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Palavras-chave 

 
Personalidade, Comportamento, Biomarcadores, Fármacos, Toxicidade 

Resumo 

 
A personalidade animal está ligada aos processos fisiológicos e bioquímicos do 
organismo. É definida como um conjunto individual de padrões comportamentais 
que se mantêm ao longo de um determinado período de vida. Estudos recentes 
mostraram a capacidade de muitos compostos, incluindo fármacos, interferirem no 
comportamento e em traços da personalidade. No entanto, o conhecimento sobre 
este fenómeno é ainda limitado. Sabendo-se que os fármacos podem interferir na 
personalidade, coloca-se a questão: qual será o papel da personalidade no efeito 
dos fármacos? 
Neste trabalho foi utilizado o peixe zebra (Danio rerio) como modelo biológico. Os 
organismos foram avaliados segundo parâmetros comportamentais e classificados 
e separados em dois grupos (bold e shy), com base no seu estilo de coping face a 
um novo ambiente.  
Como fármaco foi selecionada a carbamazepina, medicamento com elevada taxa 
de prescrição, detetado no ambiente e com uma reduzida taxa de degradação.  
Os organismos com os dois estilos de coping foram submetidos durante 96h a 
diferentes concentrações de carbamazepina (0.0044, 0.067, 1 e 15 mg/L).  
O estudo avaliou parâmetros comportamentais (e.g., distância total nadada e 
tigmotaxia) face a estímulos de luz (ciclos de luz e escuro) e biomarcadores 
bioquímicos.  
A aprendizagem e memória foram igualmente avaliadas com recurso a medições 
comportamentais diárias. 
Os dados obtidos revelaram diferenças nas respostas dos dois grupos de peixes, 
havendo um maior nível de atividade nos peixes reativos. As respostas aos 
períodos de luz/escuro foram diferenciadas. No escuro, a distância total nadada e 
a percentagem de distância nadada na área de fora são mais elevadas e a 
percentagem de tempo passado na área de fora foi menor. 
A carbamazepina por si só não influenciou as respostas analisadas. No entanto, as 
respostas dos peixes de diferentes personalidades dependeram das 
concentrações de carbamazepina a que estiveram expostos e do estímulo 
luz/escuro aplicado. 
Dos biomarcadores bioquímicos avaliados, LPO (peroxidação lipídica) variou de 
acordo com a personalidade, tendo os peixes proativos níveis mais elevados, e 
GST (glutationa-s-transferase) foi significativamente inibida nos peixes reativos 
pela maior concentração de carbamazepina. 
De uma forma geral os resultados mostram que estilos de coping influenciam a 
resposta a fármacos. 
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Abstract 

 
Animal personality is linked to physiological and biochemical processes of the 
organism. It is defined as individual behavioural patterns that are constant 
throughout a certain phase of life. Recent studies have shown compounds capacity, 
including pharmaceuticals, to interfere with behaviour and personality traits. 
However, knowledge about this phenomenon is still limited. Knowing that 
pharmaceuticals can interfere with personality, one question arises: what may be 
personality’s role on pharmaceutical’s effects? 
In this experiment, zebrafish (Danio rerio) was chosen as biological model. 
Individuals were evaluated by behavioural patterns and classified and separated in 
two groups (bold and shy) based on their stress coping strategy as a reaction to a 
novel environment. 
Carbamazepine was selected as pharmaceutical to study, due to its high prescription 
rate, detection in the environment and reduced degradation rate. 
Individuals with both coping styles were exposed for 96h to different concentrations 
of carbamazepine (0.0044, 0.067, 1 e 15 mg/L).  
The experiment evaluated behavioural parameters (e.g., total distance swam and 
thigmotaxis) in response to light stimuli (light and dark cycles) and biochemical 
biomarkers. 
Learning and memory were also evaluated resorting to daily behavioural measures. 
Data obtained revealed differences in responses between both groups of individuals. 
Behavioural data showed a higher activity level in shy fish. 
Responses to light and dark were also differentiated. In darkness, total distance 
swam and percentage of distance swam in the outside area increased comparing to 
light periods, whilst percentage of time spent in the outside area decreased. 
Carbamazepine alone did not influence responses analysed. However, responses 
from bold and shy fish depended on the concentration of carbamazepine and 
stimulus light/dark. 
From the biochemical biomarkers assessed, LPO (lipid peroxidation) varied 
according to personality, with bold fish having higher levels, and GST’s (glutathione-
s-transferase) levels were significantly inhibited in shy fish exposed to the highest 
concentration of carbamazepine. 
Overall, results showed that coping styles influence response to pharmaceuticals. 
. 
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1.1 PERSONALITY 
 

Personality is an old concept, first defined by psychology and psychiatry as an individual’s 

consistent behavioural pattern, or as inter-individual differences in that pattern, both across time 

and circumstances (Gosling, 2001). 

Even though personality differs from individual to individual, it is impossible to understand this 

subject if we consider all individuals unique and aim to study them independently. Classification, 

or categorization, has been used since the beginning of scientific research as a guide, and 

psychologists started applying it to personality (Allport & Odbert, 1936). 

Several categories of personality theories have emerged throughout the years and, since human 

nature and personality is so complex, the scientific community is far from finding a single theory 

and classification that satisfies all. 

The first known attempt to understand and classify the different personality types was carried 

out by Sir Francis Galton. He searched for personality descriptive terms in dictionaries and 

analysed at what extent was this idea of personality present in our vocabulary, writing the 

“Lexical Hypothesis” (Goldberg, 1993). Allport and Odbert (1936) decided to analyse Galton’s 

list and put together a compendium with 4500 terms possible to study in multiple individuals. 

Later on, this compendium was re-analysed by Raymond Cattell (1943) and the number of traits 

reduced to 35. A few years later, Donald Fiske (1949) decided to test these traits and see the 

consistency and repeatability. Using factor analyses, Donald Fiske found that only five of the 35 

initial used personality traits showed consistency among groups of classifiers. The Five Factor 

Model (FFM) evolved from Fiske’s work and is, until today, accepted (Digman, 1990; Goldberg, 

1995).  

The FFM is based on five trait dimensions: Surgency (extraversion), Agreeableness, 

Conscientiousness, Emotional stability and Intellect (Goldberg, 1995). 

These five behavioural axes are applicable to every single individual and, since there were 

numerous scores in each axis, one individual never scored the same as another in all of them. 

It is a considerably descriptive and advantageous classification becoming the first one accepted 

by psychologists worldwide. 

Although a robust concept in humans, personality has not been widely applied to animals. 

Consistent inter-individual variation in animals’ behaviour, also termed “personality”, was once 

considered as non-adaptive “noise” and simply the raw material of selection rather than the end 

product of natural selection (Wilson 1998). 

However, the realization that for most species and not only humans, individuals behave 

systematically different from each other across time and contexts (Sih et al. 2004), and that this 

consistency is heritable and linked to fitness (van Oers et al. 2005; Smith & Blumstein 2008), 

has reformed the way biologists perceived the importance of individual variability. Today 
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personality is considered a ubiquitous biological feature of recognized ecological and 

evolutionary important role (McNamara et al 2009). 

 

1.1.1 THE BOLD-SHY AXIS 
 

The stress bold-shy axis emerged adapted from some of the axis of FFM. It is focused on 

responses to different stimuli and is used nowadays in several different scientific areas, as 

psychology and psychiatry (Heiser et al., 2003), ecology (Ioannou et al., 2008) neurology 

(Beaton et al., 2008) and toxicology (Hebert et al., 2014).  

The bold-shy personality axis is based on a classification in which individuals are distinguished 

by their propensity to engage in risk-taking behaviours. It is a continuous axis with two extremes 

– Bold (proactive) and Shy (reactive) – and intermediate phenotypes, and it can be determined 

by different experiments (Brown et al., 2005; Sneddon, 2003; Wisenden et al., 2011; Wong et 

al., 2012). 

The bold-shy personality axis as a tool to separate individual personalities has been extensively 

and successfully used across many species. For example in birds (Carere & van Oers, 2004; 

Jolles et al., 2013; Kurvers et al., 2016; Lendvai et al., 2011), squids (Sinn et al., 2008), reptiles 

(Rodriguez-Prieto et al., 2011; Shine et al., 2016), mammals (Bremner-Harrison et al., 2004; 

Brust & Guenther, 2015; Massen et al., 2013; Svartberg, 2005), fish (Coleman & Wilson, 1998; 

Ioannou et al., 2008; Reddon & Hurd, 2009; Wisenden et al., 2011), amongst others. 

Most importantly, this axis has proven to be an adequate behavioural tool for the evaluation of 

pharmaceuticals and other contaminants and pollutants. Brodin et al. (2013) and Sperandio 

(2013) tested oxazepam and cadmium’s effects on boldness, respectively, in European perch 

(Perca fluviatilis). Although the first had no effects in boldness, the second had increased 

boldness in fish exposed. Hebert et al (2014) and Dzieweczynski et al (2016) studied the effects 

of 17α-ethinyloestradiol and fluoxetine on Siamese fighting fish (Belta splendens), with 

significant influences on boldness in both experiments.  

One of the first attempts to classify and divide individual personality using the bold-shy axis in 

fish was performed with Lepomis gibbosus (pumpkin seed fish). Individuals were placed in a 

tank together with a new object. Bolder individuals were eager to explore it, whereas shy 

individuals took longer to approach the novel object. (Wilson et al., 1993). 

Another well-established protocol to separate bold and shy individuals is the “novel tank test” 

(Toms et al., 2010). An individual is placed in a novel tank and the time that it takes to come to 

the top of the tank is inversely correlated to its boldness. There are several variations of this 

test. The time that an individual takes to come out of a holding area to a novel area is often used 

as a proxy for bold-shy (Beckmann & Biro, 2013).  
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Boldness and shyness may also be determined by an individual’s reaction to a stressor (e.g., 

latency to respond to the presence of a predator (Coleman & Wilson, 1998; Dugatkin & Alfieri, 

2003)). Besides these, a prolonged feeding latency is also an indicator of shyness (Wong et al., 

2012). Boldness and shyness have different performances during stress, with bold fish 

responding faster to startling stimuli (Kern et al., 2016).  

Finally, the boldness-shyness axis is also linked to different levels of hormones such as cortisol, 

enabling a different response to stress (Tudorache et al., 2013). Since this phenotype affects 

overall survival ability and physiology, it is expected to also affect a body’s interaction with 

substances. 

The main interest in this axis are the solid protocols of classification referred above, the 

possibility of transposition of the results to humans and the already identified behavioural 

patterns that define it and that are affected by it, allowing comparability when testing the effects 

of different substances (e.g. pharmaceuticals). Dzieweczynski et al. (2016), for example, 

documented a decrease of boldness in Siamese fighting fish (Belta splendens) after exposure 

to fluoxetine.  

Since bold and shy organisms respond differently to stimuli, how may stress coping styles 

influence the response to biologically active compounds such as pharmaceuticals? This is a 

particularly important unanswered question due to the increase of detection of pharmaceuticals 

in the environment and the effects in aquatic organisms. 

 

 

 

1.2 PHARMACEUTICALS 
 

The increasing release of pharmaceuticals and their residuals into the environment is having a 

significative effect on the biology and ecology of organisms (Nunes et al., 2008). Usually 

ingested or administered, pharmaceuticals are secreted in urine or faeces or dumped in 

sewages when they are expired or not of use anymore (Daughton et al., 1999). Given that most 

pharmaceuticals are resistant to degradation, they are integrated as parental compounds or 

secondary metabolites and may bioaccumulate in food chains, ultimately leading to a cascade 

effect on all trophic levels (Halling-Sorensen et al., 1998). This environmental persistence is well 

demonstrated for several pharmaceuticals which have been detected in different sources of 

water reservoirs: ground water, surface water and even drinking water (Carlsson et al., 2006).  

A main concern about pharmaceuticals is that they are fabricated to interfere with biological 

processes. Pharmaceuticals are built with the capacity of going through the membranes, so that 

Bold Shy 

Risk-taking propensity 

Figure 1 – Bold-shy axis according to their risk-taking propensity 
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they can act at an intracellular level (Halling-Sorensen et al., 1998). Furthermore, although in 

the environment these substances are present in small concentrations, many pharmaceuticals 

have the same target or mechanism of action. This implies that several different drugs may be 

interacting with the same target, leading to a potential synergy and increased response.  

Pharmaceuticals are not species specific. All organisms with the target to that pharmaceutical 

are prone to be affected by their presence, meaning that it may affect entire ecosystems 

(Daughton et al., 1999). Even though these drugs may not induce significant effects after acute 

exposures, their effect may be considerably different after chronic exposures (Carlsson et al., 

2006; Galus et al., 2013). Combining all the factors above with potential bioaccumulation and 

biomagnification, species from higher trophic levels may be severely affected and entire 

ecosystems injured. 

 

1.2.1 CARBAMAZEPINE 
 

Carbamazepine is a human pharmaceutical widely used for the treatment of various diseases 

and conditions. Firstly synthetized in 1953 by Walter Schindler, it is characterized as an 

anticonvulsant (Arzimanoglou et al., 2010).  

pharmaceutical 

Figure 2 – Bioaccumulation (A) and Biomagnification (B). The zebrafish predator represented is “Nandus 
nandus” (Gerlai et al., 2010). 

 

A 

B 
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From the time of its discovery, this medicine has been used to treat epilepsy and neuralgic pain 

(Dalby, 1971). Since it influences the temporal lobe, investigators decided to test it in patients 

with psychiatric disorders (as borderline personality affective disorder and schizoaffective 

psychosis) and results proved it to be successful (Brooks & Lessin, 1983; Cowdry & Gardner, 

1988; Greil et al., 1997).   

Carbamazepine is also used to control and treat mania, anxiety, anger and depression 

(Ballenger & Post, 1980).  

Similarly, carbamazepine attenuates the early behavioural symptoms of Alzheimer such as 

hostility and agitation (Schneider, 2001). It has also been reported that carbamazepine can help 

patients suffering from diabetes insipidus (Radó, 1974).  

Carbamazepine has many mechanisms of action. The most known one is the interaction with 

voltage-dependent Sodium channels, preventing inactive channels to become closed channels 

(Ambrósio et al., 2002; Kuo, 1998; Macdonald & Kelly, 1995; Reckziegel et al., 1999). Studies 

have shown that it also interferes with voltage-dependent Calcium channels (Macdonald & Kelly, 

1995). These interactions explain its efficiency in treating epilepsy. Recent studies suggest that 

Potassium channels and adenosine receptors could also be affected, explaining its effect in 

affective psychosis (Ambrósio et al., 2002). Overall, the available studies demonstrate that 

carbamazepine may influence key biological processes. 

It is estimated that nearly 1014 tons of carbamazepine are consumed every year worldwide and, 

since only 72% of it is absorbed by our bodies, a major part of it ends up in wastewater through 

urine and faeces (Zhang et al., 2008). According to Zhang et al (2008), the maximum percentage 

of elimination of carbamazepine by Wastewater Treatment Plants (WWTPs) is 53%, with the 

majority of WWTPs eliminating only a maximum of 10%. Some of them do not remove 

carbamazepine at all. This means that most carbamazepine in wastewaters ends up in the 

environment, reaching surrounding ecosystems (Zhang et al., 2008). Carbamazepine may be 

considered a double threat case because not only it is being constantly poured into the aquatic 

ecosystems, as it also has long life expectancy. 

Due to all these characteristics – massive consumption, high persistence, high rate of disposal 

in water environments – carbamazepine may be considered an indicator of anthropogenic 

contamination (Clara et al., 2004; Kahle et al., 2009).  

Figure 4 – Molecular structure of carbamazepine 
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1.3 ZEBRAFISH AS A MODEL ORGANISM 
 

Zebrafish (Danio rerio) is a well-established scientific 

model organism. This fish has been a part of countless 

discoveries and breakthroughs in the scientific world, 

namely in mutagenesis (Driever et al., 1996; Haffter et 

al., 1996; Mullins et al., 1994) disease modelling 

(Lieschke & Currie, 2007; Rubinstein, 2003; Stern & 

Zon, 2003), drug screening (Barros et al., 2008; Zon & Peterson, 2005) and many more. Of 

growing importance and relevance in several fields, zebrafish gained popularity due to its 

numerous advantages.  

It is one of few (but growing numbers) animals with ongoing sequenced genome, that is, with a 

database with DNA sequences and genes (Lieschke & Currie, 2007). Information about 

proteins, gene expression, associated phenotypes and developmental data of this model 

organism are all gathered in a database named Zebrafish Information Network (ZFIN), together 

with similarities with human genome and proteome (Jekosch, 2004; Langheinrich, 2003; 

Rubinstein, 2003; Sprague, 2006; Sprague et al., 2008) All this information facilitates and 

enables the study of human diseases and mutations. 

Zebrafish are one of the most amendable vertebrate species to keep in laboratory; comparing 

to mouse and rat they are cheaper to maintain and occupy less space, allowing large scale 

screenings, (Lieschke & Currie, 2007) and high throughput experiments  (Langheinrich, 2003). 

Zebrafish can produce hundreds of offspring in a single reproductive cycle (Langheinrich, 2003; 

Rubinstein, 2003) and are sexually mature at 3 months of age (Hill et al., 2005), making it 

possible to do large scale studies. 

Zebrafish have similarities to humans that allow its use for studying several biological 

mechanisms (e.g. associated with mutation and diseases).For example, 6 days post-fertilization 

Figure 5 – Adult zebrafish 

Figure 6 - Transparent zebrafish developing larvae, 2 days post-fertilization 
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are enough to have fully developed organs, that are similar to mammals’ organs (Rubinstein, 

2003).  

With all the information that is already known about this species, the normal development and 

physiology is well known. This allows the evaluation of mechanisms of action and mechanisms 

of action of chemicals (Hill et al., 2005).  

Of critical aspect in the present experiment is the fact that zebrafish have been used in 

behavioural studies with success. Behavioural patterns in zebrafish like social behaviour 

(Dreosti et al.,2015) and mating (Lieschke & Currie, 2007), anxiety behaviours (Maximino et al., 

2010; Zon & Peterson, 2005), escaping and feeding behaviours (Miklosi & Andews, 2006) and 

locomotor behaviours (Boehmler et al., 2007; Kienle et al., 2009; Liu et al., 2017; Vignet et al., 

2013) have been thoroughly described and successfully used in many experiments to test the 

influence of all types of external factors. 

Behavioural parameters were chosen because are more sensitive than LC50 and LD50 (quantity 

of studied compound that leads to the death of 50% of the exposed individuals), allowing an 

evaluation of subtle effects with considerably smaller concentrations, in the range of what is 

found in the environment (Dhawan et al., 2010; Kane et al., 2005; Little & Finge, 1990; Little et 

al., 1990).  

Most importantly, behavioural patterns are defining factors of an individuals’ personality.  

Personality conditions behaviour and carbamazepine, being a pharmaceutical with psychiatric 

purposes, acts through paths related to the nervous system and is also directly related to 

behaviour. 

Some studies have been performed before with zebrafish, carbamazepine and behavioural 

patterns or factors. Carbamazepine influenced feeding behavioural patterns in adult zebrafish, 

augmenting the duration of feeding in Santos (2017) experiment and reduced exploration in a 

novel tank test in Kulkarni et al. (2014) experiment.  

Behavioural patterns may also be used, if recorded repeatedly, to study habituation, learning 

and memory. There is intra and intersession habituation, both of extreme importance to study 

memory since the first resorts to short-term memory and the latter to long-term memory 

(Thompson & Spencer, 1966). 

Zebrafish has been previously used for learning experiments (habituation included) with success 

(Stewart et al., 2013; Williams, White et al., 2002; Wong et al., 2010). Habituation is the simplest 

form of learning and it is defined as the attenuation or reduction of innate behaviours, using 

memories (Bolivar, 2009).  
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1.3.2 BIOCHEMICAL BIOMARKERS 
 

Biomarkers may be considered indicators of general health and toxic effects (Dagnino et al., 

2007; Oost et al., 2003; Peakall, 1994). 

However, the biochemical responses of zebrafish when exposed to carbamazepine have 

seldom been studied (Santos, 2017). On the other hand, there are several studies with rats and 

human patients, which provide information for the interpretation of results (Aliyu et al., 2016; 

Papacostas, 2000; Post et al., 1983; Siebel et al., 2010; Sudha et al., 1995; Yüksel et al., 2000) 

In the present experiment five biochemical biomarkers were studied - glutathione-s-transferase 

(GST), catalase (CAT), lipid peroxidation (LPO), lactate dehydrogenase (LDH) and 

acetylcholinesterase (AChE). 

GST is a phase II biotransformation enzyme having also been associated with antioxidant 

protection. It is mostly present in cytosol and is involved in the conjugation of reduced 

glutathione with xenobiotics, facilitating their removal from the organism, being considered a 

defence against reactive oxygen species (ROS) (Booth et al., 1961; Sheehan et al., 2001). 

CAT is an enzyme that destroys hydrogen peroxide, and is one of the defences against oxidative 

stress (Bonnichsen et al., 1947; Li et al., 2011).  

LPO peroxidation is an indicative of oxidative stress and tissue damage. ROS interact with 

molecules and subtract a hydrogen, leaving the molecule damaged. Even though it occurs later 

on the damage process, it is a fairly good indicative that antioxidant defences may not have 

been sufficient to oppose to the stress or that may have been compromised (Almeida et al., 

2014; Halliwell & Chirico, 1993).  

LDH is an indicator of tissue damage; its increase is a sign of augmented cell membrane 

permeability and cell death (Huijgen et al., 1997; Rendon-von Onsten et al., 2005). 

AChE is part of an enzyme group (cholinesterase – ChE) responsible for the degradation of 

acetylcholine (Massoulié & Bon, 1982; Shaked et al., 2008); they end the transmission of 

cholinergic synapses, maintaining the necessary equilibrium for neurotransmission (Silman & 

Sussman, 2005). In experiments with pharmaceuticals, if a change is observed, it could 

be a sign of neurotoxicity (Işık et al., 2015). 

Differences between personalities and effects of carbamazepine on these biochemical 

biomarkers and possible interactions between these factors were assessed. 
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1.4 AIMS 
 

Considering the information previously presented, it is predicted that personality plays an 

important role on shaping the response of individuals to stress caused by the exposure to 

carbamazepine. To test this prediction the bold-shy stress axis coping style was selected as an 

endpoint of personality trait to sort organisms. The organisms of each group were analysed in 

terms of behavioural alterations, learning and oxidative stress after exposure to carbamazepine 

Furthermore, this study also aimed to assess basal patterns of short-term and long-term 

habituation of bold and shy fish (fish free from carbamazepine exposure) and patterns of 

exposed fish, poorly documented in the literature. 
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2. MATERIALS AND METHODS 
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2.1 HUSBANDRY 
 

Two years-old individual wild-type zebrafish were kept in trapezoidal tanks (13.3 cm x 30.5 cm 

x 33.5 cm x 14.4 cm) in an “Aquarium-bau Schwartz” system, at a maximum of ten individuals 

per litre. Water recirculation was performed automatically and so was the reading of conductivity 

(700 ± 50 IS), pH (7-5 ± 0.5), dissolved oxygen (≥ 95%) and salinity (0.35 ppt). Salt was added 

to the water - ‘‘Instant Ocean Synthetic Sea Salt’’ (Spectrum Brands, USA) – and the solution 

was continually purified by activated carbon filtered tap water and reverse osmosis. The levels 

of ammonia, nitrite and nitrate were never allowed to rise above 0.01 mg/L for the first two and 

0.1 mg/L for the latter. Individuals with any deformities or abnormalities were excluded from the 

test group. The groups in the system were fed daily (11 a.m.) with ZM-400. 

Temperature was kept at 26±1 ºC and the photoperiod was 14:10h (light/dark). 

 

2.2 NOVEL ENVIRONMENT TEST: DETERMINATION OF 
PERSONALITY 
 

The individuals used in the study were never used in any previous behavioural assay that could 

alter their response to the selected sorting protocol to separate shy and bold fish from a 

population of organisms (MacKenzie et al., 2009). 

Firstly, groups of 36 individuals were transferred to a well illuminated rectangular glass tank 

(40.6 cm x 26 cm x 19.5 cm), with exterior walls covered to minimize any potential external 

stimulus and to encourage them to explore the bottom of the tank (Blaser & Rosemberg, 2012) 

for a period of 30 minutes.  

Individuals were randomly allocated to groups of nine and placed in the test tank, identical to 

the habituation tank but with two compartments with different dimensions (the smallest being 15 

x 26 cm). These two compartments were separated by a black wall with a movable hatch (Figure 

5).  

Figure 7 - Representation of the habituation tank (left) and the tank used in the “Novel environment” experiment 
(right)The dashed lines represent the division with a hatch in the test tank. 
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Individuals were placed in the smaller compartment for 10 minutes, with the hatch closed (Step 

1).  

After this period the hatch was opened and, for ten minutes, individuals were allowed to swim 

freely and exploit the other compartment (Step 2). The three first individuals that crossed that 

partition in this period were considered bold due to their eagerness to explore a novel 

environment (Wilson et al., 1993). After testing, individuals were removed, placed in a system 

tank and labelled as bold. Steps 1 and 2 were repeated and the individuals that crossed to the 

new compartment were labelled intermediate (and excluded from the experience) because 

although there was an exploratory behaviour it was more prudent and moderate comparing to 

bold fish. Those that remained in the original compartment were labelled shy due to their 

reluctance in exploring the novel environment. 

A test to confirm the shy fish was performed.  

Steps 1 and 2 were repeated for individuals previously labelled as shy but step 2 was prolonged 

to 30 minutes. The ones that remained in the smaller compartment (those that did not cross to 

the novel division) were confirmed as shy. Those that did were relabelled as intermediate and 

were excluded. 

Thirty-five individuals were chosen randomly to represent each category (bold and shy).  

Giving that 9 individuals took 40 minutes approximately (if bold fish showed to be cooperative) 

and that later on all shy fish were confirmed (40 minutes more), this procedure turned out to be 

effective and rigorous but very time consuming when having an initial large group of fish.  

 

2.3 CHEMICALS 
 

Carbamazepine (purity ≥ 95%) was purchased from Sigma-Aldrich (CAS number 345). 

All other reagents were analytical grade. 

All individuals (bold and shy) were fed in the morning before the exposure and randomly divided 

in 5 groups of 7. Fish were placed individually in tanks (13 cm x 8 cm x 5 cm) with 300 mL of 

water and were weighed.  

Each individual was transferred to the test room, to acclimatize (photoperiod of 14 light/10 dark 

and temperature of 26º C). Fish were exposed to carbamazepine for 96 hours: control 0, 0.0044, 

0.067, 1 and 15 mg/L of carbamazepine. The highest concentration tested is near the solubility 

value of carbamazepine in water (Shayanfar et al., 2014), 1.0 mg/L is close to the average 

concentration measured in plasma from a patient with a 200 mg/day dosage (Eichelbaum et al., 

1975; Meyer et al., 1992); 0.067 mg/L is an intermediate concentration and 0.0044 mg/L is a 
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concentration found in rivers (Bahlmann et al., 2014). The carbamazepine solutions were 

prepared, through successive dilutions, from a stock 15 mg/L of carbamazepine in water from 

the zebrafish system. All the material used was previously rinsed with zebrafish system’s water. 

Each experimental group of seven individuals was transferred to their test tanks with a delay of 

one hour from the previous. This time lapse between groups was important to allow a rigorous 

timing between exposure to carbamazepine and behavioural testing. All tanks were aerificated.  

 

2.4 BEHAVIOURAL BIOMARKERS 
 

A behaviour test was performed daily, with organisms in their test tanks, with the purpose of 

testing carbamazepine’s effect on anxiety related behaviours (as overall activity and 

thigmotaxis) and determine if there was a learning pattern specific for each stress coping style 

and if there was, if it was affected by carbamazepine. As a stress factor, differences in 

illumination (one minute of light followed by one minute of darkness – stimulus - for 3 cycles (6 

minutes total)) were chosen, due to their already documented responses.  

Figure 8 - Tank where fish were kept individually throughout the experiment (and behaviour tested). 
The tank was covered with a lid with holes to allow aerification of the water. 

Figure 9 - Schematic representation of the light/dark change 

stimulus 
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When there is an abrupt change of light to darkness, fish have a startle response – an abrupt 

increase in their activity reflecting in fast and erratic swimming or a freezing response (Egan et 

al., 2009; Kalueff et al., 2013). 

The tank was divided in two areas, an external and an internal defined in the behavioural 

protocol assessment (ANNEX I). Whenever in a novel environment or stressful situation, 

animals, including zebrafish, tend to go to the edges of the enclosure they are in, a self-

preservation behaviour known as thigmotaxis (Schnörr et al., 2012; Treit & Fundytus, 1988).  

Endpoints assessed in this test included total distance travelled (TD), percentage of distance 

travelled in the outside area (%DOA) and percentage of time spent in the outside area (%TOA), 

both expressed in percentages.  

Behaviour was recorded using a Zebrabox (Viewpoint Life sciences, Lyon, France), equipment 

that is capable of tracking movement and record it, with automated video, both in light and 

darkness since it has internal LED lights and infrared. 

The behaviour analysis was performed after 3, 24, 48, 72 and 96h of carbamazepine exposure. 

Besides studying behaviour in the last day, data from all days were also analysed altogether.  

Data from the last day allow a thorough analysis to behavioural responses to light/dark changes, 

personality differences and carbamazepine’s possible influence. 

Analysis of data of all days allows the study of temporal patterns in all the endpoints. It makes 

possible to observe if there are differences from the first day of exposure to the last, if there is 

an attenuation of response to stress throughout the days or if there is an increasing 

carbamazepine effect with the time of exposure. 

The modification of response throughout six days is considered learning, since long-term 

memory needs to be accessed. 

 

 

Figure 10 – Zebrabox (by ViewPoint) 
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2.5 BIOCHEMICAL BIOMARKERS 

2.5.1. SAMPLE PREPARATION 

 

After the behavioural analysis, fish were sacrificed by anaesthetic (MS222) overdose, weighed 

and measured. 

Muscle (two sets) and liver were collected and preserved at - 80ºC until further processing 

analysis. Data for the present dissertation only includes analysis from liver and muscle. 

Liver samples were homogenized in 0.250 mL of phosphate buffer (0.1 M pH 7.4) using a 

Branson Sonifier 250 sonicator. Samples were then divided in aliquots – one for determination 

of LPO and other to obtain post-mitochondrial supernatant (PMS). The later were centrifuged at 

13400 g for 20 minutes at 4º C and the supernatant collected, to determine GST levels and CAT 

activity. 

One set of muscle samples was homogenized in Tris-NaCl buffer (0.1 M, pH 7.2). Three 

freeze/unfreeze cycles were completed, and samples were centrifuged at 3300 g for 3 minutes 

at 4º C. The supernatant was collected and stored at - 80ºC until the reading of LDH activity. 

The other set was homogenized in phosphate buffer (0.1 M, pH 7.2), centrifuged at 3300 g for 

3 minutes at 4º C and used for AChE determination. 

 

2.5.2 BIOCHEMICAL BIOMARKERS ASSAY 
 

LPO was expressed as nmol of thiobarbituric acid reactive substances (TBARS) formed per mg 

of protein following the methodologies of Ohkawa (1979) adapted to microplate (Oliveira et al., 

2009). 

GST levels were determined by Habig’s procedure (1981) adapted to microplate (Frasco & 

Guilhermino, 2002). GST activity was determined by the conjugation of glutathione (GSH) with 

1-chloro-2,4-dinitrobenzene (CDNB) at 340 nm at 25 ºC. Results were expressed as nmol of 

CDNB formed per minute per mg of protein. 

CAT levels were determined by Claiborne’s method (1985) by measuring the consumption of 

the H2O2 substrate at 240 nm. 

LDH was measured by the conversion of pyruvate to l-lactate, at 340 nm, by observation of the 

oxidation of NADH. This quantification was performed by the method of Vassault (1983) adapted 

to microplate (Diamantino et al., 2001). 
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AChE was determined by Ellman’s method (Ellman et al., 1961) adapted to microplate 

(Guilhermino et al., 1996), at 25 ºC. The increase in yellow colour at 412 nm indicates the binding 

of thiocholine to 5,5-dithio-bis(2-nitrobenzoic acid), and reflects the degradation of 

acetylthiocholine. Results were expressed as nmol of thiocholine produced per minute per mg 

of protein. 

Activity of the enzymes was normalized by the protein content of the samples which was 

determined by the Bradford method (1976) applied to microplate at 25 ºC. 

 

2.6. STATISTICAL ANALYSIS 
 

Effects of fish personality and concentration of carbamazepine on behaviour were evaluated 

through a Mixed-Design ('Split-Plot') ANOVA, where total distance, percentage of distance 

swam in the outside area and percentage of time spent in the outside area for each light or dark 

sequence at 96 hours were the repeated measure.  

To evaluate the learning process of fish during the four days of experiment, another Mixed-

Design ('Split-Plot') ANOVA was performed, with the mean value of the same behaviour 

variables, during light and dark periods separately, where time was the repeated measure and 

personality and concentration of carbamazepine were considered between group factors.  

For both Mixed-Design ANOVA’s, normality of all variable blocks, for each light/dark sequence 

or for each day sequence, was verified. The homogeneity of variances was investigated by 

Mauchly's test of Sphericity. When the sphericity assumption was violated, the Greenhouse-

Geisser correction was used (Tabachnick & Osterlind, 2001). 

To investigate the influence of fish personality and concentration of carbamazepine in the 

activity of every biochemical biomarker, a 2-way ANOVA was performed. In order to achieve 

normality, Che, LDH and LPO concentration were log transformed and CAT concentration was 

sin transformed. The homogeneity of variances was investigated by a Levene's test.  

All the analyses were performed using SPSS 18. 0 (SPSS Inc, 2009).  
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3. RESULTS 
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3.1 NOVEL ENVIRONMENT TEST: DETERMINATION OF 
PERSONALITY 
 

The sorting procedure used in the present study allowed the separation of bold and shy 

individuals. Of the total number of individuals tested 20% were bold, 43% were intermediate and 

37% were shy. 

 

3.2 BEHAVIOURAL TEST 

3.2.1 RESPONSES MEASURED IN DAY 4 
 

Results from the last day of experiment were selected to be present in this dissertation due to 

previous studies assessing the toxic effects of chemicals and the fact that the biochemical 

biomarkers were also assessed after this exposure period. Regarding TD (Figure 7 A and B) a 

difference was observed among personalities and among light and dark periods 

(stimulus)(Table 1). In general, bold fish seemed to present lower locomotion than shy fish. As 

About the stimulus, differences are not so evident in the graphs. Although no effect of 

concentration was detected in the statistical analysis, an interaction between the stimulus, 

concentration of carbamazepine and personalities was revealed, meaning that the response to 

the light/dark stimulus depended on the concentration they were exposed to and on their 

personality. 

Thigmotactic effects were assessed by calculating the percentage of distance or time swam in 

the outer zone compared to the total, so that a tendency to swim at the edges of the tank could 

be determined. Fig 7 C and D (%DOA) and E and F (%TOA) clearly show a difference in the 

responses to light and dark (Table 1). Organisms have much higher %DOA in the darkness 

when compared to light periods, and thus, data of dark periods were analysed for differences 

along cycles. As it can be seen in Table 1 (grey background) differences were obtained for TD 

among cycles and personalities. In general fish swim less along the 3 cycles of behaviour 

monitoring in the Zebrabox. Personality was also a significant factor for the TD and %DOA, with 

shy fish swimming more and having more accentuated %DOA changes. The concentration of 

carbamazepine did not influence any of the responses evaluated. 

Results of light/dark and dark cycles were different, hence highlighting the importance of 

studying both separately. 
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C D 

E F 

A B 

Figure 11 – TD, %DOA and %TOA, separately, on the last day of experiment (96h). The total time of the 
experiment was six minutes (one minute light followed by one dark, represented by white and grey background, 
respectively). Each dot represents mean distance swam by fish of each concentration throughout a minute of 
experiment and respective standard error. Each symbol represents one concentration group. 
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Table 1 - P values of statistical tests performed on data set of TD, %DOA and %TOA at 96h. Stimulus represents 
light/dark variations (white background), and cycle represents the three cycles of dark periods (when in grey 
background). Stimulus/Cycle, personality (Pers), concentration (Conc) and all possible interactions were 
evaluated. Results are statistically significant if p<0.05 

 

. 

3.2.2 HABITUATION (LEARNING AND MEMORY) 
 

The adopted methodology allowed the study of possible differences in the behavioural 

parameters evaluated through time. These data allow the study of adaptations and time trends. 

Firstly, data were separated by light conditions, to observe the temporal tendencies as response 

to these two opposite stimuli. Figure 8 corresponds to time trends of fish in light periods and 

Figure 9 represents trends in dark periods. Thea basal tendencies (control fish) for TD travelled, 

%DOA and %TOA were observed trough the data collected from bold and shy fish with no 

exposure to carbamazepine (Fig 8 A, C and E and Fig 9 A, C and E, Table 2). 

The results reveal that, in light periods, personality influenced TD swam, with shy fish swimming 

more than bold fish (Figure A and B). Response of control fish in light conditions did not change 

with time. As for %DOA and %TOA, responses changed with time. It is important to note, though, 

that these responses have opposite tendencies: %DOA decreased through time and %TOA 

increased. 

Time trends and influence of personality analysis in dark periods in control fish had different 

results: TD decreased along the time independently of stress coping style. In terms of %DOA or 

%TOA, no influence of personality or time was observed.  

 STIMULUS PERS CONC 
STIMULUS 

ₓ PERS 

STIMULUS 

ₓ CONC 

PERS ₓ 

CONC 

STIMULUS 

ₓ PERS ₓ 

CONC 

TD <0.001 0.004 0.538 0.350 0.003 0.828 0.016 

%DOA <0.001 0.096 0.520 0.468 0.702 0.388 0.952 

%TOA <0.001 0.074 0.531 0.807 0.782 0.358 0.938 

 CYCLE PERS CONC 
CYCLE ₓ 

PERS 

CYCLE ₓ 

CONC 

PERS ₓ 

CONC 

CYCLE ₓ 

PERS ₓ 

CONC 

TD <0.001 0.012 0.920 0.082 0.399 0.588 0.400 

%DOA 0.057 0.044 0.945 0.921 0.380 0.388 0.754 

%TOA 0.085 0.054 0.858 0.832 0.524 0.297 0.772 
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Table 2 - P values of statistic tests performed on dataset of TD, %DOA and %TOA from control fish in light (light 
background) and dark periods (grey background). Time, personality and interaction between the two factors 
were calculated; differences are significative when P < 0.05. 

 

 

TIME PERSONALITY TIME ₓ PERSONALITY 

TD 0.323 0.040 0.448 

%DOA 0.003 0.305 0.768 

%TOA 0.003 0.885 0.269 

TD 0.014 0.261 0.623 

%DOA 0.081 0.661 0.253 

%TOA 0.115 0.800 0.239 
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B A 

C D 

E F 

Figure 12 -TD, %DOA and %TOA swam by bold and shy fish, separately, throughout the 96h of experiment in light 
periods. Each dot represents mean distance swam by fish of each concentration throughout a minute of experiment 
and respective standard error. Graphs A, C and E represent control and graphs B, D and F represent the group 
exposed to the highest concentration of carbamazepine. 
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Figure 13 - TD, %DOA and %TOA swam by bold and shy fish, separately, throughout the 96h of experiment in dark 
periods. Each dot represents mean distance swam by fish of each concentration throughout a minute of experiment 
and respective standard error. Graphs A, C and E represent control and graphs B, D and F represent the group 
exposed to the highest concentration of carbamazepine. 
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To test if exposure to carbamazepine affects memory and learning process and whether this is 

dependent on personality types, individual differences in behaviour through time were accessed 

with data from all concentrations (Table 3).  

Table 3 - P values of statistic tests performed on dataset of TD, %DOA and %TOA from fish in all concentrations 
in light (white background) and dark periods (grey background). Time, personality and interaction between the 
two factors were calculated; differences are significative when P < 0.05. 

 

 

TIME PERS CONC 
TIME ₓ 

PERS 

TIME 

ₓCONC 

PERS ₓ 

CONC 

TIME ₓ 

PERS 

ₓCONC 

TD <0.001 0.007 0.431 0.418 0.654 0.468 0.181 

%DOA <0.001 0.542 0.720 0.333 0.218 0.361 0.633 

%TOA <0.001 0.446 0.870 0.414 0.330 0.365 0.834 

TD <0.001 0.044 0.837 0.327 0.893 0.937 0.500 

%DOA 0.069 0.672 0.890 0.005 0.391 0.519 0.917 

%TOA 0.096 0.632 0.902 0.010 0.413 0.498 0.830 

 

Even though TD throughout time did not vary in control fish in light periods (Table 2), when all 

exposed fish are considered in the analysis, this response decreases through time as it can be 

observed for fish exposed to 15 mg/L (Fig 7 B). Personality also influences this response with 

shy fish swim more than bold fish, regardless of the concentration of carbamazepine they were 

exposed to. The %DOA and %TOA, similarly to control fish, decrease and increase respectively, 

throughout the 96 hours of the experiment (Table 3 and Fig 7 D and F). The concentration of 

carbamazepine, however, was not a significant factor in the parameters analysed. 

For dark periods, in terms of TD, time displayed a significant effect, i.e., the decrease of 

response observed in the graphs is significative. Personality also influenced total distance swam 

by fish, with shy individuals swimming more than bold fish, as observed for light periods. An 

interaction between time and personality was found for %DOA, meaning that the response 

through depends on fish personality. 
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3.3 BIOCHEMICAL BIOMARKERS 
  

 

* 
 

Figure 15 - Graphs representing LPO (nmol per mg of protein) and GST, CAT, ChE and LDH (nmol per minute 

per milligram of protein ± standard error). LPO, GST and CAT were evaluated from liver samples ChE and 

LSH were evaluated from muscle samples. Each bar represents a concentration’s group mean and both 

personalities are represented. 
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Table 4 - Two-way ANOVA results for biomarkers. P values of each of the biomarkers tested, per concentration 
and personality and interaction and between these two factors were analysed. Differences are significative when 
P < 0.05. 

 

After 96h of exposure, concentration of carbamazepine had no influence in any of the 

biochemical biomarkers tested. 

As far as personality, bold fish had significantly higher LPO levels than shy fish but there 

were no further differences in any of the other biochemical biomarkers. 

Afterwards, bold and shy fish data were separated and evaluated through One-way ANOVA 

in Excel, to determine the influence of concentration of carbamazepine in biomarkers’ level. 

No significant results were found except for GST activity for shy fish, already mentioned. 

A statistically significative interaction between personality and carbamazepine 

concentrations influenced GST levels. Only shy fish had a significative difference (p=0.003) 

between test groups. The group exposed to the highest concentration had different (lower) 

GST activity. CAT levels displayed had no significant differences between personality or 

concentration of carbamazepine, even though CAT levels appeared higher in bold fish 

except when exposed to 15 mg/L.  

  

 GST CAT LPO LDH CHE 

CONCENTRATION 0.348 0.547 0.616 0.400 0.415 

PERSONALITY 0.716 0.261 0.001 0.520 0.210 

CONC ₓ PERS 0.001 0.390 0.954 0.327 0.217 



29 
 

4. DISCUSSION 
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4.1 NOVEL ENVIRONMENT TEST: DETERMINATION OF 
PERSONALITY 
 

The methodology adopted to separate fish according to their stress coping style proved to be 

effective. Although several described and validated methodologies were available, most of them 

were very time consuming or needed expensive and complex computer programs. The 

exploration of a novel environment proved to be a simple methodology fit to the laboratory 

conditions available for the study and the experimental goals. 

The available literature usually does not present the ratios of organisms obtained from the 

sorting procedure and the majority only takes into account the need of the same number of 

organisms to perform the test. In zebrafish, Wisenden et al (2011) documented 47% of bold fish 

and 52% of shy fish but they did not consider intermediate phenotypes. In the present study of 

the original mixed population, sorting procedure resulted in 20% of bold fish and 37% shy fish.  

The clear definition of the sorting procedure conditions is determinant in this process. The 

conditions of the test (i.e. complete absence of any external non-controlled stimulus such as 

noise, presence of people in the sorting room) must be well controlled. Also, the use of stimulus 

to motivate organisms’ movement (e.g. food) may be used in the sorting procedure. This may 

be a valuable tool, considering that fish tend to be cautious when a novel environment is 

presented to them, making it more difficult to divide them and extending the time spent in this 

phase of the experiment. 

Overall the adopted methodology was effective and allowed the removal of intermediate 

organisms that could mask differences between the two stress coping styles. 

 

4.2 BEHAVIOURAL BIOMARKERS 
 

Stimulus (light to dark change) revealed to be a significant factor in all behavioural parameters 

tested in the last day of the experiment. Fish usually choose light over dark, but some 

compounds affect this preference, like ethanol (Blaser & Peñalosa, 2011; Padilla et al., 2011), 

antidepressants (fluoxetine and imipramine) and anti-seizure medicine (clonazepam) (Magno et 

al., 2015). Both TD and %DOA increased in dark periods. TD swam is considered a direct 

measurement of activity levels, which may be positively correlated with stress (Champagne et 

al., 2010; Kalueff et al., 2013). Previous experiments also documented an increase of total 

distance swam in periods of darkness comparing to light in herring (Clupea harengus) (Blaxter, 

1987). In zebrafish larvae, activity levels also increased in dark periods when subjected to 

periods of 10minutes light/10 minutes dark in Cólon-Cruz et al ( 2018) and 20 minutes light/20 
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minutes dark in Padilla et al. (2011) experiments. Finally, in adult zebrafish, distance swam also 

increased in darkness when fish were exposed to periods of 30 minutes light/30 minutes dark 

(Emran et al., 2008) and cycles of 5 minutes of alternating light and dark (Liu et al., 2017).The 

outer distribution of fish (i.e., %DOA) is a measure of thigmotaxis, a self-preservation anxiety-

related behaviour. It is commonly observed in some wild animals, and consists of a preference 

to stay close to objects or in the perimeter of the environment. It is associated with a defence 

against predators because this proximity may difficult the capture (Stryjek & Modlińska, 2013). 

The increase of %DOA in darkness suggests that the light/dark change is a stressor. Data in 

this experiment are supported by Schnörr’s et al. work (2012), where zebrafish larvae reacted 

with a significant increase of thigmotactic response in sudden dark following 6 minutes of light. 

Since both parameters increased, this experiment supports previous works claiming sudden 

change of light to darkness is a stressful stimulus. Contrary to TD and %DOA, %TOA increased 

through time. This may mean that percentage of time and percentage of distance have opposite 

responses even though both parameters are susceptible to the influence of light and dark 

changes.  

Stress coping style significantly influenced TD in light/dark periods and TD and %DOA in dark 

cycles in the last day of the experiment. Shy fish swam more and more percentage of distance 

in the outside area than bold fish throughout the experiment. TD differences between bold and 

shy fish persisted during the 96 hours of experiment. Champagne et al (2010) had differences 

in thigmotaxic behaviour in stressed fish comparing to control fish, having the first higher activity 

and more accentuated thigmotactic behaviour. Previous studies have shown that bold and shy 

individuals present different basal levels of cortisol, with shy fish having the higher levels 

(Calcagno et al., 2016; Hessing et al., 1994), and mechanisms of response to stress (Hopster, 

1998). That being said, these intrinsic differences might influence response to additional 

stressors, as the light/dark change. Shy fish, having higher activity levels and a more 

accentuated thigmotactic response in the present experiment, appear to have more accentuated 

stress responses to the stimulus presented. 

Carbamazepine alone did not influence in a significant way any of the behavioural parameters 

studied in statistical tests. Works developed by Calcagno et al. (2016) and Nassef et al. (2010) 

documented a reduction of mean speed values in Jenynsia multidentata (one-sided livebearing 

fish) and Oryzias latipes (Japanese medaka fish) after administration of carbamazepine to the 

water. However, exposure to carbamazepine was for a longer period in these experiments (14 

and 9 days, respectively). In other experiments that study the influence of carbamazepine in 

stress levels and behaviour in rats (Rabinovitz et al., 2004) and humans, (Rubinow et al., 1986), 

carbamazepine had anxiolytic effects that reflected on a reduction of activity but with an 

exposure time of 1 days and one week, respectively. There are also studies that document 
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anxiogenic effects of carbamazepine (Qiang et al., 2016). The dispersion of data does not allow 

an objective explanation for why carbamazepine did not have an anxiolytic effect in our 

experiment.  

The concentration of carbamazepine, personality and light/dark periods interacted 

simultaneously in total TD, meaning TD response depended on both personality and 

concentration of carbamazepine. That being said, it would be expected that carbamazepine 

alone had effects in the statistical tests. However, when an interaction is present, conclusion 

about the isolated factors involved are difficult even with statistical tests. Difference of results 

are probably because of the variability of data, common in behavioural studies. This interaction 

may be due to the fact that light to dark changes, or dark periods following light periods are 

stressors and carbamazepine has documented anxiolytic effects (Calcagno et al., 2016; Nassef 

et al., 2010) and both stress coping styles have different stress responses. Further studies must 

be made to understand the link and interaction between these factors. This result support this 

work hypothesis that individuals exposed to the same pharmaceutical can have distinct 

responses or responses with distinct magnitudes according to their personality. Further 

experiments must be planned to understand and study this interaction. 

In dark periods values of TD decreased across time. Intra-session habituation could explain this 

pattern, since it is often defined as the decrease of an innate response to a novelty or stimulus 

throughout an experiment (Leussis & Bolivar, 2006; Roberts et al., 2016; Thompson & Spencer, 

1966; Wong et al., 2010). 

Intersession habituation (a learning process that uses long-term memory) is assessed by the 

diminishing, throughout the days, of a response positively correlated with stress (Thompson & 

Spencer, 1966). 

To determine the basal pattern of habituation, we separated control fish’s data and evaluated 

first. This allowed to test the effect of repeated exposure to stressful stimuli on behaviour and 

learning. Data were divided in light and dark, to make possible the observation of evolution of 

behaviour in each condition.  

In light periods, habituation was observed in TD and %DOA when all fish were tested together 

and %DOA in control fish. Levels of TD and %DOA diminished, as expected in habituation, 

supported by previous works regarding activity levels in zebrafish larvae during 7 days of 

experiment (Tran & Gerlai, 2013) and thigmotactic behaviour in zebrafish through time 

(Champagne et al., 2010). However, %TOA increased through time in all fish. This means that 

fish swam less in the outside but spent more time there, due to a decrease of speed throughout 

the days or freezing episodes. Burgees and Granato (2007) observed that zebrafish larvae, after 

sudden darkness, would adopt a quiescent posture in light. Because general activity is a sign of 
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stress a and fish swam more slowly from day one to four, this could mean that fish were less 

stressed throughout the days. Time spent in the outside area, in light conditions, also increased 

as time went by in Champagne et al (2010) experiment, even though zebrafish were only 

monitored in one assay, and not repeated assays. 

In dark periods, habituation was documented in TD in both control fish and all fish together. TD 

decreased through time, results concordant with MacPhail et al. experiment , where TD swam 

by fish in darkness ended up decreasing after a period of time (Padilla et al., 2011). When all 

groups were tested together, %TOA increased through time, as in light moments, and %DOA 

was influenced by time’s interaction with personality, meaning that both personalities had 

different time tendencies (habituation) in this behavioural parameter. Previous studies show that 

shy fish have more extended recuperation times after a stressful event (Tudorache et al., 2013), 

which could lead to this difference in habituation between both stress coping styles. 

Exposure to carbamazepine may affect the Calcium voltage-dependent channels, which are 

responsible to regulate the long-term memory and learning (Aoki et al., 2013). However, 

carbamazepine did not influence habituation at all in the present experiment. This result is 

supported by Wong et al. (2010) that studied zebrafish’s response to a novel tank, including with 

anxiolytic substances, and reduction of the initial behaviour was observed independently of the 

presence, or no, of anxiolytic. 

The contrast between results from control fish and fish altogether, could then be because of the 

5-fold increase in subject’s number and less inconsistent set of data, allowing a more robust 

contrast of responses (Maxwell et al., 2008). 

 

4.3 BIOCHEMICAL BIOMARKERS 

 

In the present experiment, GST levels were not statistically different in terms of concentration 

of carbamazepine administered. Personality, individually, did not reflect in different GST levels 

either. However, tests concluded that personality and concentration interacted in this enzyme. 

When both these factors were separated, carbamazepine concentration inhibited GST levels in 

shy fish only, meaning that carbamazepine had a neurotoxic effect in shy fish exposed to 15 

mg/L. This result is in concordance with Oliveira et al. (2015) that previously reported the ability 

of 40 mg/Kg of carbamazepine to inhibit GST levels in collembolan (Folsomia candida). 

However, in bold fish, there was no difference. Previous studies regarding influence of 

carbamazepine on GST also found no significative differences when tench (Tinca tinca) were 

exposed to a maximum of 60 μg/L (Stancova et al., 2017) and when 800 mg/L of carbamazepine 

were administered to human patients daily  (Işık et al., 2015). Further experiments must be done 



34 
 

to understand this possible interaction that led to two different responses to pharmaceutical 

stress – bold fish maintained their GST levels throughout the entire carbamazepine range while 

shy fish had an inhibition of GST in the highest CBZ concentration.  

Bold fish appear to have lower levels of CAT comparing to shy fish in the present experiment, 

except in the maximum concentration of carbamazepine (15 mg/L). However, when statistical 

tests were performed, no significant differences were found between personalities or 

concentrations, probably due to high variability between subjects. There was also no interaction 

between these two factors. Previous studies also had no significative differences in CAT levels 

even with long-term carbamazepine exposures of 9-11 weeks in patients (Arora et al., 2010), 

35 days in Tinca tinca (Stancova et al., 2017) and 42 days of exposure in rainbow trout 

(Oncorhynchus mykiss) (Li et al., 2010). Other studies had significative differences, namely 

increase of CAT in muscle after 96h of exposure, but with higher concentrations (20, 25 and 30 

mg/L) (Li et al., 2011). Studies with similar or lower concentrations to ours only had significative 

differences after 7 days of exposure (Li et al., 2010).  

In the present study, carbamazepine did not influence LPO levels. There are several studies 

regarding the influence of carbamazepine on LPO, even though the results are not always in 

concordance. Liu et al. (1998), performing an experiment in patients treated for epilepsy with 

carbamazepine and LPO exposed for a minimum of a week, found no significative differences 

between control and exposed groups. Yüksel et al. (2000) found no difference in LPO levels in 

carbamazepine treated patients for 13 months. Li et al. studies (Li et al., 2010; Li et al., 2009, Li 

et al., 2011), with 96h and one-week carbamazepine exposure, found no significant differences 

in LPO in liver samples. Our results are in concordance with existing bibliography. Wojciech et 

al. (2006), however, had significative lower LPO levels comparing to control but with an 

exposure of 3 years. In the present experiment, bold fish displayed higher LPO levels, a clear 

indication of more accentuated oxidative stress. Katherine et al (2011) had similar MDA values 

in Carduelis chloris (European greenfinch) from both extremes of the personality axis, when 

testing for time latency in approaching food when in the presence of a novel object. This result 

indicates that the protections against oxidative damage were not enough.  

LDH levels did not vary according to concentration of carbamazepine. Previous experiments 

show increases of LDH in muscles after exposure to this pharmaceutical, but they tend to be 

longer periods of time. For example, Malarvizhi et al. (2012) and Li et al. (2010) had a statistically 

significative increase on the levels of this enzyme in fish on the 7th day of exposure. Voudris et 

al. (2006), however, had no significative differences in LDH levels in children even with a 

continuous exposure to carbamazepine for an entire year. As far as personality and LDH, there 

were no significant differences found either. When comparing both control and carbamazepine 

exposed groups between personalities there was no difference in this enzyme nor there was 
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any interaction between these two factors. This could mean that in LDH carbamazepine may 

affect biomarkers’ levels only with chronic exposure.  

In the present experiment bold fish had higher acetylcholinesterase levels but with no 

significative difference. Shy individuals had higher acetylcholine levels comparing to extroverted 

individuals in Holme’s (1967) experiment, which could mean a higher rate of acetylcholine 

production or, as in our case, lower acetylcholinesterase levels.  As far as carbamazepine, there 

were no significative differences induced in acetylcholinesterase levels. Some studies are in 

concordance with our results, having no differences between control and exposed groups in 

AChE levels (Oliveira et al., 2015; Pestana et al., 2014). However, several previous experiments 

recorded an inhibition of AChE levels after carbamazepine exposure (Rhee et al., 2013; Siebel 

et al., 2010), although many had higher concentrations (100-300 mg/L) (Luis et al., 2016) or 

longer exposure times (Sudha et al., 1995). This means that maybe with a longer exposure time, 

AChE could have been inhibited and differences may be more pronounced. 

An interesting result is that significative differences were only found in liver samples. This may 

be due to the role of the liver in terms of eliminating toxins and the fact that it is one of the main 

organs involved in storage and detoxification (Hollis et al., 2001).  

Both LPO and GST are linked to oxidative stress. These results also show that even at a 

molecular level personality may influence a pharmaceutical’s action – as in this case there was 

an interaction between these two factors in GST levels. 

Physiological and biochemical differences, many already described, could be in the origin of this 

accentuated difference. 
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5. CONCLUSION AND FUTURE PERSPECTIVES 
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Personality, more specifically the bold-shy axis, interacted with carbamazepine in GST 

levels and TD (cm). This confirms our hypothesis, although many more studies need to be 

made to be able to affirm this link with full certainty. 

Moreover, studies and experiments linking thigmotaxis (in dark especially) and biomarkers 

to personality were very scarce. Bibliography regarding interaction of carbamazepine with 

personality in biomarkers (both behavioural and biochemical) was also very limited.  

Zebrafish proved to be an adequate organism to study behaviour: easy to manipulate, low 

maintenance, resilient and responsive to condition changes. The equipment chosen 

(Zebrabox) was also adequate for this experiment, thanks to the straightforward program 

commands, variety of measures taken and accuracy of the latest. 

As for the bold-shy continuum, our experiment gave us an idea of what an expected 

proportion of both opposites is in a laboratory population of zebrafish (shy fish being more 

frequent).  

Behavioural experiments of TD swam in the last day of the experiment permitted to conclude 

that habituation to light and dark periods may happen in short behavioural tests. The 

stressful nature of abrupt change from light to darkness was confirmed through the increase 

of TD and %DOA in dark minutes. Shy fish had higher values of TD travelled, confirming 

the more accentuated stress levels present in this extreme of the axis. It must be highlighted 

that this response varied with the interaction of personality, carbamazepine concentrations 

and lighting variation, supporting our hypothesis that personality can influence the response 

to a pharmaceutical. Finally, personality influenced thigmotactic response, validating the 

differences of coping style to stress. 

Personality influenced TD in almost every experimental condition, meaning boldness is a 

key factor in this activity measure. However, time was the key influencer in thigmotactic 

responses, sometimes interacting with personality (especially in darkness). Habituation was 

documented. Carbamazepine did not interfere with learning and memory in our experiment 

whatsoever, probably due to the short term of exposure and low concentrations.  

Biochemical biomarkers results also supported our hypothesis, with the demonstrated and 

unequivocal interaction of personality and carbamazepine in GST levels. 

In summary, results of our experiment showed that the interaction of personality with 

carbamazepine concentrations, meaning there may be a possibility that different 

personalities react distinctively to the same pharmaceutical. 
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To improve and complete this assay, some adjustments and further test should be made. 

Carbamazepine should be studied again with longer exposure times to better reproduce 

environmental conditions and evaluate possible effects of chronic carbamazepine influence. 

Multigenerational studies could be performed to investigate whether boldness is maintained 

from generation to generation and if it affects reproductive success when fish are only 

allowed to mate with fish from the same extreme of the boldness spectrum. Other 

behavioural studies, as T-maze test, schooling and shoaling behaviour, could also be 

developed as to see if there is an interaction of carbamazepine and personality in learning, 

lateralization and social behaviours. Other pharmaceuticals from the same and different 

classes of carbamazepine must be studied and documented 

In a distant future, a database of pharmaceuticals susceptible to personality axis could be 

constructed, allowing a more effective and personalized treatment of patients. 
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