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resumo 
 

 

Os fármacos estão entre os contaminantes aquáticos mais persistentes, 

resistindo aos processos convencionais aplicados nas estações de tratamento 

de águas residuais (ETAR) e, muitos deles, representam uma ameaça séria para 

organismos não-alvo e para o meio ambiente. Neste contexto, a adsorção a 

carvões ativados (CA) é uma das mais promissoras metodologias para a 

remoção de fármacos da água dada a sua versatilidade e alta eficiência de 

remoção. Contudo, os CAs implicam custos elevados. A lama primária da 

resultante do tratamento de efluentes da indústria papeleira foi anteriormente 

apresentada como uma potencial fonte de carbono alternativa e barata para a 

produção de CA por pirólise. 

A química computacional pode ser uma ferramenta valiosa na 

elucidação de alguns aspetos do mecanismo molecular de adsorção de 

poluentes orgânicos a CAs. No presente trabalho, é proposta a utilização de 

lama primária da indústria papeleira para a produção carvões (não)ativados. Os 

diferentes materiais foram caracterizados por um conjunto de técnicas 

experimentais, e os dados adquiridos usados na formulação de um modelo 

computacional válido, na tentativa de reproduzir a variabilidade do CA em 

termos de composição elementar, grupos funcionais e porosidade. O modelo 

desenvolvido foi usado na obtenção de informação pertinente através de 

técnicas de dinâmica molecular/Monte Carlo que possibilite o melhoramento do 

CA inicial,  

Os resultados adquiridos em simulações Monte Carlo sugerem que CAs 

com teores de oxigénio superiores apresentam valores de área superficial mais 

elevados, e, consequentemente, capacidades máximas de adsorção superiores. 

A presença de iões positivos no meio de adsorção apresenta-se como um fator 

cooperativo para a adsorção de SMX, dada a formação de complexos CA-Na+-

SMX em dupla camada e estabilização de conformações abertas, tal como 

demonstrado através de simulações de dinâmica molecular.  
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abstract 

 
Pharmaceutically active ingredients are amongst the most persistent 

wastewater contaminants, resisting to wastewater treatment plants (WWTP) 

conventional processes, and some of them are proved to pose serious threats to 

organisms and the environment. In this context, adsorption by activated carbons 

(AC) is one of the most promising methodologies for the removal of 

pharmaceuticals from water due to its versatility and high removal efficiency. 

However, ACs are expensive and therefore now widely applied. Primary sludge 

from paper mills has been previously appointed as a potential cheap and 

renewable source of carbon for activated carbon production by pyrolysis.  

Computational chemistry may help shed some light unto the molecular 

mechanisms underlying the adsorption of organic pollutants in ACs. In this work, 

it is proposed the usage of primary paper mill sludge in the production of 

(non)activated carbons. The different materials were characterized by a set of 

techniques and the gathered data was used in the formulation of a validated 

model in an attempt to reproduce the elemental composition, functional group 

variability and porosity. The developed model was used in order to collect 

relevant information through molecular dynamics/Monte Carlo techniques, 

enabling the improvement of the initial AC material. 

The obtained data in Monte Carlo simulations suggest that AC with 

higher oxygen levels present greater values of surface are, and consequently 

superior maximum capacity values. The presence of positive ions in the 

adsorption medium presents itself as a cooperative factor for SMX adsorption, 

given the formation of AC-Na+-SMX complexes and the estabilization of open 

configurations, such as demonstrated in molecular dynamics simulations. 
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Introduction 
 

 

 

 

 

“The leaves, by themselves, are no more than trivial fluttering 

decoration. It is the trunk and limbs that give the tree its grandeur and 

the leaves themselves their meaning. There is not a discovery in science, 

however revolutionary, however sparkling with insight, that does not 

arise out of what went before. 'If I have seen further than other men,' said 

Isaac Newton, 'it is because I have stood on the shoulders of giants.” 

 

- Isaac Asimov, Adding a Dimension: Seventeen Essays on the 

History of Science, 1964
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1.1) The prevailing issue of water contamination  

______________________________________ 

 

Both humans and animals have greatly benefited from the last century advances in 

medicine. However, the consistent increase in drug production, consumption and 

disregarded disposal poses severe threats to human health and non-target organisms and 

is a serious cause of environmental damage (1,2). This steady increase in consumption 

during the last decades can be ascribed to several factors, such as the discovery of new 

drugs, increase in population and industrialization levels, demographic ageing and 

expiration of patents resulting in an increase of low-cost generics production (3). As an 

example, China’s pharmaceutical compound production has tripled from 2003 to 2011, 

accounting for over 20% of the total global production (4), and global consumption rates 

of antibiotics has increased by over 30% in the last decade (5). 

Over 200 pharmaceutically active compounds have been identified in the 

environment, with concentrations ranging from a few nanograms per liter to a thousand 

micrograms per liter (3,6). Such pharmaceuticals, mainly antibiotics, painkillers, vascular 

drugs and antidepressants (7), find their way into the ecosystem through several routes, 

as described in Fig. 1 (8). 

 

Fig. 1. Main routes of pharmaceutical contamination of the environment. Pharmaceutical transformation 
products origin and propagation routes are schematically represented in red. 
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Wastewater treatment plants (WWTP) receive contaminated effluents from drug 

manufacturing plants and municipal sewage systems. After administration, 

pharmaceuticals are metabolized and excreted by the treated organism. While human 

used pharmaceuticals often find their way to a WWTP, pharmaceuticals used in veterinary 

applications such as with domestic pets and livestock are directly delivered to the soil 

where, through infiltration, are lead to aquifers and groundwater systems. Also, 

aquaculture derived residues are delivered directly to the water. Incorrect disposal of 

pharmaceuticals also contributes to the contamination of aquifers, directly or through 

landfill leakage, even though the major cause for environmental contamination resides on 

WWTP effluent discharges (9,10). It has been reported that about 64% of these emerging 

contaminants are only partially removed (< 50%), while up to 9% are not removed at all 

by the standard treatment processes in WWTPs (11). 

Furthermore, pharmaceutical transformation products (TPs) are produced by a 

variety of processes (12): 

 Metabolism - as an example, 26% of the administrated ibuprofen, a 

common pharmaceutical used in inflammatory diseases, pain, 

dysmenorrhea, or fever, is excreted in the form of hydroxy-ibuprofen, a 

TP generally considered more toxic to the aquatic life forms than the 

parent compound (5,13); 

 Wastewater treatment processes (such as hydrolysis, oxidation, 

photodegradation, among others); 

 Digestion by microbial activity and other natural processes in the 

environment; 

 Treatment processes for surface water. 

Some TPs have been identified as being more ecotoxic than the parent compound, 

or as having synergetic and additive effects while in mixture (14). This is the case of 

acridine, a photodegradation product of carbamazepine (CBZ) regarded as mutagenic and 

carcinogenic (15). 

Even though the concentration of therapeutic compounds in the water supply are 

below the minimum levels for human consumption concern in terms of an acute response, 

the presence of this type of pollutants still pose a series of risks (16–18): 
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 Environmental damage to non-target organisms; 

 Biomagnification through the food-chain; 

 Long-term/sub-therapeutic exposure to both individual compounds and 

mixtures; 

 Release of antibiotics to the ecosystem acts as a selection force that can 

lead to the development of antibiotic resistant pathogens; 

 Different dose sensitivity in the young, elderly or pregnant are not studied. 

For this reasons, some pharmaceutical compounds are now regarded as priority 

substances in the field of water policy according to European directives (19). Within the 

scope of the present work, sulfamethoxazole (SMX) and CBZ, two pharmaceutical 

compounds frequently found in the environment (20–22), are proposed as target active 

agents for adsorption, whose details are expressed in Table 1 (23–27).  

 
Table 1. Characteristics of pharmaceutical compounds studied 

 SMX CBZ 

Chemical formula C10H11N3O3S C15H12N2O 

Molecular weight (g mol-1) 253.3 236.3 

Water solubility (mg L-1) 610 (37ºC); < 100 (20ºC) 17.7 (25ºC) 

Hydrogen bond acceptor 4 1 

Hydrogen bond donor 2 1 

Polar surface area (Å) 98.22 46.33 

VdW volume (Å3) 204.70 210.15 

Number of rings 2 3 

pKa 1.97; 6.16 2.3; 13.9 

EQSa (µg L-1) 
Acute: 2.7 

Chronic: 0.6 

Acute: 2000 

Chronic: 2 

a
 Environmental quality standards 
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The structure of both pharmaceuticals is schematically represented in Fig. 2, as 

well as structural changes based on pH of the medium. An overview of CBZ and SMX 

concetrations in effluents of various WWTPs can be found in Table 2 (28–36). 

 

Fig. 2. Sulfamethoxazole (left) and carbamazepine (right) structural changes based on pH. 
Red circles highlight the structural group who suffered deprotonation with the pH increase. 

 

SMX is an antibiotic extensively used in the control of human or animal urinary, 

respiratory and gastrointestinal infections, and it is estimated that 10% to 30% is excreted 

by urine in the original active form (37,38). It is highly persistent to biological 

degradation in common wastewater treatment processes: maximum concentrations of 

4.46 µg L-1 (Germany) have been measured in WWTP effluents, over double of the 

environmental quality standards (EQS) proposed by Oekotoxzentrum (2016) for chronic 

effects (24). In the case of SMX, bacterial resistance dissemination is a major concern, 

and therefore additional cautionary measures should be taken, in order to improve the 

removal rate of this antibiotic from water, especially considering that some of its 

metabolites are more ecologically toxic than the parent compound (39). 
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Table 2. Carbamazepine and Sulfamethoxazole concentrations in WWTP effluents around the world 

 

CBZ is generally applied on the treatment of seizures, neuropathic pain, and 

second-line medication of bipolar disorders and some cases of schizophrenia (40). As one 

of the most frequently detected pharmaceutical in wastewater (41), this compound is 

highly recalcitrant to standard wastewater treatments, and poses serious risks to the 

environment and human health (42–44). It has been detected in WWTP effluents with 

maximum concentrations as high as 6.30 µg L-1 (Germany), over triple the EQS for chronic 

effects (2 µg L-1) proposed (24). In previous studies, it has been shown that some 

photodegradation products of CBZ (acridine and acridone) are even more toxic than the 

parent compound (45). 

For these reasons, removal of SMX and CBZ from water without the risk of 

developing dangerous degradation products becomes imperative. 

Country 

WWTP effluent (ng L-1) 

CBZ SMX 

Germany < 6300 300 – 2460 

France 980 – 1200 70 – 90 

Belgium < 1200 - 

Italy 300 – 500 10 – 30 

Spain < 1290 - 

Greece 1030 90 

Norway < 3400 - 

Sweden < 1180 < 200 

USA 110 – 190 79 – 2200 

Japan 18 - 86 10 - 76 

UK 230 – 1060 < 50 
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1.2) Activated Carbons: a solution to 

pharmaceutical contamination of water  

______________________________________ 

 

Currently, wastewater treatments consist mainly of two classes of methods: on one 

hand, conventional methods, such as flocculation, filtration and biodegradation, are 

mainly ineffective on the removal of persistent organic compounds. On the other hand, 

chlorination, oxidation by ozone and ion exchange resins are examples of advanced 

methods that although having better efficiencies for the removal of pharmaceuticals, may 

generate transformation products that are even more dangerous to the environment and 

are generally more expensive to employ in standard WWTPs (26,46). In this context, over 

the last decade, some research has been undertaken in order to quantify the efficiency of 

pharmaceutical removal by standard and advanced water treatment processes currently 

employed, as stated in Table 3. 

 

Table 3. Water treatment processes efficacy in pharmaceutical removal – adapted from (47–49) 

 
Process Min (%) Max (%) 

C
o

n
ve

n
ti

o
n

al
 

Anaerobic activated sludge 17β-Estradiol 0 Estrone (E1) 79 

Mixed activated sludge Bezafibrate 19 Caffeine 100 

Aerobic activated sludge Carbamazepine 9 Salicylic acid 97 

Coagulation Ibuprofen < 20 Diclofenac 60 

A
d

va
n

ce
d

 

Ultrafiltration Caffeine 2 Estrone (E1) 98 

Nanofiltration Acetaminophen 18 Sulfamethoxazole 98.5 

Reverse Osmosis Carbamazepine 65 Ketoprofen 99 

UV Acetaminophen 1 Antipyrine 100 

Photolysis (254 nm) Naproxen 29 Diclofenac 100 

Ozonation Ethynylestradiol 80 Ketoprofen 96 

Activated carbons Cephalexin 57 Tetracycline 100 
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As for conventional processes, coagulation treatments were mostly ineffective in 

pharmaceutical removal. Although activated sludge processes can achieve significant 

removal rates (79% to 100% of maximum removal), these values can vary immensely due 

to factors such as tank temperature, hydraulic retention time and sludge age, among 

others. This unpredictability of results can pose a liability. Furthermore, the optimization 

of such factors for removal of therapeutic compounds may lead to lower removal rates of 

other contaminants, such as pathogenic microbial agents, and therefore priority 

guidelines should not be overridden (17). 

Advanced wastewater treatments such as membrane filtration or ozonation allow 

higher removal rates of pharmaceuticals from wastewater (99% and 96% of maximum 

removal efficiency, respectively), but require an intensive capital investment when 

compared to standard practices, and therefore are not employed to a meaningful extent. 

UV treatments, as well as photolysis and ozonation can produce TPs and should be applied 

with caution. Moreover, ultraviolet radiation presents a fluctuating range of removal rates 

(1-100%), and can be, therefore, unreliable in industrial scale applications (17,50). 

In this context, adsorption of contaminants by activated carbons (AC) emerges as 

an optimistic solution, with advantages such as versatile usage and high removal 

efficiencies and the ability to regenerate and reuse spent adsorbents (51), even though it is 

still not widely used because of its high-cost (52) and the fact that it doesn’t mineralize 

the contaminants (49). Current estimations place the world’s demand for AC around 1.1 

million tons per year, and it is expected to grow at a rate of over 10% per year until at least 

the 2020’s (53). AC are carbon-rich materials with a porous structure, that can be activated 

by thermal/physical and/or chemical processes in order to increase internal superficial 

area and therefore, adsorption capacity (54). AC applications vary, including adsorption 

of industrial pollutants, heavy metals, organic and inorganic compounds, microorganisms, 

as well as energy storage (55). 

Regarding AC production processes, Fig. 3 schematizes two routes to achieve 

carbonization and activation of precursor materials. Through physical processes, the 

starting material is firstly carbonized, and then suffers activation under an oxidizing gas 

flow such as water vapor (H2O), carbon dioxide (CO2), or a mixture of both, at high 

temperatures (800 to 1100 ºC) (56,57), whereas in common chemical activation there is 

carbonization and activation of the initial material simultaneously when impregnated 

with activating chemical agents at medium-high temperatures (400 – 900 ºC) (55,57,58). 
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The most common activating agents are zinc chlorine (ZnCl2), di-hydrogen phosphate 

(H2PO4-), sodium hydroxide (NaOH), potassium hydroxide (KOH) and potassium 

carbonate (K2CO3). Chemical activation has shown some benefits over physical processes, 

such as higher yields, inferior pyrolysis temperatures, and the fact that it generally 

produces AC with highly developed micro porosity, higher surface area (600 to 2000 m2 

g-1) and reduced mineral matter content (20). However, chemical activation is commonly 

more expensive, deals with corrosive substances and requires an extra washing step (59). 

Although a considerable number of different attributes need to be analyzed in order to 

fully characterize an AC, the specific surface area (SBET) and average pore diameter (D) are 

some of the significant influential factors and the most commonly found attributes 

described in the available literature (21). 

 

 

Fig. 3. Standard activated carbon production methods. The proposed method for the present work is 
illustrated in red. 

 

Washing is often required in order to remove impurities originated by the chemical 

activation process, usually with water or an acid chemical agent such as hydrochloric acid 

(HCl) (60). Carbonization using high-power microwaves (1200 W) instead of nitrogen 

(N2) purged muffles has been discussed, with proposed advantages such as shorter 

process times, lower energy demands and higher yields (53). 
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On the subject of activation agent selection, K2CO3 emerges as a promising 

choice, based on its environmental advantages, such as avoiding eutrophication problems 

associated with phosphate use (61) and not being corrosive of hazardous as some 

alkalimetal hydroxides (62). Also, in previous studies, K2CO3 activation resulted in AC 

with high specific surface areas. For instance, by using industrial pre-treated cork, a SBET 

of 907 m2 g-1 was achieved (63), when testing AC production from sisal waste a SBET of 

1038 m2 g-1 was obtained (64), cornstalk lignin based AC showed a SBET of 1410 m2 g-1 

(61) and when using chitosan as feedstock, AC showed a SBET of 2130 m2 g-1, although 

with a larger percentage of mesopores (65). Although the activation method is not 

thoroughly studied, it is believed that activating agents containing potassium improve the 

microporous nature of the feedstock material by intercalation of the metal with the 

carbonaceous structure and acting as a cast during pyrolysis (62,66,67). 

Commercially available AC are commonly produced from fossil fuels such as 

petroleum or bituminous coal and mainly distributed in two forms: powdered activated 

carbons (PAC) and granular activated carbons (GAC), illustrated in Fig. 4. Both were 

shown to have consistent removal rates of over 90% for more than 25 types of 

pharmaceutical agents. Usually, PAC is continuously fed into the treatment reactors as a 

new product, while GAC can be regularly regenerated (68). Some other unusual forms of 

distribution include fibers, cloths, nanotubes or pellets (55). Since AC removal from the 

reaction medium after adsorption can be troublesome, studies using magnetized AC for 

magnetic removal were carried, showing promising results (69). 

 

 

Fig. 4. Main forms of activated carbons distribution: powdered (left) and granular (right) 
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Regarding pharmaceuticals adsorption, AC efficiency greatly depends on the 

target molecule chemistry, given that adsorption is generally governed by 

hydrophobic/hydrophilic interactions, non-covalent attractions (π-π stacking) and 

electrostatic attraction/repulsion based on the surface functional groups of the carbon. It 

was previously reported that PAC DETOX 1600, a commercially available AC, presented 

removal rates of 92%, 76% and 73% towards Triclosan, Metoprolol and Trimethoprim, 

while only removing 9%, 3% and 1% of Acetaminophen, Caffeine and Ibuprofen, where 

the authors point electrostatic interactions, chemical bounding and other non-specific 

forced as the main agents in the adsorption process. This lower removal rates were 

improved by combining AC adsorption with ultrafiltration, reaching removal rates of over 

90% towards all pharmaceutical compounds (70).  

 Given the presence of functional groups on the AC surface, previous works 

demonstrated the influence of pH on removal rates of pharmaceuticals and regeneration 

capacity of AC. Results regarding the adsorption of pramipexole dihydrochloride (PD), a 

popaminergic antiparkinsonism agent, and dorzolamide (D), an ophthalmic glaucoma 

agent, using AC derived from potato peels, showed that adsorption was favored by lower 

pH (around 2), (61% maximum removal rate of PD and 55% removal rate of D), while 

regeneration of the used AC was favored by higher pH (around 10). (71). A different 

study showed similar results, where the adsorption of ceftazidime was favored at low pH. 

This effect was attenuated by the impregnation of the AC with metals such as iron, 

aluminum and copper (4). In opposition, alanine adsorption by commercially available 

AC was shown to be favored by basic pH (above 8) and low content of oxygen (72), 

revealing that the protuberant adsorption mechanism is dependent on the target molecule 

chemistry. 

 Therefore, two main characteristics in the adsorbent are of importance: the 

superficial area/pore development and surface chemistry (26). 
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1.3) Harnessing the potential of paper mill primary 

sludge as feedstock for activated carbon production  

______________________________________ 

 

Currently, AC are primarily derived from fossil fuels hydrocarbons resulting from 

the heavy fractions of petroleum and coal or expensive lignocellulosic materials, so its use 

is therefore restricted by cost and availability, as well as environmental concerns regarding 

particulate matter generation or heavy metal contamination during carbonization 

processes, as well as extensive exploration of natural resources (51,56,57). As summarized 

in Table 4, abounding alternative renewable sources of cellulosic precursors have been 

proposed and studied as alternative precursors for AC production, either by physical 

activation (PA) or chemical activation (CA). 

Table 4. Alternative renewable sources of cellulosic precursors for AC production 

Precursor Activation method T (ºC) SBET (m2 g-1) D (nm) Ref. 

Coconut shell PA (H2O) 850 1493 1.57 (73) 

Eucalyptus PA (CO2) 900 1491 2.15 
(74) 

Wattle PA (CO2) 900 1000 2.16 

Quercus agrifolia PA (CO2) 880 1197 2.17 (75) 

Cane sugar bagasse CA (HNO3) 900 868 1.90 
(76) 

Sawdust CA (HNO3) 900 1100 2.00 

Olive tree CA (H3PO4) 550 904 5.30 (52) 

Vietnamese jute PA (CO2) 950 657 1.76 
(77) 

Coconut fibers PA (CO2) 950 534 1.78 

Palm seeds CA (ZnCl2) + PA (H2O) 800 1291 2.43 (78) 

Rice husk PA (CO2) 500 39 3.01 

(79) 

Rice husk PA (H2O) 500 74 2.89 

Macadamia nut shell PA (CO2) 500 844 2.30 

Macadamia nut shell PA (H2O) 500 487 0.52 

Corncob PA (CO2) 500 675 2.13 

Corncob PA (H2O) 500 836 2.04 

T - Temperature 
SBET – Surface area 
D – Pore diameter 



Computational optimization of bio adsorbents for the removal of 
pharmaceuticals from water 

14 

Regarding average pore diameter (D), it’s possible to infer that such values usually 

prevail between 1.5 and 3.0 nm. IUPAC recommendations define a micropore as being a 

pore with a diameter of less than 2 nm (80). 

Besides agricultural precursors, some industrial wastes have been studied as 

potential feedstock for AC production. Primary paper mill sludge (PS) is the result of 

primary treatment of paper mill effluents, as described in Fig. 5. This material mainly 

consists of wood fibers and organic matter such as amino acids, polycyclic aromatic 

hydrocarbons, heterocyclic compounds and organofluoride compounds (81,82).  

 

 

Fig. 5. Schematic representation of primary sludge origin in paper mill effluent treatment processes, 
highlighted in red 

 

Pulp and paper mills around the globe produce large amounts of PS: USA, Japan, 

China, Europe and South Africa together produce nearly 30 million tons per year (83). 

For comparison, in North America, 4 kg of sludge is produced for every 100 kg of paper 

(84). Furthermore, disposal of PS is currently a major issue. Traditionally, it involves 

landfilling or energy production though incineration/combustion. However, such 

solutions are rapidly becoming unsustainable based on a number of factors (81,82,84):  

 Water removal from crude PS in order to meet landfill standards, as well as 

transportation to the landfill, is economically suboptimal; 

 Leachate production in landfills constitutes a ground water pollution source; 

 Progressively stringent measures have been employed regarding landfill space 

depletion; 

 Given the high water content of untreated PS, energy production is far from 

ideal due to energy loss to water evaporation; 
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 Combustion of PS, if improperly handled, may cause atmospheric pollution 

due to NOX, SOX and suspension dust emissions; 

Given its abundance and sizable content in carbon, PS has been proposed as a 

feedstock for AC production (26,46,85–89), after showing interesting results for the 

production of non-activated carbons, and therefore acting as a starting point for the study 

of AC production. When compared to commercial ACs, alternative adsorbents generated 

from PS showed faster adsorption kinetics, comparable SBET and higher adsorption 

capacity, especially when considering samples activated with ZnCl2. Another study using 

PS as a starting point for AC production showed that further biological activation with 

Pseudomonas putida resulted in an increase from 65% removal rate of phenol to 97% (90). 

These results further substantiate the notion that AC generated from PS material is a 

versatile and competitive option to common AC. 
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1.4) Computational chemistry as a powerful tool  to 

understand adsorption mechanisms  

______________________________________ 

 

Despite being thoroughly studied, the adsorption process at the molecular level in 

AC remains shrouded and constitutes a point of divergence in the scientific community. 

For example, disparity in theories regarding the primary adsorption principle exists, where 

some studies point functional group interactions as the main force guiding molecular 

adsorption, while others assign it to microporous structure and specific surface areas (77). 

Therefore, deeper insights into the interactions between adsorbates and the AC are 

necessary. This would allow the modulation of the AC characteristics in order to increase 

adsorption capacities and rates or target compound selectivity. 

Computational chemistry harnesses the power of generalized and readily available 

computers use to simulate dynamic aspects of molecular systems (91) by molecular 

dynamics (MD) and/or Monte Carlo (MC) simulations. Citing Tamar Schlick (92): 

“MD is the science of simulating motion of a system of particles according to 

Newton’s classical equations of motion.” 

In other words, MD allows the study of molecules movement in detail, bridging 

molecule structure to function. Besides molecular dynamics techniques, MC approaches 

became a standard practice in adsorption simulations (93). Grand Canonical Monte Carlo 

(GCMC) is highlighted among the several ensembles proposed. In this technique, the 

chemical potential, volume and temperature of the system are fixed, leaving the 

pressure/concentration of the species involved as the sole parameter contributing for the 

addition/deletion of molecules in the system (94). This ensemble allows for an easy 

definition of adsorption isotherms and helps to highlight competition effects, such as co-

adsorption (95).  

Several models for AC have been previously proposed as schematically shown in 

Fig. 6. Structureless models use a continuous surface without isolated atoms (96). Slit pore 

models assumes an array of semi-infinite and rigid carbon walls at a given distance (pore 

size) (96). They are often decorated with functional groups to study their influence in a 

simple manner. Both approaches try to simplify the carbon material surface and often fail 
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to account for more complex situations, such as pore architecture or edge effects. Mimetic 

models try to imitate the synthesis process, through techniques such as Reverse Monte 

Carlo, template mesoporous structures or quenching (94). This results in more complex 

models that more closely mimic the structure of real ACs, but often lack experimental 

characteristics and uniqueness between different instances of the same model, and are 

computationally expensive to generate (97). Finally, we have the reconstruction models: 

these models often use data from experimental characterization techniques to build the 

model of the AC. A common approach is the usage of microcrystallites: graphitic 

structures with less than 5 nm in diameter, comprised of stacked carbon layers and based 

on experimental observations, as to create a virtual porous carbon (VPC) models. The 

spatial orientation and stacking of this building blocks in 3D space creates pores that give 

the VPC’s their characteristic high surface area (98).  

 

 

Fig. 6. Activated carbon model examples. The proposed model type for the present work is highlighted in red. 

 

The VPC reconstruction method has been explored in previous works, since the 

first proposed model by Segarra and Glandt in 1994 (99). For this reason, the VPC models 

are sometimes referred to as SG models. Platelets with an homogeneous size and nature 

were used, without explicit atoms described, in a very simple fashion. Several authors 

upgraded this initial model in order to define more complex behaviors. Some works of 

interested are highlighted below. 
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Liu et al. (100) explored the usage of the VPC reconstruction method in order to 

study the adsorption of water in AC’s, using GCMC. The results show that the created 

model is in accordance to experimental data in terms of isotherm shape, further validating 

the VPC model. 

Di Biase et al. (101) used simple fullerene-like molecules packed in a simulation 

box, where the density was tuned in order to achieve the desired surface area of the 

resulting material. Some platelets were further adorned with hydroxyl (-OH) or carboxyl 

(-COOH) to study the effect of oxygen concentration and nature. GCMC was then 

employed to develop adsorption isotherms of CH4 and CO2 in gaseous phase. The results 

show good agreement with experimental data. Oxygen groups in the carbon surface 

increased CO2 adsorbance, with the nature of the oxygen groups not being relevant. 

Gonciaruk et al. (102) followed a similar strategy, but introduced the use of 

different types of platelets, with varying sizes. However, the resulting AC model surface 

area was not explicitly defined, and resulted from natural microcrystallite packaging. This 

packaging resulted in a porous structure with surface areas between 175 and 500 m2 g-1. 

Although these values are lower than expected, the proposed model was not optimized 

based on any experimental data. GCMC was then used to study CO2 and CH4 adsorption, 

with appropriate similarity to experimental results. 

More recently, Bahamon et al. (95) further explored the usage of VPC models, with 

the addition of more complex molecules as targets for adsorption (ibuprofen, in this 

example, is one of the few studies performed with organic contaminants). The used AC 

model included different sized platelets, defects and oxygenated groups (hydroxyl, pyran, 

carboxyl and carbonyl). Finally, ibuprofen adsorption from an ibuprofen/water mixture 

was simulated using GCMC. Results are in general accordance with experimental results 

available in literature, since the defined model was not optimized in accordance to any 

specific AC sample in a quantitative manner, being a pure qualitative behavior study.  
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1.5) Present work objectives  

______________________________________ 

 

The possibility to adapt the existing computational models in a quantitative 

manner to a real sample of AC naturally emerges as an interesting development in the field 

of AC modelling and as a tool for designing improvements in AC production. Such study 

would allow the modulation of the characteristics of AC to improve adsorption rate, 

capacity or selectivity towards certain target molecules. This objective requires substantial 

characterization of real AC sample in terms of surface area, elemental constitution, charge, 

particle size and functional group composition. Characterization of the feedstock and 

carbon materials of intermediary steps allow a broader overview of the process. 

As previously stated, paper mill PS showed promising results when used as 

feedstock for AC production, making it a compelling candidate for the present study. The 

application of AC in water treatment has showed consistency on obtaining good results 

when it comes to pharmaceutical adsorption from contaminated water systems, therefore 

CBZ and SMX emerge as interesting adsorption targets. However, questions regarding 

which properties constitute an efficient adsorbent persist. Therefore, an assortment of 

computational chemistry strategies is proposed to elucidate molecular behaviors 

otherwise inaccessible, such as molecular dynamics simulations and GCMC adsorption 

studies. The development of a unified model which can accurately replicate experimental 

data is hereby proposed as a step towards a better understanding of the chemistry 

underlying pharmaceutical adsorption by AC, as schematically represented in Fig. 7. 

 

Fig. 7. Proposed work map 
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Hence, the objectives of this work are as follows: 

 To produce real AC using paper mill PS as feedstock, by chemical activation using 

K2CO3 and HCl washing. 

 To fully characterize the AC structure and surface chemistry using a battery of 

techniques to obtain a set of relevant data: 

o Point of Zero Charge (PZC); 

o Fourier transform infrared spectroscopy (FTIR); 

o Transmission (TEM) and Surface (SEM) Electron Microscopy; 

o Energy-dispersive X-ray spectroscopy (EDS); 

o Total Organic carbon determination (TOC);  

o Proximate and ultimate analysis; 

o Specific Surface Area (SBET); 

o X-ray photoelectron spectroscopy (XPS). 

 To use the gathered experimental data to develop and test a validated model for 

AC regarding pore distribution, surface area and superficial functional groups; 

 To use a validated model for AC in the interest of obtaining pertinent conclusions 

regarding molecular behavior in adsorption experiments, resorting to 

computational chemistry tools: 

o MD simulations; 

o GCMC essays; 

o MC surface area determination and pore size studies. 

 To extrapolate the modelled data into factitious models with different 

characteristics to study the effect of: 

o Oxygen content; 

o Ion concentration of the aqueous phase. 
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Materials and methods 
 

 

 

 

 

“The important thing is not to stop questioning. Curiosity has its own 

reason for existence. One cannot help but be in awe when he 

contemplates the mysteries of eternity, of life, of the marvelous structure 

of reality. It is enough if one tries merely to comprehend a little of this 

mystery each day.” 

 

- Albert Einstein, LIFE Magazine, 2 May 1955 
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2.1) Production of carbon materials  

______________________________________ 

 

Three different carbon materials were produced using primary paper mill sludge 

(PS) as a precursor. The sludge was obtained from a Portuguese factory operating an 

elemental chlorine free kraft process, using Eucalyptus Globulus. PS was dried at 60 ºC in 

an oven, for 24h and grinded with a blade mill before further treatment. A description of 

each sample treatment can be found in Table 5. 

ACs were produced by chemical activation with potassium carbonate (K2CO3), in 

a proportion of 1:1 (w/w). The activating agent solution was prepared with the proportion 

of 50 mL of distilled water (H2Od) to 15g of K2CO3. PS was impregnated during 1h in 

ultrasounds bath at room temperature. The impregnated PS was left to dry for 7 days on 

the hotte.  

Pyrolysis of PS or impregnated-PS was performed in porcelain crucibles. The 

pyrolysis was performed in a furnace muffle under inert atmosphere with a nitrogen flow, 

at 800ºC, heating rate of 10 ºC min-1 and residence time of 150 minutes. Nitrogen flow was 

maintained during the cooling of the furnace. Samples without further treatment were 

grinded with a blade mill, and named PS800. 

Some samples were subjected to a washing step using HCl in a proportion of 1.2 g 

of carbon material to 40 mL of 1.2 M HCl (37%, Panreac). The carbon material and the 

washing solution were kept in contact for 1h. The resulting slurry was vacuum filtered and 

washed with distilled water until neutral pH of the washing leachate was achieved. The 

samples were then dried for 7h in an oven at 105 ºC, and subsequently grinded with a blade 

mill. Such samples were named PS800-HCl and PS800-K2CO3-HCl, the latter having 

suffered chemical activation. 

Table 5. Sample preparation guide 

Samples Pyrolysis Washing Activation 

PS800    

PS800-HCl    

PS800-K2CO3-HCl    
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2.2) Characterization of carbon materials  

______________________________________ 

 

2.2.1) Point of zero charge (PZC) determination 

PZC was determined by batch equilibration. 2 mg of each carbon sample were 

shaken in polypropylene tubes with 10 mL of NaCl 0.1 M (≥99.5%, Fluka) solution, for 12h 

in a overhead shaker at 25ºC, at different pH values. A total of 11 tubes were used from pH 

values ranging from 2 to 12. Initial pH values were measured and adjusted using 0.1 M and 

0.05 M HCl (37%, Panreac), and 0.1 M and 0.05 M NaOH (99.3%, José Manuel Gomes dos 

Santos, Portugal). The final pH was measured and the PZC was determined by plotting the 

∆pH (pHf – pHi) versus the pHi. The PZC is the pH value at which the curve intersects the 

x-axis. All carbon samples were subjected to this technique, except PS. 

 

2.2.2) Fourier transform infrared spectroscopy with attenuated total 

reflectance (FTIR-ATR) 

FTIR-ATR spectra were obtained using a Shimadzu-IRaffinity-1 spectroscope, with 

nitrogen purge. The measurements were recorded in the range of 600-4000 cm-1, 4.0 of 

resolution, 128 scans and with atmosphere and background correction. All carbon 

samples, including PS, were subjected to this FTIR-ATR analysis. 

 

2.2.3) Transmission electron microscopy (TEM) 

TEM images were obtained using a HR-(EF)TEM JEOL 2200FS microscope at the 

following magnitudes: 5 000x, 20 000x, 50 000x, 80 000x, 100 000x, 150 000x and 200 

000x. All carbon samples were subjected to TEM imaging, except PS. Higher magnitudes 

of 150 000x and 200 000x were only applied in PS800-K2CO3-HCl samples. 

 

2.2.4) Scanning electron microscopy (SEM) and Energy-dispersive X-ray 

spectroscopy (EDS) 

SEM images were obtained at the following magnitudes: 300x, 1 000x, 3 000x, 10 

000x, 30 000x and 50 000x, using a Hitachi SU-70. The apparatus was also used to 
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perform EDS analysis using a Bruker QUANTAX 400. All carbon samples were subjected 

SEM imaging and EDS, including PS. 

 

2.2.5) Total organic carbon (TOC) content 

Total carbon (TC) and inorganic carbon (IC) were determined using a TOC-VCPH 

Shimadzu analyzer, with a solid sample module SSM-5000A, and the TOC content was 

obtained by difference. Glucose (C6H12O6, 40% of carbon) was used as standard to 

establish and test the calibration curve for TC determination, while sodium carbonate 

(Na2CO3, 11% of carbon) was used as the standard for IC determination. Carbon content of 

the materials was determined as the average of 3 replicates. All samples, including PS, were 

subjected to TOC content determination. 

 

2.2.6) Proximate and ultimate analysis 

Standard methods to determine the moisture (UNE 32002), volatile matter (UNE 

32019) and ash content (UNE 32004) were employed in a LECO TGA-601 automatic 

analyzer, for proximate analysis. The remaining fraction after ash and volatile matter (at 

dry basis) was determined to be the fixed carbon content. 

Ultimate analysis were performed in a LECO CHNS-932 analyzer, determining the 

content in carbon (C), hydrogen (H), nitrogen (N) and sulfur (S) in the samples. The 

difference between the remaining fraction, in dry basis, and the ash percentage was 

considered to be the oxygen (O) content.  

All carbon samples, including PS, were subjected to proximate and ultimate 

analysis. 

 

2.2.7) Specific surface area (SBET) 

Specific surface area (SBET) was determined on a Micromeritics ASAP2420 

apparatus using the N2 adsorption isotherm at -196ºC and Brunauer–Emmett–Teller 

equation in the relative pressure range 0.01–0.1. Degasification process of the sample was 

carried overnight. Additionally, average pore width and total pore volume were also 

determined from the amount of nitrogen adsorbed at a relative pressure of 0.99. All carbon 

samples were subjected to SBET determination, except PS. 
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2.2.8) X-Ray Photoelectron Spectroscopy (XPS) 

Functional group content was determined by XPS analysis. Spectra were acquired 

in an Ultra High Vacuum system with a base pressure of 2x10-10 mbar located on TEMA, 

University of Aveiro. The system is equipped with a hemispherical electron energy 

analyzer (SPECS Phoibos 150), a delay-line detector and a monochromatic AlKα (1486.74 

eV) X-ray source. High resolution spectra were recorded at normal emission take-off angle 

and with a pass-energy of 20 eV, which provides an overall instrumental peak broadening 

of 0.5 eV. Only PS800-K2CO3-HCl sample was targeted for XPS analysis. 
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2.3) Computational modelling approaches 

______________________________________ 

2.3.1) Carbon model development 

Carbon models were obtained by clustering carbon microcrystallites into a VPC. 

The carbon material was considered to be a disordered configuration of platelets of 

different sizes, decorated with specific functional groups, as an extension of the Segarra 

and Glandt model (103), and more recently, the Bahamon approach (95). Experimental 

data was considered in order to mimic the real material characteristics, namely the AC 

surface area, elemental constitution and functional content, having PS800-K2CO3-HCl as 

a starting point. The applied strategy and resulting AC models are further discussed in 

detail in chapter 3. 

A great deal of attention was given to automation throughout the present work. A 

series of Python scripts were developed in order to produce the AC model in a reliable and 

autonomous way, so that replicas could be easily studied. An online repository version of 

the developed and used scripts during this work can be found at 

github.com/JosePereiraUA/carbon/. In this context, the following tasks were programmed 

in the produced scripts: 

 Carbon residue design, with the following options: 

o Size and number of carbon layers; 

o Functionalization content, where the following functional groups were 

designed: ethers, carbonyls, carboxyls and edge hydrogens; 

o Atom charges determination; 

o Functional group hydrogenation in accordance to pH; 

 Residue library construction, with variable number of residues; 

 Clustering process of residues into AC models, with the following options: 

o Atom count limits; 

o Charged ions addition; 

 Manipulation of necessary files for both batch MD studies and GCMC essays 

https://www.github.com/JosePereiraUA/carbon/
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Atomtypes for all molecules used in the present work, including the carbon 

models, were extracted from Generalized Amber Force Field (GAFF) forcefield (104), and 

simplified for this model application. For this matter, non-bonded interactions were 

considered to be Lennard-Jones pairs, with Lorentz-Berthelot combination rules as 

defined in GAFF forcefield. Lennard-Jones and electrostatics 1-4 interactions were 

multiplied by a 0.5 and 0.833 factor, respectively. 

For functional group’ partial charge definition, small sets of carbon rings were 

manually designed using Avogadro 1.1.1 (105), and the different types of functional groups 

were added separately. The resulting molecules were optimized by Density Functional 

Theory (DFT) at the B3LYP/6-31G* level using Gaussian09 (106). The minimized structure 

was then used in the calculation of the electrostatic potential map, at the HF/6-31G* level, 

from which Restrained Electrostatic Potential (RESP) partial charges were obtained using 

Antechamber (107). 

The obtained partial charges were used in the developed Python script. A 

functional group was considered as all the heteroatoms involved, the carbon atom where 

the functional group is attached to (C0) and the neighbor carbon atom connected to C0. 

All functional groups had a neutral charge: positive charges were dispersed by C0 and 

neighbor atoms to keep the sum neutral.  
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2.3.2) Pharmaceutical molecules parametrization 

CBZ and SMX molecules were manually designed on a first approach, using 

Avogadro 1.1.1, and relaxed using GAFF forcefield and Steepest Descent Algorithm.  

The resulting molecules were subject to a multi conformational analysis as follows: 

the molecules were firstly brought up to 1500K in a molecular dynamics simulation in 

vacuum (translation/rotation around the system center of mass was removed), allowing 

them to rearrange in conformations with associated energies distinct from the global 

minimum energy value. Snapshots were gathered every 1 ps, for 2.5 ns, resulting in 2500 

different conformations gathered. Each of the resulting frames was minimized, and the 

resulting conformations were sorted based on the structure energy, where the 20 

molecules with the lowest energies were selected for superimposed visualization. As 

illustrated in Fig. 8, all the resulting conformations were similar. 

 

 

Fig. 8. Multi conformational analysis results (20 conformations aligned): Left – CBZ shows a rotation center; 
Right – SMX present rotation to some extent on the CH3 group, but adopts a closed conformation on itself 

 

The conformation with the lowest energy was then further optimized by DFT at 

the B3LYP/6-31G* level, using Gaussian09 software. The eletrostatic potential map was 

calculated at the HF/6-31G* level, and partial charges for the pharmaceutical molecules 

were obtained using RESP method on Antechamber. 
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2.3.3) Molecular dynamics simulations 

Molecular dynamics simulations were performed using the GROMACS software 

(108), in 125 nm3 cubic boxes (5 nm each side) with periodic boundary conditions (PBC) 

applied. All simulation stages used: the Verlet 

cut-off scheme for neighbor searching; 

particle-mesh Ewald for electrostatics beyond 

12 Å cut-off; 12 Å cut-off for van der Waals 

interactions. Water molecules were modeled 

according to the TIP3P model (109). 

Firstly, pharmaceutical molecules of 

interest were attempted to be introduced in 

the system until the requested number was 

placed or no more available space was 

identified (100 insertion trials per molecule). 

Secondly, solvent molecules were added until 

no more space was free, as described in Fig. 8. 

Molecular dynamics simulations were split 

into 5 different stages: 

 Solvent relaxation: Position restrictions 

were imposed to carbon and pharmaceutical 

molecules, in order for the water molecules to 

adopt a more natural position. Minimization 

criteria were: Fmax < 10 kJ mol-1 nm-1, 100 000 

steps or ∆F lower than machine tolerance; 

 Minimization: The whole system was 

energy minimized without restrictions, following 

the previous criteria; 

 Heat equilibration: The simulation was 

brought up to 300K, for 1 to 2 ns, using a Nose-

Hoover extended ensemble, and maintained stable 

towards the end of the stage; 

 Pressure equilibration: The simulation 

box vectors were compressed by a Parrinello-

Rahman extended-ensemble to equilibrate the 

system at 1 bar pressure, during 1 to 2 ns. 

Fig. 9. System preparation for molecular dynamics 
simulations: Top – Carbon model; Middle – 
Pharmaceutical addition; Bottom – Solvation  
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 Data gathering: The equilibrated system settings was kept for 10 ns for data 

collection, having snapshots collected every 20 ps for further analysis. Linear 

Constrain Solver (LINCS) algorithm was employed to convert all bonds and 

angles that involve hydrogen atoms to bond constrains. 

 

2.3.4) Monte Carlo adsorption essays 

Monte Carlo adsorption essays were carried out in the GCMC ensemble using 

RASPA 2.0 software (110). Partial pressure values were converted to fugacity using the 

Peng-Robinson equation of state (111), as stated in Eq. 1.  

 

𝑝 =  
𝑅𝑇

𝑉𝑚 − 𝑏
−

𝑎𝛼

𝑉𝑚
2 + 2𝑏𝑉𝑚 − 𝑏2

 , 𝑤ℎ𝑒𝑟𝑒: 

𝑎 =
0.45724 𝑅2𝑇𝐶

2

𝑝𝐶
 

𝑏 =
0.07780 𝑅 𝑇𝐶

𝑝𝐶
 

𝛼 = ( 1 + 𝑘 (1 − 𝑇𝑅
0.5))2 

𝑘 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2 

𝑇𝑅 =
𝑇

𝑇𝐶
 

 

Eq. 1 

Critical temperature (TC), critical pressure (PC) and acentric factor (ω) values were 

extracted from available literature for water and ions. SMX and CBZ critical properties 

were estimated using Joback method (112), and acentric factors were predicted using 

Positional Distributive Contribution method (113). The calculated values used in the 

present work are available in Table 6. GCMC essays were performed for 3000 to 6000 

steps (or until equilibrium), at 300K and 1 atm. Water was used as solvent in all essays. 

Partial pressures of the components in the simulation were tuned to reflect the desired 

concentration of the pharmaceutical molecules in the mixture. 

 

Table 6. Critical properties and acentric factors calculated for the pharmaceutical molecules studied 

 TC (K) PC (kPa) ω 

SMX 1006.40 5175.72 0.2389 

CBZ 915.59 3325.84 0.1456 
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 Simulated concentrations of pharmaceuticals in water were 1, 100 and 1000 ppb, 

as to reflect the values commonly found in literature regarding their concentrations in the 

environment. Two modes of adsorption were studied: single component and competitive 

adsorption. In competitive adsorption, the considered pharmaceuticals were in an 

equimolar mixture. Four types of moves were employed, with equal probability, in the 

GCMC ensemble: translation, rotation, reinsertion and identity change. Translation and 

rotation move and orient the molecule in 3D space; reinsertion moves try to remove or 

insert a new molecule in the simulation box with equal probability.; identity change moves 

try to remove one molecule and insert a different one in the same place and with the same 

orientation. This move was especially useful in competitive adsorption essays. 

 

2.3.5) Monte Carlo surface area determination 

Geometric surface area of the modelled materials was computed using Monte 

Carlo, where a probe atom (radius σ = 2.958 Å) was “rolled” over the AC model surface, 

and the SBET was considered as the summation of all non-overlapping probe spheres after 

104 steps. Additionally, void fraction volumes were also computed using MC. Helium 

probes were inserted in the AC model box using Widom particle insertions, and the void 

fraction was determined to be the empty space divided by the total volume. 

 

2.3.6) Visualization methods 

Molecular structures were visualized with PyMol (114). Carbon atoms are displayed 

in dark grey, oxygen atoms in red, hydrogen atoms in light grey, nitrogen atoms in blue 

and sulphur atoms in yellow. In pharmaceutical molecules, SMX carbon atoms are 

displayed in light brown and CBZ carbon atoms are displayed in dark green, for clarity. 

Macromolecular electrostatic potential maps were obtained with the Adaptive 

Possion-Boltzman Solver (APBS) plugin for PyMol (115). APBS writes out electrostatic 

potentials in dimensionless units of kb T ec
-1 where kb is Boltzmann’s constant (1.38 x 10-23 

J K-1), T is the temperature (K) and ec is the charge of an electron (1.6 x 10-19 C). 

Pore studies were performed with the aid of MOLE 2.0 software (110), considering 

only pores with diameters less than 2nm (micropores). A 30 Å surface probe was used to 

find cavities. 
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Results and discussion 
 

 

 

 

 

“No, you're not going to be able to understand it. … That is because I 

don't understand it. Nobody does. Quantum mechanics describes nature 

as absurd from the point of view of common sense. And yet it fully agrees 

with experiment. So I hope you can accept nature as She is - absurd.”  

 

- Richard Feynman, The Strange Theory of Light and Matter, 1985 
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3.1) Carbon materials production  

______________________________________ 

 

As previously described, 3 carbon materials were prepared for characterization. As 

illustrated in Fig. 10, production yields were vastly different among samples: PS800 had a 

production yield of 43.2%. When the carbon material suffered a washing step with HCl, 

the production yield plummeted to 15.1%. This difference can be attributed to the removal 

of inorganic material and also inevitable losses of carbon. Furthermore, when the carbon 

material was activated using K2CO3, the overall yield of the production step was 3.5%, as 

a result of the reaction between the percursor and the activating agent which resulted in 

an extremely low-density material.  

 

 

Fig. 10. Production step yield % (m/m) for different carbon material samples 
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3.2) Carbon materials characterization  

______________________________________ 

 

3.2.1) Fourier transform infrared spectroscopy with attenuated total 

reflectance (FTIR-ATR) 

It has been previously shown that surface chemistry may play a major role in 

adsorption mechanisms in ACs Therefore, FTIR-ATR was employed as technique to 

provide insights regarding the functional group contents of the studied samples. Fig. 11 

shows the FTIR-ATR spectra obtained for each of the samples characterized. It is possible 

to distinguish a fingerprint region on the spectra, around wavenumber 500 to 1700 cm-1. 

Several peaks can be identified, namely: 

 The small set of peaks from 500-750 cm-1 are usually acknowledged as 

signals from in- and out-of-plane vibrations from aromatic ring 

deformations, while the 1650 cm-1 peak can be attributed to C=C stretching 

in benzene rings; 

 The peaks at 1030, 1110 and 1160 cm-1 are recognized as C-O-C stretching 

vibrations signals; 

 The peak around 1350 cm-1 can be related to C-H bending vibrations; 

 The broad peak at 1440 cm-1, in conjugation with a sharp strong signal at 

875 cm-1 is characteristic of carbonate ions; 

 Although with smaller intensity, the broad peak at 3300 cm-1, in 

conjugation with smaller peaks at 2920 and 3640 cm-1 indicates the 

presence of -OH alcohol or phenol groups; 

The identified peaks fade in PS800-K2CO3-HCl sample. Such information can give 

us a first indication of the surface chemistry of the characterized samples. The gathered 

data suggests that PS-derived carbon material’s functional groups are primarily composed 

of ethers, phenols, alcohol and C-H groups. It is still possible to observe the disappearance 

of FTIR-ATR signals related to carbonate ions in materials subjected to HCl washing, in 

PS800-HCl and PS800-K2CO3-HCl samples, being expected that formed pores and 

cavities become unobstructed by these carbonate impurities, increasing the carbon 

material effectiveness in adsorption experiments. 
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Fig. 11. FTIR-ATR spectra of the precursor and different carbon materials 

 

3.2.2) Point of zero charge (PZC) determination 

For the PZC determination, tubes with a salt solution, at different pH values 

between 2 and 12 (pHi), were incubated with a carbon material sample. It is expected that 

the carbon functional groups interact with the medium to provide or receive protons, 

contributing for a variation in the final pH (pHf) of the sample. For this reason, the PZC is 

defined as the pH value at which the pH of the medium is similar to the one on the carbon 

surface, and therefore there is an insignificant change in pHf. In Fig. 12, this is shown as 

the pH value at which the ΔpH is 0. PZC values of the studied samples are as follow: 

 PS800: 11-12 

 PS800-HCl: 7-8 

 PS800-K2CO3-HCl: 5-6 
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Such values pose more of a qualitative 

assessment than a quantitative one. Their 

relevance relies on the notion that, with further 

treatment, the resulting carbon material becomes 

more acidic. This can be explained by the removal 

of carbonates from the feedstock by HCl washing, 

further enhanced by the increase in porosity and 

disorder after chemical activation. 

Furthermore, it is possible to observe an 

apparent buffering capacity to minimum and 

maximum pH values (close to 2 and 12). This 

effect can be interpreted as an artifact caused by 

the presence of very strong acidic and alkaline 

solutions, since the salt solution pH was adjusted 

with HCl and sodium hydroxide (NaOH). Small 

contributions from the carbon functional groups 

would then pose little to no disturbance towards 

pHf. For this reason, only at pHi close to neutral is 

possible to determine the PZC. 

 

 

 

 

3.2.3) Transmission electron microscopy (TEM) 

TEM images provide an effective way of visually observing the internal morphology 

of the carbon materials, namely the carbon sheets that compose them, as illustrated in Fig. 

13. For lower amplifications, it is possible to observe the lack of crystalline organization of 

the samples. In particular, non-activated carbons show a prevalence of amorphous 

materials, while PS800-K2CO3-HCl samples present a much higher degree of pore and 

cavity formation. 

Fig. 12. PZC determination for each carbon 
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Fig. 13. Transmission electron microscopy images of PS800, PS800-HCl and PS800-K2CO3-HCl samples 
(from left to right), at amplifications of 5 000x, 20 000x, 50 000x and 80 000x (from top to bottom) 
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3.2.4) Scanning electron microscopy (SEM) and Energy-dispersive X-

ray spectroscopy (EDS) 

External morphology studies provide important insights into the effects produced 

by each production step in the textural properties of the materials. SEM images are 

illustrated in Fig. 14. SEM images of PS clearly show the individual fibers that compose the 

initial precursor. These fibers appear to be deconstructed after the pyrolysis step, giving 

rise to a more amorphous and disorganized structure. Impurities deposited on the 

material surface appear is these figures with a lighter tone, often obstructing cavities. Their 

prevalence is largely eliminated after the HCl washing step and it becomes possible to 

detect the occurrence of some pores. 

 PS PS800 PS800-HCl PS800-K2CO3-HCl 
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Fig. 14. Scanning electron microscopy images of PS, PS800, PS800-HCl and PS800-K2CO3-HCl (from left to 
right) at 300, 1 000x, 3 000x, 10 000x, 30 000x amplifications (from top to bottom) 
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With chemical activation, the initial fiber structure becomes unrecognizable. 

Comparing PS800-K2CO3-HCl, at high amplifications, with the non-activated materials, it 

is possible to observe an extremely pronounced increase in pore content, resulting in a 

higher surface area.  

EDS spectra were also obtained for precursor and carbon materials, in order to 

have a qualitative assessment of the sample’s elemental constitution, as shown in Fig. 15. 

 

PS PS800 

  

PS800-HCl PS800-K2CO3-HCl 

  

Fig. 15. Energy-dispersive X-ray spectroscopy spectra for PS and produced carbon materials 
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EDS spectra data further cements the notion, complementary to FTIR-ATR data, 

that the precursor impurities are mainly composed of calcium carbonates, given the high 

abundance of calcium (Ca) in PS. Comparing this with PS800, it is possible to infer that 

pyrolysis removed much of the volatile carbon matter, reducing the relative abundance of 

the carbon element in comparison to others. Carbonates removal by HCl washing is also 

supported by these data, showing the reduction of Ca peak relative intensity in PS800-

HCl sample. Finally, the PS800-K2CO3-HCl EDS spectra show that the activation step is 

mostly responsible for increasing the amount of carbon on the surface, therefore reducing 

the relative intensity of the other elements peaks. 

 

 

3.2.5) Total organic carbon (TOC) content 

Regarding TOC content, the performed analysis suggests that pyrolysis is 

responsible for the removal of most inorganic carbon (IC), reducing its prevalence 

from 13.2 ± 0.2 % of the total carbon in PS to only 0.12 ± 0.04 % of the total carbon 

in PS800-K2CO3-HCl. 

The data, illustrated in Fig. 16, also 

complements previous observations 

respecting the total content in carbon, 

by comparing the carbon percentage in 

PS800 and PS800-HCl. It’s possible to 

infer that the washing step is responsible for 

removing most of the IC in the carbon 

material, increasing the relative percentage 

of total carbon in the sample from 23.2 ± 0.2 

% to 58.8 ± 0.2 %. The activation step also 

results in an increase in carbon percentage, to 

66.9 ± 0.6 %. 

 

 

Fig. 16. Organic (OC) and IC content in PS and the 
produced carbon materials 



Chapter 3: Results and discussion 

43 

2.3.6) Proximate and ultimate analysis 

Thermogravimetric analysis (TGA) of PS and the produced carbon materials 

provided relevant insights regarding volatile matter, moisture and mineral 

content, as illustrated in Fig. 17. Moisture percentage in the precursor was 

determined to be 4.9%, while decreasing to 2.5% after pyrolysis, as expected. With 

further treatment, moisture levels increased to 7.7% and 16.6% in PS800-HCl and 

PS800-K2CO3-HCl, respectively. This increase may be caused by an increase in 

porosity and therefore surface area and adsorption potential of moisture. 

At a dry basis, it is possible to observe a relevant decrease in volatile matter 

after pyrolysis, from 63.9% to 21.2%. Pyrolysis also resulted in an increase in ash 

contents, from 28.0% to 61.7%, while not significantly improving the levels of fixed 

carbon. HCl washing was effective in reducing the ash levels from 61.7% to 23.42%, 

being this value even lower after activation, 10.75%. This resulted in a relative 

increase of fixed carbon, reaching 57.2% and 63.3% in PS800-HCl and PS800-

K2CO3-HCl, respectively. In a general way, fixed carbon and volatile matter 

contents in each sample follow similar values when compared to TOC analysis 

data. 

 

 

Fig. 17. Thermogravimetric analysis results, displayed in dry basis 
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Ultimate analysis was also employed to quantify elemental content for carbon (C), 

hydrogen (H), sulfur (S), nitrogen (N) and oxygen (O), as described in Fig. 18. 

 

 

Fig. 18. Elemental analysis of PS and produced carbon materials, in dry and ash free basis, for mass and 
amount of substance percentages (Oxygen content was determined by difference) 

 

Gathered data agrees with previous characterization techniques, showing the 

prevalence of mostly carbon, oxygen and hydrogen in the samples. It is possible to infer 

that volatile matter released during pyrolysis is mostly constituted by oxygen and 

hydrogen. With a relatively high percentage of oxygen (24.3% in n), PS800-K2CO3-HCl 

raises questions regarding the importance of the existence of heteroatoms in adsorption 

processes. Finally, it is considered that sulphur and nitrogen appear in only trace 

percentages on the activated carbon (0.032±0.01% and 0.62±0.04% in n, respectively), 

and therefore have a limited contribution in modulating adsorption processes. 

 

2.3.7) Specific surface area (SBET) 

As stated in Table 7, several textural parameters were obtained for each of the 

produced carbon materials. It is possible to observe the activating effect of potassium 

carbonate on the carbon material, increasing the SBET from 248 m2 g-1 to 1586 m2 g-1. This 

value places the produced activated carbon in the present work on pair with available 

commercial products. By comparison, the commercially available AC PULSORB has a SBET 

of 1109 m2 g -1 (87) and the PAC DETOX 1600 has a SBET of 1550-1600 m2 g -1 (70). 

Furthermore, chemical activation also had a profound repercussion on micropore content. 
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It is possible to infer that micropores have a much higher incidence on the 

activated sample, contributing in a larger scale for the increase of total pore volume (VP). 

According to IUPAC (80), micropores are defined as having a pore diameter of less than 2 

nm. This places the average pore on PS800-K2CO3-HCl sample on the threshold of 

microporosity, with an average size of 2.93 nm. 

 

Table 7. Textural parameters of characterized carbon materials 

Sample SBET (m2 g-1) W0 (cm3 g-1) VP (cm3 g-1) D (nm) 

PS800  79 0.029 0.049 5.59 

PS800-HCl 248 0.081 0.154 4.97 

PS800-K2CO3-HCl 1586 0.268 0.839 2.93 

SBET - BET surface area 
W0 – Micropore volume 
VP – Total pore volume 
D – Average pore diameter 
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2.3.8) X-Ray Photoelectron Spectroscopy (XPS) 

 

XPS data was collected for carbon 

(C), oxygen (O) and nitrogen (N) peaks, for 

the produced AC. The proposed fitting of 

the experimental data is shown in Fig. 19, 

and a schematic model for the considered 

functional groups is illustrated in Fig. 20. 

Being a surface characterization technique 

with a depth of analysis up to 10 nm, it 

allows us to have an unprecedented look 

into the surface chemistry of the activated 

carbon. From the C 1s spectra it is possible 

to verify that most of the carbon layers are 

composed of sp2 carbon, with some 

functionalization level of -CH (8.5%), ethers 

(15.9%), carboxylic (2.9%) and carbonyl 

(8.4%) groups. These results are in 

accordance with FTIR data, and the O 1s 

spectra. Other effects such as π-π transition 

and plasmon bands were considered to 

better fit the tail of the C 1s spectra, and 

adsorbed water in the O 1s spectra, who 

follow the same order in abundancy. 

Although in trace quantities, N-based 

functional groups were possible to be 

quantified: mostly pyridonic (37.3%) and 

pyridinic groups (36.2%).  

 

Fig. 19. XPS data for PS800-K2CO3-HCl. Experimental 
data are shown in grey, fitting data in black and each 
of the proposed components in color. 
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Fig. 20. Schematic representation of the proposed functional groups present in PS800-K2CO3-HCl, based 
on XPS data. (a) Pyrrolic N; (b) Quaternary N; (c) Pyridonic N; (d) Oxidized N; (e) Carboxylic group; (f) sp2 

carbon; (g) Ether; (h) -CH; (i) Carbonyl group 

 

The complete characterization of the precursor and carbon samples provided, 

therefore, a starting point for the development of the proposed computational model, in 

order to mimic not only the qualitative aspects of the samples, such as types of elements 

or functional groups, but the quantitative amounts of the referred characteristics. This 

abstraction requires, nonetheless, a certain level of approximation and assumptions in the 

interest of obtaining pertinent data in a reasonable time window. In the next section the 

development of the activated carbon model will be further explored. 
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3.2) Carbon model development 

______________________________________ 

 

2.3.1) Residue library assembly 

As referred in section 2, AC models were obtained by clustering carbon 

microcrystallites into a VPC. The carbon material was considered to be a disordered 

configuration of platelets of different sizes, decorated with specific functional groups, as 

an extension of the Segarra and Glandt model (103), and more recently, the Bahamon 

approach (95). Only experimental data relative to PS800-K2CO3-HCl was considered for 

the assembly of the AC model. 

Several residue libraries were produced through a collection of Python scripts 

developed for this purpose. The proposed libraries are composed of microcrystallites of 

different sizes and thickness: as a starting point, an average length and width of 20 Å, and 

1 to 4 parallel graphite-like layers with 3.14 Å gap were considered, as described by Rosalind 

E. Franklin (116). These values were intended to be tuned in order to mimic real 

characteristics of the AC in the VPC model, but, interestingly, such default values resulted 

in models having good accordance with the desired characteristics, namely the surface 

area. 

The microcrystallite layers were then enhanced with different functional groups to 

reflect the experimental characterization of the real AC. The considered functional groups 

were: carboxyls, carbonyls, C-H terminations, 2-ring and 3 ring-ether crowns and ether 

terminations. Carboxyl protonation was performed in accordance with the pH of the 

desired simulation, having a negative charge for pH values below the modeled carbon PZC, 

and vice-versa. All the simulations were performed at pH 7. Since the AC sample PZC is 

around 5, all carboxyls were, consequently, deprotonated and bearing a negative charge. 

Edge carbons were often left without hydrogen atoms attached to keep aromaticity after 

carboxyl and carbonyl groups were added. An example residue is represented in Fig. 21. 

Basic groups were ignored in this particular model, given their low presence in the 

experimental sample. 

A random Gaussian distribution was employed in the input experimental values to 

generate small variances in the different residues of each library, in an effort to better 

reproduce the real heterogeneity of the carbon materials. Therefore, all values obtained 
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are the median of several slightly different models. Each library was composed of at least 

100 different residue microcrystallites.  

 

Fig. 21. Non-minimized residue example from one of the created libraries. Width and length 
distances are displayed by a dashed line (x = 21.8 Å, y = 19.6 Å). Functional groups are labeled: (a) – edge ether; 
(b) – carboxyl; (c) – edge hydrogen; (d) – 3-sided ether crown; (e) – 2-sided ether crown; (f) – carbonyl 

 

A total of 3 residue libraries were created, allowing for the study of oxygen 

influence in carbon clustering and adsorption of pharmaceuticals: fullOx, which mimics 

experimental values of oxygen content to the best possible extent (≈ 24 %); minOx, 

compromising residues with very few oxygen atoms (≈ 2 %); and maxOx, comprised of 

microcrystallites very rich in oxygen atoms (≈ 35 %). An example residue of each described 

library is represented in Fig. 22. 

 

Fig. 22. Non-minimized residues from different libraries: (a) – minOx; (b) – fullOx; (c) – maxOx 

(b) 

(e) 

(c) (d) 

(f) 

(a) 

(a) (b) (c) 
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2.3.2) Carbon model production and characterization 

The previously described platelets were used for the formation of carbon models 

through carbon clustering processes. A random number of residues was arbitrarily placed 

inside a cubic simulation box with a volume of 125 nm2 and the carbon atom count limit 

was placed at 3000 atoms per simulation, in order to keep the complexity of the system 

and the clustering time as low as possible, without compromising the relevance of the 

obtained results. The maximum number of insertion attempts of new residues tuned to 

ensure that all available space was occupied, and the void fraction of the box was only 

modulated by the size of the residues. The system was then left to minimize through 

molecular dynamics simulation in vacuum. Simulations were performed in the NVT 

ensemble (no pressure coupling); translation/rotation around the system center of mass 

were removed in all simulations. The proposed residue clustering process, illustrated in 

Fig. 23, was composed of 3 distinct stages: 

 Minimization: The system was initially relaxed. Minimization criteria were: Fmax 

< 10 kJ mol-1 nm-1, 100 000 steps or ∆F lower than machine tolerance; 

 Heating: The system was brought up to 300K, allowing the molecules to adopt 

higher energy conformations and cluster together during 1 to 2 ns.  

 Stabilization: The carbon model were left to stabilize at 300K for 1 to 2 ns, for 

data gathering (every 1000 steps) and pore development. The LINCS algorithm 

was applied to convert all bonds and angles that involve hydrogen atoms to bond 

constrains.  

 

Fig. 23. Clustering process: Left – initial configuration; Right – Final carbon model; PBC conditions were 
considered for this illustration – all residues, and their periodic images, are represented as long as they have 
at least one atom inside the simulation box 
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Three different residue libraries were built and used in the present work, each with 

different levels of oxygen content. A visual depiction of each model after the clustering 

process is displayed in Fig. 24. It is possible to verify that, with the increase in oxygen 

levels, the resulting microcrystallites progressively diverge from the initial planar form, 

and take a rougher structural shape, because the majority of the functional groups added 

during functionalization imply sp3 hybridization, therefore promoting loss of aromaticity 

of the carbon backbone and planarity of the microcrystallites. 
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Fig. 24. Visual representation of different instances of the proposed AC model, for different oxygen levels: 
Top – minOx; Middle – fullOx; Bottom – maxOx 
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The loss of planarity becomes evident when surface area is factored in, as show in 

Fig. 25. Further information regarding the characterization of the VPC models can be 

found in Table 8. The increase in oxygen 

content augments the surface area of the 

corresponding AC model. Considering that 

the original experimental AC has a surface 

area of 1586 m2 g-1, the VPC model could 

still be optimized regarding this property 

(2043 ± 200 m2 g-1). This lack of 

accordance between the real AC and the 

proposed model can be explained by: 

 The residual existence of impurities, mainly carbonates, in the real sample 

which block access to smaller pores, thus reducing the SBET. 

 The existence of enclosed cavities in the AC, inaccessible to the probe 

molecule in experimental SBET determination, but accounted for in the 

Monte Carlo method, described in section 2. 

In terms of elemental and functional content composition, it is considered that the 

proposed model is in good accordance with the experimental data, as shown in Fig. 26. 

Furthermore, modulation of the oxygen content between model samples was achieved to 

the desired extent. However, -C-H content differs between PS800-K2CO3-HCl and fullOx 

model. On the model, crown ethers and edge ethers in equal amount. The existence of 

edge ethers limits the appearance of -C-H groups on the AC model. Therefore, it is 

expected that in PS800-K2CO3-HCl ethers appear mostly in internal ethers. 

 

 

Fig. 26. Elemental and functional content comparison between models and experimental data: 
Left – Elemental composition; Right – Functional content  

Fig. 25. Surface area evolution with oxygen content 
determined by Monte Carlo 
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Table 8. Characterization of the different models developed in comparison to PS800-K2CO3-HCl sample in 
terms of surface area, elemental composition, charged fraction and functional group content. 
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2.3.3) Pore study 

MOLE 2.0 software was employed to study the formation and development of 

micropores in the proposed models. Delaunay triangulation/Voronoi diagrams were used 

in order to search for the shortest path between a starting point and the molecular surface 

(110). Pore structure has been appointed as an important factor in different applications, 

such as adsorption (117–119). Therefore, the proposed model in the present work should be 

able to develop an organized and viable micropore structure. Such challenge, although not 

trivial, is considered to be accomplished in the proposed AC models developed, as shown 

in Fig. 27. Both fullOx and maxOx models showed good pore development, but no 

micropores were displayed in minOx models. 

 

Fig. 27. Micropore structures in the proposed models: Top – fullOx; Bottom – maxOx; The corresponding 
structure in displayed in the right without the surrounding AC atoms, for visualization purposes. 
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2.3.4) Dipole moment visualization 

In order to understand certain behaviors to be discussed in the following topics, a 

visual representation of the involved molecules electrostatic potential maps emerges as a 

powerful tool. APBS was employed in the calculation of SMX and CBZ electrostatic 

potential maps, as illustrated in Fig. 28. It is possible to visualize that SMX has a stronger 

potential gradient than CBZ, as expected due to the negative charge.  

 

+5  -30 

Fig. 28. Electrostatic potential maps (in kbT/e): Left – CBZ; Right – SMX. Atom partial charges are 
also displayed for visualization purposes. 

  

Furthermore, a trajectory configuration result of competitive adsorption was also 

targeted in order to create the electrostatic potential of the involved species in equilibrium, 

as shown in Fig. 29. Negative electrostatic potentials are mainly caused by the presence of 

carboxyl groups and are often preferred sites for both SMX and CBZ adsorption. 

 

+5  -30 

Fig. 29. Electrostatic potential map (in kbT/e) of the resulting AC model from MD simulation 
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2.3.4) GCMC essays 

GCMC ensemble simulations were employed to perform adsorption essays of CBZ 

and SMX onto the produced models. The present study targets two factors as modulators 

of adsorption: oxygen content and ionic strength on the wastewater. Several replicas for 

each residue library were produced, as previously described. 3 replica runs were performed 

for each carbon model, additionally, in order to evaluate both the inter- and intra-model 

variations. Maximum adsorption capacities were calculated for each library model 

(minOx, fullOx and maxOx), as described in Fig. 30. For each AC model, two modes of 

adsorption were considered: single component (SC – Only 1 pharmaceutical at a time) and 

competitive adsorption (C – Both SMX and CBZ were added to the simulation 

simultaneously). This allows for the study of possible competitive or cooperative 

mechanics in the adsorption of this pharmaceuticals. 

 

 

Fig. 30. GCMC adsorption results for different AC models, regarding CBZ and SMX in single component 
(SC) and competitive (C) modes 

 

In a general way results suggest that pharmaceutical adsorption increases with 

increasing oxygen content (≈ 20x and 6x increase for CBZ and SMX, respectively, in SC 

mode, from minOx to maxOx models). Competitive adsorption, overall, showed lower 

adsorption values for each pharmaceutical, as expected, but not in a meaningful manner 

or within the errors of the SC mode essay. This suggests the existence of some degree of 

cooperative adsorption or double layer effects, where a second pharmaceutical molecule 
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is adsorbed to the surface of a first already adsorbed to the carbon surface. Finally, it is 

possible to observe a clear distinction between the adsorption of the two pharmaceuticals. 

For the maxOx model, CBZ had an adsorption capacity ca. 2x superior to SMX. 

Since the simulations were carried at neutral pH of 7, both SMX and the AC are negatively 

charged and repulse each other. This does not apply to CBZ, which is neutral at pH 7.  

As previously discussed, an increase in oxygen content of the AC models resulted 

in an equal increase in the surface area which, consequently, has positive repercussions in 

adsorption capacities. With this in mind, and analyzing Fig. 31, it is possible to infer that 

the increased SMX adsorption by carbons with oxygen content (and, therefore, charge) is 

caused by the increase in the AC surface area, while an increase in oxygen content has an 

additional positive effect in CBZ adsorption. Although being a neutral species at pH 7, CBZ 

can have induced dipole moments (as discussed in the section above concerning the 

electrostatic potential maps) that interact with negatively charged functional groups of 

the AC. This result hints at the importance of functional groups and electrostatic 

interactions as modulators of adsorption and/or specificity in AC adsorbents. 

 

 

Fig. 31. Adsorption capacity and surface area evolution with the absolute value of charge (e-1) )in the AC 
model, for CBZ and SMX. Dashed lines represent the linear regression of that available data. 

 

The effect of ionic strength on pharmaceutical adsorption was previously 

appointed as an important factor to take into account (120). In a real sample, ions ought 
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to be naturally solvated in bulk water and away from the carbon surface, especially if the 

ion charge was equal to the dominant charge in the carbon surface Therefore, no ions were 

introduced in this simulation boxes. However, if a high enough ionic strength was 

introduced, by concentration increase, there would be a higher incidence of ions in the 

AC surface, and its influence in surface chemistry events, such as adsorption, should be 

considered. Sodium (Na+) was introduced in GCMC adsorption essays, in equimolar 

concentrations as the considered pharmaceuticals, and the results are exposed in Fig. 32. 

As expected, adsorption capacities increase with the increase in oxygen content. However, 

when Na+ ions are added, both pharmaceuticals adsorption capacities in the AC increase 

(for maxOx model, an ≈ 1.25x and 5x increase is observed for CBZ and SMX adsorption, 

respectively, when compared to equivalent simulations with no ions added). SMX 

adsorption is predominantly affected. Two main mechanisms can be proposed: 

 Na+ ions screen the negative charge of both the AC and SMX, bridging the 

two species and allowing adsorption to the functional groups. This effect 

would allow for SMX to be predominantly adsorbed in the oxygen rich 

regions of the microcrystallites edges; 

 Na+ ions change the conformation of SMX to a more stable configuration, 

eventually promoting adsorption by weaker interactions (π-π stacking). 

Although “salting out” effects are a possible explanation to the experimental 

observations described in literature (121), such effect was not considered in this work. 

 

 

Fig. 32. GCMC adsorption results for different AC models, regarding CBZ and SMX in single component (SC) 
and competitive (C) modes, when in presence of Na+ ions 
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Also, inspection of Fig. 33 suggests that, with a higher ionic strength, the previous 

behavior, in which SMX adsorption was fundamentally modulated by the increase in 

surface area, is no longer observed. In the presence of Na+, it is possible to infer that 

oxygen-rich functional groups have a positive effect on adsorption capacities of SMX 

besides the increase in surface area, while CBZ adsorption is not improved beyond the 

increase resulting from surface area expansion. 

 

 

Fig. 33. Adsorption capacity and surface area evolution with the absolute value of charge (e-1) in the AC 
model, for CBZ and SMX in the presence of Na+. Dashed lines represent the linear regression on the available 

data points. 

 

 

2.3.5) Molecular dynamics 

Molecular dynamics simulations were carried out to highlight some of the 

proposed adsorption behaviors. Simulations were carried for 10 ns after minimization and 

equilibration. The presented behaviors were established relatively early (1 to 2 ns into the 

simulation) and remained stable. As an example, after adsorption on the carbon surface, 

no pharmaceutical molecule was desorbed. The following behaviors are transversal to all 

simulations performed and present in multiple replicas. 
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 Double layer adsorption 

As shown in Fig. 34, four molecules of 

CBZ are tightly packed in a confined pore. The 

CBZ structure and neutral charge allows for the 

formation of double layers of adsorption, 

effectively increasing its adsorption capacities 

in normal circumstances, as previously 

highlighted in GCMC adsorption essays. 

 

 

 

 SMX configurations 

Although multi conformation analysis showed that, in vacuum, SMX adopts a 

single “closed” conformation, MD studies showed that this molecule can adopt an “open” 

conformation that is stabilized on the surface of the AC upon adsorption, as illustrated in 

Fig. 35. Interestingly, when performing MD simulations with no Na+ ions, 20% of the 

adsorbed SMX adopted the open structure, while simulations with Na+ in solution showed 

that 40% of the SMX was in this configuration. Such results indicate that counter-ions 

balance the repulsive forces between the negatively charged groups in the pharmaceutical 

and AC, allowing the prevalence of π-π stacking and hydrophobic interactions.  

 

Fig. 35. Different configurations of SMX on a single microcrystallite, at different visualization angles 

Fig. 34. Adsorbed CBZ in fullOx model. Excess 
microcrystallites and CBZ molecules were removed for 
visualization purposes. Yellow arrows point to CBZ 
molecules 
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 Na+ complex with SMX 

As illustrated in Fig. 36-Left, Na+ ions interact with both the SMX and AC negative 

charged groups, screening the electrostatic repulsion and allowing for the establishment 

of π-π stacking and hydrophobicity interactions. This effect allows SMX to be adsorbed 

onto the oxygen rich microcrystallites edges, as illustrated in Fig. 36-Right.  

 

Fig. 36. Na+ and SMX complexes with AC charged groups: Left – Na+ interaction allows the prevalence of 
“open” configurations; Right – Na+ allows for the interaction with microcrystallite’s edges 

 

 Competition effects 

Competitive interactions were 

observed between CBZ and SMX in MD 

simulations, although not with great 

frequency, as illustrated in Fig. 37. Only 10 to 

20% of the pharmaceutical molecules were in 

interaction with the one another. This 

indicates that, if present, cooperative 

adsorption mechanics are not relevant for this 

two specific pharmaceutical in a meaningful 

extent. 

 

 

 

Fig. 37. Competitive adsorption interaction between SMX 
and CBZ. 
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Conclusion 
 

 

 

“There are some oddities in the perspective with which we see the 

world. The fact that we live at the bottom of a deep gravity well, on the 

surface of a gas covered planet going around a nuclear fireball 90 million 

miles away and think this to be normal is obviously some indication of 

how skewed our perspective tends to be, but we have done various things 

over intellectual history to slowly correct some of our misapprehensions.” 

 

- Douglas Adams, The Salmon of Doubt: Hitchhiking the Galaxy One 

Last Time, 2002
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To conclude the present study, an overall appreciation of the performed studies is 

presented, and some points are enumerated relative to possible future work in this subject. 

The present project was essentially divided in three parts: experimental data 

gathering, AC model development and simulation results collection using the produced 

models. The primary objective was to produce a VPC model that would follow 

experimental data in a more accurate fashion in terms of elemental composition, 

functional group content, surface area and porous structure.  

In terms of the first part of the present work, a total of 10 different techniques were 

explored to grant a thorough comprehension of the complexity of the carbon materials 

worked. Besides AC, non-activated materials were also produced and characterized to help 

understand the evolution of the adsorbent. Experimental data was used in the formulation 

of the AC model:  

 PCZ was used to define the AC charge at the simulated pH; 

 FTIR and XPS data information regarding the functional group content; 

  EDS and Ultimate analysis data concerning elemental composition; 

 SBET studies define the AC surface area; 

  TEM and SEM imaging help to elucidate the pore structure. 

 Complementary techniques, such as Proximate analysis and TOC help in clarifying 

the composition of the AC samples in terms of fixed carbon, carbonaceous impurities and 

other aspects not covered in the computational model approximation. 

Thus, AC model development had an experimental basis on top of which more 

accurate VPC models were built. It is shown that elemental composition, functional group 

content, surface area and pore structure are in good accordance to the gathered 

experimental data. This constitutes a validated computational model of the AC sample. 

Such a model constitutes a workhorse for easily running simulations with the aim 

of gathering hints and evidence about the underlying mechanisms of adsorption of 

pharmaceuticals of interest from aqueous solutions. In the present work, CBZ and SMX 

were studied in more depth. MC and MD simulations were carried out, having the initial 

model tuned to reflect new conditions in the adsorption environment or changes in the 

material composition. It was demonstrated that surface area increases with oxygen 
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content, inducing higher adsorption capacities. This effect is further enhanced for neutral 

substances such as CBZ. Also, when a high ionic strength is imposed to the system (in the 

form of addition of Na+ ions), adsorption is greatly intensified. This effect is augmented in 

the adsorption of negatively charged molecules such as SMX. MD simulations reveal the 

formation of AC-Na+-SMX complexes, in double layer and in microcrystallites edges, and 

showing good stability over time, reinforcing pharmaceutical adsorption and, therefore, 

constituting a possible modulating factor in SMX specific adsorption. 

Although all simulations were carried at pH 7, the AC model scripts, 

pharmaceutical definitions and simplified force fields were prepared with the notion of 

user-defined pH. Therefore, pH effects on adsorption can be easily discussed and explored 

using the developed framework and made freely available to the scientific community. 

Furthermore, besides altering the total oxygen content of the AC model, the option to 

keep the oxygen composition while simply altering the functional group content was also 

implemented, and the study of the differences between the majority of functional groups 

can be readily explored. These two circumstances are appointed as possible future work 

regarding this specific AC. In terms of computational modelling, new pharmaceuticals of 

interest should also be explored.  

In the experimental part of this project, and based on the information gathered, it 

is possible that increasing the oxygen content on the samples (in the form of 

functionalization) may result in higher adsorption capacities and surface areas, as 

suggested by the modelling results. In addition, experimentation with higher ionic 

strength media can be interesting as a way to modulate adsorption of certain species of 

pharmaceuticals.  

In short, the present work required some approximations that, in future works, one 

should try to minimize or avoid, in order to increase the reliability of the gathered results, 

such as the fact that fugacity coefficients in GCMC simulations were extrapolated by 

approximation methods and, given time constrains, the number of replicas produced in 

GCMC essays was lower than desired. 

However, given the scope of the project, it is considered that the conclusions 

gathered are reliable and of interest, and that the initially proposed objective was 

accomplished. 
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