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enzima conversora da angiotensina I, péptidos inibidores de 
ACE, transformação de plantas, organogénese, embriogénese 
somática, alimentos funcionais. 

 
 resumo 

 
 

O molecular pharming permite a produção de proteinas 
terapêuticas recombinantes a larga escala, de forma segura e a 
baixo custo. No presente trabalho, é proposta a produção 
heteróloga de quatro péptidos inibidores da ACE em dois 
emergentes sistemas de expressão vegetal, Lactuca sativa 
(alface) e Medicago truncatula (luz cortada). A utilização da 
alface, uma planta comestível, pode proporcionar um meio para 
a administração oral de péptidos anti-hipertensivos, criando um 
novo alimento funcional. Por outro lado, a utilização de M. 
truncatula, uma leguminosa modelo, garante não só a facilidade 
de transformação mas também a extrapolação processual para 
outras leguminosas. No contexto actual de demanda por 
terapias alternativas para a hipertensão e de processos mais 
eficientes de produção de péptidos inibidores da ACE, este 
trabalho assume particular importância.  
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abstract 
 
 

Molecular pharming is a cost-effective, scalable and safe 
system to produce high-quality and biologically active 
recombinant therapeutic proteins. In the present work the 
heterologous production of four ACE inhibitory peptides in two 
emerging plant expression hosts, Lactuca sativa (lettuce) and 
Medicago truncatula is proposed. The use of lettuce, an edible 
plant, can provide a means for oral delivery of antihypertensive 
peptides, thus creating a novel functional food. On another 
hand, the use of M. truncatula, a model legume, ensures not 
only the simple transformation process but also the procedural 
extrapolation to other legume species. In the current scenario of 
global demand for alternative hypertension therapies and easier 
ACE inhibitory peptide manufacturing processes, this work 
assumes particular importance. 
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1 Bibliographic	revision	

 

1.1 Introduction	

 

Humans started using wild plants for food and healing purposes because of their 

unique nutritional and medicinal properties in pre-historic times (Raskin et al., 2002). In 

fact, wild plants used to constitute an important part of the diet of ancient human societies 

and were widely used for illness treatment. Though, along with the transition from the 

nomad to the sedentary lifestyle and the creation of agriculture, humans started 

domesticating some target wild plants. The first signs of domestication date back to ten 

thousand years ago (Doebley et al., 2006) and since then humans have been genetically 

manipulating plants to meet their needs.  

Initially, ancient farmers used to select spontaneous mutations that occurred in wild 

plant populations in order to achieve desired traits (Gepts, 2002), e.g. larger fruit size, 

color change, plant habit (Zeder et al., 2006). The plants with the desired characteristics 

were then used as progenitors for subsequent plant generations, resulting in an 

accumulation of selected traits over time, the so-called domestication syndrome (Hammer, 

1984).  

The continuous process of selection, breeding and re-selection, known as classical 

plant breeding, was a precursor to the modern plant improvement techniques and 

originated the present-day plant crop varieties, which are completely different from the 

ones of ten thousand years ago (Gepts, 2002; Doebley et al., 2006).  

Whilst traditional plant breeding and selection methods are still widely applied and 

of foremost importance in food industry, the advent of recombinant gene technology 

revolutionized plant improvement by enabling plants to be genetically modified with novel 

traits beyond what was possible through classical breeding and selection techniques. In 

recombinant gene technology, foreign genes responsible for genetic traits (e.g. insect 

resistance) are transferred from a source organism (microorganism, animal, plant) to a 

target plant. Because only the desired gene is inserted into the plant genome, this 

technology allows a more accurate and less time-consuming plant improvement in 
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comparison to traditional improvement techniques (Rehbinder, 2008). Plant transformation 

can be performed using a broad range of gene delivery systems such as Agrobacterium Ti 

plasmid vectors, biolistics, microinjection and physical (electroporation) or chemical 

(PEG) treatment of protoplasts.  

 The first genetically engineered plant to be commercially grown was the 

FlavrSavr™ tomato (Kramer and Redenbaugh, 1994), a tomato engineered to have delayed 

ripening and subsequently longer shelf life. Although the FlavrSavr™ tomato soon left the 

market owing to high production costs and consumer concerns, over the last two decades 

the number of transgenic plants has steadily increased with various important traits related 

to insect (Barton et al., 1987) and herbicide (Stalker et al., 1988) resistance; abiotic stress 

tolerance (Wang et al., 2003); nutritional quality, the notable case of golden rice (Ye et al., 

2000); virus resistance (Niu et al., 2006); and biofuel production (Chen and Dixon, 2007) 

being successfully engineered into crop plants.  

While most of plant transformations have been focused on conferring agronomic 

advantages, since the late 1980s (Barta et al., 1986; Hiatt et al., 1989) plants begun to be 

used as production systems for recombinant pharmaceutical and industrial proteins.  

The limitations of microbial fermentation and mammalian cell cultures as 

therapeutic protein production systems, including cost, scalability, safety and protein 

authenticity and the growing demands for complex therapeutic proteins have stimulated the 

advent of molecular pharming. Molecular pharming comprises the use of either whole-

plants or in vitro cultured plant cell/tissues for the synthesis of recombinant therapeutic 

proteins in plants (Fischer and Emans, 2000). 

Molecular pharming is a cost-effective, scalable and safe system to produce high-

quality and biologically active recombinant therapeutic proteins. Plants have the ability to 

perform most of the posttranslational modifications required for protein bioactivity and 

pharmacokinetics (Gomord and Faye, 2004). Moreover, some plant tissues provide a 

means for stable long-term storing of recombinant proteins, minimizing processing or 

purification steps, costs and labor required to the delivery of injectable therapeutics. 

Selected tissues are suitable for oral administration, thus reducing the costs, inconvenience 

and hazards of delivery that are associated with injected therapeutics. Plants are also a safe 

platform for therapeutic protein production since they do not harbor human or animal 

pathogens (Streatfield, 2006). Thus, plants are an emerging alternative platform for the 
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production of pharmaceutically relevant proteins such as vaccines, antibodies and antibody 

derivatives, and some serum-derived proteins, namely cytokines, growth hormones, 

interleukins, and interferon (Xu et al., 2011).  

Additionally, plants have also been used to produce bioactive and immunogenic 

peptides. The efficacy, selectivity, specificity, and low toxicity of peptides make them 

particularly well suited as therapeutic agents for various indications, namely allergy, 

cardiovascular disease, infectious diseases, immunological disorders, gastrointestinal 

dysfunction and cancer (Lico et al., 2012). 

In the broad range of known bioactive peptides, angiotensin I–converting enzyme 

inhibitory (ACEI) peptides derived from food proteins have attracted particular attention 

and have been studied the most comprehensively for their ability to prevent hypertension 

(Norris and FitzGerald, 2013). 

So far, several ACEI peptides have been identified in food proteins, mainly in milk, 

eggs and plants. These peptides are inactive within the sequence of parent proteins, but 

they can be released by enzymatic proteolysis in vivo or in vitro, for example during 

gastrointestinal digestion or during food processing. Thus, the consumption of these foods 

is a means for delivery and constitutes a potential benefice for human health.  

The industrial production of ACEI peptides is based on enzymatic proteolysis of 

whole food proteins, which leads to the release of small bioactive peptides with ACE 

inhibitory activity (Pihlanto and Mäkinen, 2013). The problems associated to such 

procedures, namely cost and loss of functional properties, have demonstrated the need to 

develop more straightforward methods to produce ACEI peptides. One viable hypothesis is 

to genetically engineer plant crops to produce and deliver antihypertensive peptides, 

therefore creating novel functional foods. Some investigation has been focused on the 

development of expression methods for ACEI peptide production in plant crops (Matoba et 

al., 2001). Thus far, two main strategies have been adopted, the over-expression of ACEI 

peptides precursor proteins and the production of particular peptides as heterologous 

components (Rosales-Mendoza et al., 2013).  

The aim of the present work is the production of ACEI peptides in two emergent 

plant hosts for recombinant pharmaceutical protein production, namely Lactuca sativa L. 

(lettuce) and the model legume Medicago truncatula Gaertn. (barrel medic). The plant 

expression platform that will be used for ACEI peptide production the stable nuclear 
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expression of whole plants of lettuce and M. truncatula. The benefits of whole plant 

expression platforms, include the possibility of oral delivery and simplicity of scalability. 

Furthermore, the availability of straightforward transformation procedures for lettuce and 

M.truncatula and the edibility of lettuce, which ensures the simple oral delivery, are also 

important advantages of the chosen expression platforms. Moreover, the genetic, genomic, 

and molecular tools available in model plants such as M. truncatula, allow not only the 

investigation of basic processes important to legumes, but also the extrapolation of that 

information to other important crop species, including bean, pea and alfalfa.  

In addition, and to test for the functionality of the expression vectors constructed 

transient expression in lettuce and M. truncatula will be used. 
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1.2 Molecular	pharming	

 

The term “molecular pharming”, blend of pharmaceutical and farming, surfaced in 

the literature in the 1980s to refer to the production of high-value compounds in transgenic 

animals. Nowadays, the expression is mainly employed to refer to the production of 

recombinant pharmaceutically relevant proteins or secondary products in plants (Lossl and 

Clarke, 2013; Ma et al., 2013; Paul et al., 2013). 

The roots of molecular pharming can be traced back to the mid-1980s when plants 

started to be genetically engineered to act as bioreactors for production of 

pharmaceutically relevant proteins. Figure 1 summarizes the milestones in the commercial 

development of molecular pharming. 

 
Figure 1 - Milestones in the commercial development of molecular pharming (Sabalza et al., 2014). 

 

Barta et al. (1986) demonstrated that tobacco and sunflower callus tissue were 

capable of producing transcripts of a human growth hormone fusion gene, even if no 

protein was detected this was the first report of plants expressing human genes and 

established plants as a potential recombinant therapeutic protein production system. Later 

on, the expression of a full-sized IgG in tobacco (Hiatt et al., 1989) was a major 

breakthrough because it revealed the ability of plants to produce complex functional 

mammalian proteins with pharmaceutical relevance. In 1990, the structural authenticity of 
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plant derived recombinant proteins was proved even further with the production of the first 

native human protein, human serum albumin, in tobacco and potato (Sijmons et al., 1990). 

After several studies that demonstrated the capacity of several plant species and 

systems to produce recombinant pharmaceutical proteins and peptides, during the 1990s 

the field of molecular pharming gained support and interest from the plant biotechnology 

community. This scientific attention was followed by commercial interest, with many 

startup companies being created to materialize the advantages of plants in relation to the 

established platforms for therapeutic protein and peptide production. Plants provided an 

inexpensive, highly scalable and safe means of producing pharmaceutically relevant 

proteins and peptides. In opposition to the fermentation-based traditional platforms that 

required a massive investment in bioreactors, plants producing pharmaceutical proteins 

could be established with minimal investment and offered a myriad of different hosts and 

platforms (Fischer et al., 2012). However, the expectation that plants could compete for the 

market share of some well-established biopharmaceutical platforms, namely Chinese 

hamster ovary (CHO) cells, and motivate the mainstream pharmaceutical industry to 

switch platforms was overinflated. The technical limitations of plants, especially their 

lower yields compared to mammalian cell lines, allied with the colossal existing 

investment in fermentation infrastructure, unfavorable public opinion on OGMs and 

regulatory uncertainty, conduced to caution by the mainstream pharmaceutical industry 

and consequently to a stagnation in the field of molecular pharming in the 2000s (Stoger et 

al., 2014). This situation induced a change of paradigm concerning molecular pharming, 

the initial vision of a highly scalable and low cost production system, while still valid, was 

replaced by the idea of a production system for certain products that are not easily 

manufactured by the conventional systems (Fischer et al., 2013). 

Conversely to conventional biopharmaceutical production systems that are based 

on few selected platforms especially the bacterium Escherichia coli, yeasts such as Pichia 

pastoris, and well-established mammalian cell lines such as Chinese hamster ovary (CHO) 

cells (Paul et al., 2013), molecular pharming embraces several technologies with different 

advantages and limitations, related by their use of plant tissues. The platforms range from 

plant cells or simple plants growing in fermenters to whole plants growing in soil or 

hydroponic environments, and the technologies include stable integration of DNA into the 

nuclear genome or plastid genome and transient expression by infiltrating leaves with 
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expression vectors based on Agrobacterium tumefaciens, plant viruses or hybrids (Paul et 

al., 2013; Stoger et al., 2014). This great diversity of molecular pharming confers 

adaptability and flexibility, permitting the selection of the most suitable platform for each 

product but also conduces to fragmentation. In the early days of molecular pharming, this 

fragmentation meant that there was no driving force to establish molecular pharming as a 

single, competitive platform, and consequently no actions were made to match the industry 

requirements for high yields, standardized procedures and good manufacturing practices 

(Fischer et al., 2013). As a result, recently, efforts have been made to mimic the 

mainstream biopharmaceutical industry and focus only on a small number of platforms, 

especially plant cell cultures, nuclear transgenic plants and transient expression in leafy 

plants (Paul et al., 2013; Fischer et al., 2015). 

Since 2010, the biopharmaceutical industry has given a renewed attention to 

molecular pharming as a result of its consolidation on a small number of platforms and 

some target products that meet industry demands (Fischer et al., 2013; Stoger et al., 2014). 

In 2012, the FDA approval of the first recombinant plant-derived therapeutic for human 

use, Protalix Biotherapeutics’ taliglucerase alfa, commercialized under the name 

(Elelyso™), was an important breakthrough for molecular pharming. The enzyme 

taliglucerase alfa is a carrot cell–expressed human recombinant β-glucocerebrosidase and 

is prescribed for the treatment of Gaucher’s disease, a lysosomal storage disorder (Zimran 

et al., 2011). A recombinant form of glucocerebrosidase under the commercial designation 

of imiglucerase (Cerezyme®) was already produced in Chinese hamster ovary cells. In this 

production platform, the enzyme required subsequent in vitro exposure to mannose 

residues in order to have biological activity, resulting in a time-consuming and expensive 

manufacturing process. Besides, this platform also had some safety problems, namely the 

risk of viral contamination, allergies and other adverse reactions. In comparison, the plant-

based platform is safe, less time-consuming and has reduced production costs, since the 

desired mannose structure is achieved in vivo (Zimran et al., 2011). 

Glucocerebrosidase provides a clear example of a target product, which safety, cost 

and downstream processing issues were solved by switching from a traditional platform to 

molecular pharming. Following this example of success there has been a continuous 

increase in clinical trial applications and manufacturing capacity, correlated with the 

conception of more tangible regulations concerning plant-derived pharmaceuticals. 
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Even if plants are unlikely to substitute the established platforms given the massive 

existing investment in fermentation infrastructures and the high product quality, process 

robustness, and regulatory certainty that have been achieved by decades of incremental 

improvements (Stoger et al., 2014), the recent promising developments in the field of 

molecular pharming demonstrate that glucocerebrosidase was not a lone case of success 

and that plant-based platforms could provide countless opportunities for the 

biopharmaceutical market. Plants combine the advantage of a full posttranslational 

modification potential with simple growth requirements and theoretically unlimited 

scalability in the case of field-grown whole plants (Table 1). Plant-based platforms are 

versatile, allowing the targeting of recombinant proteins and peptides produced to different 

organs or subcellular compartments, therefore providing an additional protection against 

proteolysis. And finally, plants are a safe host for recombinant therapeutic protein and 

peptide production because they do not harbor human or animal pathogens (Karg and 

Kallio, 2009).  

Hence, instead of facing the red ocean (Kim and Mauborgne, 2005) of established 

pharmaceutical industries, molecular pharming is now evolving as a disruptive technology 

that creates its own marketplace by offering rapid drug development and production, 

unparalleled scalability, unique quality attributes such as tailored glycan structures, 

individualized therapies, and oral or topical applications of minimally-processed plant 

tissues thus reducing downstream costs (Sabalza et al., 2014).  
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Table 1 - Comparison between the various systems used for pharmaceutical protein 

production (Sabalza et al., 2014) 

 
*The intrinsic yield of bacterial cells is high but many complex proteins are produced as inclusion bodies that 

need to be resolubilized, thus increasing downstream production costs 

** Endotoxins are bacterial contaminants; in the transient expression system they may be present if the system 

is based on infiltration with Agrobacterium tumefaciens but not in platforms based on plant viruses 

*** The species is important—if tobacco is used, metabolites such as nicotine must be removed, which 

increases the processing costs, but if cereal seeds or other edible tissues are used these tissues can generally be regarded 

as safe and processing costs may be reduced or eliminated completely if the product is orally administered as an 

unprocessed or partly-processed tissue such as flour paste or fruit juice 

 

1.2.1 Plants as platforms for the production of therapeutic proteins  

 

The continuous development of plant genetic engineering technologies has resulted 

in an expansion of well-established plant-based platforms (Paul and Ma, 2011). Molecular 

pharming encompasses platforms based on stably transformed plants obtained by transgene 

insertion in the nuclear or plastid genome, transient expression using agroinfiltration, viral 

and hybrid vectors, microalgae, aquatic plants (e.g. duckweed), and in vitro culture 

systems (e.g. cell suspensions, hairy roots and moss protonema) (Xu et al., 2012). Each 

platform has particular advantages and limitations, therefore its selection is done on a case-

by-case basis, depending on economic considerations as well as the product characteristics 

and intended use (Abranches et al., 2005).  
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1.2.1.1 Platforms based on transgenic plants 

 

Transgenic plants have been the most widely used platforms for recombinant 

protein production. To obtain stable transgenic lines the gene encoding the desired protein 

is cloned into an expression construct, which generally includes a promoter, regulatory 

elements that ensure efficient RNA processing and protein synthesis, and a 

polyadenylation signal (Commandeur et al., 2003). This expression construct is then stably 

integrated into the plant nuclear genome, resulting in the stable inheritance of the transgene 

and expression of stable pharmaceutical proteins over generations (Chen, 2008). Two 

major transformation strategies have been employed to insert expression constructs into the 

nuclear genome: Agrobacterium-mediated transformation in dicot species and particle 

bombardment of DNA coated gold or tungsten beads in monocot species (Paul et al., 

2013). Transgenic plant lines offer several advantages as platforms for molecular 

pharming; they are suitable for long-term production of recombinant pharmaceutical 

proteins, and also highly scalable, as each line can be used to produce seeds, which 

increase the number of plants in every generation. Ultimately, the production capacity of 

recombinant pharmaceutical proteins in transgenic plants is practically unlimited, as it only 

depends on the number of hectares available for the plant culture. The major drawbacks of 

transgenic plants are the long development and scale-up timescales, the unreliable 

production yields, and the potential spread of pharmaceutical crops in the environment and 

into the food chain by outcrossing and seed dispersal (Paul et al., 2013).  

The development of simple transformation technologies has expanded the number 

of host plants available for molecular pharming. Currently, the major molecular pharming 

transgenic platforms are based on leafy crops, seeds, fruits and vegetables. Leafy crops are 

benefic in terms of biomass yield and high soluble protein levels. Additionally, leaf 

harvesting does not need flowering and thus considerably reduces contamination through 

pollen or seed dispersal (Makhzoum et al., 2014). One disadvantage of leafy crops is that 

proteins are synthesized in an aqueous environment, which is more prone to protein 

degradation, resulting in lower production yields (Ma et al., 2003). In fact, the mature 

leaves possess very large extra cytoplasmic vacuolar compartments containing various 

active proteolytic enzymes that are involved in the degradation of native and foreign 

proteins This is particularly problematic in the case of therapeutic peptide production 
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because short heterologous peptides have an inherent instability in plant cells (Lico et al., 

2012). In addition to the protein instability, the harvested material has limited shelf life and 

needs to be processed immediately after harvest.  

Tobacco has been the most widely used leafy crop for molecular pharming. The 

major advantages of using tobacco to express pharmaceutical proteins are its high biomass 

yield, well-established technology for gene transfer and expression, year-round growth and 

harvesting, and the existence of large-scale infrastructure for processing (Makhzoum et al., 

2014). However, the natural production of nicotine and other alkaloids in tobacco poses 

some safety issues in its use as a host system for heterologous protein production. 

Therefore, tobacco varieties with low nicotine and alkaloid levels have been produced to 

diminish the toxicity and overcome those safety issues. Other leafy crops used in 

molecular pharming include alfalfa and clover (Xu et al., 2012). 

As an alternative to leafy crops, plant seeds have been proven to be versatile hosts 

for recombinant proteins of all types, including peptides or short and long polypeptides as 

well as complex, noncontiguous proteins like antibodies and other immunoglobulins 

(Boothe et al., 2010). The expression of proteins in seeds can overcome the shortcomings 

of leafy crops in terms of protein stability and storage. Seeds possess specialized storage 

compartments, such as protein bodies and vacuoles, which provide the appropriate 

biochemical environment for protein accumulation, thus protecting the proteins expressed 

in seeds from proteolytic degradation (Twyman et al., 2003). Reports have demonstrated 

that antibodies expressed in seeds remain stable for at least three years at room temperature 

without detectable loss of activity (Stoger et al., 2000). Furthermore, the small size of most 

seeds permits to achieve a high recombinant protein concentration in a small volume, 

which facilitates extraction and downstream processing and reduces the costs of the overall 

manufacturing process (Stoger et al., 2005). One essential property of seeds is its 

dormancy, which not only permits the stability of recombinant proteins but also allows a 

complete decoupling of the cycle of cultivation from the processing and purification of the 

protein (Boothe et al., 2010). Finally, proteins expressed in the seed do not normally 

interfere with vegetative plant growth, and this strategy also reduces exposure to 

herbivores and other non-target organisms such as microbes in the biosphere 

(Commandeur et al., 2003). Several crops have been studied for seed-based production, 

including cereals such as maize, rice, barley and wheat, legumes such as pea and soybean, 
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and oilseeds such as safflower and rapeseed. Maize has several advantages for seed-based 

expression of proteins; it has the highest biomass yield among food crops, ease of 

transformation and in vitro manipulation, and ease of scale-up (Ma et al., 2003). These 

potentialities were explored by Prodigene Inc. for the production of the first commercially 

available plant-made protein, avidin. Other maize-derived protein products developed by 

this company include β-glucuronidase, aprotinin, laccase, and trypsin (Lau and Sun, 2009). 

Prodigene was the first company to demonstrate the commercial benefits of plant-based 

platforms and was also a forerunner in the study of the economic impact of downstream 

processing in molecular pharming, having developed several successful approaches to 

recover intact and functional recombinant seeds from maize (Paul et al., 2013). However, 

Prodigene Inc. was forced to cease its activity following a case of contamination of maize 

crops by their transgenic counterparts. This incident exposed the risk of using cross-

pollinating plants such as maize for the production of heterologous proteins.	Maize as also 

been used to produce recombinant pharmaceutical proteins, including enzymes, vaccines 

and antibodies (Lau and Sun, 2009). One of the most notable therapeutic proteins produced 

in maize is Meristem Therapeutics’ gastric lipase; an enzyme used in the treatment of 

cystic fibrosis that has completed phase II clinical trial. In addition to this enzyme, 

Meristem Therapeutics has developed two other maize-derived products, human lactoferrin 

(phase I clinical trial), whose intellectual property was later acquired by Ventria 

Bioscience, and collagen (pre-clinical stage).  

Rice is another leading platform for recombinant protein production. Similarly to 

maize, rice is easy to transform and scale-up but unlike maize, rice is self-pollinating, 

which reduces the risk of horizontal gene flow. Ventria Bioscience, in its ExpressTec 

platform, has used rice to produce recombinant pharmaceutical proteins, including human 

albumin, transferrin, lactoferrin and lysozyme, and vaccines against human rabies and 

Lyme disease. Its lead therapeutic candidate VEN100, whose active ingredient is 

lactoferrin, has been shown to reduce significantly antibiotic-associated diarrhea in high-

risk patients and recently completed phase II clinical trial (Laffan et al., 2011). Rice has 

also been widely used as host for peptide expression, especially for the production of 

allergen peptides (Lico et al., 2012). Recent studies report that rice has the potential to 

offer an oral delivery system for vaccine antigens and therapeutic proteins and peptides 

(Takagi et al., 2005; Takagi et al., 2010).  
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Barley seeds have also been developed as commercial platforms. In comparison to 

other cereal crops, barley is less widely grown. Though, this fact added to the self-

pollinating nature of barley can be viewed as an advantage since the risk of contamination 

and outcrossing with non-transgenic crops is minimized. Considering this benefit, an 

Iceland based company, ORF Genetics, has targeted barley grain as the expression site for 

a number of human cytokines and growth factors (Xu et al., 2012). Other molecular 

pharming companies, such as Ventria Bioscience and Maltagen have also been developing 

barley-based production platforms. While barley is still recognized for its recalcitrance to 

transformation, over the last decade some progress has been made in the development of 

reliable transformation procedures (Mrízová et al., 2014). 

The use of legume seeds, such as soybean and pea, to the production of 

recombinant pharmaceutical proteins has been less explored than cereal-based platforms, 

with platforms based on legume seeds having yet to achieve commercial success. 

However, the fact that legume seeds have exceptionally high protein content (20-40%) can 

be exploited to produce high yields of recombinant protein (Vianna et al., 2011). Soybean 

seeds have been used to express recombinant growth factors (Ding et al., 2006; Cunha et 

al., 2011a), coagulation factors (Cunha et al., 2011b) and vaccine peptides (Maruyama et 

al., 2014). Transgenic pea seeds have been previously used to produce a single-chain Fv 

fragment (scFV) antibody (Perrin et al., 2000). In another study pea seeds were used to 

produce a vaccine that showed high immunogenicity and protection against rabbit 

haemorrhagic disease virus (Mikschofsky et al., 2009).   

Safflower and rapeseed seeds are rich in oil and are, thus, referred as oilseeds. 

Oilseeds can provide useful recombinant pharmaceutical protein production systems. 

SemBioSys, with its oleosin-fusion platform, has been a pioneer in that field. Oleosins are 

the principal membrane proteins of oil bodies; oleosins confer peculiar structural properties 

to the oil bodies that offer simple extraction and purification procedures (Bhatla et al., 

2010). In the oleosin-fusion platform, the recombinant protein is fused with oleosin and 

consequently targeted to the oil bodies. The fusion protein is then recovered through 

simple purification of the oil bodies and separated from oleosin by endoprotease digestion. 

The commercial production of hirudin in safflower by SemBioSys constituted the first 

report of an oilseed-derived protein (Parmenter et al., 1995). The company has been 
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focusing on safflower as its primary host ever since, with safflower-derived insulin in 

phase I clinical trial (Lau and Sun, 2009).  

Finally, fruit and vegetable crops can also be employed for molecular pharming. A 

major advantage of protein expression in fruit and vegetable crops is that edible organs can 

be consumed uncooked, unprocessed or partially-processed, making them particularly 

suitable for the production of recombinant subunit vaccines, nutraceuticals and antibodies 

designed for topical application (Twyman et al., 2003). The oral delivery of recombinant 

therapeutics is one of the differentiating factors of molecular pharming in comparison to 

mainstream biopharmaceutical production systems, with several pharmaceutical products 

being produced in tomato fruits, potato tubers and lettuce leaves for this purpose (Paul et 

al., 2013). Tomato fruits are particularly useful for protein expression because the fruits are 

palatable as raw tissue but can also be lyophilized and stored for a long time (Lico et al., 

2012). Recently, human coagulation Factor IX was expressed specifically in tomato fruits, 

constituting the first report on the expression of hFIX in plants. Another study described 

the expression in tomato fruits of a thymosin α1 concatemer (Chen et al., 2009), an 

immune booster that plays an important role in the maturation, differentiation and function 

of T-cells. The chymosin α1 concatemer derived from transgenic tomatoes exhibited 

biological activity and was proven to stimulate the proliferation of mice splenic 

lymphocytes in vitro. Moreover, the specific activity of the tomato-made protein was 

higher than that produced in Escherichia coli, demonstrating the authenticity of the plant-

made product. Other examples of tomato fruit expression include F1-V (Alvarez et al., 

2006), a candidate subunit vaccine against plague, and β-secretase (Kim et al., 2012) to 

serve as a vaccine antigen against Alzheimer’s disease.  

In conclusion, platforms based on transgenic plants are a promising alternative to 

the conventional biopharmaceutical production platforms because they provide a stable 

source of pharmaceutical proteins and are also the most scalable of all molecular pharming 

platforms. This scalability of transgenic plants ensures the production of recombinant 

pharmaceutical proteins at levels previously inaccessible, namely the commodity bulk 

production of monoclonal antibodies. In the current scenario of growing pharmaceutical 

demand, especially in developing countries, the use of transgenic plants can be game 

changing since they provide a highly scalable and low cost means of producing medicines. 
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1.2.1.2 Platforms based on transplastomic plants 

 

Transplastomic plants are a valuable alternative to transgenic plants for the 

production of recombinant pharmaceutical proteins. Transplastomic plants are obtained by 

the insertion of expression constructs into the plastid genome, this is done by particle 

bombardment, as the Agrobacterium T-DNA complex is targeted to the nucleus and is 

therefore unsuitable for gene transfer to chloroplasts (Ma et al., 2003). Following the 

transformation procedure, the bombarded leaf explants are regenerated in each generation 

and transplastomic plants with homoplastomic transformation (in which every chloroplast 

carries the transgene) are finally selected, recurring to a selection medium containing 

spectinomycin or in combination with streptomycin (Obembe et al., 2011).  

Plastid transformation can result in high yields of heterologous proteins because 

multiple copies of the genome are present in each plastid and photosynthetic cells may 

contain hundreds or thousands of plastids (Daniell et al., 2009). An example of these high 

yields was the expression of a proteinaceous antibiotic in tobacco chloroplasts that 

achieved up to 70% of the total soluble proteins, which is the highest recombinant protein 

accumulation accomplished so far in plants (Oey et al., 2009). Furthermore, chloroplasts 

provide a natural biocontainment of transgene flow since genes in chloroplast genomes are 

maternally inherited and consequently not transmitted through pollen, thereby avoiding 

unwanted escape into the environment. Other advantages of chloroplast engineering 

include the ability to express several genes as operons and the accumulation of 

recombinant proteins in the chloroplast, thus reducing toxicity to the host plant (Ma et al., 

2003). Finally, transplastomic production platforms offer the possibility of oral delivery. In 

fact, it has been demonstrated that chloroplast-derived therapeutic proteins, delivered 

orally via plant cells, are protected from degradation in the stomach, probably because of 

bioencapsulation of the therapeutic protein by the plant cell wall.  

A shortcoming of expressing proteins via the chloroplast genome is that routine 

plastid engineering is still limited to tobacco, a crop that is not edible and thus unsuitable 

for oral delivery of therapeutic proteins. In addition, the synthesis of glycoproteins is not 

possible in the chloroplast system, as plastids do not carry out glycosylation. Nevertheless, 

the expression of human somatotropin (Staub et al., 2000) in tobacco established that 

chloroplasts are capable of proper folding of human proteins with disulphide bonds. In 
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another study the production of native cholera toxin B (Daniell et al., 2001) demonstrated 

the capacity of chloroplasts to fold and assemble oligomeric proteins correctly. Other 

therapeutic proteins expressed in tobacco chloroplasts include interferons alpha-2a and 

alpha-2b (Arlen et al., 2007; Nurjis and Khan, 2011) and anti-cancer therapeutic agents 

such as human soluble tumor necrosis factor (Wang et al., 2011) and azurin (Roh et al., 

2014). Recently chloroplast transformation of lettuce has also been developed (Lelivelt et 

al., 2005; Kanamoto et al., 2006) to provide oral delivery systems (Ruhlman et al., 2007; 

Boyhan and Daniell, 2011). With several therapeutic proteins being expressed in lettuce 

chloroplast, namely proinsulin (Ruhlman et al., 2007; Boyhan and Daniell, 2011), 

tuberculosis vaccine antigens (Lakshmi et al., 2013), human thioredoxin 1 protein (Lim et 

al., 2011a). The chloroplast production platform has yet to achieve commercial success, 

though the referred developments in this field augur a promising future for therapeutic 

protein production in chloroplasts.  

 

1.2.1.3 Transient expression platforms 

 

Transient expression is a phenomenon that occurs when genes are introduced into 

plant tissues and are expressed for a short period without stable DNA integration into the 

genome (Paul et al., 2013). Traditionally, transient expression was used to verify 

expression construct activity and to test recombinant protein stability. This strategy 

allowed the identification and elimination of initial transformation problems and thus the 

prospect of regenerating the desired transgenic lines was significantly improved. Recently, 

there has been an emergence of transient expression for the commercial production of 

recombinant pharmaceutical proteins. The advantages of transient expression platforms 

include the ease of manipulation, speed, low cost and high yield of proteins. In comparison 

to transgenic plants, transient expression permits to achieve higher recombinant protein 

yields because there are no position effects (suppression of transgene expression by the 

surrounding genomic DNA following integration) (Komarova et al., 2010).  

Transient expression systems utilize the beneficial properties of plant pathogens to 

infect plants, spread systemically, and express transgenes at high levels, causing the rapid 

accumulation of recombinant proteins (Stoger et al., 2014). Currently, the major transient 
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expression platforms are based on Agrobacterium tumefaciens, plant viruses, or hybrid 

vectors that utilize components of both (MagnICON®technology). 

The agroinfiltration method (Kapila et al., 1997) involves the vacuum infiltration of 

a suspension of recombinant Agrobacterium tumefaciens into the plant leaf tissue, the 

transgenes are then expressed from the uninterrupted T-DNA. Using this method, 

milligram amounts of recombinant protein are produced within a few weeks without the 

need to select transgenic plants, a process that takes months to years to be completed. This 

system has been commercially developed in tobacco (Whaley et al., 2011) and alfalfa 

(D'Aoust et al., 2010) but is also applicable in other crops such as lettuce (Negrouk et al., 

2005), potato (Bhaskar et al., 2009) and Arabidopsis (Kim et al., 2009). An advantage of 

Agrobacterium-mediated transient expression is the fact that it allows the production in 

plants of complex proteins assembled from subunits (Komarova et al., 2010).  

Another transient expression technology is based on the use of plant viruses. In this 

technology, the gene of interest is inserted among viral replicating elements, episomically 

amplified, and subsequently translated in the plant cell cytosol (Lico et al., 2008). To date, 

the most efficient and high-yielding platforms have been developed using RNA viruses 

(Sainsbury and Lomonossoff, 2008). These plant viruses include Tobacco mosaic virus 

(TMV), Potato virus X (PVX), and Cowpea mosaic virus (CPMV) (Stoger et al., 2014). 

The advantages of virus based production include the rapid recombinant protein 

expression, the systemic spread of the virus, and the fact that multimeric proteins such as 

antibodies can also be produced by co-infecting plants with non-competing vectors derived 

from different viruses (Verch et al., 1998; Giritch et al., 2006). Transient expression 

vectors based on virus have been used to express peptides and long polypeptides (at least 

140 amino acids long) as fusions to the coat protein, resulting in the assembly of chimeric 

virus particles (CVPs) displaying multiple copies of the peptide or polypeptide on its 

surface (Gleba et al., 2007; Lico et al., 2008). Transient expression based in plant viruses 

has been commercially adopted by the now-defunct Large Scale Biology Corporation 

(Vacaville, USA) that used a TMV-based vector for the production of patient-specific 

idiotype vaccines for the treatment of B-cell non-Hodgkin's lymphoma, which had 

successfully passed the phase I clinical trials (McCormick et al., 2008).  

Finally, the third transient expression strategy is based on systems that incorporate 

components of the T-DNA transfer system and virus replication functions (Paul et al., 
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2013). These hybrid systems use deconstructed viruses obtained by removing the coat 

protein (responsible for systemic movement) of the noncompeting virus strains and 

Agrobacterium as the vehicle for the systemic delivery of the resulting viral vectors to the 

entire plant. These systems effectively address most of the major shortcomings of earlier 

plant-based technologies by providing the overall best combination of the following 

features: high expression level, high relative yield, low up- and downstream costs, very 

fast and low cost R&D; and low biosafety concerns (Gleba et al., 2005). Consequently, 

there has been a commercial development based on several hybrid systems. One of most 

notable examples is the magnICON® system developed by Icon Genetics (formerly owned 

by Bayer Innovation, Dusseldorf, Germany; now a subsidiary of Nomad Bioscience, Halle, 

Germany), which features a deconstructed TMV genome and A. tumefaciens as a delivery 

vehicle (Gleba et al., 2005). Another example is the iBioLaunch platform developed by the 

Fraunhofer Center for Molecular Biotechnology, which also features a deconstructed TMV 

genome (Paul et al., 2013). Finally, the CPMV-HT platform is based on a deleted version 

of Cowpea mosaic virus RNA-2 and also allows the “hypertranslation” of recombinant 

proteins without virus spreading (Stoger et al., 2014). Examples of therapeutic 

recombinant proteins produced in these platforms have been reviewed in Paul et al. (2013) 

Recombinant protein production using transient expression is now being mobilized 

to large scale with several companies developing scalable, automated plant-based GMP 

biomanufacturing facilities to efficiently produce large amounts of pharmaceuticals within 

weeks. Such facilities include the ones of Fraunhofer Center for Molecular Biotechnology 

(Newark, DE) (http://www. fraunhofer.org), Medicago Inc. (Quebec, Canada) 

(http://www.medicago.com), Icon Genetics (Bayer; Halle, Germany) (http://www. 

icongenetics.com), Texas A&M (College Station, TX) and Kentucky BioProcessing LLC 

(Owensboro, KY) (http://www.kbpllc.com/) (Xu et al., 2012). 

In conclusion, the ability transient plant expression systems to produce large 

quantities of recombinant protein, coupled with use of current technology to increase 

yields and many technical promising solutions seem to favorably compare with 

mammalian or insect cell-based systems in quality, cost, and scale (Xu et al., 2012). In 

case of emerging threats, transient platforms are advantageous because they produce large 

amounts of recombinant protein rapidly (milligram quantities per plant within a few days) 

and can be scaled up quickly, currently providing the only reliable platform for rapid 
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response situations (Fischer et al., 2013). During the H1N1 pandemic, Medicago found 

that the first batches of H1N1 virus- like particles (VLPs) could be produced three weeks 

after the Centers for Disease Control and Prevention released the new influenza 

hemagglutinin (HA) sequence (D'Aoust et al., 2010). Similar lead times were reported for 

the H5N1 VLP vaccine (Landry et al., 2010). Recently, the application of tobacco plant-

based transient production systems, at Kentucky BioProcessing (KBP), to produce 

antibody lots against Ebola was shown to significantly decrease the amount of time 

required for production over traditional methods, increase the quantity of antibody 

produced, and reduce the cost of manufacturing. Finally, at the other end of the market 

scale transient expression platforms are economical for the production of pharmaceuticals 

for very small markets, such as orphan diseases and individualized therapies. 

 

1.2.1.4 Plant cell suspension cultures 

 

Plant cell suspension cultures grow as individual cells or small aggregates and are 

usually derived from callus tissue by the disaggregation of friable callus pieces in shake 

bottles, and are later scaled up for bioreactor-based production. Recombinant 

pharmaceutical protein production is achieved using transgenic explants to derive the 

cultures, or by transforming the cells after disaggregation, usually by co-cultivation with 

Agrobacterium tumefaciens. The co-cultivation of plant cell suspensions and recombinant 

A. tumefaciens has also been used for the transient expression of proteins (Schillberg et al., 

2013). Since these plant cell suspension cultures are grown in sterilized contained 

environments they provide a cGMP-compatible production environment, which is more 

acceptable to the established pharmaceutical industry and regulatory authorities (Spok et 

al., 2008; Paul et al., 2013). These systems have added benefits of complex protein 

processing compared to bacteria and yeasts, and increase safety compared to mammalian 

cell systems, which can harbor human pathogens. Another advantage of plant suspension 

cultures is the very low maintenance cost in comparison to other fermentor-based 

eukaryotic systems such as mammalian or insect cells. Moreover, the secretetion of the 

target protein into the culture medium simplifies downstream processing and purification 

procedures (Pires et al., 2008). Nevertheless, plant cell cultures also have some limitations 

such as poor growth rates, somaclonal variation (chromosomal rearrangements are an 
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important source of these variations; common in plant cell cultures generated by calli) and 

gene silencing, together with inhibition of product formation at high cell densities, 

formation of aggregates and cell wall growth as well as shear-sensitivity for some species 

(Hellwig et al., 2004). However, recently it has been shown that it is possible to achieve 

high levels of a functional recombinant protein in plant cell suspension cultures (Pires et 

al., 2008).  

Tobacco has been the most popular source of suspension cells for recombinant 

protein production, since these proliferate rapidly and are easy to transform but other plant 

species have also been used to generate suspension cells, including rice and Arabidopsis 

thaliana, alfalfa, soybean, tomato, M. truncatula and carrot (Pires et al., 2012; Schillberg 

et al., 2013). Carrot suspension cells have been used by the aforementioned Protalix’ 

Biotherapeutics to produce a recombinant glucocerebrosidase. This recent case of 

commercial success shows that suspension cell cultures have a great potential as a viable 

system for large-scale protein production. 

 

1.2.2 Optimization of plant expression level 

 

The lower expression levels in comparison to the established biopharmaceutical 

platforms were one of the major obstacles for the commercialization of molecular 

pharming (Fischer et al., 2013). Therefore, numerous techniques have been developed to 

enhance protein expression, including codon optimization of protein sequences to match 

the preferences of the host plant, targeting to subcellular compartments that allow proteins 

to accumulate in a stable form, the use of strong, tissue-specific promoters, and the testing 

of different plant species and systems (Lico et al., 2012).  

Protein synthesis can be increased by optimizing the components of the expression 

construct to maximize transcription, mRNA stability and translation, or by diminishing the 

impact of epigenetic phenomena that inhibit gene expression (Twyman et al., 2013). In this 

field, the general strategy is to use strong and constitutive promoters, such as the 

cauliflower mosaic virus 35S RNA promoter (CaMV 35S) and maize ubiquitin-1 promoter 

(ubi-1), for dicots and monocot, respectively. However, organ- and tissue-specific 

promoters are also being used to drive expression of the transgenes in the tissue or organ 

such as the tuber, the seed and the fruit. Additionally, inducible promoters, whose activities 
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are regulated by either chemical or external stimulus, may equally be used to prevent the 

lethality problem. Furthermore, transcription factors can also be used as boosters for the 

promoters to further enhance the expression level of the transgenes (Obembe et al., 2011). 

Protein stability can be increased by targeting proteins to cell compartments that 

reduce degradation. Protein targeting also affects the glycan structures added to proteins 

and the type of extraction and purification steps required to isolate the protein from the 

plant matrix. Proteins can be targeted to the secretory pathway by an N-terminal signal 

peptide, which is cleaved off for the release of the protein into the endoplasmic reticulum 

(ER). Proteins that do not require post-translational modifications, e.g. glycosylation, for 

their activity can be targeted to the chloroplast using N-terminal transit peptides (Kmiec et 

al., 2014). In addition, the target gene can be used to transform chloroplast directly, with 

highly enhanced protein accumulation. Moreover, posttranslational modifications of the 

ER lumen can also be avoided by expressing the protein as translational fusion with 

oleosin protein, which target the expression of the foreign protein to oil bodies of the seeds 

(Boothe et al., 2010). Other subcellular compartments like the protein-storing vacuoles are 

also now being explored for accumulating recombinant protein, as it has been observed in 

rice seed endosperm (Ou et al., 2014). 

 

1.2.3 Posttranslational modifications and glycoengineering 

 

Glycosylation is the covalent linkage of sugar moieties to proteins, in order to 

enhance their folding, biological activity, solubility and bioavailability (Lienard et al., 

2007). In plant, glycosylation occurs in the secretory pathway in the ER and the Golgi 

apparatus. However, there are differences in the glycosylation patterns between the plants 

and animals, with respect to N-glycan composition. Plants add α(1,3) fucose and β(1,2) 

xylose residues to the N-glycan of their glycoproteins, whereas mammals add α(1,6) 

fucose moieties, glucose and sialic acid residues to the N-glycan (Figure 2). Glycosylation 

affects the quality of recombinant proteins because different glycan structures can 

potentially influence glycoprotein stability, subcellular targeting, immunogenicity, 

pharmacokinetic behavior, and biological activity (Gomord et al., 2010). Two major 

strategies have been developed to control the glycosylation of recombinant proteins in 

plants: subcellular targeting to prevent the addition of undesirable sugar residues and 
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glycoengineering to prevent the addition of plant glycans and even replace them with 

human-like counterparts (Obembe et al., 2011). 

 

 
Figure 2 - N-glycans of human native antibodies and recombinant antibodies (Gomord et al., 2010). 
A - N-glycans of human native antibodies B - N-glycans of recombinant antibodies produced in hamster 
CHO cells C - N-glycans of recombinant antibodies produced in murine cells (SP2 ⁄ 0 or NSO cell lines) D - 
N-glycans of recombinant antibodies produced in tobacco plants. 

 

Targeting is the most straightforward approach because it can be coordinated at 

construct level by adding specific protein tags. Targeting recombinant proteins to the 

endoplasmic reticulum using the tetrapeptide tag KDEL and similar derivatives prevents 

the addition of complex-type glycan structures by avoiding the Golgi apparatus. Another 

key example of glycan control through targeting is directing proteins to the vacuole, a 

strategy that Protalix Biotherapeutics uses for the production of taliglucerase alfa (Zimran 

et al., 2011).  

Glycoengineering has been achieved through a variety of approaches, including 

conventional mutagenesis or homologous recombination to knock out genes encoding 

unwanted glycosyltransferases, RNA interference to suppress the same enzymes, and 

transgene expression to introduce heterologous glycosyltransferases that form human-like 

glycans (Gomord et al., 2010). Engineering the N-glycosylation pathway in different plant 

species has thus achieved the complete reconstruction of mammalian glycosylation 

pathways in plants. The versatility of this approach has allowed the development of 

product-specific designer glycoforms in plants.  
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Plant glycan structures do not always affect the function of a recombinant protein; 

for example, the HIV-neutralizing antibody 2G12 produced in plants was just as potent as 

counterparts produced in mammalian cells, and plant-derived glycoproteins do not appear 

to induce adverse or allergenic responses in humans even when administered on multiple 

occasions.  

One often disregarded factor is that even native proteins tend to occur as multiple 

posttranslational variants, and even the industry gold standard, Chinese hamster ovary 

(CHO) cells, carry out posttranslational modifications that are subtly different from those 

occurring in humans. Therefore, it should be sufficient for plant-derived pharmaceutical 

proteins to demonstrate the same or better safety, efficacy, and homogeneity profiles 

compared with current versions of the same drugs produced in mammalian cells (Stoger et 

al., 2014). 

 

1.2.4 Downstream processing 

 

In the early years of molecular pharming, scientific studies were focused on 

demonstrating that plants could produce adequate quantities of recombinant 

pharmaceutical proteins and confer an orally deliver means. This led to downstream 

processing and the costs associated to it being basically overlooked. Downstream 

processing is now known to be an economically critical part of biomanufacturing processes 

(it can account for up to 80% of the total cost in a therapeutic protein production line) and 

also to be a key component of the regulatory process for evaluating the safety of 

pharmaceutical products (Fischer et al., 2012). The goal and the general steps for 

downstream processing are similar between plant and other expression systems. The goal 

is to recover the maximal amount of highly purified target protein with the minimal 

number of steps and at the lowest cost. The basic steps for downstream processes include 

tissue harvesting, protein extraction, purification, and formulation (Chen, 2008). However, 

since in molecular pharming the costs of downstream processing are product specific 

rather than platform specific the evaluation of downstream processing strategies and costs 

associated to it has to be done on a case-by-case basis. Nevertheless, even if unit 

operations have to be developed based on the properties of the product, others have to be 

developed based on the properties of the expression host. Plants produce process-related 
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contaminants that require specific processing steps to ensure removal of fibers, oils, 

superabundant plant proteins such as RuBisCO, and potentially toxic metabolites such as 

the alkaloid nicotine in tobacco (Stoger et al., 2014). These secondary metabolites can be 

recovered from plant cells or tissues using methods such as adsorption, precipitation and 

chromatography, often requiring phase portioning and the use of mixtures of organic 

solvents.  

Several approaches have been used to facilitate downstream processing, including 

secretion of recombinant proteins, eliminating the plant cell disruption step, targeting of 

proteins into the protein bodies, oil-bodies or plastoglobules, and the use of affinity tags 

such as poly-histidine tags with the target protein, allowing protein purification by affinity 

chromatography (Lico et al., 2012). In addition, oral delivery of whole plants or crude 

extracts containing the pharmaceutical relevant proteins can also be a way to simplify 

downstream processing and to easily distribute medicines to those in need. Furthermore, 

the optimization of plant expression level can also ease downstream processing, higher 

protein concentrations conduct to higher protein volumes (Fischer et al., 2012).  

Finally, several purification strategies have been investigated to separate target 

transgenic protein from host plant proteins, which are tailored for each individual protein 

based on its solubility, size, pI, charge, hydrophobicity, and affinity to specific ligands and 

the parallel characteristics of plant host proteins. Chromatographic methods, such as 

affinity chromatography have been the most extensively used. However, recently 

increasing attention is being paid to non-chromatographic methods to provide alternatives 

for large-scale production (Chen, 2008). 

1.2.5 L. sativa and M. truncatula as emerging hosts for pharmaceutical protein 

production 

 

Lactuca sativa L. (lettuce) is a commercially important crop belonging to the 

Asteraceae family. It is a diploid (2n = 18), autogamous species with a genome size of 2.7 

Gb (Truco et al., 2013). This crop is particularly suitable for oral delivery of therapeutics 

as its raw leaves are consumed by humans, and the time to obtain an edible product is only 

weeks, compared to the months needed for crops such as tomato or potato. Therefore, 

recently lettuce has been investigated as a production host for edible recombinant 

therapeutics (Ruhlman et al., 2007; Boyhan and Daniell, 2011; Martinez-Gonzalez et al., 



 25 

2011). Furthermore, the fact that stable transformation procedures for both nuclear (Liu et 

al., 2012) and plastid genomes (Lelivelt et al., 2005) and transient expression (Negrouk et 

al., 2005) are widely available is also an advantage. Lettuce has been used as production 

host for several recombinant therapeutics, virus-like particles (VLPs) and monoclonal 

antibodies (Lai et al., 2012), antigens (Liu et al., 2012), and human therapeutic proteins 

(Ruhlman et al., 2007; Lim et al., 2011a). 

M. truncatula Gaertn. (barrel medic) is model legume from the Fabaceae family. It 

is a diploid (2n=16), autogamous species with a relatively small genome (1.8x109 bp for 

the Jemalong cultivar) and short life cycle of 3-5 months. These characteristics enable this 

species to be used in molecular genetic studies like analysis of gene expression, promoter 

functional analysis, T-DNA mutagenesis and expression of foreign genes (Araújo et al., 

2004). The phylogenetic distance to economically important crops is crucial in the choice 

of this plant by many researchers and funding agencies, since it allows comparative genetic 

studies within the legume family. Furthermore, the potential of M. truncatula as expression 

host has been established for the production of feed additives (Abranches et al., 2005; Pires 

et al., 2008), human hormones (Pires et al., 2012) and human enzymes (Pires et al., 2014).  

 

1.3 Angiotensin-I	converting	enzyme	inhibitory	(ACEI)	peptides		

 

Cardiovascular disease (CVD) has been recognized as the leading cause of death in 

developed countries. Hypertension or high blood pressure is one of the major independent 

risk factors for CVD (Erdmann et al., 2008), concomitant with cardiovascular disease 

(CVD) states such as coronary heart disease, peripheral artery disease and stroke. 

Hypertension is a condition defined by a blood pressure (BP) measurement of 140/90 

mmHg or above and is thought to affect up to 30% of the worldwide adult population 

(Norris and FitzGerald, 2013). The renin-angiotensin system (RAS), Figure 3, plays a 

crucial role in the control of hypertension. Within the enzymatic cascade of the RAS, 

Angiotensin I-converting enzyme (ACE) is a key enzyme as it catalyzes the conversion of 

angiotensin I to the potent vasoconstrictor angiotensin II and also inactivates the 

vasodilator bradykinin (Li et al., 2004).  
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Figure 3 - The renin-angiotensin system (Erdmann et al., 2008). 

 

Several synthetic ACE inhibitors such as captopril, enalaprilat, and lisonopril have 

been prescribed for treatment of hypertension, congestive heart failure, and diabetic 

neuropathy (Jimsheena and Gowda, 2010). However, their consumption is associated with 

various side effects including cough, skin rashes, hypotension, loss of taste, angioedema, 

reduced renal function and fetal abnormalities (Norris and FitzGerald, 2013). The side 

effects associated to synthetic ACE inhibitors and the high prevalence of hypertension has 

led scientists to search for natural and safer therapies for hypertension.  

The first exogenous ACE inhibitor was discovered in snake venom (Ondetti et al., 

1971), and since then a great number of ACEI peptides have been identified in numerous 

food proteins, such as milk, eggs, and plants (Table 2 and Table 3) currently constituting 

the most well known class of bioactive peptides (Iwaniak et al., 2014).  

ACEI peptides are generally short chain peptides, i.e., 2-12 amino acids in length, 

often carrying polar amino acid residues like proline. However, some larger inhibitory 

sequences have been identified in milk fermented with E. faecalis (Quiros et al., 2007), 

and L. casei Shirota (Rojas-Ronquillo et al., 2012), in koumiss (Chen et al., 2010), 

tuna(Lee et al., 2010), bonito(Hasan et al., 2006) and rotifer (Lee et al., 2009). Studies 

have also indicated that binding to ACE is strongly influenced by the substrate’s C-

terminal tripeptide sequence. Hydrophobic amino acid residues with aromatic or branched 
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side chains at each of the C-terminal tripeptide positions are common features among 

potent inhibitors. The presence of hydrophobic Pro residues at one or more positions in the 

C- terminal tripeptide region seems to positively influence a peptide’s ACE inhibitory 

activity. In general, the peptides showing higher activity against ACE have Tyr, Phe, Trp 

or Pro at their C-terminus (Norris and FitzGerald, 2013). The peptides TQVY from rice (Li 

et al., 2007), MRW from spinach (Yang et al., 2003), and YKYY from wakame (Suetsuna 

and Nakano, 2000) are some examples of this principle. 

  



 28 

Table 2 - ACEI peptides from plant sources 

Source	 Sequence	
ACE	inhibitory	

activity	
(IC50;	μM)	

Antihypertensive	
activity	(mm	Hg)	

Dose	
(mg/kg)	

Reference	

Chlorella	
vulgaris	 VECYGPNRPQF	 29.6	 Not	determined		 -	 (Sheih	 et	 al.,	

2009)	

soybean	 YLAGNQ	 14	 -17.5	 2	 (Chen	 et	 al.,	
2002)	

soybean	 VMDKPQG	 39	 -17.5	 2	 (Chen	 et	 al.,	
2002)	

soybean	 NWGPLV	 21	 Not	determined		 -	 (Kodera	 and	
Nio,	2006)	

soybean	 VLIVP	 1.69	 Not	determined		 -	 (Gouda	 et	
al.,	2006)	

rice	 TQVY	 18.2	 -40	 30	 (Li	 et	 al.,	
2007)	

spinach	 MRWRD	 2.1	 -13.5		 30	 (Yang	 et	 al.,	
2003)	

spinach	 MRW	 0.6	 -20		 20	 (Yang	 et	 al.,	
2003)	

spinach	 IAYKPAG	 4.2	 -15.0		 100	 (Yang	 et	 al.,	
2003)	

rapeseed	 RIY	 28	 -11.3		 7.5	 (Marczak	 et	
al.,	2003)	

Spirulina	
platensis	 IAPG	 11.40	 Not	determined		 -	

(Suetsuna	
and	 Chen,	
2001)	

mung	bean	 KLPAGTLF	 13.4	 Not	determined		 -	 (Li	 et	 al.,	
2006)	

wakame	 YNKL	 21	 -50	 50	
(Suetsuna	
and	 Nakano,	
2000)	

wakame	 KFYG	 90.5	 -50	 50	
(Suetsuna	
and	 Nakano,	
2000)	

wakame	 YKYY	 64.2	 -50	 50	
(Suetsuna	
and	 Nakano,	
2000)	

wakame	 AIYK	 213	 -50	 50	
(Suetsuna	
and	 Nakano,	
2000)	

peanut	 IETWNPNNQ	 72	 Not	determined	 -	
(Jimsheena	
and	 Gowda,	
2011)	
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Table 3 - ACEI peptides from animal sources 

Source	 Sequence	 ACE	inhibitory	
activity	
(IC50;	μM)	

Antihypertensive	
activity	(mm	Hg)	

Dose	
(mg/kg)	

Reference	

sea	cucumber	 MEGAQEAQGD	 15.9	 -19	 3.12	 (Zhao	 et	 al.,	
2009)	

fermented	milk	 LVYPFPGPIPNSLPQNIP
P	

5.2	 -10	 6	 (Quiros	 et	 al.,	
2007)	

milk	 LIWKL	 0.47	 -25.3		 10		 (Ruiz-Gimenez	
et	al.,	2012)	

whey	 KGYGGVSLPEW	 0.70	 Not	determined	 -	 (Tavares	 et	
al.,	2011)	

milk	 FALPQY	 4.3	 Not	determined	 -	 (Tauzin	 et	 al.,	
2002)	

koumiss	 YQDPRLGPTGELDPAT
QPIVAVHNPVIV	

14.53	 Not	determined	 -	 (Chen	 et	 al.,	
2010)	

tuna	 GDLGKTTTVSNWSPPK
YKDTP	

11.28	 Not	determined	 -	 (Lee	 et	 al.,	
2010)	

bonito	 TKTGRSAHVLSRYRPRA	 2.8	 Not	determined	 -	 (Hasan	 et	 al.,	
2006)	

bonito	 LKPNM	 2.4	 Not	determined	 -	 (Fujita	 and	
Kazunori,	
2006)	

cuttlefish	 VELYP	 5.22	 ︎-27.6	 10	 (Balti	 et	 al.,	
2015)	

rotifer	 DDTGHDFEDTGEAM	 9.64	 Not	determined	 -	 (Lee	 et	 al.,	
2009)	

egg	 YAEERYPIL	 4.7	 -31.6	 2	 (Miguel	 et	 al.,	
2005)	

egg	 RADHPFL	 6.2	 -34	 2	 (Miguel	 et	 al.,	
2005)	

porcine	 LGFPTTKTYFPHF	 4.92	 Not	determined	 -	 (Yu	 et	 al.,	
2006)	

 

ACEI peptides can be classed as inhibitor-type, substrate-type or prodrug-type 

based on changes in ACE inhibitory activity after hydrolysis of peptides by ACE. 

Inhibitor-type peptides are ACEI peptides whose activity is not significantly altered as the 

peptides are resistant to cleavage by ACE. Substrate-type ACE inhibitors show a decrease 

in ACE activity due to cleavage by ACE. Prodrug type refers to the conversion to potent 

ACE inhibitors following hydrolysis of larger peptide fragments by ACE itself. The 

resulting peptides tend to produce long-lasting hypotensive effects in vivo (Erdmann et al., 

2008). Interestingly, the study of ACEI peptides has revealed that they do not have 

significant effects on blood pressure in normotensive subjects, suggesting a convenient 

mechanism that avoids acute hypotensive effects. Based on this finding, it is hypothesized 

that ACEI peptides could be used in initial treatment of mildly hypertensive individuals or 

even as supplemental treatments (Rosales-Mendoza et al., 2013). 
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The activity of ACE inhibitory peptides is generally measured in terms of peptide 

concentration required to inhibit ACE activity by 50% (IC50). Since in vitro ACE inhibitory 

activity of peptides do not always conduce to antihypertensive activity, in vivo activity of 

these peptides has been generally assessed through tests in spontaneously hypertensive rats 

(SHRs). 

The most common method to produce and identify ACEI peptides is through 

enzymatic hydrolysis of food proteins with gastrointestinal enzymes such as pepsin and 

trypsin or with commercial proteases such as AlcalaseTM (Pihlanto and Mäkinen, 2013). 

ACEI peptides have also been produced with Lactobacillus, Lactococcus lactis and 

Enterococcus faecalis strains during milk fermentation (Quiros et al., 2007). These 

methods lead to a complex mixture of compounds, from which the isolation of the peptide 

of interest is truly difficult. The high cost, the low recovery and the low bioavailability of 

ACEI peptides that can be produced by in vitro enzymatic hydrolysis of their precursor 

proteins denote the need to develop new and alternative approaches for their production. 

The application of recombinant DNA technologies for the production of ACEI peptides 

appears to be a practical alternative to the conventional methods of ACEI peptides 

production. 

 

1.3.1 Heterologous production of ACEI peptides 

 

The heterologous production of ACEI peptides is a worthwhile approach for the 

production of these peptides in convenient formulations, at large-scale and low-cost. The 

implementation of heterologous production systems not only allows the production of 

ACEI peptides in convenient formulations but also the wide exploitation of beneficial 

therapeutic effects of these peptides (Rosales-Mendoza et al., 2013).  

In recent years, the application of recombinant DNA technologies for the 

production of ACEI peptides has gathered attention in the biotechnology community. The 

main approach that has been studied is the generation of multimer proteins containing 

tandem repeats of ACEI peptides, flanked by protease recognition sequences that allow the 

peptide release during gastrointestinal digestion. This methodology has been widely 

applied in Escherichia coli. 
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Park et al. (1998) explored the high-level expression of ACE inhibitor YG-1, which 

consists of ten amino acids derived from yeast glyceraldehyde-3-phosphate 

dehydrogenase, with 9, 18, or 27 tandem repeats of the YG-1 gene, a DNA linker encoding 

Pro-Gly-Arg was inserted between each repeating unit for the cleavage of multimers by 

clostripain. The multimers have been successfully expressed in E. coli at appropriate 

yields, ranging 15–67 % of total proteins, and active monomers have been rescued 

following digestion with clostripain. The recombinant YG-1 was identical to the natural 

YG-1 in molecular mass, amino acid sequence and ACE-inhibiting activity.  

An ACEI peptide from a milk casein hydrolysate, KVLPVP, was expressed in 

E.coli as a six tandem dotetracontapeptide linked with the specific cleavage site  (Arg-X) 

of clostripain, and fused to glutathione-S-transferase (GST) tag. The recombinant ACEI 

peptide fused with glutathione-S-transferase tag reached 24.6% of total intracellular 

protein. Following digestion with clostripain and carboxypeptidase B, the product was 

separated with ultrafiltration and reversed-phase HPLC, with an yield of 170 mg.l-1. The 

IC50 of the purified recombinant ACEI peptide was 4.6 µM. Remarkably, the oral 

administration of the recombinant ACEI peptide dramatically decreased the systolic blood 

pressure of spontaneously hypertensive rats in a dose-dependent manner (Liu et al., 2007).  

Rao et al. (2009) described the design and production of an antihypertensive 

peptide multimer (AHPM), as a precursor of 11 antihypertensive peptides (AHPs) joined 

by linkers corresponding to gastrointestinal proteases cleavage sites. The recombinant 

polypeptide AHPM fused with a glutathione S-transferase (GST) tag was expressed in E. 

coli mostly as inclusion body and reached the maximal production, 35% of total 

intracellular protein. After refolding and purification, simulated gastrointestinal digestion 

confirmed the release of high active fragments from the AHPM. 

The fragmented peptide B (PTHIKWGD), an ACEI peptide retrieved from thermal 

hydrolysates of tuna meat, has also been produced in E. coli in the form of a six tandem 

repeats. The multimer was produced in the form of inclusion bodies and subsequent acid 

hydrolysis released single-unit peptides through cleavage of the aspartyl-prolyl bond with 

yields of 105–115 mg.l-1 following reversed phase-HPLC analysis. Interestingly, the in 

vitro-derived biological activity of the recombinant multimer was proven to be 

indistinguishable to the natural peptide (Fida et al., 2009). Further studies have improved 

the expression level of the fragmented peptide B in E. coli and studied the antihypertensive 



 32 

activity of this peptide in SHRs. The improved expression level was achieved through the 

assembly of multimer genes of the peptide and expression as fusion proteins by 

constructing the vectors with the coding sequences of the single peptide and 2, 4 and 8 

tandem repeats. The results showed that the multimer genes were successfully expressed in 

the constructed systems, and their expression level improved significantly with increasing 

repeat degree. The peptide monomer was released from the fusion protein with a final yield 

of 218.9 mg.l-1. This peptide resulted in a significant decrease of systolic blood pressure by 

36.5 mmHg in SHRs at 4 h (Li et al., 2015).  

Furthermore, a DNA fragment encoding an ACEI peptide isolated from sake and 

sake lees, IYPR, was synthesized and expressed in E.coli as seven-copy tandem repeats, 

linked by the trypsin specific cleavage site. The recombinant protein was produced in the 

form of inclusion bodies and reached the maximal production of 31% of cellular protein. 

After purification by affinity chromatography, the recombinant protein was recovered with 

a high purity of about 90%. The ACEI peptide was released by cleavage of the multimer 

protein with trypsin and the IC50 value was 61 mg.l-1. The antihypertensive activity in 

spontaneously hypertensive rats (SHRs) was also investigated. Single oral administration 

of this peptide in 10-week old SHRs resulted in a significant reduction of systolic blood 

pressure to 50 mm Hg at 4 h (Huang et al., 2012).  

Recently, DNA-coding sequence for the GVYPHK peptide, an ACEI peptide 

recovered from a partially purified autolysate of bonito bowels, was linked by a trypsin 

cleavage site to form a ten-copy tandem and expressed in E. coli. Optimized expression 

was achieved with IPTG induction. The produced recombinant protein was purified by 

affinity chromatography to greater than 95% purity. The release of single ACEI peptides 

from the multimer protein was also observed after cleavage with trypsin. The in vivo 

results demonstrated that a single oral administration of the recombinant peptide in SHRs 

resulted in a significant reduction of systolic blood pressure at 2 h (Wang et al., 2015). 

In a contrasting approach, a DNA fragment encoding for a single ACEI peptide 

FFVAPFPEVFGK (known as CEI12) was expressed as a fusion with dihydrofolate 

reductase (DHFR) in E. coli with IPTG induction. However, the expression level of CEI12 

(fused with DHFR) was relatively low, 500 µg.l-1 (Lv et al., 2003). More recently, a DNA 

fragment encoding CEI12 has been expressed in Streptococcus thermophilus (Renye and 

Somkuti, 2008). Both E. coli and S. thermophilus systems require lysis of the host, 
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followed by expensive purification techniques, such as HPLC, to isolate the peptide for use 

as a functional food ingredient. In addition, E. coli models for expressing ACEI peptides 

have relied on the use of fusion proteins to protect against degradation by intracellular 

peptidases, thus enzymatic treatments are necessary to remove the protein tag and used 

non-food-grade inducer molecules, including IPTG, to optimize peptide production. A 

recent study (Renye and Somkuti, 2015), has attempted to solve these shortcomings by 

employing the nisin-induced expression of CEI12 in three lactic acid bacteria (LAB) strains 

Streptococcus thermophilus ST128, Lactococcus lactis subsp. lactis ML3 and 

Lactobacillus casei C2. A synthetic gene encoding for the CEI12 peptide was cloned within 

the pediocin operon, resulting in an in-frame translational fusion with the pediocin leader 

peptide, which directs the secretion of pediocin from LAB hosts. The recombinant operon 

was subsequently cloned immediately downstream of the nisA promoter to allow for 

inducible gene expression. The secretion of the recombinant peptide was observed both in 

L. lactis ML3 and L. casei C2. In this system, the use of a nisin as a ‘‘food-grade’’ inducer 

molecule, and generally-regarded-as-safe LAB species suggests its applicability for the 

production of functional food ingredients.  

 

1.3.1.1 Examples of engineered ACEI peptides in plants  

 

Plants are a natural source of bioactive peptides, and ACEI peptides are no 

exception (Table 2). By allowing the insertion of foreign genes into plants and/or the 

overexpression of target genes, recombinant DNA technology and plant transformation 

technologies have the potential to expand the functional properties of food crops and/or 

edible plants.  

In plants, two main approaches have been applied for the production of ACEI 

peptides. The overexpression of proteins that carry these peptides or production of 

chimeric configurations containing several repeats of desired sequences to promote 

beneficial health effects of consuming functional foods derived from these genetically 

engineered crops. Another approach involves the modification of some storage proteins to 

produce chimeric proteins carrying ACEI peptides (Rosales-Mendoza et al., 2013).  
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1.3.1.1.1 Rice 

 

Transgenic rice plants that accumulate novokinin (RPLKPW), a potent anti-

hypertensive peptide designed according to the structure of ovokinin (2–7) (RADHPF), as 

a fusion with the rice storage protein glutelin have been generated. The engineered peptide 

is expressed under the control of endosperm-specific glutelin promoters and specifically 

accumulates in seeds. Oral administration of either the RPLKPW-glutelin fraction or 

transgenic rice seeds to SHRs significantly reduced systolic blood pressures, suggesting 

the possible application of transgenic rice seed as a nutraceutical delivery system and 

specifically for administration of antihypertensive peptides (Yang et al., 2006).  

Recently, (Wakasa et al., 2011) attempted the generation of transgenic rice seeds 

that would accumulate higher amounts of novokinin peptide by expressing 10 or 18 

tandemly repeated novokinin sequences with the KDEL endoplasmic reticulum-retention 

signal at the C terminus and using the glutelin promoter along with its signal peptide. 

Although the chimeric protein was unexpectedly located in the nucleolus and the 

accumulation was low, a significant antihypertensive activity was detected after a single 

oral dose to SHRs. More importantly, this effect was observed over a relatively longer 

durations of 5-week intervals at doses as low as 0.0625 g transgenic seeds per kg.  

1.3.1.1.2 Soybean 

 

Soybean [Glycine max (L.) Merr.] is an attractive option for the production of 

ACEI peptides given that soybean seeds contain a large amount of total protein. Therefore, 

there has been an effort to generate soybean lines with improved ACEI properties 

foreseeing the creation of novel functional foods.  

Matoba et al. (2001), introduced Novokinin (RPLKPW) into homologous 

sequences of a soybean β-conglycinin α’ subunit by site-directed mutagenesis. The 

sequence encoding this peptide was introduced into three homologous sites in the gene for 

soybean β-conglycinin α’ subunit. The native α’ subunit as well as the modified, 

RPLKPW-containing α’ subunit were expressed in Escherichia coli, recovered from the 

soluble fraction and then purified by ion-exchange chromatography. The RPLKPW peptide 

was released from recombinant RPLKPW-containing α’ subunit after in vitro digestion by 

trypsin and chymotrypsin. Moreover, the undigested RPLKPW-containing α’ subunit 
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orally administered at a dose of 10 mg.kg-1 exerted an antihypertensive effect in SHRs, 

unlike the native α’ subunit. This report introduced for the first time a physiologically 

active peptide into a food protein by site-directed mutagenesis and demonstrated that this 

peptide had in vivo functionality even at a low dose. Moreover, and founded on this first 

prospects from an E. coli expressed protein, the muted β-conglycinin α’ subunit carrying 

Novokinin repeats was expressed in soybean. This chimeric protein accumulated at levels 

of up to 0.2 % of extracted protein from transgenic soybean seeds (Nishizawa et al., 2008). 

Still, the levels of expression were too low and it was not possible to assess the in vivo 

effects of these soybean seeds.  

Novokinin has been also expressed in transgenic soybean seeds in a fusion form 

along with a β-conglycinin α’ subunit. Four novokinin sequences were introduced, and the 

fusion protein with 4 tandem repeat of novokinin ligated to β-conglycinin α’ subunit 

accounted for 0.5 % of total soluble protein and 5 % of the total β-conglycinin α’ subunit 

in transgenic soybean seeds. Interestingly, a reduced systolic blood pressure was observed 

in SHRs after administering a dose of 0.15 g.kg-1 of protein extracts. A similar effect was 

attained following administration of a 0.25 g.kg-1 dose of defatted flour. Thus, it was 

concluded that this chimeric protein produced in soybean possessed an anti-hypertensive 

activity (Yamada et al., 2008). 

Additionally, a synthetic gene of His-His-Leu (HHL), an ACEI peptide derived 

from a Korean soybean paste, was tandemly multimerized to a 40-mer and ligated with 

ubiquitin as a fusion gene (UH40). The recombinant UH40 protein was expressed in E. 

coli, and purified at yields of 17.3 mg.l-1. Following digestion with leucine 

aminopeptidase, the 405-Da HHL monomer was recovered by reverse-phase high-

performance liquid chromatography (HPLC) with an average yield of 6.2 mg.l-1. MALDI-

TOF mass spectrometry, glutamine-TOF mass spectrometry, N-terminal sequencing, and 

measurement of ACE inhibiting activity confirmed that the resulting peptide was HHL 

(Jeong et al., 2007). The expression prospect of this chimeric protein in soybean has yet to 

be assessed.  

1.3.1.1.3 Tomato and tobacco 

 

A modified version of amarantin, the main seed storage protein of Amaranthus 

hypochondriacus, carrying four tandem repeats of the ACEI dipeptide Val-Tyr into the 
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acidic-subunit of amarantin, was expressed in cell suspension cultures of Nicotiana 

tabacum L. NT1. Protein hydrolysate of transgenic calli showed high levels of inhibition 

of the angiotensin converting enzyme, with an IC50 value of 3.5 µg.ml-1 and 10-fold lower 

than that of protein extracts of wild-type cells, with an IC50 of 29.0 µg.ml-1 (Santos-

Ballardo et al., 2013). This was the first time that a chimeric protein comprising an ACEI 

peptide was produced in plant cell suspension cultures. This modified version of 

amarantin, was also expressed in the fruit of transgenic tomato plants. The expressed 

recombinant protein was stably accumulated at levels up to 12.71 % with respect to total 

protein content of transgenic fruits. A remarkable change in total protein content (5–22 % 

increase) of transgenic tomato fruits compared to non-transformed samples was stated. 

Protein hydrolysates from transgenic tomato fruits showed in vitro inhibition of ACE, with 

IC50 values that ranged from 0.376 to 3.241 µg.ml-1; this represented an increase of up to 

13-fold in the inhibitory activity compared with the protein hydrolysates of non-

transformed fruits. These two results suggest the possible application of tobacco plant cell 

suspension cultures and transgenic tomato fruits for massive production of this engineered 

version of amarantin, which could be especially used as an alternative hypertension 

therapy (Germán-Báez et al., 2014). 

 

1.3.1.1.4 Amaranth 

 

Although amaranth has not been genetically modified to produce ACEI peptides, 

the feasibility of developing a modified an amarantin acidic subunit has been widely 

assessed (Yang et al., 2006; Luna-Suárez et al., 2010; Castro-Martínez et al., 2012; 

Medina-Godoy et al., 2013; Morales-Camacho et al., 2013; Santos-Ballardo et al., 2013; 

Germán-Báez et al., 2014). 

Recently, the in vivo effect of an E.coli modified amarantin protein, four units of 

Val–Tyr dipeptides (VY) in tandem and one of Ile–Pro–Pro tripeptide (IPP) incorporated 

in the amarantin acidic subunit (AMC3), was evaluated in spontaneously hypertensive rats 

(SHR) by one time oral administration experiments. This study showed that enzymatic 

hydrolysates of AMC3 containing ACEI peptides (4xVY and IPP) sequences had 
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significant antihypertensive action by oral administration in spontaneously hypertensive 

rats (SHR). (Medina-Godoy et al., 2013) 

The positive reports of amarantin expression in E.coli (Luna-Suárez et al., 2010; 

Medina-Godoy et al., 2013; Morales-Camacho et al., 2013) along with the sustained 

expression of amarantin-modified proteins in tomato (Germán-Báez et al., 2014) and 

tobacco (Santos-Ballardo et al., 2013) prospect the successful production of ACEI peptide 

fusion proteins in amaranth. 
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2 Aims	

 

The principal aim of this work is the production of ACEI peptides in two emergent 

plant hosts as an alternative therapy for hypertension. In order to achieve this global aim 

the following specific objectives were defined: 

• Selection of ACEI peptides for plant transformation purposes  

• Construction of plant transformation vectors with the coding sequence for ACEI 

peptides 

• Establishment of a micropropagation scheme for in vitro maintenance of lettuce cv. 

Great Lakes 

• Verify expression construct integrity using transient expression in lettuce  

• Stably transform M. truncatula and lettuce plants with vectors containing the 

sequence for the ACEI peptides 
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3 Methods	

 

3.1 Construction	 of	 plant	 expression	 vectors	 containing	 ACEI	 peptides	

synthetic	genes	

3.1.1 ACEI peptide selection for plant transformation purposes 

 

The selection of ACEI peptides was centered in several criteria, the ACE inhibitory 

activity, the size of the peptide, resistance/sensibility to gastrointestinal enzymes and 

confirmed antihypertensive activity in vivo. Based on those criteria, four ACEI peptides 

were chosen for plant transformation purposes (Table 4): 

1) The first peptide is a nonadecapeptide released during milk fermentation by 

Enterococcus faecalis (Quiros et al., 2007). The 58-76 fragment of β-casein, 

which was proven to have a low IC50 value (5.2 µM) and also demonstrated 

antihypertensive activity when orally administered to spontaneously 

hypertensive rats (SHRs); 

2) The second peptide is an undecapeptide isolated from the pepsin hydrolysate of 

algae protein waste, a mass-produced industrial by-product of an algae essence 

from microalgae, Chlorella vulgaris (Sheih et al., 2009). This peptide exhibited 

a low IC50 value (29.6 µM) and was proven to retain the ACE inhibitory 

activity after in vitro gastrointestinal enzyme digestion. Resistance to pH and 

temperature was also assessed, with the peptide maintaining its ACE inhibitory 

activity in the pH range of 2-10 and temperatures of 40-100ºC. 

3) The third peptide is a decapeptide isolated from Acaudina molpadioidea (sea 

cucumber) hydrolysate, which inhibitory activity was intensified by 3.5 times 

from IC50 15.9 to IC50 4.5 µM after in vitro incubation with gastrointestinal 

enzymes. This peptide was also proven to have antihypertensive activity in 

SHRs (Zhao et al., 2009). 

4) Lastly, the forth peptide is a tripeptide (MRW) isolated from the pepsin-

pancreatin digest of the large subunit of spinach RuBisCO (Yang et al., 2003). 
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This peptide has been shown to have a low IC50 value (0.6 µM) and its 

antihypertensive activity in SHRs has also been confirmed. 

 

Table 4 - ACEI peptides chosen for plant transformation  

Source Sequence ACE 
inhibitory 
activity 
(IC50; µM) 

Antihypertensive 
 activity (mm 
Hg) 

Dose 
(mg/kg)  

Reference 

fermented 
milk 

LVYPFPGPIPNSL
PQNIPP 

5.2 -10 6 (Quiros et 
al., 2007) 

sea cucumber MEGAQEAQGD 15.9 -19 3.12 (Zhao et 
al., 2009) 

spinach MRW 0.6 -20  20 (Yang et 
al., 2003) 

Chlorella 
vulgaris 

VECYGPNRPQF 29.6 Not determined  - (Sheih et 
al., 2009) 

 

 

3.1.2 Design of the ACEI peptides synthetic genes and plant expression vectors 

construction  

 

Five synthetic genes with optimized codon usage for lettuce and M. truncatula and 

designated ACEI_FMK, ACEI_SEA, ACEI_SPI, ACEI_CHL and ACEI_CHLTP were 

designed based on the ACEI peptides abovementioned. All genes contain 5’ and 3’ 

flanking regions consisting, respectively, of an NdeI restriction site and an incomplete SalI 

restriction site to facilitate cloning and restriction analysis. The ACEI peptides coding 

sequences of ACEI_FMK and ACEI_CHL and its 5’ flanking regions were joined by a 

linker of two amino acids corresponding to a cleavage site of trypsin. The gene ACEI_SPI 

has an eight-tandem repeat of the coding sequence of peptide MRW. The prospect of a 

tandem construction was evaluated using the peptidecutter tool of ExPASy 

(http://www.expasy.org/) for peptide cleavage sites prediction. The gene ACEI_CHLTP 

contains a coding sequence of a 57 amino acid N-terminus transit peptide from the tobacco 

small subunit RuBisCo for plant chloroplast targeting (Menassa et al., 2004). A 6× His 

tag® was added to the C-terminus of all synthetic genes for purification and detection of 

the recombinant peptides. Four synthetic genes (ACEI_FMK, ACEI_SEA, ACEI_SPI and 

ACEI_CHLTP) were synthesized by NZYTech (Lisboa, Portugal). The synthetic genes 



 43 

ACEI_FMK and ACEI_CHLTP were cloned by NZYTech in pUC57 by EcoRV and the 

synthetic genes ACEI_SEA and ACEI_SPI were cloned in pUC57 by EcoRI/HindIII.  

The purified PCR-amplified ACEI peptides synthetic genes were cloned into the 

pRI 201-AN (TAKARA BIO, Japan) (Figure 4) using the In-Fusion HD Cloning Kit 

according to the manufacturer’s instructions.  

 
Figure 4 - pRI-201 AN vector map and cloning sites (www.takara-bio.com). 

 

The plasmid pRI 201-AN DNA (TAKARA BIO, Japan) was designed for 

expressing target genes in transformed plant cells. This plasmid includes an alcohol 

dehydrogenase (ADH) gene-derived 5’ untranslated region (5’ -UTR) (translational 

enhancer region) downstream of the 35S promoter from cauliflower mosaic virus (CaMV) 

and a NOS terminator. pRI 201-AN DNA is a binary vector for plant transformation and 

has a mutant-type replication origin (Ri ori) from the Agrobacterium rhizogenes Ri 

plasmid that also allows the replication in A. tumefaciens. This vector has both a 

replication origin (ColE1 ori) derived from pUC plasmids, which allows maintenance at a 

high-copy-number in E. coli, and a multicloning site located near the right border (RB) of 
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T-DNA relative to the plant selection marker (NPT II), which allows stable integration of 

the target gene into a plant chromosome. 

3.1.2.1 Preparation of DNA fragments for cloning 

 

• Preparation of linearized vector by restriction digestion 

  

For the construction of the plant expression vectors pRI 201- AN was digested 

with restriction enzymes SalI and NdeI to generate a linearized vector. A double digest 

was done overnight at 37ºC with 1 U of each restriction enzyme and 1000 ng of vector 

DNA. The linearized vector was isolated by electrophoresis on an agarose gel and 

purified from the agarose using the Zymoclean™ Gel DNA Recovery Kit (Zymo 

Research, USA) according to manufacturer’s instructions. To test for complete 

digestion one aliquot (1-2µl) of the digested plasmid DNA was subjected to an agarose 

gel electrophoresis.  

 

• PCR amplification of ACEI peptides synthetic genes 

 

The ACEI peptides synthetic genes were PCR-amplified from the pUC57 

vectors using the CloneAmp HiFi PCR Premix (Clontech Laboratories Inc., USA). The 

ACEI peptides synthetic genes were PCR-amplified from the pUC57 vectors using 

specific primers (Table 5). The primers were designed in order to generate PCR 

products containing 15 bp sequences at 5’- and 3’-ends that overlap with the 3’- and 5’-

ends of the linearized vector pRI 201-AN DNA. The 5’ primers were specific for each 

synthetic gene. Since the C-terminus was the same for all genes, the 3’ primer was 

universal (Table 5). 
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Table 5 - Primers used to amplify the ACEI peptides synthetic genes from pUC57 
vectors 

Primer Label Sequence 

ACEI_FMK PRIMER CACTGTTGATACATATGAAATTGGTTTATC 

ACEI_SEA PRIMER CACTGTTGATACATATGGAAGGTGCTC 

ACEI_SPI PRIMER CACTGTTGATACATATGAGATGGATGAG 

ACEI_CHLTP PRIMER CACTGTTGATACATATGGCTTCTTCTGT 

UNIV PRIMER ATTCAGAATTGTCGATCAATGATGATG 

 

PCR conditions were 95ºC/ 2 min for denaturation, followed by 35 cycles of 

98ºC/ 10s for denaturation, 55ºC/ 15 s for annealing and 72ºC/ 5 s for extension and 

72ºC 5 min for final extension. The target fragments were isolated by agarose gel 

electrophoresis and purified from the agarose using the Zymoclean™ Gel DNA 

Recovery Kit (Zymo Research, Irvine, USA) according to manufacturer’s instructions. 

 

3.1.2.2 In-Fusion® Cloning methodology 

 

The In-Fusion® HD cloning system (scheme represented in Figure 5) allows fast 

and directional cloning of one or more fragments of DNA into any vector. The foundation 

of the In-Fusion® HD cloning system is the In-Fusion HD Enzyme, which blends DNA 

fragments e.g. PCR-generated sequences of a target gene and linearized vectors, efficiently 

and precisely by recognizing a 15 bp overlap at their ends. In-Fusion® designed primers 

must contain 15 bases that are homologous to 15 bases at one end of the linearized vector 

at the 5’	end	and	a	sequence that is specific to the target gene at the 3’-end.  
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Figure 5 - Schematic representation of the In-Fusion® HD Cloning System (www.clontech.com).  

 

In this work, the vector pRI-201 AN was linearized by double digestion with the 

restriction enzymes NdeI and SalI. The ACEI peptide synthetic genes were amplified using 

primers with the following features: the 5’ -primer had 15 bases immediately upstream of 
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the NdeI site on the vector at its 5’ -end, and the 3’ -primer had 15 bases immediately 

downstream of the Sal I site on the vector at its 5’– end. 

Once the linearized vector and the purified target synthetic genes with 15 bp 

extensions complementary to the vector ends were obtained, we proceeded to the set up of 

the In-Fusion® Cloning reaction. Positive and negative control reactions were performed 

in parallel with the In-Fusion cloning reactions of the target synthetic genes to verify that 

the system was working properly. The reactions conditions are summarized in Table 6. All 

cloning reactions were incubated at 50ºC for 15 min. Finally, DH5α™ E.coli competent 

cells were transformed with the reaction mixture.  

 

Table 6 - Recommended In-Fusion® Reactions for Purified Fragments  

Reaction Component Cloning Reaction Negative Control 
Reaction 

Positive Control 
Reaction 

Purified PCR 
fragment 

100-200 ng* - 2 µl of 2 kb control 
insert 

Linearized vector 50-200 ng** 1 µl 1 µl of pUC19 control 
vector 

5X In-Fusion HD 
Enzyme Premix 

2 µl 2 µl 2 µl 

Deionized Water to 10 µl to 10 µl to 10 µl 
*<0.5 kb: 10-50ng,0.5 to 10 kb: 50-100 ng, >10 kb: 50-200 ng 
**<10 kb: 50-100 ng, >10 kb: 50-200 ng 

 

3.1.3 Visualization, detection and quantification of Nucleic Acids  

 

Agarose gels were comprised of 0.8-2.0 % agarose (Merck, USA), 1X TBE (0.45M 

Tris, 10mM EDTA, 0.45M Boric Acid) and 100X SYBR Safe® (Invitrogen, USA). PCR 

products were also visualized by 12% polyacrylamide gel electrophoresis. 

All images from nucleic acid gels were taken using the system/software Gel Doc 

(BioRad, USA). 

When necessary, e.g. after extraction or purification, quantification of Nucleic 

Acids was performed using the Nanodrop 2000 C spectrophotometer (Thermo Fisher 

Scientific, USA).  
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3.1.4 E. coli strains and culture media  

 

E. coli DH5α™ competent cells were the host for the plasmids used in the In-

Fusion® HD cloning steps. DH5α™ competent cells harboring the constructed plasmids 

were grown in Luria Broth rich medium (LB: 10 g.l-1 tryptone, 5g.l-1 NaCl and 5 g.l-1 yeast 

extract) or LB solidified with 15 g.l-1 microagar (LA) (Duchefa, The Netherlands). 

Kanamycin (50 mg.l-1) was added to the media for selection. 

 

3.1.5 Transformation of E.coli DH5α™ with plasmid DNA 

3.1.5.1 Preparation of DH5α™Competent Cells 

 

Preparation of DH5α™ competent cells was done using the CaCl2 method 

described in Sambrook et al. (1989) with some modifications (Duque 2010). Briefly, a 

single colony of DH5α™ from a fresh LA plate was inoculated in 5 ml of LB medium and 

grown overnight at 37ºC under vigorous shaking (200 rpm). One ml of this culture was 

inoculated in 100 ml of LB medium and incubated at 37ºC under vigorous shaking until 

reaching an OD 600nm of 0.6 (usually for 3-4 hours). Tubes were then centrifuged for 10 

minutes at 5ºC. Supernatant was discarded and the pellet was resuspended in 20 ml of ice-

cold 100mM CaCl2. Cell suspensions were maintained on ice for 1 hour and then, cells 

were centrifuged again. The pellet was resuspended in 2.5 ml of ice-cold 100mM CaCl2 

and 0.5 ml of sterile 80% Glycerol was added to each tube. Glycerol stocks of competent 

cells were flash-frozen in liquid nitrogen and stored at –80ºC, in 200 μl aliquots. 

 

3.1.5.2 Transformation of DH5α™ Competent Cells 

 

Aliquots of 5 μl of In-Fusion reaction mixtures were added to 200 μl of competent 

cells according to Duque (2010). These bacterial suspensions were incubated on ice for 1h, 

minimum, to allow the adsorption of plasmids to bacterial cell wall. Subsequently, cells 

were subjected to 42ºC for 90 sec (heat shock), followed by the addition of 800 μl of SOC 

medium (5 g.l-1 Yeast Extract, 20 g.l-1 Tryptone, 0.584 g.l-1 NaCl, 0.186 g.l-1 KCl, 0.952 

g.l-1 MgCl2, 1.2 g.l-1 MgSO4 and 20 mM Glucose) and incubation for 1h at 37ºC, with 
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gentle shaking (150 rpm). Cells were pelleted by centrifugation (8000 rpm, 1 min) and 800 

μl of supernatant was removed. Cells were resuspended in the remaining medium (200 μl) 

and spread onto plates containing LA with the appropriate selection antibiotic. Plates were 

incubated overnight at 37ºC. 

 

3.1.6 Selection of recombinant plasmids  

3.1.6.1 PCR Amplification 

 

Colony PCR was performed to attest the presence of the genes of interest in the 

transformants. Colony replicates were prepared by streak plating in LA plates and colonies 

were pricked with the help of a sterile toothpick. The PCR screening of transformants 

containing the constructs pRI-201-ACEI_FMK, pRI-201-ACEI_SEA and pRI-201-

ACEI_CHLTP was performed using GoTaq® G2 Flexi DNA Polymerase (Promega, USA) 

and the synthetic gene specific primers previously enunciated. PCR conditions were 95ºC/ 

2 min for denaturation, followed by 35 cycles of 94ºC/ 10s for denaturation, 68ºC/ 1 min 

for annealing and 72ºC/ 20 s for extension and 72ºC 5 min for final extension. 

Additionally, PCR screening of transformants containing the construct pRI-201-ACEI_SPI 

was performed using the CloneAmp HiFi PCR Premix (Clontech Laboratories Inc., USA) 

and the synthetic gene specific primers previously enunciated. PCR conditions were 95ºC/ 

2 min for denaturation, followed by 35 cycles of 98ºC/ 10s for denaturation, 68ºC/ 15 s for 

annealing and 72ºC/ 5 s for extension and 72ºC 5 min for final extension. PCR products 

were visualized by 2 % agarose gel electrophoresis and 12% polyacrylamide gel 

electrophoresis with an Acrylamide/Bisacrylamide (VWR, USA) ratio of 29:1. 

  

3.1.7 Extraction of Plasmid DNA  

 

Bacteria harboring the desired plasmids were inoculated in LA (with appropriate 

antibiotic supplementation) and grown over-night at 37ºC in order to obtain isolated 

colonies. Single colonies were isolated and inoculated in 2 ml of LB with the same 

antibiotic supplementation in 15 ml tubes. Cultures were grown overnight at 37ºC under 

shaking (220rpm). The bacterial suspensions were centrifuged at 3500 rpm for 5 min at 

room temperature and supernatant discarded.  
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The QIAprep ® Spin Miniprep Kit (QIAGEN, Germany) was used for small-scale 

extraction of plasmid DNA (miniprep). 

3.2 Agrobacterium-mediated	transformation	of	lettuce	and	M.	truncatula	

with	 plant	 expression	 vectors	 containing	 ACEI	 peptides	 synthetic	

genes	

 

3.2.1 Plant material and culture media 

 

Lettuce cv. Great Lakes and M9-10a genotype of M. truncatula cv. Jemalong were 

used in this study. The M9-10a genotype was selected due to its high embryogenic 

potential (Araújo et al., 2004).  

Lettuce seeds were surface-sterilized with 50% (v/v) Domestos (commercial bleach 

with detergent) for 5-10 min, and washed four times in distilled water. The sterilized seeds 

were germinated on petri dishes containing MS010A - MS (Murashige and Skoog, 1962) 

basal salts and vitamins, 1% (w/v) sucrose, 0.8% (w/v) agar (Micro-agar, Duchefa, The 

Netherlands) under light conditions at 24ºC/22ºC (Curtis, 2006). Lettuce and M9-10a 

plants were maintained in in vitro culture conditions and micropropagated in growth-

regulator-free medium: MS030A – MS basal salts and vitamins, 3% (w/v) sucrose, 0.8% 

(w/v) agar (Micro-agar, Duchefa, The Netherlands). To maintain and propagate the plants, 

1,5-2 cm explants (with two axillary buds) were subcultured to fresh MS030A every 

month. 

Lettuce shoot organogenesis was induced from calli. Calli cultures were initiated 

from 1,5-2 cm explants (with two axillary buds) and leaves of micropropagated lettuce 

using two different concentrations of growth regulators. MS basal salts and vitamins, 3% 

(w/v) sucrose, 0.8% (w/v) agar was supplemented with 0.5 mg l−1 of benzyl adenine (BA) 

and 0.1 mg l−1 naphthalene acetic acid (NAA) and with 0.5 mg l−1 BA and 0.1 mg l−1 

indole butyric acid (IBA). Shoots regenerated from calli were excised when they were 2-3 

cm put onto growth-regulator-free medium, MS030A, for rooting. Thereafter, maintenance 

and multiplication of shoots was achieved in the absence of growth regulators.  

Indirect somatic embryogenesis of M9-10 a plants was induced in an embryo 

induction medium: EIM – MS basal salts and vitamins, 3% (w/v) sucrose, 0.1mg l−1 of 2,4-
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dichlorophenoxyacetic acid (2,4-D), 0.2 mg l−1 of zeatin, 0.2% (w/v) gelrite (Duchefa, The 

Netherlands) (Araújo et al., 2004). After 21 days in EIM, embryogenic calli were 

transferred to an embryo proliferation medium: EPM – MS basal salts and vitamins, 3% 

(w/v) sucrose, 0.2% (w/v) gelrite. Embryos ready to be isolated were transferred to an 

embryo conversion medium (ECM= MS030A). The pH of all media was adjusted to 5.8 

before autoclaving (20 min, 121ºC). Growth regulators were filter-sterilized through 0.22-

µm filters (Gelman Sciences, Michigan, USA) and added before dispensing the medium in 

plastic Petri dishes (100 mm ø). All cultures were kept in a growth chamber 

(PHYTOTRON EDPA 700, ARALAB) with 16-h photoperiod of 100 µmol.m-2.s-1 applied 

as cool white fluorescent light and a day/night temperature of 24 ºC/22 ºC.  

 

3.2.2 Agrobacterium strains and culture media  

 

A. tumefaciens disarmed succinamopine strain EHA105 (Hood et al., 1993) was 

used in all plant transformation experiments. Agrobacterium colonies were grown in LB 

solidified with 15 g.l-1 microagar (LA) (Duchefa, The Netherlands) and liquid cultures 

were prepared in Yeast Extract Broth (YEB) medium (5 g.l-1 tryptone, 1 g.l-1 yeast extract, 

5 g.l-1 nutrient broth, 5 g.l-1 sucrose, 0.49 g.l-1 MgSO4·7H2O, pH 7.2); with the addition of 

rifampicin (50 mg.l-1). 

 

3.2.3 Transformation of A. tumefaciens (strain EHA105) 

3.2.3.1 Preparation of EHA105 competent cells 

 

Preparation of freeze/thaw competent EHA105 cells was done based on Wise et al. 

(2006). Briefly, a single colony of EHA105 from a fresh LA plate was inoculated in 2 ml 

of YEB medium supplemented with 50 mg.l-1 rifampicin and grown overnight at 25ºC 

under vigorous shaking (200 rpm). 

The 2 ml culture was inoculated in 50 ml of fresh YEB antibiotic supplemented 

medium in a 250 ml flask and left under shaking until cells reached an O.D600nm between 

0.5 and 1.0. Cells were pelleted by centrifuging at 4ºC for 8 to 10 min at 10 000 g and the 

supernatant discarded. The pellet was resuspended in 5 ml of cold 20 mM CaCl2 and the 

cells were centrifuged again. The supernatant was discarded and cells resupended in 1ml 
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cold 20 mM CaCl2. Aliquots of 100-150 µl of the cell solution were distributed in chilled 

2.0 ml tubes, froze in liquid nitrogen and stored at –80ºC for future use. 

3.2.3.2 Transformation of EHA105 competent cells  

 

The plasmids containing the ACEI peptides synthetic genes were mobilized to 

competent cells of Agrobacterium by the freeze-thaw method according to Wise et al. 

(2006). Briefly, 1 µg of plasmid DNA was added to 100-150 µl of frozen competent cells. 

The cell/DNA mix was frozen in liquid nitrogen for about 5 min. After, the frozen 

cell/DNA mixture was thawed for 5-10 min at room temperature and the cells transferred 

to a culture tube containing 2 ml of YEB medium. Agrobacterium cells were incubated at 

25 ºC for 2 to 4 h under vigorous shaking (200 rpm). The cells were pelleted by 

centrifuging at high speed for 2 min and resuspended in 100 µl of YEB medium 

supplemented with 50 mg.l-1 rifampicin and 50 mg.l-1 kanamycin. This cell suspension was 

plated on solid YEB plates with 15 g.l-1 agar containing 50 mg.l-1 rifampicin and 50 mg.l-1 

kanamycin for selection of transformants. 

 

3.2.3.3 Screening of EHA105 transformants 

 

Colony PCR was used for screening of transformed EHA105 colonies. 

Confirmation of the presence of the plasmid constructs was performed by PCR 

amplification of the target synthetic genes as described in section 3.1.6.1.  

 

3.2.3.4 Preparation of A. tumefaciens for transformation 

 

For transient expression of lettuce and M9-10a, A. tumefaciens EHA105 was 

prepared as described in Negrouk et al. (2005) with some modifications. A single colony 

of A. tumefaciens strain EHA105 harboring the appropriate plasmid was inoculated in 2 ml 

of YEB medium supplemented with 50 mg.l-1 rifampicin and 50 mg.l-1 kanamycin and 

grown overnight at 25ºC. For final scale-up, initial overnight cultures were diluted 1:50 in 

the same YEB medium supplemented with antibiotics and 20 ︎μM of acetosyringone and 

allowed to grow 18–24 h to an OD600 nm of about 2.4. The cell cultures were centrifuged 
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10 min at 6000 rpm, resuspended to an OD600nm of 0.6 in liquid MS medium with 30 g.l-1 

sucrose, 100 µM acetosyringone and 100 µg.ml-1 2,4-D and incubated for 1 h at 22ºC to 

activate the Agrobacterium virulence mechanisms. 

For stable transformation of lettuce and M9-10a plants, A. tumefaciens EHA105 

was prepared as described for transient expression with modifications in the final 

OD600nm and compositions of induction media. The cell cultures were resuspended to an 

OD600nm of 1.5-1.6 in liquid MS medium with 30 g.l-1 sucrose, 100 µM acetosyringone 

and 0.5 µg.ml-1 BA and 0.1 µg.ml-1 NAA for lettuce stable transformation and in liquid 

EIM supplemented with 100 µM acetosyringone for M9-10a stable transformation.  

 

3.2.4 Transient expression studies 

 

Transient expression studies were carried out in lettuce. A. tumefaciens EHA105 

harboring the plasmid construct pMP2482 (Quaedvlieg et al., 1998) was used to rapidly 

assess the efficiency of the transient expression protocol in lettuce. The plasmid pMP2482 

contains fused coding sequences for GFP and GUS under the control of the same promoter 

and the detection of the resulting GUS/GFP protein product is strictly related with the gene 

expression owing to the presence of an intron. The production of the GUS protein product 

was readily detected with the histochemical GUS staining protocol.  

Transient expression studies were also executed with A. tumefaciens EHA105 

harboring the plasmid constructs pRI-ACEI_FMK, pRI-ACEI_SEA, pRI-ACEI_SPI and 

pRI-ACEI_CHLTP. Further, a Reverse transcription-PCR assay was done to verify gene 

integrity within plasmid constructs for plant transformation.  

Leaves from 1-month-old lettuce (Figure 6 A) and M9-10a plants grown on MS 

medium were cut with a scalpel blade (Figure 6 B and C), placed in the Agrobacterium 

tumefaciens strain EHA105 suspensions harboring the pMP2482 and the pRI-ACEI 

constructs (Figure 6 D) and vacuum infiltrated for 15 min at 0.6 atm pressure (Figure 6 E). 

The Agrobacterium infected leaves were put onto sterile filter paper soaked with MS 

medium supplemented with 100 µM acetosyringone (Figure 6 F) for a co-cultivation 

period of 3 days at 24 ºC in the dark (Figure 6 G). As negative control, leaves of lettuce 

and M9-10a plants were also subjected to the same treatment, without recombinant A. 

tumefaciens.  
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Figure 6 – Transient expression protocol for lettuce.  
A - 1-month old leaves from in vitro cultured lettuce; B – Scalpel blade immersion in Agrobacterium 
suspension; C – Wounding of lettuce; D – Placement of explants in A. tumefaciens strain EHA105 
suspensions; E – Vacuum infiltration with EHA105 suspensions (15 min, 0.6 atm); F - Agrobacterium 
infected leaves placed onto sterile filter paper soaked with MS medium supplemented with 100 µM 
acetosyringone; G – Co-culture with EHA105 (3 d, 24 ºC, dark conditions). 

3.2.4.1 GUS histochemical assay 

 

A histochemical assay was performed using 5-bromo-4-chloro-3-indolyl-β -D -

glucuronide acid (XGlcA, Duchefa, The Netherlands) as substrate to detect β –

glucuronidase (GUS) activity essentially as described by Jefferson (1987). X-GlcA was 

dissolved with dimethylformamide (approximately 10 µl per mg of X-GlcA) and directly 

prepared in 50 mM sodium phosphate buffer pH 7.0. The assay buffer was prepared with 

1mM X-GlcA in 50 mM sodium phosphate buffer pH 7.0; 10mM EDTA and 0.1% (v/v) 

Triton X-100. Leaflets were covered with the assay buffer and the reaction incubated at 

37ºC in a wet chamber for 24h. Excess chlorophyll was removed from stained explants 

with 70% (v/v) ethanol. 
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3.2.4.2 Total RNA extraction 

 

Total RNA was isolated from leaves infected with recombinant Agrobacterium 

containing the aforementioned plasmids and from non-infected leaves. Frozen leave tissue 

(100-150 mg) of lettuce and M9-10a plants was homogenized in frozen RNAse free 

mortals and total RNA extracted with RNeasy Plant Mini Kit (QIAGEN, Germany) 

according to the manufacturer’s instructions. To attest the effectiveness of RNA extraction, 

a 1.2-1.5 % agarose gel electrophoresis was performed. To allow proper gel migration, 

RNA samples were denatured in denaturing loading buffer, FDE (10 ml deionized 

formamide, 200 µl 0.5 M, pH 8.0 EDTA, 1X Green Buffer GoTaq® Buffer).  

 

3.2.4.3 RT-PCR reaction 

 

From the total RNA isolated from the leaves a RT-PCR reaction was performed. 

The RNA samples were treated with 20 Units of DNase I RNase free (Boehringer, 

Germany) for 1h at 25ºC, followed by heat inactivation of the DNase I at 65ºC for 5 min. 

250 ng of each RNA sample were subjected to reverse transcription–polymerase chain 

reaction (RT-PCR), using the GoScript™ Reverse Transcription System (Promega, USA), 

according to manufacturer’s instructions (RT-PCR converts RNA into first strand cDNA, 

which is then used as a template for PCR). Annealing of random primers was carried out at 

25ºC, followed by first strand synthesis (RNA-cDNA hybrids) at 42ºC for 60 min on a 

thermocycler BioRad T100® Thermal Cycler (BioRad, USA), followed by 15 min at 70ºC 

to denature the reverse transcription (RT) enzyme. The PCR amplification of the ACEI 

synthetic genes was performed as described in 3.1.6.1. The PCR amplification with 

specific primers for the Act and Gus genes (Table 7) was performed as follows: 95ºC/ 2 

min for denaturation, followed by 35 cycles of 94ºC/ 10s for denaturation, 60ºC/ 1 min for 

annealing and 72ºC/ 30s for extension and 72ºC 5 min for final extension. 
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 Table 7 - Primers used for PCR amplification of the Act and Gus genes  

Primer Label Sequence 

ACTF TCAATGTGCCTGCCATGTATG 

ACTR ACTCACACCGTCACCAGAATC 

GUSF ACCGTTTGTGTGAACAACGA 

GUSR CATGACGACCAAAGCCAGTA 

 

3.2.5 Stable transformation of M. truncatula 

 

Transformation of M. truncatula was performed according to Araújo et al. (2004). 

Leaflets of in vitro grown M9-10a plants were used as explants for transformation. Leaflets 

were put onto a wet sterile filter paper in a Petri dish to prevent excessive desiccation and 

wounded perpendicularly to the central vein using a scalpel blade previously dipped into 

the Agrobacterium suspension. After a co-culture period of 5 days on solid EIM with 

100µM of acetoseryngone, in the dark, at 23ºC, the infected explants were transferred to 

EIM containing 100 mg l-1 of kanamycin as selective agent for transformed tissue and 500 

mg.l-1 of carbenicillin to eliminate Agrobacterium. Embryogenic calli cultures were 

maintained in a growth chamber (PHYTOTRON EDPA 700, ARALAB) with 16-h 

photoperiod of 100 µmol m-2s-1 applied as cool white fluorescent light and a day/night 

temperature of 24 ºC/22 ºC. To maintain the selective pressure, explants were transferred 

to fresh selective medium every week. Twenty-one days after infection, embryogenic calli 

were transferred to EPM supplemented with 100 mg.l-1 kanamycin and 500 mg l-1 

carbenicillin. Every 2 weeks, green somatic embryos resistant to kanamycin were 

transferred to fresh selective ECM until conversion to plantlets. When plantlets developed 

roots, carbenicillin was eliminated from the medium and kanamycin concentration reduced 

to 50 mg.l−1. 

 

3.2.6 Stable transformation of lettuce 

 

Leaves from 1-month-old lettuce plants grown on MS medium were cut with a 

scalpel blade embedded in the suspension of the A. tumefaciens harboring the synthetic 

genes containing the ACEI peptides. Explants were dried with sterile paper towel to 
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remove excess bacteria, and transferred onto the co-culture calli induction medium, MS 

with 3% (w/v) sucrose, 0.2% (w/v) gelrite, 0.5 mg l−1 BA and 0.1 mg l−1 NAA, at 24 ºC in 

the dark for 3 days. Following co-cultivation, explants were placed onto a selection 

medium, consisting of MS medium supplemented with 0.1 mg.l-1 NAA, 0.5 mg.l-1 BA, 100 

mg.l-1 kanamycin, and 500 mg.l-1 carbenicillin. Shoots regenerated from calli were excised 

when they were 2-3 cm in length and put onto growth regulator free medium supplemented 

with 50 mg.l-1 kanamycin and 250 mg.l-1 carbenicillin, for rooting. 
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4 Results	and	discussion	

4.1 Construction	 of	 plant	 expression	 vectors	 containing	 ACEI	 peptides	

synthetic	genes	

 

4.1.1 Design of the ACEI peptides synthetic genes and plant expression vectors 

construction  

 

Five synthetic genes were designed for optimal expression in lettuce and M. 

truncatula based on codon usage in these two plant expression hosts (see Annex A and 

Annex B). In a first approach, 4 synthetic genes (ACEI_FMK, ACEI_SEA, ACEI_SPI and 

ACEI_CHLTP) with codon optimization for M. truncatula were synthesized (Figure 7). 

The ACEI peptides coding sequences of ACEI_FMK and ACEI_CHL and its 5’ flanking 

regions were joined by a linker of two amino acids (MK) corresponding to a cleavage site 

of a gastrointestinal protease, trypsin. The gene ACEI_SPI with the eight tandem repeat of 

the coding sequence of peptide MRW evaluated with the peptidecutter tool of ExPASy 

showed that the eight repeat tandem construction of this peptide was possible since pepsin 

cleavage sites are in positions 3,6,9,12,15,18,21 and 24 of the peptide chain. Therefore, it 

is likely to occur the release of the active peptide after gastrointestinal enzyme digestion of 

the transformed plants. The gene ACEI_SPI has the same coding sequence in M. 

truncatula and lettuce. 

The ACEI peptides synthetic genes cloned into the MCS1 NdeI/SalI restriction 

sites of the pRI 201-AN vector are represented in Figure 8. The Nde I site of MCS1 was 

chosen for cloning the target genes because the locations of enhancer and start codon 

(ATG) might sometimes affect translational activity (Satoh et al., 2004; Sugio et al., 2008; 

Sugio et al., 2010; Matsui et al., 2012) and the ATG sequence in the NdeI site could be 

used as a translational start codon. In addition, the SalI site of MCS1 was also used 

because using two restriction enzymes increases the linearization efficiency and reduces 

the prospect of plasmid self-ligation. In the In-Fusion Cloning, the SalI restriction site was 

eliminated to facilitate further restriction analysis. This was accomplished since the 

synthetic genes contained an incomplete SalI restriction site at the 3’ flanking regions. 
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Figure 7 - The ACEI peptides synthetic genes ACEI_FMK (A), ACEI_SEA (B), ACEI_SPI (C) and 
ACEI_CHLTP (D) with codon optimization for M. truncatula.  
ACEI_FMK (A) has a 5’ flanking region joined by a linker of two amino acids (MK). Gene ACEI_SPIN (C) 
consists of eight tandem repeat of the coding sequence of peptide MRW. The ACEI_CHLTP (D) construct 
has a coding sequence of 57 AA transit peptide for plant chloroplast targeting (from tobacco RuBisCo small 
subunit). All constructs contained a 6x His tag® at 3´ends for purification and detection purposes. 
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Figure 8 - Schematic representation of the T-DNA region with the ACEI peptides synthetic genes cloned into the MCS1 NdeI/SalI restriction sites of the pRI 201-AN 
vector. 
T-DNA includes an enhancer 5´untranslated region (5´-UTR) downstream of the 35S CaMV promoter and a HSP terminator. The antibiotic resistance gene for selection 
of Kan resistant transformants is also present under the control of a NOS promoter. 
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4.1.1.1 Preparation of DNA fragments for cloning 

 

The confirmation of the double digest linearization of pRI-201 AN vector is shown 

on Figure 9. Previously, the pRI 201-AN vector was successfully linearized by single 

digests with both enzymes (data not shown).  

 

 
Figure 9 - Agarose gel (0.8%) electrophoresis to monitor NdeI/SalI double digest linearization of 
pRI-201 AN vector. 
1 - 1Kb plus DNA ladder; 2 and 3 - linearized plasmid with expected size (10.4 Kb); 4 - 100bp DNA 
ladder and 5 - Supercoiled pRI-201 AN vector. 
 
The synthetic genes were amplified directly from the pUC57 vectors and PCR 

products for subsequent ligation were extracted from agarose gels. Fragments of expected 

sizes for the 4 synthetic genes were observed: 92 bp for ACEI_FMK; 59 bp for 

ACEI_SEA, 101 bp ACEI_SPI and 233 bp for ACEI_CHLTP (Figure 10). 
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Figure 10 - Agarose gel (0.8 %) electrophoresis to extract the PCR-amplified products with the ACEI 
peptides synthetic genes.  
A - 1 - 100 bp DNA ladder; 2 - PCR-amplified product of ACEI_FMK (92 bp); 3 - control (mix without 
DNA template); B - 1 - 1Kb plus DNA ladder; 2, 4 and 6 - PCR products of ACEI_SEA, ACEI_SPI, 
ACEI_CHLTP with expected size (59 bp, 101 bp and 233 bp respectively); 3, 5 and 7 - control (mix without 
DNA template). Product sizes signalized with arrows.  

 
4.1.2 Selection of recombinant plasmids  

 

After the ligation reaction and DH5α™ transformation > 40 colonies for each 

construct were obtained. At least 10 colonies were tested for the presence of synthetic 

genes in the expression vector by colony PCR amplification. Fragments of expected sizes 

were observed in agarose gels for three synthetic genes (see Figure 11). 
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Figure 11 - Agarose gels (1.5 %) electrophoresis of Colony PCR for the ACEI peptides synthetic genes. 
A – Colony PCR for gene ACEI_FMK: 1 and 20 - 100 bp DNA ladder; 2-11,13,15-16,18-32 and 34-36 – 
PCR products of gene ACEI_FMK with expected size (92 bp); 37- control (mix without DNA template); 38- 
1 Kb plus DNA ladder; B - Colony PCR for gene ACEI_SEA: 1- 100 bp DNA ladder; 2 to 11- PCR products 
of gene ACEI_SEA with expected size (59 bp); 12- control (mix without DNA template); C - Colony PCR 
for gene ACEI_CHLTP: 1 – 100 bp DNA ladder; 2-4, 6-7 and 9-11 - PCR products of gene ACEI_CHLTP 
with expected size (233 bp); 12 - control (mix without DNA template). 

 
For ACEI_SPI amplification of fragments with different sizes were observed 

(Figure 12 A). This might be due to the repetitive nature of this synthetic gene sequence. 

To minimize amplification errors, a high fidelity polymerase was used. Additionally, in 

this case a higher resolution 12% polyacrylamide gel was used to visualize small 
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differences in fragment size. However, with this enzyme, fragments of different sizes were 

also observed (Figure 12 B and C). These results suggest that independently of the fidelity 

of the used enzyme, non-specific primer hybridization might be occurring as it can be seen 

on Figure 13, obtained with SnapGene Viewer (www.snapgene.com). The colony 

corresponding to the fragment of largest size was chosen for the subsequent work. 
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Figure 12 - Agarose gels (1.5 %) electrophoresis and Polyacrylamide gel (12 %) electrophoresis for 
ACEI_SPI amplified fragments. 
A - Agarose gels (1.5 %) electrophoresis for ACEI_SPI amplified fragments: 1 – 100 bp DNA ladder; 2-11 - 
Different sizes for amplified fragments were observed; 12 - control (mix without DNA template). B and C - 
Polyacrylamide gel (12 %) electrophoresis for ACEI_SPI amplified fragments to visualize small differences 
in fragment size: 1 - 1 Kb plus DNA ladder; 2 to 6 - ACEI_SPI amplified fragments with different size were 
observed; 7- control (mix without DNA template).  

 

 
Figure 13 - SnapGene Viewer prevision for non-specific primer hybridization.  
Potential amplification of different size fragments due to possible non-specific hybridization of the 

gene specific primer. 
 

Finally, small-scale extraction of all plasmid constructs was performed for further 

Agrobacterium EHA105 transformation Figure 14. Agrobacterium-mediated 

transformation of lettuce and M. truncatula with plant expression vectors containing ACEI 

peptides synthetic genes 

 



 

  67 

 
Figure 14 - Agarose gel (0.8 %) electrophoresis after small-scale extraction of all plasmid constructs 

containing the different ACEI peptides synthetic genes. 

1 - 1Kb plus DNA ladder; 2 - pRI-ACEI_FMK; 3 - pRI-ACEI_SEA; 4 - pRI-ACEI_SPI and 5 - pRI-
ACEI_CHLTP. 

 

4.2 Agrobacterium-mediated	transformation	of	lettuce	and	M.	truncatula	

with	 plant	 expression	 vectors	 containing	 ACEI	 peptides	 synthetic	

genes	

 

4.2.1 Screening of Agrobacterium EHA105 transformants 

 

Colony PCR of EHA105 colonies confirmed the presence of the plasmid constructs 

containing the ACEI synthetic genes. 

Fragments of expected sizes were observed in colony PCR for three pRI-ACEI 

plasmids, harboring the genes ACEI_FMK, ACEI_SEA, ACEI_CHLTP. Colony PCR for 

the construct pRI-ACEI_SPI revealed fragments with different sizes. Agarose gels of the 

PCR screening of Agrobacterium EHA105 transformants are presented on Annex C. 
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4.2.2 Establishment of a micropropagation scheme for in vitro maintenance of 

lettuce cv. Great Lakes  

 

• Seed decontamination and germination 

 

The percentage of lettuce seed germination (emergence of radicle and cotyledons) 

was higher using shorter decontamination time, 5 and 7 min (Table 8). With 10 min of 

decontamination time germination percentage decreased. In all treatments no 

contamination was observed (Table 8). Seed germination was achieved in light conditions 

according to Curtis (2006). Dark conditions were also previously tested and resulted in 

very low seed germination (data not shown).  

 

Table 8 - Percentage of lettuce seed germination and contamination with different 
decontamination treatments  

 

Treatments  Germination % Contamination % 

70% etanol + 5 min domestos 99.0 ± 1.0a 0.0 ± 0.0c 

70% etanol + 7 min domestos 97.7 ± 0.3a,b 0.0 ± 0.0c 

70% etanol + 10 min domestos 95.3 ± 2.3b 0.0 ± 0.0c 

Values are mean ±SD; values followed by different letters are significantly different at p≤0.05 according to 

ANOVA test n=3. 
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• Lettuce micropropagation 

 

Radicle emergence was observed 2-3 days after seed plating (Figure 15 A). Seven 

day-old seedlings of lettuce (Figure 15 B) were transferred to glass flasks containing 

MS030A and rooted plantlets were developed within 2 weeks (Figure 15 C). Continuous 

propagation and maintenance of lettuce was accomplished by monthly subculturing 

explants with two axillary buds to fresh medium (Figure 15 D). 

 

 
Figure 15 - In vitro germination and propagation of lettuce through axillary bud proliferation.  
A – Radicle emergence in Great lakes seeds in MS010A (2-3 d); B – Seven day-old seedlings; C – 

Developed plantlets in MS030A (2 wk); D – Subculture of isolated stem segments with two axillary buds in 
MS030A (subculture every 4 wk). 

 
• Organogenesis  

 

Calli induction was accomplished after the second week of culture (100% 

response) in 1,5-2 cm explants (with two axillary buds) and mature leaves of lettuce using 

both combinations of growth regulators (e.g. Figure 16 A). The combination of benzyl 
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adenine (BA) and naphthalene acetic acid (NAA) has been extensively used for calli 

induction and shoot regeneration from cotyledonary explants of lettuce (Curtis et al., 1994; 

Hunter and Burritt, 2002; Hunter and Burritt, 2004; Lim et al., 2011b; Mohebodini et al., 

2011; Gómez-Montes et al., 2015) and also from mature leaves (Gómez-Montes et al., 

2015). The use of another auxin as indole butyric acid (IBA) could also be favorable for 

calli induction (Olivia Costa personal communication). In this way, 0.5 mg l−1 BA and 0.1 

mg l−1 indole butyric acid (IBA) were also used for calli induction. Calli hyperhydricity 

was observed (Figure 16 A), this event has been previously described for lettuce cv Great 

Lakes and has been proven to be detrimental for shoot regeneration (Teng and Liu, 1993). 

Some studies have shown that BA levels at low agar concentrations can increase 

hyperhydricity. This problem can be overcome by reducing the BA concentration or by 

increasing the agar concentration (Pasqualetto, 1990). A compromise between gelling 

agent concentration and BA reduction might be a good alternative, since an accentuated 

reduction of BA concentration will probably cause the lowering of shoot proliferation. 

Nevertheless, shoot hyperhydricity was reduced upon transference to growth regulator free 

medium.  

Shoots were regenerated in all experiments after 2-3 weeks after transference to 

MS030A. The highest number of regenerated shoots was obtained with calli induced in 0.5 

mg l−1 BA and 0.1 mg l−1 NAA (Figure 16 B) and subsequently a higher number of 

plantlets developed roots (Figure 16 C and D). Plants with a well-developed root system 

were potted in a mixture 2:1 soil–vermiculite and covered with a plastic film for 

acclimation in a growth chamber according to Araújo et al. (2004) (Figure 16 E). 

The maintenance in BA and NAA containing medium allows the perpetuation of 

organogenic calli in cv. Great Lakes. Shoots are always appearing and able to develop 

upon transference to growth regulator free medium. In this way, a suitable method for 

regeneration and propagation of lettuce was established. Furthermore, this propagation and 

regeneration scheme via organogenesis can be coupled to transient expression studies and 

stable transformation procedures, as a continuous source of explants, and also as 

regeneration method for transformed lettuce cv. Great Lakes plants.  
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Figure 16 - In vitro organogenesis for lettuce.  
A – Organogenic calli induction after 2 wk in BA and NAA containing medium (calli presenting hyperhydricity); B – Shoots regenerated from organogenic calli in 
MS030A; C – Plantlets developed in MS030A; D – Rooting in MS030A; E – Transference to 2:1 soil–vermiculite pots for acclimation.  
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4.2.3 Transient expression studies 

4.2.3.1 GUS histochemical assay  

 

GUS activity was detected in transgenic M. truncatula (Figure 17 A) and lettuce 

leaves infiltrated with Agrobacterium suspensions harboring the plasmid pMP2482 (Figure 

17 C). GUS activity was not detected in lettuce leaves infiltrated solely with MS030 liquid 

medium (Figure 17 B). The detection of the GUS protein product validates the 

effectiveness of the transient expression protocol since its production is strictly related 

with gene expression owing to the presence of the potato st-lsI intron in the coding region 

of gusA, confirming that the protein production is occurring exclusively in planta (Duque 

et al., 2007). The GUS histochemical assay also allowed the location of protein production 

sites, with the majority of protein production occurring in the wounded regions of the 

leaves. This is an expected result as wounds constitute a portal of entry for Agrobacterium 

and wound repair processes have been proven to facilitate transformation (McCullen and 

Binns, 2006).  

 
Figure 17 - GUS histochemical assay.  
A – M. truncatula stably transformed with plasmid pMP2482 (positive control); B – Lettuce leaves 
infiltrated with MS030 liquid medium (negative control); C – Lettuce leaves infiltrated with 
Agrobacterium suspension harboring the plasmid pMP2482. 
 

4.2.3.2 RT-PCR assay 

 

The results of the RT-PCR assay are presented on Figure 18. The PCR 

amplification of a 100 bp fragment corresponding to an internal portion of the 

housekeeping actin (Act) gene confirmed the efficiency of the reverse transcription 
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reaction. RT-PCR for the Gus gene was also used as positive control for transient 

expression, and amplification of a 499 bp fragment was observed.  

The RT-PCR assay demonstrated the gene integrity of plasmid constructs pRI-

ACEI_FMK and pRI-ACEI_CHLTP, with the presence of amplification of fragments with 

92 bp and 233 bp, respectively. No PCR amplification was detected in samples agro-

infiltrated with genes ACEI_SEA and ACEI_SPI. The absence of amplification can have 

several explanations, one being the reduced amount of RNA and consequently of cDNA in 

the samples, suggesting the necessity of RT-PCR protocol optimization. Therefore, it is 

advisable to repeat the RT-PCR reactions to demonstrate the gene integrity of these 

plasmid constructs.  

These results show that the ACEI_FMK and ACEI_CHLTP synthetic genes are 

being expressed in planta and foresee the prospect of a successful expression in stably 

transformed plants. Forthcoming testing of the ACEI peptides transient production will be 

crucial to confirm these encouraging first results. 

 

 
Figure 18 - Agarose gel (2.0%) electrophoresis of RT-PCR products for ACEI synthetic genes.  
1 - 1 Kb plus DNA ladder; 2, 4, 7, 10, 13 and 16 – non-infected lettuce leaves amplified with gene specific 
primers for Act, Gus, ACEI_FMK, ACEI_SEA, ACEI_SPI, ACEI_CHLTP, respectively; 5 – Gus 
amplified fragment in lettuce infiltrated with pMP2482; 8 – ACEI_FMK amplified fragment in lettuce 
infiltrated with pRI-ACEI_FMK; 17 – ACEI_CHLTP amplified fragment in lettuce infiltrated with pRI-
ACEI_CHLTP; 3, 6, 9, 12, 15 and 18 - control (mix without cDNA template). Product sizes signalized with 
arrows. 

 
4.2.4 Stable transformation of M. truncatula  
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Agrobacterium-mediated stable transformation of M. truncatula executed 

according to Araújo et al. (2004) is currently underway. These experiments were carried 

out using A. tumefaciens EHA105 harboring the plasmid constructs pRI-ACEI_FMK and 

pRI-ACEI_SEA.  

Initial results from the plant transformation experiments are presented on Figure 

19. One-month old leaflets of M9-10a in vitro cultured plants were used as explants for A. 

tumefaciens EHA105 transformation (Figure 19 A). In control non-transformed explants, 

with the presence of antibiotics (100 mg.l-1 kanamycin and 500 mg.l-1 carbenicillin), the 

callogenic capacity of the explants was not affected but no embryo formation was observed 

(Figure 19 B). In control non-transformed explants without antibiotic supplementation, 

100% of embryogenic calli was observed on EIM containing (Figure 19 C) and extensive 

proliferation of somatic embryos was observed. The development of somatic embryos in 

these conditions was faster than in the Agrobacterium infected explants in accordance to 

the described in (Araújo et al., 2004). In the Agrobacterium infected explants, KanR 

embryos started to appear five weeks after initiating the selective pressure (Figure 19 D). 

To maintain the selective pressure, KanR somatic embryos were subcultured every 2 weeks 

to fresh medium with antibiotics where they started to convert into plantlets (Figure 19 E). 

False KanR embryos bleached when they were put in direct contact with the selective 

medium (Figure 19 F). The first plantlets (Figure 19 G) appeared within 3-4 months after 

co-cultivation with Agrobacterium. At the current stage of the transformation procedure (5 

months after co-cultivation) three pRI-ACEI_SEA putative plantlets and one pRI-

ACE_FMK putative plantlet have been recovered and developed roots in kanamycin 

selection medium (Figure 19 H and I). These plantlets have been selected as putative 

transgenic plants, since the rooting in kanamycin medium constitutes a good indication of 

the stable transgene insertion (Duque, 2010). Since the development of somatic embryos is 

asynchronous (Araújo et al., 2004), somatic embryos in a late-torpedo/dicotyledonary 

development stage are still being isolated every week for each transformation event. 

Molecular analysis of putatively transformed plants will be done to confirm the insertion of 

the transgene in the plant genome. 
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Figure 19 - Transformation-regeneration in M. truncatula cv. Jemalong M9–10a genotype.  
A – Wounded leaflet of the cv. Jemalong M9–10a genotype; B – Embryogenic calli originated from non-
infected leaflet in selective conditions (no somatic embryos developed); C – Embryogenic calli derived from 
a non-infected leaflet in EPM; D – First KanR embryos (5 wk after initiation of selective pressure) E – KanR 
clump of somatic embryos at different stages of development; F – KanS embryos (bleached); G – KanR 
embryo conversion; H – KanR plantlets; I – Transgenic T0 line rooted in 50 mg l−1 of kanamycin.  

 

4.2.5 Stable transformation of lettuce  

 

Agrobacterium-mediated stable transformation experiments with are currently 

underway. A. tumefaciens strain EHA105 harboring the plasmid constructs pRI-

ACEI_FMK, pRI-ACEI_SEA, pRI-ACEI_SPI and pRI-ACEI_CHLTP were used to infect 

lettuce. First results from the plant transformation experiments are presented on Figure 20. 

One-month old leaves from in vitro cultured lettuce were used as explants for 

transformation with EHA105. Previous studies used mature leaves as explants for lettuce 
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transformation (Lim et al., 2011b), however the majority of Agrobacterium-mediated 

lettuce transformation protocols have used cotyledons as explant source  for transformation 

(Curtis et al., 1994; Sun et al., 2006; Liu et al., 2012). Shoot regeneration and effect of 

explants age on shoot regeneration has been proven to be genotype-dependent in lettuce 

(Hunter and Burritt, 2002; Mohebodini et al., 2011). In cv. Great Lakes only shoot 

regeneration from cotyledons was reported and studies have shown that shoot regeneration 

was not affected by cotyledon age (Hunter and Burritt, 2002), indicating that the effect of 

explants age might not be relevant for shoot regeneration on this genotype. 

Organogenic calli were obtained in Agrobacterium infected explants on 

organogenesis induction medium containing 100 mg.l-1 Kan and 500 mg.l-1 Carb with the 

subsequent development of KanR shoots (Figure 20 C). In control experiments, the 

presence of antibiotics (100 mg.l-1 Kan and 500 mg.l-1 Carb) did not affect the callogenic 

capacity of the explants, but no shoot formation was observed, as expected for non-

transformed tissue. Without antibiotics, lettuce explants underwent calli induction and 

shoot differentiation as described. The development of calli and shoots in these conditions 

(Figure 20 A) was faster than in the Agrobacterium transformed explants (Figure 20 B). In 

the Agrobacterium infected explants calli formation could be observed 2-3 weeks after the 

initiation of selective pressure (Figure 20 C) and the first emerging shoots appeared 4-5 

weeks after (Figure 20 D). Organogenic calli were isolated every week and underwent a 

vast proliferation (Figure 20 E and F), resulting in a laborious in vitro culture procedure. 

Selective pressure was maintained by subculture every 2 weeks to fresh antibiotic 

containing medium where they started to convert into plantlets (Figure 20 F). A high 

number of apparent KanR shoots bleached when they were put in direct contact with the 

selective medium (Figure 20 G), suggesting a large incidence of false positive KanR shoots. 

Moreover, the excessive propagation of organogenic calli can also generate numerous false 

KanR clones. This situation also demonstrates the shortcomings of organogenesis as 

regeneration method in relation to embryogenesis. Embryogenic tissues allow the recovery 

of numerous transformants that are, in most cases, non-chimeric because of the presumed 

single cell origin of somatic embryos (Hansen and Wright, 1999).  

In cv. Great Lakes the prevalence of apparent KanR shoots might be reduced by 

earlier placement of organogenic calli on growth regulator free medium to avoid excessive 

proliferation and by the increase in kanamycin concentration. For this purpose it will be 
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important to perform optimization studies for selection of the best kanamycin 

concentration to be used for cv. Great Lakes transformants selection in future 

transformation experiments. 

The first plantlets appeared within 3-4 months (Figure 20 G) after co-cultivation 

with Agrobacterium. At the current stage of the transformation procedure, 5 months after 

co-cultivation, plantlets resulting from explants infected with Agrobacterium harboring the 

plant expression construct pRI-ACEI_CHLTP have been isolated and transferred to 

MS030A medium for rooting (Figure 20 H). Several shoots have developed roots in Kan 

containing medium (Figure 20 I). These plantlets have been selected as putative transgenic 

plants. Molecular analysis will be done to confirm the insertion of the transgene in the 

plant genome. The Agrobacterium-mediated transformation of lettuce with the plant 

expression constructs pRI-ACEI_FMK, pRI-ACEI_SEA and pRI-ACEI_SPI was initiated 

one month later and the first plantlets are now starting to appear. 

To our knowledge, we present here the first transformation/regeneration procedure 

from leaf explants for the cv. Great Lakes. However, further optimization of this process to 

overcome the production of non-transformed shoots is required. 

 



 

  78 

 

 
Figure 20 – Transformation- regeneration in lettuce. 
A – Organogenic calli originated from non-infected leaflet; B – Delay in organogenic calli formation for 
infected leaflets; C – Organogenic calli originated from infected leaflet; D - First KanR shoot (4-5 wk after 
initiation of selective pressure); E – Proliferation of organogenic calli in supplemented medium; F – 
Proliferation of organogenic calli and development of the first plantlets; G - KanS plantlets (bleached) and 
KanR plantlet (green); H – Developed KanR plantlet; I – Transgenic T0 line rooted in 50 mg l−1 of 
kanamycin
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5 Conclusion	remarks	and	prospects	
 

As a conclusion, with this work four plant transformation vectors containing 

genetic information for the heterologous expression of four ACEI peptides, with proven 

ACE inhibitory activity, and devised from dissimilar organisms (from the sea cucumber to 

the Chlorella microalgae) were obtained.  

The establishment of an effective micropropagation scheme via axilary bud 

proliferation and organogenesis not only allowed the continuous propagation and 

maintenance of lettuce but also its regeneration. This propagation and regeneration scheme 

can be coupled to transient expression studies and stable transformation procedures, as a 

continuous source of explants, and also as regeneration method for transformed lettuce 

plants.  

The GUS histochemical assay demonstrated the efficacy of the established transient 

expression protocol, and also the convenience of using plasmid constructs harboring the 

GUS reporter gene for plant transformation experiments. In fact, such plasmids have been 

used in several lettuce and M. truncatula transformation experiments, namely to test 

lettuce transformation frequency (Torres et al., 1993) and transgene segregation analysis 

(Torres et al., 1993; Franklin et al., 2011), and for recovery of transformed M. truncatula 

embryos without selective pressure (Duque et al., 2007). 

The transient expression of ACEI_FMK and ACEI_CHLTP synthetic genes in 

lettuce confirmed the gene integrity within the plasmid constructs and foresee the 

possibility of a successful expression in stably transformed plants. Further plasmid 

construct sequencing and testing of the ACEI peptides transient production will be crucial 

to confirm these encouraging first results. 

Agrobacterium-mediated stable transformation experiments with lettuce and M. 

truncatula are currently underway. Until now, the initial selection of plantlets resistant to 

kanamycin has been accomplished for construct pRI-ACEI_CHLTP in lettuce and 

constructs pRI-ACEI_FMK and pRI-ACEI_SEA in M. truncatula. Further molecular and 

biochemical studies will have to be performed to confirm plant stable transformation and 

transmission of the traits to the next generations. 
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Furthermore, the in vitro testing of the peptides stability and ACE inhibitory 

activity will be critical to validate the effectiveness of the two heterologous production 

systems.  

In the case of lettuce, and envisaging the future human administration, besides the 

molecular and biochemical analysis the active effect of the ACEI peptides will be 

confirmed by the oral administration to spontaneously hypertensive rats (SHRs), in 

collaboration with an animal research laboratory. 

In the case of M. truncatula the induction of calli from transformed plants and the 

establishment of peptide production cell suspension cultures is also a future perspective 

since this system has already been proven to be an attractive heterologous protein platform 

production by Abranches et al. (2005). The extraction and purification of the peptides will 

be facilitated by the presence of the poly-histidine tags. 

Finally, in the current scenario of global demand for alternative hypertension 

therapies and easier antihypertensive peptide manufacturing processes, this work gives an 

initial contribution to a wider project of ACEI peptides production in edible plants of 

commercial interest. 
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7 Annexes	
 

Annex A– The synthetic gene ACEI_CHL 

 
Figure 1 - The ACEI peptide synthetic gene ACEI_CHL with codon optimization for M. truncatula. 

ACEI_CHL has a 5’ flanking region joined by a linker of two amino acids (MK).   
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Annex B – ACEI peptides synthetic genes with codon optimization for lettuce 

 
Figure 1 - The ACEI peptides synthetic genes ACEI_FMKLET (A), ACEI_SEALET (B), ACEI_CHLLET 

(C) and ACEI_CHLTPLET (D) with codon optimization for lettuce.  

ACEI_FMKLET (A) and ACEI_CHLLET (C) have a 5’ flanking region joined by a linker of two amino 

acids (MK). ACEI_CHLTPLET (D) construct has a coding sequence of 57 AA transit peptide for plant 

chloroplast targeting (from tobacco RuBisCo small subunit). All constructs contained a 6x His tag® at 

3´ends for purification and detection purposes.  
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Annex C - Agarose gels of the PCR screening of Agrobacterium EHA105 
transformants 

 
Figure 1 - Agarose gels (1.5 %) electrophoresis of Colony PCR for the ACEI peptides synthetic 

genes. 
A – Colony PCR for gene ACEI_FMK: 1 – 1 kb plus DNA ladder; 2-11 – PCR products of gene 

ACEI_FMK with expected size (92 bp); 12 - control (mix without DNA template); B - Colony PCR for gene 
ACEI_SEA: 1- 1Kb plus DNA ladder; 2 to 11- PCR products of gene ACEI_SEA with expected size (59 bp); 
12- control (mix without DNA template); 13 – 1 kb plus DNA ladder; C - Colony PCR for gene ACEI_SPIN: 
1 – 100 bp DNA ladder; 2-12 - Different sizes for amplified fragments were observed (lane 5 biggest size); 
13 – control(mix without DNA template); D – Colony PCR for gene ACEI_CHLTP: 1 – 1 kb plus DNA 
ladder; 2,3, 7,8 and 11-14 - PCR products of gene ACEI_CHLTP with expected size (233 bp); 16 - control 
(mix without DNA template). 


