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marinho, efeitos bioquímicos. 
 

resumo 
 
 

Os plásticos são considerados um dos principais poluentes ambientais, 
principalmente em ecossistemas aquáticos. Grande parte dos plásticos são 
libertados no ambiente sem qualquer tratamento, o que contribui para a sua 
dispersão ambiental, particularmente na forma de pequenas partículas ou 
fragmentos (microplásticos). O ambiente aquático, e em particular os oceanos, 
é a localização final para o depósito de grandes quantidades de plástico, com 
partículas de vários tamanhos e com vários constituintes químicos. A 
exposição dos organismos aos microplásticos pode resultar em contaminação 
física (bloqueio ou danos no sistema digestivo) e química (libertação de 
compostos tóxicos), o que pode levar a consequências nocivas. A presença de 
microplásticos em meio marinho pode ocorrer também por introdução direta no 
meio, na forma de microesferas utilizadas em cosméticos. Os efeitos 
ecotoxicológicos dos plásticos levaram alguns produtores de cosméticos a 
oferecer alternativas viáveis às microesferas de plástico, tais como partículas 
de parafina. No entanto, a viabilidade desta alternativa carece de um profundo 
conhecimento das propriedades ecotoxicológicas das partículas de parafina 
em comparação com as esferas de microplásticos. Assim sendo, o principal 
objetivo deste estudo foi avaliar os potenciais efeitos tóxicos de micropartículas 
de parafina em processos fisiológicos chave no molusco marinho Mytilus spp.. 
Para atingir este objetivo, este trabalho avaliou os efeitos agudos de três 
densidades (5, 20 e 80 mg/l) e quatro gamas de tamanho de partículas de 
parafina (100-300 µm, 300-500 µm, 400-850 µm and 800-1200 µm) em 
mexilhões expostos durante 96 h na presença e na ausência de alimento. Os 
parâmetros toxicológicos avaliados foram as atividades de quatro enzimas 
envolvidas no metabolismo (glutationa-S-transferases, GSTs) e defesas 
antioxidantes (catalase, CAT; glutationa redutase, GRed; e glutationa 
peroxidase, GPx). No geral, partículas mais pequenas (100-300 µm) quase 
não causaram efeito nas atividades das quatro enzimas testadas. Pelo 
contrário, partículas maiores (800-1200 µm) causaram efeitos em todas as 
atividades enzimáticas. A atividade de GRed foi a menos afetada pela 
exposição, enquanto que a atividade das GSTs foi o parâmetro mais afetado. 
O efeito da densidade das partículas foi maioritariamente observado para o 
tratamento sem alimento, e esta influência foi mais significativa para a 
densidade de partículas mais elevada (80 mg/l). No geral, os dados obtidos 
neste trabalho sugerem que, em densidades próximas às que são encontradas 
atualmente no ambiente, não é possível antecipar efeitos tóxicos ao nível do 
equilíbrio redox e de metabolismo de biotransformação em mexilhões. 
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abstract 
 

Plastics are considered one of the main environmental pollutants, especially in 
aquatic ecosystems. Most plastics are dumped into the environment without 
any treatment, which contributes to their dispersion, particularly in the form of 
small particles or fragments (microplastics). The aquatic environment, and in 
particular the oceans, are the final location for the deposit of large quantities of 
plastics, of various particles sizes and chemical constituents. Exposure of 
organisms to microplastics can result in physical (blockage or damage of the 
digestive tract) and chemical contamination (release of toxic compounds), 
which can lead to deleterious consequences. The presence of microplastics in 
the marine environment can also occur by direct introduction in the medium, in 
the form of microspheres used in cosmetics. Ecotoxicological effects of 
microplastics have led some cosmetic producers to offer viable alternatives to 
plastic microspheres, such as paraffin beads. However, the viability of such 
alternatives requires knowledge of the toxic properties of paraffin particles 
when in comparison with those posed by microplastic spheres. So, the main 
objective of this study was to evaluate the potential toxic effects of paraffin 
microparticles on key physiological processes of the marine mollusc Mytilus 
spp.. To attain this objective, this work assessed the acute effects of three 
densities (5, 20 and 80 mg/l) of four size ranges of paraffin particles (100-300 
µm, 300-500 µm, 400-850 µm and 800-1200 µm) on mussels exposed for 96 h 
with and without food. The here-quantified toxicological parameters were the 
activities of four enzymes involved in metabolism (Glutathione-S-transferases, 
GSTs), and antioxidant defense (catalase, CAT; glutathione reductase, GRed; 
and glutathione peroxidase, GPx). In general, smaller microparticles (100-300 
µm) caused nearly no effects on the activity of the four enzymes tested. On the 
contrary, larger particles (800-1200 µm), caused effects on every enzymatic 
activity. GRed activity was the least affected by the exposure, while GSTs was 
the most affected parameter. The effect of particle density was mainly observed 
for the treatment without food supply, and this influence was more significant 
for the highest particle density (80 mg/l). Overall, data obtained in this work 
suggest that, in the densities close to those found today in the environment, it is 
not possible to anticipate toxic effects on redox equilibrium and 
biotransformation metabolism in mussels.   
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1. General Introduction 

1.1. Plastics as environmental contaminants 

 The release of plastic waste into the environment is a problem of growing 

concern (European Comission 2011). Plastic polymers are particularly important given 

their wide use in different areas of human activity (e.g., commercial, industrial, and 

medicinal), giving rise to a huge diversity of objects (Wang et al., 2016). The specific 

characteristics that turn plastics into highly successful raw materials to obtain a wide 

array of common objects include low density, good mechanical properties and low 

production cost, which allow the use of plastics in diverse industries and also in everyday 

life (PlasticsEurope and EPRO, 2016). Over the past 60 years, plastic production has 

increased dramatically worldwide, from 0.5 million tonnes per year, in 1960, to 300 

million tonnes in 2013 (Avio et al., 2017) (Figure 1). Due to this increase in production, the 

high durability and resistance of plastics to chemical and physical degradation, along with 

poor waste management and inefficiency of wastewater treatment systems – but also as 

a consequence of human behaviour – this material has accumulated in the environment, 

particularly in aquatic systems (Bakir et al., 2012; Bergmann et al., 2015) which are the 

final sink for these compounds. 

 

 

Figure 1 - Plastic production worldwide, in million tonnes, between 2005 and 2015. Adapted from 

PlasticsEurope and EPRO (2016). Plastics – the facts.  
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 Plastic is a generic name for a vast group of synthetic polymers derived mostly 

from natural gas or crude oil (or their processing and refinement), and they can be of 

various chemical types (Khoo et al., 2010; Bejgarn et al., 2015). Consequently, various 

types of plastic can be found in the marine environment, namely polyethylene (PE; 

usually the most abundant) followed by polyvinyl chloride (PVC), polypropylene (PP) and 

polystyrene (PS) (Andrady, 2011). In March 2011, the Global Declaration for Solutions on 

Marine Litter was launched by 47 associations involved in plastics management from 

regions all across the globe. Since 2011, 65 associations in 34 countries have signed the 

Global Declaration of the Global Plastics Associations for Solutions on Marine Litter, and 

260 projects are underway that encourage and increase recycling and recovery, foster 

local, regional and global partnerships, promote better product stewardship and increase 

ocean pollution cleanup and marine litter prevention programs  (PlasticsEurope and EPRO 

(2016).  

 Despite their frequent and widespread presence in the environment, plastics are 

not currently included in monitoring programs, since their ecotoxicological effects are not 

yet fully understood, which makes them emerging contaminants (Aristi et al., 2016). 

Although large fragments of plastic cause obvious problems to some life forms (such as 

choking, trapped in nets, intestinal blockage and starvation of sea turtles, birds or 

mammals) (Gregory, 2009; Andrady, 2011), micro-sized plastic fragments (microplastics) 

constitute a distinct hazard given their higher potential to be transferred along the food 

web (Auta et al., 2017). 

 

1.2. Microplastics 

Although some plastics are likely to be recycled, most of them are dumped into the 

environment, where their full degradation takes centuries to occur (Cole et al., 2011). The 

degradation of plastics in the aquatic environment is slow and may result in the formation 

and release of smaller fragments called microplastics (< 5 mm) (Andrady, 2011) (Table 1). 

Microplastics can be formed due to photooxidation processes (which make them more 

brittle) (Bejgarn et al., 2015) and mechanical erosion, namely on coastal areas, such as 

sandy beaches (Cole et al., 2011).  

 



 

3 

 

Table 1 - Distribution of microplastics (in percentage) and their concentrations in the marine environment. 

Adapted from (Auta et al., 2017). 

Marine 

environment 

Distribution (%) Concentration Reference 

Northwestern 

Atlantic 

60 2500 particles km− 2 (Law et al., 2010) 

Western Atlantic - 0.808 to 1.24 g ml-1 (Morét-Ferguson et 

al., 2010) 

Laurentian Great 

Lake 

20 43,000 particles km− 2 to 

466,000 particles km− 2 

(Eriksen et al., 2013) 

Portuguese Coast 53 32–362 items m− 2 (Antunes et al., 

2013) 

Jade Bay, Southern 

North Sea 

70 1770 particles L− 1 (Dubaish & 

Liebezeit, 2013) 

North East Atlantic 

Ocean 

89 2.46 particles m-3 (Lusher et al., 2014) 

Yangtze Estuary and 

East China Sea 

90 0–144 particles m− 3 (Zhao et al., 2014) 

Artic Polar Waters 95 0-1.31 particles m-3 (Lusher et al., 2015) 

Mediterranean Sea 74 0.90 ± 0.10 microplastics g− 1 (Alomar et al., 2016) 

Beaches of 

Guanabara Bay, 

Southeast Brazil 

56 12–1300 particles m− 2 (Carvalho & Baptista 

Neto, 2016) 

Swedish Coast - 150–2400 particles m− 3 to 

68,000–

102,000 particles m− 3 

(Lönnstedt & Eklöv, 

2016) 

Chinese Bohai Sea - 63–201 items kg− 1 (Yu et al., 2016) 

 

The presence of microplastics in the marine environment can result from the 

breakdown of larger plastic material (secondary source), but also due to their direct 

introduction in the aquatic medium (primary source) (Napper et al., 2015). Primary 

sources include the use of micronized plastics in cosmetics, spillage of pre-production 

plastic pellets and powders used for industrial applications, as well as the result of 
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shredding plastic items (e.g., on board of ships) (Fendall & Sewell, 2009; Andrady, 2011). 

The relative contribution of primary and secondary sources is currently unknown. Among 

the primary sources, the use of plastics in exfoliating products is particularly worrying, 

given the vast array of products and the potential high number of users worldwide 

(Fendall & Sewell, 2009; Chang, 2013; Rochman et al., 2015). The type of plastics used in 

these products is mostly polyethylene, because it is smoother than several natural 

products, such as fruit cores (Chang, 2015).  

Cosmetic microplastics are eventually transported to wastewater treatment plants, 

where some will be captured in oxidation tanks, while others, due to their small size, will 

bypass filtration systems until they reach marine ecosystems (Leslie et al., 2014; Napper 

et al., 2015; Rochman et al., 2015). Depending on the size scale of the particles, the 

organism and the medium, these small-sized plastic particles are of great concern due to 

their potential for bioaccumulation, which increases with decreasing particle size; the 

smaller the particles, the easier they are ingested by aquatic organisms, favoring the 

transfer of contaminants present in the plastic along the food chain (Cole et al., 2011; 

Setälä et al., 2014). Microplastics can be ingested by various organisms, including 

plankton (Setälä et al., 2014; Vroom et al., 2017), fish (Neves et al., 2015; Alomar et al., 

2017; Murphy et al., 2017; Wang et al., 2017), birds (Herzke et al., 2016) and even 

mammals (Lusher et al., 2017). 

 

1.3. Biological effects of microplastics 

Exposure of organisms to microplastics can result in two different types of effects: 

physical/mechanical and chemical. In the first case, these may result from difficulties in 

mobility, formation of fat deposits (Derraik, 2002), blockage in the segregation of gastric 

enzymes, or deleterious effects on the respiratory and digestive systems (Lambert et al., 

2014). Digestive blockage leads to a decrease in food consumption and, consequently, 

causes malnutrition (Derraik, 2002; Lambert et al., 2014). This is the most evident 

biological effect supported by multiple reports of marine animals with plastics in the 

gastrointestinal tract (Derraik, 2002; Lambert et al., 2014).  

On the other side, the ingestion or contact with plastics can lead to toxic effects. 

The chemical impacts of microplastics usually result from the release of multiple 
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compounds that are part of the matrix composition of these particles, such as the 

polymer or monomer of the plastic itself, and the additives that confer color, stability, 

flexibility, flame resistance, resistance to abrasion and to colonization by microorganisms, 

as well as pleasant characteristics to the touch. (Lithner et al., 2011; Fries et al., 2013; 

Koelmans et al, 2014). Chemical compounds released by the microplastics are called 

plastic leachates, and the toxicity of such chemicals from different types of plastic has 

already been documented, including in crustaceans (Lithner et al., 2012; Bejgarn et al., 

2015), worms (Koelmans et al., 2014; Browne et al., 2013) and fish (Koelmans et al., 

2014). Adverse chemical effects of plastics have been described, namely 

increased/decreased heart rate, neurotoxicity, pericardial edema, decreased levels of 

steroid hormones with consequent inhibition of growth, and delayed sexual maturation in 

fish (Azzarello & Vleet, 1987; Derraik, 2002; Lambert et al., 2014).  

Additionally, plastic particles play a role as a dispersion vehicle of adsorbed 

contaminants (Teuten et al., 2009; Bakir et al., 2016; Gandara e Silva et al., 2016), which 

can be toxic (Engler, 2012). Microplastics have a high adsorption capacity, especially of 

hydrophobic contaminants, including several persistent organic pollutants (POPs) 

(Andrady, 2011; Van et al., 2012), due to their hydrophobic nature and high available 

surface area (Engler, 2012). This is mainly relevant in polyethylene-based microplastics 

because of their low degradation capacity in the aquatic environment (Rios et al., 2010). 

POPs are a group of pollutants that are semi-volatile, bioaccumulative, persistent, 

lipophilic and toxic (Bais et al., 2008), and there is a wide diversity of these contaminants 

such as pesticides (DDTs, lindane), industrial chemicals (hexachlorobenzene – HCB, 

hexabromocyclododecane – HBCDD, polychlorinated biphenyls – PCB, polybrominated 

diphenyl ethers - PBDE) and POPs from unintentional production (Hexachlorobenzene – 

HCB, Hexachlorobutadiene – HCBD, polychlorinated dibenzo-p-dioxins – PCDD, 

polychlorinated dibenzofurans – PCDF) (Stockholm Convention 2008). 

These chemicals have high water-polymer distribution coefficient, favoring their 

adsorption by microplastics (Andrady, 2011). These compounds can then be transferred 

to the organisms that ingest or breathe microplastics particles, as Bakir et al. (2016) 

demonstrated for DDT, DEHP (phthalate) and phenanthrene (polycyclic aromatic 
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hydrocarbon-PAH). Given their lipophilicity, these compounds may potentially be 

bioaccumulated and cause various biological effects such as endocrine disruption, 

neurotoxicity, behavioral changes, genotoxicity, immune dysfunction, reproductive 

effects and biochemical responses (Vasseur & Cossu-Leguille, 2006). All of these 

chemicals are of particular concern for human health and for the environment (Engler, 

2012). 

 

1.4. Alternatives to microplastics 

One source of microplastic that has received a large amount of attention is 

microbeads. These are plastic fragments measuring 5 µm to 1 mm, which are used in 

several cosmetics products including face and body washes (Rochman et al., 2015), 

shampoos, facial masks, makeup, etc. (Leslie et al., 2014; Napper et al., 2015). These 

microbeads are synthetic, non-degradable, water insoluble and with several additives 

that give them the desired properties (Leslie et al., 2014). The majority of them are PE, 

but microbeads can also be made of PP, PE terephtalate (PET), polymethyl methacrylate 

(PMMA) and nylon (Napper et al., 2015). Some studies estimated that some cosmetic 

products contain approximately as much plastic as in the plastic container packaging 

(UNEP, 2015). Another study estimated that microbeads represent approximately 25% of 

the total mass of plastics that have accumulated in the North Atlantic Subtropical Gyre in 

a year (Gouin et al., 2011).  

Microbeads have replaced natural materials such as pumice and walnut husks as 

exfoliating agents (Cheung & Fok, 2016); however, this situation has been somewhat 

reverted, since public attention over toxic effects of microplastics is growing (Cheung & 

Fok, 2016). Countries such as the United States of America, Canada (Rochman et al., 

2015) and Australia have forbidden the use of microbeads in cosmetics (Schroeck, 2015). 

Several marketing campaigns have already been implemented by various brands in order 

to increase the public awareness for the harmful effects of microbeads (Rochman et al., 

2015), and they now offer natural alternative products (Chang, 2015). This situation has 

led to the re-introduction of nutshells as an abrasive material (Chang, 2013). Other brands 

have also agreed to replace microbeads by other particles. However, the advantages of 

such alternatives are not yet fully clear. 
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 Among the proposed alternatives, one can find a multiplicity of materials, such as 

seeds of various fruits (strawberries, blueberries, grapes, kiwi and raspberry), orange 

peels, cocoa, coconut, almonds or nuts, coconut fiber, corn on the cob, salt, rice, sugar 

and macadamia (Bergmann et al., 2015). Another alternative to microbeads is the use of 

other hydrocarbons (preferably from a natural origin), such as paraffin or paraffin wax, 

due to its excellent skin tolerance, high protecting and cleansing performance and broad 

viscosity options (Petry et al., 2017). Paraffin is considered by some a bioplastic, when its 

origin is natural; this is more appealing to companies and consumers, since paraffin can 

be synthesised from renewable materials (Leslie et al., 2014; Verschoor et al., 2014).  

Paraffin (n-alkane) is a petroleum-derived compound formed by linear or branched 

chains, with exclusively saturated bonds (formula CnH2n + 2). This material can be found in 

its gaseous (< 5 carbons), liquid (5 to 15 carbons) or solid form (> 15 carbons), and in this 

last case it is called paraffin wax (Freund & Mózes, 1982), which is the form by which it 

can be incorporated into cosmetics. Being an alkane, paraffin has potential advantages 

over plastics, because it can be used as a source of carbon and energy by several 

prokaryotic and eukaryotic microorganisms (Hankin & Kolattukudy, 1968; Wentzel et al., 

2007) and larger animals (Yin et al., 1995; Stetten, 2017), thus contributing to its 

biodegradability. However, the number of studies about the ecotoxicity of paraffins is still 

limited, although one of the arguments for choosing this material is related to the fact 

that it is theoretically inert and less toxic, which is suggested by its etymology (from 

German and from Latin parum = ‘little’ + affinis = ‘related’, supporting its low reactivity). 

This assumption was suggested by Shubik et al. (1962), who studied the safety of 

petroleum waxes as incidental additives to human food, and also by Smith et al. (1995), 

who studied the effects of mineral oils in rats and beagle dogs. Despite this, other studies 

suggest that these particles have toxic effects; Miller et al. (1996) and Griffis et al. (2010) 

suggested that waxes, via diet, cause inflammatory effects in the liver and mesenteric 

lymph nodes in rats. Tagwireyi et al. (2006) documented that paraffin (kerosene) 

ingestion is the most common form of childhood poisoning in Zimbabwe. 

Given the available evidence in the literature, it is not licit to rule out the toxicity of 

paraffin, especially because paraffin waxes can contain, not only a high portion of 
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aliphatic hydrocarbons, but also small amounts of aromatic hydrocarbons. Aromatic 

hydrocarbons have one or several aromatic rings usually substituted with different alkyl 

groups, and they are mainly divided as monocyclic aromatic hydrocarbons (MAHs) and 

polycyclic aromatic hydrocarbons (PAHs) (Varjani, 2017). It is generally agreed that 

aromatic hydrocarbons, specially benzene, are more dangerous than aliphatic 

hydrocarbons (Von Oettingen, 1942).     

 Plastic has malleable qualities, poor water solubility and limited reactivity, which 

means that it can also be viewed as plastic (Leslie et al., 2014; Verschoor et al., 2014). 

Paraffin beads can thus be seen as a theoretically less toxic microplastic and an 

alternative to other synthetic polymers. However, they can also play a role as a dispersion 

vehicle of adsorbed contaminants in the marine environment. This is yet to be clarified, as 

well as the potential toxicity of paraffin if ingested by marine organisms. A recent study 

has already reported the presence of paraffin particles in the Mediterranean Sea, 

although in small amounts (0.8% of a total of 4050 particles found) (Suaria et al., 2016).  

     

1.5. Potential eco-receptors and choice of test organism 

One of the primary risks associated with microplastics is their bioavailability for 

marine organisms (Li et al., 2016). The small size of microplastics makes them available to 

several marine invertebrates (Van Cauwenberghe et al., 2015). The uptake of 

microplastics by these organisms will depend on their size, shape and density, parameters 

that will determine their position on the water column (Browne et al., 2007). Smaller or 

less dense microparticles sediment at slower rate and, therefore, end up suspended in 

the water column, while larger or denser ones tend to sink, making them available to 

filter- or deposit-feeding organisms, respectively (Van Cauwenberghe et al., 2015). 

Ingestion of microplastics has already been confirmed for several organisms, with 

different feeding strategies, such as amphipods, lugworms, barnacles (Thompson et al., 

2004), echinoderms (Graham & Thompson, 2009), decapods (Murray & Cowie, 2011) and 

bivalves (Santana et al., 2016). Among them, bivalves stand out because of their extensive 

filter-feeding activity, which exposes them directly to microplastics present in the 

environment (Li et al., 2016). Bivalves are also a good model to evaluate physiological and 

biochemical changes when exposed to inorganic and organic contaminants (Apeti et al., 
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2010; Lavradas et al., 2016; Freitas et al., 2017). Their use in biomonitoring studies is 

quite common, since many of the species are also consumed by humans (Caetano, 2014). 

Microplastics can be ingested directly or indirectly by the organisms. Indirect 

consumption of plastics results from trophic transfer of microplastics (Farrell & Nelson, 

2013). A special concern has been raised in aquaculture of bivalves; because this is mainly 

conducted in open systems, cultured organisms are constantly exposed to pollutants 

present in the seawater, including microplastics (Van Cauwenberghe & Janssen, 2014). 

These contaminants can therefore be subsequently transferred to humans (Table 2).    

 

Table 2 – Microplastics found inside different species of cultured and wild bivalves around the world. 

Adapted from “Plastic Ingestion by Bivalves.” Blastic, www.blastic.eu/knowledge-bank/impacts/plastic-

ingestion/bivalves/.   

Species Amount of microplastics Area 

Mytilus edulis 178/individual (cultured) 

116/individual (wild) 

Nova Scotia, Canada 

mainly Mytilus edulis 0.35/g of wet tissue (cultured), 

2.6 – 5.1/g of wet tissue (wild) 

Belgian-Dutch coastline 

Mytilus edulis 0.2/g of wet tissue (wild) French-Belgian-Dutch coastline 

Mytilus edulis 0.36/g of wet tissue before 

depuration, 0.24/g of wet tissue 

after depuration (cultured) 

Germany 

Crassostrea gigas 0.6/individual (cultured) east coast of USA 

Crassostrea gigas 0.47/g of wet tissue before 

depuration, 0.35/g of wet tissue 

after depuration (cultured)  

Brittany, France 

Venerupis philippinarum 1.7/g wet tissue or 12/individual 

(cultured), 0.9/g wet tissue or 

9/individual (wild) 

British Columbia, Canada 

 

Mussels are ecologically representative benthic filter feeders, and have been 

extensively used in biomonitoring of marine environments (Li et al., 2016). Many factors 

contribute for their use as sentinels, namely their wide distribution, filtering capability for 

breathing and ingestion (Pereira, 2009), resistance to a wide variety of contaminants, long 
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life cycle which allows monitoring bioaccumulation of a variety of contaminants (Teixeira 

et al., 2017), sedentary behaviour (Faggio et al., 2016), easy capture and maintenance in 

laboratory conditions, and large populations, which allows repeated samplings in the 

same area (Gomes, 2012). Mussels also present low metabolic rates of detoxification, 

making them particularly susceptible to xenobiotic compounds (Amiard-Triquet et al, 

1986; Pereira, 2009). Experiments focusing on microplastics ingestion demonstrated that 

mussels ingest these microparticles and that they have the potential to translocate them 

from the digestive tract to the circulatory system (Browne et al., 2008; Avio et al., 2015). 

By virtue of all these features, the blue mussel (Mytilus edulis complex) was chosen as the 

model organism. 

 Individuals of Mytilus spp. can filter contaminants and particles directly from the 

water through the gills, or indirectly through the digestive system. The particles trapped 

on gills and then transported to lip palps and to the mouth, thus entering the digestive 

gland for absorption into the gut epithelium via phagocytosis, or they can be egested via 

faeces (Gomes, 2012; Anderson et al., 2016). Digestive cells are highly adapted for 

absorbing microparticles (>100 nm); if microplastics reach the marine environment, they 

are likely to be filtered by these organisms and accumulate in their tissues (Moore, 2006; 

Gomes, 2012). Mytilus spp. are a sessile suspension feeders, and the gills and digestive 

gland are well known target organs for xenobiotic effects, in which cellular alterations and 

physiological responses can detected using a range of standardized procedures, as 

enzymatic biomarkers (von Moos et al., 2012).    

 

1.6. Potential cellular targets and biomarkers   

Organisms can eliminate chemicals by immediate excretion, that does not require 

metabolism, or chemicals can be structurally altered, by entering the process of 

biotransformation, in order to acquire characteristics that grant them higher water 

solubility. If excretion does not occur, compounds may accumulate in the tissues of the 

organisms, which can induce a metabolic response of biotransformation, and its increase 

can be quantified. The induction of the enzymatic system responsible for the metabolism 

of hydrocarbons converts accumulated products into others that can be excreted to 

reduce their content in the tissues and their toxicity. In order to understand which are the 
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molecular, cellular and physiological/ targets of microplastics/paraffins, it is imperative to 

understand if they are metabolized by the organisms.  Since some plastics are polymers 

chemically synthesized via polymerization from petroleum products 

(Chidambarampadmavathy et al., 2017) and paraffin being a hydrocarbon itself, there 

might be some affinities in their metabolism. Our focus is on paraffin, which is composed 

of long hydrogenated chains of carbon, and is thus very likely to be metabolized by living 

beings (Lopes, 2009).  

The biotransformation of compounds, such as hydrocarbons, occurs in all organs 

and tissues, although the liver (in vertebrates) and the digestive gland (in bivalves) are the 

main detoxifying organs (Michel et al, 1993). Overall, hydrocarbon metabolism includes 

three phases: phases I and II involve the conversion of the lipophilic, non-polar xenobiotic 

into a more water-soluble metabolite, which can then be eliminated more easily from the 

cell in phase III. Phase I includes oxidation, reduction, hydrolysis or acetylation in order to 

expose or bind a functional group converting the resulting compounds in more polar or 

hydrophilic species, and therefore, more likely to enter the metabolic pathways (Barreira, 

2007; Lopes, 2009). The first step in aliphatic (n-alkanes) and aromatic hydrocarbon 

metabolism is oxidation of the organic chemical with molecular oxygen catalysed by 

monooxygenases, and this transformation relies on the action of enzymatic systems such 

as the cytochrome P450-dependent monooxygenase (Barreira, 2007; Lopes, 2009). In 

aliphatic hydrocarbons, this oxidation gives rise to a primary alcohol followed by an 

aldehyde and a monocarboxylic acid, and in aromatic hydrocarbons, it originates diols  

followed by ring cleavage and formation of common intermediates (catechol, 

protocatechol and gensinate) (Simões, 2009). Products from this phase are more 

hydrophilic than the parent one and move from the endoplasmic reticulum to the cytosol, 

where the enzymes responsible for phase II metabolism are located (Barreira, 2007; 

Lopes, 2009). However, the product of detoxifying enzymes can be more toxic than the 

parent compound (Michel et al., 1993; Barreira, 2007). A second step of 

biotransformation may thus be necessary; phase II metabolism is conducted by 

conjugative enzymes, such as glutathione S-transferase (GST), UDP-glucoronyl 

transferase, UDP-glucosyl transferase, sulphotransferase and amino acid conjugases, 
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which will attach an endogenous and polar cell constituent (glutathione, sulphate, 

glucoronide, amino acid) to the compound or metabolites resulting from phase I. 

Conjugation reactions give rise to products highly soluble in water, generally non-toxic, 

ionizable and easily excretable (Sheehan et al., 2001; Van der Oost et al., 2003). Phase III 

metabolism is conducted by enzymes (peptidases, hydrolases and β-lyase), which catalyse 

the product of the conjugated metabolites to form easily excretable products (Van der 

Oost et al., 2003). 

One of the likely consequences of hydrocarbon metabolism is the production of free 

radicals derived from oxygen (ROS) and nitrogen (RNS). ROS are chemical entities 

containing typically one or more unpaired electrons, such as the superoxide anion radical 

(O2 – •), hydroperoxyl radical (HO2•), hydroxyl radical (•OH), peroxyl (ROO•) and alcoxyl 

(RO•), which are continuously formed in small amounts by normal metabolism processes 

(Barreira, 2007). More recently, it was discovered that an important nitrogen radical is 

also formed in organisms, the nitric oxide radical (•NO). Nitric oxide can react with O2 to 

form the more reactive radical nitrogen dioxide (•NO2) and with O2 – • to give rise to 

peroxynitrite (ONOO–), a non-radical but a highly oxidizing species. These nitrogen 

derivatives are designated reactive nitrogen species (RNS) (Radi et al., 2001). Both ROS 

and RNS are highly beneficial to the organisms by playing an important role in cell 

signalling, apoptosis, gene expression and ion transportation (Beyer et al., 2017). 

However, when they are produced in excess they can damage biomolecules, lipids (lipid 

peroxidation), proteins (protein oxidation), DNA (DNA oxidation) and carbohydrates, 

promoting an oxidative stress scenario (Gravato et al., 2006; Oliva et al., 2012; Klein et al., 

2017), which is described by an adverse condition that results from an imbalance 

between concentrations of ROS and RNS and the capacity of the organism’s antioxidant 

defence system to neutralize these oxidative molecules (Beyer et al., 2017). 

When organisms are exposed to oxidative stress conditions, antioxidant defences 

are triggered in order to detoxify and control the amount of ROS produced (Correia et al., 

2016). These antioxidant defences can be enzymatic and non-enzymatic. Non-enzymatic 

antioxidant defences include vitamins C and E, beta carotene and glutathione (GSH). The 

main enzymatic antioxidants are superoxide dismutase (SOD), catalase (CAT), glutathione 
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reductase (GRed) and glutathione peroxidase (GPx). Since superoxide is the primary ROS 

produced, its dismutation by SOD into hydrogen peroxide (H2O2) is of primary importance 

(Zelko et al., 2002; Birben et al., 2012). H2O2 is nevertheless a harmful by-product, which 

requires elimination or degradation (Correia et al., 2016). To prevent further cellular and 

tissue damage, H2O2 is reduced to water by CAT and GPx. GPx uses GSH to reduce H2O2 to 

the corresponding alcohol (Arthur, 2000; Birben et al., 2012). The requirement of NADPH 

is very common to these enzymes as a reducing equivalent. NADPH maintains CAT in the 

active form and is used as a cofactor by GRed; the latter converts GSSG to GSH, so it can 

be used again by GPx (Kirkman et al., 1999; Birben et al., 2012). Some GSTs isoforms also 

work as an antioxidant, by inactivating secondary metabolites such as unsaturated 

aldehydes, epoxides and hydroperoxides (Birben et al., 2012).  

Both biotransformation and antioxidant defences occur preferably in gill and 

digestive gland of mussels, namely in Mytillus sp. (Beyer et al., 2017), and there are 

several studies that detected these biochemical defences against hydrocarbons in these 

organism (Lima et al., 2007; Serafim et al., 2008; Nogueira et al., 2015; González-

Fernández et al., 2016 a, b; Benali et al., 2017; González-Fernández et al., 2017; Perić et 

al., 2017).       

 

 

Figure 1 - Scheme of free radical defence mechanisms. Adapted from (Barreira, 2007). 



 

14 

 

By measuring biological endpoints in response to toxicants, such as 

biotransformation and oxidative stress defence mechanisms, one is using them as 

biomarkers to indicate a change in the level of stress or physiological condition. 

Biomarkers are selected biological endpoints, measured in species of interest and may be 

biochemical, physiological, histological, behaviour indicators or adverse health effects 

evaluated after exposure to an environmental contaminant (Forbes et al., 2006; Hook et 

al., 2014). They normally correspond to primary responses of a biological system after 

exposure to a chemical or other stressor that anticipate responses at higher hierarchical 

levels (Forbes et al., 2006). Such biological responses work as biomarkers by contributing 

to understand mechanisms of chemical impacts.  

 

1.7. Objectives   

This works intends to evaluate the ecotoxicological short-term effects of paraffin 

particles (putative substitutes of more noxious microplastics) used in cosmetics in Mytilus 

spp.. This work intended to understand the potential direct effects of relevant to worst-

case-scenario particle densities, at the enzymatic level. A particular emphasis was put on 

biotransformation (GSTs) and oxidative stress (CAT, GPx, GRed), which may serve as an 

early sign of metabolic changes. To attain this purpose, this work aimed at evaluating the 

sub-lethal effects of four size ranges of paraffin particles on Mytilus spp. via diet, during a 

96 h of exposure under feeding regimes. The specific goals included evaluating 

biochemical responses to exposure to paraffin microspheres and assessing the effect of 

particle density and presence of food (as a potential confounding factor). 
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2. Material and Methods 

2.1. Collection and acclimation of test organisms 

Organisms of the Mytilus spp. were manually collected during the low tide period, 

near the mouth of Ria de Aveiro, Portugal. This area corresponds to a brackish coastal 

lagoon located in the northwest of the Portuguese shore (Lopes & Silva, 2006). Ria de 

Aveiro presents a complex morphology, being constituted by several branched channels, 

and is connected to the Atlantic Ocean by only one exit (Coelho, 2009). The sampling site 

is sheltered from wave action but it is subjected to tidal cycles; salinity at the time of 

sampling was 30. The Mytilus spp. populations in Ria de Aveiro are comprised of two 

species: Mytilus edulis and Mytilus galloprovincialis (Moreira, 2008). Besides being very 

similar morphologically, there is strong evidence of mixed populations and the presence 

of interspecific hybrids (Daguin et al, 2001; Lourenço et al., 2015). For this reason, we will 

assume our specimens to be Mytilus spp. 

After collection, 300 organisms were immediately transported to the laboratory. 

There, animals were subjected to a depuration, quarantine and acclimation period, for 

approximately 15 days. During this period, animals were kept in 15 l aquaria with artificial 

seawater (salinity 30; made from synthetic Tropic Marin® SEA SALT from Tropic Marine 

Center), continuous aeration, at a temperature of 20±1 °C, and a photoperiod of 16 h L:8 

h D. Mussels were fed every two days with a Chlorella vulgaris suspension (1x105 cells/ml) 

(Caetano, 2014). During the acclimation period, the water was renewed every week and 

dead organisms were immediately discarded. Organisms were considered dead when 

their shells gaped and failed to shut after external stimulus. The batch was considered 

able for experiments when mortality did not exceed 10 %.  

 

2.2. Paraffin microparticles 

Four size ranges of paraffin particles were used to evaluate toxic effects on the 

selected test organism: 100-300 µm (size 1), 300-500 µm (size 2), 400-850 µm (size 3) and 

800-1200 µm (size 4). The particles were obtained from a company that operates on the 

wholesale market of excipients for the dermocosmetic industry. For each size range, we 

selected three densities of exposure, based on a worst-case scenario. In a study 
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measuring the density of microplastics found in the North Pacific Subtropical Gyre, a 

maximum of 0.25 mg/l of microparticles was recorded (Goldstein et al., 2012); we used 

this value as a benchmark for the density of microplastics in coastal waters, given the lack 

of more estimates. The tested densities of paraffin microparticles were significantly above 

this value: 5 mg/l, 20 mg/l and 80 mg/l. 

 

2.3. Experimental conditions 
2.3.1. Pre-test 

After acclimation, 15 mussels were randomly distributed by three groups: a group 

was exposed to paraffin particles for 2 h, another group for 6 h, and a third group 

exposed for 24 h. Each group was divided into five replicates, of one individual per 

replicate, plus two more replicates without any mussel (only paraffin particles). The 

purpose of this test was to record the amount of paraffin filtered along time, and observe 

the final fate of ingested paraffin particles by mussels, especially gills (which work as 

sieves for particulate matter suspended in water) and digestive glands. To attain this 

objective, the paraffin particles were previously dyed with Sudan Black B, which is a 

lipophilic dye (that does not leach into the aqueous solution) and allows the visualization 

of paraffin particles in tissues of dissected animals. Glass jars (with 200 ml of artificial 

seawater) were used for the exposures, under permanent aeration. For the sake of this 

experiment, paraffin particles of size 2 at a density of 80 mg/l were used. Along this test, 

the mussels were not fed. At the end of the assay, microparticles that remained in the 

medium were filtered, air-dried, and weighed. The aim of this step was to quantify the 

amount of particles filtered by the mussels, by comparing the remaining mass of particles 

in the experimental units with mussels, with that of the controls (without mussels). Two 

mussels of each group were sacrificed and dissected to confirm the presence of paraffin 

microparticles in the tissues; the gills and digestive glands were removed and observed 

with a stereoscope. Photos were taken with Stemi 508 Stereo Microscope under a 6.3 x 

magnification. 
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2.3.2. Test 

In this test, mussels were exposed by being randomly distributed along four particle 

densities: 0 (control), 5, 20 and 80 mg/l of paraffin. Each of these experimental conditions 

was divided into seven replicates, with one individual mussel per replicate. In order to 

understand if the presence of food influences the filtration of the particles, the treatment 

was duplicated: half of the experimental animals were fed with the already-mentioned 

algal suspension, in a final concentration of 1x105 cells/ml, and the other half was 

exposed without food. So, a total of 8 treatments and 56 experimental units were used: 2 

feeding regimes (food vs. no food) × 4 particle densities (0, 5, 20, 80 mg/l) × 7 replicate 

vessels (1 individual per vessel). This experiment was separately carried out for each one 

of the four size ranges of paraffin particles (size 1-4), for logistic reasons.  

The experiment lasted 96 h. Each replicate was exposed in 200 ml glass jars with 

permanent aeration to promote the dispersion of the paraffin particles, and to ensure 

that the dissolved oxygen did not become limiting for the organisms. During the 

experiment, artificial seawater and particles were renewed every 24 h to maintain the 

particle density in the medium and discard excretion products from mussels. Chemical 

parameters were monitored, such as temperature, conductivity, pH and dissolved oxygen 

concentration.  

After exposure, all mussels were sacrificed and dissected; the gills and the digestive 

gland were removed for biochemical analysis. Sacrifice was performed on ice-cold water 

(4°C), and samples were frozen at -80°C until the performance of enzymatic assays. 

 

2.4. Enzymatic biomarkers 

Tissue samples were homogenized on ice (4°C) in a volume of 1 ml of 50 mM 

phosphate buffer pH = 7.0 with Triton X-100 0.1% (homogenization buffer), using a 

Branson Sonifier 250 (constant cycle ultrasounds for about 30 seconds). After this step, 

homogenates were centrifuged at 15 000 g for 10 min at 4°C. Supernatants were 

recovered and stored (at -80°C) for the determination of all oxidative stress biomarkers. 

Measurement of glutathione S-transferases (GSTs) activity was based on the 

principle that these enzymes catalyse the conjugation of the glutathione with multiple 

electrophilic compounds. They catalyse the conjugation reaction between 2,4-
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dinitrochlorobenzene (CDNB) and reduced glutathione (GSH), forming a thioether that 

can be monitored following the increase in absorbance at 340 nm (ɛ = 9.6 mM-1 cm-1). 

Results were expressed in terms of total soluble protein present in the samples (nmol 

min-1 mg-1 protein) (Habig et al., 1974). GSTs activities were quantified in digestive glands 

of the mussels. 

Catalase (CAT) has the double function of decomposing hydrogen peroxide (H2O2) 

and oxidising hydrogen donors (methanol, formic acid and phenols) with peroxide 

consumption. The activity of this enzyme was determined by monitoring the 

decomposition of H2O2 at 240 nm (ɛ = 0.0394 mM-1 cm-1). CAT activity was expressed in 

terms of total soluble protein present in the samples (nmol min-1 mg-1 protein) (Aebi, 

1984). CAT activity was quantified in digestive glands of the mussels. 

Glutathione peroxidase (GPx) catalyses the reduction of various peroxides using 

glutathione (GSH) as the reducing agent; as such, it converts GSH into its oxidised form 

(GSSG). GPx activity was indirectly measured by monitoring the oxidation of NADPH at 

340 nm (ɛ = 6.22 mM-1 cm-1) when GSSG is reduced back to GSH by the activity of 

glutathione reductase (GRed). This reaction is initiated by adding a specific peroxide: H2O2 

allows determining the activity of selenium dependent GPx, while cumene hydroperoxide 

is used for determining total GPx activity. The results were, once again, expressed in 

terms of total soluble protein present in the samples (nmol min-1 mg-1 protein) (Flohé & 

Günzler, 1984). GPx activity was quantified in gills and digestive glands of the mussels. 

Glutathione reductase (GRed) reduces oxidised glutathione (GSSG) to GSH, recycling 

the latter to act as a ROS scavenger or as a substrate for conjugation reactions. This 

activity was measured by monitoring the oxidation of NADPH at 340 nm (ɛ = 6.22 mM-1 

cm-1). Enzymatic activity was also expressed in terms of total soluble protein present in 

the samples (nmol min-1 mg-1 protein) (Carlberg & Mannervik, 1985). GRed activity was 

quantified in digestive glands of the mussels. 

Total soluble protein concentration of samples was determined for every sample 

using the method by Bradford (1976). This method involves binding a dye (Bradford 

reagent) to the proteins, giving rise to a blue coloured and stable complex capable of 

being measured at 595 nm (Bradford, 1976). Protein standards were prepared using Ƴ-
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globulin (1 mg/mL), and the total protein content of samples was estimated from the 

resulting calibration curve. 

All enzymatic activities were determined by spectrophotometry, using a Thermo 

Scientific Multiskan Spectrum 96-well microplate reader. 

 

2.5. Statistical analysis 

Experiments conducted with each particle size were analysed separately. For each 

particle size, biochemical parameters were statistically analysed with Two-Way Analysis 

of Variance (ANOVA) to test for differences across feeding regimes (food vs. no food) and 

particle densities (0, 5, 20, 80 mg/l), as well as their interaction. When a significant 

interaction between the two factors was recorded, data were divided into two datasets, 

one for each feeding regime, and each subset was analysed with a One-Way ANOVA to 

test for differences across particle densities. In the presence of a significant effect of 

particle density, we used Dunnett’s test to discriminate significant differences relatively 

to the control group (Dunnett, 1955). All statistical analyses were performed using SPSS 

Statistics 24. The adopted level of significance was 0.05.  
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3. Results 

3.1. Pre-test 

The amount of particles filtered by mussels could not be recorded during the 

experiment, due to the material released by mussels during the experimental periods, 

namely faeces and byssal threads. These materials were also retained by the filter, thus 

interfering with the measurement of the mass of suspended particles. Therefore, it was 

impossible to quantify only the paraffin particles. However, it was possible to distinctly 

observe microparticles on the gills and inside digestive glands after 2 and 6 h of exposure, 

and only on digestive gland at 24 h (Figure 3).   

 

 

Figure 2 - Close-up (6.3 × magnification) of dissected Mytilus spp. exposed to suspended paraffin particles 

(at a density of 80 mg/l), showing the presence of microparticles in the mantle (A), digestive gland (B, D, E, 

F) and gills (C). Each pair of photos represents animals collected at different timings, namely after 2 h (A-B), 

6 h (C-D) and 24 h (E-F) of exposure to the microparticle suspension. Paraffin microparticles, measuring 

300–500 µm in diameter, were previously dyed with Sudan Black B to facilitate visualisation 

. 
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3.2. Toxicity assessment: enzymatic biomarkers 

During the period of exposure to the paraffin particles, almost no mortality was 

observed. The exception was recorded for organisms exposed to the finer particles (100-

300 µm), for which five deaths occurred at the highest concentration (two in the presence 

of food and three without food). Only one occasional death was observed in the 

remaining experimental units for the whole experiment. 

GSTs activity was not affected (two-way ANOVA: F3,43=0.836; p=0.482) by the finer 

paraffin particles (size 1; Figure 4A), but significant differences were detected between 

the two feeding regimes (two-way ANOVA: F1,41=5.947; p=0.019). Indeed, GSTs activity 

was overall higher in the presence of food (Figure 4A). A significant interaction between 

feeding regime and particle density was observed for size 2 (two-way ANOVA: F1,47=3.385; 

p=0.026). This interaction resulted from the fact that paraffin particles affected GSTs 

activity only in the absence of food (one-way ANOVA: F3,24=3.413; p=0.034), with a 

significant decrease between the control and the highest particle density being observed 

(Dunnett test, p=0.011). In fact, for this size range and in the absence of food, GSTs 

activity tended to linearly decrease with the increase of paraffin particles density (Figure 

4B). This confounding effect resulting from the presence/absence of food (i.e., a 

significant feeding regime × particle density interaction) was also observed for larger 

particles, i.e. size 3 (two-way ANOVA: F3,48=13.100; p<<0.001) and size 4 (two-way 

ANOVA: F3,45=3.742; p=0.017). This effect was reflected by a significant increase observed 

when comparing the control and the second highest particle density (Dunnett test, 

p<<0.001) for size 3 (Figure 4C), but only in the absence of food (one-way ANOVA: 

F3,24=14.678; p<<0.001). A similar scenario was also observed for size 4 (Figure 4D), with a 

significant increase of GSTs activity at the highest particle density (Dunnett test, p=0.025) 

in the absence of food (one-way ANOVA: F3,24=3.250; p=0.039).   
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Figure 3 – Effects of suspended paraffin particles on GSTs activity of Mytilus spp. in the digestive gland, 

across four microparticle densities and in the presence or absence of food (microalgal suspension). 

Experiments were conducted separately for four particle size classes: (A) 100-300 µm; (B) 300-500 µm; (C) 

400-850 µm; (D) 800-1200 µm. Results are expressed as mean ± standard deviation (n=7); asterisks 

represent statistically significant differences relatively to the control (0 mg/l). 

 

CAT activity was not affected by the smaller paraffin particles, size 1 (two-way 

ANOVA: F3,40=1.411; p=0.254) (Figure 5A). A significant interaction between feeding 

regime and particle density was observed for size 2 particles (two-way ANOVA: 

F3,48=3.583; p=0.020), and this interaction resulted from the fact that particles affected 

CAT activity only in the absence of food (one-way ANOVA: F3,24=4.577; p=0.011). 

However, no differences between animals from the control treatment and those exposed 

to distinct particle densities were recorded (Dunnett test, p=0.207; p=0.971; p=0.168) 

(Figure 5B). For size 3, a significant interaction between feeding regime and particle 

density was observed (two-way ANOVA: F3,48=12.695; p<<0.001). In the absence of food 

(one-way ANOVA: F3,24=26.950; p<<0.001), a significant increase between the control and 

the second highest particle density was observed (Dunnett test, p<<0.001); in the 

presence of food (one-way ANOVA: F3,24=9.672; p<<0.001) we recorded an increase in 

CAT activity on the two lowest particle densities (Dunnett test, p<0.05) (Figure 5C). This 
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significant interaction between feeding regimes and particle density was also observed 

for the larger paraffin particles (size 4; two-way ANOVA: F3,46=6.858; p=0.001). CAT 

activity was affected by this size range only in the absence of food (one-way ANOVA: 

F3,24=7.684; p=0.001), with a significant increase between the control and the highest 

particle density (Dunnett test, p=0.001) (Figure 5D).   

 

 

Figure 4 - Effects of suspended paraffin particles on CAT activity of Mytilus spp. in the digestive gland, 

across four microparticle densities and in the presence or absence of food (microalgal suspension). 

Experiments were conducted separately for four particle size classes: (A) 100-300 µm; (B) 300-500 µm; (C) 

400-850 µm; (D) 800-1200 µm. Results are expressed as mean ± standard deviation (n=7); asterisks 

represent statistically significant differences relatively to the control (0 mg/l). 

 

GRed activity was not affected by any of the size ranges of paraffin particles (two-

way ANOVA): size 1 - F3,41=1.774, p=0.167 (Figure 6A); size 2 - F3,47=0.980, p=0.410 (Figure 

6B); size 3 - F3,48=1.339, p=0.273 (Figure 6C); size 4 - F3,45=1.609, p=0.201 (Figure 6D). 

However, significant differences were detected between the two feeding regimes for the 

larger paraffin particles (size 4; two-way ANOVA: F1,45=4.637; p=0.037). Indeed, GRed 

activity was overall higher in the absence of food for organisms exposed to size 4 

particles. 
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Figure 5 - Effects of suspended paraffin particles on GRed activity of Mytilus spp. in the digestive gland, 

across four microparticle densities and in the presence or absence of food (microalgal suspension). 

Experiments were conducted separately for four particle size classes: (A) 100-300 µm; (B) 300-500 µm; (C) 

400-850 µm; (D) 800-1200 µm. Results are expressed as mean ± standard deviation (n=7); asterisks 

represent statistically significant differences relatively to the control (0 mg/l). 

 

Total GPx activity in the gills of Mytilus spp. was not affected by any of the sizes of 

paraffin particles (two-way ANOVA): size 1 - F3,40=0.560, p=0.644 (Figure 7A); size 2 - 

F3,46=2.172, p=0.104 (Figure 7B); size 3 - F3,47=0.964 p=0.417 (Figure 7C); size 4 - 

F3,43=0.758, p=0.524, (Figure 7D). However, significant differences were detected 

between the animals subjected to the two feeding regimes, for the larger paraffin 

particles (size 4; two-way ANOVA: F1,43=15.366; p<<0.001). Similarly to GRed, total GPx 

activity was overall higher in the absence of food and for size 4.  
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Figure 6 - Effects of suspended paraffin particles on total GPx activity of Mytilus spp. in the gills, across four 

microparticle densities and in the presence or absence of food (microalgal suspension). Experiments were 

conducted separately for four particle size classes: (A) 100-300 µm; (B) 300-500 µm; (C) 400-850 µm; (D) 

800-1200 µm. Results are expressed as mean ± standard deviation (n=7); asterisks represent statistically 

significant differences relatively to the control (0 mg/l). 

 

Total GPx activity in the digestive gland of Mytilus spp. was not affected by paraffin 

particles size 1 (two-way ANOVA: F3,41=1.002; p=0.402). However, significant differences 

were detected between the two feeding regimes (two-way ANOVA: F1,48=15.444; 

p<<0.001). Indeed, total GPx activity was generally higher in the absence of food (Figure 

8A). A significant interaction between feeding regime and particle density was observed 

for size 2 particles (two-way ANOVA: F3,48=3.664; p=0.019), and this interaction resulted 

from the fact that particles affected GPx only in the absence of food (one-way ANOVA: 

F3,24=3.043; p=0.048). However, no differences were recorded between the control and 

treatments with paraffin particles (Dunnett test, p=0.197; p=0.780; p=0.555) (Figure 8B). 

For size 3, a significant effect of the particle density was observed (two-way ANOVA: 

F3,48=4.033; p=0.012). This was reflected by an increase in total GPx activity in the second 
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highest density (Dunnett test, p=0.006; Figure 8C). A significant effect of particle density 

was also observed for size 4 (two-way ANOVA: F3,46=3.843; p=0.015), but in this case, it 

was possible to observe a decrease between the control and highest density was 

observed (Dunnett test, p=0.018; Figure 8D).  

  

 

 

Figure 7 - Effects of suspended paraffin particles on total GPx activity of Mytilus spp. in the digestive gland, 

across four microparticle densities and in the presence or absence of food (microalgal suspension). 

Experiments were conducted separately for four particle size classes: (A) 100-300 µm; (B) 300-500 µm; (C) 

400-850 µm; (D) 800-1200 µm. Results are expressed as mean ± standard deviation (n=7); asterisks 

represent statistically significant differences relatively to the control (0 mg/l). 

 

Selenium dependent GPx activity in the gills was not affected by paraffin particles of 

size 1 (two-way ANOVA: F3,41=0.599; p=0.19; Figure 9A), size 2 (two-way ANOVA: 

F3,46=2.365; p=0.083; Figure 9B) or by size 3 (two-way ANOVA: F3,47=0.123; p=0.946; 

Figure 9C). However, for the largest particles (size 4), a significant decrease in enzymatic 

activity was observed (two-way ANOVA: F3,43=2.941; p=0.044) at the highest particle 

density (Dunnett test, p=0.014; Figure 9D). 
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Figure 8 - Effects of suspended paraffin particles on selenium dependent GPx activity of Mytilus spp. in the 

gills, across four microparticle densities and in the presence or absence of food (microalgal suspension). 

Experiments were conducted separately for four particle size classes: (A) 100-300 µm; (B) 300-500 µm; (C) 

400-850 µm; (D) 800-1200 µm. Results are expressed as mean ± standard deviation (n=7); asterisks 

represent statistically significant differences relatively to the control (0 mg/l). 

 

Selenium-dependent GPx activity in the digestive gland was not affected by paraffin 

particles size 1 (two-way ANOVA: F3,41=0.538; p=0.659) or by size 2 (two-way ANOVA: 

F3,48=1.898; p=0.143); however, significant differences were detected between the two 

feeding regimes for both paraffin particle sizes: size 1 two-way ANOVA - F1,41=7.216; 

p=0.100 (Figure 10A); size 2 two-way ANOVA - F1,48=10.887, p=0.002 (Figure 10B). Indeed, 

selenium-dependent GPx activity was overall higher in the absence of food for both 

paraffin particle sizes. With respect to size 3, we observed a significant interaction 

between feeding regime and particle density (two-way ANOVA: F3,48=4.263; p=0.010). This 

interaction resulted from the fact that paraffin particles affected Se GPx activity only in 

the presence of food (one-way ANOVA: F3,24=7.091; p=0.001), with a significant increase 

between the control and the highest particle density being observed (Dunnett test, 
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p=0.002; Figure 10C). The opposite trend was recorded for size 4 particles, with a 

significant decrease being observed (two-way ANOVA: F3,46=3.591; p=0.021) between the 

control and the highest density (Dunnett test, p=0.010; Figure 10D). 

 

 

Figure 9 - Effects of suspended paraffin particles on selenium dependent GPx activity of Mytilus spp. in the 

digestive gland, across four microparticle densities and in the presence or absence of food (microalgal 

suspension). Experiments were conducted separately for four particle size classes: (A) 100-300 µm; (B) 300-

500 µm; (C) 400-850 µm; (D) 800-1200 µm. Results are expressed as mean ± standard deviation (n=7); 

asterisks represent statistically significant differences relatively to the control (0 mg/l). 
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Table 3 – Summary the effects of suspended paraffin particles of four particle size classes (100-300 µm; 

300-500 µm; 400-850 µm; 800-1200 µm) on GSTs, CAT, GRed and GPx activity of Mytilus spp.. The factors 

that were significant are highlighted in bold (feeding regimes and particle densities, or their interaction); 

the particle densities that significantly differed from the control are also discriminated (5, 20, or 80 mg/l).  

 

Particle size  

Biomarkers 100-300 µm 
(size 1) 

300-500 µm 
(size 2) 

400-850 µm 
(size 3) 

800-1200 µm 
(size 4) 

GSTs feeding regime 

overall higher 
activity in the 
presence of food 

interaction 
linear decrease in 
activity ONLY in 
the absence of 
food (at 80 mg/l) 

interaction  
irregular increase 
in activity ONLY in 
the absence of 
food (at 20 mg/l) 

interaction  

linear increase in 
activity ONLY in 
the absence of 
food (at 80 mg/l) 

CAT no effect no effect interaction  

irregular increase 
in activity in the 
absence (at 20 
mg/l) AND in the 
presence of food 
(at 5 and 20 mg/l) 

interaction  

linear increase in 
activity ONLY in 
the absence of 
food (at 80 mg/l) 

GRed no effect no effect no effect feeding regime 

overall higher 
activity in the 
absence of food 

Total GPx - (gills) no effect no effect no effect feeding regime 

overall higher 
activity in the 
absence of food 

Total GPx - 

(digestive gland) 

feeding regime 

overall higher 
activity in the 
absence of food 

no effect particle density 

irregular increase 
in activity (at 20 
mg/l) 

particle density 

decrease in 
activity (at 80 
mg/l) 

Se-dependent GPx 

- (gills) 

no effect no effect no effect particle density 

decrease in 
activity (at 80 
mg/l) 

Se-dependent GPx 

- (digestive gland) 

feeding regime 

overall higher 
activity in the 
absence of food 

feeding regime 

overall higher 
activity in the 
absence of food 

interaction  
linear increase in 
activity ONLY in 
the presence of 
food (at 80 mg/l) 

particle density 

 decrease in 
activity (at 80 
mg/l) 

 

 Table 3 summarizes all the results described above, for a more integrated 

interpretation of the data.  

Considering the obtained results and the analysed effects and interactions, it is 

reasonable to observe that the lower-sized paraffin particles (size 1 and 2) were much 
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less prone to cause effects on the four analysed biomarkers (except for GSTs in size 2). On 

the opposite side, the larger the paraffin particles (sizes 3 and 4), the greater the extent 

of effects on selected parameters, with the involvement of the activity of almost all 

enzymes. The feeding regime significantly altered the enzymatic activities of all 

biomarkers, or confounded (i.e., interacted with) the effect of particle size (except for Se-

dependent GPx measured in the gills). 

GRed activity was the less responsive biomarker either to feeding regime or paraffin 

particles. On the opposite end, GSTs activity was the most responsive enzymatic 

biomarker, with significant differences being observed for all paraffin particle size classes, 

and in most cases being confounded by feeding regime. Two important trends in the data 

were the observations that: (i) often, an effect due to the paraffin particles was only 

observed in the absence of food; (ii) the most frequent particle density causing a 

significant effect in the measured biomarkers (lowest observed effect level – LOEL) was 

80 mg/l. 
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4. General Discussion 

4.1. Exposure and absorption to paraffin microparticles 

Results from the pre-test showed that it was possible to distinctly observe 

microparticles in gills and inside digestive glands after 2, 6 and 24 h of exposure (see 

Figure 3). This is in alignment with the known physiology of the tested organism, since 

individuals of Mytilus spp. can filter contaminants and particulate matter directly from 

the water through gills, or indirectly through digestive system (Gomes, 2012). Multiple 

studies concerning the feeding of Mytilus spp., including endoscopic examination, have 

shown that microparticles are filtered by gills, where filamentous cilia are able to capture 

particles from the external media, and particles can be either directly absorbed by 

transmembrane crossing (in case of lipophilic compounds) (Shumway & Parsons, 2016) or, 

rapidly transported to the labial palps and to the mouth, thus entering the digestive gland 

for absorption (Ward et al., 1991, 1993, 1998; Browne et al., 2008). Taking into account 

the chemical nature of paraffin (hydrocarbons), both gill and digestive absorption 

pathways are clearly possible. As such, our results will be discussed assuming direct 

contact of paraffin microparticles with external (gills) and internal organs (digestive gland) 

and subsequent absorption of hydrocarbons released from the particles.  

 

4.2. Mortality during exposure to paraffin microparticles 

During exposure to the particles, almost no mortality was observed, confirming the 

overall good condition of the laboratory organisms. This finding may also indicate that the 

tested particles had low toxicity, in general. A notable exception to this trend was a group 

of five dead organisms, after being exposed to the finer particles (size 1) at the highest 

density. This was an unexpected result, given the theoretically low toxicity of paraffin. 

However, increases in the mortality rate along with the increase of particle densities, 

namely microplastics, is a common outcome, not only with mussels (Rist et al., 2016) but 

also with crustaceans (Jemec et al.2016; Bergami et al., 2017), polychaetes (Thit et al., 

2015) and fish larvae (Mazurais et al., 2015). The here obtained data showed that this 

pattern only occurred for the smallest size of paraffin particles; for the same mass 

(density) of particles, the smaller particles are always more numerous than larger 
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particles. Thus, the observed effect may have to do with a higher number of particles 

present in suspension, because too many particles can lead to valve closure in order to 

prevent tissue damage, namely in gills, which would result in inhibition of gas exchange 

(Jørgensen, 1990; Ortmann & Grieshaber, 2003). This situation can ultimately lead to 

depletion of oxygen reserves, compromising essential life functions, such as ATP synthesis 

(Ortmann and Grieshaber, 2003; Rist et al., 2016).      

 

4.3. Biochemical responses to paraffin microparticles 

The marine environment is characterized by many kinds of environmental 

pollutants originating from direct discharge, atmospheric deposition or run off from land. 

All marine organisms have some degree of adaptation to metabolize the toxicants that 

may enter their internal environment (Zhang et al., 2014). In the case of hydrocarbons, 

such as the case of the paraffin released by cosmetic microbeads, most organisms are 

able to metabolize and excrete/eliminate these recalcitrant and lipophilic contaminants. 

Such metabolism involves many stages and many cellular players (see Introduction), and 

may cause oxidative stress or depletion of antioxidants (e.g.: glutathione). 

GSTs was the most responsive biomarker to the exposure to paraffin microparticles, 

increasing in some situations, while decreasing in others. This increase may indicate the 

activation of a specific pathway of the phase II biotransformation mechanism, where GSTs 

conjugated glutathione with the functional groups that are either present on the 

xenobiotic or were introduced during phase I, in order to turn it into a product highly 

soluble in water, non/less toxic, ionizable and easily excretable (see introduction). This 

biotransformation mechanism was already described, and for aliphatic hydrocarbons 

(Hou, 2000; Shabaruddin et al., 2012). There is limited experimental evidence on possible 

biochemical toxicity mechanisms of aliphatic hydrocarbons. The liver is a target organ in 

repeated dose studies with rats and mice; Kuroda et al. (2013) studied the effects of 

ozocerite (mainly consisting in aliphatic hydrocarbons) in rats, and observed that GSTs in 

the liver increased in all treated groups. A study conducted by Johnson (1965) tested the 

influence of specific aliphatic compounds on rat liver glutathione levels, and put the 

hypothesis that several of them led to a depression of liver GSH levels, which was 

associated to the fact that these compounds were all substrates for GSTs. Studies 
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conducted with other organisms are mainly with aromatic hydrocarbons and short chain 

chlorinated paraffins (SCCPs); Burýšková et al. (2006) observed a significant induced 

detoxification by GSTs in Xenopus laevis embryos exposed to a commercial mixture of 

SCCP.   

An increase on CAT activity (in paraffin particle sizes 3 and 4) and on GPx (size 3) 

activities in digestive gland was observed, so an antioxidant defence appears to have 

been activated. A decrease on GPx activity was also observed (size 4), which can be 

related to the activation of other defence pathways responsible for the reduction of 

hydrogen peroxide like CAT (Birben et al., 2012). The metabolism of hydrocarbon 

compounds may lead to the production of free radicals derived from oxygen (ROS) and 

nitrogen (RNS), and exposure to these oxygen/nitrogen reactive species often leads to an 

oxidative stress scenario (Zhang et al., 2014). When organisms are exposed to chemicals 

whose metabolism may result in pro-oxidative conditions, antioxidant defences are 

triggered in order to detoxify and scavenge the excess of ROS/RNS that is likely to be 

produced (Correia et al., 2016). These antioxidant defences can be enzymatic and non-

enzymatic, and the majority of enzymatic antioxidants are superoxide dismutase (SOD), 

catalase (CAT), glutathione reductase (GRed) and glutathione peroxidase (GPx) (Birben et 

al., 2012). On the other hand, our results may be justified considering that aliphatic 

compounds, namely aliphatic alcohols, serve as specific substrates for CAT (Metelitsa & 

Popova, 1979; Hnaien et al., 2010), and a study has already shown that cyclohexane 

induces GPx activity (Prasad et al., 2015). GPx increased activity was mainly detected in 

digestive gland, which may indicate that the organisms absorbed the paraffin particles 

mainly through the digestive system. Many studies have focused on the utility of 

antioxidants as biomarkers for bivalves (Lima et al., 2007; Lüchmann et al., 2011; Zhang 

et al., 2014; Sandrini-Neto et al., 2016), however oxidative stress responses to aliphatic 

hydrocarbons have been mainly studied in microorganisms or rat liver. 

GRed activity was the less responsive biomarker, since it was not modulated by 

either the feeding regime or paraffin particles (size and density). Opposite results were 

found by Lima et al. (2007), who observed that GRed activity stood out a as suitable 

biomarker of detection of aliphatic hydrocarbons in the digestive gland of Mytilus 
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galloprovincialis. This situation could be clarified with GSH, GSSG and NADPH 

quantification. GPx promotes the oxidation of GSH to GSSG to eliminate organic and 

inorganic peroxides from the organism. As GSSG accumulates, and to maintain the 

cellular redox balance, it must be reduced to GSH by GRed and, if the production of GSSG 

surpasses the regeneration of GSH, GSSG accumulates and is translocated outside the cell 

by specific transporters to avoid NADPH exhaustion (Lima et al., 2007). However, without 

these data, results suggest that, despite the unchanged activity of GRed, antioxidant 

systems of Mytilus spp. could have remained active enough to prevent oxidative 

deleterious effects.  

  

4.4. Differences across paraffin particle sizes 

Suspension feeding bivalves tend to increase their filter efficiency in the presence of 

very small food particles (Møhlenberg, 1988; Strohmeieret al., 2012); however, it has 

been reported that Mytilus spp. can ingest zooplankton organisms up to 3 mm (Lehane & 

Davenport, 2002). So, all four size ranges of paraffin particle used in this study are likely 

to be ingested by the organisms; this is especially true for the finer particles, since 

phytoplankton (20-200 µm) is the primary food source of mussels (Lehane & Davenport, 

2002). However, the results obtained in our experiment show that the lower-sized 

paraffin particles (size 1 and 2) were less prone to cause effects on the four enzymes that 

were analysed. In theory, the small particles have a large relative surface, therefore they 

would be more susceptible to erosion/abrasion and digestion, which would lead to a loss 

of hydrocarbons, thus making these results somewhat contradictory. The lack of effects 

caused by the lower-sized particles may be explained by the protective role of mucus. The 

process by which bivalves capture particles from the external media, and transports them 

to the mouth and down to the digestive gland may or may not involve mucus to prevent 

the absorption of the particles, and this segregation may be induced by higher 

concentrations of suspended particles in the medium (Beninger et al., 1999; Riisgård et 

al., 2011). This may be the case in the smaller particles. The particle quality (organic or 

inorganic) is detected by the labial palps and this contributes to sorting non-food particles 

that, by the mucus, are ultimately washed away from gills (Jørgensen, 1996; Riisgård et 

al., 2011). Particles that end up stuck in the mucus are transported with rejection tracts to 
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be transformed in pseudofaeces and ultimately ejected (Foster-Smith, 1978; Riisgård et 

al., 2011). Additionally, Clausen & Riisgård (1996) observed that very high algal 

concentrations in the medium reduce the filtration rate by mussels, and Hornbach et al. 

(1984) observed that filtration rates decreased as particle concentration increased over 

a range of 2-64 mg/l. This shows that this is an apparently saturable mechanism, and 

which is subject not only to the size, but also to the effects of the density of particles in 

the medium. This may have affected the absorption of the finer paraffin particles and 

consequently their effects. 

 

4.5. Influence of feeding regime in biomarkers 

Effects due to the paraffin particles were mainly observed in the absence of food 

(except for Se-dependent GPx measured in the digestive gland and for CAT in size 3) but 

not in the presence of food. This shows a potentially confounding factor of food or 

feeding regime in the assessment of biomarkers. The experiments conducted by Ward et 

al. (2003) examined the roles of diet quality and concentration on particle processing by 

the ctenidia and filtration of four species of bivalve, and observed a significant increase 

with increasing diet quality, and a significant decrease with increasing particle 

concentration. Wettability (hydrophobic/hydrophilic) and electrostatic charge, have been 

suggested to play possible roles in food selection by bivalves (Rosa et al., 2013). 

Wettability has been demonstrated that can be related to particle selection by Daphnia 

magna, with hydrophilic particles being retained more efficiently than hydrophobic ones 

(Gerritsen & Porter, 1982) and charged particles are more easily filtered than neutral 

ones by brittle star Ophiopholis aculeate (Labarbera, 1978) and larval clam Mercenaria 

mercenaria (Solow & Gallager, 1990). Other studies demonstrated that bivalves can select 

living particles from non-living detritus on the gills, as showed by Ward et al. (1997). 

Together, these results suggest that Mytilus spp. may be able to sort algae cells from the 

paraffin particles, which can explain the lack of effects in the presence of food; it is this 

licit to hypothesize that paraffin particles might not be filtered, or at least they were in 

less quantity. Another study by Levinton et al. (2002) concluded that bivalves distinguish 

among particles of different chemical composition, and respond by changing their 

clearance rates and their selectivity, because in the absence of food bivalves tend to 
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increase their rate of filtration, which expose them more to the particles. This fact seems 

more likely to explain our results since there were also effects in the presence of food. 

Additionally, algae are rich in antioxidant molecules, from vitamins to fatty acids, which 

aid in protecting cells against oxidation under conditions of various stresses (Wang et al., 

2008; Wu et al., 2015). Chlorella vulgaris, the green microalgae used in this experiment, 

possesses indeed a vast array of antioxidant defences, as shown by Wang et al. (2008). 

This can also explain the lack of effects in all enzymes activities in presence of food, since 

antioxidant defences present in the microalgae could have been activated, or the 

organisms may have incorporated these defences.  

 

4.6. Microplastics vs. paraffin microparticles  

Microplastics can be ingested by various organisms, and there are some studies that 

focus on biochemical responses after exposure to microplastics, namely in clam 

Scrobicularia plana exposed to 1 mg/l of 20 µm polystyrene microplastics (Ribeiro et al., 

2017), zebrafish Danio rerio exposed to 20, 200 and 2000 µg/l of 5 and 20 µm polystyrene 

microplastics (Lu et al., 2016) and marine mussels Mytilus spp. exposed to 32 µg/l of 2 

and 6 µm polystyrene microplastics (Paul-Pont et al., 2016). These studies exposed the 

organisms to lower densities than the ones used in our study, and both observed 

biochemical responses including DNA damage, neurotoxicity and enhancement of anti-

oxidant and glutathione-related enzymes. However, particle size influences the 

distribution of microplastics in biological systems; for instance, 10 µm plastics can be 

transported to the circulatory systems in mussels (Browne et al., 2008), and 8-10 µm 

plastics may accumulate in gills and gut of crustaceans (Watts et al., 2014). In our study, 

the most frequent particle density causing a significant effect in the measured biomarkers 

was the highest one – 80 mg/l so, only by comparing these studies, it appears that 

microplastics promote toxic effects at lower densities. However, more studies have to be 

made in order to evaluate the toxic effects of paraffin particles, including not only 

biochemical responses but other potential targets, like DNA damage, neurotoxicity – 

these are effects that have already been reported for microplastics (Oliveira et al., 2013; 

Lu et al., 2016; Deng et al., 2017; Ribeiro et al., 2017) and lipid metabolism, not only for 

the previous reason but also because paraffin can be used as a source of carbon and 
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energy by several prokaryotic and eukaryotic microorganisms (Hankin & Kolattukudy, 

1968; Wentzel et al., 2007) and larger animals (Yin et al., 1995; Stetten, 2017). 

The amount of paraffin particles currently found in the environment is very small 

when compared to microplastics. A study reported the amount of micro- and meso-

plastics floating in Mediterranean waters, of which only 0.8% of a total of 4050 particles 

were paraffins (Suaria et al., 2016). So, organisms are currently much more exposed to 

microplastics than to paraffin particles. In our study, the tested densities of paraffin 

microparticles were based on a worst-case scenario study that measured a maximum of 

0.25 mg/l  of microplastics in the North Pacific Subtropical Gyre (Goldstein et al., 2012). 

Since the most frequent particle density causing a significant effect in the measured 

biomarkers was 80 mg/l (highest density), it is unlikely that oxidative insult or damage 

may occur with the densities of paraffin particles close to those found today in the 

environment. However, in order to keep it that way, dumping of plastic-based products in 

the environment must be avoided, even though the toxicity scenarios are unlikely to 

occur. 
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5. Conclusion     

The ecotoxicological acute effects of paraffin particles were analysed in Mytilus 

spp.. These microparticles promoted effects on phase II biotransformation metabolism, 

GSTs activity was the most responsive enzymatic biomarker with significant differences 

being observed for all paraffin particle size classes, and on enzymatic antioxidant 

defences, supported by alterations in CAT and GPx activities. On the contrary, GRed was 

the less responsive biomarker either to feeding regime or to paraffin particles. The effects 

observed were not always consistent or very pronounced, indicating that the biochemical 

and cellular insult was not very intense. However, research should be pursued for a 

proper assessment of the environmental risk posed by these particles. As for particle 

sizes, the larger the paraffin particles, the greater the extent of effects on selected 

parameters, with the involvement of the activity of almost all enzymes for particles size 3 

and 4. Effects due to the paraffin particles were mainly observed in the absence of food, 

and the most frequent particle density causing a significant effect in the measured 

biomarkers (lowest observed effect level – LOEL) was 80 mg/l. Since this study was 

conducted based on a worst-case scenario, it is unlikely that these results occur with the 

densities of paraffin particles close to those found today in the environment. As for the 

question if paraffin is a suitable replacement or alternative to microplastics in cosmetics, 

it seems that at least it does not promote toxic effects at the densities that other 

microplastics do. 
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