
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2015

Miguel
Reis Vicente

Caraterização de Utilizadores em Redes Sociais

User Characterization in Social Media

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2015

Miguel
Reis Vicente

Caraterização de Utilizadores em Redes Sociais

User Characterization in Social Media

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor Diogo
Nuno Pereira Gomes, Professor Auxiliar do Departamento de Eletrónica, Tele-
comunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutora Ana Maria Perfeito Tomé
Professora Associada da Universidade do Aveiro

vogais / examiners committee Prof. Doutor Carlos Manuel das Neves Santos
Professor Auxiliar da Universidade de Aveiro

Prof. Doutor Diogo Nuno Pereira Gomes
Professor Auxiliar da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Começo por agradecer ao Professor Diogo Gomes, pela oportunidade em
trabalhar numa área que me apraz, pela liberdade que me deu na realização
deste trabalho e pela ajuda disponibilizada durante o mesmo.
Aos meus companheiros e colegas de curso, palavras não me chegam para
chegar a todos os que de alguma forma me tornaram uma pessoa melhor e
fizeram desta estadia de cinco anos em Aveiro dos melhores anos da minha
ainda curta vida.
Aos meus amigos Vasco Santos, Rui Monteiro, José Sequeira e Joel Pinheiro,
o meu obrigado por todas as aventuras e desventuras que levamos do nosso
primeiro ano e dos outros, pela nossa querida habitação, pelas noites sem
dormir, pelas discussões efervescentes e por tudo o que vocês representam
neste percurso.
Aos meus colegas de longa data, por se manterem sempre por perto apesar
de fisicamente estarem longe.
Por fim quero deixar uma palavra especial à minha família. Ao meu irmão,
pai e mãe, por tudo o que passaram para que este momento fosse possível.
O percurso até aqui foi acidentado, mas sempre com a vossa constante e
total disponibilidade para me apoiar nas minhas decisões e me aturar durante
os piores momentos. O meu mais sentido obrigado por fazerem de mim a
pessoa que sou hoje.

Palavras Chave Redes Sociais, Twitter, Análise de Grafos, Extração de Dados, Aprendizagem
de Máquina, Análise de Dados, Visualização de Dados

Resumo O crescimento acentuado das Redes Sociais que se verificou num passado
recente, criou uma nova área de estudo na investigação em análise e extra-
ção de dados. A sua disseminação pela sociedade moderna torna-as uma
fonte interessante para a aplicação de ciência dos dados, visto que auxiliam
a perceção de comportamentos e padrões em dados sociais. Este tipo de
informação possui valor estratégico em áreas como a publicidade e o marke-
ting. Nesta dissertação é apresentado um protótipo para uma aplicação web
que visa apresentar informação sobre a rede Twitter e os utilizadores que a
compõem, através de esquemas de visualização de dados. Esta aplicação
adota um modelo de dados de um grafo de propriedades, armazenado numa
base de dados de grafos, para permitir uma análise eficiente das relações
entre os dados existentes no Twitter. Para além disso, também faz uso de
algoritmos de aprendizagem supervisionados e não-supervisionados, assim
como análise estatística, para extrair padrões no conteúdo de tweets e prever
atributos latentes em utilizadores do Twitter. O objetivo final é permitir a ca-
raterização dos utilizadores Portugueses do Twitter, através da interpretação
dos resultados apresentados.

Keywords Social Media, Twitter, Graph Analysis, Data Mining, Machine Learning, Data
Analysis, Data Visualization

Abstract The massive growth of Social Media platforms in recent years has created a
new area of study for Data Mining research. Its general dissemination in mod-
ern society makes it a very interesting data science resource, as it enables the
better understanding of social behavior and demographic statistics, informa-
tion that has strategic value in business areas like marketing and advertising.
This dissertation presents a prototype for a web application that provides a
number of intuitive and interactive data visualization schemes that present in-
formation about the Twitter network and its individual users. This application
leverages a property graph data model, modeled from a collection of millions
of tweets from the Portuguese community and stored in a state of the art graph
database, to enable an efficient analysis of the existent relationships in Twitter
data. It also makes use of Supervised and Unsupervised learning algorithms,
as well as statistical analysis, to extract meaningful patterns in tweets con-
tent and predict latent attributes in Twitter users. The end goal is to allow the
characterization of the Portuguese users in Twitter, through the created visual
representations of the achieved results.

Contents

Contents . i

List of Figures . v

List of Tables . vii

Listings . viii

Acronyms . xi

1 Introduction . 1
1.1 Contextualization . 1
1.2 Goals . 2
1.3 Outline . 2

2 State of the Art . 3
2.1 Social Media . 3

2.1.1 Growth and Relevance . 3
2.1.2 Social Media Environments . 4
2.1.3 Microblogging and Twitter . 5

2.2 Data Mining in Social Media Environments 6
2.2.1 Data Mining and the KDD Process 6
2.2.2 Data Preprocessing . 7
2.2.3 Data Mining and Machine Learning 10
2.2.4 Data Postprocessing . 13
2.2.5 Challenges With Social Media Data 14
2.2.6 Relevant Research Topics . 17
2.2.7 Related Work . 20

2.3 Technology Review . 21
2.3.1 Graph Databases . 22
2.3.2 Neo4j . 23
2.3.3 OrientDB . 25
2.3.4 Titan . 27
2.3.5 Graph Databases Review . 28
2.3.6 Data Mining and Machine Learning Tools 30

3 System Description and Architecture 33

i

3.1 Description and Requirements . 33
3.1.1 Network Scope . 34
3.1.2 User Scope . 34
3.1.3 Non-functional Requirements . 35

3.2 Data Model . 35
3.2.1 Available Data . 35
3.2.2 Proposed Data Model . 37
3.2.3 Storage Requirements . 39

3.3 Client-Server Model . 39
3.3.1 Backend . 40
3.3.2 Frontend . 40
3.3.3 API . 41

3.4 Data Mining Modules . 41
3.5 Architecture Overview . 42

4 Implementation . 43
4.1 Storage . 43

4.1.1 Neo4j Configuration . 43
4.1.2 Data Model . 45
4.1.3 Data Migration . 49

4.2 Network Scope Goals . 50
4.2.1 Network Activity . 50
4.2.2 Network Gender Distribution . 54
4.2.3 Network Influence . 59
4.2.4 Network Content . 61

4.3 User Scope Goals . 65
4.3.1 User Activity . 65
4.3.2 User Network . 68
4.3.3 User Content . 70
4.3.4 Topics . 70
4.3.5 Similarity . 71

4.4 Web Application . 71
4.4.1 Django Web Framework . 72
4.4.2 Celery . 78
4.4.3 Redis . 79
4.4.4 Visualization Frameworks and Libraries 79

5 Results . 83
5.1 Prototype . 83

5.1.1 Home page . 83
5.1.2 Network Explorer - Activity . 84
5.1.3 Network Explorer - Influence . 89
5.1.4 Network Explorer - Content . 90
5.1.5 User Explorer - Profiling . 91
5.1.6 Gender Classification . 95

5.2 API . 96
5.3 Benchmarking and Performance . 97
5.4 User Interface Evaluation . 98

6 Conclusion . 101

ii

6.1 Final Considerations . 101
6.2 Future Work . 102

References . 103

Appendix A: Twitter API Objects . 109

Appendix B: gender classifier . 115

Appendix C: api documentation . 123

Appendix D: Usability Enquiry . 127

iii

List of Figures

2.1 The first tweet ever posted on Twitter. 6
2.2 Generic KDD process . 7
2.3 Diagram of a standard Supervised Learning application 12
2.4 Google Trends result for the term "big data". 15
2.5 Example of a property graph of Twitter dynamics 22
2.6 Graph view on the Neo4j web interface. 25

3.1 Graph representation of Status objects . 38
3.2 Client-Server Model . 40
3.3 High-level System Architecture . 42

4.1 Generation of 2-grams at character and word level. (The _ represents a blank space 56
4.2 Training of the gender classifier . 57
4.3 Creation of the Document model . 63
4.4 Clustering of Documents . 65
4.5 Architecture diagram of the web application . 72
4.6 Loading of the TopicSimilarity class . 77

5.1 Prototype home page . 84
5.2 Network activity by month . 85
5.3 Network activity by hours . 86
5.4 Network activity by locations . 87
5.5 Gender distribution . 88
5.6 Source distribution . 88
5.7 Filters for the influence rank . 89
5.8 Influence rank . 89
5.9 Graphical representation of the uncovered clusters 90
5.10 Most relevant terms for cluster 1 . 90
5.11 Find user to profile form . 91
5.12 User profile information . 91
5.13 User activity . 92
5.14 User network interaction . 92
5.15 User similarity graph . 93
5.16 User distance graph . 93
5.17 User term frequency as a word cloud . 94
5.18 User topic modeling as a graph layout . 95
5.19 Find user for classification form . 96

v

5.20 Classification results . 96
5.21 Neo4j Profile Interface . 97

1 API - Network activity in each month . 123
2 API - Network activity in locations . 124
3 API - Influence rank . 124
4 API - Cluster nodes . 125
5 API - Cluster terms . 125
6 API - User similarity . 126
7 API - User topics . 126

8 Usability Enquiry - Section 1 . 128
9 Usability Enquiry - Section 2 . 129
10 Usability Enquiry - Section 3 . 130
11 Usability Enquiry - Section 4 . 131
12 Usability Enquiry - Section 5 . 132
13 Usability Enquiry - Section 6 . 133

vi

List of Tables

2.1 Comparison of Graph Database Management Systems (GDBMSs) 29

3.1 TVPulse Data Model . 36
3.2 Relevant properties in Status Objects . 37
3.3 Proposed User model . 38
3.4 Proposed Tweet model . 39
3.5 Proposed Hashtag model . 39
3.6 API Specification . 41

4.1 Neo4j System Requirements . 44
4.2 Number of nodes in the database . 50
4.3 Number of relationships in the database . 50
4.4 Database size . 50
4.5 Sociological feature model . 55
4.6 N-gram feature model . 56
4.7 Classification results for the sociological feature model 57
4.8 Classification results for the n-gram model . 58
4.9 Classification results for the joint models . 58

5.1 Benchmarking of Neo4j queries . 98

vii

Listings
1 Example of a Cypher query . 24
2 Neo4j Network Configurations . 44
3 Example of a create User query . 45
4 Example of a create Tweet query . 46
5 Example of a create Hashtag entity query . 46
6 Example of a create relationship query . 46
7 Example of a create user-posts-tweet relationship 47
8 User id uniqueness constraint . 47
9 Screen name uniqueness constraint . 47
10 Tweet id uniqueness constraint . 47
11 Hashtag text uniqueness constraint . 48
12 User id index . 48
13 User screen name index . 48
14 Tweet id index . 48
15 Hashtag text index . 48
16 Query for the number of tweets in a month 51
17 Query for the number of tweets from each day in a month 51
18 Query for the number of tweets in a specific day 51
19 Query for the number of tweets by hour in a day 52
20 Query for obtaining tweet locations . 52
21 Query for obtaining tweet locations in a single month 53
22 Query for obtaining tweet sources . 54
23 First query developed for calculating the in-degree score of User entities . . . 60
24 Query developed to create user-mentions-user relationships 60
25 Second query developed for calculating the in-degree score of User entities . . 60
26 Python function that tokenizes a tweet . 62
27 Python function that tokenizes a Document 64
28 Query for user activity over months . 66
29 Query for user activity on a specific month 66
30 Query for user activity for all days in a month 66
31 Query for user activity on a specific day . 66
32 Query for user hourly activity on a specific day 66
33 Query needed to calculate which weekday is the user more active 67
34 Query for user activity for every hour . 67
35 Query for user activity sources . 67
36 Query to obtain the users that more frequently mention other user 68
37 Query to obtain the users that more frequently reply to another user 69

viii

38 Query to obtain the users that another user more frequently mentions 69
39 Query to obtain the users that another user more frequently replies to 69
40 Query to obtain the distance between two users 70
41 User entity as a Python object . 73
42 Cassandra Document as a Python object . 74
43 Class developed to calculate similarity between one user and the rest 76
44 Example of an API response . 77
45 Example of a Twitter API User Object . 109
46 Example of a Twitter API Status Object . 112
47 Classifier training script . 115
48 List of gendered Portuguese nicknames and abbreviations 119
49 List of gender-meaningful terms . 120
50 Regular expressions used to remove URLs hashtags and mentions from tweets 121

ix

Acronyms

ACID Atomicity, Consistency, Isolation,
Durability

AI Artificial Intelligence

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

DBMS Database Management System

DM Data Mining

EPG Electronic Programming Guide

GDBMS Graph Database Management
System

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

JSON JavaScript Object Notation

JVM Java Virtual Machine

KDD Knowledge Discovery in Databases

LDA Latent Dirichlet Allocation

ML Machine Learning

MTV Model-Template-View

MVC Model-View-Controller

NoSQL Not-only Structured Query
Language

NLP Natural Language Processing

NLTK Natural Language Toolkit

OGM Object-Graph Mapping

ORM Object-Relational Mapping

PCA Principal Component Analysis

RDBMS Relational Database Management
System

REST Representational State Transfer

RT Retweet

SQL Structured Query Language

SVM Support Vector Machines

TF Term Frequency

TF-IDF Term Frequency - Inverse Document
Frequency

SVG Scalable Vector Graphics

URL Uniform Resource Locator

WEKA Waikato Environment for
Knowledge Analysis

xi

chapter 1
Introduction
This chapter introduces this dissertation’s scenario and purpose. It starts by contextualizing the reader
on the underlying issues that led to the need for this work. Afterwards it proceeds to explain the goals it
aims to achieve and finally it explains how rest of the document is structured.

1.1 contextualization
Social Media platforms and services have grown to reach a level of popularity and importance in

modern society that has made them an integral part of daily communications and social interaction for
millions of people around the world. The swift growth and diffusion of Social Media and its increasing
ability to provide its users the tools to create, share and appreciate content with one or many of their
peers has led to a massive volume of user-generated data, mainly, but not only, in the form of informal
text. Its evolution has continuously affected society and human interaction, with what is said and
done online having a greater relevance and contribution to how a person is perceived by its peers.

Being able to understand and extract information from Social Media data has been a research
field of interest in recent years[1]. This exposure of one’s feelings, opinions and other personal traits
drawn the attention of multiple business areas that rely on understanding people, as well as sociological
research. On the industry level, brands are evermore present in Social Media and use it as way to
engage consumers and provide information about their current activity[2]. In politics, it is common
nowadays for political parties and leaders to have an active Social Media presence to promote their
views and advertise their work. Both of them leverage Social Media to reach and interact with audience
levels deemed impractical through standard media outlets, with significantly less costs[3]. Besides
being a vehicle for communication, Social Media also represents a source of information. Extracting
useful data from the content available in Social Media platforms can provide insight about people, their
interests, preferences, or their friends, which can largely influence business decision making. Trying to
identify ways to make profitable use of this platforms has become a top of the agenda topic, mainly in
the marketing industry, in the form of directed marketing and consumer analytics[4].

While all of these factors present an opportunity, they also represent a challenge. Numerous
problems arise from trying to extract information from Social Media. This kind of data is not readily
available in a structured and organized fashion and its accessibility can be limited. This contrasts

1

with the fact that Social Media is a source of Big Data, due to the vast amount of people that use
it to produce new content on a regular basis. Additionally, data generated from Social Media data
comes in a wide range of formats, like text, images or video. User-generated data in the form of text
distinguishes itself from formal text due to the users disregard for grammar rules and inconsistent
choice of words. Consequently, it is difficult most of the times to process it and requires specific
techniques so it can be effectively handled. One particular aspect about this new type of data is that
it is heavily linked. Social Media tries to emulate real-life social relationships and protocols and this is
translated into its data. This causes common storing solutions like relational databases unsuitable to
manage Social Media data.

All of these issues have led to an increasing academic and entrepreneurial research in ways to store,
process and present Social Media data, which is exactly the focus of this dissertation, developing a
system capable of efficiently store, handle and visualize data generated from Social Media.

1.2 goals
The main purpose of this dissertation is to build an information system that leverages Social Media

data to provide subjective and objective characterization traits about the Portuguese users that are a
part of the Social Media platform Twitter.

Using a data set consisting of millions of tweets and their meta-data, it is intended to understand
potentially hidden information that can indicate certain traits about the Portuguese Twitter community,
create a data model that embraces the characteristics of Twitter data and stores it in an appropriate
solution. Afterwards, it is aimed to develop a web application that relies on the designed data model
to extract and present meaningful information about Portuguese Twitter users, using intuitive and
appealing data visualization techniques.

1.3 outline
• Chapter 2 presents the theoretical foundation behind this effort, some related work made in

Social Media research that inspired this dissertation and the technical components necessary to
build a system of this kind;

• Chapter 3 describes the requirements that this system should fulfill, as well as how it was
planned and conceptually designed;

• Chapter 4 provides a detailed overview of how the system was implemented and describes the
technologies used to accomplish it;

• Chapter 5 presents the results achieved by the developed prototype;

• Chapter 6 discusses the obtained results, how they are relevant and future improvements for
this work.

2

chapter 2
State of the Art
This chapter captures essential background knowledge relevant to this work. It focuses on understanding
the Social Media phenomenon, then it proceeds to explain the process of extracting knowledge from
Social Media sources and reviews the technology necessary to build the proposed system.

2.1 social media

2.1.1 growth and relevance
Social Media is conceptually defined as a set of computer-mediated tools to create, exchange or

share information in a virtual community[5]. This concept by itself is not particularly groundbreaking
as one can go as far as 1979 to find examples of online Social Media that fit this description[1]. However,
the birth of modern Social Media was one of the consequences of what is commonly referred as Web 2.0,
the notion of the World Wide Web as a platform where content is not only published but continuously
created and modified by virtual communities, as well as the set of technological advances that supported
this transformation[1]. This, along with the growing availability of high-speed Internet access, allowed
the tremendous rise in popularity of this new form of media, leading to creation of platforms such as
Facebook1, the one that arguably brought the phenomenon of Social Media to public debate[1].

Social Media growth in terms of active user base has been tremendous over the past years. In 2016,
Facebook counts over 1.2 billion users on a daily basis[6], photo-sharing giant Instagram2 is estimated
to have over 500 million active users[7] monthly and microblogging platform Twitter3 around 315
million[8]. It can also be observed that these numbers are in continuous growth since these platforms
appeared and this pattern is expected to continue.

These numbers are indicators of the relevance these platforms have in modern society and how
extracting knowledge from them can be a key factor in today’s enterprise decision making.

1https://www.facebook.com/
2https://www.instagram.com/
3https://www.twitter.com/

3

https://www.facebook.com/
https://www.instagram.com/
https://www.twitter.com/

2.1.2 social media environments
The adaptable aspect of this kind of internet-based applications and the ability to offer different

types of multimedia content such as image, video, audio and text under a different set of rules and
conditions set the ground for the proliferation of a number of Social Media platforms. As a result, came
the need to understand and classify them according to their purpose, functionality, social presence and
media richness. Current theories in Social Media research have identified the following categories for
classifying Social Media services[1]:

• Collaborative projects;

• Blogs;

• Content Communities;

• Social Networks;

• Virtual Game Worlds;

• Virtual Social Worlds;

For the purpose of this work, it is relevant to address three of the presented types, which are Blogs,
Content Communities and Social Networks.

Blogs are accounted to be the first official form of online Social Media[9]. Derived from the term
"weblog"[10], this form of Social Media is nothing more than a website that is updated by a person
or people under the form of submissions (or posts). The content available in a blog is defined by its
owner(s). It also allows for commentary and feedback on the writer’s entries, establishing a form of
interaction between the writer and its readers. While in their genesis blogs were mainly long text
based, times dictated the introduction of new variants such video blogs, where video replaces text and
microblogs where long texts are replaced by short messages. Microblogs will be addressed further and
in detail in this chapter.

Content Communities focus on media content sharing. By media, it is included media formats
other than text, with video, photo and audio being the most common. This form of Social Media differs
from blogs in the fact that they usually are aggregated in a single platform and blogs are considered
personal web pages. They share with blogs the possibility of commentary on posted content. The most
popular content communities nowadays include YouTube4, Tumblr5 and Instagram.

Social Networks are currently the most popular form of Social Media environments. The main
focus of Social Networking sites is connectivity. They enable the creation of personal profiles, where
users expose personal information like contact information, interests, or other character defining facts
and allow them to connect and network virtually with other users. They also allow the enrichment of
your profile page through content sharing and attempt to emulate social relationships and interaction
with concepts of friendship or approval. Major Social Networking platforms include Facebook and
LinkedIn6.

4https://www.youtube.com/
5https://www.tumblr.com/
6https://www.linkedin.com/

4

https://www.youtube.com/
https://www.tumblr.com/
https://www.linkedin.com/

2.1.3 microblogging and twitter
Microblogs are a new branch of the traditional blogs presented before. They are characterized

by a significant reduction of content length in the author’s entries and a sense of real-time, personal
commentary on the world’s happenings[11]. Microblogging is also accounted to be a broadcast medium,
meaning that content is distributed from the author directly to an audience, under a defined set of
communication rules.

It is pointless to discuss microblogging without referring to Twitter, the most popular microblogging
platform in existence[11]. Twitter is a microblogging service launched in October 2006 which allows
the posting of sentences no longer than 140 characters, reminding of a newspaper headline, called
tweets or, less knowingly, status updates. Tweets can also contain individual images or video links.
Combined with this particular form of content, Twitter also has a collection of communication rules
for its network. It uses a dynamic of followers and friends, which are reciprocate. However, a user
can be a follower of another user without the opposite being obligatory. Being a follower of another
user in Twitter means that all his tweets will be broadcasted to you. Friend is the denomination
attributed to the users that you follow and follower is the denomination for users that have followed
you. Twitter also uses a well-defined markup culture[12] and rules specific to the tweet itself. This
includes Retweet (RT), which is the act of broadcasting other users’ tweets to your followers and
Mention which is identified by the character at ("@") preceding the user’s screen name and used to
forward a tweet directly to a specific user. A RT also allows the possibility of commenting on the
original tweet, which denotes a quote Tweet. It is possible as well to reply to other users’ tweets, which
implies starting a tweet with a Mention to the user being replied. The hash character ("#") before a
word is called an hashtag. This is used to group tweets into a specific topic. You can perform searches
in Twitter by hashtag, which will retrieve issued tweets that contain it.

Twitter’s format makes it an interesting source for Social Media research, mainly because most
of the content of its postings represents some form of an opinion or public statement regarding a
certain topic[13], as well as its current popularity and number of active users. Moreover, not only
the content of user messages can be put under scrutiny but also the relations that users can establish
among themselves and how they interact with their fellow virtual participants. The study of Twitter
interaction mechanisms can also provide valuable insight when establishing a user profile[14]. For
brands, Twitter is typically used as a mean for interaction with its consumers[15], which makes it an
even more relevant research source, since it is in their best interest to understand their underlying
virtual user base, whether in terms of behavior, demographics or sentiment.

5

Figure 2.1: The first tweet ever posted on Twitter.

2.2 data mining in social media environments
Data Mining (DM) in Social Media environments (or Social Media Mining) is the interdisciplinary

field that results from the confluence of Social Media services and Data Mining processes. It is "the
process of representing, analyzing, and extracting actionable patterns from Social Media data"[16]. As
discussed before, Social Media represents a medium that shatters the boundaries of the real and the
digital world, where billions of people spend a vast amount of time collecting, curating, publishing,
sharing and commenting content[17]. Social interaction becomes no longer restricted by time or space
and this results in new opportunities for human behavior analysis.

The application of Data Mining techniques in Social Media environments can enhance researchers’
capability to understand new phenomena and provide better knowledge for business decision making
and intelligence. Data Mining in Social Media can help to identify influential users in a Social Media
platform, detect latent communities formed in Social Networks, classify user sentiment towards a
brand, subject or product, among other trending research fields[17].

In this section it will be given a general overview of what a Data Mining process consists, the
challenges faced when building a system that relies on Data Mining, the problems posed by Social
Media data and advances in this areas that are relevant to the developed work.

2.2.1 data mining and the kdd process
Data Mining is defined as the process of discovering explicit, implicit, interesting and useful

patterns or relationships, which is to say knowledge, in large volumes of data[18],[19],[20]. This
emerging multidisciplinary field in computer science is a result of recent advances in computing power,
storage capacity and technology, as well as the increasing availability of computer connectivity[19].
This is a broad definition of the term and, in all truth, there is no straightforward way to define
and categorize this vast area of computer science. Even the name has debate to what it should be,
with Data Mining being the most accepted. However, other similar meaning terms, like data analysis,
pattern analysis or data dredging[18] are also used.

To address this topic, it is firstly necessary to decide the scope of what is designated as Data
Mining. In scientific literature, Data Mining is either addressed as the whole process of extracting

6

knowledge from large amounts of data, therefore a synonym for the process of Knowledge Discovery in
Databases (KDD) or as the core step of this process [21]. This ambiguous notion derived from the
rising popularity in industry and media of the term Data Mining led to less usage of the longer KDD.
While this is a matter of semantics, in this work we will refer to Data Mining as one step of the KDD
process.

In this section it will be presented the theoretical standard steps in a KDD system/research venture.
Broadly speaking, it is possible to divide the KDD process in three core steps: Data Preprocessing,
Data Mining and Data Postprocessing[17]. This three steps are further divided in sub-steps,
which need not be separate or individual tasks, as one can observe in figure 2.2.

Figure 2.2: Generic KDD process

2.2.2 data preprocessing
For a Data Mining research to be successful, it is imperative to have a solid comprehension of the

domain about to be researched. Since Data Mining applications can be oriented to an extensive array
of domains, like market analysis, customer relation, fraud detection, production control or exploratory
science [18], it seems ordinary that having consistent knowledge over that same topic will increase
the chance of being able to produce positive results. Besides that, it is also vital to have a well
defined goal for the application and to work with data aligned with that goal[22]. These are the first
two things to take into consideration before actually starting to handle data itself. This is because
Data Mining applications work to detect implicit and potentially useful information that is hidden in
colossal amounts of data, which most of the times is imperfect and unstructured. To put it in a simple
statement, one should know what is going to do and what wishes to accomplish, before actually doing
it.

Furthermore, it is necessary to understand the data about to be studied, which is in most cases
unsuitable to be directly analyzed. Data can contain errors, unusual values, or inconsistencies and
it is necessary to handle these issues for successful results. It is possible to categorize data quality
problems by incompleteness, noise and inconsistency[18],[23]. Section 2.2.5 will describe in detail
issues encountered when dredging in Social Media data.

Data Preprocessing is a collection of techniques that have as purpose improving the quality of
data to make it suitable for the application of Data Mining algorithms. Low quality data is one of the
main issues in effective Data Mining. It is directly related to the success of mined results and to the
performance of the chosen algorithms[24].

7

A group of four Data Preprocessing techniques will be addressed, all of them pertinent to the
developed work.

data cleaning
Data cleaning consists of a set of procedures that aim at resolving the issues of inconsistency,

incompleteness and noise mentioned above. Frequent data cleaning methods include strategies for the
handling of missing values[18]. Most common strategies for resolving missing values problems are:

• Ignoring incomplete samples, which is not very effective and usually doesn’t result in great
improvements in data quality, especially if the percentage of samples with missing values is
considerable;

• Filling missing values manually, which produces quite successful results but it is time consuming
and nowadays generally infeasible due to the constant growth of available data;

• Filling missing values autonomously, either with a global variable, which can create by itself a
pattern in data if it attributes the same value to an appreciable amount of samples;

• Filling missing values by statistic completion, either through a mean or a median;

• Filling missing values by prediction, using the rest of the attributes in the data set.

It is more common to use strategies for autonomous sample completion when dealing with this
issue, with the use of prediction being the most popular and desirable, since it is capable to relate
existing information from different attributes[18]. Although the strategies presented provide answers
to this common problem in preprocessing, it is also important to account for situations where missing
values are not an error but a consequence of the type of data that is being dealt with. For example,
when handling personal data it is most utterly common that some attributes are missing by choice,
either because the person decided not provide them, like age or gender, or because it is not possible
for that person to provide them, like a driver’s license number in an underage user.

Another concern addressed by data cleaning processes, is noisy data. Noise can be defined as a
random error or variance in a measurable attribute[18]. This is one of the most difficult problems in
inductive Machine Learning (further developed in section 2.2.3)[25]. Methods for handling noise in
data include Binning, Regression and Clustering[18].

Binning consists in smoothing a sample according to the values that surround it. This method
groups values in bins and adjusts them in each bin according to a defined metric. It can be adjusted
by mean, median or by proximity to the bin boundaries.

Regression consists in fitting the data to a regression function to be used for value prediction.
Clustering is described more extensively in section 2.2.3. This kind of algorithms organize data

samples into groups, i.e clusters, according to their values. This allows the detection of outliers, that is
to say, samples that don’t fall any set of discovered clusters and therefore may not be relevant to the
desired task and are creating noise in the data set.

data integration
Integration of multiple data sources is often a necessity when performing data analysis. Three

major concerns rise when addressing data integration. The first is Entity Identification. When

8

merging different data sources that are supposed to represent the same entity in only one data store, it
is necessary to maintain coherence and to find a common representation of the same data from its
different origins.

The second is Redundancy, normally caused from denormalized stores causing duplicate values
and inaccurate entries. Redundancy can be detected using correlation analysis techniques.

The third aspect to look out for is Conflicting Values. This regards how the same type of
information is stored. Data can have multiple representations, scales, or encodings for the same
attribute. This frequently happens when storing values for currency, metrics or dates.

Data integration is deeply linked with data transformation techniques, required to transform and
consolidate the multiple data sources into appropriate forms for Data Mining algorithms.[20].

data transformation
Data Transformation is the process of altering data into new forms that ease and facilitate its use

in Data Mining algorithms. Both data cleaning and data integration make use of data transformation
techniques to ensure their goals in the preprocessing pipeline. The following are considered standard
techniques for data transformation[18].

Smoothing, which was explained in the previous chapter, is the process of removing or correcting
noise in data.

Aggregation which as the name states aggregates values or quantities into a more dense granularity.
To exemplify, having tweet counts on a hourly, daily or monthly basis is a form of data aggregation
into a different granularity.

Generalization is the mapping of a collection of raw attributes to a broader higher-level concept.
An example of generalization is replacing municipalities by their corresponding districts.

Feature construction which is the act of creating new attributes based on existent ones, such
as decomposing a date time stamp into its corresponding year, month, day and hour.

Normalization which is adapting the scale of numerical values to smaller ranges, normally to
speed up computation.

data reduction
Data reduction is about selecting the data that is relevant for the desired task. It seems reasonable

that the amount of data to use on data mining analysis should only be as big as time allows. Performing
complex analysis techniques on huge amounts of data can take impractical periods of time. Therefore,
data reduction techniques can be applied to obtain a smaller, but relevant data set whose analysis will
be much more efficient with the same practical results. To address data reduction, the subsequent
techniques are frequently employed:

Data Cube Aggregation is a form of aggregation of data into a multidimensional cube. The
purpose of constructing data cubes is to create multiple levels of abstraction and hierarchy over data,
to provide fast access to precomputed and summarized data, therefore benefiting the analytical process.

Attribute Subset Selection cares to reduce the number of existent attributes on a data set into
the ones that are relevant to the mining task at hands. As an example, it is fairly obvious that if the
goal is to determine the gender in a Social Media profile, the user’s chosen name is more relevant to
the task than his disclosed location. Irrelevancy and redundancy are usually the causes for discarding

9

certain attributes in a Data Mining process. Computing on a reduced set of attributes also has the
advantage of diminishing the number of attributes appearing in discovered patterns, which makes them
easier to understand. The “best” (and “worst”) attributes are typically determined using statistical
tests[18].

Dimensionality Reduction is the use of transformations with the purpose of obtaining a
reduced or “compressed” representation of the original data. This allows a simplified visualization of
multi-dimensional data, usually by reducing it into two or three dimensions thus making it humanly
interpretable. If the original data can be reconstructed from the compressed data without any loss
of information, the data reduction process is called lossless. If instead we can reconstruct only an
approximation of the original data, it is called lossy[18].

A standard dimensionality reduction algorithm is Principal Component Analysis (PCA)[26].
Usually used with a feature reduction purpose in Machine Learning classification problems with an
elevated number of features (further developed in 2.2.3), PCA aims to achieve an optimal combination
of those same features that can be used to better represent the data, despite having a smaller set of
variables. It can also be used to reduce data into a humanly understandable dimensional space, such
as a two dimensional chart. PCA is computationally inexpensive and versatile as it can be applied to
ordered and unordered attributes.

2.2.3 data mining and machine learning
The Data Mining stage is concerned with the algorithmic means by which patterns are extracted

and enumerated[21]. To discuss Data Mining algorithms and procedures it is indispensable to introduce
the topic of Machine Learning. One of the many branches that compose a Data Mining application,
Machine Learning is a field in computer science and Artificial Intelligence (AI) that focuses in
building algorithms that can learn and make decisions from available data. Learning is discussed
here in a practical and objective sense, that is, to be able to observe and compare current and
past behaviors and search for improvements in performance when new situations appear. Roughly
speaking we want to be able to, within a set of data, have computer algorithms that are autonomously
capable of, either describe it and make assumptions about it, or to make predictions about its future.
This corresponds to the two main problems that Machine Learning tries to answer in data mining
applications: Description and Prediction[20].

To design a successful Machine Learning application, it is essential that firstly the “machine”
understands the conglomerate of concepts on which it will be applied. It must learn a concept, through
some form of input, to then produce concept description over that same learning scheme[20].

This poses a series of questions: how much information is there available to learn from? Does it
have a direct or indirect relationship with the desired outcomes? Does it represent adequately the
distribution of examples on which the final results will be measured? To better understand these issues,
the two most influential branches in Machine Learning algorithms will be addressed.

supervised learning
Supervised Learning covers Machine Learning models in which the outcome is directly dependent

on sample training data. Its a two-step process that comprises training and testing. The training step
consists on building the training data set on which the model will learn a predetermined group of

10

classes, normally referred as labels. The training data can be represented by a direct x → f (x) function
on which an input (or sample) is labeled with a value, either discrete or numerical. Each sample is
characterized by a number of features which are the values from which the learning algorithm will
extract patterns. The training data set is humanly defined, hence the term supervised.

The second step consists on evaluating how the built model behaves with new input. It is done
with a set of test data so it can measure how accurately it can match unseen examples to the existing
labels. The success rate on test data gives an objective measure of how well the concept has been
learned.

Supervised Learning problems can either be divided into Regression or Classification. In
Classification problems, the classifier tries to learn a function that maps, i.e. classifies, a certain
entry to one of several previously defined classes. Regression problems are actually quite similar to
Classification problems, only instead of having a set of discrete values as the target, the predictor is
fed a continuous variable as the label and tries to understand what is the next value to appear[20].

support vector machines
Support Vector Machines (SVM)[27] are a popular Supervised Learning algorithm that can be

used either for Classification or Regression. It is characterized by its optimal performance on high-
dimensional vector-spaces[28] i.e. working with a considerable number of features. Being a Supervised
Learning algorithm, the goal of SVMs is to construct a model based on training data that can produce
predictions of target values for new data, based on its attributes. Mathematically, given a data set of
samples-label tuples (xi, yi), i = 1, ..., l where xi ∈ Rn and y ∈ {1,−1}l, SVMs work the solution for
the following optimization problem:

min
w,b,ξ

1
2wTw + C

l∑
i=1

ξi

subject to y(wTφ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0.

The equation above states that each training vector xi is mapped into a greater dimensional-space
by function φ and the SVM will find a separating hyperplane with a maximal margin error within the
new space. SVMs come with an associated kernel function, in charge of applying a transformation
in data that will determine the new dimensional space for further calculations. Kernel functions are
generally described as:

K(xi,xj) ≡ φ(xT
i)φ(xj)

If the SVM kernel function is of the following type:

K(xi,xj) = xT
i xj

it is considered a linear kernel. Support Vector Machines with a linear kernel usually provide good
classification performance when the number of features used to build the classification model is greatly
superior the number of existent samples in the training data, since a projection to an high-dimensional
space is not necessary due to the already high dimension of feature vectors [29].

11

validation
In order to consider a classifier or predictive model useful, it must verified at what degree the

results it produces are accurate. To do this, it is standard procedure to use a testing set of labeled
data to measure how accurately it performs, by verifying the percentage of produced labels that match
the annotated ones. In practice this consists on dividing training data into two groups and it is a
simple and reliable way to get an indicator of how well the model performs.

Figure 2.3: Diagram of a standard Supervised Learning application

Another technique employed to verify a model’s accuracy is the K-Fold Cross Validation
method[28]. It consists on dividing the training set in K equally sized parts and then train the model
K times, where the testing set changes every time and find the average accuracy of the K produced
models. This measure is more robust than the first and accounts for a more general accuracy of the
algorithm, but it is also time consuming.

12

unsupervised learning
Contrarily to Supervised Learning, Unsupervised Learning algorithms are used when dealing with

unlabeled data[17]. They build the learning model based on how similar sample data is and they do
not depend on training examples. It is a form of learning by observation, rather than by example like
in Supervised Learning[18].

Unsupervised Learning can be further divided into the following categories of problems: Clustering,
Dimensionality Reduction (see section 2.2.2), Anomaly Detection and Density problems[30].

Clustering is a term that often overlaps the definition of Unsupervised Learning itself, mostly
due to its popularity. It aggregates a set of techniques to divide unlabeled data into clusters.

Clustering algorithms usually work to detect some underlying mechanism at work in the domain
in which instances are drawn, a source that causes certain instances to be more similar and other more
distant. This process results in grouping different objects into clusters where objects within a cluster
have high similarities, based on their attribute values[20].

In Data Mining, cluster analysis can be used as a stand-alone tool to gain understanding on the
distribution of data, to examine the characteristics of each cluster and to focus on a particular set of
clusters for further analysis.

Density is another popular category of Unsupervised Learning problems, also known as Asso-
ciation problems, which present a series of meta-data that allows the definition of strong relations
between different variables of the input dataset[31].

Anomaly Detection is a category of problems whose algorithms allow the detection of unexpected
values, for instance by checking distances between neighbours (similar to clustering)[32].

Finally, Summarization focuses on the creation of meta-data about the input dataset, such as
variance, percentiles and so on. This allows a general interpretation of the information that is available.
Summarization also includes the Dimensionality Reduction addressed in the previous section.

2.2.4 data postprocessing
Postprocessing is the last stage in the KDD pipeline. Whatever the goal is in a DM system, if

the extracted knowledge is not useful or readable then the effort it took to obtain is meaningless.
Therefore, one concern to take into consideration when developing these kind of applications is how the
results are going to be presented, i.e. how can the end-user visualize the information that is discovered.
There is further processing to be made with the bits and pieces of derived knowledge, whether it is to
simplify it, visualize it or document it [21], [33].

Postprocessing techniques are essentially linked with the necessity of Interpretation, Evaluation
or Integration of knowledge[33]:

Interpretation deals with understanding acquired knowledge and putting it to practical use.
Depending on the given goals, information obtained can serve as a base for further research and/or
compared with previously obtained knowledge to support it or contradict it. Furthermore, it can be
used straight for prediction/classification in Machine Learning tasks or, if it has an end-user as a
target, documented or visualized in an appropriate fashion.

Evaluation is the act of validating induced knowledge. This area of postprocessing compiles a
group of techniques used to assert that the constructed learning models fit the proposed goals of the
system. A model can validated in terms of accuracy, performance, complexity or comprehensibility[33].

13

Integration handles the need for new decision-supporting systems to combine or refine results
obtained from several models, instead of depending on a single one. The ability to integrate and blend
conceptual models induced from different methods improves the probability of success and accuracy
rates[34].

data visualization
When a Data Mining system’s purpose is to meet an end-user that will make use of it for its own

sake, it is of the utmost importance to present data so that it explicitly matches the user’s needs in
term of accessibility and usability.

Visualization tools must visually stimulate the user and its ability to identify patterns, in other
words, these tools should enable cognition [35]. There is research made in the field of Data Visualization
that has proposed some ground principles for the development of effective representations of data[36].
These principles are hereby presented:

The Appropriateness Principle assumes that the visual representation should provide only
the required amount of information that is necessary for the task it was assigned. Any additional
information can be distracting and makes the cognitive process harder.

The Naturalness Principle states that experimental cognition has more efficiency when the
traits of the visual representation are closer matches to the information being represented. When a
representation does not match the cognitive model of the information established by the user it may
interfere in his understanding.

The Matching Principle takes into consideration that visual representations should be suggestive
of the action they execute. Representations are more effective when they resemble the task to be
performed.

Visualization techniques also have advantages for end-users when compared, for example, with text
displaying since it stimulates them to use intuition and recognition processes for understanding, which
are more natural than content assimilation through reading[35]. Moreover, they have the capacity to
show nuances in data that are rather troublesome to explain in text, like similarity and proximity
through shape sizing and colouring, or contextualization through highlighting techniques. It also has
conciseness and clarity advantages since they enable the representation of tremendous amounts of data
from different sources or backgrounds at the same time.

2.2.5 challenges with social media data
It is safe to say that Social Media platforms generate a lot of data, though it is a quite particular

and distinct form of data when compared to traditional Data Mining sources. Social Media data
results from the combination of User-Generated Content on Social Media platforms and the social
relationships inherent in those same platforms[23].

User-Generated Content possesses characteristics that makes it a unique form of data. It is vast,
noisy, distributed among different platforms, unstructured since those same platforms target different
user needs and at last dynamic, due to the continuous evolution and transformation of Social Media[17].

Apart from the User-Generated Content, the social interactions that take place in Social Media
and its subsequent Social Networks represent a major attraction, because they enable the integration of
social theories to computational knowledge, namely the study of how individuals behave and interact

14

with each other and with other entities like a brand, a political party or an event. Merging these
concepts results in an unprecedented new form of data that poses new challenges and opportunities for
Data Mining research.

big data
Big Data is one the most resounding buzzwords in the computer science. A simple research on

Google Trends7, shows that the term had a continuous increase in web searches that started to manifest
itself in late 2011. This evolution is shown in the following figure.

Figure 2.4: Google Trends result for the term "big data".

The evolution of information systems, the appearance and proliferation of mobile devices and
the general increase of access to the Internet and bandwidth rates led to a massive escalation of the
amount of data created on a daily basis. Big Data is the area of computer science that deals with
these new challenges and opportunities the derive from the need to store and analyze tremendous
amounts of data from different scenarios and with different structure (or lack of it), in an practical
way and within a reasonable time period[37]. One of the phenomenons that gave meaning to the term
Big Data was Social Media, with its ever increasing user base, expansion to multiple platforms and
devices and inherent nature to deal with user content.

Big Data is relative - As paradoxical as it seems, Social Media is a common source of Big Data
but not a trivial one. What causes this, is the fact that data generated in Social Media has a very
high-level scope that continuously loses precision and volume as specific users or topics are targeted,
requiring the social characteristics of Social Media to be explored and combined. It is not the data
that exists about users as a unit that makes Social Media data "big" but the sum of its relationships
between every user. Social Media is then, a unique source of big data[23].

7https://www.google.com/trends/

15

linked data
Social Media data describes the existing social ties and interactions between users in Social Media

platforms, as well as the inherent links between users and their corresponding content. The availability
of these kind of connections between data points makes Social Media data intrinsically linked. Examples
of Social Media data linkage are pretty straightforward when taking Twitter in consideration. "Who
posts what" and "who follows who" are two direct examples of connectivity between data in a real-life
Social Media scenario[38].

These connections are also statistically dependent and make data non identically distributed
which contradicts one of the most enduring assumptions in Machine Learning (ML) methods, that is
statistical independence among data instances. This poses a series of difficulties in Machine Learning
processes, such as feature selection [39].

When working with Social Media data it is important to take all of this into consideration and
work out solutions to overcome the issue of linked data, and embrace it as an advantage for Data
Mining research. Graph theory is one of the main methods used in Social Network analysis since the
early history of the Social Network concept[40]. This approach is applied to Social Media analysis in
order to determine important features of the network through its modeling into nodes and links.

noisy data
Social Media data contains a considerable portion of noise and spam content[41] and this constitutes

a dilemma. There is a balance point in which noise should be removed or not, since removing all noisy
data without consideration can lead to the problem described in section 2.2.2. Social relations are also
noisy by themselves, as it is difficult to distinguish, for example, the strength of a link between two
users.[23] Besides that, noise is by itself difficult to define and dependent on the task at hands.

unstructured data
User-Generated Content is in the majority of situations considerably unstructured. This statement

gains even more relevance when addressing text data. The proliferation of the use of mobile devices to
publish text content (like tweets) has created several distortions in communication rules[23]. A great
portion of online text-based content has a minimal appreciation for spelling rules or grammar and
poses problems both at a lexical and syntactical levels. Text is usually short-length, informal, contains
spelling mistakes, makes frequent use of abbreviations and freeform language like non-existing words,
abbreviations or emoticons[42]. These properties require proper text processing techniques to make
this kind of content useful for data mining. Twitter data is good example where this situation occurs.
The notation used in Twitter dynamics requires specific handling, since it can be present or absent in
the tweet and manifests itself in mostly in the form of special characters present in text, that have an
underlying meaning that is not necessarily straightforward. As an example, the "@" character can be a
mention, a reply or a quote according to its position in the tweet and the content that follows it.

other challenges
Access to Social Media data is limited and controlled due to personal privacy considerations[43].

This creates a problem of incompleteness in data sources, which was discussed in section 2.2.2, raising

16

difficulties in the task of gathering enough sample data that meaningfully represents the target
research domain. It also common for Social Media companies to impose limits in the access to their
data, sometimes denying it completely. Furthermore, since the content of Social Media is mainly
user-generated, it is complicated to establish a truth base from which patterns and knowledge will
derive.

2.2.6 relevant research topics
In this subsection it will be presented some research topics in sub-areas of Data Mining that have

a relevant impact when dealing with Social Media environments.

topic modeling
Topic Modeling is a research area in text mining that works on the ability to analyze large

collections of unstructured documents with the purpose of organizing them under different subjects[44].
Currently an emerging area, Topic Modeling algorithms make use of statistical and probabilistic

theories to understand the correlation between words in the original text and apprehend how their
joint appearance relate to an underlying theme. They do not require human annotation or observation
to operate, since their analysis works over text and not discrete values or attributes.

Topic modeling’s major purpose is enabling the autonomous summarising of electronic archives at
a scale that would be impossible by human standards[45]

latent dirichlet allocation
Latent Dirichlet Allocation (LDA) is a generative probabilistic model for collections of discrete

data such as text corpora, presented in 2003 by David M. Blei et al [46]. The theoretical foundation
behind LDA is that text documents are represented as random mixtures over veiled topics where each
of them, which is in practice a latent multinomial variable, is characterized by a distribution over
words.

LDA is a three-level hierarchical Bayesian model in which, each item of a collection is modeled as
a finite mixture over an underlying set of topics. Each topic is in turn modeled as an infinite mixture
over an underlying set of topic probabilities.[46]

The following is a simplified description of how LDA works for each document w in a corpusD:

Algorithm 1 LDA basic model
1: Choose N ∼ Poisson(ξ)
2: ChooseΘ ∼ Dir(α)
3: for all wn words in N do
4: (a) Choose a topic zn ∼ Multinomial(Θ)
5: (b) Choose a word wnfrom p(wn|zn, β) a multinomial probability conditioned

on the topic zn.

17

influence analysis
Social Media is dependent on connections. Social interactions are emulated into a virtual platform,

by direct and indirect links between users, their characteristics and behaviors. The combination of these
three factors establish the network structure. Network connectivity helps observing distinguishable
patterns, one of them is social similarity, which states that similar nodes are more likely to be connected
to each other. Analogously to the real world, user behavior and relationships, along with network
characteristics, shape the network structure and induce changes in other fellow peers.

The phenomenon of social influence, an intuitive and well accepted concept in Social Networks[14],
can be defined as the interactions with other peers that cause them to change their behavior[47]. Along
with influence, another observable pattern in network analysis is Homophily. Homophily is the idea
that individuals are naturally more likely to form ties with similar peers and those similarities create
correlated effects among their neighbours.[48]

These two aspects of social behavior create what are called assortative patterns in networks[16].
Both of them have the end result of creating networks where similar individuals are more likely to be
connected however, it is important, but challenging, to distinguish them since, for example, information
diffusion processes differ from homophily-driven networks to influence-driven networks[49].

influence measuring
In the context of Social Media there are two approaches to determine influence, by prediction

or by observation[18]. The first consists on making use of network centrality measures to define the
most important nodes and make predictions based on their attributes and distribution. The second
quantifies individual influence by calculating the amount that can be attributed to each node. Being
observational, it focuses on palpable phenomenons and is usually connected to real world situations.
Measuring parameters can consist of: the size of an audience of a certain media personality, how many
people he can affect when spreading information or which value was generated from endorsement of a
certain individual[18].

centrality measures
As said before, Social Media, more specifically Social Networks can be represented as a graph due

to its data being inherently linked (see section 2.2.5). Graph theory states that a graph G is represented
as G(V,E) where V is a set of vertexes (or nodes) and E is a set of edges (or links) connecting vertex
pairs in V[50]. To represent Social Networks under the form of graphs, it is necessary to address
graphs more in an abstract sense rather than mathematical. It is intuitive to understand that a graph
representation of a Social Network will assume that nodes will represent entities in the network, either
users or any form of content, and edges will serve as relationships occurring in the network.

Having a Social Network represented as a graph unlocks the possibility to conduct graph algorithms
in that same network. There is a wide spectre of algorithms that can be useful in graph analysis such
as finding a node’s degree, finding the connectivity between its neighbours, finding a path between two
nodes, or finding the shortest path from one node to another. When addressing influence analysis,
centrality measures can be quite useful. The standard centrality measures used in graph theory are
Degree Centrality, Betweeness Centrality and Closeness Centrality[50].

Degree Centrality is simply counting the number of edges that are linked to a specific network node.

18

If the graph is directed, that is, its edges have a source and a target, then degree centrality can be
further divided into In-degree which accounts only for the edges that target a node and Out-degree
which does opposite, meaning it only accounts for the edges that have specific node as source.

Betweenness Centrality determines the number of times a node is visited when calculating the
network’s shortest paths. A node with a greater "betweenness" value will be more central in the
network as it is a passing point between other nodes.

Closeness Centrality takes into consideration the distance between nodes in the network. In this
measure, a node is more central when the sum of its accumulated distances between all other nodes is
smaller.

There are many other centrality measures in graph analysis, some used when dealing with weighted
graphs where links between nodes have an associated weight, which in this work was not taken in
consideration. Others consist of variations of the presented measures.

influence on twitter
Twitter is a Social Media platform concerned with information diffusion. Users choose what users

to follow and what information feeds to subscribe. Influence on Twitter can be attributed to the users
that have a notable impact in the spread of information and behaviors. Although there are different
types of users, they all communicate through the same way, which is by tweeting, i.e. the act of posting
a tweet, to their followers. This creates a standard way to compare the different target attributes for
influence measurements.

There are some standard metrics to look out for when trying to quantify influence on Twitter.
Intuitively, we can think of the number of followers as a measure of influence but this is a not the only
way to do it. There are three common attributes to evaluate when conducting this kind of investigation,
number of mentions, number of retweets and number of followers[16].

The number of mentions is the number of times a user is mentioned in tweets. The mentioning
mechanism is explained in section 2.1.3. Mentions denote one’s ability to engage others in conversation.

Number of retweets is the number of times that a user’s tweets are retweeted. The retweet
mechanism is also explained in section 2.1.3. Clearly, the more one’s tweets are retweeted the more
likely one is influential. The number of retweeted indicates an individual’s ability to generate content
that is worth being passed along.

The number of users following a person on Twitter is, as discussed, the number of individuals who
are interested in someone’s tweets. Followers account for an audience measure, meaning it will indicate
how many people one person will reach directly.

Although an immensely popular metric, the number of followers has been proven as a meager way
to quantify influence in the Twitter network[51]. This measure is more suggestive of popularity, but
not as reliable when accounting for the notion of influence. On the other hand, retweets and mentions
respectively provide insight regarding content value and the user’s “name” value[51] .

Some research has been made in determining influential users on Twitter using more complex
measures. In [52], it was found a relation between the diffusion rate of tweets with Uniform Resource
Locators (URLs) and the users that generated them. It was found that a user with more followers
and influential in past situations has a tendency to be in origin of the content. An altered version of
PageRank[53] as also been used to determine influential users in the Twitter network, although the
results do not differ much when compared to using the number of followers as the standard measure[54].

19

profiling
User profiling is the act of inferring a user’s personal attributes, like gender, location, interests or

employment status. In Social Media, this kind of information is available at some level, generally not
fully available, since some of it not always shared online due to privacy concerns. There is also the
case of it being inconsistent, when a user chooses to provide fictional values [55], [56].

Comprehending and determining user characteristics is a very prized goal in areas like targeted-
marketing, online applications that have personalization concerns and recommendation systems.

Establishing a user profile is not a straightforward process, there has been some investigative effort
towards predicting attributes like gender, age, location, occupation or interests but some issues arise in
the different approaches made. Features like, network structure, the user’s known attributes, generated
content or his activity provide some ground data to process but none is quite enough by it’s own, they
are required to be combined to improve results.

User profiling approaches fall under the following categories[56]:
Content-based Profiling where content is used, whether it is text, a URL or a picture, as the

source to identify user attributes. Analysis of content can be made either with low-level characteristics,
like word or character counts, keyword identification, generic text-mining algorithms or through more
complex high-level models like sentiment analysis or topic modeling algorithms (see chapter 2.2.6).

Network-based Profiling studies the Social Network structure and existing links between data
points as source for inferring user attributes. The user’s network is commonly employed as a profiling
resource when we are able to represent the network as a graph. In [57] there is an example of a
predictive model for geo-locations based on Twitter user relationships.

Although these are the most common approaches for extracting latent user attributes, there are
other resources that can be taken into consideration in profiling tasks. The visible and accessible
part of the user profile can be useful as social context indicator, although the accessibility of this
kind of data varies from Social Media platforms as well as the range of attributes that are available.
Furthermore, the user’s activity (also referred as user behavior) inside the platform can also have
profiling value. As an example, it is common to find users in Social Media platforms who tend to be
more pro-active whereas others tend be more passive which can be a relevant trait to investigate.

2.2.7 related work
This subsection presents research projects that relate to the proposed dissertation. They have in

common the use of Twitter as a data source for their proposed goals.
In the study conducted by Calado et al[55] in 2011, it was evaluated how user activity can be a

valuable indicator for user profiling, regardless of the content of his posts. To do this, they modeled
user retweet chains and network diffusion chains, with identification of network jumps, which happen
when a user diffuses content of another user to which he is not linked. Afterwards, they produced a set
of features based on the user’s position in this constructed networks. These features were used on an
Expected-Maximization clustering algorithm to group the users in different clusters. The obtained
results managed to assign a user to a cluster with 90% probability and denoted some interesting
patterns in the generated clusters, such as finding users that are commonly the source of new content,
users that propagate content or users with low activity rates.

In the research of Rao et al[58] and Burger et al[59], two approaches were made for latent
classification of user attributes. In the former the focus was to develop Supervised Classification

20

models for the inferring of four user profile attributes: gender, age, regional origin and political
orientation, using four data sources from a user profile: his network structure (number of followers,
friends and follower-friend ratio), his communication behavior (frequency of response, retweet and
post), two models derived from their tweet contents, one based on socio-linguistic attributes like the
use of emoticons and other writing behaviors. The other was the counting of generated character and
word ngrams from tweets. This study verified that its first two information sources provided little
value in inferring user attributes, while the two models had interesting accuracy rates for each of the
classification tasks. The latter study had the objective of discriminating the gender of a Twitter user
using his profile information and the content of his tweets. It built a classification model based on the
presence of character and word ngrams in each of the four fields, separately and joined together to
reach a maximum accuracy of around 90%. Both of these studies were made exclusively analyzing
English speaking users and content. The first one used a dataset containing 2200 users and the second
used around 100000.

TVPulse8 is a project developed in Instituto de Telecomunicações of Aveiro, in a partnership with
PT Inovação9 that experiments with tweet content recognition and detection of postings that are
pertinent to events in television programs.

The proposed goal of TVPulse is to build a system that extracts and stores tweets and information
from publicly available Electronic Programming Guides (EPGs) and afterwards performs a group of
text processing and data mining techniques to match tweets to television shows based on their semantic
similarity. It also accounts for event detection during live emissions[60].

POPmine is an open-source system developed at Universidade do Porto that encompasses data
collection, information extraction, opinion mining and visualization of political opinion on the web.
This system has been put to use under the website POPSTAR10 for tracking the political opinion of
Portuguese major politic party leaders[61].

In POPmine, opinion tracking was divided regarding buzz and sentiment. Buzz is an indicator
of trend, it accounts for the percentage of mentions of a certain figure among the overall mentions
of the all figures being tracked, as well as the number of mentions in absolute. Sentiment concerns
about tweet mention polarity (positive or negative). It aims to determine whether a certain figure
is regarded by the public in a positive sense or the opposite, through the percentage of positive and
negative mentions of that same figure. Both of this indicators are presented as an evolution over time,
allowing the contextualization between real-word events and eventual changes in the opinion scores.

2.3 technology review
In the previous sections, Social Media was introduced along the theoretical foundations necessary

to create a KDD pipeline focused on Social Media data. It was explained the issues encountered when
handling this type of data and the necessary precautions to take to correctly process it. This section
aims to evaluate and explain some of the technical components that are necessary to build a system
supported on Social Media data and that enable the theoretical knowledge addressed before to be put
to practice. It will focus on the storage and processing components of the KDD pipeline.

8https://www.it.pt/Projects/Index/2049
9PT Inovação was rebranded to Altice Labs after the acquisition of Portugal Telecom by french

telecommunications company Altice
10www.popstar.pt

21

2.3.1 graph databases
A graph database is a database system in the family of the Not-only Structured Query Language

(NoSQL) ecosystem with Create, Read, Update and Delete (CRUD) methods that exposes a graph
data model[62]. Formally, one can define a graph as a set of nodes, which represent entities related to
the real world and relationships that connect them.

Graph database models introduce a way of representing data where information about its inter-
connectivity and relations has as much importance as its content. Also, data manipulation can done in
a graph oriented fashion, making use of graph properties and traversal algorithms and, since graphs
are visual structures, they provide a more natural way of modeling data[63].

Graph data models usually fall under the following categories: Property Graphs, Hypergraphs
and Triples.

Property graphs are the most common graph data models, in which a graph contains nodes and
relationships and both can contain multiple key-value pairs, named as properties, and multiple labels.
Relationships are named and always possess a start and an end node.

This type of data model is extremely intuitive and encourages the use of visual representations to
achieve it. It can easily represent any domain that can be translated into entities and relationships
through the use of whiteboard or paper sketches with relatively little complexity. Figure 2.5 is an
example of this approach where it is possible to find a direct mapping of Twitter dynamics into a
property graph data model

Figure 2.5: Example of a property graph of Twitter dynamics

Hypergraphs are similar to property graphs. The Hypergraph model adds a degree of complexity
by allowing relationships to have more than a start and an end node, meaning it allows many-to-many
relationships.

A Triple is a subject-predicate-object structure[64]. This model originated in the semantic web
movement with the interest to add semantic markup to the links that connect web resources [64]. It
differs from the other two models because it can’t be used in a native graph database since each triple
is viewed as an independent item that represents a logical link. This implies that it needs an additional
layer to connect each independent structure and to allow querying or traversals.

When surveying graph databases, there are two particular aspects to take into consideration, which
are it’s underlying storage and its processing engine. These properties can be classified as native or

22

non-native. If referring to storage, a native graph storage means the data is stored directly as a graph
structure, not having any kind of transformation or serialization for this purpose. When referring to
its processing engine a graph database with native graph processing properties means that it leverages
on index-free adjacency, that is, with nodes that are connected to each other “physically” and not
using meta information[62].

The adoption of graph databases with a property graph data model can bring improvements in
terms of:

• Performance. Due to its inherent nature of handling heavily linked data, graph databases can
have an increased performance when compared with relational databases and NoSQL solutions
when dealing with operations on data relationships. This performance is maintained when the
amount of data scales because queries are local to the portion of the graph which is necessary
to search, rather than the overall data set.

• Flexibility. It is rather useful to be able to adapt data to constant changes in the pretended
modeling domain instead of having it being imposed upfront of development. This is a feature
that the graph data model fundamentally expresses due to its additive nature. It is possible to
add new nodes, relationships and substructures to an existing model without threatening it,
resulting in a tendency to perform less migrations, reducing maintenance and risks [62]

• Agility, since the graph data model is usually schema-free and matched with API and/or a
specific query language, which empowers application developers to incrementally evolve the
data model with the rest of the application, in the same measure as current iterative software
delivery practices.

The advantages of using a graph database for a system based on Social Media media data are quite
straightforward. Having in section 2.2.5 described the challenges of handling Social Media data, one of
them is automatically tackled if the Social Media is modeled through a graph database, which the
challenge of linked data. By using a graph database with a property graph data model, it is possible
to make a direct projection of the Social Media network into the database without sacrificing almost
any data connectivity. Having a graph representation of the network also allows graph theory to be
applied to the modeled network. In section 2.2.6, it was discussed the topic of influence detection in a
Social Network, as well as defined some graph metrics that can be used to accomplish that goal. Those
metrics can all be obtained quite easily with a graph database.

2.3.2 neo4j
Neo4j is arguably the world’s leading graph database system[65] and it is currently used in

production with different purposes in several business giants like Ebay, Walmart, HP or Cisco[66]. It
had its first release in 2007 and at the date of writing it currently stands first in the DB-Engines Rank
for GDBMSs[67]. Neo4j is an open-source11 disk-based graph database system written in Java that
implements a native property graph structure consisting of nodes, relationships and properties. Here
are presented some of the features that make it stand out as the most the used graph database in the
world.

11There is also an Enterprise Edition of Neo4j with extended features and capabilities, in this work
we will focus only on Community Edition

23

schema-optional property graph data model
As explained in the previous section, property graphs are graphs composed by entities and directed

relationships where both of can contain properties and the former can also contain labels. These are
the fundamental building blocks of the Neo4j data model. Properties follow a key-value structure
where the key must be a string and values can be numerical, String, Boolean or a list of any of them.
Labels define roles and meaning to nodes in the model. In Neo4j, the use of Labels is what defines
the model’s schema. With the use of Labels being optional, Neo4j is considered a schema-optional
database. Labels are important because they group all nodes with the same Label into a set and it is
frequent in database querying to work only with a subset of the whole data. A node can have any
number of Labels.[68]

Neo4j’s data model also allows the use of indexes and constraints over node properties when nodes
are labeled. The first brings a more efficient node searches and the second is beneficial for data integrity
purposes, as it can, for example, define unique properties that won’t allow duplicate nodes. All schema
modifications in Neo4j can be done without affecting the existing data, which is a major asset in terms
of model flexibility and an advantage when dealing with semi-structured data.[69]

native graph storage
Neo4j graph storage system is done directly on the file system. It was originally designed to store

and manage graphs, without using relational or object-oriented middlewares. Neo4j stores graph data
in a number of different store files. Each store file is responsible for a specific part of the graph,
meaning that there are files responsible for nodes, others for relationships, others for properties and so
on. The division enhances the performance of graph traversals, a key feature in a graph database. A
full specification of the internal storage system of Neo4j can be found in[62]. Neo4j is also transactional
and Atomicity, Consistency, Isolation, Durability (ACID) compliant, although it does not follow this
model as rigidly as traditional relational databases. The Consistency factor in Neo4j is variable due to
its schema nature. If we are using it without any schema, the only restraint for consistency is that all
relationships have a start and an end node but as we begin to define its schema, restraints in data will
become more strict. All this put together turn Neo4j into a multi-purpose database system, with the
traditional features of Relational Database Management Systems (RDBMSs), but with an extremely
different data model that is suitable for highly connected data[69].

cypher query language
Cypher is a declarative, pattern-matching query language developed for Neo4j. Cypher is built on

the basic concepts and clauses of SQL but with added graph-specific functionality, making it simple to
work with a rich graph model without being overly verbose.

MATCH (u:User) -[: POSTS]->(t:Tweet) -[: TAGS]->(h: Hashtag) RETURN u,t,h

Listing 1: Example of a Cypher query

24

The query listed above will retrieve from Neo4j all users, tweets or hashtags and the POST and
TAGS relationships that link them.

language drivers and http api
The Neo4j Driver API is the preferred means of programmatic interaction with a Neo4j database

server. It implements the Bolt protocol, a proprietary binary protocol to communicate with the
database, and it is available in C#, .NET, Java, JavaScript, and Python. The API is defined
independently of any programming language. This allows a high degree of uniformity across languages.

The Neo4j transactional HTTP endpoint allows the execution of a series of Cypher statements
within the scope of a transaction. The transaction may be kept open across multiple HTTP requests,
until the client chooses to commit or roll back.

web interface
Neo4j provides a web interface that can be used to perform Cypher queries and visualize the

currently stored graph. It is also possible perform monitoring operations, performance tests and schema
modifications.

Figure 2.6: Graph view on the Neo4j web interface.

2.3.3 orientdb
OrientDB[70] is a multi-model Database Management System (DBMS). As its creators put it "it

is a second generation distributed graph-document database". The meaning behind this sentence is

25

that OrientDB uses a graph data model where each element in the database is a JavaScript Object
Notation (JSON) document, but relationships are handled through links between elements thus
exposing a graph data model. Both nodes and links can be considered a JSON document. OrientDB
had its first release in 2010 and so far stands in second place in the DB-Engines Rank for GDBMS[67].
Being multi-model it is also scored in the rank for key-value stores and document-oriented databases,
where it stands at sixth place in both. OrientDB is open-source12, written Java and supported in
all operating systems with a Java Virtual Machine (JVM). It is used in production environments in
companies like Sky, Comcast, Ericsson and Cisco[71].

schema-optional multi-model database
OrientDB is a versatile DBMS since it offers more than one possible data model. Its data model

has as its most basic unit a Record, which can consist of a Document, RecordBytes (binary data), a
Vertex or an Edge. These four basic units allow that OrientDB can be used either as a key-store or
document oriented database, when Vertexes and Edges are discarded or as a graph database, when
they are used. It is worth noting that OrientDB processes Vertex and Edge records as documents as
well, allowing the attribution of properties to them and therefore enabling a complete property graph
data model. Properties data types supported range from the primitives Boolean, String and Integer to
complex data structures[72]. All Records in OrientDB are assigned a unique identifier (Record ID)
that identifies them among the existing clusters and inside them.

In terms of schema compliance OrientDB is, like Neo4j, schema-optional though the inner workings
of its schema definition differ. In Neo4j, schema is defined by the use of labels and constraints while
OrientDB can enforce a class level schema. This allows the creation of well defined document classes,
much like in the Object Oriented programming paradigm, that can have either a strict property
definition where all properties in the class are imperative, hence schema-full, an arbitrary property
definition, therefore schema-less or a balance between, where some properties can be mandatory while
allowing the creation of new ones. This last model is defined as an hybdrid schema[73]. OrientDB also
allows the creation of indexes and constraints over properties.

fault-tolerant distributed stores
Unlike Neo4j’s Community Edition, OrientDB has a distributed architecture, allowing it to exist

spread among different machines. It uses a master-less architecture where each server can read or
write records though it also supports read-only servers called REPLICAS[74]. Writing behavior in
a distributed deployment of OrientDB follows a logic of ownership. Every defined class relies on a
cluster to store records, which in turn is defined by a set of nodes. One of the nodes will the owner of
the cluster and therefore responsible for writing records in that cluster. However, since every class has
a cluster with different set of nodes it is possible for every node to write records, but belonging to
different clusters. The use of a distributed architecture allows replication, guaranteeing an extra layer
of security against data loss. OrientDB is ACID compliant and support transactional operation, even
in a distributed environment.

12Like in Neo4j, there is an enterprise edition that has additional features and tools that will not be
focused in this work

26

sql support, api and drivers
The query language in OrientDB is Structured Query Language (SQL) friendly. The developers

of OrientDB decided to adopt the SQL syntax to perform database queries, adding some extensions
and altering some of its clauses to make work more like a graph query language. For example, the
JOIN clause does not exist in OrientDB’s SQL, being it possible to perform queries over more than
one class at the same time while conditioning results through standard WHERE clauses. There is also
support for the Gremlin query language, used in the graph computing framework Apache TinkerPop[75].
OrientDB also provides an Application Programming Interface (API) for a wide range of programming
language drivers (Java, Javascript, Scala, PHP, Python, Ruby and more) that communicate either
directly through a binary protocol or through HyperText Transfer Protocol (HTTP). There are also
Java Wrapped drivers, used for languages that run in the JVM.

2.3.4 titan
Titan[76] is a distributed graph database written in Java, developed by a startup company called

Aurelius13 that had its first release in 2012 and its currently developed exclusively by the open source
community. Currently ranked third in the DB-Engines rank for GDBMSs, Titan’s focus was to create
a graph database with a property graph data model that scaled in distributed environments and
specialized in real-time graph traversals. Unlike the other two presented solutions, Titan has a modular
architecture that requires the use of an external storage component for data persistence and allows the
use of a search engine to enhance data indexing capabilities.

schema-optional property graph data model
The data model and schema used in Titan are quite similar to the ones presented by Neo4j.

It uses a logic of labels and properties that can be attributed to both vertexes and edges in the
graph and properties are key-value stores. Schema can be explicitly or implicitly defined, modified
and extended without sacrificing up time or performance. A difference between Titan and Neo4j’s
schema is that Titan grants a more strict definition of edge labels, since in Neo4j all relationships are
many-to-many and in Titan it is possible to enforce different multiplicity constraints in edges, like
one-to-one relationships or one-to-many[77]. Titan also supports a kind variety of data types for its
defined properties.

distributed modular architecture
Titan’s architecture has a different to the previous presented solutions. To be precise, Titan should

be considered a graph database engine and not as much a GDBMS. Its architecture is modular and
targets the interoperability between client applications and different storage and search components,
establishing itself as a middleware that exposes a graph database between them[78]. Titan provides
out of the box adapter for storage solutions like Apache Cassandra14, Apache HBase15 and Oracle

13Aurelius was acquired in the beginning of 2015 by DataStax
14http://cassandra.apache.org/
15http://hbase.apache.org/

27

Berkeley DB16. For external indexing, it supports ElasticSearch17, Apache Lucene18 and Apache Solr19.
For database querying, Titan uses the already mentioned Gremlin query language. It supports ACID
compliant transactions like Neo4j and OrientDB and, being distributed, data partitioning among
different Titan servers. Unlike the other two solutions, Titan only supports a Java API.

2.3.5 graph databases review
The three presented solutions are fit to embrace a property graph data model based on social

media relationships. The major difference that stands out among them, is that Neo4j’s Community
Edition isn’t distributed and therefore must rely on the power of a single machine. However, it is the
oldest, most mature and flexible among the three. Performance wise, recent literature in the scientific
community tends to pick Neo4j as the best performing solution, though it can vary according to the
different operations, whether it is reading, writing or performing graph traversals.

In a study conducted in 2015 by Beis et al[79], Titan, Neo4j and OrientDB were benchmarked and
compared in inserting, querying and clustering operations, with the last one referring to their behavior
when processing a community detection algorithm. They concluded that Neo4j was the solution that
obtained best performance with larger data sets in the inserting and querying operations. However,
they found OrientDB to process the successive local queries that their community detection algorithm
required. Jouili et al[80] also reviewed the graph database systems mentioned before, among others, in
terms of performance doing graph traversals, read operations and write operations. They found Neo4j
to be the solution that better performed doing traversals, while their tests in read-only operations
didn’t find significant differences among the tested systems. On read and write workloads, their setup
of Titan with an Apache Cassandra instance for persistence achieved the most interesting results.

The following table presents a summarizes the capabilities and characteristics of the three presented
solutions.

16http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
17https://www.elastic.co/
18http://lucene.apache.org/
19https://lucene.apache.org/solr/

28

O
w

ne
r

La
ng

ua
ge

P
la

tf
or

m
O

pe
n

So
ur

ce
In

te
gr

at
ed

D
at

a
St

or
ag

e
D

at
a

M
od

el
T

ra
ns

ac
ti

on
al

D
at

a
St

or
ag

e
N

at
iv

e
G

ra
ph

A
lg

or
it

hm
s

Q
ue

ry
La

ng
ua

ge
C

om
un

ic
at

io
n

P
ro

to
co

ls
N

eo
4j

N
eo

Te
ch
no

lo
gy

Ja
va

JV
M

X
**

X
Pr

op
er
ty

G
ra
ph

X
D
isk

Ba
se
d

X
C
yp

he
r

H
T
T
P;

Bo
lt

O
ri

en
tD

B
N
uv

ol
aB

as
e
Lt

d
Ja
va

JV
M

X
**

X
M
ul
ti-
m
od

el
(D

oc
um

en
t-
G
ra
ph

)
X

M
em

or
y
Ba

se
d

-
Ex

te
nd

ed
SQ

L;
G
re
m
lin

H
T
T
P;

Bi
na

ry
T

it
an

A
ur
el
iu
s*

Ja
va

JV
M

X
-

Pr
op

er
ty

G
ra
ph

X
M
em

or
y
Ba

se
d

-
G
re
m
lin

H
T
T
P

Ta
bl
e
2.
1:

C
om

pa
ris

on
of

G
D
BM

Ss

29

2.3.6 data mining and machine learning tools

r
R[81] is a highly capable open-source multi-paradigm programming language, developed specifically

for Statistical Computing and Data Mining. R is a highly mathematical influenced language, that shares
some similarities with MATLAB, given that it is heavily based on matrix arithmetic. R accomplishes
this using developer-friendly data structures such as vectors, matrices, arrays, with the most popular
being the DataFrame, a high-level data structure that used to represent data tables. Despite this, R is
not strictly a matrix arithmetic tool (although it has similar performance when compared to MATLAB
or Octave), as it is highly expandable due to the a repository of user-created packages. Thus, it is
possible to extend R’s Data Mining capabilities by importing even more ML algorithms, using different
plotting libraries, and even adding a Web Framework to the project, among other options. Besides,
given that R makes available a huge amount of matrix based operands (which, once again, can be
extended with CRAN packages), this means that R can be used as for the whole pipeline of the KDD
process, from the preprocessing to the postprocessing stage[82].

weka
The Waikato Environment for Knowledge Analysis (WEKA) is an open source software developed

in the University of Waikato with the goal to expedite research in DM and ML, through the unification
of algorithms and knowledge analysis tools in a single suite[83]. It also accounted for the need to
create new algorithms for data manipulation and model evaluation without resorting to different
infrastructures.

The WEKA suite is accessible through a Graphical User Interface (GUI) and a Java API. The user
interface can be maneuvered in three different views, the Explorer, Knowledge Flow and Experiment
view. The Explorer view is divided in several sections that deal with different kinds of tasks. The first
is called Preprocess and, as the name implies, handle the preprocessing stage of KDD pipelines. It
allows to load data from different sources and formats or generate it from manufactured sources, as
well as provides the tools for data transformation and filtering. The second is the Classify section,
which handles the application of supervised learning algorithms over selected data and offers the tools
for model validation and visualization. The third section of this view is the Cluster section, which
has the same principle but unsupervised learning algorithms the in family of cluster algorithms and
the fourth, "Associate" handles association rule methods. WEKA’s focus is mainly on supervised
learning, namely Classification and Regression algorithms. It has less support when it comes to the
unsupervised learning tasks[83]. Besides the mentioned capabilities, the Explorer view also offers
dedicated methods to attribute selection and data visualization, namely through the Select Attributes
and Visualize sections. The second view, Knowledge Flow, presents a more visual setup of the data
processing pipeline. It borrows the concept of data flow diagrams to give the users the possibility to
drag, drop and connect nodes that are representative of most the functionality presented the Explorer
view. This allows to explore the advantages of algorithms that are incremental, i.e. that do not require
to load complete data sets into memory to process them. The last view in the WEKA GUI is the
Experimenter view, which eases experimentation and performance comparison of different models in
different data sets and allows to distribute the computational effort between different machines.

The data processing capabilities described so far can be achieved through the extensive Java API,
that emulates the work flows of the visual interface through its style and makes translating it into

30

code an accessible task.

python data science stack
Python is a well-developed, open-source, multi-paradigm language with general purpose usage.

However, over the years Python has gained some notoriety in the data science community. Given
its high-level interactive nature, Python was an interesting target for the development of scientific
libraries. This lead to the creation of a set of libraries that are widely used for algorithmic development
and data analysis.

NumPy[84] is a low-level library that adds support for n-dimensional arrays, as well as a set of
functions to operate on them, thus allowing Python to be used as a matrix arithmetic tool. For more
advanced operations, SciPy[85] can be used. It adds support for much more complex operations, such
as image or signal manipulation and interpolation operations.

The previously enumerated tools pose the inconvenience of being rather low-level. To fill this gap
there is Pandas[86]. The main feature of this library is the addition of the DataFrame object, which
acts mainly as a wrapper for NumPy arrays. It is as a two-dimensional tabular data structure, adding
slicing, grouping and reshaping operations.

Having addressed the main issues of data manipulation there is still missing the Data Mining
component, which is where the meaningful patterns and useful knowledge will be exposed. The most
relevant option in the Python ecosystem is Scikit-Learn[87]. This library provides implementations of
almost every relevant Machine Learning algorithm, while keeping a consistent interface between them,
allowing experimentation in a quite accessible way.

One of the main criticisms to the Python language is its low performance. However, all of the
previously described libraries’ implementations are extended with C bindings. These bindings are
seemingly accessed from Python, therefore increasing the performance of these libraries to nearly
compiled languages’ level[87].

Python also has an extensive library dedicated to Natural Language Processing (NLP) called
Natural Language Toolkit (NLTK). It offers a broad Python API to deal with text representative of
the human language, along with a collection of lexical resources and corpus for Text Mining tasks[88].
It is worth noting that NLTK has dedicated resources to deal with the Portuguese language.

31

chapter 3
System Description and
Architecture
This chapter introduces the necessary to requirements to fulfil this dissertations purpose and how its
development was conceptualized.

3.1 description and requirements
This section provides an in depth description of the functional focus of this work as well as its

functional and non-functional requirements
The main objective of this dissertation is to build a web application that incorporates the sociological

knowledge present in Social Media platforms, with data mining research in Social Media environments.
It aims to present underlying information valuable enough to allow the recognition of traits and
characteristics present in users in a determined Social Media platform. Also, this system is directed to
the Portuguese community since there isn’t, to the best of my knowledge, a platform that evaluates
generic user profiles that is solely focused in Portuguese consumers and because restricting the scope
of the system target can enhance the depth of knowledge to be gained. Furthermore, a KDD process
chance of success is directly correlated with the previous existing knowledge over the target domain.
With this being a research made in a Portuguese university by Portuguese researchers, focusing on
the Portuguese community brings advantages in terms of awareness of language idiosyncrasies and
peculiar traits, background perception of demographic distribution and direct interaction within that
same community.

In terms of practical functionality that this system must encompass, the requirements are purely
related with the information extracted from the available Twitter data on which it relies. Therefore,
it is necessary to summarize what kind of information we’re looking to obtain. Due to the vastness
possibilities and immense options available to explore the Twitter network, it was decided to divide
data mining goals into two different scopes: Network Scope and User Scope.

33

3.1.1 network scope
On the Network Scope, this system seeks to evaluate the Twitter network as whole, disregarding

user specificity. Although this may seem as a deviation from the main goal of user profiling, examining
the network without specifying each individual is also an exercise of profiling, since it will uncover how
the community behaves as a unit and provide meaningful information in a more generic sense about
the elements that compose it.

To this extent, the following objectives are proposed to be part of this system:

• Determining the time periods in which the Portuguese Twitter community is more active i.e.
when are more tweets being posted on an hourly, daily and monthly basis;

• Determining where does the Portuguese Twitter activity concentrate. By "where", it is implicitly
meant as the geographical locations where more tweets are coming from;

• Determining the gender distribution of Twitter users. Being an attribute that is not revealed by
Twitter users and with great demographic value, it is proposed to find the percentage of male
and female Portuguese Twitter users;

• Determining which devices or applications the Portuguese users use to maintain their Twitter
activity.

• Determining which users can be considered influential on the Portuguese Twitter network;

• Determining what is talked and discussed inside Twitter.

3.1.2 user scope
On the User Scope, this system aims to be able to identify a Twitter profile and provide detailed

information about the user that owns it while contextualizing him within the whole Twitter network.
This part of the system will contain information about each target user. Consequently it can be
considered the focal point of this work.

The following objectives are proposed for this end of the system:

• Determining the time periods in which the user concentrates his activity on Twitter, i.e in which
time slots the user is more active;

• Determining how the user interacts with Twitter in terms of types of devices or applications
chosen to maintain his profile;

• Determining which users interact with the user being profiled. This translates in determining
which are the users who more frequently make use of the already discussed Twitter dynamics to
connect with this user;

• Determining the users which the profiled user frequently interacts. This is the same principle as
the one stated above but in a reverse direction;

• Determining the network distance between this user and any other user, i.e. being able to
visualize how "close" this user is to other users;

• Determining what are the topics of interest of a user;

34

• Determining what users in the network have similar topics of interest with the user being
profiled.

3.1.3 non-functional requirements
Given that the final product of this work is a web application, there are common non-functional

requirements in which the system can be evaluated like Usability, Reliability, Performance and
Supportability.

The web application should provide a functional and appealing interface. Considering that the end
goal of the application is to present meaningful information to an end-user, without discriminating his
background knowledge to interact with it, the method for interaction and the information presented
should be as simple as possible, without sacrificing functionality.

Given that the system has some degree of interaction and that the end-user is working with data
he may not be familiarized with, it is harder to achieve complete stability. In case some error occurs
when maneuvering the system, a useful message should appear that will allow the rectification of the
flaw. Also, none of these errors can cause critical system failure.

Performance is somewhat hard to manage when handling considerable amounts of data. This is
not a typical information system, in which most operations take little time to execute. In a system
with lots of data being fetched and potentially processed from different sources, some of the operations
executed will take time. To minimize these issues, some background data engineering must be done, to
allow that information is loaded in acceptable time periods while the application runs smoothly. The
client application must also perform asynchronous requests to the server, so it will never block while
waiting for some process to be complete.

3.2 data model
This system will be using data originated from Twitter to meet the set of requirements described

in the previous section. As mentioned, Twitter data meets the description of traditional Social Media
data since and can be classified as big, noisy and linked. Therefore, handling Twitter data and
storing it efficiently without making it lose its beneficial properties is a challenge with significant
relevance to fulfill the system’s purpose. Above all concerns, it is important to maintain the inherent
links between Twitter users and their respective generated content as well as their interactions through
Twitter dynamics, as some functional requirements are dependent on this information. This means that
the proposed data model for this system must embrace linked data and allow the efficient exploration
of those links.

3.2.1 available data
Twitter data is available through the Twitter API[89]. There are also online data sets used in

previous research that were made available by their authors but those are mostly in the English
language, which does not fit in this work’s purpose.

35

The Twitter API is a set of APIs supplied by Twitter for application developers. For the purpose
of this work it is important to understand two components of the Twitter API ecosystem, the
Representational State Transfer (REST) API and the Streaming API1.

The REST API offers a group of RESTful Web Services that enable to programatically read
or write Twitter data[90]. Through the Twitter REST API, it is possible to perform the functional
operations of a normal Twitter account, like posting a tweet or following a user, and to perform searches
on the Twitter network. This includes getting information about a specific user, if his profile is public,
or his posted status updates. The REST API must be linked to a user account to be operational.
However, there are restraints when using Twitter’s REST API, namely it’s rate limiting. The REST
API calls have limited number of requests per time slot, depending on the operation, which makes it
unsuitable for a network crawling exercise, as it would take an impractical amount of time.

Complementary to the REST API, it is also offered the possibility of streaming Twitter data
through the Streaming API[91]. Through this, we are able to access tweets being posted in real-time in
the network, by a user or by a group of users. It is also possible to define filters for data streams such
as a geographical perimeter, the language of the tweet or the presence of specific words in the content.

All responses from the Twitter API come in the JSON format, with the different available "objects"
being well documented in its website. In Appendix-A, section 6.2 there are two examples of Twitter
API’s response objects, the first for a User object and the second for a Status object.

The data set used for project TVPulse (see section 2.2.7) was made available for this dissertation.
TVPulse incorporated a data collector that made use of the Twitter Streaming API configured to only
allow tweets where the language was Portuguese and with a geographic perimeter correspondent to the
continental Portuguese territory. The Streaming API responses are objects described in Listing 46.

The project started a partially uninterrupted capture in September 2015. Their captures were
subsequently stored in an Apache Cassandra[92] instance with the following data model:

Table 3.1: TVPulse Data Model

Column Name Data Type Description
Year Integer Year in which the tweet was posted
Month Integer Month in which the tweet was posted
Day Integer Day in which the tweet was posted
Hour Integer Hour in which the tweet was posted
Created_at Timestamp Tweet creation time as a 64 bit Timestamp
ID Varint Tweet unique identifier
Raw Text Original response object in a string representation
Text Text The tweet’s text content
User_id Varint Unique identifier of the user that posted the tweet

Although there are some flaws (which will be discussed in the next chapter) in the data collected
by project TVPulse, in practice it is a fair representation of the Portuguese Twitter activity. It is
able to efficiently store tweets, while containing an identifier of the user that posted them, that can
be easily retrieved with the time of its posting as a condition. However it has limitations, since that
is the only way to get it. Due to Apache Cassandra’s data model it is not possible to make direct
associations between the users e.g. who they mention or what hashtags they use, without having a

1There is also available an Advertising API which is not relevant for this work

36

processing layer over tweets raw data. Nevertheless, it is very useful when it comes to fetch data in
bulk, like the tweets text in a determined time interval.

Due to the rate limiting restrictions of the REST API, crawling the Twitter network is nearly
impossible in an adequate time period, meaning that collecting tweets from the Streaming API is the
only possible way of effectively gathering raw, unbiased data from Twitter in considerable amounts.

3.2.2 proposed data model
Having described how the data is available for this system’s purpose, it is necessary to introduce

how it will make use of it. The accessible data set does not fulfill the system requirement of linked
data. Being stored in a Cassandra instance, the different rows of the Cassandra table represent a single
tweet where the only relationship directly available being an identifier of the user that posted it. Also,
the data model present in Cassandra databases does not allow to perform queries that join information
between the existing rows, making it even more difficult to explore data relationships. However, the
original response object is available and through a direct analysis of the properties present in a Status
object from the Twitter API it is possible to observe a lot of valuable information. The following table
describes with more detail the available information in Status objects that is considered relevant for
this system’s goals:

Table 3.2: Relevant properties in Status Objects
Property Data Type Description
is_quote_status Boolean Indicates if this tweet is a Quote
quoted_status Status Object The tweet originally quoted
quoted_status_id Integer The unique identifier of the quoted tweet
in_reply_to_status_id Integer The unique identifier of the replied tweet
in_reply_to_screen_name String The screen name of the user which was replied by this tweet
in_reply_to_user_id Integer The unique identifier of the user which was replied
retweeted Boolean Indicates if this tweet is a Retweet
retweet_count Integer The number of times this tweet has been retweeted
entities.user_mentions Array of Objects An array containing identifiers of the User’s being mentioned in the tweet, among other details
entities.hashtags Array of Objects An array containing the hashtags being used in the tweet, among other details
entities.urls Array of Objects An array containing the urls being used in the tweet, among other details
place Places Object Twitter API object with information regarding the location where the tweet was posted
source String The device or application used to post the tweet
user User Object The user that posted the tweet

Looking at Table 3.2, it is possible to find meaningful relationships inside a Twitter API Status
object. From this objects it is possible to find:

• The user who posted the tweet;

• If this tweet is a Retweet (or Quote) and the original tweet;

• If this tweet is a reply, an identifier of tweet replied and an identifier of the user being replied;

• Identifiers of the user’s mentioned in the tweet.

Moreover, other relevant properties are available for the requirements stated in the previous section:

• Hashtags present in the tweet;

• The location at the time of posting;

• The device or application in which the tweet had its source.

37

The available information in Status objects allows the modeling of a graph, in which nodes represent
entities and links the relationships between them. The following graph model is a direct representation
of the links available in Status objects:

Figure 3.1: Graph representation of Status objects

Although links are valuable it is also important to maintain the individual properties of each entity
in the graph and to be able differentiate between them. This graph model can therefore be considered
a property graph. The following tables (3.3, 3.4, 3.5) present the attributes proposed to be a part of
to each respective entity of the graph, according to the data available in both User and Status API
objects.

user

Table 3.3: Proposed User model

Field Data Type
User_id Integer
Screen_name String
Name String
Description String
Friends_count Integer
Followers_count Integer
Favourites_count Integer
Created_at Timestamp
Profile_picture String
Language String
Url String
Location String
Statuses_count Integer

38

tweet

Table 3.4: Proposed Tweet model

Field Data Type
Id Integer
Hour Integer
Day Integer
Month Integer
Created_at Timestamp
Text String
Source String
Language String
Location String
Retweet Boolean

hashtag

Table 3.5: Proposed Hashtag model

Field Data Type
Text String

3.2.3 storage requirements
This system’s storage has as its top priority the ability to mimic the existing relationships in the

defined data model without having unnecessary complexity to develop it or to explore it. It must also
allow modifications in the model, since there are properties that need to be calculated a posteriori
and dependable on the collective network data. Performance is also an important issue, since the
volume of data is significant and this should have a minimum impact on our ability to retrieve existent
information.

The type of database that more assertively fits the described storage requirements is a Graph
Database. As described in the previous chapter, Graph Databases expose a graph data model which
perfectly adapts to the models presented so far. They embrace data relationships, which is also an
intended storage requirement, and usually have a flexible schema definition, which allows to iteratively
modify the defined model without sacrificing development time.

3.3 client-server model
The desired architecture for this system complies with a traditional Client-Server model. The

Server is responsible for implementing the system’s logic and features, while also establishing the

39

connections with the system’s database and handling the Client’s requests. The Client is responsible for
the visualization capabilities and handling user interaction, resorting to the Server when its necessary.

To further understand the system’s underlying behavior, it was decided to segment it into three
distinct components: Backend, API and Frontend. The following figure illustrates a standard Client-
Server model and places the defined system components in each part of the model.

Figure 3.2: Client-Server Model

3.3.1 backend
The Backend component is responsible for implementing the system’s functional logic. It interacts

directly with the storage endpoint and must be able efficiently make use of the developed data model
to satisfy the proposed requirements and serve them to the API component. It must be able to retrieve
the necessary data, meaning it must understand the underlying data model, process it and deliver it in
an adequate format.

The Backend component is where most of the expensive computational effort lies and therefore it
is anticipated that it will heavily influence the overall system performance. Besides having important
computational tasks, this is also where operations are requested from the DBMS. Deficient handling
of the DBMS capabilities can also result in performance penalties.

3.3.2 frontend
The system’s Frontend is the visible part of the application. It is, as said, responsible for data

visualization and user interaction. It must present a clean and visually appealing interface, while
taking into consideration the variables on the end-user side like screen size or browser. It must also
display data representations, that resemble the designed data model and the proposed goals of the
system.

40

3.3.3 api
In order to have some separation of concerns and modularity, the communication between the

Frontend and the Backend is made through an independent API. This way, there is a division between
the systems logic and the communication between components, which eases the development process
and results in a cleaner application. The pattern chosen for the system was a RESTful API. RESTful
services are the standard for communication nowadays and they are a reasonable choice for the public
exposure of web applications logic.

api specification
The communication interface between our Frontend and Backend components can be established

based on the goals of this work. Since those goals are information related, it is possible to forecast
which methods will be necessary for the Frontend and what kind of information they will need to
respond. Hereby is presented the specification of this system’s API.

Table 3.6: API Specification
API Method Parameters Purpose

Network Scope

network_day_activity Date Getting the hourly counts of tweets in a day
network_month_activity Month Getting the daily counts of tweets in a month
network_activity None Getting the global tweet counts per month
network_day_locations Date Getting the tweet counts per district in a day
network_month_locations Month Getting the tweet counts per district in a month
network_locations None Getting the global tweet counts per district
network_genderdist None Getting the gender distribution of the whole network
network_sources None Getting the distribution of sources used to post tweets
network_influencerank Range Getting the <range>most influential users in the network
network_topics None Getting a representation of the modeled topics present in Twitter

User Scope

user_day_activity User_id Getting a user’s hourly counts of tweets in day
user_month_activity User_id Getting a user’s daily counts of tweets in a month
user_activity User_id Getting a user’s global tweet counts per month
user_sources User_id Getting a user’s distribution of sources used to post tweets
user User_id Getting a user model
user_interactions User_id, range Getting the list of the <range>users that more frequently interact with user <User_id>
user_topics User_id Getting a representation of the user’s topics of interest
user_similar User_id, range Getting the list of the <range>users that are more similar by topics of interest to user <User_id>

3.4 data mining modules
This system will rely on information extracted from the available set of Twitter data. Although

most of the system’s goal rely on information that is directly available through the designed property
graph data model, some of it will require analysis made externally to the web application. This is
particularly predictable when it is necessary to analyze text content, since it is a kind of process that
relies minimally on data relationships and that a graph data model does not have any particular
advantage other than to retrieve subsets of data that fit a certain relationship pattern, like for example
retrieving all the tweets that mention a determined user.

The Data Mining Modules must handle all the necessary operations of the KDD pipeline, from
preprocessing to postprocessing, having as source the data in the storage component of this system
and as an end it can either update the data model stored or produce relevant pieces of information to
be used by the system on their own.

41

3.5 architecture overview
Hereby is presented the high-level projected architecture of the system, with all the components

referred throughout his section.

Figure 3.3: High-level System Architecture

42

chapter 4
Implementation
In this chapter it will be detailed how the proposed system was implemented, how each of the system’s
requirements were met and how each component was orchestrated to communicate with each other.

4.1 storage
Having decided that a property graph would better suit the needs of the defined data model, it was

a matter of deciding which of the evaluated graph database solutions was the most reliable and offered
better performance to the system. In section 2.3, three GDBMSs were presented and reviewed: Neo4j,
OrientDB and Titan. The results found in [79] and [80] along with its maturity led to the decision to
use Neo4j as this system’s core storage component. Requirement wise, Neo4j not only allows to design
a data model that exactly matches the proposed one as well as allows for incremental changes, if such
is necessary, without sacrificing any up or development time. In terms of integrity and performance,
Neo4j tries to join the best of both worlds as it is ACID compliant and uses native graph storage. Neo4j
also possesses its own query-language, Cypher, which is rather simple and quite developer-friendly.
This grants the possibility to explore the defined data model programatically without much effort.

4.1.1 neo4j configuration
To make the best use out of Neo4j storage capabilities it was necessary to study its architecture,

system requirements and work the best possible configuration to fit the systems needs.
The edition of Neo4j used for this project was the Community Edition 3.0.0, released in March 2016.

This version possesses all the features of the Neo4j property graph data model and DBMS, although it
misses some redundancy, scalability and monitoring features when compared to the Enterprise Edition.

43

The minimum and recommended system requirements to work with Neo4j are presented in the
next table:

Table 4.1: Neo4j System Requirements

Component Minimum Requirements Recommended Requirements
CPU Intel Core i3 Intel Core i7

Memory 2GB 16-32 GB
Disk 10GB HDD SATA SSD w/ SATA

Software Java 8 (Oracle or OpenJDK) -
Operating System Linux (Debian, Ubuntu) or Windows Server 2012 -

In terms of configuration parameters, Neo4j uses two configuration files neo4j.conf and neo4j-
wrapper.conf. The first deals with all the configurations of the database system related to its internal
functioning, network connectors and security, performance and other miscellaneous parameters. The
second is where parameters related to the JVM can be set.

This configuration of Neo4j was mostly network-based, since it was decided to have a dedicated
machine to run it and therefore it was necessary to make it accessible by the other components of the
system. It was also made some performance tuning, due to the massive amount of data that needed to
be stored.

Bolt connector
dbms . connector . bo l t . type=BOLT
dbms . connector . bo l t . enabled=true
dbms . connector . bo l t . t l s _ l e v e l=OPTIONAL
To have Bolt accept non−local connect ions , uncomment t h i s l i n e
dbms . connector . bo l t . address =10 .5 .40 .29 :7687

HTTP Connector
dbms . connector . http . type=HTTP
dbms . connector . http . enabled=true
#dbms . connector . http . encrypt ion=NONE
To have HTTP accept non−local connect ions , uncomment t h i s l i n e
dbms . connector . http . address =10 .5 .40 .29 :7474

HTTPS Connector
dbms . connector . https . type=HTTP
dbms . connector . https . enabled=true
dbms . connector . https . encrypt ion=TLS
dbms . connector . https . address=l o c a l h o s t :7473

Listing 2: Neo4j Network Configurations

This listing contains the configured properties in Neo4j related to making it remotely accessible as
a component in the system’s architecture. The database instance was deployed in a virtual machine
existing in an OpenStack1 instance accessible at Instituto de Telecomunicações. These configurations
are mostly related with defining the public addresses of the connectors for HTTP, HyperText Transfer
Protocol Secure (HTTPS) and Bolt, Neo4j’s proprietary communication protocol.

1https://www.openstack.org/

44

In terms of performance the only measure taken in terms of system configuration was to change the
maximum number of open files allowed in the operation system where the Neo4j instance is deployed.
This is a practice encouraged by the developers of Neo4j when the database used possesses a lot of
indexes and is expected to receive a lot of connections. Therefore the file system limit of open files was
set to 40 000, which is the recommended amount by the Neo4j Operations Manual2.

4.1.2 data model
The proposed data model for this system was explained on the previous chapter, in section 3.2.2.

It was based on the available information in Twitter API User and Status objects, as well as in the
data set existent in project TVPulse. Here it will be explained how the data model was fully achieved
using Neo4j’s schema-optional property graph data model. The Cypher query language allows the
creation of entities and relationships in the graph model through its keyword CREATE, analogously
to SQL based relational databases.

The following listings show the Cypher statements used to create the individual entities and
relationships in the developed property graph. Since Neo4j is schema-optional, each entity is created
independently and it is the use of labels and property constraints what makes them both belonging to
a set and unique at the same time.

entities
The presented Entities assertively match the ones defined in section 3.2.2. Neo4j’s schema allowed

to create an exact representation of the proposed graph entities and its available property types also
have a direct to correspondence to the modeled ones. Indexes and unique constraints are applied to all
the graph Entities, to enforce a schema and enhance data consistency and integrity. These topics will
be further addressed in the next subsection.

User

CREATE (n:User { user_id : 12345678 ,
name:"user name",
screen_name :" @example ",
description :"I’m an example of how to create a user

entity ",
friends_count : 0,
followers_count : 0,
favourites_count : 0,
statuses_count : 1,
created_at : "2016 -08 -20 T18 :43:000 ",
profile_pic : "http :// twitter /pic/ example .png",
language : "pt",
url: "http :// example .com",

2https://neo4j.com/docs/operations-manual/current/deployment/#post-installation-tasks

45

})

Listing 3: Example of a create User query

Tweet

CREATE (n:Tweet { tweet_id : 87654321 ,
hour: 18,
day: 20,
month : 8,
year: 2016 ,
created_at : "2016 -08 -20 T18 :43:000 ",
source : "",
language : "pt",
location : "Aveiro , Portugal ",
retweet : false ,
text: "Yeah I’m a tweet! @example "

})

Listing 4: Example of a create Tweet query

Hashtag

CREATE (n: Hashtag {text: " summer "})

Listing 5: Example of a create Hashtag entity query

relationships
The create Relationship query has the same syntax for all the relationships, since relationships

do not possess properties. The following listing presents a generic query used for the creation of
relationships.

CREATE (e1:<Label1 >) -[r:< RelationshipLabel >]->(e2:<Label2 >)

Listing 6: Example of a create relationship query

46

So if the goal is to create the relationship "User with user_id 12345678 posted Tweet with tweet_id
8654321", the used query would be:

CREATE (e1:User { user_id : 12345678}) -[r:POSTS]->(e2:Tweet { tweet_id :
87654321})

Listing 7: Example of a create user-posts-tweet relationship

The same principle applies to all entities and relationships proposed in section 3.2.2.

indexes and constraints
The use of a defined database schema has benefits in terms of performance and data organization.

The use of indexes greatly improve the performance of search queries and data retrieval. For these
reasons, property constraints were implemented in the proposed data model as well as property indexes.

The necessity of property constraints in data is fairly obvious. If a user posts n tweets, it is not
required a repeated user entity per POST relationship but one user entity with n post relationships.
This principle can be applied to all the entities in data. Therefore, there must be a uniqueness
constraint on each existing entity of our dataset.

The candidate properties for a uniqueness constraint are the ones that uniquely identify an entity
among the others. Both User and Tweet entities have a unique id, provided by Twitter, on which a
uniqueness constraint was applied. Twitter users also have a screen name, which is also unique among
them. The hashtag entities are unique according to their text, meaning that every hashtag with the
same text refers to the same entity.

Having explained the properties of chosen to use as unique identifiers, it is now presented the
Cypher queries that apply this schema definition.

CREATE CONSTRAINT ON (n:User) ASSERT n. user_id IS UNIQUE

Listing 8: User id uniqueness constraint

CREATE CONSTRAINT ON (n:User) ASSERT n. screen_name IS UNIQUE

Listing 9: Screen name uniqueness constraint

CREATE CONSTRAINT ON (n:Tweet) ASSERT n. tweet_id IS UNIQUE

47

Listing 10: Tweet id uniqueness constraint

CREATE CONSTRAINT ON (n: Hashtag) ASSERT n.text IS UNIQUE

Listing 11: Hashtag text uniqueness constraint

Indexes have a huge impact on database performance. Indexed entities will be much faster to
search, retrieve and operate upon. Ideal properties to be indexed in an entity are those that are more
frequently used in query conditions. To put it in other words, the best properties to index in database
are those that are more frequently searched. Coincidentally, these properties match the ones used as
unique constraints. Below are listed the Cypher queries used to apply indexes to database entities.

CREATE INDEX ON :User(user_id)

Listing 12: User id index

CREATE INDEX ON :User(screen_name)

Listing 13: User screen name index

CREATE INDEX ON :Tweet(tweet_id)

Listing 14: Tweet id index

CREATE INDEX ON : Hashtag (text)

Listing 15: Hashtag text index

48

4.1.3 data migration
The first task to pursue after defining the data model was to populate the database with the

existing data from project TVPulse. As said before, project TVPulse had a continuous listener that
made use of the Twitter Streaming API to capture tweets posted in the Portuguese territory and in
the Portuguese language. The captured tweets were stored in a Cassandra database with the original
Status object and some related meta-data and the captured started in September 2015 and progressed
until mid 2016. It was decided to use a seven month period (from September 2015 to March 2016) as
this system’s available data. Since real-time data analysis was out of the current scope and in this
period of time there we’re some events worldwide and in Portugal (two political elections, terrorist
attacks and a continuous "war-like" climate between two major Portuguese football clubs) that could
have some repercussion in the Twitter community, it seemed an interesting time period to analyze in
depth.

To make this data migration from a column-store based data model (present in Cassandra) to the
defined property graph, Neo4j offers an import tool made exactly with the purpose of importing data
from Cassandra databases to Neo4j. However, this tool is still in development, it is very rudimentary
and supports a limited number of use cases, therefore it was implemented a custom migration scheme
to have complete control over the entities and relationships created.

The migration scheme consisted on the development of a Python script that used the designated
Python Driver for Apache Cassandra3 and Py2neo4, which is a Python library and toolkit for working
with Neo4j databases. The work flow of the script is explained in the following listing:

Algorithm 2 Database migration workflow
1: for all days in time period do
2: Get tweets for current day
3: for all tweets do
4: Extract User and Tweet
5: Extract Mentions and Replies
6: Extract Quotes
7: Extract Hashtags
8: Commit new entities

Since a schema for Neo4j was specified, CREATE operations must be schema-compliant. This
means that if it is necessary to create an entity that already exists in the database, the operation will
fail. To handle this problem, Cypher provides the keyword MERGE which can be translated as a
"match or create" operation. The MERGE operation works exactly the same way as CREATE, except
that if it matches a node that already exists, it will update the properties defined in the MERGE query.
In the situation where properties match each other, it will not alter the matched node. This type
of operation also has the advantage of simplifying development, by merging two operations (match
and create) in one, without losing functional logic. This is particularly useful for node entities, since
each row in the Cassandra represents new relationships in the dataset, although it may not represent
new entities (e.g. a tweet that mentions a user that is already stored represents a new MENTION
relationship but not a new User entity).

By the end of the migration the Neo4j database had the following numbers:

3https://github.com/datastax/python-driver
4http://py2neo.org/v3/

49

Table 4.2: Number of nodes in the database

Node Number
User 284701
Tweet 11445772

Hashtags 150942

Table 4.3: Number of relationships in the database

Relationship Number
User-POSTS->Tweet 11445772

Tweet-MENTIONS->User 2514705
Tweet-REPLIES->Tweet 1688219
Tweet-QUOTES->Tweet 504747
Tweet-HAS->Hashtag 892820

Table 4.4: Database size

Size in GBs 5,76

4.2 network scope goals
In this section, it will be introduced how the functional requirements for this system were met.

Previously it was defined the two domains in which the information goals were segmented, Network
and User Scope, and what goals each domain comprised in the final prototype. This section will be
focused the requirements of the Network Scope. The properties of the defined data model facilitated
some the proposed objectives, while others required some workarounds and a more complex approach.

The objectives for the network explorer can be divided into four categories Activity, Gender,
Influence and Topics. Each category aims to answer one or more of the requirements expressed in
section 3.1.1.

4.2.1 network activity
The Activity category is explored under three parameters: time, location and source.

network activity over time
Determining the time periods in which the Portuguese Twitter community is more
active i.e. when more tweets are being posted on an hourly, daily and monthly basis

Since all tweets that were posted have a time stamp of the time of their creation and their different
time attributes stored as properties (hour, day, month and year) monitoring network activity over
time was not expected to be an astoundingly difficult task, since the time properties of tweets can
be used as parameters for querying the database. However, after examining the stored data it were
found Tweet objects that contained a time stamp but did not discriminate its time attributes. This

50

was because the time attributes were collected directly from the TVPulse meta-data and tweets that
were derived from Status objects, namely quote tweets, did not have these attributes explicitly defined.
This led to the need of iterating over all the stored tweets that had a time stamp but did not have
the required time properties and unfold their time stamp into year, month, day and hour attributes
and update the Tweet object properties. To accomplish this, a Python script with Py2neo and the
date-util library5 was developed and it is explained in the following listing.

Algorithm 3 Unfolding of time stamps
1: for all tweets with a time stamp do
2: Parse the time stamp with dateutil parser
3: Set tweet properties
4: Update tweet entity

After overcoming this issue, it was necessary to develop a set of Cypher queries that were able to
gather all tweets under different time periods.

To gather all the tweets posted on a per month interval the following Cypher query was developed:

MATCH (t:Tweet { month : {<month >}})
RETURN count (t) AS count

Listing 16: Query for the number of tweets in a month

This query takes as parameters the desired month to obtain the number of tweets posted and
returns the number of tweets posted in that month.

To obtain all the tweets posted on a daily interval the following Cypher queries were developed:

MATCH (t:Tweet { month : {<month >}})
RETURN t.day AS day , count (t) AS count ORDER BY day

Listing 17: Query for the number of tweets from each day in a month

This query takes as argument a month and returns all tweets posted in that month but grouped
on a daily granularity. It will retrieve the same number of tweets as the query above but they will be
grouped by each day, sparing the necessity to further process the returned data subset.

Since there was a chance of also needing the tweets posted on one day of a specific month the
following query was also developed:

MATCH (t:Tweet { month : {<month >}}) WHERE t.day=<day >
RETURN count (t) AS count

5https://pypi.python.org/pypi/python-dateutil

51

Listing 18: Query for the number of tweets in a specific day

This query takes two parameters, a month and a day, and returns the number of tweets posted
in the specified date. It allows for a more flexible development of visualization schemes and it is less
computationally expensive than the query above.

To finish the goals for network activity measures, it was necessary to develop a query that returned
all the tweets posted in day but with the counts grouped by hours:

MATCH (t:Tweet { month : {<month >}})
WHERE t.day=<day >
RETURN t.hour AS hour , count (t) AS count ORDER BY hour

Listing 19: Query for the number of tweets by hour in a day

The use of the keywords AS and ORDER BY is purely organizational and with the future use of
the returned query set in mind. The keyword AS defines an alias for a specific attribute making the
query set easier to understand and ORDER BY, as the name implies, orders the set over the values of
a chosen property.

network activity over locations
Determining where does the Portuguese Twitter activity concentrate. By where it is

implicitly meant the geographical locations where more tweets are coming from

Similar to analyzing activity over time, activity over locations is enhanced by the existing properties
in Tweet entities. The location property is provided by the Twitter API under the Places object. This
JSON object contains several attributes regarding the user location at the time of posting, attributes
that may be available or not according to his account privacy settings. In the migration scheme, the
attribute chosen to represent the tweet location was its name, which accounts for a humanly readable
representation of the place’s name at the most specific detail available. For Portuguese users this
can go from simply "Portugal" as far as the town where the tweet was posted. However, for this
representation of activity it was considered that the minimum administrative division to focus was at
a district level. This required some auxiliary processing, since the existing location in Tweet objects
could be at a layer below.

The Cypher query used for this task is quite similar to the ones presented previously:

MATCH (t:Tweet)
RETURN t. location AS location , count (t) AS count

Listing 20: Query for obtaining tweet locations

52

Since this query is not very flexible and can have a slow execution time due to the amount of
existing tweets, it was also developed the same query but with month as parameter for filtering only
tweets in a determined month.

MATCH (t:Tweet { month :<month >})
RETURN t. location AS location , count(t) AS count

Listing 21: Query for obtaining tweet locations in a single month

To support the counting of tweets posted per district it was resorted to a data package provided
by Central de Dados6 that contained two structured JSON documents, one with district information
(name and code) and the other with town information (name, code and district code). This allowed
the direct mapping of the location present in a tweet to the corresponding district.

Algorithm 4 Counting tweets by district
1: Load district and town data
2: for all Locations and their respective counts do
3: Find the corresponding district code to the location
4: Find the corresponding district name to the matched code
5: Update total counts for that district

network activity source
The property source of Twitter API objects contains information about the origin of the Tweet.

The interest here is to see the devices used to post a tweet, although this field also accounts for
registered online applications that use the Twitter API. To get only a reference for device usage, the
following sources were chosen to be discriminated on the counts:

• Web Client

• Mobile Web Client

• Android App

• iPhone App

• iPad App

• Blackberry App

The rest of the sources were considered as Others.
To get global network usage it was needed to iterate over all the tweets that contained the property

source, extract the corresponding device and update its counts.
6http://centraldedados.pt/codigos_postais/

53

MATCH (t:Tweet) RETURN t. source AS source

Listing 22: Query for obtaining tweet sources

4.2.2 network gender distribution
Determining the gender distribution of Twitter users. Being an attribute that is
undisclosed by Twitter users and with great demographic value, it is intended to

estimate the percentage of male and female Portuguese Twitter users.

Determining the gender distribution of the Portuguese community is a complex task. Since gender
is an undisclosed attribute in Twitter profiles the only possibility is to predict, with some degree of
certainty, if a user is female or male based on the data associated to them as a Twitter user. To
overcome this challenge, a Machine Learning approach was made as a Supervised Classification problem.
It was necessary to model a set of features that characterized Twitter profiles and use them to build a
classifier. Generic Supervised Learning algorithms and work flows were discussed in section 2.2.3. Here
it will be presente the methodology used in this dissertation to build a gender classifier for Portuguese
Twitter profiles.

learning data
Approaching this issue as a Supervised Classification problem required the manual annotation of

a set of Twitter profiles. For this matter, 1400 distinct Twitter profiles were randomly picked from
the whole set of users and manually labeled as Male of Female, totalling the training set for the
classifier. The label was attributed through direct observation of the Twitter profile. If the profile was
inconclusive or belonged to an entity like a sports club or a news media, it was discarded and replaced
by another. The two classification labels are equally distributed, meaning the training set has 50%
males and 50% females and for further investigation it was made available online (see section 5.1.6).

feature selection
Feature selection plays a huge role in the success of classification problems. Deciding what

information in a Twitter profile has a decisive impact in determining the gender of its user is a rather
subjective matter.

The features extracted from each user can be divided in two distinct models: the first is a
sociological feature model that relies on recognition of gender defining terms and identified behaviors
on the user’s writing and the second a n-gram feature model based on character and word occurrence
on available profile information and tweets. The information used as source for feature extraction was
the user’s name, screen name, description and the last 10 tweets he posted.

54

sociological feature model
The first feature model is based on recognising gender-meaningful terms and on the hypothesis

that there are certain writing behaviors, as well as the way a user completes his profile fields that can
differentiate gender. For this matter it was built a dictionary of Portuguese gender defining first names,
based on the list of admitted and prohibited vocables as first names by the Portuguese Institute of
Notaries and Names7. It was also built a list of common Portuguese nicknames and abbreviations for
a wide range of first names and a list of gender-meaningful words, mostly composed of honorifics. The
second two built dictionaries are available in Appendix-B listings 48 and 49, while the first is one is
too big to be presented in this document, but is possible to find it in the provided URL. These three
dictionaries cover the term recognition part of this model.

The second part of this model is based on the assumption that the analysis of a user’s lexical
and linguistic content can help determining its gender. This hypothesis has been addressed for the
English language in the previous work of Rao et Al with considerable success[58]. Inspired by this
work, the same is attempted for Portuguese users. Since several profile fields and tweets are being
used as sources for feature extraction, it makes sense to search for different socio-linguistic expressions
according to the field being explored. The following table shows the features accounted for this model
along with the profile information that they are extracted from. The absence of features for the user’s
screen name is explained by the lack of linguistic expression present in this field.

Table 4.5: Sociological feature model
Feature Description Used on

Presence of male first name A male name is present in text Username, Description
Presence of female first name A female name is present in text Username, Description
Presence of male nickname A male nickname is present in text Username, Description
Presence of female nickame A female nickname is present in text Username, Description
Presence of male key word A male key word is present in text Username, Description
Presence of female key word A female key name is present in text Username, Description

Starts with “o” The text starts with the “o” character as a word Username
Starts with “a” The text starts with the “a” character as a word Username

Repeated alphabet The text contains words with repeated characters (E.g. “Joanaaaa”) Username, Description, Tweets
Capitalized The text is capitalized Username, Description, Tweets

Presence of possessive bigrams The text expresses some form of possession (E.g.” O meu dia foi...”) Description, Tweets
Link to Snapchat account The text contains an url to a Snapchat account Description
Link to Instagram account The text contains an url to a Instagram account Description
Link to Tumblr account The text contains an url to a Tumblr account Description

Ellipses The text contains ellipses (E.g. “Enfim. . . ”) Tweets
Self mentioning The text contains the “Eu” word Tweets
Affirmation The text contains a word that indicates a positive statement (E.g. “Yeaaahhh!”) Tweets
Laughter The text has a word that expresses laughter (E.g. “ahahahh”) Tweets
Exclaim The text contains a sequence of exclamation marks Tweets
Question The text contains a sequence of question marks Tweets

n-gram feature model
N-gram representation of a word or sentence consists in decomposing it into a sequence of tokens

with n items. In linguistics, n-grams are usually generated at a character or word level. The following
figure illustrates the generation of 2-grams (or bigrams) at a character and word level.

7http://www.irn.mj.pt/sections/irn/a_registral/registos-centrais/docs-da-
nacionalidade/vocabulos-admitidos-e/

55

Figure 4.1: Generation of 2-grams at character and word level. (The _ represents a
blank space

The second feature model relies on the identification of n-gram tokens on a character and word
level on each of the available profile fields and user’s tweets. The assumption on n-gram feature models
is that the repetition or occurrence of certain tokens can help identifying hidden patterns in text, in
this case it is hoped that it can identify gender-defining patterns. This model has been used for latent
attribute detection in the work referred in section 2.2.7 with relevant accuracy. For this matter, it was
built a dictionary of character and word n-grams for each of the profile information sources, limited to
a thousand tokens (or features), with the n varying according the n-gram level (character or word) and
with the information source. This dictionary was built from a thousand random users on the dataset,
with the condition that they must have ten posted tweets. The following table describes with detail
the chosen properties of the n-gram model.

Table 4.6: N-gram feature model

Field Character range Word range
Name 1-5 1

Screen name 1-5 -
Description 1-5 1-2
Tweets 1-5 1-2

After building the n-gram dictionaries, this feature model consists on counting the binary occurrence
of n-grams on each of the user’s profile field and tweets, on their corresponding dictionary.

training the classifier
The classifier used for this task was a Support Vector Machine with a linear kernel implementation

from the Scikit-learn library. As explained in section 2.2.3, SVMs with a linear kernel behave very
positively when handling more features than samples, which is the case. The features generated in the
n-gram model by itself easily exceed the number of available samples.

To understand the impact of the two feature models, they were tested separately and combined
with each other. Understanding the source for features that produces more relevant results is important

56

information for social media research, therefore the user profile fields used for classification were also
tested separately and combined. To increase the chances of greater accuracy, the number of features
used in the model was also taken into account. To achieve this, a Python script was developed that
allowed the configuration of all of this parameters as well as model specific parameters. It can be found
in Appendix-B section 6.2.

The following figure illustrates the training of gender classifier model.

Figure 4.2: Training of the gender classifier

To validate the developed model, it was used a testing data set made of 400 of the manually
annotated profiles. The procedure for annotation was the same as in the training set and the label
distribution is also equally distributed. To obtain the model with the best accuracy, each of the
parameter combinations were used on this testing dataset. The following tables show the results
obtained for the gender classification task.

Table 4.7: Classification results for the sociological feature model

Field(s) Accuracy
Username 0.725
Description 0.525
Tweets 0.595

Username + Description 0.775
Username + Tweets 0.740
Description + Tweets 0.595

All 0.755

57

Table 4.8: Classification results for the n-gram model

N-grams Scope Fields Number of Features
2000 5000 10000 20000

Char Username 0.750 0.745 0.745 0.745
Word Username 0.655 0.655 0.655 0.655

Char+Word Username 0.745 0.735 0.745 0.740
Char Screen name 0.710 0.71 0.715 0.735
Char Description 0.640 0.685 0.675 0.680
Word Description 0.530 0.535 0.545 0.545

Char+Word Description 0.645 0.650 0.665 0.685
Char Tweets 0.640 0.635 0.640 0.645
Word Tweets 0.645 0.650 0.655 0.655

Char+Word Tweets 0.620 0.625 0.635 0.635
Char Username + Screen name 0.765 0.760 0.760 0.770

Char+Word Username (word) + Screen name 0.705 0.715 0.720 0.735
Char Username + Description 0.765 0.745 0.745 0.770

Char+Word Username (word) + Description 0.670 0.685 0.695 0.695
Char Username + Tweets 0.670 0.665 0.665 0.665

Char+Word Username(word) + Tweets 0.640 0.635 0.640 0.645
Char+Word Username(all) + Screen name 0.760 0.755 0.760 0.770

Table 4.9: Classification results for the joint models

Soc. Model N-gram Model Number of Features
2000 5000 10000 20000

Username + Description Username (char) 0.785 0.785 0.785 0.790
Username Username (char) 0.810 0.8 0.8 0.805

Username + Tweet Username (char) 0.805 0.81 0.805 0.810
Username + Description + Tweet Username (char) 0.810 0.830 0.830 0.830

Username Username (char + word) 0.8 0.790 0.785 0.790
Username + Description Username (char + word) 0.815 0.800 0.800 0.800
Username + Tweets Username (char + word) 0.810 0.805 0.800 0.800

Username + Description + Tweet Username (char + word) 0.810 0.830 0.830 0.830
Username + Description Username (char) + Screen name 0.835 0.845 0.845 0.860

Username + Description + Tweets Username (char) + Screen name 0.830 0.835 0.835 0.845
Username + Description Username (char + word) + Screen name 0.830 0.845 0.850 0.855

Username + Description + Tweet Username (char + word) + Screen name 0.830 0.835 0.835 0.845

Looking at the obtained results, it is notable that the dictionary of first names and their correspond-
ing gender has a tremendous impact on the classifier’s accuracy when using the sociological feature
model. Besides that, it is possible to assume that tweets are a better source for gender distinction
that the user’s description, as joining username features and tweet features gives a slight boost in
accuracy. Regarding the n-gram model, the user’s screen name is the profile field that generated the
most interesting result, since it was unexpected that it would have such a big impact in the classification
results. The user’s tweets and description once again fail to achieve considerable accuracy rates, either
with character or word n-grams. When the two models are stacked together character n-grams from
the username and screen name, combined with sociological features extracted from the username and
description proved to be the most effective combination for the classification task.

58

To further validate the results, the model that obtained the best accuracy percentage with the
1000 train samples and 400 test samples was submitted to a k-fold cross validation (referred in section
2.2.3) over the full 1400 manually annotated samples. The chosen k was seven, which meant the data
set was divided into seven portions of 200 users and trained seven times, with each time having a
different portion serving as test. The average accuracy obtained with this validation method was 82%
with an error margin of more or less 0.07%.

classifying the data set
Having accomplished the task of building a classifier with relevant precision, it was necessary to

classify the remainder of the dataset to make the information permanently and directly available to our
system. The optional schema of Neo4j databases allows us to modify the properties of existing nodes
without affecting the database integrity and consistency. Therefore, to classify all the User nodes it
was required to iterate each and everyone of them, extract its features, send them to the classifier,
create a new property in the node with the resulting value from the classifier and update the node so
that the changes become permanent. Since the classifier with best results discards the use of tweets it
was only necessary to retrieve the user’s name, screen name and description.

4.2.3 network influence
Determining which users can be considered influential on the Portuguese Twitter

network

For influence detection, it was decided to only use graph centrality measures as the indicator.
The convenience of the property graph data model has been thoroughly explained throughout this
document and the use of graph centrality measures for influence detection is explained in section 2.2.6.
Influence measuring relies on quantifying the interactions a certain user does in the network. To the
extent of this work, this means conditionally quantifying the edges that are related to a node in the
graph.

There were a few adequate and available metrics for quantifying influence, which were the user’s
mentions, the number of times his tweets are retweeted, the user’s replies and/or quotes. When
choosing which ones would be used to measure influence an anomaly was detected in the dataset.
There is not a single tweet in the data set with the retweet flag set to true, even though there are
tweets that are quoting another tweet. The explanation for this issue could not be found but it is most
likely internally related with the Twitter API. The other explanation is that Portuguese Twitter user’s
do not use the retweet mechanism properly, which is highly unlikely.

Having eliminated retweets as a metric for influence there were still available mentions, replies and
quotes. The number of mentions was chosen as the influence metric, since it as been proven a reliable
indicator [51] and was the one with greater presence in the data set (see table 4.3).

The centrality measure used to quantify the user’s influence was in-degree centrality which translates
to counting the number of edges that represent a MENTION that are directed a node. "Betweenness"
centrality could also be used however this had extremely high computational cost to be done to every
user node in the database as it required to calculate all the shortest paths between each user. The
same applies for "closeness" centrality.

59

Cypher was used to calculate the in-degree score for each user. On a first instance the following
query was developed:

MATCH (u1:User) -[p:POSTS]->(t:Tweet) -[m: MENTIONS]->(u2:User)
WITH u2 as target , count(m) as DegreeScore
SET target . degree_score = DegreeScore

Listing 23: First query developed for calculating the in-degree score of User entities

As it can be observed, this query counts each tweet that mentions a user. This can be extremely
biased since it is only necessary one user making a lot of MENTIONS to elevate the influence score.
Moreover, it ignores how many users this user has reached. To put it in less formal language, this
method is susceptible to the "celebrity fever" effect, where an obsessed fan can spend a day mentioning
him/her. It also fails to address conversations between users that generate a lot of mentions, without
any influence value. A more fair metric would be to quantify the number of distinct users that mention
a single user. This could be done by counting the users instead of the MENTION relationships, but in
this case the query would be inefficiently searching every user’s POSTS without it being necessary. To
overcome this issue, it was necessary to create a user to user relationship that represented a mention.
Intuitively, this means that if a user posts a tweet that mentions another user, then this user mentions
the other. To achieve this, the next Cypher query was developed.

MATCH (u1:User) -[p:POSTS]->(t:Tweet) -[m: MENTIONS]->(u2:User)
WITH u1 as source , u2 as target
MERGE (source) -[: MENTIONS]->(target)

Listing 24: Query developed to create user-mentions-user relationships

Once again, this schema alteration has no effect on the database consistency, though it does change
the initially proposed property graph data model by creating a new user to user relationship.

Subsequently, the calculation of the degree-score is in all manner similar to the query showed in
listing 23, though it only has a one level relationship which makes it significantly less computationally
expensive.

MATCH (u1:User) -[m: MENTIONS]->(u2:User)
WITH u2 as target , count(m) as DegreeScore
SET target . degree_score = DegreeScore

Listing 25: Second query developed for calculating the in-degree score of User entities

60

This query also creates the new property degree_score, making it a permanent attribute in user
nodes that can be used for further querying purposes like retrieving the User entities ordered by their
degree_score.

4.2.4 network content
Determining what is talked and discussed inside Twitter.

To understand the content discussed in the Twitter network it was required a different approach
to be accomplished as querying the users tweets is not enough to extract meaningful information from
them. On another point of view, as much as Neo4j property graph data model is useful to analyze
data relationships, it not as suitable to store text data in bulk. Therefore it was necessary to develop
a complementary storage system, that allowed to store and retrieve with greater performance large
amounts of text data.

user as a document
Since this part of the system differs from the rest, it was created a new data model representative

of a User that will be addressed as Document. A Document consists of the following data:

• User ID;

• Number of tweets it has posted;

• All of the user’s tweets;

• The Term Frequency (TF) of the user’s tweets;

• The Term Frequency - Inverse Document Frequency (TF-IDF) of the user’s tweets;

• The most relevant terms divided by user topics.

Only users that have at least 50 tweets posted can be represented as a Document. Ideally, the
more tweets the more likely it is possible to achieve better results and a more valid analysis. However,
the number of users that match this criteria abruptly decreases as the number of minimum tweets
increases. This number represented a fine balance between the number of tweets necessary for a valid
content analysis and the resulting number of users to analyze. To create the Documents, the set of
Users stored in Neo4j that had at least 50 tweets was iterated, their tweets were retrieved, processed,
converted to a Document and then stored in a Cassandra instance deployed for this purpose. Apache
Cassandra was used since its properties assertively fit these requirements and it had already been used
in project TVPulse.

To obtain the aforementioned data, it was required to process all the users tweets, since that is
where the proposed data model derives from.

First of all, tweets were joined in a single string, each of them delimited by a line break. To achieve
this, all tweets were stripped of all existing tabs and line breaks through the use of a regular expression
and afterwards merged. The purpose of this preprocessing phase is to obtain a representation of a
single user’s tweets in a way that was able to store in a single Cassandra value store.

61

Secondly, it was necessary to preprocess tweets to make them suitable for TF, TF-IDF and LDA
calculations. TF and TF-IDF are two statistical measures that account for the relevancy of terms
in a set of text documents[93]. The first consists on counting how many times a term occurs in a
each of the available documents. This measure can be deceiving as it will not differentiate terms that
have a frequent appearance in text documents but little meaning in the text content, like pronouns
and adverbs, from relevant ones. To overcome this the Inverse Document Frequency (IDF) can be
multiplied with TF, hence originating TF-IDF. This results in less weight to terms that have a broader
appearance throughout the collection of documents.

To perform these calculations, it was used Scikit-learn’s CountVectorizer and TfidfVectorizer.
These two classes from the Scikit library can transform a collection of strings to a document-term
matrix representation. They offer a number of customizable options for the transformation process but
the relevant ones for this task were the tokenizer and the stopword_filter. To have more control over
the terms that were accepted, a custom tokenizer method was developed and it is presented in the
next listing.

def tokenize_tweet (text):
tokens = []

#token must have a letter pattern
word_pat = re. compile (r’[A-Za -z]’)

Remove hashtags and mentions and urls
processed_tweet = normalize (url_matcher .sub(’’,

hashtag_mention_matcher .sub(’’, text)).lower ().strip ())

Extract tokens
for token in wordpunct_tokenize (processed_tweet):

Assure that tokens contain at least three characters
if word_pat . search (token) and len(token) > 2:

tokens . append (token)
return tokens

Listing 26: Python function that tokenizes a tweet

As shown, the tokenizing process comprises the following steps: normalization, which replaces
punctuated characters by their natural form (e.g à to a), removal of urls, hashtags and mentions
through the use of regular expressions (see Appendix-B listing 50), lower casing and white space
stripping. URLs, hashtags and mentions were removed because they possess little or no value in
exploring user topics and content. The stopword_filter consists on a list of terms that have meaningless
value and therefore are filtered out of the term matrix. These include terms from grammatical classes
that offer no insight over the text topic (e.g. adverbs or determinants), nouns that are exceedingly
common and swear words. To have an even more refined selection, only terms with more than two
characters were accepted.

After fitting the collection of tweets, both the CountVectorizer and the TfidfVectorizer produce

62

a resulting document-term, i.e. tweet-term, sparse matrix8. On the first, each value of the matrix
corresponds to the number of times that term occurs in the document and the second its TF-IDF
score.

For LDA, it was used the Python library lda9. This implementation of lda associates words to a
topic through a array-like structure that allowed to retrieve an arbitrary number of the most important
words in each topic.

As features for the Latent Dirichlet Allocation algorithm, the term frequency matrix generated
by the CountVectorizer was used. It has the number of times a term occurs in each tweet which is
adequate for the correlation based inference expected in LDA. The LDA library also has a number of
customizable parameters. In this task, the essential ones are the number of topics and the number of
iterations. The number of topics was assumed five for each user and number iterations used was 1500.
The number of predetermined topics is speculative, since it would not be a feasible task to manually
analyze for each of the users which number returned the most interesting results. In result, given that
each user holds at least 50 posted tweets it estimated that these tweets cover five different thematics.
To support it results were manually analyzed for five different users. The number of iterations increases
the correlation factor between identified terms. After running the topics modeling task with 500, 1000
and 1500 iterations it was observed that only when 1500 were used that the correlation factor stabilized
for each user the algorithm was ran against.

The final stage was to store the obtained results of the three operations, along the id of the user
and the number of tweets he had posted, in Cassandra. Storing the resulting matrices directly in
the database was not possible and converting them to string representation that could be parsed
is to my best knowledge impossible. The arranged solution was to to convert the matrices into a
key-value dictionary. This allowed the conversion to JSON objects and therefore transformed to a
string representation, that could afterwards be parsed into the original dictionary.

The next figure presents the overall flow of the creation of the Document models.

Figure 4.3: Creation of the Document model

8http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html#scipy.sparse.csr_matrix
9http://pythonhosted.org/lda/

63

clustering the documents
This problem was addressed with an Unsupervised Classification approach. It comprised of a two

step solution that encompassed labeling all the Documents into clusters, with the purpose of grouping
the users that have similarities in their content and checking the most relevant terms used in each
cluster. The second step consisted of projecting those users in a two dimensional plane to see how the
clusters were formed.

To accomplish the first task, it was used the Scikit’s implementation of the K-means clustering
algorithm, trained with TF-IDF features. Since each user’s tweets were condensed into a single string
and stored, it is possible to fit them in Scikit’s TfidfVectorizer to create a user-term matrix, in which
a column represents a term, a row represents a user and consequently the intersection contains the
TF-IDF score for that user. This posed a challenge in the preprocessing stage of the TfidfVectorizer,
since the tokenizer developed before was made to process a single tweet. To solve it, a tokenizer that
understands that it is before a collection of tweets delimited by a line break was developed, and it is
presented in the next listing.

def tokenize_document (doc):
Split document into original tweets
tweets = doc.split(’\n’)

tokens = []

#token must have a letter pattern
word_pat = re. compile (r’[A-Za -z]’)

for tweet in tweets :
Remove hashtags and mentions and urls
processed_tweet = normalize (url_matcher .sub(’’,

hashtag_mention_matcher .sub(’’, tweet)).lower ().strip ())

Extract tokens
for token in wordpunct_tokenize (processed_tweet):

if word_pat . search (token) and len(token) > 2:
tokens . append (token)

return tokens

Listing 27: Python function that tokenizes a Document

After producing the TF-IDF matrix for all the Documents, the K-means model was fitted with it.
K-means requires the number of clusters to be specified before being run. The best k was found to be
three, after trying with the values from two to six. The result of the K-means algorithm was a list of
the labels for each user, i.e. which cluster it belonged.

To be able to visualize the resulting labels, it was necessary to find an humanly understandable
representation of the Documents clustered, in this case in a bi-dimensional space. To do this, it was

64

necessary to find a measure that could evaluate how "distant" the Documents were to one another and
afterwards represent that distance in a two dimensional plane.

To find out how close the Documents were related it was calculated the cosine similarity their
TF-IDF feature vectors. The cosine similarity implementation of Scikit-Learn works with matrix
structures, which allowed it to be directly calculated over the produced TF-IDF matrix. However, it
was still necessary to project these results into the desired dimensional space, which was accomplished
using Scikit’s implementation of PCA (explained in section 2.2.2). Due to the considerable size of the
cosine similarity score matrix, the implementation of PCA that was used was the IncrementalPCA,
since it scales considerably better than the standard implementation, while obtaining the same results.
The process of discovering the network content clusters described through this section is illustrated in
listing 4.4.

Figure 4.4: Clustering of Documents

4.3 user scope goals
In this section it will be explained how the user explorer was developed and its functional

requirements were achieved. This part of the system focuses on providing detailed information about
the owner of a specific Twitter profile and contextualize him within the network. The objectives for
the user explorer (see section 3.1.2) can be divided into three categories Activity, Network and
Content.

4.3.1 user activity
Much like in Network Activity, this part of the system aims to present information about Twitter

activity, but regarding only a single user. In this scope it was decided to divide the activity analysis
over time and source.

65

user activity over time
Determining the time periods in which the user concentrates his activity on Twitter i.e

the time slots is which the user is more active

After uncovering the Twitter global network activity over time, doing the same on a user basis is
straightforward as the process is the same but restricted to only the tweets posted by the user being
profiled. To accomplish this the following Cypher queries where developed:

MATCH (u1:User { user_id : <user_id >}) -[: POSTS]->(t:Tweet)
RETURN t.month as month , count (t) as counts

Listing 28: Query for user activity over months

MATCH (u1:User { user_id : <user_id >}) -[: POSTS]->(t:Tweet { month :
<month >})

RETURN count (t) as counts

Listing 29: Query for user activity on a specific month

MATCH (u1:User { user_id : <user_id >}) -[: POSTS]->(t:Tweet)
WHERE t. month = <month >
RETURN t.day as day , count (t) as counts

Listing 30: Query for user activity for all days in a month

MATCH (u1:User { user_id : <user_id >}) -[: POSTS]->(t:Tweet)
WHERE t. month = <month > AND t.day = <day >
RETURN count (t) as counts

Listing 31: Query for user activity on a specific day

MATCH (u1:User { user_id : <user_id >}) -[: POSTS]->(t:Tweet)

66

WHERE t.month = <month > AND t.day = <day >
RETURN t.hour as hour , count (t) as counts

Listing 32: Query for user hourly activity on a specific day

It was also decided to obtain which day of the week is a user more active and the hour of the
day in which his activity is concentrated, as they are both interesting facts about user activity. To
accomplish it, the following queries were developed.

MATCH (u1:User { user_id : <user_id >}) -[: POSTS]->(t:Tweet)
RETURN t. created_at as timestamp

Listing 33: Query needed to calculate which weekday is the user more active

To get the counts for each week day it was required the time stamp of the Tweet, parsing the date
and get the corresponding weekday.

MATCH (u1:User { user_id : <user_id >}) -[: POSTS]->(t:Tweet)
RETURN t.hour as hour , count (t) as counts
ORDER BY counts DESC

Listing 34: Query for user activity for every hour

user activity over source
Determining how the user interacts with Twitter in terms of types of devices chosen to

maintain his profile

Like in activity over time, activity over source has the same process as in the Network Explorer
but restricted to the tweets posted by a single user. To meet this goal the next Cypher query was
developed, which is the same as the one used to get tweet sources for the network but restricted to a
single user.

MATCH (u1:User { user_id : <user_id >}) -[: POSTS]->(t:Tweet)
RETURN t. source as source

Listing 35: Query for user activity sources

67

4.3.2 user network
This section meets the necessity of discovering relevant information about the user’s interactions

and place within the network. The proposed goals dealt with finding which users are the ones that are
more frequently a target of Twitter interactions (mentions and replies), along with a way to determine
the distance between this user and another.

interactions
Determining which users interact with the user being profiled

Determining which are the users which the user being profiled frequently interacts

Once again, Cypher is the support to obtain the desired the results. This is one of the goals in
which the use of a graph database is particularly helpful since it is directly related to data relationships.
It is meant to calculate which are the users that most frequently mention or reply the designated user
and oppositely, the users that this user most frequently mentions and replies. This can be obtained
using four different Cypher queries which are presented as follows.

MATCH (u2:User) -[p:POSTS]->(t:Tweet) -[m: MENTIONS]->(u:User { user_id :
<user_id >})

RETURN u2 as user , count(p) as n_mentions
ORDER BY n_mentions DESC
LIMIT <limit >

Listing 36: Query to obtain the users that more frequently mention other user

68

MATCH
(u2:User) -[p:POSTS]->(t:Tweet) -[r: REPLIES_TO]->(t2:Tweet) <-[: POSTS]-(u:User
{ user_id : {id }})

RETURN u2 as user , count (r) as n_replies
ORDER BY count (r) DESC
LIMIT {limit }

Listing 37: Query to obtain the users that more frequently reply to another user

MATCH (u:User { user_id :
<user_id >}) -[p:POSTS]->(t:Tweet) -[m: MENTIONS]->(u2:User)

RETURN u2 as user , count (p) as n_mentions
ORDER BY n_mentions DESC
LIMIT <limit >

Listing 38: Query to obtain the users that another user more frequently mentions

MATCH (u:User { user_id :
<user_id >}) -[p:POSTS]->(t:Tweet) -[r: REPLIES_TO]->(t2:Tweet) <-[: POSTS]-(u2:User)

RETURN u2 as user , count (r) as n_replies
ORDER BY n_replies DESC
LIMIT {limit }

Listing 39: Query to obtain the users that another user more frequently replies to

With the use of Cypher it is possible to obtain for each of the requirements, the list of the users
that most frequently make use of each of the interaction patterns presented in a clean and ordered
subset.

distance
Determining the network distance between this user and any other user i.e. being able

to visualize how "close" this user is to other users

The purpose of this goal is to be able to understand how "close" in the network two users are.
Closeness is defined here as the shortest amount of links one has to traverse to go from on user node to
another. This is an interesting measure to the extent that it allows to extrapolate how likely two users

69

are acquaintances in real life or through which users that is possible happen. Cypher offers the built-in
pattern shortestPath which, as the name implies, returns the shortest path between two entities in the
graph. Making use of this pattern, the following Cypher query was developed.

MATCH n = shortestPath ((u1:User { user_id : <user_id1 >}) -[*]->(n2:User
{ user_id : <user_id2 >}))

RETURN n as path

Listing 40: Query to obtain the distance between two users

This query differs from the rest because it does not a return a list of entities or an absolute value
but instead it returns a path consisting of the existing User nodes that were encountered between the
two users and the relationships that connect them.

4.3.3 user content
Determining what are the topics of interest of this user

Determining what users in the network have similar topics of interest with the user
being profiled

This section of the user explorer is designed to show what the user is talking about on Twitter.
Like uncovering network topics, it differs from all the other proposed goals since it mostly relies on the
analysis of text content and not on data connections.This kind of analysis is only possible if there is
enough content, meaning that it can only be performed on users with a minimum number of tweets
posted, otherwise it is meaningless to try to perceive their posted content. This requirement was taken
into consideration when defining User Documents, as explained in section 4.2.4. As it was defined in
the User Scope requirements (section 3.1.2), this section aims to correctly identify which are the topics
of interest of a determined user, as well as identifying other users that relate to those same topics.

4.3.4 topics
The process for modeling user topics is explained in complete detail the section 4.2.4. Using

Python lda over the document-term frequency matrix of a user, it was possible gain insight over the
topics of interest of a user through the co-occurrence of words in tweets. This process was completed
when creating the User Document database, having the results of the LDA algorithm being stored for
every possible user. However, this is only an indicator of the possible topics of interest of a user and
requires human interpretation to actually understand what the correlated terms refer to. An adequate
visualization scheme is required so that it is possible to intuitively understand what are the relevant
terms that represent the user’s topics of interest, which will be addressed further in this document.

70

4.3.5 similarity
This requirement consists on determining which users post similar content when compared to the

profiled user. It is a problem of text similarity. We want to be able to pick the collection of tweets
posted by two users and verifiy if the topics they address are similar to one another. The method
chosen to verify if two users can be considered similar was calculating the cosine similarity of their
TF-IDF scores. This allowed to understand how close two TF-IDF scores of the users are, indicating
they have a similar choice of words. By calculating it over TF-IDF, the relevancy of terms is also taken
into consideration, making it a suitable measure for a similarity measure.

Comparing the TF-IDF scores of a user with every other user, one at a time, would an be an
extremely slow process. However, since Scikit’s implementation is being used, it is possible calculate
cosine similarity between two matrices, which turns out be a huge benefit.

Since all the user’s term frequencies are stored in a single matrix and Scikit’s implementation of
cosine similarity works with matrix structures, to perform this calculation between a user and the
others it was retrieved the matrix row corresponding to the desired user and afterwards compared to
the complete matrix. As it is a standard in Scikit, the result of this operation was Sparse Matrix, with
the similarity scores to each user. To get the more similar ones, it was necessary was to retrieve the
indexes with the highest scores.

Note that by using matrix structures to perform this operation, the only indicator available to
determine which row of the matrix corresponds to a user is the row’s index. When creating the matrix
with all the users term frequencies it was also necessary to store in an auxiliary list each of the user’s
ids in an orderly fashion, so that the indexes of the matrix rows match the indexes in the list and it is
possible trace back a matrix row to a user.

4.4 web application
After detailing what consists of the supporting storage system and the functional logic behind

the proposed goals, it was developed a web application that incorporated both and added a visual
representation of the obtained results. The following subsections will address the technological
components used to conjugate the created storage system with the functional logic needed to tackle
the designed requirements and how the visualization layer that feeds on the generated information was
developed and integrated.

71

Figure 4.5: Architecture diagram of the web application

4.4.1 django web framework
Considering that the most of the developed work is based on Python libraries, especially ML and

data mining tasks, it made sense to build the web application with a Python web framework, as it
would greatly facilitate their integration. On top of that, the database migration was made using
Py2neo which was found to be an easily understandable and usable library for Neo4j. Taking these
requirements into consideration, the framework chosen to implement the web application for this

72

dissertation was the Django Web Framework10, which is regarded as the most reliable and mature
Python web framework. Other alternatives consisted of Flask11 and CherryPy12. Although these
frameworks are considered more pythonic and flexible, they lack the out of the box features that Django
has, like a page templating system, an object-relational mapper or a caching framework and require
this sort of functionality to be either developed or delegated to third-party libraries. Using Django
allowed for a development focused on the system’s functional logic.

Django possesses a great set of out of the box functionality that eases the development process of
web applications. Features like authentication, administration, database connectors and cache are an
integral part of the Django Web Framework and are in place and ready to use if necessary.

Tipically, a Django project consists of a collection of modular individual apps. The project directory
contains the configuration file that defines the whole system settings and the URL mappings to all the
existing apps. Being modular, developed apps can be reused in other Django projects.

With the purpose of developing a web application in mind, rendering of HyperText Markup
Language (HTML) files is an important feature as it will be what enables the visualization of pretended
results. Django defines itself as a Model-Template-View (MTV) framework where Models are responsible
to make a relational mapping between database objects and application objects, Templates define how
the data is presented and Views decide what data is to be presented through the use of Python code
for logic. This design pattern is pretty similar to Model-View-Controller (MVC), the nuances that
distinguish them can be found in [94]. To make use of Django templates, it is necessary to add to the
app a template directory where the HTML pages will reside.

As defined in architecture section, the proposed web application consists of three core modules:
Backend, Frontend and API. This architecture can directly mapped into three different Django apps
and this was the chosen path for the application development.

backend
The Backend app is the one responsible for establishing the connection with the graph data

model in Neo4j and implement the functional logic of the system. One of the defining components of
Django its his Object-Relational Mapping (ORM). The Django ORM is the component that enacts the
mapping of Relational Database tables into Python objects allowing an object-oriented development.
The utmost advantage of working with an ORM is that it provides an additional abstraction layer
over the database, making possible to automate a series of SQL commands like SELECT, INSERT,
UPDATE or DELETE without working directly with SQL. Since this system doesn’t make use of a
Relational Database, ORM would seem an irrelevant component to use in Django, but Neo4j, while
not being a Relational Database, allows the implementation of a Object-Graph Mapping (OGM)
since entities in the graph data model can also be directly mapped to Python objects. An OGM is
by all means analogous to an ORM, with the difference being that it maps graph entities and even
relationships to objects, instead of Relational Database’s tables.

Py2neo has an integrated OGM, that was used to map graph entities in the data model into
Python objects. Listing 41 shows how the User entity was mapped as a Python object.

10https://www.djangoproject.com
11http://flask.pocoo.org/
12http://cherrypy.org/

73

from py2neo .ogm import GraphObject , Property , RelatedFrom , RelatedTo

class User(GraphObject):
__primarykey__ = " user_id "

user_id = Property ()
screen_name = Property ()
name = Property ()
description = Property ()
friends_count = Property ()
followers_count = Property ()
favourites_count = Property ()
created_at = Property ()
degree_score = Property ()
gender = Property ()
predicted_gender = Property ()
profile_pic = Property ()
lang = Property ()
url = Property ()
location = Property ()
statuses_count = Property ()

posts = RelatedTo (’Tweet ’, ’POSTS ’)
mentions = RelatedTo (’User ’, ’MENTIONS ’)

Listing 41: User entity as a Python object

To make the models recognize that they are mapping an entity from a Neo4j instance it is necessary
to set up a connector object with Py2neo in one of the Django configuration classes, so that it knows
the HTTP or Bolt endpoint through which the Neo4j database is accessible.

The Backend app is also responsible for implementing all the logic behind the requirements
described in the previous sections. Those that rely on querying can be either mapped directly with a
filter on the defined model or, if they require more complex querying, the Py2neo connector can be
used to run of custom Cypher queries.

The goals that dealt with topic modeling and similarity required the use of a complementary
storage component, Cassandra, which is also handled in this app. Although there is a Django mapper
for Cassandra 13 it is not a mature solution so it was decided to use the more robust Cassandra
Python-Driver14 and integrate it in the system. This full fledged library for Cassandra manipulation
in Python, possesses an object mapper from Cassandra tables to Python objects, which was used to
create the following model.

13https://pypi.python.org/pypi/django-cassandra-engine/
14http://datastax.github.io/python-driver/index.html

74

from cassandra . cqlengine . models import Model
from cassandra . cqlengine import columns

class Document (Model):
__keyspace__ = ’twitterx ’
__table_name__ = ’user ’

userid = columns . VarInt (primary_key =True)
num_tweets = columns . Integer ()
document = columns .Text ()
tf = columns .Text ()
tfidf = columns .Text ()
topics = columns .Text ()

Listing 42: Cassandra Document as a Python object

Through this model, it was possible to perpetrate operations over the stored Documents in an
object-oriented fashion and easily retrieve each user’s data. For topic modeling, term frequency,
TF-IDF scores and LDA topics are stored as "stringified" dictionaries in Cassandra meaning that their
retrieval is a matter of parsing them. As for similarity, the solution was to create a Python class called
UserSimilarity that is instantiated on application start up and that contains the list of user’s ids and
the term-frequency matrix of all users. To be able to reuse this matrix, it was used Scikit’s class joblib
to persist it as a Python object then to load it and make it a part of this Python class. The goal of
this class is to, given a user’s id, provide the user’s ids of its n more similar users. It can be seen in
listing 43.

75

import json
import numpy as np
from sklearn . externals import joblib
from sklearn . metrics . pairwise import cosine_similarity
from os import path
import sys

Necessary to unpickle the persisted object
current_path = path. dirname (__file__)
sys.path. append (current_path)

class UserSimilarity :
def __init__ (self):

Necessary for tracing user_ids by index
self.users =

json.loads(open(current_path +’/ filtered_users .json ’,
’rb’).read ())

user|term matrix
self. tfidf_matrix =

joblib .load(current_path +’/ tfidf_matrix .pkl ’)

def get_similarity (self , userid , n_users):
Get desired user data
matrix1 = self. tfidf_matrix . getrow (self.users.index(userid))

Calculate distance between this user and the rest of the
dataset

distances = 1 - cosine_similarity (matrix1 , self. tfidf_matrix)

Get the indices of the n most similar users
First user will be the original user
indexes = np. argsort (distances [0]) [: n_users]

Get the similarity scores of the users
scores = distances [0][indexes]

Get user ids
users = [self.users[index] for index in indexes]

return dict(zip(users , scores))

Listing 43: Class developed to calculate similarity between one user and the rest

76

The next figure shows how the TopicSimilarity class loads the necessary term-matrix to perform
its calculations.

Figure 4.6: Loading of the TopicSimilarity class

api
The API app is responsible for implementing the API methods described in the section 3.3.3 of

the previous chapter. All the developed methods are exposed through an URL and therefore are
implemented through the Django Views paradigm. They follow a logic of either fetching results stored
in cache or require the Backend to calculate/retrieve them again. If this happens, the API methods
will cache the results. The system’s cache mechanism explained in the Redis section. The response
of all the developed API methods is a JSON object. The following represents a response to the API
method that retrieves the tweet counts by district in a given month.

{
"PT.SA": 51863 ,
"PT.FA": 50392 ,
"PT.CO": 72608 ,
"PT.AV": 116084 ,
"PT.VR": 8942 ,
"PT.BA": 4832 ,
"PT.BE": 8908 ,
"PT.PO": 229262 ,
"PT.LI": 386759 ,

77

"PT.GU": 4260 ,
"PT.PA": 8143 ,
"PT.VC": 3379 ,
"PT.CB": 8165 ,
"PT.BR": 52496 ,
"PT.VI": 17248 ,
"PT.EV": 16564 ,
"PT.LE": 67671 ,
"PT.SE": 153375

}

Listing 44: Example of an API response

frontend
The Frontend app is the one that encompasses the visible part of the system. It mostly consists

of the HTML pages that will be displayed to the end user and the Javascript and Cascading Style
Sheets (CSS) frameworks used for visualization that will be explained in detail further. This app
makes use of the Django template paradigm for HTML rendering and in some cases the Template API
15 for data display, although most of that work is done using Javascript visualization libraries. To
accelerate the development, it was used an open-source HTML & CSS web administrator dashboard
template built on top of the Bootstrap16 framework.

4.4.2 celery
Celery17 is an asynchronous task queue based on distributed message passing. These queues repre-

sent a mechanism to distribute work (tasks) across threads or machines (workers). For accomplishing
this, Celery relies on communicating through messages, using a broker to mediate interactions between
clients and workers. The most common brokers used with Celery are message brokers such as Redis18 or
RabbitMQ19, given their asynchronous capabilities. However, some Database engines are also partially
supported.

As it stands, the developed system makes use of Celery’s capabilities, using Redis as a broker,
by launching tasks at the application start up. This will act as a pre-loader for certain for some
visualization schemes that involve processing amounts of data that are too big for real-time loading
and therefore done before the application starts running and stored in cache. Celery is used in this
system to enhance user experience with the application. Without having data preloaded it would be
necessary for the end user to wait uncomfortable amounts of time to obtain some of the displayed data.

15https://docs.djangoproject.com/en/1.10/topics/templates/
16http://getbootstrap.com/
17http://www.celeryproject.org/
18http://redis.io
19https://www.rabbitmq.com

78

Even with Asynchronous JavaScript and XML (AJAX) requests, which cause the application not to
stall, he would still have to wait to see the data which is what is trying to be avoided.

4.4.3 redis
Redis is an in-memory data structure store, used as database, cache and message broker. Its main

purpose is to serve as a reliable and fast key-value database, which is a simple yet very powerful model,
particularly when considering that Redis supports data types such as strings, lists or sets.

This system makes use of Redis with two diferent purposes. The first is as a message broker for
Celery tasks and the second as a cache. The caching mechanism is very important in the system in
terms of performance. Some of the queries listed in the previous sections are very time consuming and
impracticable to make in real-time, therefore they must be executed before the system loads and their
results must be accessible through the system’s cache. Using Redis as cache allow for the query sets to
be stored as they are, due to its flexible data type support.

4.4.4 visualization frameworks and libraries
In this section, it will be presented some of the development frameworks used to construct web

based, visually appealing representation schemes. It consists of modern state of the art HTML, CSS
and Javascript frameworks that are frequently used for this purpose.

adminlte and bootstrap
The AdminLTE20 Control Panel template is an open-source web administrator and dashboard

template. It is a responsive HTML template that is based on the Bootstrap 3 framework.
This template utilizes all of the Bootstrap components in its design and re-styles many of them to

create a consistent design that can be used as a user interface for backend applications. It was also
designed with modularity in mind, which allows it to be easily customized and built upon.

AdminLTE comes with a wide range of Javascript libraries and plugins used to create charts,
interactive components and animations. This template was used as a mean to delegate some of the
work required to develop a visually appealing user interface that is consistent and customizable.

d3.js
D3.js21 is a Javascript library created by Mike M. Bostock built for the manipulation of data based

documents and to present them in virtually any format. It is framework agnostic, meaning that is
can be used along with every web development framework without losing any feature. D3.js operates
over HTML, CSS and Scalable Vector Graphics (SVG) elements and offers a wide set of features to
manipulate them, that go from simply displaying them in a specific format, to creating animations or
highly-interactive representations.

20https://almsaeedstudio.com/
21https://d3js.org/

79

This framework is purely client-side, meaning that it runs exclusively on the user’s browser. Data
processing can and should be done outside the framework, for the sake of making the representations
more lightweight.

In this system, D3.js was used to create animated graph-layouts, although it also uses other
representations that were made by the open-source community based on D3.js. This system’s graph-
layouts are mostly based on D3.js’ force-layout. Force-layout is manipulation property that enables
the creation of directed forces in graphical animations. These forces can analogously compare to real
life physical mechanics like repulsion or gravity. In D3.js, repulsion charges are made to make graph
nodes repel each other and gravity is pseudo-representation of the gravitational force that pushes the
graph nodes the center of the area of representation. It is also used a weight on node links to make
them more or less close to each other.

D3.js has a fairly steep learning curve, due to its vast set of features and their high degree of
configurability. One can easily lose grasp over the enormously big variety of possibilities that exist
when creating graphical representations, meaning it was necessary to study existing examples, filter
the relevant and appropriate existing features and adapt them to the system’s requirements.

chart.js
Chart.js is Javascript library focused on creating clean, appealing and interactive charts. Although

it does not have such a vast offer of chart types, the ones that does have are fully featured and easily
configurable. This library is included in the AdminLTE template that was used for the web application
and this template has some built in visual integrations for charts created using it. This made it the
obvious choice to create the necessary charts for requirements on information over a time period or
distributions. The charts used in the framework for this web application were Line Charts and Pie
Charts.

others
Since Chart.js has somewhat a limited offer of chart types and D3.js’ a slow development process

due to its complexity, there were used other third-party open-source libraries to create specific data
representations. The plugins used are Cal-Heatmap22, Datamaps23 and D3-Wordcloud24.

Cal-heatmap is a Javascript module made to create a calendar heat map, like the ones used in
Github25 to show user contributions. A calendar heat map is a suitable way to represent time-series
data over large time spans. In this system it was chosen to show the network activity over the available
months in the dataset.

Datamaps is a Javacript library made to create customizable and interactive data visualizations
over geographical data. It comes with map topologies for a great part of the globe. Datamaps was
used to visualize network activity over the different Portuguese districts.

D3-Wordcloud is a D3.js plugin made by to create word clouds. Word clouds are a visualization
technique used to highlight relevant words in a set. It was used to represent the user’s tweets
term-frequency.

22http://cal-heatmap.com/
23http://datamaps.github.io/
24https://github.com/jasondavies/d3-cloud
25https://github.com/

80

All of this Javascript modules are dependent on the D3.js library, which shows how flexible and
powerful it can be when it comes to data visualization.

81

chapter 5
Results
In this chapter it will presented the end result of the developed prototype and the visual results obtained
for each of the defined system requirements.

5.1 prototype
The developed prototype features visual and interactive representations of the proposed goals

allowing the end user to:

• Check Twitter activity on the network scope under three different categories (time, location
and source) through chart representations while being able to browse through different time
spans (monthly, daily, hourly);

• Check Twitter global posting contents in a visually appealing way;

• Browse through a ranked list of the most influential user’s in the Twitter network and filter
that list under defined properties;

• Choose a user to analyze and obtain information over his profile data, activity, network and
posted content. All this information is presented graphically in the form charts or intuitive data
representations;

• Classify any Twitter user on its gender;

5.1.1 home page
The home page of the prototype is simply a descriptive page of the existing contents in web

application. It resumes the concept behind the application, what the user will find in each of the
navigation tabs, the existing features and some information about it was developed.

The Network Explorer contains the sections where the user can explore the Twitter network. For
the sake of user experience the Network Explorer was divided into three categorical subsections, one

83

Figure 5.1: Prototype home page

that deals with activity, one with influence and another with content. The User Explorer encompasses
two different tabs, the profiling section where resides all the information about a singular user and the
gender classification where it is possible to test the developed gender classifier has a single component.

The end user can navigate through these subsections using the sidebar on the left.

5.1.2 network explorer - activity

twitter activity by month
By opening the Activity page, the user is confronted at first with a calendar heat map of the

Twitter activity. This representation has the advantage of enhancing intuitive visual comparisons over
a different time periods, through the use of color shades.

Having decided to use a calendar heat map to represent Twitter activity, two of the goals for the
Network Scope information are met, since it enables the user to compare Twitter activity on monthly
and daily basis at the same time. Note that there certain days that appear blank as if no activity
occurred in that period. This happens due to anomalies in the dataset, most probably caused by errors
in the TVPulse’s data collector.

84

Figure 5.2: Network activity by month

twitter activity by hour
The calendar heat map has a label indicating that by clicking on the square of a determined day

it is possible to check the activity in that day in detail. The display the Twitter activity on an hour
granularity, it was used a line chart where the Y-axis is the number of tweets and the X-axis the hours
of the day. For context, it was also calculated the mean counts each hour has for the whole days in the
dataset, to be able to identify unusual Twitter activity.

85

Figure 5.3: Network activity by hours

twitter activity by location
To represent how Twitter activity is distributed over the Portuguese territory it was decided to

use an interactive map that discriminates activity on each Portuguese district using color shades. This
metric can be browsed through every month available in the data set. To complete this section it was
calculated which are the most globally active and inactive districts.

86

Figure 5.4: Network activity by locations

twitter gender and source distributions
Pie charts were the chosen visualization method to represent distributions throughout the system.

In the Network Activity they are used to show how many users in the data set, according to results
provided by the developed classifier, are male or female. Along with this, it is also used to show how
the tools used to post tweets are distributed in percentage.

87

Figure 5.5: Gender distribution

Figure 5.6: Source distribution

88

5.1.3 network explorer - influence
The Influence tab displays a ranked list of the most influential Twitter users in the data set. The

process for measuring influence is explained in the previous chapter. This list is paginated, contains
ten elements per page and it was developed using the Django Template API.

filters
To provide the end-user some freedom to explore this list, two filters are available. It is possible to

filter the users in list by native language, to make it exclusively Portuguese, and by gender.

Figure 5.7: Filters for the influence rank

details view
While consulting the Influence page it is possible to access some details about the user profile by

clicking the "View Details" button. This detailed view presents some information about the user’s
profile data and an hyperlink to his User Explorer view.

Figure 5.8: Influence rank

89

5.1.4 network explorer - content
The content section of the Network Explorer displays a scatter plot of the projected two dimensional

cosine similarity distances, where each point in the plot can be one of three colours, each representative
of the cluster the K-means algorithm assigned it. The points in the plot can be hovered, displaying
basic information about the user they represent. It is also possible to visualize the most relevant terms
in each cluster.

Figure 5.9: Graphical representation of the uncovered clusters

Figure 5.10: Most relevant terms for cluster 1

90

5.1.5 user explorer - profiling
The profiling section contains all the individual information that has been gathered about a single

user in the data set. When the application end user navigates to this section, it is presented with a page
where he can choose the user he wants to consult by writing his screen name or ask the application to
present one for him randomly. He can also navigate to the profiling section through the influence list
available on the Network Explorer section.

Figure 5.11: Find user to profile form

profile information
The first information presented when in the profiling section is the profile information extracted

directly from the user’s account. This metrics are available in the database as they were extracted as a
part of the migration process. However, there are cases while migrating where this information was not
available (see section 4.1.3). To overcome this, the Twitter API was used to retrieve this information
in real-time. The user profile is then updated in the database with this new data. This is also used as
an update method to all users in system, since this information is volatile and can change with the
user’s recent activity on Twitter.

Figure 5.12: User profile information

user activity
The second content section in this page is related to user activity. To illustrate how active the

user has been over the time period that is present in this data set it was used a Line Chart. At a first
instance, it was considered using a calendar heat map representation again but since not every Twitter
user is active on a daily basis, that would lead to a lot of cases where existed a considerable amount of

91

empty slots in the map which could make it not very appealing. Through a Line Chart, those cases
are mitigated while still providing an intuitive illustration of the evolution of user activity over time.
To complement this information, it was calculated which day of the week concentrates most of activity
and the opposite. As part of this section it can also be found the source distribution of posted tweets
for this user.

Figure 5.13: User activity

user network
The following section concentrates information about the user’s interactions in the network. The

first piece of information presented is a table consisting of the most interacted users in the profiled
user’s network. It is possible to find the top five user’s that: mention this user more times, reply to
this user more times and the reverse.

Figure 5.14: User network interaction

Also, there are two different interactive boxes as part of this section. The first is a graph layout
with the ten user’s that are considered the most similar to the target user in terms of posted content.
Although this could be considered content information, visually it makes more sense to be included in
the network section, as it contains information about other user’s in the network. When hovered, the
nodes in the graph layout provide some basic profile information about the user they represent.

The second box was created to represent distance between users. It starts as an empty box with
an input bar where it is asked to insert the screen name of a user at choice. After the user submits the
desired screen name, if that user is present in the data set and a path in the graph exists from the
target user to the searched user, a graph is constructed in the interface with the nodes of the users
present in the identified path. Like in in the previous box, the nodes present information about the
entities they symbolize when hovered.

92

Figure 5.15: User similarity graph

Figure 5.16: User distance graph

93

user content
The last section in this page is dedicated to user content. In it are found two visual representations

of text data, that are based on two different text analysis algorithms. This first one is word cloud of
the most frequent terms used by the user. The more frequent the terms are, the more relevancy they
have in the portrayed term cloud. Here’s an example of the generated term cloud for a user.

Figure 5.17: User term frequency as a word cloud

The second representation intends to be a visual example of the results obtained by applying LDA
to the user’s tweets, hence obtaining an indications of his topics of interest. To accomplish this, the
most important 15 terms in each of the five topics, calculated when generating each user’s Document,
form five conglomerates of nodes with the corresponding term displayed over them. The cluster nodes
are also distinguished by color, making it more intuitive that they represent a topic of interest.

94

Figure 5.18: User topic modeling as a graph layout

5.1.6 gender classification
The last tab of the User Explorer was developed exclusively to demonstrate the gender classifier

used to classify the data set as male or female. Since this is an external component to the system
and can be used in other data analysis tasks, this page was created so that it could be seen working
and tested. To do this, it is given the possibility to search for any user in Twitter by screen name.
Using the Twitter API, information about the user profile is retrieved and displayed on the page. After
confirming that the retrieved user is the one aimed to classify, the user’s name, description and screen
name are sent to the server, processed and the result of classification is displayed on the page.

95

Figure 5.19: Find user for classification form

Figure 5.20: Classification results

github repository
The developed classifier was made available at Github on the domain https://github.com/

mvicente93/twitter-gen-classifier-pt. There it is possible to find the training algorithm used
and configure it with new specifications. It is also possible find a serialized model of the classifier that
can be loaded using Scikit-Learn and used in other projects as well as the data sets used for training
and testing.

5.2 api
The prototype uses a REST API for communication between Frontend and Backend components

that is available for external usage. The design of the API is expressed in section 3.3.3, although the

96

https://github.com/mvicente93/twitter-gen-classifier-pt
https://github.com/mvicente93/twitter-gen-classifier-pt

final result contains some extra methods used to fetch information that was not initially foreseen as
necessary. The resulting API documentation is available on the web application and in Appendix-C
section 6.2 there are some examples of API methods and their respective documentation.

5.3 benchmarking and performance
In software engineering it is very important that the developed algorithms and system architectures

execute properly and in adequate time periods. When dealing with applications that make use of
intense computational efforts over considerable amounts of data, it is decisive that the algorithms and
components involved in the execution of these tasks live up to the need of doing it fast. To this extent,
the developed application was submitted to a series of benchmarking tests. It was chosen to submit to
benchmarking the storage component of the system, the Neo4j database.

The need to benchmark Neo4j resulted from the intensive use that is made of Cypher. Most of
the developed API methods involve some sort of querying to the stored data model and it is relevant
to understand which of these queries execute smoothly and in a consistent time period. Neo4j has
an integrated profiling mechanism accessible through its web interface that allows to analyse Cypher
queries in terms of time of execution and database hits necessary to produce the requested results. An
example of the Neo4j profiling interface can be found in he following figure:

Figure 5.21: Neo4j Profile Interface

The database queries used in the developed API were submitted to a profile run as they are
presented in Chapter 4. The machine that was running Neo4j was a virtual machine deployed in an
OpenStack instance with two virtual CPUs and eight gigabytes of memory. When profiling queries
that regarding a single user, the user picked had 5725 tweets posted and was one of the most influential
according the obtained influence rank. The obtained results are presented as follows.

97

Table 5.1: Benchmarking of Neo4j queries

Query Parameters Database Hits Time to execute (ms)
Number of tweets in a month month: 10 1351330 3056

Number of tweets for each day in a month ordered by day month: 10 2702659 6273

Number of tweets in a day month: 10
day: 5 722557 1273

Number of tweets by hour in a day ordered by hour month: 10
day: 5 772416 1797

All tweet locations counts - 22891545 44877
Tweet locations counts in a month month: 10 2702659 7014

All tweet source counts - 31416790 90721
Calculate and write influence score to users - 113691425 374492

List top 100 users by influence score - 569403 8471
User activity over months user_id: 19247625 17178 118

User activity in a month user_id: 19247625
month: 10 17178 116

User activity for all days in a month user_id: 19247625
month: 10 14490 157

User activity in a day
user_id: 19247625

month: 10
day: 5

19633 100

User activity for all hours in a day
user_id: 19247625

month: 10
day: 5

14490 97

User activity sources user_id:19247625 17178 243
User top 5 mentions user_id:19247625 6816 173
User top 5 repliers user_id:19247625 20998 545

User distance (4 hops difference) user_id:1924762
target_id: 12429652 5 800

Looking at these results it is possible to observe that Neo4j does a good job on database querying,
considering that the computational resources it had available were inferior to the ones recommended
when dealing with this amount of data. This effect is particularly noticeable in operations that involve
most tweets entities, which are incredibly superior in number to user entities. The overall performance
when handling user entities is within what is expected in a standard DBMS.

5.4 user interface evaluation
To validate the developed prototype in terms of usability and experience, as well as the adequacy

of the visual representations to the functionality offered, it was chosen to submit the prototype to a
series of usability tests. This was made to have a objective measure of how the developed user interface
fulfilled the needs and difficulties found by a common user.

The first evaluation made was a subjective one, at the early stage of development. During
Students@Deti, an event organized at University of Aveiro where master’s students present their
dissertation work, this prototype was exposed and some feedback was collected regarding user interface
and functionality. Although this consisted of an informal evaluation, it was useful to validate some
of the already picked representations, like the activity heat map, the activity by locations map and
the word cloud for user content. This representations received positive critics when shown during this
event.

At the last stage of development, an enquiry was developed to proceed to a more formal and
practical evaluation of user experience. This enquiry consisted of a series of tasks to be executed in
the web application. The enquired users would then answer to some questions related to the tasks

98

they had to perform. The questions focused on getting the time to execute a certain task, rating of
the adequacy of graphical representations and the compliance of the prototype with Jabob Nielsen’s
Usability Heuristics for User Interface Design[95], a method commonly used to identify design problems
in an application’s human interface. Unfortunately, while the enquiry was created and it is available in
Appendix-D, due to lack of time and deployment restrictions of the prototype it was not possible to
assemble an organized test session with a considerable amount of users to try the application.

99

chapter 6
Conclusion
This chapter concludes the presentation of developed work for this dissertation, while discussing the
obtained results and what work remains to be done to improve this project.

6.1 final considerations
Data mining research in social media environments is evolving at a sustained pace since the

astonishing popularity growth of social media platforms. The amount, structure (or lack of) and
properties of social media data pose new challenges everyday, which requires new approaches and
solutions to effectively handle these issues.

This work had the ambition to create a robust visualization platform for the characterization and
profiling of Portuguese Twitters users, using reliable data mining and machine learning techniques
over social media data and a storage system with an innovative data model as support. A data set
consisting of tweet objects from the Twitter API capture in an almost continuous time interval of four
months served as ground data for the whole development life-cycle, since the projection of system
goals, to the modeling and creation of the final data model. The final result consists of a web-based
platform that met the desired information requirements and presented them in a visually appealing
and interactive fashion.

To develop this prototype it was necessary a lot of background investigation. It was imperative to
understand the process of transforming brute data into palpable results, the current state of the art in
trending topics in data mining over social media like topic modeling, influence measurement and latent
attribute classification, the techniques used to produce meaningful information in each of these areas
and how they would commute with this work’s objectives and resources.

A solid understanding of the data that was available was crucial to the success of this work. A
careful analysis of the existing properties in tweet objects led to the realisation that there were inherent
links between entities that could be leveraged for a better understanding of the Twitter network. A
property graph data model was implemented resorting to the graph database Neo4j, making it possible
to embrace the links in data and use them for a deeper analysis of Twitter users. This database was
also used as the storage component in the web application.

101

While Neo4j was useful for exploring data connections and as database system, some limitations
performance-wise were uncovered when the whole data set was loaded into it. The community version,
available for personal and academic research, is only possible to use as single instance which results
in consuming a lot of memory to handle querying on large amounts of nodes and relationships in
a legitimate execution time. It also proved ineffective to do perform text analysis although this is
understandable as it is not its focus. Overall, balancing its positives and negatives Neo4j proved to be
a good choice to handle the system’s storage requirements and made a strong case for graph database
systems as a viable choice to tackle issues related with data connectivity. To my best knowledge, there
is not any similar system available in scientific community that is built on a property graph modeled
after the Twitter network.

The proposed goals for user characterization were all met. The developed prototype allows the
end user to explore a part of the Twitter network by itself, with or without focus on a single user. The
produced visualization schemes are engaging, allow interactivity and provide fateful representations
of the information they use. The system makes use of a REST API that is publicly available and
carefully documented for future research on this data set. The same applies to the model used for
gender classification.

Overall, this work produced valuable research in a social media platform well known to the public.
The focus on the Portuguese community makes it quite singular, as most of the studies made on it are
usually focused on a limited set of users and on content rather than the network and its entities.

6.2 future work
The vastness of possibilities that social media data provides makes this dissertation an unfinished

work, even though the specified requirements were met. There is room for improvement of the work
that is already done and for new features.

In terms of non-functional details, the first issue to solve is improving the performance of some
of its operations. Some queries used in Neo4j are very time-consuming due to the fact the server
where it is allocated does not possess the recommended amount memory that the number of nodes and
relationships currently stored requires. The developed user interface also has room for improvement.
The realization of the user experience enquiry should be a priority as it will identify eventual design
imperfections and even provide crucial feedback about how users feel regarding the application’s
usability.

The existing features in the prototype also have margin to be improved. The features dealing with
content (similarity and topic modeling) should have an exploratory highlighting interface of the user’s
tweets, to help visualizing what led to similarity scores and topics extracted.

When it comes to new functionality there are also some interesting features that could be added.
The biggest priority would be to incorporate real-time collection of tweets to keep the data set updated.
This system relies on a static data set and proves that it is enough to gather interesting information
from the Twitter network. Therefore adding real-time captures would an incredible upgrade to the
system, although it will also require improvements in terms of infrastructure to support the huge
amounts of data that will be captured and processed.

102

References
[1] A. M. Kaplan and M. Haenlein, “Users of the world, unite! the challenges and opportunities

of social media”, Business Horizons, vol. 53, no. 1, pp. 59–68, Jan. 2010, issn: 00076813. doi:
10.1016/j.bushor.2009.09.003.

[2] T. Aichner and F. Jacob, “Measuring the degree of corporate social media use”, International
Journal of Market Research, vol. 57, no. 2, pp. 257–275, 2015, issn: 1470-7853. doi: 10.2501/
IJMR-2015-018.

[3] M. D. Conover, B. Gonçalves, J. Ratkiewicz, A. Flammini, and F. Menczer, “Predicting the po-
litical alignment of twitter users”, Proceedings - 2011 IEEE International Conference on Privacy,
Security, Risk and Trust and IEEE International Conference on Social Computing, PASSAT/So-
cialCom 2011, pp. 192–199, 2011, issn: 1457719312. doi: 10.1109/PASSAT/SocialCom.2011.34.

[4] L. Dey, S. M. Haque, A. Khurdiya, and G. Shroff, “Acquiring competitive intelligence from social
media”, in Proceedings of the 2011 Joint Workshop on Multilingual OCR and Analytics for Noisy
Unstructured Text Data, 2011, pp. 1–9, isbn: 9781450306850. doi: 10.1145/2034617.2034621.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2034617.2034621.

[5] R. Buettner, “Getting a job via career-oriented social networking sites : the weakness of ties”,
HICSS-49 Proceedings: 49th Hawaii International Conference on System Sciences, Jan. 2016.
doi: 10.13140/RG.2.1.3249.2241.

[6] Statista. (2016). Number of daily active facebook users worldwide as of 2nd quarter 2016 (in
millions), [Online]. Available: http://www.statista.com/statistics/346167/facebook-
global-dau/ (visited on 08/04/2016).

[7] ——, (2016). Number of monthly active instagram users from january 2013 to june 2016 (in
millions), [Online]. Available: http://www.statista.com/statistics/253577/number-of-
monthly-active-instagram-users/ (visited on 08/04/2016).

[8] ——, (2016). Number of monthly active twitter users worldwide from 1st quarter 2010 to
2nd quarter 2016 (in millions), [Online]. Available: http://www.statista.com/statistics/
282087/number-of-monthly-active-twitter-users/ (visited on 08/04/2016).

[9] OECD, “Participative web and user-created content: web 2.0, wikis, and social networking.
paris:” Organisation for Economic Co-operation and Development., no. 2006, p. 74, 2007, issn:
9789264037465. doi: 10.1787/9789264037472-en.

[10] peterme. (2002). Thoughts, links, and essays from peter merholz, [Online]. Available: http:
//www.peterme.com/archives/00000205.html (visited on 08/04/2016).

[11] A. M. Kaplan and M. Haenlein, “The early bird catches the news: nine things you should know
about micro-blogging”, Business Horizons, vol. 54, no. 2, pp. 105–113, 2011, issn: 00076813.
doi: 10.1016/j.bushor.2010.09.004.

103

http://dx.doi.org/10.1016/j.bushor.2009.09.003
http://dx.doi.org/10.2501/IJMR-2015-018
http://dx.doi.org/10.2501/IJMR-2015-018
http://dx.doi.org/10.1109/PASSAT/SocialCom.2011.34
http://dx.doi.org/10.1145/2034617.2034621
http://dl.acm.org/citation.cfm?doid=2034617.2034621
http://dx.doi.org/10.13140/RG.2.1.3249.2241
http://www.statista.com/statistics/346167/facebook-global-dau/
http://www.statista.com/statistics/346167/facebook-global-dau/
http://www.statista.com/statistics/253577/number-of-monthly-active-instagram-users/
http://www.statista.com/statistics/253577/number-of-monthly-active-instagram-users/
http://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
http://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
http://dx.doi.org/10.1787/9789264037472-en
http://www.peterme.com/archives/00000205.html
http://www.peterme.com/archives/00000205.html
http://dx.doi.org/10.1016/j.bushor.2010.09.004

[12] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter , a social network or a news media?”,
The International World Wide Web Conference Committee (IW3C2), pp. 1–10, 2010, issn:
1932-8036. doi: 10.1145/1772690.1772751. arXiv: 0809.1869v1.

[13] M. Thelwall, K. Buckley, and G. Paltoglou, “Sentiment in twitter events”, Journal of the
American Society for Information Science and Technology, vol. 62, no. 2, pp. 406–418, 2011,
issn: 15322882. doi: 10.1002/asi.21462. arXiv: 0803.1716.

[14] D. Easley and J. Kleinberg, “Networks , crowds , and markets : reasoning about a highly con-
nected world”, Science, vol. 81, p. 744, 2010, issn: 19467567. doi: 10.1017/CBO9780511761942.
arXiv: 9809069v1 [arXiv:gr-qc].

[15] A. Bifet and E. Frank, “Sentiment knowledge discovery in twitter streaming data”, in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 6332 LNAI, 2010, pp. 1–15, isbn: 3642161839. doi:
10.1007/978-3-642-16184-1{_}1.

[16] R. Zafarani, M. A. Abbasi, and H. Liu, “Social media mining an introduction”, Cambridge
university Press, p. 382, 2014, issn: 1882-0875. doi: 10 . 1017 / CBO9781139088510. arXiv:
arXiv:1011.1669v3.

[17] P. Gundecha and H. Liu, “Mining social media: a brief introduction”, Tutorials in Operations
Research, no. Dmml, pp. 1–17, 2012. doi: http://dx.doi.org/10.1287/educ.1120.0105.

[18] J. Han, J. Pei, and M. Kamber, Data mining: Concepts and techniques. Elsevier, 2011.

[19] S. Chakrabarti, M. Ester, U. Fayyad, and J. Gehrke, “Data mining curriculum: a proposal,
version 1.0 (2006)”, Www.Kdd.Org/Curriculum/, pp. 1–10, 2012.

[20] I. H. Witten, E. Frank, and M. a. Hall, Data Mining: Practical Machine Learning Tools and
Techniques, Third Edition, 2. 2011, vol. 54, p. 664, isbn: 9780123748560. doi: 10.1002/1521-
3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C.

[21] U. Fayyad and R. Uthurusamy, “Data mining and knowledge discovery in databases”, Com-
munications of the ACM, vol. 39, no. 11, pp. 24–26, Nov. 1996, issn: 00010782. doi: 10.1145/
240455.240463. arXiv: aimag.v17i3.1230.

[22] D. Pyle, S. Editor, and D. D. Cerra, Data Preparation for Data Mining. 1999, vol. 17, pp. 375–
381, isbn: 4159822665. doi: 10.1080/713827180.

[23] J. Tang, Y. Chang, and H. Liu, “Mining social media with social theories”, ACM SIGKDD
Explorations Newsletter, vol. 15, no. 2, pp. 20–29, 2014, issn: 19310145. doi: 10.1145/2641190.
2641195.

[24] H. Müller and J.-c. Freytag, “Problems, methods, and challenges in comprehensive data cleans-
ing”, Challenges, no. HUB-IB-164, pp. 1–23, 2003.

[25] C.-M. Teng, “Correcting noisy data”, in Proceedings of the Sixteenth International Conference
on Machine Learning, ser. ICML ’99, San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1999, pp. 239–248, isbn: 1-55860-612-2.

[26] J. E. Jackson, A User’s Guide To Principal Components, isbn: 0471622672.

[27] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers”,
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, pp. 144–152,
1992, issn: 0-89791-497-X. doi: 10.1.1.21.3818. arXiv: arXiv:1011.1669v3.

[28] Understanding Machine Learning: From Theory to Algorithms. 2014, p. 409, isbn: 1107057132.
doi: 10.1017/CBO9781107298019.

[29] C.-w. Hsu, C.-c. Chang, and C.-j. Lin, “A practical guide to support vector classification”, vol.
1, no. 1, pp. 1–16, 2016.

104

http://dx.doi.org/10.1145/1772690.1772751
http://arxiv.org/abs/0809.1869v1
http://dx.doi.org/10.1002/asi.21462
http://arxiv.org/abs/0803.1716
http://dx.doi.org/10.1017/CBO9780511761942
http://arxiv.org/abs/9809069v1
http://dx.doi.org/10.1007/978-3-642-16184-1{_}1
http://dx.doi.org/10.1017/CBO9781139088510
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/http://dx.doi.org/10.1287/educ.1120.0105
http://dx.doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
http://dx.doi.org/10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
http://dx.doi.org/10.1145/240455.240463
http://dx.doi.org/10.1145/240455.240463
http://arxiv.org/abs/aimag.v17i3.1230
http://dx.doi.org/10.1080/713827180
http://dx.doi.org/10.1145/2641190.2641195
http://dx.doi.org/10.1145/2641190.2641195
http://dx.doi.org/10.1.1.21.3818
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1017/CBO9781107298019

[30] R. Pitre, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, M. V. Chavan, and P. R. N. Phursule, “A
survey paper on data mining with big data”, AI magazine, vol. 5, no. 3, pp. 37–53, 2014, issn:
0738-4602. doi: 10.1609/aimag.v17i3.1230.

[31] Z. Ghahramani, “Unsupervised learning”, in Advanced Lectures on Machine Learning: ML
Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, T{ü}bingen, Germany,
August 4 - 16, 2003, Revised Lectures, O. Bousquet, U. von Luxburg, and G. Rätsch, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 72–112, isbn: 978-3-540-28650-9. doi:
10.1007/978-3-540-28650-9_5.

[32] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey”, ACM Comput. Surv.,
vol. 41, no. 3, 15:1–15:58, Jul. 2009, issn: 0360-0300. doi: 10.1145/1541880.1541882. [Online].
Available: http://doi.acm.org/10.1145/1541880.1541882.

[33] I. Bruha and A. Famili, “Postprocessing in machine learning and data mining”, ACM SIGKDD
Explorations Newsletter, vol. 2, no. 2, pp. 110–114, 2000, issn: 19310145. doi: 10.1145/380995.
381059.

[34] L. Rokach, “Ensemble-based classifiers”, Artificial Intelligence Review, vol. 33, no. 1, pp. 1–39,
2010, issn: 1573-7462. doi: 10.1007/s10462-009-9124-7.

[35] S. Card, J. Mackinlay, and B. Shneiderman, “Readings in information visualization: using vision
to think”, p. 712, 1999, issn: 19395108. doi: 10.1002/wics.89.

[36] D. A. Norman, Things That Make Us Smart: Defending Human Attributes in the Age of
the Machine. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1993, isbn:
0-201-62695-0.

[37] E. E. Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and
Presenting Data. John Wiley & Sons, 2015.

[38] J. Tang and H. Liu, “Feature selection with linked data in social media.”, Sdm, pp. 118–128,
2012. doi: 10.1137/1.9781611972825.11.

[39] “Linkage and autocorrelation cause feature selection bias in relational learning”, Proceedings of
the Nineteenth International Conference on Machine Learning (ICML2002), pp. 259–266, 2002.

[40] M. Adedoyin-olowe, M. M. Gaber, and F. Stahl, “A survey of data mining techniques for social
network analysis”, International Journal of Research in Computer Engineering and Electronics,
vol. 3, no. 6, pp. 1–8, 2014. arXiv: 1312.4617.

[41] G. Stringhini, C. Kruegel, and G. Vigna, “Detecting spammers on social networks”, pp. 1–9,
2010. doi: 10.1145/1920261.1920263.

[42] “More than words: social networks’ text mining for consumer brand sentiments”, Expert Systems
with Applications, vol. 40, no. 10, pp. 4241–4251, 2013, issn: 09574174. doi: 10.1016/j.eswa.
2013.01.019.

[43] M. Kosinski, D. Stillwell, and T. Graepel, “Private traits and attributes are predictable from
digital records of human behavior.”, Proceedings of the National Academy of Sciences of the
United States of America, vol. 110, no. 15, pp. 5802–5, 2013, issn: 1091-6490. doi: 10.1073/
pnas.1218772110.

[44] D. Blei, L. Carin, and D. Dunson, “Probabilistic topic models”, IEEE Signal Processing
Magazine, vol. 27, no. 6, pp. 55–65, 2010, issn: 10535888. doi: 10.1109/MSP.2010.938079.
arXiv: 1003.4916.

[45] D. M. Blei, “Introduction to probabilistic topic modeling”, Communications of the ACM, vol.
55, pp. 77–84, 2012, issn: 00010782. doi: 10.1145/2133806.2133826. arXiv: 1003.4916.

105

http://dx.doi.org/10.1609/aimag.v17i3.1230
http://dx.doi.org/10.1007/978-3-540-28650-9_5
http://dx.doi.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
http://dx.doi.org/10.1145/380995.381059
http://dx.doi.org/10.1145/380995.381059
http://dx.doi.org/10.1007/s10462-009-9124-7
http://dx.doi.org/10.1002/wics.89
http://dx.doi.org/10.1137/1.9781611972825.11
http://arxiv.org/abs/1312.4617
http://dx.doi.org/10.1145/1920261.1920263
http://dx.doi.org/10.1016/j.eswa.2013.01.019
http://dx.doi.org/10.1016/j.eswa.2013.01.019
http://dx.doi.org/10.1073/pnas.1218772110
http://dx.doi.org/10.1073/pnas.1218772110
http://dx.doi.org/10.1109/MSP.2010.938079
http://arxiv.org/abs/1003.4916
http://dx.doi.org/10.1145/2133806.2133826
http://arxiv.org/abs/1003.4916

[46] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation”, Journal of Machine Learning
Research, vol. 3, no. 4-5, pp. 993–1022, 2003, issn: 15324435. doi: 10.1162/jmlr.2003.3.4-
5.993. arXiv: 1111.6189v1.

[47] “Randomization tests for distinguishing social influence and homophily effects”, The 19Th
International Conference, pp. 601–610, 2010, issn: 9781605587998. doi: 10.1145/1772690.
1772752.

[48] M. McPherson, L. Smith-lovin, and J. M. Cook, “Birds of a feather : homophily in social
networks”, Annual Review of Sociology, vol. 27, pp. 415–444, 2001, issn: 0360-0572. doi:
10.1146/annurev.soc.27.1.415.

[49] S. Aral, L. Muchnik, and A. Sundararajan, “Distinguishing influence-based contagion from
homophily-driven diffusion in dynamic networks.”, Proceedings of the National Academy of
Sciences of the United States of America, vol. 106, no. 51, pp. 21 544–21 549, 2009, issn: 0027-8424.
doi: 10.1073/pnas.0908800106. arXiv: arXiv:1408.1149.

[50] D. F. Nettleton, Data mining of social networks represented as graphs, 2013.

[51] M. Cha, H. Haddai, F. Benevenuto, and K. P. Gummadi, “Measuring user influence in twitter
: the million follower fallacy”, International AAAI Conference on Weblogs and Social Media,
pp. 10–17, 2010, issn: 1556-4029. doi: 10.1.1.167.192.

[52] E. Bakshy, J. Hofman, W. Mason, and D. Watts, “Everyone’s an influencer: quantifying influence
on twitter”, Proceedings of the fourth ACM international conference on Web search and data
mining SE - WSDM ’11, pp. 65–74, 2011, issn: 09312048. doi: doi:10.1145/1935826.1935845.
[Online]. Available: citeulike-article-id:8754779$%5Cbackslash$nhttp://dx.doi.org/
10.1145/1935826.1935845.

[53] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine”, Comput.
Netw. ISDN Syst., vol. 30, no. 1-7, pp. 107–117, Apr. 1998, issn: 0169-7552. doi: 10.1016/S0169-
7552(98)00110-X. [Online]. Available: http://dx.doi.org/10.1016/S0169-7552(98)00110-
X.

[54] J. Weng, E. P. Lim, J. Jiang, and Q. He, “Twitterrank: finding topic-sensitive influential
twitterers”, Proceedings of the 3rd ACM International Conference on Web Search and Data
Mining (WSDM 2010), pp. 261–270, 2010. doi: 10.1145/1718487.1718520.

[55] E. Caladoa and H. Sofia-Pintoa, “User profiling on twitter”, Semantic-Web-Journal.Net, pp. 1–
15, 2011.

[56] M. Gupta, R. Li, and K. C.-C. Chang, “Towards a social media analytics platform: event
detection and user profiling for twitter”, in WWW 2014 Companion: Proceedings of the 23rd
International Conference on World Wide Web, 2014, pp. 193–194.

[57] R. Li, S. Wang, H. Deng, R. Wang, and K. C.-C. Chang, “Towards social user profiling: unified
and discriminative influence model for inferring home locations”, Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1023–1031,
2012. doi: 10.1145/2339530.2339692.

[58] D. Rao, D. Yarowsky, A. Shreevats, and M. Gupta, “Classifying latent user attributes in twitter”,
Proceedings of the 2nd international workshop on Search and mining user-generated contents -
SMUC ’10, p. 37, 2010. doi: 10.1145/1871985.1871993. arXiv: 1690219.1690245âĂŐ.

[59] J. D. Burger, J. Henderson, G. Kim, and G. Zarrella, “Discriminating gender on twitter”,
Association for Computational Linguistics, vol. 146, pp. 1301–1309, 2011. doi: 10.1007/s00256-
005-0933-8.

[60] A. Vilaça, M. Antunes, and D. Gomes, “Tvpulse: detecting tv highlights in social networks”,
Proc. 10th ConfTele 2015 - Conference on Telecommunications, Aveiro, Portugal, no. August
2016, Sep. 2015.

106

http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993
http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993
http://arxiv.org/abs/1111.6189v1
http://dx.doi.org/10.1145/1772690.1772752
http://dx.doi.org/10.1145/1772690.1772752
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1073/pnas.0908800106
http://arxiv.org/abs/arXiv:1408.1149
http://dx.doi.org/10.1.1.167.192
http://dx.doi.org/doi: 10.1145/1935826.1935845
citeulike-article-id:8754779$%5Cbackslash$nhttp://dx.doi.org/10.1145/1935826.1935845
citeulike-article-id:8754779$%5Cbackslash$nhttp://dx.doi.org/10.1145/1935826.1935845
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1145/1718487.1718520
http://dx.doi.org/10.1145/2339530.2339692
http://dx.doi.org/10.1145/1871985.1871993
http://arxiv.org/abs/1690219.1690245‎
http://dx.doi.org/10.1007/s00256-005-0933-8
http://dx.doi.org/10.1007/s00256-005-0933-8

[61] P. Saleiro, S. Amir, M. Silva, and C. Soares, “Popmine: tracking political opinion on the web”,
Proceedings - 15th IEEE International Conference on Computer and Information Technology,
CIT 2015, 14th IEEE International Conference on Ubiquitous Computing and Communications,
IUCC 2015, 13th IEEE International Conference on Dependable, Autonomic and Secure Com-
puting, DASC 2015 and 13th IEEE International Conference on Pervasive Intelligence and
Computing, PICom 2015, pp. 1521–1526, 2015. doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.228.
arXiv: 1511.09101.

[62] J. Celko, Graph Databases. 2014, pp. 27–46, isbn: 9780124071926. doi: 10.1016/B978-0-12-
407192-6.00003-0.

[63] R. Angles and C. Gutierrez, “Survey of graph database models”, ACM Computing Surveys, vol.
40, no. 1, pp. 1–39, 2008, issn: 03600300. doi: 10.1145/1322432.1322433.

[64] A. Seaborne and G. Carothers, “RDF 1.1 n-triples”, W3C, W3C Recommendation, Feb. 2014,
http://www.w3.org/TR/2014/REC-n-triples-20140225/.

[65] Neo4j. (2016). Neo4j: The world’s leading graph database, [Online]. Available: https://neo4j.
com/ (visited on 08/16/2016).

[66] ——, (2016). Neo4j - customer success stories and case studies, [Online]. Available: https:
//neo4j.com/customers (visited on 08/16/2016).

[67] DB-Engines. (2016). Db-engines ranking of graph dbms, [Online]. Available: http://db-
engines.com/en/ranking/graph+dbms (visited on 08/16/2016).

[68] Neo4j. (2016). Neo4j - documentation, [Online]. Available: http://neo4j.com/docs/developer-
manual/current/introduction/#graphdb-neo4j-schema (visited on 08/16/2016).

[69] R. V. Bruggen, Learning Neo4j. 2014, p. 220, isbn: 978-1849517164.

[70] OrientDB. (2016). Orientdb: Distributed multi-model graph/document database, [Online].
Available: http://orientdb.com/orientdb/ (visited on 10/24/2016).

[71] ——, (2016). Orientdb clients -find out who’s using orientdb, [Online]. Available: https :
//orientdb.com/customers (visited on 10/24/2016).

[72] ——, (2016). Supported types - orientdb manual, [Online]. Available: http://orientdb.com/
docs/last/Types.html (visited on 10/24/2016).

[73] ——, (2016). Schema - orientdb manual, [Online]. Available: http://orientdb.com/docs/
last/Schema.html (visited on 10/24/2016).

[74] ——, (2016). Scaling - orientdb manual, [Online]. Available: http://orientdb.com/docs/
last/Distributed-Architecture.html (visited on 10/24/2016).

[75] http://tinkerpop.apache.org/. (2016). Apache tinkerpop, [Online]. Available: http://apache.
tinkerpop.org (visited on 10/24/2016).

[76] Titan. (2015). Titan: Distributed graph database, [Online]. Available: http : / / titan .
thinkaurelius.com (visited on 10/24/2016).

[77] ——, (2015). Chapter 5. schema and data modeling, [Online]. Available: http : / / s3 .
thinkaurelius.com/docs/titan/1.0.0/schema.html#_defining_property_keys (vis-
ited on 10/24/2016).

[78] ——, (2015). Chapter 2. architectural overview, [Online]. Available: http://s3.thinkaurelius.
com/docs/titan/1.0.0/arch-overview.html (visited on 10/24/2016).

[79] S. Beis, S. Papadopoulos, and Y. Kompatsiaris, “Benchmarking graph databases on the problem
of community detection”, Advances in Intelligent Systems and Computing, vol. 312, pp. 3–14,
2015, issn: 21945357. doi: 10.1007/978-3-319-10518-5_1.

107

http://dx.doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.228
http://arxiv.org/abs/1511.09101
http://dx.doi.org/10.1016/B978-0-12-407192-6.00003-0
http://dx.doi.org/10.1016/B978-0-12-407192-6.00003-0
http://dx.doi.org/10.1145/1322432.1322433
https://neo4j.com/
https://neo4j.com/
https://neo4j.com/customers
https://neo4j.com/customers
http://db-engines.com/en/ranking/graph+dbms
http://db-engines.com/en/ranking/graph+dbms
http://neo4j.com/docs/developer-manual/current/introduction/#graphdb-neo4j-schema
http://neo4j.com/docs/developer-manual/current/introduction/#graphdb-neo4j-schema
http://orientdb.com/orientdb/
https://orientdb.com/customers
https://orientdb.com/customers
http://orientdb.com/docs/last/Types.html
http://orientdb.com/docs/last/Types.html
http://orientdb.com/docs/last/Schema.html
http://orientdb.com/docs/last/Schema.html
http://orientdb.com/docs/last/Distributed-Architecture.html
http://orientdb.com/docs/last/Distributed-Architecture.html
http://apache.tinkerpop.org
http://apache.tinkerpop.org
http://titan.thinkaurelius.com
http://titan.thinkaurelius.com
http://s3.thinkaurelius.com/docs/titan/1.0.0/schema.html#_defining_property_keys
http://s3.thinkaurelius.com/docs/titan/1.0.0/schema.html#_defining_property_keys
http://s3.thinkaurelius.com/docs/titan/1.0.0/arch-overview.html
http://s3.thinkaurelius.com/docs/titan/1.0.0/arch-overview.html
http://dx.doi.org/10.1007/978-3-319-10518-5_1

[80] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph databases”, Proceedings -
SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013, pp. 708–715, 2013. doi: 10.1109/
SocialCom.2013.106.

[81] T. R. Foundation. (2016). R: The r project for statistical computing, [Online]. Available:
https://www.r-project.org/ (visited on 10/24/2016).

[82] W. N. Venables, D. M. Smith, et al., An introduction to r.

[83] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The weka data
mining software: An update”, ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18,
2009.

[84] (2016). Numpy, [Online]. Available: http://www.numpy.org/ (visited on 08/16/2016).

[85] (2016). Scipy library, [Online]. Available: http://www.scipy.org/scipylib/index.html
(visited on 08/16/2016).

[86] (2016). Python data analysis library - pandas, [Online]. Available: http://pandas.pydata.org/
(visited on 08/16/2016).

[87] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python”, Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[88] S. Bird, “Nltk: The natural language toolkit”, in Proceedings of the COLING/ACL on Interactive
presentation sessions, Association for Computational Linguistics, 2006, pp. 69–72.

[89] (2016). Twitter api, [Online]. Available: https://dev.twitter.com/overview/documentation
(visited on 08/16/2016).

[90] (2016). Twitter api - rest api, [Online]. Available: https://dev.twitter.com/rest/public
(visited on 08/16/2016).

[91] (2016). Twitter api - streaming api, [Online]. Available: https://dev.twitter.com/streaming/
overview (visited on 08/16/2016).

[92] (2016). Apache cassandra, [Online]. Available: cassandra.apache.org (visited on 08/16/2016).

[93] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets: Cambridge: Cambridge Uni-
versity Press, Oct. 2011, isbn: 9781139058452. doi: 10.1017/CBO9781139058452. [Online].
Available: https://www.cambridge.org/core/books/mining- of- massive- datasets/
A06D57FC616AE3FD10007D89E73F8B92.

[94] (2016). Django faq, [Online]. Available: https://docs.djangoproject.com/en/1.10/faq/
general/ (visited on 08/16/2016).

[95] J. Nielsen, “Heuristic evaluation”, Usability inspection methods, vol. 17, no. 1, pp. 25–62, 1994.

108

http://dx.doi.org/10.1109/SocialCom.2013.106
http://dx.doi.org/10.1109/SocialCom.2013.106
https://www.r-project.org/
http://www.numpy.org/
http://www.scipy.org/scipylib/index.html
http://pandas.pydata.org/
https://dev.twitter.com/overview/documentation
https://dev.twitter.com/rest/public
https://dev.twitter.com/streaming/overview
https://dev.twitter.com/streaming/overview
cassandra.apache.org
http://dx.doi.org/10.1017/CBO9781139058452
https://www.cambridge.org/core/books/mining-of-massive-datasets/A06D57FC616AE3FD10007D89E73F8B92
https://www.cambridge.org/core/books/mining-of-massive-datasets/A06D57FC616AE3FD10007D89E73F8B92
https://docs.djangoproject.com/en/1.10/faq/general/
https://docs.djangoproject.com/en/1.10/faq/general/

Appendix A: Twitter API
Objects

{
"contributors_enabled" : false ,
"created_at" : "Sat Dec 14 04:35:55 +0000 2013" ,
"default_profile" : false ,
"default_profile_image" : false ,
"description" : "Developer and Platform Relations @Twitter. We are developer

advocates. We can ’t answer all your questions , but we listen to all of
them!" ,

"entities" : {
"description" : {

"urls" : []
} ,
"url" : {

"urls" : [
{

"display_url" : "dev.twitter.com" ,
"expanded_url" : "https ://dev.twitter.com/" ,
"indices" : [

0 ,
23

] ,
"url" : "https ://t.co/66 w26cua1O"

}
]

}
} ,
"favourites_count" : 757 ,
"follow_request_sent" : false ,
"followers_count" : 143916 ,
"following" : false ,
"friends_count" : 1484 ,
"geo_enabled" : true ,
"id" : 2244994945 ,
"id_str" : "2244994945" ,
"is_translation_enabled" : false ,

109

"is_translator" : false ,
"lang" : "en" ,
"listed_count" : 516 ,
"location" : "Internet" ,
"name" : "TwitterDev" ,
"notifications" : false ,
"profile_background_color" : "FFFFFF" ,
"profile_background_image_url" :

"http ://abs.twimg.com/images/themes/theme1/bg.png" ,
"profile_background_image_url_https" :

"https ://abs.twimg.com/images/themes/theme1/bg.png" ,
"profile_background_tile" : false ,
"profile_banner_url" :

"https ://pbs.twimg.com/profile_banners /2244994945/1396995246" ,
"profile_image_url" :

"http ://pbs.twimg.com/profile_images /530814764687949824/ npQQVkq8_normal.png" ,
"profile_image_url_https" :

"https ://pbs.twimg.com/profile_images /530814764687949824/ npQQVkq8_normal.png" ,
"profile_link_color" : "0084B4" ,
"profile_location" : null ,
"profile_sidebar_border_color" : "FFFFFF" ,
"profile_sidebar_fill_color" : "DDEEF6" ,
"profile_text_color" : "333333" ,
"profile_use_background_image" : false ,
"protected" : false ,
"screen_name" : "TwitterDev" ,
"status" : {

"contributors" : null ,
"coordinates" : null ,
"created_at" : "Fri Jun 12 19:50:18 +0000 2015" ,
"entities" : {

"hashtags" : [] ,
"symbols" : [] ,
"urls" : [

{
"display_url" : "github.com/twitterdev/twi\u2026" ,
"expanded_url" : "https :// github.com/twitterdev/twitter -for -bigquery" ,
"indices" : [

36 ,
59

] ,
"url" : "https ://t.co/K5orgXzhOM"

}
] ,
"user_mentions" : [

{
"id" : 18518601 ,
"id_str" : "18518601" ,
"indices" : [

3 ,
13

] ,
"name" : "William Vambenepe" ,
"screen_name" : "vambenepe"

110

}
]

} ,
"favorite_count" : 0 ,
"favorited" : false ,
"geo" : null ,
"id" : 609447655429787648 ,
"id_str" : "609447655429787648" ,
"in_reply_to_screen_name" : null ,
"in_reply_to_status_id" : null ,
"in_reply_to_status_id_str" : null ,
"in_reply_to_user_id" : null ,
"in_reply_to_user_id_str" : null ,
"lang" : "en" ,
"place" : null ,
"possibly_sensitive" : false ,
"retweet_count" : 19 ,
"retweeted" : false ,
"retweeted_status" : {

"contributors" : null ,
"coordinates" : null ,
"created_at" : "Fri Jun 12 05:19:11 +0000 2015" ,
"entities" : {

"hashtags" : [] ,
"symbols" : [] ,
"urls" : [

{
"display_url" : "github.com/twitterdev/twi\u2026" ,
"expanded_url" :

"https :// github.com/twitterdev/twitter -for -bigquery" ,
"indices" : [

21 ,
44

] ,
"url" : "https ://t.co/K5orgXzhOM"

}
] ,
"user_mentions" : []

} ,
"favorite_count" : 23 ,
"favorited" : false ,
"geo" : null ,
"id" : 609228428915552257 ,
"id_str" : "609228428915552257" ,
"in_reply_to_screen_name" : null ,
"in_reply_to_status_id" : null ,
"in_reply_to_status_id_str" : null ,
"in_reply_to_user_id" : null ,
"in_reply_to_user_id_str" : null ,
"lang" : "en" ,
"place" : null ,
"possibly_sensitive" : false ,
"retweet_count" : 19 ,
"retweeted" : false ,

111

"source" : "Twitter Web
Client " ,

"text" : "Twitter for BigQuery https ://t.co/K5orgXzhOM See how easy it is
to stream Twitter data into BigQuery." ,

"truncated" : false
} ,
"source" : "<a href="// t w i t t e r . com/download/ iphone%5C%22"

rel="\"nofollow\"">Twitter for iPhone " ,
"text" : "RT @vambenepe: Twitter for BigQuery https ://t.co/K5orgXzhOM See

how easy it is to stream Twitter data into BigQuery." ,
"truncated" : false

} ,
"statuses_count" : 1279 ,
"time_zone" : "Pacific Time (US & Canada)" ,
"url" : "https ://t.co/66 w26cua1O" ,
"utc_offset" : −25200 ,
"verified" : true

}

Listing 45: Example of a Twitter API User Object

{
"contributors" : null ,
"truncated" : false ,
"text" : "Many people have said I\u2019m the world\u2019s greatest writer of

140 character sentences." ,
"is_quote_status" : false ,
"in_reply_to_status_id" : null ,
"id" : 491324429184823296 ,
"favorite_count" : 1571 ,
"source" : "Twitter Web

Client " ,
"retweeted" : false ,
"coordinates" : null ,
"entities" : {

"symbols" : [] ,
"user_mentions" : [] ,
"hashtags" : [] ,
"urls" : []

} ,
"in_reply_to_screen_name" : null ,
"in_reply_to_user_id" : null ,
"retweet_count" : 1724 ,
"id_str" : "491324429184823296" ,
"favorited" : false ,
"user" : {

"follow_request_sent" : false ,
"has_extended_profile" : false ,
"profile_use_background_image" : true ,
"default_profile_image" : false ,
"id" : 25073877 ,

112

"profile_background_image_url_https" :
"https ://pbs.twimg.com/profile_background_images /530021613/ trump_scotland__43_of_70_cc.jpg" ,

"verified" : true ,
"profile_text_color" : "333333" ,
"profile_image_url_https" :

"https ://pbs.twimg.com/profile_images /1980294624/ DJT_Headshot_V2_normal.jpg" ,
"profile_sidebar_fill_color" : "C5CEC0" ,
"entities" : {

"url" : {
"urls" : [

{
"url" : "https ://t.co/mZB2hymxC9" ,
"indices" : [

0 ,
23

] ,
"expanded_url" : "http ://www.DonaldJTrump.com" ,
"display_url" : "DonaldJTrump.com"

}
]

} ,
"description" : {

"urls" : []
}

} ,
"followers_count" : 10957946 ,
"profile_sidebar_border_color" : "BDDCAD" ,
"id_str" : "25073877" ,
"profile_background_color" : "6D5C18" ,
"listed_count" : 37621 ,
"is_translation_enabled" : true ,
"utc_offset" : −14400 ,
"statuses_count" : 32928 ,
"description" : "#TrumpPence16" ,
"friends_count" : 45 ,
"location" : "New York , NY" ,
"profile_link_color" : "0D5B73" ,
"profile_image_url" :

"http ://pbs.twimg.com/profile_images /1980294624/ DJT_Headshot_V2_normal.jpg" ,
"following" : false ,
"geo_enabled" : true ,
"profile_banner_url" :

"https ://pbs.twimg.com/profile_banners /25073877/1468988952" ,
"profile_background_image_url" :

"http ://pbs.twimg.com/profile_background_images /530021613/ trump_scotland__43_of_70_cc.jpg" ,
"screen_name" : "realDonaldTrump" ,
"lang" : "en" ,
"profile_background_tile" : true ,
"favourites_count" : 36 ,
"name" : "Donald J. Trump" ,
"notifications" : false ,
"url" : "https ://t.co/mZB2hymxC9" ,
"created_at" : "Wed Mar 18 13:46:38 +0000 2009" ,
"contributors_enabled" : false ,

113

"time_zone" : "Eastern Time (US & Canada)" ,
"protected" : false ,
"default_profile" : false ,
"is_translator" : false

} ,
"geo" : null ,
"in_reply_to_user_id_str" : null ,
"lang" : "en" ,
"created_at" : "Mon Jul 21 20:50:46 +0000 2014" ,
"in_reply_to_status_id_str" : null ,
"place" : null

}

Listing 46: Example of a Twitter API Status Object

114

Appendix B: gender
classifier

Listing 47: Classifier training script
from optparse import OptionParser
from s k l e a r n . svm import LinearSVC
from s k l e a r n import p r e p r o c e s s i n g
from s k l e a r n . f e a tu r e _ ex t ra c t i on . t ex t import CountVector izer
from U t i l s . pre_process ing import normal ize , remove_links ,

remove_hashtags_and_mentions , prepare_char_ngram
from U t i l s . s o c l i n g _ f e a t u r e s import extract_username_socl ing_features ,

ex t rac t_desc r ip t i on_soc l i ng_fea tu r e s , ext rac t_tweet_soc l ing_features
from s k l e a r n . e x t e r n a l s import j o b l i b
import numpy as np
import j s on

op = OptionParser ()

op . add_option (’--train_set ’ ,
des t=’train_set ’ , type=str , d e f a u l t=’Datasets/train_set.json’ ,
help=’Path to training dataset file’)

op . add_option (’--test_set ’ ,
des t=’test_set ’ , type=str , d e f a u l t=’Datasets/test_set.json’ ,
help=’Path to testing dataset file’)

op . add_option (’--name_socling ’ ,
a c t i on=’store_true ’ , des t=’name_socling ’ , d e f a u l t=False ,
help=’Use username socio -linguistic features ’)

op . add_option (’--desc_socling ’ ,
a c t i on=’store_true ’ , des t=’desc_socling ’ , d e f a u l t=False ,
help=’Use description socio -linguistic features ’)

op . add_option (’--tweet_socling ’ ,
a c t i on=’store_true ’ , des t=’tweet_socling ’ , d e f a u l t=False ,
help=’Use tweets socio -linguistic features ’)

op . add_option (’--name_chars ’ ,
des t=’name_chars ’ , type=str , d e f a u l t=’’ ,
help=’Load username char ngrams file’)

115

op . add_option (’--name_words ’ ,
des t=’name_words ’ , type=str , d e f a u l t=’’ ,
help=’Load username word ngrams file’)

op . add_option (’--sc_chars ’ ,
des t=’sc_ngrams ’ , type=str , d e f a u l t=’’ ,
help=’Load screen_name ngrams file’)

op . add_option (’--desc_chars ’ ,
des t=’desc_chars ’ , type=str , d e f a u l t=’’ ,
help=’Load description char ngrams file’)

op . add_option (’--desc_words ’ ,
des t=’desc_words ’ , type=str , d e f a u l t=’’ ,
help=’Load description word ngrams file’)

op . add_option (’--tweet_chars ’ ,
des t=’tweet_chars ’ , type=str , d e f a u l t=’’ ,
help=’Load tweet char ngrams file’)

op . add_option (’--tweet_words ’ ,
des t=’tweet_words ’ , type=str , d e f a u l t=’’ ,
help=’Load tweet word ngrams file’)

op . add_option (’--char_range ’ ,
des t=’char_range ’ , type=int , d e f a u l t =5,
help=’Set char maximum ngram range’)

op . add_option (’--word_range ’ ,
des t=’word_range ’ , type=int , d e f a u l t =2,
help=’Set word maximum ngram range’)

#op.print_help ()
#print

(opts , a rgs) = op . parse_args ()
if len (args) > 0 :

op . e r r o r (’this script takes no arguments ’)
op . pr int_help ()
e x i t ()

t ra in_se t = []
t e s t_se t = []
try :

t r a in_se t = j son . l oads (open (opts . t ra in_set , ’rb’) . read ())
t e s t_se t = j son . l oads (open (opts . te s t_set , ’rb’) . read ())

except IOError :
print ’Dataset file not found’
e x i t ()

try :
if opts . name_chars is not ’’ :

name_chars = j son . l oads (open (opts . name_chars , ’rb’) . read ())
if opts . name_words is not ’’ :

name_words = json . l oads (open (opts . name_words , ’rb’) . read ())
if opts . sc_ngrams is not ’’ :

sc_ngrams = json . l oads (open (opts . sc_ngrams , ’rb’) . read ())
if opts . desc_chars is not ’’ :

desc_chars = j son . l oads (open (opts . desc_chars , ’rb’) . read ())
if opts . desc_words is not ’’ :

desc_words = j son . l oads (open (opts . desc_words , ’rb’) . read ())

116

if opts . tweet_chars is not ’’ :
tweet_chars = j son . l oads (open (opts . tweet_chars , ’rb’) . read ())

if opts . tweet_words is not ’’ :
tweet_words = j son . l oads (open (opts . tweet_words , ’rb’) . read ())

except IOError :
print ’One of the ngrams file was not found’

X = []
t a r g e t s = []
for user in t ra in_se t + te s t_se t :

r e su l t_vec to r = []
if opts . name_socling :

r e su l t_vec to r . append (extract_username_soc l ing_features (user [’name’]))
if opts . de sc_soc l ing :

r e su l t_vec to r . append (e x t r a c t _ d e s c r i p t i o n _ s o c l i n g _ f e a t u r e s (user [’description ’]))
if opts . tweet_soc l ing :

user_tweets = user [’tweets’]

tweet_soc l ing = [0] ∗ 9
for t in user_tweets :

temp_socling = extrac t_tweet_soc l ing_features (t)

for i in range (0 , 9) :
if temp_socling [i] is 1 :

tweet_soc l ing [i] = 1

r e su l t_vec to r . append (tweet_soc l ing)

if opts . name_chars is not ’’ :
count = CountVector izer (ana lyze r=’char’ , b inary=False ,

vocabulary=name_chars , ngram_range=(1 , opts . char_range))
r e s u l t =

count . f i t_t rans fo rm ([normal ize (user [’name’]) . lower () . s t r i p ()]) . toar ray () . t o l i s t ()
r e su l t_vec to r . append (r e s u l t [0])

if opts . name_words is not ’’ :
count = CountVector izer (ana lyze r=’word’ , b inary=False ,

vocabulary=name_words)
r e s u l t =

count . f i t_t rans fo rm ([normal ize (user [’name’]) . lower () . s t r i p ()]) . toar ray () . t o l i s t ()
r e su l t_vec to r . append (r e s u l t [0])

if opts . sc_ngrams is not ’’ :
count = CountVector izer (ana lyze r=’char’ , b inary=False ,

vocabulary=sc_ngrams , ngram_range=(1 , opts . char_range))
r e s u l t =

count . f i t_t rans fo rm ([normal ize (user [’screen_name ’]) . lower () . s t r i p ()]) . toar ray () . t o l i s t ()
r e su l t_vec to r . append (r e s u l t [0])

if opts . desc_chars is not ’’ :
count = CountVector izer (ana lyze r=’char’ , b inary=False ,

vocabulary=desc_chars , ngram_range=(1 , opts . char_range))

117

r e s u l t =
count . f i t_t rans fo rm ([normal ize (remove_links (remove_hashtags_and_mentions (user [’description ’]))) . lower () . s t r i p ()]) . toar ray () . t o l i s t ()

r e su l t_vec to r . append (r e s u l t [0])

if opts . desc_words is not ’’ :
count = CountVector izer (ana lyze r=’word’ , b inary=False ,

vocabulary=desc_words , ngram_range=(1 , opts . word_range))
r e s u l t =

count . f i t_t rans fo rm ([normal ize (remove_links (remove_hashtags_and_mentions (user [’description ’]))) . lower () . s t r i p ()]) . toar ray () . t o l i s t ()
r e su l t_vec to r . append (r e s u l t [0])

if opts . tweet_chars is not ’’ :
count = CountVector izer (ana lyze r=’char’ , b inary=False ,

vocabulary=tweet_chars , ngram_range=(1 , opts . char_range))
processed_tweets = map (lambda t :

normal ize (remove_links (remove_hashtags_and_mentions (prepare_char_ngram (t)))) . lower () . s t r i p () ,
user [’tweets’])

r e s u l t = count . f i t_t rans fo rm (processed_tweets) . toar ray () . t o l i s t ()
r e su l t_vec to r . append (np . sum (r e s u l t , a x i s =0) . t o l i s t ())

if opts . tweet_words is not ’’ :
count = CountVector izer (ana lyze r=’word’ , b inary=False ,

vocabulary=tweet_words , ngram_range=(1 , opts . word_range))
processed_tweets = map (lambda t :

normal ize (remove_links (remove_hashtags_and_mentions (t))) . lower () . s t r i p () ,
user [’tweets’])

r e s u l t = count . f i t_t rans fo rm (processed_tweets) . toar ray () . t o l i s t ()
r e su l t_vec to r . append (np . sum (r e s u l t , a x i s =0) . t o l i s t ())

X. append ([f for vec to r in r e su l t_vec to r for f in vec to r])
t a r g e t s . append (user [’gender’])

n_train_samples = len (t ra in_se t) /2
n_test_samples = len (t e s t_se t) /2

train_samples = X [: n_train_samples] + X[n_train_samples : len (t ra in_se t)]
t r a i n _ t a r g e t s = t a r g e t s [: n_train_samples] +

t a r g e t s [n_train_samples : len (t ra in_se t)]

test_samples = X[len (t ra in_se t) : len (t ra in_se t)+n_test_samples] +
X[len (t ra in_se t)+n_test_samples :]

t e s t _ t a r g e t s = t a r g e t s [len (t ra in_se t) : len (t ra in_se t)+n_test_samples] +
t a r g e t s [len (t ra in_se t)+n_test_samples :]

lsvm = LinearSVC (c lass_weight=’balanced ’)
lsvm . f i t_trans fo rm (p r e p r o c e s s i n g . normal ize (tra in_samples) , t r a i n _ t a r g e t s)

print ’LinearSVC score: %0.3f\n’ %
lsvm . s c o r e (p r e p r o c e s s i n g . normal ize (test_samples) , t e s t _ t a r g e t s)

j o b l i b . dump(lsvm , ’classifier.pkl’)

118

Listing 48: List of gendered Portuguese nicknames and abbreviations
B , F,
Bia , F ,
Bea , F ,
Bel , ,
Bernas ,M,
Cat , F ,
Cata , F ,
Cate , F ,
Caty , F ,
Catt , F ,
Chica , F ,
Chico ,M,
Cris , ,
Di , ,
Babi , F ,
Biba , F ,
Bibs , F ,
Dani , ,
Ed ,M,
Edu ,M,
Fi , F ,
Jo , ,
Joao ,M,
Joca ,M,
Jomi ,M,
Johny ,M,
Jonny ,M,
Jony ,M,
Jose ,M,
Ju , F ,
Juu , F ,
Kata , F ,
Kate , F ,
Kika , F ,
Kiko ,M,
Lau , F ,
Lena , F ,
Let i , F ,
Lola , F ,
Maggie , F ,
Mane ,M,
Man ,M,
Manu,M,
Marc ,M,
Mary , F ,
Megui , F ,
Mike ,M,
Migs ,M,
Mimi , F ,
Paul ,M,
Pipa , F ,
Pipo ,M,
Rafa , ,

119

Ricky ,M,
So f i , F ,
Sofs , F ,
Suzy , F ,
Tati , F ,
Taty , F ,
Tete , F ,
Tigas ,M,
Tit i , ,
Tixa , F ,
Toino ,M,
Toze ,M
T z e ,M,
T o z ,M,
Tuxa , F ,
Xana , F ,
Xano ,M,
Xavi ,M,
Zabel , F ,
Ze ,M,
Zita , F ,

sr ,M,
mr ,M,
boy ,M,
man ,M,
rapaz ,M,
mano ,M,
puto ,M,
miudo ,M,
menino ,M,
gajo ,M,
r e i ,M,
king ,M,
sra , F ,
mrs , F ,
ms , F ,
miss , F ,
g i r l , F ,
woman , F ,
rapar iga , F ,
mana , F ,
miuda , F ,
menina , F ,
gaja , F ,
rainha , F ,
queen , F ,

Listing 49: List of gender-meaningful terms

120

Listing 50: Regular expressions used to remove URLs hashtags and mentions from
tweets

Regex to match an hashtag or a mention in a tweet
\S*(#|@) (?:\[[^\]]+\]|\ S+)’

Regex to match an url in a tweet
[A-Za -z]+:\/\/[A-Za -z0 -9-_]+\.[A-Za -z0 -9-_ :\%&~\?\/.=]+

121

Appendix C: api
documentation

Figure 1: API - Network activity in each month

123

Figure 2: API - Network activity in locations

Figure 3: API - Influence rank

124

Figure 4: API - Cluster nodes

Figure 5: API - Cluster terms

125

Figure 6: API - User similarity

Figure 7: API - User topics

126

Appendix D: Usability
Enquiry

127

Figure 8: Usability Enquiry - Section 1

128

Figure 9: Usability Enquiry - Section 2

129

Figure 10: Usability Enquiry - Section 3

130

Figure 11: Usability Enquiry - Section 4

131

Figure 12: Usability Enquiry - Section 5

132

Figure 13: Usability Enquiry - Section 6

133

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Contextualization
	Goals
	Outline

	State of the Art
	Social Media
	Growth and Relevance
	Social Media Environments
	Microblogging and Twitter

	Data Mining in Social Media Environments
	Data Mining and the KDD Process
	Data Preprocessing
	Data Mining and Machine Learning
	Data Postprocessing
	Challenges With Social Media Data
	Relevant Research Topics
	Related Work

	Technology Review
	Graph Databases
	Neo4j
	OrientDB
	Titan
	Graph Databases Review
	Data Mining and Machine Learning Tools

	System Description and Architecture
	Description and Requirements
	Network Scope
	User Scope
	Non-functional Requirements

	Data Model
	Available Data
	Proposed Data Model
	Storage Requirements

	Client-Server Model
	Backend
	Frontend
	API

	Data Mining Modules
	Architecture Overview

	Implementation
	Storage
	Neo4j Configuration
	Data Model
	Data Migration

	Network Scope Goals
	Network Activity
	Network Gender Distribution
	Network Influence
	Network Content

	User Scope Goals
	User Activity
	User Network
	User Content
	Topics
	Similarity

	Web Application
	Django Web Framework
	Celery
	Redis
	Visualization Frameworks and Libraries

	Results
	Prototype
	Home page
	Network Explorer - Activity
	Network Explorer - Influence
	Network Explorer - Content
	User Explorer - Profiling
	Gender Classification

	API
	Benchmarking and Performance
	User Interface Evaluation

	Conclusion
	Final Considerations
	Future Work

	References
	Appendix A: Twitter API Objects
	Appendix B: gender classifier
	Appendix C: api documentation
	Appendix D: Usability Enquiry

