juice, while the 

CO2 released by the energetic consumption was negligible (3x10
-5

 kg CO2/kg of strawberry 

juice), proving that HS is considerably less pollutant than the conventional RF processes. 

 From the social point of view, Bermejo-Prada et al. (2017) concluded that HS/RT 

could also be preferred over RF, since the pressure vessels could be shipped to foreign 

geographies where electricity is less available, thus providing safer food products, while 

contributing for a more sustainable food-chain industry. 
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I.4. Microbial spores – bacterial vs. fungal spores 

The identification of dormant forms of life was almost simultaneously found out by 

Koch (1876), Tyndall (1877) and Cohn (1877), namely the possibility of certain bacteria 

species spend part of their lifecycle on a dormant cellular structure named (by that time) as 

spore, being later renamed as endospore. In fact, there are several bacteria and fungi able to 

form spores (in a process named sporulation), although by different pathways, since 

bacterial sporulation is seen as an adaptive survival mechanism that is triggered when these 

microbes (such as Bacillus cereus or Clostridium botulinum) find unfavourable conditions 

at a particular environment, such as lack of nutrients, abrupt changes on the culture media 

(pH…), salinity, radiation, among other stress sources (Black et al., 2007; Wells-Bennik et 

al., 2016), being the resultant structures named endospores (Figure 4). 

 

Figure 4: Schematic representation of a Bacillus spp. endospore. Adapted from Reineke, Mathys, et al. (2013). 

Once the environmental conditions are more favourable for the bacterial survival, 

the endospore activates its germination pathways and originates a fully competent 

vegetative cell (Wells-Bennik et al., 2016). The formation of fungal spores is seen as an 

asexual reproduction mechanism, contrarily to the formation of bacterial endospores 

(Adams et al., 1998), being the resultant structure called ascospores. 

In this section, a special focus will be given to the bacterial endospores since they 

play a major role on the food industry, being a constant preoccupation among food 

industrials and authorities when it concerns food safety, despite the importance of 

ascospores for food industry too. 
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I.4.1. Formation and characteristics of bacterial endospores 

An extensive comprehension on the mechanisms that vegetative bacteria undergo to 

originate endospores is of upmost importance to understand how to avoid its formation and 

how to destroy or reduce its loads to minimal levels for food safety. 

The formation of an endospore begins when a healthy vegetative bacteria receives 

and precepts diverse environmental stimulus such as nutrient exhaustion (normally carbon 

and nitrogen starvation), elevated mineral concentration, pH at neutral values, abrupt 

temperature changes and high cell densities, and undergoes the differentiation process onto 

endospores (Sella et al., 2014). Once the stimulus are perceived, the cellular mass increases 

due to the accumulation of peptides that are secreted and sensed by the cell surface 

receptors, and the sequential activation of the master regulator Sp0A is activated (Molle et 

al., 2003).    

Then, the sporulation goes throughout seven stages (Figure 5), occurring as follows 

(Sella et al., 2014): 

 Stage I: Axial deposition of the nuclear material into filaments; 

 Stage II: Plasmatic membrane invagination (which occurs simultaneously with the 

segregation of the DNA molecule) in a non-symmetric position close to the cell 

extremity (pole), leading to the formation of a septum; 

 Stage III: Septum curvature, the immature spore is engulfed by the double membrane 

of the mother cell (similarly to phagocytose), resulting in a structure (forespore) 

entirely involved on the mother cell; 

 Stage IV: Development of the spore (from the forespore) in a process mediated by the 

mother cell. Assembly of both inner and outer proteic layers and synthesis of the spore 

cortex, which consists of a bushy peptidoglycan layer present between the inner and 

the outer membranes. Accumulation of calcium dipicolinate (Ca-DPA) within the 

spore nucleus; 

 Stage V: Synthesis of the spore coat resulting from the deposition of approximately 80 

proteins from the mother cell that are to be disposed on the inner and outer layers of 

the spore;  

 Stage VI: Maturation of the new spore. During this stage, the spore becomes heat and 

organic solvent resistant; 
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 Stage VII: Release of the mature spore by disruption the mother cell by the action of 

lytic enzymes. 

 

Figure 5: Mechanism of Bacillus spp. endospore’s formation from a vegetative cell. The sigma (σ) factors refer to 

specific transcription factors that are involved on the sporulation process. Adapted from De Hoon, Eichenberger, and 

Vitkup, (2010). 

Right after their formation, the spores can remain dormant for long periods of time, 

even for thousands or millions of years (Kort et al., 2005) since these structures show 

incredible resistance against physical, chemical, and environmental damages (Setlow, 

2006). 

 Regarding food industry, endospores are resistant to the majority of processing 

procedures (whose defence strategies are summarized in the Table 4), including thermal 

food processing (except commercial sterilization) such as pasteurization, as well to non-

thermal technologies as HPP (Sarker et al., 2015), ultraviolet (UV) light (Gayán et al., 

2013), pulsed light (Levy et al., 2012), ultrasounds (Chemat et al., 2011), pulsed electric 

field (PEF) (Pillet et al., 2016) and cold plasma (Schlüter and Fröhling, 2014). Despite 

irradiation seems to be an efficient non-thermal technology to achieve high rates of 

endospore inactivation, its use among foodstuff is still very limited due to safety issues and 

consumers reluctant acceptance (Li and Farid, 2016; Odueke et al., 2016).  
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Table 4: Mechanisms of endospore survival against physical and chemical treatments. Adapted from Reineke et al. 

(2013a). 

Sporicidal treatment Defence mechanism/ factors affecting the resistance 

Wet-heat 

Sporulation temperature 

Core level of Ca
2+ 

α- and β-type small acid soluble proteins (SASPs) 

Low water content in the spore core 

Dry-heat* 
DNA protection by α- and β-type SASPs 

DNA repair enzymes ExoA and Nfo (active during germination) 

Desiccation* DNA protection by α- and β-type SASPs 

Chemical resistance* 

Sodium chloride/ hypochlorite: Spore coat – coat proteins react and 

detoxify 

Hydrogen peroxide: DNA protection by α- and β-type SASPs 

Ionizing radiation* 

DNA repair enzymes ExoA and Nfo (active during germination) 

Decreased level of core water 

Sulfur-rich spore coat proteins and DPA 

Increased levels of Mn
2+

 and other divalent cations 

UV radiation* 

UV photochemistry of DPA DNA – formation of ‘spore photoproduct’ 

Error-free repair of spore photoproducts 

DNA protection by a- and b-type SASPs 

DNA repair enzymes ExoA (active during germination) 

Specific DNA repair system for spore photoproduct 

HPP 

Sporulation temperature 

Demineralization of the spore core 

Ability to retain DPA 

*Note: The marked sporicidal treatments are not of the aim of this thesis, thus the marked defence mechanisms will not 

be discussed. 

 

I.4.2. Germination mechanisms  

When the environmental conditions are favourable for the spore germination and 

outgrowth, the spore dormancy is surpassed and the germination process occurs in three 

fundamental stages (Figure 6A-B) (Sella et al., 2014), as follows: 

Stage I: Activation of the dormant spore induced by the presence of nutrients 

(germination inducers) such as low-molecular-weight amino acids, glucose, fructose and 

purine nucleosides that are detected by germination receptors (GR’s) present in the inner 

membrane of the spore (Paredes-Sabja et al., 2011). According with Yi and Setlow, (2010), 

the germination of B. subtilis spores is triggered by L-alanine (that binds to the germinant 

receptor gerA), L-valine or by a combination of L-asparagine, D-glucose, D-fructose and 

K
+
 (AGFK) that binds to the GR’s (namely on the receptors gerB and gerK). This results 

on the release of H
+
, K

+
, Na

+
 and Ca

2+
, leading to an increase of the spore core pH from 

6.5 to 7.7 (Sella et al., 2014). In addition, according with Paredes-Sabja et al. (2011) the 
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spore peptidoglycan layer is degraded by cortex lytic enzymes that are activated by the 

release of pyridine-2,6-dicarboxylic acid, commonly designated as dipicolinic acid (DPA) 

(whose concentration can reach 1 M on the spore core, representing 10 to 20% of the spore 

dry weight (Black et al., 2007)). The activation process do not necessarily implies 

germination and outgrowth of the spores, being considered a reversible process (Setlow, 

2006); 

Stage II: In accordance with Reineke, Mathys, and Knorr (2011), Setlow (2003), 

and Zhang et al. (2010), the second germination stage is characterized by the completion of 

cortex hydrolysis, and a rehydration of the spore core takes place, leading to the 

reactivation of biochemical pathways (since protein motility increases with rehydration) 

and loss of resistance mechanisms; 

Stage III: Hydrolysis of the spore coat for further outgrowth, originating a 

competent vegetative cell. During this stage, the SASPs that are bound to the spore DNA 

(protecting it from several stress sources) are degraded. 

 

 

Figure 6: Schematic representation of the nutrient-induced germination (a) and transmission electron micrograph during 

the successive germination stages (b) of Bacillus spp. endospores. Adapted from Black et al. (2007). 

Note: The Figure 6b omits the intermediate state between the germination stage II and the beginning of the outgrowth 

stage that is represented in Figure 6a. 

According with Sella et al. (2014) and Zhang et al. (2010), outgrowth consists of a 

transition state between the germinated spore and the growing cell, being observed cellular 

division. In this step, the spore uses its own reserve molecules (namely 3-phosphoglycerate 

that is laid up on the spore core) to generate adenosine triphosphate (ATP). On the latter 

stages of the outgrowth process, exogenous molecules (extracellular nutrients) are 

mobilized for the bacterial metabolism.  

(a) 

(b) 
Germination 

Stage I Outgrowth 
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Additionally, the germination process can also be triggered by non-nutrient agents 

such as cationic surfactants (dodecylamine), exogenous Ca-DPA, elevated pressures, 

specific peptidoglycan fragments, lysozyme and bryostatin (that activates Ser/Thr protein 

kinases) (Setlow, 2003; Shah et al., 2008; Wei et al., 2010). 

I.4.3. Occurrence of endospores on foodstuff 

I.4.3.1. Bacillus spp. 

These genus of bacteria are gram-positive, aerobic (or facultative aerobes in some 

cases) and spore-forming microorganisms, with a rod-shaped form (Turnbull et al., 1992). 

As above-mentioned, Bacillus spp. are able to produce endospores that are ubiquitous on 

the biosphere, although related with food poisoning illness or spoilage when those 

structures germinate and outgrows, leading to the production of enzymes and toxins, 

resulting in economic losses and/or health issues (Witthuhn et al., 2011).  

Endospores formed by the pathogenic B. cereus can be found in meat (Soni et al., 

2016), raw (Christiansson et al., 1999), and pasteurized (Eneroth et al., 2001) milk, dairy 

and in farinaceous products, being its prevalence on such low acidic products an health-

threat, since some strains of B. cereus are able to produce cereulide, an emetic toxin that 

destroys mitochondria, resulting in food poisoning illness (such as vomits and nausea) 

(Agata et al., 2002). This toxin is not destroyed by thermal pasteurization or sterilization 

processes, even at low (Corthouts and Michiels, 2016) and elevated pH values (Rajkovic et 

al., 2008), and the endospores that lead to its formation are known to be more heat-resistant 

than those that do not produce the toxin (Carlin et al., 2006). 

Furthermore, B. amyloliquefaciens is a non-pathogenic spore-former bacteria 

commonly found on milk and dairy products, being also heat-resistant to pasteurization or 

even ultra-high temperature (UHT) treatments (Scheldeman et al., 2006). In fact, Huemer, 

Klijn, Vogelsang, and Langeveld (1998) reported that spores of B. amyloliquefaciens were 

able to survive an UHT treatment at 130 ºC for 4 s, which means that more intense 

processes are needed to destroy these endospores, although, by increasing the temperature 

and/or the time of thermal exposure of the milk would result in quality loss and, 

consequently, consumers acceptance due to the compounds formed as a consequence of the 

Maillard reactions, among others (Van Boekel, 1998). 
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I.4.3.2. Alicyclobacillus spp. 

Alicyclobacillus acidoterrestris is a non-pathogenic, moderately thermophilic, 

acidophilic and spore-forming bacteria, whose occurrence in acidic fruit juices is common 

and expected (Heyndrickx, 2011), representing a concern among fruit juice producers. Its 

presence is mainly due to unwashed or insufficiently washed fruit surfaces, since A. 

acidoterrestris is a soil borne bacteria, whose endospores are quite heat resistant, 

presenting D-values of 65.6 min at 85 ºC and 11.9 min at 91 ºC in acidic orange juice (pH 

≈ 3.5), 57 min at 85 ºC and 16 min at 90 ºC for grape juice (pH ≈ 3.3), or 56 min at 85 ºC 

and 2.8 min at 95 ºC for apple juice (pH ≈ 3.5) (Silva et al., 1999), which are higher 

time/temperature binomials than those commonly employed on juice pasteurization 

processes by the industry before the discovery of this spore-forming bacteria on acidic 

juices in Germany, in 1984 (Walker and Phillips, 2008). These endospores are able to 

germinate and outgrowth after a heat shock (typically 86 ºC to 96 ºC for 15 seconds to 2 

min (Lee et al., 2002)), in a range of pH values of 2.5–6.0 and temperatures between 20 

and 60 ºC, resulting in high cellular densities that spoil fruit juices (Heyndrickx, 2011), 

causing production of guaiacol (2-methoxyphenol) that is responsible for antiseptic off-

flavours and odours (Corli Witthuhn et al., 2013; Walker and Phillips, 2008), as well as 

sediment deposition, cloudiness increase and discoloration in some juices (Tianli et al., 

2014). 

The heat-resistance of A. acidoterrestris endospores is intimately related with the 

temperature at which the sporulation process takes place, whereas lower sporulation 

temperatures confer lower heat-resistance. For example, Goto, Tanaka, Yamamoto, 

Suzuki, and Tokuda, (2007) reported that endospores prepared at 45 ºC presented D-values 

of 0.48 min at 110 ºC, contrarily to those sporulated at 65 ºC, whose D-value for the same 

temperature was 3.9 min. 

There are known at least eighteen species of the genus Alicyclobacillus spp. that are 

commonly found in the beverage industry, such as A. fastidious, A. acidiphilus, and A. 

herbarius, among others (Smit et al., 2011), being all able to form endospores and whose 

thermal resistance is quite different from each other. For example, A. acidocaldarius 

endospores are more heat-sensible than A. acidoterrestris, inasmuch the first one presents 

D-values of 10–12 min at 86 ºC (while for A. acidoterrestris the D-value is 65.6 min at 85 

ºC) (Wisotzkey et al., 1992). 
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Intrinsic parameters of the food products such as pH, water activity, brix degree, or 

characteristics regarding the bacterial species and strain are known to play a key-role on 

the thermal resistance of A. acidoterrestris endospores (Sinigaglia et al., 2003; Vieira et al., 

2002; Walker and Phillips, 2008), since the heat-resistance decreases at lower pH and 

increases at higher water activities (Goto et al., 2007). 

The most affected food products by A. acidoterrestris spoilage are pasteurized 

apple and orange juices, although Silva et al. (1999) reported its presence on high-acidic 

carbonated drinks and vegetable products, even after pasteurization, canning (sterilization) 

and UHT. 

I.4.3.3. Clostridium spp. 

The genus Clostridium is characterized by a variety of gram-positive, anaerobic 

spore-forming bacteria that includes both pathogenic and non-pathogenic species. A classic 

example of food poisoning illness is botulism, which is caused by the pathogenic 

microorganism C. botulinum that, under anaerobic conditions, produces an enterotoxin 

named botulinic toxin that causes muscular paralysis. This microorganism is commonly 

found in poorly sanitized slaughterhouse’s, leading to the contamination of meat products 

such as chorizos, hams and other meat products (Reddy et al., 2010).  

Under aerobic conditions, C. botulinum triggers the required sporulation 

mechanisms to form highly resistant endospores and when it founds once again anaerobic 

conditions (similarly to those found on the inside of chorizos, ham pieces or in cans) it 

starts to germinate and outgrows, with consequence production of the botulinic toxin 

(Olguín-Araneda et al., 2015). 

Moreover, C. perfringens is commonly found on soil, sewage, food products, feces, 

etc. being known to be the cause of several histotoxic infections such as clostridial 

myonecrosis, anaerobic cellulitis, wound infections and other infection originated on both 

human and animal intestine (Olguín-Araneda et al., 2015). 

I.4.4. Superdormant endospores 

Besides the germination occurs quickly by nutrient-induction, there is a small 

fraction of endospores that do not undergo the germination process, being considered 

superdormant spores, since they require longer periods of time to germinate, or instead a 

heat-shock is necessary to activate its germination (Gould, 1970; Wei et al., 2010). 
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These superdormant endospores are a threat to the food industry, due to their 

resistance to the thermal processing, being able to germinate, outgrowth and originate a 

vegetative cell leading to food poisoning illness or food spoilage (Markland et al., 2013). 

According with Setlow et al. (2012), the amount of superdormant endospores can be 

reduced by heat activation, higher quantities of nutrient germinants targeted to a specific 

GR, mixtures of nutrient germinants targeting multiple GR, or by increased numbers of 

GR’s per spore. 

I.4.5. Effect of pressure on bacterial endospores 

I.4.5.1. Resistance of endospores to hydrostatic pressure 

The sporulation temperature and culture media where the sporulation takes place 

were found to play a key-role on the pressure-resistance of both Bacillus spp. (Checinska 

et al., 2015; Margosch et al., 2004; Raso et al., 1998) and Clostridium spp. (Lenz and 

Vogel, 2015; Olguín-Araneda et al., 2015) endospores, as well the mineral content and the 

pH of the sporulation media (Atrih and Foster, 2002; Reineke et al., 2013a). The 

characteristics of the food product (pH, aW, mineral content) whereas the endospores are 

suspended are also to be considered when it comes to endospore resistance to HPP (Lenz 

and Vogel, 2015, 2014; Paredes-Sabja et al., 2007; Reddy et al., 2010). 

I.4.5.2. Composition and features of the food matrix 

The intrinsic characteristics of food products or matrices wherein the endospores 

are suspended, such as aW and pH, are to be taking into account when it comes to 

endospore resistance to HPP. In fact, the pH shifts (normally to lower values than the 

initial one) that occurs under pressure and high temperatures seem to influence the 

inactivation rates of endospores (Mathys et al., 2008).  

According with Black et al. (2007), acidic food products processed by HPP tend to 

evidence lower endospore loads, which means that such structures are more sensible to low 

pH when submitted to HPP, contrary to the aW, i.e., food products with lower aW offer a 

protection to endospores against HPP. Moreover, natural antimicrobials on food products 

can enhance the thermal inactivation of endospores (or inhibit it, as in the case of HPP as 

will be furtherly discussed). 
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I.4.5.3. Sporulation temperature 

The temperature at which the sporulation takes place is a key-factor among the 

resistance of endospores to the inactivation procedures. It was found for B. subtilis 

endospores by Igura et al. (2003) that by decreasing the sporulation temperature, the 

pressure resistance increased, since the spores obtained at 30 ºC presented the highest 

resistance to HPP among the endospores produced at higher temperatures (37 and 44 ºC) to 

a treatment in a pressure range between 100 and 300 MPa at 55 ºC for 30 min. The same 

resistance was observed by Olivier et al. (2012) for B. amyloliquefaciens, B. coagulans and 

B. sporothermodurans, concluding that there was a significant increase on B. 

amyloliquefaciens endospores resistance to HPP inasmuch the sporulation temperature was 

reduced from 37 to 30 ºC, which resulted on an increase on the D-values (110 ºC, 600 

MPa) from 0.58 to 4.0 min.  

This behaviour is precisely the opposite regarding thermal inactivation of 

endospores, since higher sporulation temperatures increase their heat-resistance (Igura et 

al., 2003), which might be related with the increase on the number of heat shock proteins 

as the sporulation temperature rises (Heredia et al., 1997). 

 Lenz and Vogel (2015) proved that the sporulation temperature plays a key-role on 

the resistance of C. botulinum type E (a non-proteolytic, psychrophilic and a toxin 

producer that undergoes sporulation in certain conditions) to HPP, since when sporulation 

took place at low temperatures (13 ºC), there was an increased pressure resistance than 

those sporulated at higher temperatures (38 ºC), whereas an almost-complete inactivation 

of the C. botulinum type E strain after a pressure/temperature treatment of 800 MPa/80 ºC 

for 10 min, against almost 2 log CFU/mL of spore counts sporulated at 13 ºC. 

I.4.5.4. Mineral content and pH of the sporulation media  

Igura et al. (2003) studied the effect of the mineral content on the pressure 

resistance of B. subtilis endospores. The outcome was that after demineralization of the 

endospores, the pressure resistance increased. This process was reversible by the addition 

of Ca
2+

 and Mg
2+

 to the endospores, nevertheless, the pressure resistance did not decrease 

by adding Mn
2+ 

or K
+
, what, according with Reineke et al. (2013a), might be related with 

the activation of the endospore’s cortex lytic enzymes (CLE’s) by Ca
2+

 and Mg
2+

 during 

the germination induced by pressure. 
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A similar behaviour was noticed by Olivier et al. (2012) for B. coagulans and B. 

sporothermodurans endospores, notwithstanding it was reported that the pressure 

resistance of B. amyloliquefaciens decayed after the addition of minerals to the culture 

media. In contrast, the heat-resistance of endospores is known to increase with the addition 

of minerals to the endospore’s culture media (Lenz and Vogel, 2014).  

 Oh and Moon (2003) evaluated the resistance of B. cereus to HPP as a function of 

the sporulation pH. The results showed that endospores prepared at pH 6.0 were more 

pressure-resistant than those obtained at pH 8.0 at pressures of 600 MPa (20 to 60 ºC, 15 

min), unlike the endospores of B. subtilis that, according with Nguyen et al. (2011), when 

sporulated at pH 10 evidenced increased pressure-resistance when compared to those 

sporulated at pH 6 after treatment at 350 MPa at 40 ºC for 60 min. 

I.4.5.5. Endospore strain 

 The resistance of several Clostridium spp. (such as the opportunistic pathogen C. 

perfringens) to HPP is attributed to the lack of inner membrane GR’s, which represents a 

threat to the food industry (and, consequently, to the consumers themselves), while those 

species that endue the inner membrane GR’s are suitable to be inactivated by HPP, 

although by different mechanisms, depending on the applied pressure (Doona et al., 2016). 

Moreover, according with Reineke et al. (2013a), as high pressure decreases the fluidity of 

microbial membranes, the inner spore membrane (of endospores) might keep its fluidity 

even under high pressure, acting as a barrier against HPP, thus resisting to such treatment. 

I.4.5.6. Antimicrobials (chemicals and enzymes) 

Certain compounds as carvacrol were reported to inhibit the inactivation of 

endospores by HPP (combined with high temperatures), while it stimulates the germination 

at high temperatures (50 to 60 ºC) at atmospheric pressure (AP), suggesting that carvacrol 

strongly suppressed the physiological germination during HPP (at temperatures lower than 

65 ºC) (Luu-Thi et al., 2015), as well chemical compounds containing Hg
2+

 are known to 

inhibit the release of DPA of the endospore core (both pressure-induced and nutrient-

induced germinations). 

Regardless of the use of mild heat, or even high temperatures (such as in pressure-

assisted thermal sterilization) to destroy endospores, several studies reported the possibility 

of using chemical agents and/or to enhance its inactivation by HPP (Sarker et al., 2015; 
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Soni et al., 2016), while the same effect might not be verified when enzymes are used as 

antimicrobials. For example, Sokołowska et al. (2012) reported that the inactivation ratio 

of A. acidoterrestris by HPP at 300 MPa at 50 ºC for 30 min in apple juice supplemented 

with lysozyme was practically the same for the same treatment without lysozyme 

supplementation (independently of the lysozyme concentration). López-Pedemonte et al. 

(2003) reported that the inactivation of B. cereus endospores by HPP was not enhanced by 

the addition of lysozyme, suggesting that the feasibility of lysozyme against endospores is 

not as successful as for vegetative microorganisms.  

I.4.6. Pressure-induced germination of endospores 

According with Reineke et al. (2012), pressure is a suitable stimulus to trigger the 

germination and/or inactivation of endospores by different pathways, varying with the 

pressure and temperature employed on the matrix. Reineke et al. (2013a) and Black et al. 

(2007) reviewed how different pressure ranges are able to induce non-nutrient germination, 

that can be divided in two kinds of germination: (1) nutrient-like physiological 

germination, whereas the germination is induced not by presence of nutrients but by the 

fact that pressure triggers the spore nutrient receptors; (2) non-physiological germination 

process, which occurs at elevated pressures than in nutrient-like physiological germination, 

where a release of DPA from the spore core takes place by direct opening of the spore 

DPA-channels, as a result of structural changes on the spore membrane proteins enhanced 

by high pressure. 

At low pressures (<150 MPa), the nutrient-like physiological germination pathway 

seems to be predominant, while it is stipulated that the germination of spores between 100 

and 200 MPa is more likely to be a non-physiological germination, being the germination 

rates inversely proportional to the pressure applied (the higher the pressure level, the lower 

the nutrient-like physiological germination rate and vice-versa). Moreover, it seems that 

the endospores have different sensibilities and respond (according with the species) to the 

same pressure level and an overlap of the germination mechanisms is common for different 

species subjected at the same pressure level (Reineke et al., 2012). 

Thus, Reineke et al. (2013a) also stated how germination can be induced differently 

according with the pressure at low (up to 400 MPa), moderate (up to 600 MPa) and 

elevated (>600 MPa) pressures. Thus, the following sections aim the compilation of the 
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studies concerning the effect of different pressure levels on bacterial spores, both solely 

germinated under pressure and pressure-induced germination with further processing. It is 

opportune to point out that the concept of low, moderate, high and very high pressures 

varies between the authors, thus it was defined on the aim of this thesis that low pressures 

are up to 300 MPa, high pressures at 600 MPa and very high pressures are to be higher 

than 600 MPa. 

I.4.6.1. Germination induced by low hydrostatic pressure (<300 MPa) 

As reviewed by Black et al. (2007), HPP is suitable to trigger the germination of 

endospores, stating that is the main reason why HPP can result on endospores inactivation. 

In fact, several authors reported that low pressures (up to 300 MPa) are able to induce 

germination of endospores, making them more sensitive to subsequent high pressure 

treatments combined (or not) with temperature. A special focus will be given to the 

germination triggered by low hydrostatic pressure (also known as nutrient-like induced 

germination) since it includes the range of pressures employed in HS studies (up to 220 

MPa). 

According with Reineke et al. (2011), pressures below 300 MPa are suitable to 

induce the germination of Bacillus spp. due to the activation of some inner membrane 

GR’s, depending on the pressure-holding time and the applied temperature, even on the 

absence of nutrients. For instance, Paidhungat et al. (2002) studied the germination 

mechanisms of B. subtilis at 100 and 550 MPa, and found out that after 30 min at 100 MPa 

and 23 ºC, the germination was induced by the activation of the GR’s on the inner 

membrane.  

A structural analysis of B. subtilis endospores suspended on N-(2-acetamido)-2-

aminoethanesulfonic acid (ACES) buffer, submitted to a pressure level of 150 MPa for 90 

min at 30 ºC resulted on the release of DPA and further activation of the CLE’s that were 

responsible for the reduction on the thickness of the peptidoglycan layer of the endospores 

(Figure 7), proving that nutrient-like physiological germination shares common steps with 

the nutrient-induced germination (Reineke et al., 2013). 
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Figure 7: On the left (a-b), B. subtilis endospores aspect before the experiments. On the right, focused ion beam 

sectioned B. subtilis endospores after a pressure treatment at 150 MPa at 37 ºC for 5, 15, 30 and 90 min. Adapted from 

Reineke et al. (2013). 

When it comes to Clostridium spp., the same phenomenon might not be verified, 

since Doona et al. (2016) reported that at 150 MPa and 37 ºC for 20 min resulted in less 

than 4% of C. difficile becoming dark on phase contrast microscope, meaning that 

germination was slightly induced but not completed, whereas there was only a small 

release of dipicolinic acid from the spore core, although, Reineke et al. (2011) and 

Sokołowska et al. (2015) suggested that the germination rate induced by hydrostatic 

pressure is inversely proportional to the employed pressure level, i.e., lower pressure levels 

tend to stimulate more the germination than elevated pressure levels, as aforesaid. 

A compilation of studies regarding the induction of germination at low pressures is 

presented in the Table 5 for several Bacillus and Clostridium spp, describing the outcomes 

of each pressure/temperature/time treatment. 

In coherence with Shigeta et al. (2007), the highest germination rates were found at 

a temperature of 40 ºC for all the studied microorganisms (B. subtilis, B. cereus and B. 

polymyxa), even though this study was performed at a range of temperatures between 30 

and 80 ºC, suggesting that, from a certain temperature (above 40 ºC – thought to be the 

optimal temperature of CLE’s), the germination does not occur, or is less extended than at 

lower temperatures, even when the endospores are subjected to low pressures to induce 

germination, which means that low pressure-induced germination can be overcome at 

temperatures higher than the optimal temperature of the CLE’s, what was also found by 

Aoyama et al. (2005a) for several Bacillus spp. endospores.  
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One of the strategies to attempt higher spore counts reductions relies on oscillatory 

pressure treatments, consisting on the application of mild pressure levels and temperatures 

for short periods of time to trigger the germination process, followed by intense pressure 

exposure (Black et al., 2007). Gola et al. (1996) reported 4 log CFU/mL of B. 

stearothermophilus in phosphate buffer after a double-pulse treatment of 200 MPa at 20 ºC 

for 1 min and then at 900 MPa at 20 ºC for 1 min, while for B. cereus, an inactivation 

strategy consisting on a pressure exposure of 60 MPa at 20 ºC for 230 min and then a 

pressure increment to 300 and 400 MPa at 30 ºC for 15 min, resulted in 2.4 log CFU/mL of 

spores inactivation (López-Pedemonte et al., 2003). 
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Table 5: Compilation of studies regarding the induction of the germination of endospores by hydrostatic pressure up to 300 MPa. 

Microorganism 
Optimum germination conditions

[1]
 

Matrix Reference 
Conditions Outcomes 

B. 

stearothermophilus 

60 MPa/40 ºC/12 h Reduction of about 1 log CFU/mL on the spore counts Phosphate buffer Furukawa et al. (2001) 

40 and 50 MPa/55 ºC/4 h 
Reduction of about 1.72 and 2.1 log CFU/mL on the spore 

counts at 40 and 50 MPa, respectively 

Gifu anaerobic 

broth (GAM 

broth) Aoyama et al. (2004) 

50 MPa/55 ºC/ 48 h 
Reduction of about 2.7 log CFU/mL on the total spore 

counts 
Minced anchovies 

B. coagulans 

40 and 50 MPa/55 ºC/4 h 
Reduction of about 1.0 log CFU/mL of the total spore 

counts at 50 MPa 
GAM broth 

Aoyama et al. (2004) 

60 MPa/55 ºC/48 h Reduction of about 1.0 log CFU/mL on the spore counts Minced anchovies 

100-300 MPa/40 ºC/10 

min 

Spore germination up to 2 log CFU/mL observed on both 

matrixes 

Citric acid and 

phosphate buffers 

Vercammen et al. 

(2012) 

60 MPa/40 ºC/24 h Reduction of about 5.8 log CFU/mL GAM broth Aoyama et al. (2005a) 

B. cereus 

60 MPa/30 ºC/3.5 h Lethality of about 1.7 log (N0/N) Curd cheese 
López-Pedemonte et 

al. (2003) 

20-100 MPa/40 ºC/1 h 
Germination ratio up to 5 log CFU/mL and inactivation 

ratio of almost 2 log CFU/mL at 100 MPa 
Glucose broth 

Shigeta et al. (2007) 

20-100 MPa/40 ºC/1 h 
Germination ratio up to 4 log CFU/mL and inactivation of 

about 2 log CFU/mL at 100 MPa 
Phosphate buffer 

60 MPa/40 ºC/24 h Reduction of about 5.4 log CFU/mL GAM broth Aoyama et al. (2005a) 

[1] In each case, optimum germination conditions refer to the cases whereas the maximal germination and/or inactivation was found at pressure levels up to 300 MPa. 

 



 

34 

Table 5: Compilation of studies regarding the induction of the germination of endospores by hydrostatic pressure up to 300 MPa (continued). 

Microorganism 
Optimum germination conditions

[1]
 

Matrix Reference 
Conditions Outcomes 

B. subtilis 

100-600 MPa/40 ºC/30 min 
Fraction of survivors was minimal after 200 MPa 

treatment 

Potassium 

phosphate buffer 
Wuytack et al. (1998) 

40-60 MPa/40 ºC/4 h 
Pronounced reduction at 60 MPa (≈ 5.7 log CFU/mL) of 

the total spore count 
GAM broth 

Aoyama et al. (2004) 

60 MPa/40 ºC/48 h Reduction >4.7 log CFU/mL of the total spore counts Minced anchovies 

60 MPa/40 ºC/24 h Reduction of about 5.0 log CFU/mL of spore counts GAM broth 

Aoyama et al. 2005b) 

80 MPa/60 ºC/2 h 

Reduction of about 1.0 log-cycle on the spore counts 
Phosphate buffer 

Three log-cycle reduction of spore counts, almost all 

spores were phase-dark under phase contrast microscopy 
Glucose broth 

100 MPa/40–60 ºC/1 h Spores germinated approximately 4 and 1.5 log-cycles at 

40 and 60 ºC, respectively 
Glucose broth 50–300 MPa/40-60 ºC/30 

min 
Germination ratio of 0.95 log-cycles at 100 MPa and 40 

ºC and 0.85 log-cycles at 100 MPa and 60 ºC 

50–300 MPa/40-60 ºC/30 

min 

Germination ratio of 1.7 log-cycles/100 MPa at 40 ºC and 

1.4 log-cycles/100 MPa at 60 ºC 
Phosphate buffer 

20–100 MPa/40 ºC/60 min 
Germination ratio up to 5 log CFU/mL and no significant 

inactivation of spores 
Glucose broth 

Shigeta et al. (2007) 

20–100 MPa/40 ºC/60 min 
Germination ratio up to 4 log CFU/mL and no significant 

inactivation of spores 
Phosphate buffer 

80 MPa/38 ºC/5 h Reduction of almost 5 log CFU/mL on spore counts McIlvaine buffer Obaidat et al. (2015) 

[1] In each case, optimum germination conditions refer to the cases whereas the maximal germination and/or inactivation was found at pressure levels up to 300 MPa. 
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Table 5: Compilation of studies regarding the induction of the germination of endospores by hydrostatic pressure up to 300 MPa (continued). 

Microorganism 
Optimum germination conditions

[1]
 

Matrix Reference 
Conditions Outcomes 

B. lincheformis 60 MPa/40 ºC/24 h 
Reduction of about 5.9 log CFU/mL on the total spore 

counts 
GAM broth Aoyama et al. (2005a) 

A. acidoterrestris 

100–500 MPa/50 ºC/20 min 

Germination and inactivation levels reached 3.75 and 2.02 

log CFU/mL at 200 MPa (similarly to 300 MPa) 
McIlvaine buffer 

Sokołowska et al. 

(2015) 

Pronounced germination at a pressure range of 100-300 

MPa, no significant inactivation on such pressure range 

Maximum germination and inactivation at 200 MPa (of 

about 3.59 and 1.95 log CFU/mL, respectively) 

Commercial apple 

juice 
200 MPa/20–50 ºC/30 min 

Germination and inactivation of about 2.04 and 0.65 log 

CFU/mL, respectively at 20 ºC and 4.06 and 2.76 log 

CFU/mL, respectively at 50 ºC  

C. sporogenes 

40/50 MPa/30 ºC/4 h 
Reduction of about 0.50 log CFU/mL on the total spore 

count 
GAM broth 

Aoyama et al. (2004) 

50 MPa/30 ºC/48 h 
Decrease of about 0.60 log CFU/mL on the total spore 

count 
Minced anchovies 

[1] In each case, optimum germination conditions refer to the cases whereas the maximal germination and/or inactivation was found at pressure levels up to 300 MPa. 
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I.4.6.2. Germination induced by high hydrostatic pressure (up to 600 

MPa) 

Also known as non-physiological germination, the germination triggered by 

elevated hydrostatic pressures seems to be quite different from nutrient- and nutrient-like 

physiological induced germinations, since non-physiological germination induces the 

endospore germination by bypassing the individual germination steps aforementioned 

(Reineke et al., 2013a). 

The increase of the processing temperature at high pressures enhances the 

inactivation rates of endospores on food products when compared to the same processing 

conditions at RT. For example, Moerman, Mertens, Demey, and Huyghebaert (2001) found 

out that a temperature increment of 30 ºC on the initial processing conditions (from 20 to 

50 ºC and 400 MPa for 30 min) led to an inactivation of almost 4 log CFU/mL of two 

Bacillus spp. spores in minced pork, similarly to C. sporogenes, in which a temperature 

increase on the processing conditions (from 20 to 60 ºC and 400 MPa for 30 min) resulted 

in a reduction of about 3 log CFU/mL in distilled water. 

A structural analysis of B. subtilis endospores performed by Reineke et al. (2013) 

revealed a porous network in the spore core (Figure 8) after a treatment at 550 MPa at 37 

ºC for 60 min, suggesting that the spores submitted at such pressure levels and moderate 

temperatures were able to release DPA and degrade their cortex, but not their SASPs (that 

are degraded during nutrient-induced germination), which is attributed to an inactivation of 

the germination protease (Gpr), being essential for a rapid degradation of SASP.  

 

Figure 8: Focused ion beam sectioned scanning electron microscopy and transmission electron microscopy images of B. 

subtilis endospores after a pressure treatment at 550 MPa and 37 ºC for 60 min. Adapted from Reineke et al. (2013). 

At high hydrostatic pressures, it was also proved by Paidhungat et al. (2002) that 

the germination of B. subtilis endospores lacking the majority of the GR’s submitted to 550 
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MPa and 40 ºC for 30 min was due to the direct opening of the DPA-channels located on 

the spore’s inner membrane, with DPA release that led to the later stages of the 

germination steps, similarly to a germination assay with a mutant strain of B. subtilis 

endospores lacking the nutrient germination receptors performed at 200 MPa at 

temperatures lower than 50 ºC for 30 min, resulting in the release of DPA (Reineke et al., 

2011). This means that high hydrostatic pressure is more likely to trigger the cortex lysis 

(Black et al., 2007), once DPA activates the CLE’s (namely CwlJ, which is more 

responsive to DPA) (Moir, 2006). 

In short, non-physiological germination is retarded at pressures below 200 MPa 

(with few exceptions) and it is dominant in a pressure range of 300 to 600 MPa at 

temperatures below 60 ºC. At these conditions, non-physiological germination result in Ca-

DPA complex release from the spore core, with partial hydration of such compartment. A 

full and complete core hydration though is retarded in a pressure range of 400 to 600 MPa 

and temperatures below 50 ºC, possibly to the inactivation of the Gpr. This intermediate 

state of partial core hydration can be surpassed and an extended inactivation can be 

achieved if the employed temperature increases, leading to spore inactivation (Black et al., 

2007; Reineke et al., 2013a). 

I.4.6.3. Germination induced by very high pressure (>600 MPa) 

When performed at moderate temperatures (<60 ºC) and pressures higher than 600 

MPa, the endospore response seem to share common steps with the non-physiological 

germination performed at 400-600 MPa at temperatures below 60 ºC. 

Attempts to destroy B. coagulans endospores in tomato sauce (pH 4.2 and 5.0, at 

pressures up to 800 MPa at temperatures of 25, 40 and 60 ºC for 10 min) were made by 

Vercammen et al. (2012). After processing at 800 MPa at both 25 and 40 ºC, the microbial 

counts reached similar levels to those submitted at lower pressures (100 to 700 MPa) for 

both pH’s, being only verified higher inactivation rates at 60 ºC for pressures higher than 

600 MPa, also for both pHs.  

As regards to Clostridium spp. endospore’s response under very high pressures, 

Reddy et al. (1999) revealed that no germination was observed for C. botulinum type E 

(Alaska and Beluga strains) in phosphate buffer (0.067 M at pH 7.0) after a pressure 

treatment of 827 MPa for 5 min at temperatures below 35 ºC, although, by increasing the 
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processing pressure and temperature, it was achieved Alaska’s spore count reductions of 

about 5 log CFU/mL after 10 min of processing at 40 ºC and 5 log CFU/mL of reduction 

for both Alaska and Beluga spore counts at 827 MPa for 5 min by increasing the 

processing temperature from 35 ºC to 50 and 55 ºC, respectively. The results proved that 

the processing time and temperature have an amplified effect when it comes to endospore 

germination and inactivation at very high pressures, which is relevant for processing 

design and modelling to reach commercial sterilization or, at least, acceptable microbial 

levels to ensure food safety. 

I.5. Objectives 

As aforesaid, the conventional RF processes are known to have an inhibitory effect 

on the germination and outgrowth of endospores for a certain period of time, being the 

product shelf-life determined by the processing technique, as well by its intrinsic pH and 

aW, along with other factors. As HS/RT has been proposed as a new preservation 

methodology to replace the RF processes, it is of upmost importance its feasibility 

evaluation on endospores to validate it is a safe preservation technique. 

Thus, this thesis aims the study of HS/RT as a safe alternative to the cold (1-7 ºC) 

storage techniques for food preservation when it comes to endospores, using B. subtilis and 

A. acidoterrestris, which were inoculated on three nutritionally different matrices 

(McIlvaine buffer, carrot and commercial apple juices, and BHI-broth), due to the scarcity 

of data on the literature concerning the behaviour of such biological structures at HS 

conditions, as well to give a first insight on the matrix influence on the endospore 

behaviour at such conditions. 

To fulfil the aforementioned goals, microbiological analyses were performed for all 

the matrices inoculated with both endospores. 

I.6. Chosen case-studies 

I.6.1. Endospores 

The B. subtilis endospores were chosen since they are the most studied endospores and 

information regarding their behaviour and response under pressure is available on the 

literature, being also associated with food spoilage. A. acidoterrestris endospores were 

chosen due to fact of being related with spoilage of acidic fruit juices, resulting in losses 

for the food industry. 
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I.6.2.  Matrices 

Nutritionally distinguishable inoculation matrices were chosen for each endospore, 

as summarized in the Table 6. 

Table 6: Chosen inoculation matrix/matrices for each studied endospores. 

Microorganism Inoculation matrix 

B. subtilis ATCC 6633 

McIlvaine buffer 

Carrot juice 

Brain-heart infusion broth 

A. acidoterrestris ATCC 49025 Commercial apple juice 

 

Citrate-phosphate buffer, also known as McIlvaine buffer, consists of different 

proportions, according with the desired final pH, of stock solutions of citric acid and 

disodium hydrogen phosphate, having a large range of pH, from 2.2 to 8.0 (McIlvaine, 

1921). In fact, that was the main reason why this buffer was chosen to be inoculated with 

B. subtilis endospores, along with the availability of literature regarding the behaviour of 

this endospore under high hydrostatic pressure, namely on inactivation studies (Obaidat et 

al., 2015). The fact that McIlvaine buffer is a nutrient-free matrix that cannot unleash the 

nutrient-induced germination pathways of endospores (Reineke et al., 2013a), allowed to 

evaluate the effect of the low pressures (the ones used on HS) on such biological 

structures, in order to infer if the composition of the inoculation matrix could influence the 

endospore behaviour at different storage conditions. 

Raw carrot (Daucus carota subsp. Sativus) juice is a common example of a highly 

perishable juice (due to its high water content and pH close to neutral values) that does not 

hurdle the microbial development, resulting in quick spoilage, even at RF conditions, 

representing a worst-case scenario on food preservation (Aneja et al., 2014). These were 

the main reasons for this product selection as a case-study to evaluate the HS effect on B. 

subtilis endospores. The common nutritional composition of raw carrot is summarized in 

the Table A1 (Appendix A). 

 BHI-broth is a general, non-specific liquid culture media containing brains and 

hearts infusions of cow and porcine that, when supplemented with yeast extract or sodium 

chloride, becomes even richer for bacteria cultivation. In fact, the brain and heart infusions, 
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along with the peptones, are important carbon and nitrogen sources (Merck, 1996). Due to 

its very rich nutritional content, it was chosen as an inoculation matrix to evaluate if the 

matrix composition influenced the endospore behaviour under HS conditions. The BHI-

broth composition used in this master thesis is summarized in the Table A2 (Appendix A). 

Apple (Malus domestica) juice is a typical example of acidic fruit juice, widely 

consumed worldwide. As A. acidoterrestris are frequently found on acidic fruit juices 

(Tianli et al., 2014) such as apple juice, this product was chosen as a case-study in order to 

understand the behaviour of this endospore under HS conditions and acidic pH (3.50 ± 

0.01). The nutritional content of the apple juice is summarized on Table A3, at the 

Appendix A). 
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I.7. Schedule 

The development of this thesis consisted, generally, on three distinguishable stages, as 

illustrated in Figure 9. 

 September to October of 2016: Literature review regarding the concept of HS and 

endospores was performed in the aim of the curricular unit “Seminar in 

Biotechnology”; 

 

 October of 2016 to February of 2017: Experimental work regarding B. subtilis 

endospores were made, namely microbiological analyses and attempts to quantify 

dipicolinic acid for each chosen matrix; 

 

 March to July of 2017: Experimental work aiming A. acidoterrestris endospores took 

place, namely microbiological analyses. Elaboration of a research note regarding the 

results obtained with the B. subtilis endospores and collaboration on a review article 

concerning the HS concept. 

 

 

 

 

 

  

 

 

 

  

September to October, 2016 
Literature review 

October, 2016 to February, 2017 
B. subtilis endospores experiments 

March to July, 2017 
A. acidoterrestris endospores experiments 

Figure 9: Used schedule on the organization of the thesis inherent work (timeline not on scale). 
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Chapter II – Materials and methods 
 

THIS SECTION COMPRISES A DETAILED DESCRIPTION OF ALL THE METHODOLOGIES 

EMPLOYED ON THIS WORK, SUCH AS MICROBIOLOGICAL AND PHYSICOCHEMICAL 

ANALYSES. 
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I.1. Culture media and reagents 

Physiological solution (0.9% NaCl), citric acid, Bacillus acidophilus agar (BAT-

agar), potato dextrose broth (PDB), potato dextrose agar (PDA) and plate count agar 

(PCA) were purchased from Applichem Panreac (Darmstadt, Germany), brain-heart 

infusion (BHI) broth and BHI agar were obtained from Oxoid (Cheshire, United 

Kingdom), sodium phosphate dibasic was purchased from Riedel-de Haën (Seelze, 

Germany), dipicolinic acid (DPA), terbium-chloride hexahydrate and sulphuric acid was 

bought from Sigma-Aldrich (Seelze, Germany), and N-(2-acetamido)-2-

aminoethanesulfonic acid (ACES) buffer was purchased from Biochem Chemopharma 

(Cosne-Cours-sur-Loire, France). 

I.2. Matrices preparation 

I.2.1. McIlvaine buffer 

 

The McIlvaine citrate-phosphate buffer (0.2 M of Na2HPO4 and 0.1 M of citric 

acid) at pH 6.00 was prepared as proposed by McIlvaine (1921). 

I.2.2. Carrot juice 

Fresh carrots (Daucus carota subsp. Sativus) were purchased at a local 

supermarket. Then, the carrots were washed with distilled water to remove dust and other 

adhered particles and cut in small pieces that were crushed with a blender (for each 150 g 

of carrots, 300 mL of distilled water were added). The juice was then filtered with a cotton 

filter to remove coarse particles, stored in plastic containers and then frozen at -45 ºC until 

use. Afterwards, the juice was heat-sterilized on the autoclave at 121.1 ºC for 15 min. 

I.2.3. Brain-heart infusion broth 

BHI-broth was prepared according to the instructions provided by the supplier. For 

each 37 g of BHI-broth powder, 1 L of distilled water was added. Then, it was heat-

sterilized on the autoclave at 121.1 ºC for 15 min. 

I.2.4. Commercial apple juice 

Commercial apple juice (UHT, Figure A1 – Appendix A) was purchased at a local 

supermarket (Jumbo, Auchan Portugal Hipermercados, S.A), whose nutritional 

specifications are described in the Table A3 (Appendix A) 
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The commercial apple juice was not sterilized before the inoculations, since it is an 

UHT acidic fruit juice, and preliminary microbiological analyses on general (PCA and 

BHI-agar) and specific (BAT-agar) culture media (for A. acidoterrestris) were unable to 

detect microbial counts. 

I.3. pH and water activity 

As the main purpose of this study concerns the HS evaluation on endospores, and 

as both aW (Sevenich et al., 2015) and pH (Black et al., 2007; Reineke et al., 2013a) are 

known to influence endospore behaviour under pressure, the pH of both carrot juice and 

BHI-broth were adjusted to 6.00 with filter-sterilized citric acid (0.1 M), while the aW was 

just measured with a hygrometer (Lab Swift – aW, Novasina AG, Switzerland) and the 

values are displayed in the Appendix A. The pH of the commercial apple juice was not 

adjusted once A. acidoterrestris endospores are common on such matrices on the range of 

acidic pH. The pH of all matrices was measured at 25 ºC with a properly calibrated glass 

electrode (pH electrode 50 14, Crison Instruments, S.A., Spain). 

I.4. Endospore preparation 

I.4.1. B. subtilis endospores 

 The B. subtilis endospores were prepared as proposed by Reineke et al. (2013), with 

minor modifications. B. subtilis ATCC 6633 (DSM-347), purchased from Deutsche 

Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany), was 

grown in BHI-agar at 30 ºC for 24 h. Then, a single colony was isolated to obtain an 

overnight liquid culture (in BHI-broth, kept at 30 ºC with shaking at 150 rpm). Hereafter, 

the liquid culture was aseptically spread-plated (0.1 mL) onto BHI-agar plates and 

incubated at 30 ºC for 24 h. The sporulation process was verified by phase-contrast 

microscopy, and it took 15 days to achieve more than 95% of bright-phase endospores. 

Afterwards, the endospores were harvested by flooding the cultures with cold (4 ºC), sterile 

distilled water, and by scratching the agar plates with a bend glass rod, following washed 

three times with cold, sterile distilled water by centrifugation (10 min at 5,000 ×g at 4 ºC). 

The washed endospores were stored in distilled water and kept in the dark at 4 ºC until use. 
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I.4.2. A. acidoterrestris endospores 

A. acidoterrestris ATCC 49025 (DSM-3922) was obtained from DSMZ. This 

microorganism was grown in Bacillus acidoterrestris agar (BAT-agar) at 45 ºC for 5 days, 

afterwards, a single colony was isolated and a liquid culture was grown in PDB that was 

incubated at 45 ºC for 2 days with shaking at 150 rpm. Then, the liquid culture was spread-

plated (0.1 mL) onto PDA plates and kept at 45 ºC for 5 days (Witthuhn et al., 2011), 

followed by a routinely checking of the sporulation state of the bacteria, taking 20 days to 

achieve more than 95% of bright-phase endospores. Then, the endospores were harvested 

as described for the B. subtilis endospores. The washed endospores were kept in the dark at 

4 ºC in sterile distilled water until use. 

I.5. Endospore inoculations 

After sterilization, 2.7 mL of each matrix were aseptically placed in UV-light 

sterilized, low permeability polyamide–polyethylene, bags (PA/PE-90, Plásticos Macar – 

Indústria de plásticos Lda., Palmeiras, Portugal) (8.0 x 2.5 cm), using a laminar flow 

cabinet (BioSafety Cabinet Telstar Bio II Advance, Terrassa, Spain) to avoid 

contaminations. Then, 300 µL of B. subtilis endospore suspension was inoculated in 

McIlvaine buffer, carrot juice and BHI-broth , at a concentration of about 10
6
-10

7 
cells/mL, 

while the A. acidoterrestris endospores were inoculated in commercial apple juice, at a 

concentration of about 10
4
 cells/mL 

The endospores used in this thesis were not heat-treated to avoid changes on its 

pressure resistance in order to simulate the worst-case scenario on food preservation (low 

acidic and elevated aW matrices containing non-heat-treated endospores that are known to 

be more pressure-resistant than those heat-treated) (Vercammen et al., 2012). 

I.6. Storage conditions 

The storage experiments were carried out at 25, 50 100 MPa for 60 days at 

naturally variable/uncontrolled RT (18-23 ºC), as summarized in the Table 7, using a high 

pressure equipment, using a mixture of propylene glycol and water (40:60 v/v) as the 

pressurization fluid. Simultaneously, two control samples were kept at AP and RT 

(AP/RT) and at RF (4 ºC), submersed in the same pressurization fluid and kept in the dark. 
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Table 7: Schematization of the storage conditions according with the typology of matrix. 

Matrix Storage conditions 
Storage period  

(up to) 

Low acidic 

matrices  

(pH 6.00) 

Carrot juice 
AP: 4 and 18-23 ºC (RT) 

HS: 25
*
, 50 and 100 MPa 

60 days 
McIlvaine buffer 

BHI-broth 

Acidic matrix  

(pH 3.50) 
Commercial apple juice 

AP: 4 and 18-23 ºC (RT) 

HS: 25, 50 and 100 MPa 
30 days 

(*) The HS/RT experiments at 25 MPa were only performed in carrot juice 

I.7. Determination of endospore germination and inactivation 

To assess both germinated and ungerminated endospores after each storage 

condition, an aliquot of each matrix (non-heated samples, containing both vegetative and 

endospores, since germination and outgrowth might have occurred) was heated at 80 ºC for 

20 min to inactivate the vegetative bacteria. Then, decimal dilutions were performed (1.0 

mL of each sample for 9.0 mL of physiological solution, 0.9% NaCl) that were plated in 

BHI-agar and incubated at 30 ºC for 24 h. 

As regards to A. acidoterrestris endospores, the procedure used to infer the 

endospore germination and inactivation was similar to that reported by Porębska et al. 

(2016), with minor modifications. An aliquot of each matrix was heat-treated at 80 ºC for 

20 min to inactivate the vegetative bacteria, and then 100 μL were spread-plated onto 

BAT-agar and incubated at 45 ºC for 5 days. The preparation of each culture media is 

summarized in the Table C1 (Appendix C). 

The results were expressed as the decimal logarithm variation (log (N/N0)), 

obtained by the difference between the microbial load at each storage day (N) and the 

initial microbial load (N0). The quantification limit of 2.00 log CFU/mL was established. 

In BHI-agar media, the plates were considered as countable in a range of 10-300 colonies, 

while in BAT-agar media were in a range of 1-150 colonies. The microbial counts were 

calculated according with the Equation 1, as described on the ISO 4833, (2003): 

𝑁 =
∑ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠

𝑉[(𝑛1+0.1×𝑛2)×𝑑]
   (Equation 1) 
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wherein N represents the number of colonies, V represents the volume of sample (1 

mL on BHI-agar and 100 μL on BAT-agar), n1 and n2 refer to the number of plates 

countable on the first and on the second dilutions and d refers to the first countable 

dilution. 

I.8. Dipicolinic acid release from the endospore core 

In order to quantify the amount of dipicolinic acid released from the endospore core 

(as a measure of the amount of germinated endospores), the fluorimetric-based procedures 

proposed by Rosen et al. (1997) and Pellegrino et al. (1998) were employed. These 

methodologies state that the dipicolinic acid can be detected and quantified by the complex 

formed between Tb
3+

 and dipicolinic acid, since when this complex is excited at 270 nm, it 

emits fluorescence that is measured at 545 nm. 

Thus, after each storage condition, 1.0 mL of each sample containing endospores 

was added to 9.0 mL of a solution consisting of TRIS-HCl-TbCl3 previously filtered-

sterilized (with a 0.20 μm cellulose-acetate membrane filter). This solution consisted of 50 

mM of Tris-HCl buffer (pH 7.0) and 30 μM of TbCl3. The fluorescent intensities were 

measured with a fluorescence spectrophotometer (Hitachi F-2000, Hitachi, San Jose, CA, 

USA) at an excitation wavelength of 270 nm (which is where the maximum absorption is 

observed) and the emission wavelength was scanned with a width of 2 nm, at a scan speed 

of 60 nm/min. The maximal emission intensity was measured at a wavelength of 545 nm. 

The amount of DPA released from the endospore core was assayed from stock solutions of 

DPA (in a range of concentrations from 0 to 60 μM) prepared in ACES buffer (0.05 M, pH 

7.00) that allowed to obtain a standard curve (DPA concentration vs. fluorescence 

intensity), as shown in the Figure D1 (Appendix D). Ultra-pure water was used as solvent 

on all the prepared solutions. 

I.9. Statistical analyses 

All the microbiological analyses were performed in triplicate, each one from 

duplicated samples. The results were statistically analysed using one-way Analysis of 

variance (ANOVA), followed by Turkey’s honest significand differences (HSD) test at 5% 

of significance and were expressed as mean ± standard deviation. 
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Chapter III – Results and discussion       

(B. subtilis) 

 
THIS SECTION REPORTS ALL THE OBTAINED RESULTS REGARDING B. SUBTILIS 

ENDOSPORES INOCULATED IN THREE NUTRITIONALLY DIFFERENT MATRICES. 
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III.1. Microbiological analyses 

The main focus of this thesis was to evaluate the effect of HS/RT on B. subtilis 

endospores (and on A. acidoterrestris, which will be discussed in the Chapter V) and to 

infer the inoculation matrix (low acidic matrices) influence on the behaviour of B. subtilis 

endospores at HS/RT conditions. 

Thus, in this section, the results will be presented and discussed in increasing order 

of nutritional richness of the inoculation matrices, as follows: McIlvaine buffer; carrot 

juice; BHI-broth. 

III.1.1. McIlvaine buffer 

As the McIlvaine buffer is a nutrient-free matrix, the endospore germination and 

outgrowth processes induced by nutrients is less likely to occur, for so, in this section, the 

microbial counts on unheated and heated samples will be referred as total microbial load 

(TML) and total endospore load (TEL), respectively, despite the statistical similarities 

(p>0.05) found between unheated (TML) and heated (TEL) samples (for the same storage 

period) suggesting that in both cases there were only endospores on this matrix. 

At large, samples kept at AP/RT did not undergo statistically significant (p>0.05) 

changes on both heated and unheated samples along the 9 days of storage (Figure 10), 

when compared to the initial load. Further analyses regarding AP/RT storage conditions 

did not take place, since McIlvaine buffer is a nutrient-free matrix, in which endospore 

germination (and further outgrowth) induced by nutrients is less likely to occur, as 

observed during the 9 days of storage experiments at the aforesaid condition. 

 Regarding AP/RF samples, both TML and TEL loads slightly evidenced an 

undefined behaviour along storage. Although, globally, there were no significant 

differences (p>0.05) between unheated and heated samples, with few exceptions (Figure 

10), as expected, due to the lack of nutrients, as aforesaid. 

HS/RT at 50 MPa performed similarly to AP/RF maintaining both TML and TEL 

loads, at least at the 2
nd

 day of storage experiments, wherein statistical similarities (p>0.05) 

were observed between conditions and storage periods. An extension of the storage 

experiments to 9 days resulted in TEL loads increment (p>0.05) of about 0.14 log units. 

Then, the TML load decreased (p<0.05) more pronouncedly (of about 1.76 log units), and 

fitted a zero order inactivation kinetics from the 5
th

 to the 60
th

 day of HS (Log (N/N0) = 
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0.0359*(storage period (days) + 0.4577, R
2 

= 0.9859), as seen in Figure E1 (a-b) 

(Appendix E). 

 In what concerns heated samples, the TEL loads did not varied (with few 

exceptions), at least up to the 9
th

 day at 50 MPa. From that day forward, the TEL load on 

heated samples consecutively decreased (p<0.05) and followed a zero order kinetics (Log 

(N/N0) = -0.0325*(storage period (days)) + 0.2852, R
2 

= 0.9928), being reduced of about 

1.64 log units by the 60
th

 day. 

 HS/RT at 100 MPa yielded a remarkable TML and TEL load reductions along 

storage, which were more pronounced than at 50 MPa. One day of HS/RT resulted in a 

similar (p>0.05) TML and TEL load reduction of 0.70 and 0.84 log units, respectively, 

when compared to the initial values (p<0.05), which fitted a linear trend, up to at least the 

5
th

 day of storage, for both unheated (TML) (Log (N/N0) = -0.3134*(storage period (days)) 

+ 0.2128, R
2 

= 0.9333) and heated (TEL) samples ((Log (N/N0) = -0.3276*(storage period 

(days)) + 0.2852, R
2 

= 0.8632), respectively, as seen in the Figure E (c-d) (Appendix E). 

The inactivation rates observed at 100 MPa slowed down from the 5
th

 to the 9
th

 day of 

storage, presenting a TML and TEL loads decreases of 1.69 and 1.81 log units at the 5
th

 

day, and 1.76 and 1.68 log units at the 9
th

 day, respectively, which are statistically similar 

(p>0.05).  

 On the subsequent days, the inactivation rate slowed down even more, being the 

TML and TEL loads on both unheated and heated samples practically the same (p>0.05) 

on the remaining days of storage (except at the 60
th

 day for unheated samples, whose TML 

was statistically different (p<0.05) from those observed on the 20
th

 and 30
th

 days). 

 Contrarily to HS/RT at 100 MPa, at 50 MPa the endospore loads were less affected 

by hydrostatic pressure, presenting a quite similar evolution throughout storage 

comparable with the conventional AP/RF storage, while at 100 MPa was more evident 

endospore inactivation throughout storage, which means that, for a nutrient-matrix as 

buffers, a storage pressure of at least 50 MPa should be set to perform HS/RT instead of 

AP/RF, although, more research is needed in this field to set the minimal pressure level 

required to preserve nutrient-free matrices. 

The slightly higher endospore load observed on some heated samples (Table E1, 

Appendix E) could be related with the presence of a population of endospores that is only 

activated by heat-shock (described as superdormant endospores that lack the majority of 
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the GR’s on the inner membrane), thus not allowing a nutrient-like physiological 

germination induced by low pressure levels (Reineke et al., 2013a; Setlow et al., 2012; Wei 

et al., 2010), and, consequently, lower endospore loads on non-heated samples. 

The statistical similarities observed between unheated and heated samples (Figure 

11 a-b) suggest that not only a small fraction of TEL loose their defense mechanisms 

against hydrostatic pressure (as well their thermo-resistance), in a nutrient-free matrix, but 

also that nutrient-like physiological germination is slow at 100 MPa/RT (and even slower 

at 50 MPa/RT), due to the inactivation rate slowdown observed throughout storage.  

These results are in agreement with those reported by Obaidat et al. (2015), who 

found negligible inactivation rates of B. subtilis endospores in McIlvaine buffer (pH 6.00) 

after being kept under pressure (80 MPa) for 1 h at 25 and 30 ºC. More pronounced 

reductions were also reported when the temperature increased above 33 ºC, which is closer 

to the optimal temperature of the cortex lytic enzymes that are known to have a 

fundamental role on the TEL germination and inactivation (Aoyama et al., 2005; Shigeta et 

al., 2007). 

Moreover, as the McIlvaine buffer is a nutrient-free matrix, the TEL germination 

could only be unleashed by hydrostatic pressure, and not by nutrients (or a combination of 

germination pathways) due to the lack of nutrients in this matrix, which did not allow 

endospore outgrowth, despite their germination (observed by the TEL load reduction on 

heated samples along storage), contrarily to that observed on carrot juice and BHI-broth, as 

will be furtherly discussed. 
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Condition/Storage period 

(days) 
1 2 5 9 20 30 60 

 Condition/Storage period 

(days) 
1 2 5 9 20 30 60 

AP/RT aCε aBε aCε aBε - - -  AP/RT aC aCε aBε aBε - - - 

AP/RF aB bBε aB bBε abB abB -  AP/RF bCε aCε abB aBε abCε abCε - 

50 MPa/RT bBε bB cDε cBε bB bB aB  50 MPa/RT cdB cB dB ε eB ε cB bB aB 

100 MPa/RT eA dA cA cA bA bA aA  100 MPa/RT dA cA bA bA aA aA aA 

 

Figure 10: Total microbial load (unheated samples) and total endospore load (heated samples) evolution in McIlvaine buffer (pH 6.00) kept at atmospheric pressure (AP) and naturally 

variable/uncontrolled room temperature (18-23 ºC, AP/RT), AP and refrigeration (4 ºC, AP/RF) and hyperbaric storage (50 and 100 MPa, HS) at naturally variable/uncontrolled RT. In the table, 

different upper/lower case letters (A-D)/(a-e) indicate significant differences (p<0.05) between different storage conditions/storage periods. The Greek letter ε indicates values that are not 

statistically different (p>0.05) from the initial value. 
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Case/Storage period (days) 1 2 5 9 20 30 60 
 

Case/Storage period (days) 1 2 5 9 20 30 60 

Total microbial load cA cA dBε dAε bcA bB aA  Total microbial load eA dB cA cA abA bA aA 

Endospore load dA cdA deAε eAε cA bA aA  Endospore load dA cA bA bA aA aA aA 

 

Figure 11: Comparison between the total microbial load (unheated samples, TML) and total endospore load (heated samples, TEL) in McIlvaine buffer (pH 6.00) kept at 50 and 100 MPa (a and 

b, respectively) for 60 days, at naturally variable, uncontrolled RT. In the table, different upper/lower case letters (A-B)/(a-d) indicate significant differences (p<0.05) between different 

cases/storage periods. In the figure, a protective effect conferred by the matrix is not noticeable, due to the statistical similarities (p>0.05) between storage periods. This figure shows the same 

data shown on the previous figure, in order to facilitate the comparison between TML and TEL for each storage pressure. 
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The composition of the food matrix (or food-like matrix) is known to play a key-role 

on endospore germination and inactivation rates under mild pressures. Few authors have 

studied the influence of the matrix composition on B. subtilis endospores while under 

pressure. For instance, Aoyama et al. (2005b) reported a B. subtilis endospore load 

reductions of 1.0 and 3.0 log-cycles in phosphate buffer and glucose broth, respectively, 

after a combined pressure/temperature treatment at 80 MPa/60 ºC/24 h, stating that the 

main reason for this difference might be on the composition of the inoculation system. In 

another study, Shigeta et al. (2007) induced the B. subtilis germination process at mild 

conditions, showing that in a range of pressures (20-100 MPa, and 40 ºC/60 min), the 

endospores reached a germination rate of ≈ 5 log cycles in glucose broth at 40 MPa (and 

forward), while in phosphate buffer, the maximal germination rate was ≈ 4 log cycles at 

100 MPa, being considerably lower at inferior pressures. 

These differences might be related, as reviewed by Black et al. (2007), with a 

combined effect of nutrient-induced and hydrostatic pressure-induced germination process, 

which means that nutrient-rich matrices are more likely to evidence higher endospore 

germination rates under hydrostatic pressure than nutrient-poor matrixes. The same author 

also reported that, if the pressure level is enoughly elevated, the endospore germination 

cannot be fully completed, since pressure acts as a hurdle on the endospore development, 

thus reducing its loads. 

It is important to point out that the aforementioned studies aimed a different goal 

from the concept of HS, since the aforesaid authors intent to induce the germination 

processes by combining mild pressures and temperatures (in the range of 40-80 ºC) for 

short periods of time, followed by endospore destruction, while the present work (in the 

aim of this thesis) meant to study, for the first time, the efficacy of HS/RT. 

 

III.1.2. Carrot juice 

As the carrot juice is a nutrient-rich matrix, a nutrient-induced germination and 

outgrowth of the endospores was expected, thus, on this section, the unheated samples are 

expected to contain both vegetative and endospore forms of B. subtilis that will be termed 

as total microbial load (TML), while heated samples as TEL, similarly to the terminology 

previously used. The initial TML and TEL loads in carrot juice are presented in the Table 

F1 (Appendix F). 



 

59 

Samples kept at AP/RT conditions quickly underwent a pronounced (p<0.05) TML 

and TEL growth (1.0 and 1.2 log units, respectively), thus causing severe juice spoilage, 

which was the reason why further microbiological analyses to samples kept at AP/RT did 

not take place. 

The AP/RF storage allowed to maintain both TML and TEL loads to similar levels 

(p>0.05) when compared to the initial values until the 30
th

 day of storage (Figure 12), 

inclusive. Then, at the 60
th

 day, the TML increased (p<0.05) about 0.64 log units, which 

was accompanied by a significant TEL load reduction (p<0.05) of 0.90 log units on heated 

samples, attributed to the germination and outgrowth of TEL, becoming, once again, heat-

sensitive (thus reducing the endospore load) (Abel-Santos, 2014). 

At 25 MPa, HS/RT yielded a significant increase (p<0.05) of the TML (≈ 0.89 log 

units) right after 2 days of storage, which was accompanied by an accentuated TEL load 

reduction (p<0.05) of about 4.00 log units. This remarkable reduction on the TEL loads 

might be related to a combined effect of nutrient and nutrient-like physiological 

germination, loss of defence mechanisms (such as heat resistance, thus becoming more 

susceptible to the heat treatment) (Reineke et al., 2013a) with this pressure level (25 MPa) 

not hurdling the microbial development. Then, the TML remained stable (p>0.05) until the 

end of the storage experiments, contrarily to the TEL loads, which reached the detection 

limit at the 30
th

 day of HS/RT, suggesting that, after nutrient exhaustion, the vegetative 

form of B. subtilis were not able to sporulate under pressure, as suggested by the 

continuous decrease of the TEL loads along storage, as seen in Figure 12. Nonetheless, 

further experiments at lower pressures are needed to confirm the aforesaid. 

By increasing the storage pressure to 50 MPa, the TML were reduced along 

storage, although at a lower rate when compared to samples kept at 100 MPa, which was 

more evident until the 9
th

 day of storage, wherein a TML and a TEL loads reductions 

(p<0.05) of about 2.0 and 4.0 log units were observed, respectively, which means that 

pressure might be triggering the endospore germination, but a pressure level of 50 MPa is 

less likely to affect the TML (on unheated samples), as seen in the Figure 12.  

The TEL loads followed a linear reduction trend until the 5
th

 day (Log (N/N0) = -

0.5836*(storage period (days)) - 1.046, R² = 0.9391), then, another linear trend was 

observed until the 20
th

 day of storage (Log (N/N0) = -0.1363*(storage period (days)) – 

2.5917, R
2
=0.9670), as seen in Figure F1 (a) (Appendix F). At the 60

th
 day of storage, the 
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TML was reduced (p<0.05) of about 5.4 log units, comparatively to the initial load, against 

a reduction (p<0.05) of 5.1 log units on the TEL loads.  



 

61 

 

 

Condition/Storage period 

(days) 
1 2 5 9 20 30 60 

 Condition/Storage period 

(days) 
1 2 5 9 20 30 60 

AP/RT aB aC bDε cD - - -  AP/RT aC aD aC bD - - - 

AP/RF bCε aC abCε abCε abC bDε cC  AP/RF bCε bDε bCε bCε bDε bCε aC 

25 MPa/RT cD ε dD abC bC ε aB aC -  25 MPa/RT cA bA bA bA bB aA - 

50 MPa/RT fB Be eB dB cA bA aB  50 MPa/RT eB dC cB bA aA aA aA 

100 MPa/RT dA Ac bA aA aA aB aA  100 MPa/RT dA cB bB bB abC aB aB 

 

Figure 12: Total microbial load (unheated samples) and total endospore load (heated samples) evolution in carrot juice (pH 6.00) kept at atmospheric pressure (AP) and naturally 

variable/uncontrolled room temperature (18-23 ºC, AP/RT), AP and refrigeration (4 ºC, AP/RF) and hyperbaric storage (25, 50 and 100 MPa, HS) at naturally variable/uncontrolled RT. 

Empty/black filled symbols mean that the detection/quantification limit (1.00 and 2.00 log CFU/mL, respectively) was reached. Different upper/lower case letters (A-D)/(a-d) indicate significant 

differences (p<0.05) between different storage conditions/storage periods. The Greek letter ε indicates values that are not statistically different (p>0.05) from the initial value. 
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Case/Storage period (days) 1 2 5 9 20 30 60 
 

Case/Storage period (days) 1 2 5 9 20 30 60 

Total microbial load fB efB eB dB cB bB aA 
 

Total microbial load dA cA bA aA aA aA aA 

Endospore load eA dA cA bA aA aA aB 
 

Endospore load eA dA cA cB bB abB aA 

 

Figure 13: Comparison between the total microbial load (unheated samples, TML) and total endospore load (heated samples, TEL) in carrot juice (pH 6.00) kept at 50 and 100 MPa (a and b, 

respectively) for 60 days, at naturally variable, uncontrolled RT, evidencing the differences between TML and TEL loads while the carrot juice was under pressure. Black filled symbols mean 

that the quantification limit (2.00 log CFU/mL) was reached. In the table, different upper/lower case letters (A-B)/(a-d) indicate significant differences (p<0.05) between different cases/storage 

periods. This figure shows, partially, the same data shown on the previous figure, in order to facilitate the comparison between TML and TEL for each storage pressure. 
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A storage pressure of 50 MPa seems to unleash the endospore germination, given 

the more pronounced reduction of the TEL loads when compared to the TML (Figure 13 

a), although, outgrowth is not fulfilled, probably due to the pressure hurdle. 

Figure 12 evidences that, at 100 MPa, there were accentuated reductions (p<0.05) 

on the TML and TEL loads along storage, which were more pronounced than those found 

at 50 MPa. By the 20
th

 day of HS/RT, a TML and TEL load reductions (p<0.05) of 4.2 and 

3.7 log units, respectively. At the 30
th

 day of HS/RT at 100 MPa, the total microbial load 

reached the quantification limit (of 2.00 log CFU/mL), which was maintained until the 60
th

 

day for unheated samples. In addition, the TEL loads generally decreased, following a 

linear trend ((Log (N/N0) = -0.0313*(storage period (days)) -3.0128, R² = 0.8891 - Figure 

F1 (b) – Appendix F) from the 2
nd

 to the 30
th

 day of HS/RT, until reaching the 

quantification limit. 

The higher endospore loads on heated samples (when compared to unheated 

samples, namely at 100 MPa), in some cases (Figure 13 b), might be related with the 

presence of superdormant endospores that are only activated by heat-shock, since they lack 

the majority of the GR’s required to trigger the germination process on both nutrient and 

nutrient-like germination processes (Reineke et al., 2013a; Setlow et al., 2012; Wei et al., 

2010), as aforementioned. 

The more pronounced TML and TEL loads reductions along storage during HS/RT 

in carrot juice than in McIlvaine buffer, might be related with a combined effect of 

nutrient-induced endospore germination and of nutrient-like physiological germination, 

and then pressure acts as a hurdle that precludes endospore outgrowth (Black et al., 2007; 

Reineke et al., 2013a), which seems to be more feasible at higher pressures (100 MPa) due 

to the differences between the total microbial loads at 50 and 100 MPa, as seen in the 

Figure H1 and Figure H2 (Appendix H). 
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III.1.3. Brain-heart infusion broth 

The initial TEL loads in BHI-broth are displayed in the Table G1 (Appendix G). 

There were no significant differences (p>0.05) between the TEL loads on the initial 

unheated and heated samples in all cases. 

Samples kept at AP/RT faced a significant increase (p<0.05) on the TML, as 

expected. In fact, at the 2
nd

 day, a total microbial load increase (p<0.05) of about 1.40 log 

units, which was accompanied by a TEL load reduction (p<0.05) of 1.16 log units (Figure 

14), attributed to the germination and outgrowth of the endospores to vegetative forms, as 

previously observed in carrot juice. Additional microbiological analyses regarding AP/RT 

samples were not performed due to the advanced putrefaction state observed for this 

condition.  

 At AP/RF conditions, the TML of the unheated samples was, generally, statistically 

similar (p>0.05) to the initial load until the 5
th

 day of storage experiments, inclusive, being 

thereafter observed a significant increase (p<0.05) of 1.47 log units at the 9
th

 day, while the 

TEL loads on heated samples decreased (p<0.05) about 0.34 log units by the 5
th

 day of 

storage reaching, at the 9
th

 day, a similar (p>0.05) microbial load when compared to the 

initial one. Further experiments at AP/RF conditions did not take place due to the severe 

spoilage state of such samples. 

 Contrarily to AP storage (at both RT and RF conditions), HS/RT at 50 and 100 

MPa enhanced both TML and TEL loads inactivation along storage, as seen in the Figure 

14, that were more accentuated at higher pressures (100 MPa). 

 One day at 50 MPa yielded a TML inactivation (p>0.05) of about 0.23 log units 

that was accompanied by an TEL load decrease (p<0.05) of about 0.91 log units. On the 

subsequent days, these differences between TML and TEL (unheated and heated samples, 

respectively) were even more accentuated. At the 5
th

 day of HS/RT at 50 MPa induced 

significant differences (p<0.05) between unheated and heated samples (Figure 15), 

wherein TML and TEL loads depletion of 0.89 and 3.54 log units, respectively, were 

found, comparatively to the initial load. This suggests that the TEL germinated (thus 

causing the loss of resistance mechanisms, given the TEL loads reduction on heated 

samples) but were not able to grow under pressure (observed by the TML reductions on 

unheated samples), but were not quickly inactivated (TML), as observed on carrot juice 
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(Figure 12 and Figure 13), especially for HS/RT at 100 MPa, which is supported by the 

statistical differences (p<0.05) between TML and TEL loads. 
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Condition/ Storage period 

(days) 
1 2 5 9 20 30 60 

 Condition/ Storage period 

(days) 
1 2 5 9 20 30 60 

AP/RT aD bC - - - - -  AP/RT bB aC - - - - - 

AP/RF bCε aB abBε cC - - -  AP/RF aBε bD bC aCε  - - - 

50 MPa/RT fB fB eB dB cA bA aA  50 MPa/RT eC dB cA bA aA aA aA 

100 MPa/RT fA eA dA cA bA aB aB  100 MPa/RT dA dA cB bB aB aB aB 

 

Figure 14: Total microbial load (unheated samples) and total endospore load (heated samples) evolution on BHI-broth kept at atmospheric pressure (AP) and naturally variable/uncontrolled 

room temperature (18-23 ºC, AP/RT), AP and refrigeration (4 ºC, AP/RF) and hyperbaric storage (50 and 100 MPa, HS) at naturally variable/uncontrolled RT. Black filled symbols mean that the 

quantification limit (2.00 log CFU/mL) was reached. In the table, different upper/lower case letters (A-D)/(a-f) indicate significant differences (p<0.05) between different storage 

conditions/storage periods. The Greek letter ε indicates values that are not statistically different (p>0.05) from the initial value.  
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Case/Storage period (days) 1 2 5 9 20 30 60 
 

Case/Storage period (days) 1 2 5 9 20 30 60 

Total microbial load fB fB eB dB cB bB aB  Total microbial load fB eB dB cB bB aA aÂ 

Endospore load eA dA cA bA aA aA aA  Endospore load dA dA cA bA aA aA aA 

 

Figure 15: Comparison between the total microbial load (unheated samples, TML) and total endospore load (heated samples, TEL) in BHI-broth (pH 6.00) kept at 50 and 100 MPa (a and b, 

respectively) for 60 days, at naturally variable, uncontrolled RT. Black filled symbols mean that the quantification limit (2.00 log CFU/mL) was reached. In the table, different upper/lower case 

letters (A-B)/(a-f) indicate significant differences (p<0.05) between different cases/storage periods. At 100 MPa, it is noticeable a protective effect to the TML, probably given by the matrix 

itself, and supported by the statistical differences (p<0.05) between TML and TEL loads between storage periods. This figure shows, partially, the same data shown on the previous figure, in 

order to facilitate the comparison between TML and TEL for each storage pressure. 
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 This might be attributed to a protective effect conferred by slightly lower aW of 

BHI-broth (Appendix A). In fact, Raso et al. (1998) reported that at lower aW, B. cereus 

endospores were more pressure-resistant than those suspended on matrixes with lower aW 

(higher ungerminated fraction of B. cereus endospores were found at aW = 0.92, ≈ 7 log 

CFU/mL, contrasting with ≈ 2 log CFU/mL at aW = 1, in McIlvaine buffer (pH 7) after a 

pressure treatment at 250 MPa/25 ºC/15 min. In addition, the endospore inactivation 

observed for heated samples followed two linear trends, whose equations are Log (N/N0) = 

-0.6963*(storage period (days)) – 0.0922, R
2
=0.9966, up to the 5

th
 day, and Log (N/N0) = 

0.1420*(storage period (days)) – 2.7551, R
2
=0.9943 from the 5

th
 to the 20

th
 day of storage 

at 50 MPa, as seen in Figure G1 (Appendix G). 

 After 20 days at 50 MPa/RT, the heated samples reached the quantification limit (of 

2.00 log CFU/mL), which was maintained until the 60
th

 day, while the unheated samples 

still presented microbial counts, but by the 30
th

 day of storage the same limit was reached. 

 While stored at 100 MPa/RT, it was verified a progressive reduction of the TML 

and TEL loads of about 2.85 and 3.47 log units, respectively, at the 9
th

 day of storage, 

being statistically different (p<0.05) from each other. Then, at the 30
th

 day of HS/RT, the 

TML reached the quantification limit (which was reached by the TEL loads by the 20
th

 

day), remaining stable (p>0.05) until the end of the storage experiments. 

 As far as the author of this thesis is aware, this is the first study regarding the effect 

of HS/RT on B. subtilis endospores inoculated in three nutritionally different matrices, 

despite other studies concerning the effect of low pressures (in the HS range) but at higher 

temperatures (above 30-40 ºC) in different matrices, whose main purpose was to trigger 

endospore germination by combining mild pressure and temperatures (Aoyama et al., 

2005; Aoyama et al., 2004, 2005; Shigeta et al., 2007) for a few min/h (from 30 min to 

48 h), while the present work aimed to test the feasibility of a new preservation 

methodology on endospore germination (and outgrowth) control, in a range of pressures 

between 25 and 100 MPa, at RT, for longer periods of time, in fact during the whole 

storage period of a food product. 

 In short, HS/RT has, generally, shown to be equal to better than AP/RF controlling 

the development of B. subtilis endospores. 
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III.2. Dipicolinic acid release from the endospore core 

As described on the Chapter II – Materials and methods section (Dipicolinic 

acid release from the endospore core) was assayed, unfortunately, the employed method 

did not allow quantifying the DPA for both B. subtilis and A. acidoterrestris endospores, 

probably due to interferences between Tb
3+

 with other components of each matrix, or due 

to the equipment detection limit. Another methodology to quantify DPA could have been 

used, such as high performance liquid chromatography (HPLC), as proposed by Tabor et 

al. (1976), although, the lack of time did not allow it. 

Although, it was possible to quantify the amount of dipicolinic acid on the 

endospore stock after autoclaving at 121.1 ºC for 15 min, which was 1.53 ± 0.03 mM. 
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Chapter IV – Results and discussion        

(A. acidoterrestris) 

 
THIS SECTION REPORTS ALL THE OBTAINED RESULTS REGARDING A. ACIDOTERRESTRIS 

ENDOSPORES INOCULATED IN COMMERCIAL APPLE JUICE. 
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IV.1. Microbiological analyses 

The commercial apple juice was inoculated with A. acidoterrestris endospores, 

being the initial loads presented in the Table I1 (Appendix I). There were not found 

statistical differences (p>0.05) between unheated and heated initial samples. 

At AP/RT, both TML and TEL loads (unheated and heated samples) grew of about 

0.50 and 0.59 log units after 2 days of storage, and, furtherly, by the 9
th

 day, both total 

microbial and endospore loads decreased, probably due to nutrient exhaustion and cell 

death (Abel-Santos, 2014).  

AP/RF storage inhibited the development of the TML, whose loads remained 

statistically similar (p>0.05) to the initial one along storage (except on the 30
th

 day), while 

the TEL load faced a small but statistically relevant (p<0.05) increase until the 5
th

 day, and 

then decreased (p<0.05) until the 30
th

 day. 

Contrarily to AP/RF, HS/RT enhanced both TML and TEL loads inactivation on all 

storage pressures, resulting in microbiological shelf-lives extensions. 

While kept at 25 MPa, the commercial apple juice presented gradual reductions 

(p<0.05), at least until the 5
th

 day of storage, of both TML and TEL loads (2.40 and 2.20 

log units, respectively), being statistically similar (p>0.05). Then, by the 20
th

 day, the 

microbial load stabilized and remained similar (p>0.05) until the end of the storage 

experiments.  

The major differences between TML and TEL loads evidenced in the Figure 17 (a) 

on the first two days of storage at 25 MPa suggest that the endospore germination was 

triggered (reinforced by the reduction of the TEL), although, it probably did not proceed to 

outgrowth of the vegetative cells (given the TML reductions). Two hypothetical scenarios 

might explain this phenomenon, in which the endospores have completed the germination 

process and originated a competent vegetative cell which, due to the pressure hurdle, was 

not able to undergo cell division, or the endospores surpassed the dormancy and proceeded 

to the stage II of germination, wherein the heat-resistance is quite lower than in the 

previous states, thus becoming more heat-sensitive and, as a result, the TEL decreased 

more than the TML. Taking into account that, on the subsequent days of storage both TML 

and TEL did not present (generally) statistical differences (p<0.05) between them, it might 

suggest the fraction of vegetative cells (or partially germinated endospores) that were heat 

sensitive were killed by pressure, as it might have occurred juice nutrient exhaustion, 
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which could have been mobilized to resist to the pressure hurdle, and, once the nutrients 

are absent, the cells cannot survive, leaving the sporulated forms of A. acidoterrestris. 

Nevertheless, more fundamental research in this field is needed to fully understand the 

extension of the endospore germination under pressure. 

An accelerated inactivation rate was observed at 50 MPa, when compared to juice 

samples kept at 25 MPa. After 1 day at 50 MPa, a TML and TEL load reduction of ≈ 2.00 

and ≈ 2.20 log units were observed. Then, a linear decay of the TML and TEL loads was 

observed, (Log (N/N0) = -0.4093*(storage period (days)) - 1.6221), R² = 0.9845) and (Log 

(N/N0) = -0.2367*(storage period (days)) - 1.9932), R² = 0.9794), respectively, as seen in 

the Figure I1 (A-B) (Appendix I). By the end of the storage experiments, both TML and 

TEL loads were below the detection limit (1.00 log CFU/mL), proving that HS/RT at 50 

MPa was suitable to preserve the commercial apple juice. 

The inactivation rate observed at 50 MPa was even more pronounced when the 

storage pressure was set to 100 MPa, since after 2 days of storage, the TML reached the 

detection limit, which had already been reached by the TEL loads, right after 1 day of 

storage, as seen in the Figure 16, being maintained until the end of the storage 

experiments.  

When compared to carrot juice, a low acidic food product, HS/RT at 25 MPa was 

not suitable to hurdle endospore germination and outgrowth, due to the development of the 

TML observed at such conditions, while the commercial apple juice suffered a TML and a 

TEL load decrease along storage, possibly due to the contribution of the acidity hurdle (pH 

≈ 3.5) of the apple juice. 

 Contrarily to that observed for B. subtilis endospores in carrot juice, the possible 

presence of superdormant endospores was not so evident with A. acidoterrestris 

endospores in commercial apple juice, due to statistical similarities between unheated and 

heated samples, as seen in the Figure 17 (a-c). 
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Condition/ Storage period (days) 1 2 5 9 20 30 
 

Condition/ Storage period (days) 1 2 5 9 20 30 

AP/RT bDε bcD cE aD - -  AP/RT bD cE cE aDε - - 

AP/RF cDε bcDε bcDε bDε bcDε aC  AP/RF cDε cD cD abDε bDε aD 

25 MPa/RT dC dC bC cC aC aB  25 MPa/RT cC cC bC bcC bC aC 

50 MPa/RT dB cB cB bB bB aA  50 MPa/RT dB cB cB bB bB aB 

100 MPa/RT bA aA aA aA aA aA  100 MPa/RT aA aA aA aA aA aA 

Figure 16: Total microbial load (unheated samples) and total endospore load (heated samples) evolution in commercial apple juice (pH 3.50) kept at atmospheric pressure (AP) and naturally 

variable/uncontrolled room temperature (18-23 ºC, AP/RT), AP and refrigeration (4 ºC, AP/RF) and hyperbaric storage at RT (25, 50 and 100 MPa, HS/RT). Dark filled/empty filled symbols 

mean that the quantification/detection limit (2.00 and 1.00 log CFU/mL, respectively) was reached. In the table, different upper/lower case letters (A-D)/(a-d) indicate significant differences 

(p<0.05) between different storage conditions/storage periods. The Greek letter ε indicates values that are not statistically different (p>0.05) from the initial value. 
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Figure 17: Total microbial load (unheated samples, TML) and total endospore load (heated samples, TEL) evolution in commercial apple juice (pH 3.50) kept at hyperbaric storage (HS) and 

naturally variable/uncontrolled room temperature (18-23 ºC, RT) at 25, 50 and 100 MPa (a, b and c, respectively), HS/RT. Empty filled/black filled symbols mean that the 

detection/quantification limit (1.00 and 2.00 log CFU/mL, respectively) was reached. In the table, different upper/lower case letters (A-B)/(a-e) indicate significant differences (p<0.05) between 

different storage conditions/storage periods. This figure shows, partially, the same data shown on the previous figure, in order to facilitate the comparison between TML and TEL for each 

storage pressure. 
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 Although AP/RF was feasible to hinder the TEL germination outgrowth, HS/RT at 

all studied pressures (25, 50 and 100 MPa) equally hindered (during 30 days) plus 

inactivated both TML and TEL loads, thus allowing to extend the juice shelf-life. In fact, if 

the storage experiments were extended even more, it was probable that the TEL would 

germinate and outgrowth, thus increasing the TML. 
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Chapter V – Conclusions 

 
THIS SECTION COMPRISES THE MAIN CONCLUSIONS ON THE SCOPE OF THIS THESIS. 
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This work aimed the evaluation of HS/RT effect on B. subtilis endospores on three 

nutritionally different matrices (McIlvaine buffer, carrot juice and BHI-broth), as well its 

effect on A. acidoterrestris endospores in an acidic matrix as commercial apple juice. 

The composition of the inoculation matrix proved to be fundamental on food 

preservation by HS, by means that a nutrient-poor matrix such as McIlvaine buffer, with 

the same pH and aW as the carrot juice, presented lower total microbial and endospore 

loads reductions at 100 MPa, while at 50 MPa HS showed to have an inhibitory effect 

similar to AP/RF.  

In carrot juice, a storage pressure of 50 and 100 MPa performed better than RF (4 

ºC) to preserve the carrot juice, resulting in shelf-life extensions, while a pressure level of 

25 MPa did not hurdle the endospore germination and outgrowth, due to the total microbial 

load increase observed at such conditions. 

The endospores of B. subtilis in BHI-broth and stored at 50 MPa faced a smaller 

total microbial load decrease than when stored at 100 MPa. A storage pressure of 25 MPa 

triggered the endospore germination and did not hinder the development of the total 

microbial load. In addition, a protective effect conferred by the BHI-broth to the total 

microbial load is suggested at higher pressures (100 MPa) by the significant differences 

(p<0.05) between unheated and heated samples, with the first ones presenting higher total 

microbial loads than the second ones, which are not verified on both McIlvaine buffer and 

carrot juice. This protective effect might be related with the slightly lower aw of the BHI-

broth, or probably due to its richer nutritional content, optimal for the endospore 

germination outgrowth in normal conditions. 

These results are of great interest, since, in a practical point of view, HS/RT can 

preserve, for example, highly perishable (low acidity and high aW, which do not preclude 

endospore germination), pasteurized food products, which need, currently, to be 

permanently kept at AP/RF conditions (which is energetically expensive and 

environmentally harmful), with HS/RT yielding not only considerable shelf-life 

extensions, but also potentiating reduced energetic costs, since the pressure pumps are only 

mobilized until the desired pressure is reached within the vessel. 

Furthermore, an atypical case of an endospore able to germinate and outgrow in 

acidic, pasteurized food products, such as commercial apple juice, even at AP/RF 

conditions, (A. acidoterrestris), was studied, with HS/RT proving to be more feasible than 
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AP/RF to preserve the juice, allowing to extend its shelf-life by endospore inactivation to 

levels below the detection limit (1.00 log CFU/mL) in some cases. 

In fact, all the evaluated storage pressures were suitable to preserve it, evidencing 

lower endospore loads along storage, whereas a storage pressure of 100 MPa evidenced a 

sharper total microbial load reduction to below the detection limit after 2 days of storage, 

at 50 MPa a similar load was observed on the last day of the storage experiments, while at 

25 MPa a subtle total microbial load decrease was observed, contrarily to the conventional 

RF, that only inhibited the endospore germination and outgrowth.  

 The intrinsic acidity of the commercial apple juice might have complemented the 

pressure hurdle to the total microbial load development, since for the low acidic carrot 

juice, a storage pressure of 25 MPa not only triggered the endospore germination but also 

did not hindered the total microbial load development, suggesting that the pH of the food 

product might have, similarly to RF, an important role on the shelf-life of acidic products 

at HS/RT conditions, even though the carrot juice and apple juice cannot be fully 

compared due to the nutritional differences, as well by the differences between A. 

acidoterrestris and B. subtilis endospores. 

 In conclusion, HS/RT proved to be a feasible food storage methodology when it 

comes to bacterial endospores, which are a threat to the food industry, and, consequently, 

for consumers themselves. The fact that there is no temperature control, but instead 

pressure control, is, per se, an advantage over the conventional RF processed, inasmuch 

energy is only required on the compression phase of the storage vessel (pressure vessel), 

being kept along storage once the vessel is properly sealed, which means energetic savings, 

and, consequently, economic gains and a lower carbon footprint, without compromising 

food safety. 
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Chapter VI – Future work 
 

THIS SECTION PROPOSES THE ESSENTIAL FUTURE WORK REGARDING THE CONCEPT OF 

HYPERBARIC STORAGE 
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Further experiments regarding the effect of HS on endospores are of upmost 

importance to validate HS as a safe preservation procedure. To do so, the future work 

should comprise the evaluation of HS on pathogenic spore-forming bacteria, such as B. 

cereus and C. botulinum, as well to verify if HS can inhibit the production of endemic 

toxins such as cereulide (produced by B. cereus). 

The effect of this new preservation methodology should also be evaluated regarding 

fungi spores (ascospores), due to the inexistent literature regarding this subject, an also due 

to the importance that such biological structures play on food spoilage and poisoning. 

Additionally, more fundamental studies concerning this subject are needed, such as 

microscopy analysis, to fully understand the endospore inactivation mechanisms that they 

undergo at HS conditions. 

In a more practical perspective, different matrices (nutritionally, acidities and aw’s) 

should be also studied in order to evaluate the optimal storage pressure according with the 

aforementioned properties to ensure food safety, for, maybe in a near future, HS/RT to be a 

reliable replacement of the conventional RF processes, in what concerns endospore 

outgrowth control. 
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Appendix A – Nutritional composition of the inoculation matrices 

Table A1: Nutritional composition of raw carrot. Adapted from Instituto Nacional de Saúde (2006). 

Amount Per 100 g of edible portion % Daily value 

Calories (energy) 
25 kcal 

(106 kJ) 
1.25 

Fats 0 g 0 

Carbohydrates 4.4 g 1.8 

Dietary fiber 2.6 g 8.7 

Proteins 0.6 g 1.1 

Salt 0.1 g 2 

Vitamins 933 μg 0.8 

 

Table A2: Composition of the BHI-broth, provided by the supplier (Oxoid). 

Formula g/L 

Brain infusion solids 12.5 

Beef heart infusion solids 5.0 

Proteose peptone 10.0 

Glucose 2.0 

Sodium chloride 5.0 

Dissodium phosphate 2.5 

pH 7.4 ± 0.2 at 25 ºC 

 

Table A3: Nutritional content of the commercial apple juice used to inoculate A. acidoterrestris endospores. Information 

translated from the one provided by the supplier. 

Amount Per 100 mL % Daily value 

Calories (energy) 46 Kcal 

(197 kJ) 
2.5 

Fats 

Saturated  

0 g 0 

0 g 0 

Carbohydrates 

Sugars 

11 g 

9.6 g 

4.5 

10.5 

Fiber 0 g 0 

Proteins 0 g 0 

Salt 0.01 g ≈ 0 

Vitamin C 6.00 mg 7.5 
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Figure A1: Commercial apple juice employed on the A. acidoterrestris endospores storage experiments. Courtesy of 

Auchan. 
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Appendix B – pH and aW measurements (low acidic matrices) 
 
Table B1: pH and water activity (aw) values of each matrix after autoclaving at 121.1 ºC for 15 min (expressed as mean 

± standard deviation). 

Matrix pH aW 

McIlvaine buffer 6.01 ± 0.01 0.967 ± 0.001 

Carrot juice 6.00 ± 0.01 0.969 ± 0.001 

BHI-broth 6.00 ± 0.01 0.947 ± 0.001 
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Appendix C – Culture media preparation 

 Table C1: Preparation scheme of the culture media used in the aim of this thesis. 

Culture media Amount of media powder* (g) 

BAT-agar
**

 31.0 

BHI-broth 37.0 

BHI-agar 52.0 

PCA 23.5 

PDA 42.0 

PDB 27.0 

 (*) Amount of powder for each 1.0 L of distilled water;  

(**) Acidified with filter-sterilized sulphuric acid at 0.1 M after sterilization at 121.1 ºC for 15 min. 
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Appendix D – Standard curve for dipicolinic acid quantification 

 

Figure D1: Standard curve of fluorescence intensity versus dipicolinic acid (DPA) concentration (µM). 
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Appendix E – Total microbial and endospore loads of B. subtilis in McIlvaine 

buffer and linear trends 

Table E1: Total microbial (unheated samples) and total endospore (heated samples) loads (expressed as value ± 

standard deviation, in log CFU/mL) evolution in McIlvaine buffer (pH 6.00) throughout each storage condition. 

Storage period 

(days) 
Storage conditions 

Unheated samples 

(Log CFU/mL) 

Heated samples 

(Log CFU/mL) 

0 
Initial 6.01 ± 0.01 6.09 ± 0.03 

Initial (50 MPa) 7.68 ± 0.03 7.85 ± 0.03 

1 

AP/RT 6.05 ± 0.09 6.09 ± 0.01 

AP/RF 5.73 ± 0.03 6.25 ± 0.09 

50 MPa/RT 7.45 ± 0.01 7.62 ± 0.07 

100 MPa/RT 5.32 ± 0.04 5.25 ± 0.01 

2 

AP/RT 5.96 ± 0.02 5.98 ± 0.02 

AP/RF 5.99 ± 0.01 5.98 ± 0.04 

50 MPa/RT 7.44 ± 0.01 7.51 ± 0.01 

100 MPa/RT 5.05 ± 0.01 4.84 ± 0.02 

5 

AP/RT 5.99 ± 0.01 6.10 ± 0.01 

AP/RF 5.70 ± 0.03 6.08 ± 0.08 

50 MPa/RT 7.90 ± 0.09 7.76 ± 0.06 

100 MPa/RT 4.32 ± 0.07 4.28 ± 0.06 

9 

AP/RT 6.01 ± 0.01 6.09 ± 0.02 

AP/RF 5.99 ± 0.20 5.99 ± 0.15 

50 MPa/RT 7.82 ± 0.08 7.91 ± 0.04 

100 MPa/RT 4.26 ± 0.03 4.41 ± 0.01 

20 

AP/RT - - 

AP/RF 5.78 ± 0.07 6.12 ± 0.01 

50 MPa/RT 7.38 ± 0.01 7.42 ± 0.01 

100 MPa/RT 3.76 ± 0.12 3.87 ± 0.12 

30 

AP/RT - - 

AP/RF 5.89 ± 0.02 6.01 ± 0.04 

50 MPa/RT 7.22 ± 0.02 7.14 ± 0.04 

100 MPa/RT 3.88 ± 0.06 3.86 ± 0.06 

60 

AP/RT - - 

AP/RF - - 

50 MPa/RT 5.92 ± 0.20 6.21 ± 0.07 

100 MPa/RT 3.48 ± 0.05 3.68 ± 0.16 
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Figure E1: Linear trends observed concerning the reduction of the total microbial (blue line, a-b) and total endospore loads (heated samples, red line, c-d) of B. subtilis in McIlvaine buffer 

stored at 50 and 100 MPa, at variable/uncontrolled RT. 

Log (N/N0) = -0.0359*(storage period (days)) + 0.4577 
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Appendix F – Total microbial and endospore loads of B. subtilis in carrot juice and 

linear trends 
 

Table F1: Total microbial (unheated samples) and total endospore (heated samples) loads (expressed as value ± 

standard deviation, in log CFU/mL) evolution in carrot juice (pH 6.00) throughout each storage condition. 

Storage period 

(days) 
Storage conditions 

Unheated samples 

(Log CFU/mL) 

Heated samples 

(Log CFU/mL) 

0 

Initial 6.21 ± 0.30 5.99 ± 0.11 

Initial (25 MPa) 6.44 ± 0.01 6.37 ± 0.01 

Initial (50 MPa) 7.63 ± 0.02 7.62 ± 0.01 

1 

AP/RT 5.82 ± 0.02 5.48 ± 0.02 

AP/RF 6.20 ± 0.16 5.79 ± 0.01 

25 MPa/RT 6.69 ± 0.01 4.13 ± 0.05 

50 MPa/RT 7.04 ± 0.06 6.45 ± 0.03 

100 MPa/RT 4.08 ± 0.09 3.51 ± 0.08 

2 

AP/RT 5.91 ± 0.13 5.54 ± 0.13 

AP/RF 5.85 ± 0.05 5.83 ± 0.03 

25 MPa/RT 7.33 ± 0.02 2.27 ± 0.04 

50 MPa/RT 6.82 ± 0.01 5.78 ± 0.10 

100 MPa/RT 3.12 ± 0.08 3.11 ± 0.29 

5 

AP/RT 6.26 ± 0.17 5.53 ± 0.07 

AP/RF 6.09 ± 0.01 5.91 ± 0.05 

25 MPa/RT 6.12 ±0.19  2.05 ± 0.05 

50 MPa/RT 6.73 ± 0.06 4.51 ± 0.12 

100 MPa/RT 2.64 ± 0.02 2.71 ± 0.16 

9 

AP/RT 7.24 ± 0.04 7.16 ± 0.27 

AP/RF 6.02 ± 0.10 5.80 ± 0.09 

25 MPa/RT 6.31 ± 0.30 2.32 ± 0.17 

50 MPa/RT 5.65 ± 0.02 3.58 ± 0.01 

100 MPa/RT 2.16 ± 0.03 2.65 ± 0.02 

20 

AP/RT - - 

AP/RF 5.99 ± 0.04 6.06 ± 0.04 

25 MPa/RT 5.85 ± 0.25 2.00 

50 MPa/RT 3.24 ± 0.02 2.36 ±0.15 

100 MPa/RT 2.07 ± 0.08 2.27 ± 0.27 

30 

AP/RT - - 

AP/RF 6.20 ± 0.06 6.06 ± 0.04 

25 MPa/RT 5.89 ± 0.08 1.00 

50 MPa/RT 2.85 ± 0.03 2.33 ± 0.16 

100 MPa/RT 2.00 2.14 ± 0.14 

60 

AP/RT - - 

AP/RF 6.91 ± 0.06 5.12 ± 0.07 

25 MPa/RT - - 

50 MPa/RT 2.25 ± 0.01 2.54 ± 0.13 

100 MPa/RT 2.00 2.00 
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Figure F1: Linear trends observed concerning the reduction of total endospore loads (heated samples, red lines) of B. 

subtilis in carrot juice stored at 50 (a) and 100 (b) MPa, at variable/uncontrolled RT. 
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Appendix G – Total microbial and endospore loads of B. subtilis in BHI-broth and 

linear trends 

Table G1: Total microbial (unheated samples) and total endospore (heated samples) loads (expressed as value ± 

standard deviation, in log CFU/mL) evolution in BHI-broth (pH 6.00) throughout each storage condition. 

Storage period 

(days) 
Storage conditions 

Unheated samples 

(Log CFU/mL) 

Heated samples 

(Log CFU/mL) 

0 

Initial 6.02 ± 0.03 6.05 ± 0.04 

Initial (AP/RT - RF) 6.70 ± 0.08 6.67 ± 0.02 

Initial (50 MPa) 7.58 ± 0.01 7.62 ± 0.01 

1 

AP/RT 7.73 ± 0.05 5.80 ± 0.02 

AP/RF 6.56 ± 0.04 6.49 ± 0.04 

50 MPa/RT 7.35 ± 0.01 6.72 ± 0.09 

100 MPa/RT 4.47 ± 0.08 3.59 ± 0.07 

2 

AP/RT 8.14 ± 0.04 5.51 ± 0.15 

AP/RF 6.35 ± 0.01 6.37 ± 0.09 

50 MPa/RT 7.42 ± 0.01 6.15 ± 0.06 

100 MPa/RT 4.30 ± 0.03 3.67 ± 0.03 

5 

AP/RT - - 

AP/RF 6.47 ± 0.03 6.33 ± 0.05 

50 MPa/RT 6.69 ± 0.05 4.09 ± 0.01 

100 MPa/RT 3.55 ± 0.02 3.26 ± 0.13 

9 

AP/RT - - 

AP/RF 8.18 ± 0.11 6.43 ± 0.03 

50 MPa/RT 4.30 ± 0.03 3.68 ± 0.07 

100 MPa/RT 3.17 ± 0.01 2.55 ± 0.07 

20 

AP/RT - - 

AP/RF 6.06 ± 0.03 6.12 ± 0.02 

50 MPa/RT 3.91 ± 0.06 2.00 

100 MPa/RT 2.27 ± 0.10 2.00 

30 

AP/RT - - 

AP/RF 7.32 ± 0.03 6.09 ± 0.06 

50 MPa/RT 3.05 ± 0.03 2.00 

100 MPa/RT 2.00 2.00 

60 

AP/RT - - 

AP/RF - - 

50 MPa/RT 2.46 ± 0.09 2.00 

100 MPa/RT 2.00 2.00 
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Figure G1: Linear trend observed concerning the reduction of the total endospore load (heated samples) of B. subtilis 

in BHI-broth stored at 100 MPa, at variable/uncontrolled RT. 
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Appendix H – B. subtilis endospore behaviour evolution on each inoculation matrix at HS/RT (50 and 100 MPa) 
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Carrot juice gA fA eA dB cA bA aA Carrot juice eA dA cB bA aB aB aB 

BHI-broth fB fBε eA dA cB bB aB  BHI-broth eB dB cA bA aA aA aA 

Figure H1: Matrix comparison denoting the differences on the total microbial load (unheated samples) and total endospore load (heated samples) evolution in McIlvaine buffer, carrot juice and 

BHI-broth (pH 6.00) kept at 50 MPa throughout 60 days, at naturally variable, uncontrolled RT. Black filled symbols mean that the quantification limit (2.00 log CFU/mL) was reached. In the 

table, different upper/lower case letters (A-C)/(a-g) indicate significant differences (p<0.05) between different storage conditions/storage periods. The Greek letter ε indicates values that are not 

statistically different (p>0.05) from the initial value. 
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Figure H2: Matrix comparison denoting the differences on the total microbial load (unheated samples) and total endospore load (heated samples) evolution in McIlvaine buffer, carrot juice and 

BHI-broth (pH 6.00) kept at 100 MPa throughout 60 days, at naturally variable, uncontrolled RT. Black filled symbols mean that the quantification limit (2.00 log CFU/mL) was reached. In the 

table, different upper/lower case letters (A-C)/(a-e) indicate significant differences (p<0.05) between different storage conditions/storage periods. The Greek letter ε indicates values that are not 

statistically different (p>0.05) from the initial value. 
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Appendix I – Total microbial and endospore loads of A. acidoterrestris in 

commercial apple juice and linear trends 

Table I1: Total microbial (unheated samples) and total endospore (heated samples) loads (expressed as value ± 

standard deviation, in log CFU/mL) evolution in commercial apple juice (pH 3.50) throughout each storage 

condition. 

Storage period 

(days) 
Storage conditions 

Unheated samples 

(Log CFU/mL) 

Heated samples 

(Log CFU/mL) 

0 

Initial 5.29 ± 0.15 5.11 ± 0.03 

Initial (AP/RT) 4.96 ± 0.01 4.86 ± 0.06 

Initial (25 MPa) 5.66 ± 0.01 6.03 ± 0.02 

Initial (100 MPa) 5.44 ± 0.11 5.68 ± 0.08 

1 

AP/RT 5.23 ± 0.12 5.30 ± 0.11 

AP/RF 5.51 ± 0.07 5.31 ± 0.07 

25 MPa/RT 4.58 ± 0.09 4.13 ± 0.09 

50 MPa/RT 3.34 ± 0.05 2.91 ± 0.03 

100 MPa/RT 2.00 1.00 

2 

AP/RT 5.38 ± 0.13 5.58 ± 0.11 

AP/RF 5.45 ± 0.02 5.44 ± 0.19 

25 MPa/RT 4.62 ± 0.13 4.20 ± 0.13 

50 MPa/RT 2.77 ± 0.14 2.64 ± 0.18 

100 MPa/RT 1.00 1.00 

5 

AP/RT 5.59 ± 0.18 5.73 ± 0.02 

AP/RF 5.48 ± 0.01 5.50 ± 0.06 

25 MPa/RT 3.29 ± 0.04 3.81 ± 0.11 

50 MPa/RT 2.46 ± 0.02 2.42 ± 0.21 

100 MPa/RT 1.00 1.00 

9 

AP/RT 4.60 ± 0.16 4.78 ± 0.08 

AP/RF 5.25 ± 0.19 4.89 ± 0.04 

25 MPa/RT 3.61 ± 0.04 3.91 ± 0.01 

50 MPa/RT 2.08 ± 0.08 2.09 ± 0.09 

100 MPa/RT 1.00 1.00 

20 

AP/RT - - 

AP/RF 5.34 ± 0.15 4.97 ± 0.05 

25 MPa/RT 2.97 ± 0.19 3.56 ± 0.06 

50 MPa/RT 2.15 ± 0.15 2.00 

100 MPa/RT 1.00 1.00 

30 

AP/RT - - 

AP/RF 4.70 ± 0.01 4.67 ± 0.01 

25 MPa/RT 2.97 ± 0.20 3.21 ± 0.01 

50 MPa/RT 1.00 1.00 

100 MPa/RT 1.00 1.00 
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Figure I1: Linear trends observed concerning the reduction of the total microbial (unheated samples, b) and endospore 

loads (heated samples, a, c) of A. acidoterrestris in commercial apple juice stored at 25 and 50 MPa, at 

variable/uncontrolled RT. 
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Commercial apple juice - 25 MPa (a) 

Log (N/N0) = -0.4093*(storage period (days)) - 1.6221 

R² = 0.9845 
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Commercial apple juice - 50 MPa (b) 

Log (N/N0) = -0.2367*(storage peiod (days)) - 1.9932 

R² = 0.9794 
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Commercial apple juice - 50 MPa (c) 


