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ABSTRACT 

Crosswalks located at mid-block segment between roundabouts can provide a good balance 

among delay, carbon dioxide (CO2) emissions and relative difference between vehicles and 

pedestrians speed. However, when considering local pollutant criteria, the optimal crosswalk 

location may be different to that obtained for CO2. 

This paper described a multi-objective analysis of pedestrian crosswalk locations, with the 

objectives of minimizing delay, emissions and relative difference between vehicles and 

pedestrians speed. Accounting for the difference between global (e.g. CO2) and local 

pollutants (monoxide carbon, nitrogen oxides and hydrocarbons) was one the main 

considerations of this work. Vehicle activity along with traffic and pedestrian flows data at 

six roundabout corridors in Portugal, one in Spain and one in the US were collected and 

extracted. A simulation environment using VISSIM, VSP, and SSAM models was used to 

evaluate traffic operations along the sites. The Fast Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) was implemented to further search optimal crosswalk locations. 

The results yielded improvements to both delay and emissions by using site-optimized 

crosswalks. The findings also revealed that the spacing between intersections widely 

influenced the optimal crosswalk location along a mid-block section. If the spacing is low 

(<100 m), the crosswalk location will be approximately in 20%-30% of the spacing length. 

For spacing values between 140 and 200 m, crosswalks would be located at the midway 

position. When a specific pollutant criterion was considered, no significant differences were 

observed among optimal crosswalk data sets.  

 

Keywords: CO2, Crosswalks, Local pollutants, Multi-objective optimization, Roundabout 

Corridors, Spacing   
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Introduction and Literature Review 

In the past few decades, many transportation authorities are progressively looking at 

roundabouts as an alternative solution to signalized intersections as a means to improve 

traffic performance, and safety for vulnerable road users such as pedestrians (Brilon, 2016; 

NCHRP, 2010). This trend has prompted the increased construction of roundabout corridors 

across Europe and in the United States (US). Many of these corridors are placed in 

commercial and residential neighborhoods, where some pedestrian activity is expected.  

Previous studies have documented the influence of pedestrian streams on available vehicular 

capacity of the isolated roundabouts (Hellinga & Sindi, 2012; Kang & Nakamura, 2015; 

Kang, Nakamura, & Asano, 2014; Schroeder, Rouphail, Salamati, & Bugg, 2012; Żak, 

Meneguzzer, & Rossia, 2011). Some authors suggest locating the crosswalks 10 to 15 m 

downstream of the exit junction in order to improve traffic operations (HCM, 2010; Silva, 

Cunha, Relvão, & Silva, 2013). Duran and Cheu (2013) stated that entry capacity was 

negatively influenced by short distances between the crosswalk and the yield line. However, 

the afro-mentioned studies only included the analysis of crosswalks at roundabouts in 

isolation. 

Roundabout corridors have specific operational characteristics compared with roundabouts 

in isolation. Fundamentally, high congested mid-block areas between adjacent roundabouts 

in close-proximity substantially impact vehicle speed and acceleration-deceleration patterns 

(Isebrands, Hallmark, Fitzsimmons, & Stroda, 2008), as well as pollutant emissions on 

the adjacent roundabouts (Fernandes, Salamati, Rouphail, & Coelho, 2015). Thus, the 

impact of the pedestrian crosswalks on corridors capacity may arise under conditions of 

short spacing intersections.  

The research on traffic performance, fuel consumption and emissions in corridors with 

different traffic controls is extensive but did not include the influence of pedestrian 

crosswalks (Fernandes, Fontes, Neves, et al., 2015; Guo & Zhang, 2014; Haley et al., 

2011; Silva, Mariano, & Silva, 2015) or the impact of spacing on traffic operations 

(Dhamaniya & Chandra, 2014; Kwak, Park, & Lee, 2012; Yang, Liu, Xu, & Xu, 2016). 
Bugg et al. (2015) developed empirical models to predict arterial travel time and delay along 

roundabout corridors. These models neither assessed the impact of crosswalks on traffic 

operations nor included the emissions and safety fields on their equations. 

The implementation of the crosswalk along the mid-block section between roundabouts 

could result in a trade-off among vehicle delay, safety and emissions. On the one side, a 

crosswalk near the roundabout has a negative impact on emissions and delays, and 

simultaneously can be safe for pedestrians since vehicles drive at low speeds. On the other 

side, crosswalks close to mid-block improve capacity and emissions, but could increase 

injury risk for pedestrians. 

With these concerns in mind, Fernandes, Fontes, Pereira, et al. (2015) examined the 

integrated effect of crosswalk location between closely-spaced two-lane roundabouts 

(spacing <170 m) in the city of Chaves (Portugal) on traffic delay, carbon dioxide (CO2) 

emissions and relative difference between vehicles and pedestrians speed. They found that 

locating the crosswalk at 15 and 55 to 60 m from the exit section provided a good balance 

among those outputs. The authors also recommended that the spacing between roundabouts 

constrained vehicle speeds at mid-block segments (Fernandes, Fontes, Pereira, et al., 

2015). Nevertheless, this study has two main limitations. First, one specific site was 

evaluated, which restricted the applicability of study’s findings to other locations. Second, 

the authors did not assess the impacts of the crosswalk location on local pollutant emissions, 

which have direct effects on human health. 



 

The available literature around this topic has focused on capacity/delay, emissions (only for 

CO2 that is relevant for global warming) and safety fields separately or used limited study 

cases. Understanding the differences on optimal crosswalk locations between CO2 and local 

pollutants in an integrated way is lacking. Still, none of the previous studies has addressed 

how optimal crosswalk location at mid-block segment is determined by corridor’s design. 

This paper discusses the integrated effect of pedestrian crosswalk location on vehicle delay, 

pedestrian safety, and emissions for pollutant criteria (CO2, monoxide carbon – CO, nitrogen 

oxides – NOX, and hydrocarbons – HC) in roundabout corridors. The research methodology 

is based on the work by Fernandes, Fontes, Pereira, et al. (2015). The optimal crosswalk 

locations along mid-block sections were hypothesized to vary due to differences in: 1) 

geometric design of roundabouts; 2) roundabout spacing; and 3) pollutant type. Thus, this 

research tested and verified these expectations in eight roundabout corridors from three 

different countries (Portugal, Spain and United States – US). Capacity, emissions and safety 

were used to explore the impact of crosswalk locations using a microscopic traffic model 

(VISSIM) together with a microscale emission methodology (Vehicle Specific Power – 

VSP) and safety model (Surrogate Safety Assessment Model – SSAM). A multi-objective 

genetic algorithm was mobilized to search site-optimal crosswalk locations, and subsequent 

results compared with existing crosswalk locations. 

The novelty of this study is the distinction between global and local pollutants in the final 

set of optimal crosswalk locations along the mid-block section, and the relationship between 

such locations and the corridor’s design features. Therefore, this paper intends to focus on 

the following research questions: 

 

 What is the optimal crosswalk location with minimum vehicle delay, emissions (both 

global and local pollutants) and maximum safety for pedestrians? 

 How spacing between roundabouts impacts on optimal crosswalk location? 

 

Second section describes the methodology used in this research. Analysis results are 

explained in third section, followed by the main conclusions and the limitations of this 

research in fourth section. 

 

Methodology 

The proposed methodology is built on a microsimulation framework to evaluate the 

pedestrian crosswalk on vehicle delay, pollutant emissions, and pedestrian safety. The 

methodology was divided in the following steps (Figure 1). First, traffic and pedestrian 

flows, and GPS data were collected in the selected study sites. Second, each site was coded 

using VISSIM microscopic traffic model and calibrated according the site-specific 

characteristics. Third, several operational scenarios on each studied location were defined; 

for each scenario, emissions and safety were analyzed using VSP methodology and SSAM 

model. Step four focused on the description of the multi-objective procedure.  

 

Figure 1 Methodological framework. 

 

 

Field data collection and study sites 



 

Data were collected at the candidate sites during the evening peak (4:00 to 6:00 p.m.) on 

typical weekdays (Tuesday to Thursday) from April to June 2015, and under dry weather 

conditions: 

 

 Traffic flows (Passenger Vehicles, Heavy Duty Vehicles and Transit Buses); 

 Pedestrian flows at the candidate crosswalks on both directions of travelling (4:00- 

6:00 p.m.); 

 High resolution vehicle activity data (speed, acceleration-deceleration and road slope 

on a second-by-second basis); 

 Time-gap distributions data; 

 Spacing between roundabouts; 

 Posted speed limits. 

 

Traffic and pedestrian flows, and time-gap distributions data (gap-acceptance and gap-

rejection) for all turning maneuvers were collected from overhead videos installed at 

strategic points along the study sites. The recorded videotapes were later reviewed in 

research laboratory for obtaining traffic and pedestrian flows and resulting Origin-

Destination (O-D) matrices. Data were recorded in 15-min time intervals. GPS Technology, 

in the form of an in-vehicle data logger, recorded the speed, position, latitude and longitude 

coordinates as well as topographic conditions of the vehicles as they traveled along the 

corridors (in 1-second time intervals). The GPS equipped-vehicle continuously loops 

through a pre-defined route extending beyond the beginning and end of the corridor (through 

movements).  

To generalize the applicability of the methodology and range of the dataset, the authors 

selected sites for data collection representing a variety of characteristics and conditions. 

Using these considerations, six urban roundabout corridors in the North and Center of 

Portugal (PT1, PT2, PT3, PT4, PT5 and PT6), and one in Spain (SP1) and in the US (US1) 

were selected. The sites included the following range of attributes: 1) number of roundabouts 

per corridor between 2 and 5; 2) spacing ranged from 58 m to 200 m; and 3) posted speed 

limits lower than 50 km/h. 

The team elected one crosswalk at the corridors with 2 roundabouts (Figure 2a-e) and two 

crosswalks for other sites (Figure 2f-h). The pedestrian activity at other crosswalks did not 

affect site traffic operations (negligible pedestrian flows) and therefore was ignored. Almost 

sites are located on relatively flat grades. The exception was the PT4 site (Figure 2-f) where 

crosswalks were placed on a high slope arterial (>5%).  

Table 1 lists each site where data were collected, including geographic location, number of 

approach lanes on the arterial, number of circulating lanes in the roundabouts, number of 

entry and exit legs, circle inscribed diameter, spacing between roundabouts (measured from 

the downstream exit lane from one roundabout to the upstream yield lane of the adjacent 

roundabout in the direction of travel) based on the procedures presented in the research of 

Bugg et al. (2015), presence of restrictive median, location for the candidate crosswalks 

from the circulatory ring delimitation, and crosswalk GPS coordinates. 

The peak arterial traffic and pedestrian flows data are also presented in Table 1. 800 GPS 

travel runs for each through movement (around 100 at each site) were extracted and 

identified for this research (440 km of road coverage over 16 hours) (S. Li, Zhu, van 

Gelder, Nagle, & Tuttle, 2002).  

 



 

Figure 2 Aerial view of the Candidate Sites: a) US1; b) SP1; c) PT1; d) PT2; e) PT3; 

f) PT4; g) PT5; h) PT6 [Source: https://www.bing.com/maps/]. 

 

Table 1 Summary of Study Sites 

 

Microsimulation platform for traffic, emissions, and safety 

Traffic modelling 

VISSIM software package was selected to simulate traffic operations (PTV AG, 2011) for 

four main reasons: 1) modelling reliable pedestrian-vehicle interactions at roundabout 

corridors (Fernandes, Fontes, Pereira, et al., 2015); 2) defining parameters of driving 

behavior for roundabouts as critical gaps and headways (Z. Li, DeAmico, Chitturi, Bill, & 

Noyce, 2013; PTV AG, 2011); 3) calibrating a wide range of parameters to set faithful 

representations of the traffic on a corridor level for capacity and emissions’ purposes 

(Fernandes, Fontes, Neves, et al., 2015; Fernandes, Fontes, Pereira, et al., 2015); and 4) 

storing and exporting of both vehicle and pedestrian trajectory files that can be used by 

external applications to assess emissions and safety (PTV AG, 2011).  

The simulation experiments in each site were based on simulation runs of 75 minutes (4:45-

6:00 p.m.). A fifteen minutes (4:45-5:00 p.m.) warm-up time was included in each run to 

allow traffic to stabilize before collecting data for the remaining 60 minutes. The coded 

network in VISSIM is depicted in Figure 2. Link speeds and flows (traffic and pedestrian) 

were collected for all of these links. An average pedestrian walking speed value of 1.34 m/s 

was adopted for this research (HCM, 2010). 

 

Emissions 

Vehicular emissions were calculated using VSP methodology (USEPA, 2002). VSP, an 

indicator of engine load, accounts for engine power demand associated with changes in both 

vehicle potential and kinetic energies, aerodynamic drag, and rolling resistance (Frey, 

Zhang, & Rouphail, 2010; USEPA, 2002). VSP values estimated at 1 Hz are categorized 

in 14 modes, and an emission factor for each mode is used to estimate vehicular CO2, CO, 

NOX and HC emissions from different vehicle types. 

The main advantages of using VSP are: 1) it allows estimating instantaneous emissions 

based on a second-by-second vehicle activity data, taking as input the trajectory files given 

by VISSIM; 2) it includes the impact of different levels of accelerations and speed changes 

on emissions (Kutz, 2008); 3) and it is an useful explanatory variable for estimating 

variability in emissions (Zhai, Frey, & Rouphail, 2008). 

Thus, emissions estimates using VSP methodology were based on vehicle dynamic data 

(speed, acceleration-deceleration and slope) gathered from VISSIM. Excel data sheets were 

developed to compute second-by-second vehicle dynamics data from VISSIM output. To 

reflect the local car fleet compositions, the total emissions were calculated considering the 

following distributions: 

 

 Portuguese Sites: 44% of Gasoline Passenger Vehicles (GPV) with engine size <1.4l, 

35% of Diesel Passenger Vehicles (DPV) with engine size <1.6l, and 21% of Light 

Diesel Duty Trucks (LDDT) with engine size <2.5l (ACAP, 2014); 

https://www.bing.com/maps/


 

 Spanish Site: 41% of Gasoline Passenger Vehicle (GPV) with engine size <1.2l, 51% 

of Diesel Passenger Vehicle (DPV) with engine size <1.6l, and 8% of and Light 

Diesel Duty Trucks (LDDT) with engine size <2.5l (DGT); 

 US Site: 39% of “Tier 1” Passenger Cars (T1 PCs) and 61% of “Tier 2” Passenger 

Cars (T2 PCs) (OAK Bridge Data Inventory). 

 

The average emission rates for pollutants CO2, CO, NOx and HC by VSP mode of the above 

vehicles types are reported in the following studies: GPV (Anya, Rouphail, Frey, & Liu, 

2013), DPV and LDDT (Coelho, Frey, Rouphail, Zhai, & Pelkmans, 2009), and T1 and 

T2 (PCs) (Salamati, Rouphail, Frey, Liu, & Schroeder, 2015). Other categories 

represented only 2% of traffic composition and were excluded from this analysis. 

 

Safety 

SSAM software application was developed by a research team in SIEMENS and sponsored 

by the Federal Highway Administration (FHWA). SSAM uses several algorithms to identify 

conflicts from space-time vehicles trajectory files (*.trj file) produced by microscopic 

simulation modes as VISSIM. For each vehicle-to-vehicle (or pedestrian) interaction SSAM 

computes surrogate measures of safety and determines whether or not that interaction fulfils 

the criteria to be deemed a conflict (Gettman, Pu, Sayed, & Shelby, 2008).  

This approach has all the common advantages of simulation such as safety evaluation of 

new facilities before their implementation, or controlled testing environments. However, 

notwithstanding the simplicity of user interface, SSAM has two main drawbacks. First, 

current microscopic traffic models are not able to model specific crash types such as head-

on, sideswipe or U-turn related collisions. Second, the probability of each automated conflict 

turning into a crash cannot be determined by SSAM (Gettman et al., 2008). 

The research team used Time-to-Collision (TTC) as a threshold to establish whether a 

vehicle-pedestrian interaction is a conflict and the relative difference between vehicles and 

pedestrians speed (DeltaS) as a proxy for the crash severity (Gettman et al., 2008). TTC is 

the minimum time-to-collision value observed during the interaction of two vehicles (or a 

vehicle with a pedestrian) on collision route. If at any time the TTC drops below a given 

threshold [2 seconds, as suggested for vehicle-pedestrian events (Salamati et al., 2011)] the 

interaction is tagged as a conflict. DeltaS is the difference in vehicle (or pedestrian) speeds 

observed at the instant of the minimum TTC (Gettman et al., 2008). 

SSAM classifies resulting conflicts into three categories based on a conflict angle (from -

180° to +180°): rear end if 0º<conflict angle<30°; crossing conflict if 85º<conflict 

angle<180°; or is otherwise a lane change conflict. This angle is expressed from the 

perspective of the first vehicle (or pedestrian) that arrives at the conflict point and indicates 

the approach direction of the second vehicle (Gettman et al., 2008).  

To address the problem associated with pedestrian-to-pedestrian conflicts (FHWA), the 

research team filtered out any conflict where the maximum speed was lower than 2.2 m/s 

(which is faster than natural walking speed).  

 

Model Calibration and Validation 

Data collected in all sites were used to calibrate and validate the simulation models. About 

80% of the data were used for calibration to develop and fit the traffic model parameters, 

and the remaining data used for validation to assess the effectiveness of the model 

calibration. 



 

Calibration of VISSIM parameters was first made by modifying driver behavior and vehicle 

performance parameters, and by examining their effect on traffic volumes and speeds for 

each link. The main driver behavior parameters of VISSIM included car-following 

parameters (average standstill distance, additive and multiple part of safety distance), lane-

change parameters, gap acceptance parameters (minimal gap time and minimal headway), 

desired speed distributions and simulation resolution (PTV AG, 2011). 

These parameters were optimized using a genetic algorithm (Simultaneous Perturbation 

Stochastic Approximation – SPSA) to minimize Normalized Root Mean Square – NRMS 

(objective function) (Paz, Molano, & Khan, 2014). The modified chi-squared statistics 

Geoffrey E. Havers (GEH) was used as calibration criteria. The main features of using GEH 

are the following: i) it incorporates both absolute and relative differences in comparison of 

estimated and observed traffic flows; ii) it avoids divisions by zero; and iii) it is independent 

of the order of the values (Buisson et al., 2014). Fifteen simulation runs were then performed 

for each testing scenario, as suggested by Hale (1997). Further details about this procedure 

can be found in the following studies (Paz et al., 2014). 

Model validation focused on comparing estimated and observed flows (traffic and 

pedestrians), speeds, and average travel time. GEH and Mean Absolute Percent Error 

(MAPE) statistics were used to measure goodness of fit (Buisson et al., 2014).  

 

Scenarios 

Baseline scenario is the calibrated model with the observed pedestrian and traffic demands. 

For all crosswalks locations, the research team modeled the centroids where pedestrians 

enter and leave in the coded network in the same place as the actual pedestrian location. 

Also, pedestrians always walked to the crosswalk. 

For each site, baseline scenario was applied, assuming several possible pedestrian crosswalk 

locations along the mid-block section: 1) from the downstream RBT1 to the upstream of 

RBT2 for corridors with 2 roundabouts; and 2) from the circulatory ring of the RBT2 to the 

upstream of RBT3 and RBT1 on the remaining sites. In the first set of corridors (US1, SP1, 

PT1, PT2 and PT3), crosswalks were moved in 5-m increments [each increment allows an 

extra stocking capacity of 1 vehicle (Silva et al., 2013)]. In the second set of corridors (PT4, 

PT5 and PT6), nearly 25 PC1 and PC2 combinations along the mid-block section were 

explored by site applying 5-m increments relatively to the roundabout exit section. 

After that, a relationship between pollutant emissions, delay and DeltaS, and different 

crosswalk locations (PC1 – corridors with 2 roundabouts; PC2 – corridors with more than 2 

roundabouts) was established, as depicted in Figure 2. During this phase, various regression 

models were tested to identify whether the predictive regressions models were a good fit for 

the evaluated data (Sheskin, 2011). 

 

Multi-objective optimization 

Objective Functions 

On the basis of the scenarios presented above, the following multi-objective model was 

constructed to minimize pollutant emissions, vehicle delay and the relative difference 

between vehicles and pedestrians speed. 

For a given midblock pedestrian crosswalk location and site, the first and second objectives 

of the model mostly reveal the vehicle driver’s viewpoint, which is to minimize CO2, CO, 

NOX and HC emissions per unit distance generated by vehicles (Equation 1) and the average 

delay of each vehicle trip (Equation 2) along the overall network: 



 

 

1min 


mN
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D

F

T
                                                                                                                  (1) 

 

Where: m = Label for second of travel (s); j = Source pollutant; Fmj = Emission factor for 

pollutant j in label for second of travel m (g/s); Nm = Number of seconds (s); TD = Total 

distance travelled by vehicle (km). 

 

min  v

id                                                                                                                              (2) 

 

Where: 
v

id   = control delay by vehicle (s/veh). 

 

The third objective function is devoted to the perspective of the pedestrian safety, with the 

goal of minimizing relative difference between vehicles and pedestrians speed (DeltaS) 

which is computed from SSAM (Equation 3). DeltaS was obtained from crossing conflicts 

at the candidate pedestrian crosswalk (Gettman et al., 2008). 

 

min = DeltaS                                                                                                                        (3) 

 

Where: DeltaS = magnitude of the difference in vehicle and pedestrians speeds (km/h). 

 

Decision Variables 

The decision variables are PC1 and PC2. They were measured from the circulatory ring 

delimitation of RBT2 to the limit of crosswalk (see Figure 2 for more details). 

 

Constraints 

Equation 4 represents the available range of spacing between roundabouts (see Table 1) 

which constitutes the principal constraint for the multi-objective optimization:  

 

max5  S S                                                                                                                        (4) 

 

Where: Smax = maximum spacing length of the analyzed site that allows a stocking capacity 

of 1 vehicle before the upstream of exit lane of the adjacent roundabout (m). 

Solution Approach 

Four multi-objective tests were optimized for each site: 1) delay-CO2-DeltaS; 2) delay-CO-

DeltaS; 3) delay-NOX-DeltaS and 4) delay-HC-DeltaS. The regression functions were PC 

(PC1 or PC2 depending on the site) versus delay, PC versus CO2 emissions, PC versus CO 

emissions, PC versus NOX emissions, PC versus HC emissions, and PC versus DeltaS. 

The solution of a multi-objective model is always located in its Pareto optimal (non-

dominated) set. The Fast Non-Dominated Sorting Genetic Algorithm (NSGA-II) (Deb, 



 

Pratap, Agarwal, & Meyarivan, 2002) was adopted in this research for six main reasons: 

1) less computational complexity; 2) elitist approach; 3) emphasis on the non-dominated 

solutions during the process; 4) diversity preserving mechanism, 5) no requisite to consider 

a sharing parameter; and 6) real number encoding (Deb et al., 2002). The standard flowchart 

of NSGA-II displayed in Figure 3 was used.  

 

Figure 3 Flowchart of solution algorithm based on NSGA-II. 

 

Sensitivity analysis on the NSGA-II parameters (population size, maximum number of 

generations, and mutation and crossover rates) was performed before optimization to ensure 

the diversity in the solutions and the convergence to Pareto Optimal Front (POF) (Konak, 

Coit, & Smith, 2006). 

For the purpose of analysis, all objective variables are considered to have the same weight 

during the optimization procedure. NSGA-II does not take into account the different units 

and magnitudes of the measures involved during its procedure. This means that the set of 

optimal values includes values that will minimize emissions, delay and relative different 

between vehicles and pedestrians speed regardless of the magnitude or units of the output 

measure. 

 

Results and discussion 

 

Model Calibration and Validation 

Summary statistics of the VISSIM calibrated model at the selected sites are presented in 

Table 2. The model used 15 random seed runs (Hale, 1997) and is based on the paired 

estimated-observed flows and speeds in each link. The NRMS, the GEH and MAPE 

goodness of fit measures, as well as average travel time for through movements are provided. 

Lane-change parameters were marginally unaffected by the calibration while a simulation 

resolution of 10 time steps per simulation seconds (second-by-second vehicle record data) 

was used in all sites (PTV AG, 2011). 

The findings showed a good fit between estimated and observed data using a linear 

regression analysis. Specifically, applying the site-calibrated values, R2 values higher than 

0.90 and 0.75 were produced for estimated traffic flows and speeds, respectively, against 

observed data. This meant that the estimated data explained more than 75% variation in the 

field measurements. Additionally, the calibrated critical gap times (2.9-4.2 s depending on 

the site) reflected countries driving habits, as presented elsewhere (Vasconcelos, Seco, & 

Silva, 2013). The outputs of Table 2 showed improvement of the GEH statistic with 

calibrated model parameters. More than 85% of the links achieved a GEH values less than 

4, thereby satisfying the calibration criteria (Dowling, Skabadonis, & Alexiadis, 2004), 

while MAPE values for the speeds ranged from 6% to 14% between PT4 and PT3 sites, 

respectively. The maximum average travel time difference [using 150 floating car runs 

(Dowling et al., 2004) by each through movement] was recorded at the PT3 site for South-

North movement (~10%). 

 

Table 2 Summary of calibration for the traffic model with adjusted 

parameters 

 



 

Sites traffic operations analysis 

This section quantified and compared vehicle delay, pollutant emissions (CO2, CO, NOX 

and HC) per unit distance, and DeltaS by site with the current crosswalk locations. Delay 

and vehicle activity data as speed, acceleration-deceleration and slope on a second-by-

second basis were given from the vehicle record tool of the VISSIM model (PTV AG, 2011) 

while DeltaS was computed in SSAM (Gettman et al., 2008). 

Site-Specific operational, emissions and safety outputs are summarized in Table 3. Several 

conclusions about the effect of crosswalk location can be drawn. (i) crosswalks near the 

roundabout exit section (US1, PT3 and PT6) generate the highest CO2 emissions per unit 

distance and the lowest DeltaS values, which agrees with the previous study conducted by 

(Fernandes, Fontes, Pereira, et al., 2015); (ii) The PT3 and PT6 sites result in weak traffic 

performance and high emission levels among Portuguese sites, mostly because of the high 

pedestrian flows and the low spacing between roundabouts; (iii) Mid-block crosswalks from 

the PT1 and PT2 sites cause the highest speeds differences between vehicles and pedestrians 

when compared with remaining sites; (iv) The arterial where crosswalk is located at the SP1 

site has 10% and 65% less traffic and pedestrians flows, respectively than the equivalent 

arterial at the PT1, but vehicles generate higher emissions per unit distance for local 

pollutants (more than 15%).  

 

Table 3 Site-Specific output measures with existing crosswalk locations 

 

Next section describes the optimization of current crosswalk locations to assess their 

performance. The main purpose of this step is to improve the above outputs (delay, pollutant 

emissions, and DeltaS). The results will then be compared with the existing crosswalk 

locations. 

 

Multi-objective optimization 

This section presents the main results of the multi-objective optimization of crosswalk 

locations. The parameters used in NSGA-II are summarized below: 

 

 The population size (set of optimal solutions) is 10; 

 The maximum number of generations is 1000; 

 The crossover rate is 90%; 

 The mutation rate is 10%. 

 

These values were found appropriate to ensure the diversity in solutions and convergence to 

POF. Figure 4 illustrates the POF involved through the course of the optimizations for 

corridors with two roundabouts by pollutant criteria. For each site, a three-dimensional 

scatter plot with three objective functions – emissions (x-axis), delay (y-axis), and DeltaS 

(z-axis) – as a function of PC1 and PC2 is exhibited. Each label in Figure 4 is a Pareto point 

that represents an optimal PC1 solution of the final POF. Its value and corresponding outputs 

are listed in Table 4. 

The graphs confirmed the trade-off between emissions (independent of the considered 

pollutant) and traffic performance, and DeltaS variables from the minimal to the maximum 

extremes in the set of optimal PC1. Most of solutions were located at the mid-block sub-



 

segments and near the circulatory ring of the roundabout (PC1<15 m). If one adopts the 

solution that minimizes global pollutant emissions of each site, then one could save between 

1% and 6% in average CO2 emissions at the SP1 and PT3 sites, respectively when compared 

with existing crosswalk locations. 

The improvements in average delay at the PT3 site were particularly impressive. This site 

initially presented the closest crosswalk to the exit section and high pedestrian demand. For 

a chosen PC1 value of 96 m, 15% less delay could be reached compared with current location 

(PC1=7 m). As expected, crosswalks near by the roundabouts exit section yielded the lowest 

relative differences between vehicles and pedestrians speed. The lack of optimal PC1 values 

higher than 36 m at the SP1 site was possible due to right-turn bypass lane at RBT2. 

Accordingly, vehicles drive at low speeds along the mid-block section.  

An intriguing result was detected at the PT1 and PT2 sites. In spite of having similar spacing 

between roundabouts, the optimal PC1 set for some pollutants was fairly different. While in 

the PT1 site the solutions in the approximate POFs were mostly found at the mid-block area, 

in the PT2 site some were located at 6 to 17 m away from the roundabout exit section. The 

explanations for this fact may be in the differences between sites’ arterial traffic flow 

(PT2~235 vph/lane; PT1~590 vph/lane) together with the site’s geometry. More precisely, 

a great portion of the vehicles is likely to be more retained by a crosswalk near the exit 

section under high traffic flows. Moreover, vehicles attain moderate speeds (≈35 km/h) close 

to the RBT1 east exit of the PT1 site (caused by small deflection angle in RBT1 east entry). 

 

Figure 4 The approximate final Pareto front by pollutant criteria and site: a) US1; b) 

SP1; c) PT1; d) PT2 and e) PT3. 

 

Table 4 Optimal crosswalk locations (PC1) of each site considering the pollutant 

function criteria 

 

In corridors with more than 2 roundabouts, the final Pareto set of PC1 and PC2 dictated 

optimal solutions at the mid-block sub-segment and near the RBT2 exit section, as presented 

in Figure 5 and Table 5. Optimal solutions assigned in the bottom conducted the highest 

emissions/delay values and lowest DeltaS; optimal solutions allocated in the upper of the 

graphs corresponded to the lowest emission/delay values and highest DeltaS. Between above 

extremes a trade-off occurred. 

PT6 site generated the highest emissions reductions (2-9% depending on the pollutant) by 

adopting the solution 7. The findings pointed out small differences among pollutants in the 

optimal data set points. However, there were some aspects on the final POF that must be 

emphasized. In the PT4 site few solutions were found near RBT1 circulatory carriageway 

(high PC1 values). This happens because vehicles from the West leg to the south leg at 

RBT1 drive at moderate speeds, and the South RBT1 exit leg is a downhill road (slope >5%) 

which has a positive influence on the vehicle speed. Several solutions at the PT4 and PT5 

sites were located near the circulatory ring. This can be explained by the differences of traffic 

and pedestrian flows between RBT1/RBT2 and RBT2/RBT3, in which in turns allows traffic 

to be less affected by crosswalks installed close to the RBT2 exit section. 

Three general points were outlined from above findings. First, optimal crosswalk locations 

were mostly found at 5 to 20 m from the downstream roundabout exit section and along the 

mid-block segment. Second, the set of optimal crosswalk locations did not substantially vary 

from both the global and the local pollutants. Third, crosswalks in a same corridor (e.g. PC1 

and PC2) presented different optimal locations along the respective mid-block segment. 



 

This suggests that the spacing between roundabouts could have an important effect on the 

optimal crosswalk location along the mid-block section. Previous research conducted in this 

topic (Fernandes, Salamati, et al., 2015) demonstrated that, under short spacing values, 

drivers were not able to attain cruise speeds at mid-block section and emissions per unit 

distance were consistently high. However, this study did not include the influence of 

pedestrians in the traffic stream. This subject is then addressed in the following section. 

 

Figure 5 The approximate final Pareto front by pollutant criteria and site: a) PT4; b) 

PT5; and c) PT6. 

 

Table 5 Optimal crosswalk locations (PC1 and PC2) of each site considering the 

pollutant function criteria 

 

Relationship between optimal crosswalk locations and corridor’s characteristics 

With above concerns in mind, the optimal crosswalk locations which minimize global and 

local emissions at each site were plotted against spacing. Because spacing varies among 

sites, data points of crosswalk locations were normalized in relation to the spacing between 

roundabouts by scaling between 0 and 1. Specifically, 0 is the location at the exit (circulatory 

ring delimitation) lane of the RBT1 (RBT2 for corridors with more than 2 roundabouts) 

while 1 is at the yield lane of the upstream roundabout. 

The estimated regression models for each case confirmed prior predictions, as displayed in 

Figure 6. There was a good regression between relative optimized locations for CO2, CO, 

NOX and HC, and spacing between roundabouts (R2 > 0.72) using exponential models. For 

these models, the analysis of R2 (F-test) and the analysis of coefficients for the model (T-

test) resulted in p-values lower than 0.001. This meant that the above coefficients did not 

take the value 0 at any significance level, and therefore the spacing and optimal crosswalk 

location variables were found to be significant at confidence levels higher than 99% 

(Sheskin, 2011).  

The scattered graphs show that for values lower than 100 m for the spacing, the relative 

location of the optimal crosswalk is approximately in 20%-30% of the spacing length. After 

that, the crosswalks are located near the midway position (value of 0.5), between 140 and 

200 m of spacing. 

It should be noted that other variables such as site-specific arterial traffic and 

pedestrian flow at the candidate crosswalks were fitted with spacing. Nevertheless, the 

regressions models resulted in weak correlations between outputs. 

 

Figure 6 Relative location of the optimal crosswalk: (a) minimum CO2 versus 

spacing; (b) minimum CO versus spacing; (c) minimum NOX versus spacing and (d) 

minimum HC versus spacing. 

 

Conclusions 

This research examined the impact that different pedestrian crosswalk locations had on 

delay, CO2, CO, NOX and HC vehicular emissions, and on the relative difference between 

vehicles and pedestrians speed. The study covered eight roundabout corridors in three 

different countries, and conducted a multi-objective optimization of pedestrian crosswalks 



 

at different locations. The research also explored the impact of the spacing between 

intersections on the optimal location of the crosswalks along the mid-block section. The 

methodology used was executed using a microsimulation traffic model paired with an 

emission methodology and safety model. 

The findings demonstrated that the implementation of crosswalks near the circulating 

roadway (<10 m), which represented the current state of practice in some of the selected 

sites, offered advantages strictly from a pedestrian’s safety point of view (low speeds). 

Crosswalks located near the mid-block section, however, tended to be associated with 

reduced delay and pollutant emissions, a finding that applied to all eight study corridors. No 

relevant differences in the optimal crosswalk location were noted when a specific pollutant 

was considered in the optimization. 

In spite of modeling different vehicle fleets across the three countries, the fleet effect on the 

optimal crosswalk locations was minimal (optimal solutions for US1 and SP1 sites included 

crosswalks located 10 to 15 m from the circulatory road). 

The analysis of the relative crosswalk location for different values of spacing, confirmed the 

impact of spacing (R2 > 0.72) on optimized crosswalk locations along mid-block section. 

Specifically, if the spacing is lower than 100 m, optimal crosswalk location is approximately 

in 20%-30% of the spacing length. Otherwise, if the spacing is between 140 and 200 m, 

crosswalk can be located at the midway position. 

Notwithstanding the small improvements on delay, emissions or safety in the majority of 

the sites after the optimization procedure, this study contributed to the current literature in 

four aspects: 

 To assess the spacing between roundabouts as an influencing factor in determining 

the optimal crosswalk location; 

 To include local pollutant criteria to account location-specific environmental 

concerns; 

 To identify trade-offs between environmental /delay, and pedestrian safety fields; 

 To supply basic design principles that help local authorities, transportation 

engineers, planners, and other professionals about pedestrian crosswalk location to 

accommodate location-specific needs and vulnerabilities. 

Although this research provides measurement tools on how best to balance among 

competing objectives in locating the crosswalk, there are two limitations that must be 

highlighted. First, neither pedestrian delays nor pedestrians crossing outside the crosswalk 

were considered in the analysis. The second limitation is that the relationship between 

optimal crosswalk location and operational variables such as arterial traffic and pedestrian 

flow was not fully addressed.  

Therefore, future work is need, namely: 

 To study other corridors with different roundabout layouts (e.g. turbo-roundabouts 

and urban mini-roundabouts) where pedestrian activity is high; 

 To conduct a sensibility analysis of the arterial traffic and pedestrian flow for each 

site to explore their impact on optimal crosswalk locations; 

 To account and analyze the number of times that pedestrians cross outside 

crosswalks, especially when crosswalks are far from roundabouts (mid-block 

section). 



 

 To include above geometrical, operational and driving behavior outputs in the multi-

objective optimization. 
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Figure 7 Methodological framework. 
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Note: PC1 and PC2 are the distances from the RBT2 exit section to the candidate crosswalks 

Figure 8 Aerial view of the Candidate Sites: a) US1; b) SP1; c) PT1; d) PT2; e) PT3; 

f) PT4; g) PT5; h) PT6 [Source: https://www.bing.com/maps/]. 
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Figure 9 Flowchart of solution algorithm based on NSGA-II.
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Figure 10 The approximate final Pareto front by pollutant criteria and site: a) US1; b) SP1; c) PT1; d) PT2 and e) PT3. 

166 167 168 169 7.27.47.6

22

23

24

Delay [s/veh]
CO2 [g/km]

D
el

ta
S

 [
k

m
/h

]

128.5 129 129.5 7.5
8

23

23.2

23.4

23.6

23.8

Delay [s/veh]
CO2 [g/km]

D
el

ta
S

 [
k

m
/h

]

121
122

123
124

1258.2
8.4

8.6
8.8

9
9.2

22

24

26

28

CO2 [g/km]Delay [s/veh]

D
el

ta
S

 [
k

m
/h

]

104 105 106 1073.5

4

4.5
22

23

24

25

26

27

CO2 [g/km]
Delay [s/veh]

D
el

ta
S

 [
k

m
/h

]

130

140

150

8
9

10
11

20

22

24

26

Delay [s/veh]CO2 [g/km]

D
el

ta
S

 [
k

m
/h

]

472
474 7

7.5

22.5

23

23.5

Delay [s/veh]
CO [mg/km]

D
el

ta
S

 [
k

m
/h

]

188

188.5

189

7.5

8

23

23.5

24

Delay [s/veh]CO [mg/km]

D
el

ta
S

 [
k

m
/h

]

150 152 154 156
8

9
10
20

25

30

35

CO [mg/km]Delay [s/veh]

D
el

ta
S

 [
k

m
/h

]

130
131

132 3.6
3.8

4
4.2

23

24

25

26

27

Delay [s/veh]
CO [mg/km]

D
el

ta
S

 [
k

m
/h

]

180 182 184 1868

10

12
21

22

23

24

25

CO [mg/km]
Delay [s/veh]

D
el

ta
S

 [
k

m
/h

]

116
118

120 7

7.5

22

24

Delay [s/veh]
NOX [mg/km]

D
el

ta
S

 [
k

m
/h

]

414

415

7.6

7.8

8

23
23.5

24

NOX [mg/km]
Delay [s/veh]

D
el

ta
S

 [
k

m
/h

]

336
338

340
342

344

8.5

9
20

30

Delay [s/veh]
NOX [mg/km]

D
el

ta
S

 [
k

m
/h

]

275

280

285 3.5

4

4.5

20

25

30

Delay [s/veh]NOX [mg/km]

D
el

ta
S

 [
k

m
/h

]

408
410

412
414

416
418 8.5

9
9.5

10
10.5

22

24

Delay [s/veh]NOX [mg/km]

D
el

ta
S

 [
k

m
/h

]

29.9
30

30.1 7

7.5

22

23

24

Delay [s/veh]
HC [mg/km]

D
el

ta
S

 [
k

m
/h

]

7.15

7.2

7.67.88

22.5

23

23.5

24

HC [mg/km]
Delay [s/veh]

D
el

ta
S

 [
k

m
/h

]

6 6.1 6.2 6.3 8

9

10

20

25

30

35

Delay [s/veh]
HC [mg/km]

D
el

ta
S

 [
k

m
/h

]

4 4.5 5 3.5
4

4.522

24

26

28

Delay [s/veh]
HC [mg/km]

D
el

ta
S

 [
k

m
/h

]

6

6.5

7

8
9

10
11

20

25

Delay [s/veh]HC [mg/km]

D
e
lt

a
S

 [
k

m
/h

]

5 

4 
3 

2 
1 

6 

1 

2 

5 

4 

3 

6 

1 
5 

3 
4 

5 

3 
2 

1 

4 

1 
2 

3 
4 

5 

5 
2 

3 
4 

5 1 3 4 2 

2 

1 

+ 
3 

4 

5 

2 1 

5 

4 

2 

1 

4 
3 

5 

1 

2 

6 

3 

5 
4 

1 

2 
3 

4 5 
6 

5 

4 3 

2 
3 

5 1 

2 3 

4 

1 

2 

3 
4 

5 

2 

6 

1 
2 

3 
4 

5 

1 

2 
3 4 

5 

6 

6 

6 

1 

1 

1 
2 

6 

5 

4 

3 

6 

2 

4 
6 

1 

3 

6 

5 

1 

4 

5 

6 

3 
2 

7 

7 

7 

7 



 

 a) PT4 b) PT5 c) PT6 

C
O

2
 

 

 

 

C
O

 

   

N
O

X
 

 

 

 

H
C

 

   

Figure 11 The approximate final Pareto front by pollutant criteria and site: a) PT4; b) PT5; and c) PT6.

111112113114

10
11

12

22

23

24

25

26

Delay [s/veh]
CO2 [g/km]

D
e
lt

a
S

 [
k

m
/h

]

119
120

121 12
14

22

24

26

28

Delay [s/veh]
CO2 [g/km]

D
el

ta
S

 [
k

m
/h

]

160 165 170 175
10

12
14

23

24

25

26

Delay [s/veh]
CO2 [g/km]

D
e
lt

a
S

 [
k

m
/h

]

145.5
146

146.5
10

11

23

24

25

Delay [s/veh]
CO [mg/km]

D
el

ta
S

 [
k

m
/h

]

152 154 156 158
12

13
1423

24

25

26

Delay [s/veh]
CO [mg/km]

D
el

ta
S

 [
k

m
/h

]

190
195 10

12

23

24

25

26

Delay [s/veh]
CO [mg/km]

D
el

ta
S

 [
k

m
/h

]

318

320
10.5

11
11.5

23

24

25

Delay [s/veh]
NOX [mg/km]

D
el

ta
S

 [
k

m
/h

]

336

338

340

342

11
12

13
14

23

24

25

26

Delay [s/veh]
NOX [mg/km]

D
el

ta
S

 [
k

m
/h

]

400

420
10

12

23

24

25

26

27

Delay [s/veh]
NOX [mg/km]

D
el

ta
S

 [
k

m
/h

]

5.4
5.6

5.8

1010.51111.5
22

23

24

25

26

HC [mg/km]Delay [s/veh]

D
e
lt

a
S

 [
k

m
/h

]

5.8
6
6.2 12

14

23

24

25

Delay [s/veh]HC [mg/km]

D
el

ta
S

 [
k

m
/h

]

7.5
8

10

15

23

24

25

26

27

Delay [s/veh]

HC [mg/km]

D
el

ta
S

 [
k

m
/h

]

5 
4 

3 
2 

1 

6 
7 

1 
2 

5 
4 3 

6 

1 
2 

5 

3 
4 

5 
4 

2 1 
3 

1 2 
3 

4 
5 

1 2 

4 
5 

5 

1 

3 

4 

2 

2 
1 

3 
4 

6 

6 
7 

6 

2 
1 

5 

7 

3 

6 7 

4 
3 

5 

5 2 

6 

3 

6 

4 

2 
3 

7 
6 

5 

1 

4 

1 

7 
6 

1 

2 
3 

4 5 

6 7 



a) b) 

  

c) d) 

  

Note: 0 is the location at the exit lane of downstream roundabout and 1 is at the yield lane of upstream 1 
roundabout considering the mid-block section where crosswalk is located. 2 

Figure 12 Relative location of the optimal crosswalk: (a) minimum CO2 versus 3 

spacing; (b) minimum CO versus spacing; (c) minimum NOX versus spacing; and (d) 4 

minimum HC versus spacing.5 
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Table 6 Summary of Study Sites 1 

City 
Site 

ID 

Rbts. 

ID 

Arterial 

number 

of lanes 

Number of 

circulating 

lanes 

Number 

of 

entry/exit 

legs 

Circle 

Inscribed 

Diameter 

[m] 

Spacing 

[m] 

Crosswalks 

Location 

[m] 

Crosswalk 

Treatment 

solution 

Crosswalk 

GPS Coordinates 

Peak 

pedestrian 

flow [p/h] 

Peak 

arterial 

flow 

[vph/lane]a 

Raleigh, 

NC 
US1 

RBT1 1 1 4/4 36 
80 7 Raised 35°47'10.75"N   78°39'43.87"W 110 480 

RBT2 1 1 3/2 30 

Orense SP1 
RBT1 3 2 3/3 38 

58 30 Not Raised 42°20'49.5"N 7°52'28.6"W 85 315 
RBT2 2 2 4/4 45 

Aveiro PT1 
RBT1 2 2 3/3 41 

150 33 Raised 40°38'26.7"N 8°38'27.4"W 110 590 
RBT2 2 2 4/4 41 and 32b 

Guimarães PT2 
RBT1 1 1 3/3 41 and 26c 

140 55 Raised 41°26'39.6"N 8°16'59.4"W 120 235 
RBT2 1 1 4/4 36 

Oliveira de 

Azeméis 
PT3 

RBT1 1 2 4/4 48 
160 7 Raised 40°50'16.9"N 8°28'47.0"W 195 630 

RBT2 1 1 4/4 29 

São João da 

Madeira 
PT4d 

RBT1 1/2 2 4/4 126 and 61b 64 27 Raised 40°53'13.1"N 8°29'27.6"W 120 465 

RBT2 1 1 3/3 39 67 12e Raised 40°53'13.07"N 8°29'31.03"W 75 345 

RBT3 1 1 3/3 36 72 -  - - 445 

RBT4 1 1 3/3 36 100 -  - - 340 

RBT5 1 1 4/4 56 - -  - - - 

Viseu 

 RBT1 2 2 3/3 24 200 13 Raised 40°38'58.68"N 7°54'44.23"W 65 275 

PT5 RBT2 2 2 4/4 56 160 17e Raised 40°38'55.9"N 7°54'43.0"W 135 585 

 RBT3 2 2 4/4 40 - -  - - - 

Chaves 

 RBT1 1 2 3/3 45 185 15 Raised 41°44'39.80"N 7°28'14.06"W 165 265 

PT6 RBT2 1/2 2 5/5 34 105 10e Not Raised 41°44'38.8"N 7°28'16.5"W 180 515 

 RBT3 2 2 3/3 23 - -  - - - 

a Arterial traffic at the mid-block areas between roundabouts; 2 
b Oval roundabouts; therefore, there are two values for the inscribed diameter; 3 
c Roundabout RBT1 has two semi-circles; 4 
d There are only two crosswalks between downstream of RBT1 and the upstream of RBT5; 5 
e Distance from the RBT2 exit section. 6 
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Table 7 Summary of calibration for the traffic model with adjusted parameters 1 

Site ID Parameter Value NRMS GEH R2a MAPE Travel time [sec]b 

US1 

Average standstill distance 

(m) 

0.9 

0.549 
< 4 for 93 % 

of the links 

Flows: 0.95 

 

Speeds: 0.85 

Flows: 3.3% 

 

Speeds:11.1% 

Observed NS: 51.1±10.6 

Estimated NS: 54.0±3.3 

Observed SN: 41.6±7.0 

Estimated SN: 44.4±2.5   

Additive part of safety 

distance 

1.0 

Multiple part of safety 

distance 

1.1 

Minimal gap time (s) 4.3 

SP1 

Average standstill distance 

(m) 

1.0 

0.307 
< 4 for 96 % 

of the links 

Flows: 0.94 

 

Speeds: 0.81 

Flows: 2.9% 

 

Speeds:10.2% 

Observed WE: 50.5±5.2 

Additive part of safety 

distance 
1.2 Estimated WE: 52.6±2.0 

Multiple part of safety 

distance 
1.4 Observed EW: 55.1±9.3 

Minimal gap time (s) 3.4 Estimated EW: 50.9±1.5   

PT1 

Average standstill distance 

(m) 

1.1 

0.479 

 

< 4 for 91% 

of the links 

Flows: 0.92 

 

Speeds: 0.76  

Flows: 6.0% 

 

Speeds:12.8% 

Observed WE: 51.9±3.6 

Estimated WE: 51.2±1.6 

Observed EW: 47.1±5.0 

Estimated EW: 48.6±2.6   

Additive part of safety 

distance 
0.9 

Multiple part of safety 

distance 
1.8 

Minimal gap time (s) 2.9 

PT2 

Average standstill distance 

(m) 

1.1 

0.174 

 

< 4 for 96 % 

of the links 

Flows: 0.91 

 

Speeds: 0.88  

Flows: 7.0% 

 

Speeds:9.4% 

Observed WE: 50.1±3.8 

Estimated WE: 52.3±1.5 

Observed EW: 52.0±1.7 

Estimated EW: 49.0±2.2   

Additive part of safety 

distance 
1.3 

Multiple part of safety 

distance 
1.8 

Minimal gap time (s) 3.1 

PT3 

Average standstill distance 

(m) 

1.0 

0.355 
< 4 for 95 % 

of the links 

Flows: 0.93 

 

Speeds: 0.80 

Flows: 3.4% 

 

Speeds:13.7% 

Observed NS: 61.9±6.0 

Estimated NS: 58.1±3.4 

Observed SN: 59.9±5.6 

Estimated SN: 53.6±2.0   

Additive part of safety 

distance 
1.0 

Multiple part of safety 

distance 
1.2 

Minimal gap time (s) 3.1 

PT4 

Average standstill distance 

(m) 

1.0 

0.247 
< 4 for 92 % 

of the links 

Flows: 0.92 

 

Speeds: 0.86 

Flows: 5.0% 

 

Speeds:6.4% 

Observed WE: 87.5±6.7 

Estimated WE: 89.9±1.3 

Observed EW: 83.9±7.5 

Estimated EW: 89.1±1.9   

Additive part of safety 

distance 

0.9 

Multiple part of safety 

distance 

1.3 

Minimal gap time (s) 3.3 

PT5 

Average standstill distance 

(m) 

1.1 

0.232 
< 4 for 92 % 

of the links 

Flows: 0.93 

 

Speeds: 0.85 

Flows: 2.8% 

 

Speeds:8.6% 

Observed NS: 90.2±3.0 

Estimated NS: 92.3±2.2 

Observed SN: 89.9±5.2 

Estimated SN: 87.7±1.0    

Additive part of safety 

distance 

1.0 

Multiple part of safety 

distance 

1.3 

Minimal gap time (s) 3.2 

PT6 

Average standstill distance 

(m) 

1.0 

0.410 
< 4 for 100 % 

of the links 

Flows: 0.95 

 

Speeds: 0.88 

Flows: 4.6% 

 

Speeds:10.4% 

Observed WE: 82.6±9.3 

Estimated WE: 85.6±2.1 

Observed EW: 91.3±6.5 

Estimated EW: 86.9±1.7    

Additive part of safety 

distance 

1.2 

Multiple part of safety 

distance 

2.2 

Minimal gap time (s) 3.2 

a Linear regression analysis between the estimated and the observed flows and speeds on each coded link; 2 
b The relative difference between estimated and observed travel time was computed using the following equation: 100× (Estimated Travel Time – Observed Travel Time) / Observed Travel Time. 3 

Notes: WE – West to East movement: EW – East to West movement: NS – North to South movement; SN – South to North movement 4 



 

Table 8 Site-Specific output measures with existing crosswalk locations 

Site ID 

 Capacity  Emissions  Safety 

 
Delay 

[s/veh] 
 

CO2 

[g/km] 

CO 

[mg/km] 

NOX 

[mg/km] 

HC 

[mg/km] 
 

DeltaS 

[km/h] 

US1  7.8  170 478 121 32.79  22.0 

SP1  7.9  129 189 414 7.21  23.0 

PT1  8.3  122 153 340 6.19  27.0 

PT2  3.8  105 130 277 4.61  26.1 

PT3  10.1  140 185 415 6.61  21.4 

PT4  10.7  114 146 320 5.74  22.8 

PT5  12.5  120 155 340 6.11  24.0 

PT6  11.2  174 194 419 7.82  22.8 

 

 

 



 

Table 9 Optimal crosswalk locations (PC1) of each site considering the pollutant function criteria 

Site 

ID 

Solution
a 

PC1 

[m] 

CO2 

[g/km] 

Delay 

[s/veh] 

DeltaS 

[km/h] 

PC1 

[m] 

CO 

[mg/km] 

Delay 

[s/veh] 

DeltaS 

[km/h] 

PC1 

[m] 

NOX 

[mg/km] 

Delay 

[s/veh] 

DeltaS 

[km/h] 

PC1 

[m] 

HC 

[mg/km] 

Delay 

[s/veh] 

DeltaS 

[km/h] 

US1 

1 8 168.0 7.5 22.1 8 475.0 7.5 22.1 8 119.1 7.5 22.1 9 30.02 7.4 22.4 

2 10 166.9 7.3 22.6 9 473.5 7.4 22.4 11 118.4 7.3 22.9 11 29.94 7.3 22.9 

3 12 166.2 7.2 23.2 10 472.9 7.3 22.6 13 117.0 7.2 23.7 13 29.89 7.2 23.5 

4 17 165.8 7.1 24.2 11 472.1 7.2 22.9 17 115.8 7.1 24.2 17 29.83 7.1 24.1 

5 70 169.2 7.5 21.8 16 471.6 7.2 23.7 72 120.0 7.6 21.4 70 30.10 7.5 21.9 

6 72 169.6 7.6 21.4 N/A N/A 72 30.17 7.6 21.4 

SP1 

1 7 129.4 7.9 23.2 7 188.5 7.9 23.2 7 414.5 7.9 23.2 7 7.21 7.9 23.2 

2 8 129.3 7.8 23.4 9 188.2 7.7 23.6 8 414.1 7.8 23.4 8 7.20 7.8 23.5 

3 9 129.1 7.7 23.6 10 188.0 7.6 23.7 9 413.8 7.7 23.6 9 7.19 7.7 23.6 

4 10 128.9 7.5 23.7 15 187.6 7.3 23.9 15 413.4 7.5 23.9 10 7.17 7.6 23.7 

5 13 128.8 7.3 23.9 36 189.0 8.0 22.8 36 415.0 8.0 22.8 14 7.16 7.5 23.9 

6 36 129.6 8.0 22.8 N/A N/A 36 7.23 8.0 22.8 

PT1 

1 7 124.8 9.0 24.1 35 151.4 8.3 27.1 7 343.6 9.0 24.1 7 6.21 9.0 24.1 

2 19 123.3 8.6 25.3 55 152.6 8.4 26.3 13 341.7 8.7 24.9 35 6.15 8.3 27.1 

3 35 121.0 8.3 27.1 58 150.3 8.1 30.8 35 339.4 8.3 27.1 58 6.09 8.1 30.8 

4 62 120.2 8.2 28.8 92 153.9 8.5 25.7 58 338.1 8.2 28.8 98 6.19 8.6 25.6 

5 99 122.3 8.4 25.9 115 155.3 9.3 21.8 62 337.0 8.1 30.8 105 6.23 9.3 22.4 

6 115 125.3 9.3 21.8 N/A N/A N/A 

PT2 

1 6 106.7 4.13 22.2 6 132.6 4.13 22.2 6 283.1 4.13 22.2 6 4.79 4.13 22.2 

2 9 105.9 3.97 22.9 9 132.2 3.97 22.9 9 282.1 3.98 22.9 17 4.65 3.82 23.7 

3 11 105.3 3.92 23.6 10 132.2 3.94 23.1 13 281.2 3.86 23.4 40 4.63 3.80 24.9 

4 17 104.9 3.82 24.4 22 131.1 3.77 23.9 36 278.6 3.80 24.6 52 4.62 3.76 25.9 

5 53 104.5 3.75 25.0 36 130.0 3.80 24.6 52 277.9 3.76 25.9 63 4.61 3.69 26.6 

6 63 104.3 3.68 25.5 58 129.4 3.72 26.3 75 277.3 3.62 27.1 82 4.60 3.60 27.2 

7 83 104.0 3.58 26.2 83 129.3 3.58 27.2 83 277.0 3.58 27.2 83 4.59 3.58 27.3 

PT3 

1 5 142.2 10.4 21.4 6 185.3 10.2 21.6 6 416.0 10.2 21.7 6 6.71 10.2 21.6 

2 7 140.2 10.1 22.0 9 184.4 9.8 22.4 9 414.4 9.8 22.4 9 6.57 9.9 22.3 

3 12 138.7 9.6 22.8 12 183.7 9.6 22.8 12 412.9 9.6 22.8 11 6.44 9.7 22.8 

4 18 137.2 9.2 23.5 15 183.1 9.3 23.1 16 411.4 9.3 23.2 17 6.39 9.3 23.3 

5 34 135.0 8.9 24.2 29 182.2 9.0 24.0 30 410.0 9.0 24.0 30 6.37 9.0 24.0 

6 96 132.6 8.6 24.8 95 181.4 8.7 24.8 96 408.9 8.7 24.8 94 6.35 8.7 24.7 

a Number of non-dominated solutions 

Shadow cells indicate the minimal objective value for a specific crosswalk location 

N/A: Not Applicable 



 

Table 10 Optimal crosswalk locations (PC1 and PC2) of each site considering the pollutant function criteria 

Site 

ID 
Solutiona 

PC1/ 

PC2 

[m] 

CO2 

[g/km] 

Delay 

[s/veh] 

DeltaS 

[km/h] 

PC1/ 

PC2 

[m] 

CO 

[mg/km] 

Delay 

[s/veh] 

DeltaS 

[km/h] 

PC1/ 

PC2 

[m] 

NOX 

[mg/km] 

Delay 

[s/veh] 

DeltaS 

[km/h] 

PC1/ 

PC2 

[m] 

HC 

[mg/km] 

Delay 

[s/veh] 

DeltaS 

[km/h] 

PT4 

1 40/5 113.6 11.3 22.6 40/5 146.9 11.3 22.6 40/29 321.1 11.3 22.6 40/29 5.64 11.3 22.6 

2 40/6 113.0 11.1 22.9 40/26 146.6 11.1 23.0 35/12 320.4 11.1 23.0 5/22 5.62 11.0 23.3 

3 5/20 112.5 11.0 23.4 5/24 146.3 10.9 23.4 5/21 319.8 10.9 23.4 35/18 5.60 10.8 23.8 

4 35/18 112.0 10.8 23.8 35/51 145.9 10.6 23.8 35/35 319.1 10.5 24.6 35/21 5.59 10.7 24.2 

5 35/24 111.8 10.7 24.1 35/36 145.6 10.5 24.5 18/22 318.0 10.3 25.2 35/38 5.57 10.5 24.7 

6 35/40 111.6 10.5 24.7 19/24 145.2 10.3 25.2 
N/A 

18/23 5.54 10.3 25.2 

7 18/22 111.1 10.3 25.2 N/A N/A 

PT5 

1 5/5 121.4 14.6 22.6 5/6 156.6 14.4 22.7 5/5 342.1 14.6 22.6 5/6 6.13 14.4 22.7 

2 5/17 120.9 13.7 23.3 125/5 156.0 13.9 23.1 5/15 341.3 14.0 23.2 125/6 6.09 13.7 23.1 

3 125/11 120.3 12.9 24.2 125/8 155.2 13.4 23.6 45/130 340.5 13.2 24.3 45/51 6.04 13.3 24.0 

4 85/138 119.6 12.4 25.0 85/115 154.8 13.0 24.4 85/133 339.4 12.4 25.0 45/76 6.03 12.9 24.6 

5 200/132 119.1 12.0 25.5 85/132 154.5 12.3 25.3 200/106 338.6 11.9 25.7 85/133 5.98 12.4 25.0 

6 85/108 118.7 11.5 26.0 125/38 154.1 11.9 26.1 165/106 337.7 11.2 26.5 160/106 5.92 11.9 25.7 

7 161/108 118.2 11.1 26.6 165/97 153.6 11.5 26.8 
N/A N/A 

8 N/A N/A 

PT6 

1 5/5 174.5 13.2 23.0 5/5 195.3 13.2 23.0 5/5 420.8 13.2 23.0 5/5 7.90 13.2 23.0 

2 5/21 170.7 12.7 23.5 5/15 194.4 12.5 23.8 5/15 419.1 12.7 23.5 5/36 7.81 12.6 23.9 

3 40/6 167.5 11.9 24.3 5/28 193.6 11.8 24.3 5/26 417.7 12.0 24.3 110/138 7.69 12.1 24.9 

4 140/103 165.2 11.1 25.0 40/115 192.7 11.1 24.8 40/113 415.3 11.3 24.7 140/9 7.60 11.3 25.5 

5 140/36 162.5 10.6 25.4 140/15 191.9 10.7 25.4 140/7 411.7 10.8 25.5 40/38 7.53 10.8 26.1 

6 75/83 159.1 10.0 25.9 110/12 190.9 10.4 25.9 110/129 409.8 10.5 26.1 75/107 7.45 10.4 26.8 

7 111/99 158.3 9.5 26.6 100/101 189.7 9.9 26.5 114/87 408.0 10.0 26.9 115/94 7.39 9.9 27.3 

a Number of non-dominated solutions 

Shadow cells indicate the minimal objective value for a specific crosswalk location 

N/A: Not Applicable 

 

 


