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resumo 
 

 

O principal objetivo deste trabalho foi estudar o efeito da pressão (0.1, 300 e 600 
MPa), tempo de extração (5, 17.5 e 30 min) e concentração de etanol (0, 40 e 
80%) na extração de compostos fenólicos, flavonóides, antocianinas e 
betalainas a partir de casca de figo da Índia resultante do processo de produção 
de vinagre. A atividade antioxidante foi determinada pelos métodos de ABTS, 
DPPH e FRAP em todos os extratos assim como os rendimentos totais. Foi 
efetuado um desenho experimental fatorial e os resultados foram analisados 
pela metodologia de resposta de superfície, tendo-se determinado depois as 
condições óptimas de extração previstas pelo modelo. Todos os modelos foram 
validados e a atividade antimicrobiana dos extratos obtidos nas condições 
optimas foi analisada usando a Escherichia coli e Listeria innocua.       
A concentração de etanol foi a variável que apresentou o maior efeito sobre o 
rendimento das extrações, seguindo-se a pressão e depois o tempo de extração. 
No geral, a alta pressão aumentou os rendimentos entre 6 e 17%, quando 
comparados com extrações realizadas sob as mesmas condições, mas a 0.1 
MPa. Os modelos mostraram um ajuste satisfatório e adequado aos dados 
experimentais e as correlações dos modelos matemáticos obtidas indicaram que 
os modelos polinomiais quadráticos podem ser utilizados para prever os 
resultados. As condições ótimas de extração foram diferentes de acordo com o 
tipo de composto analisado. Os resultados experimentais e previstos diferiram 
menos do que 10%. Os extratos selecionados inibiram o crescimento de 

Escherichia coli e Listeria innocua, que se mostrou mais sensível. A extração 
por alta pressão apresentou vantagens em relação à extração por Soxhlet, 
aumentando a atividade antioxidante em média 27%. A extração de compostos 
fenólicos totais e betaxantinas aumentou 19% e 117%, respetivamente. Para 
além disto, os tempos de extração foram 8 a 48 vezes menores quando alta 
pressão foi usada. 
Os resíduos de figo da Índia são ricos em compostos bioativos que, quando 
convenientemente recuperados, pode ter inúmeras aplicações em diversos 
sectores, e ao mesmo tempo valorizam-se os resíduos de fruta. As otimizações 
obtidas neste trabalho tornam a tecnologia de alta pressão num processo de 
extração promissor para scale-up. 
 

 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

keywords 

 
High pressure assisted extraction; prickly pear peel; bioactive compounds; 
antioxidant activity; antibacterial activity. 
 

abstract 

 
The main objective of this research was to study the effect of pressure (0.1, 300 
and 600 MPa), extraction time (5, 17.5 and 30 min) and ethanol concentration 
(0, 40 and 80%) on total phenolics, flavonoids, anthocyanins and betalains from 
yellow prickly pear peels, a sub product of vinegar production. Antioxidant activity 
(ABTS, DPPH and FRAP methods) and total extraction yields were also 
determined for all extracts. A Box–Behnken design and Response Surface 
Methodology (RSM) were used to evaluate the effects and to estimate the 
optimum extraction conditions. Antimicrobial activity was evaluated against 
Escherichia coli and Listeria innocua in extracts performed under optimized 
conditions. 
Ethanol concentration was the variable that showed the greatest effect on 
extraction yields, followed by pressure and then the extraction time. In general, 
high pressure increased extraction yields between 6 and 17%, when compared 
with extractions performed under same conditions but at 0.1 MPa. The models 
showed satisfactory fitting and adequacy to the experimental data and the high 
correlation of mathematical models indicated that the quadratic polynomial 
models could be employed to predict the results and optimize the extraction 
conditions. The optimum extraction conditions were dependent on the class of 
compounds analyzed. Experimental and predicted results differ less than 10%. 
The selected extracts inhibited Escherichia coli and Listeria innocua growth. High 
pressure assisted extraction showed advantages in relation to Soxhlet increasing 
the antioxidant activity in average 27% and presenting similar total extraction 
yields. Total phenolic compounds and betaxanthins increased 19% and 117%, 
respectively. Moreover, the extraction times were between 8 to 48 times smaller 
when high pressure extraction was used. 
The prickly pear residues are rich in bioactive compounds that, when 
conveniently recovered, can have numerous applications in different sectors and 
at same time valorising the fruit residue. The optimizations obtained in this work 
make the high pressure technology applied to extraction process a promising 
process for scale up. 
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3 

 

1.1. Fruit production, consumption and residues 

Every year are produced large amounts of fruits in which, a huge part is processed 

increasing also fruit residues production by industrial sector. Between 2011 and 2013, the 

global production of fruits increased about 9% (Statista, 2016). In 2013, Europe produced 

about 7320000 tons of fruits, which corresponded to 11% of global world production 

(Statista, 2015). Between 2012 and 2015, the Portuguese fruit production increased 44%. 

The most produced fruits where apples, pears, oranges and olives for olive oil with a 

production increase of 47%, 21%, 18%, and 68%, respectively between 2012 and 2015 

(INE, 2015c; INE, 2016). In the last four years, between 2012/2013 and 2014/2015, the 

fruit consumption per capita in Portugal increased 6%, which represent a consumption of 

31 tons. In Portugal, 630 tons of fruit were consumed in 2014/2015 (INE, 2015a; INE, 

2015b). Recent studies were not found concerning European fruit residues production. 

However, according to Baiano (2014), although the production and processing of fruits 

and vegetables sector did not generate the highest amount of residues when compared 

with other sectors, such as the dairy products and ice cream industry sector, it was this 

sector that produced more residues generated per amount of production of each industrial 

sector (Table 1).  

 

Table 1. Amount of residues produced and ratio between amount of residues 
generated and amount of production by the food industry (Baiano, 2014). 

INDUSTRIAL SECTOR 
RESIDUE 

(tons) 
RESIDUE 

(%) 
 

Production and processing of fruits and vegetables 279000 4.5  
Production and processing of fish and fish products 8000 3.5  
Dairy products and ice cream industry 404000 3  
Production, processing and preserving of meat 150000 2.5  
Manufacture of other food products 239000 2  
Drinks industry 492000 2  
Production of grain and starch products 245000 1.5  
Manufacture of vegetable and animal oils and fats 73000 1.5  
TOTAL 1890000 2.6  

 

Until a few decades ago, these industrial residues were considered neither a benefit nor a 

cost, ending up brought to landfills, being used as animal feed, or sent for composting 

causing a significant negative impact on the environment, leading to environmental 

pollution.  In the last years, several efforts have been done to change this attitude due to 
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the growing environmental concerns in the European Union and worldwide; the demand 

for controls to minimize the impact of residues on human health (that is bringing more 

stringent regulations); the high disposal costs (that are eroding the already low profits of 

the food industry); and the growing awareness of the benefits deriving from potentially 

marketable components present in foods residues are good examples of it (Baiano, 2014). 

These residues can be perceived as a source of valuable compounds such as carotenoids, 

fibers (Hernández-Santos et al., 2015) and phenolic compounds such as flavanols, 

flavonols and phenolic acids with important biological activities (Deng et al., 2012; Ma 

et al., 2012). Several research works have been developed to valorize the fruit residues, 

reporting that they can be used to obtain higher yields of cellulose produced by bacteria, 

resulting in cellulose with high quality (Kumbhar et al., 2015) and can be novel substrates 

for enzyme production (Almeida et al., 2015). Fruit extracts showed the capacity to inhibit 

human fungi, gram-positive and negative bacteria pathogens, making these residues 

useful to control the spread of human food-borne pathogens (Rakholiya et al., 2014; 

Mahadwar et al., 2015). Fruit residues can be transformed in flours, suggesting that they 

may be used to improve bowel health, as reported by Silva et al. (2014) in rats. Choi et 

al. (2015) used citrus peel residues in combination with other fruit residues/pomaces to 

produce bioethanol with high yields. Another possible application of fruit residues is 

related with the use of fruit residues as low-cost biosorbents to remove dyes and toxic 

metal ions (Mallampati et al., 2015; Pathak Pranav et al., 2015; Sahetya et al., 2015). 

Naseer et al. (2014) reported that fruit residues were also used to inhibit the synthesis of 

mycotoxins, showing that peels can replace chemical treatments to detoxify aflatoxins, 

being safer for long-term food storage. 

 

1.2. Prickly pear fruit 

With a production of 345000 tons/year, Mexico is the main producer of prickly pear fruit 

(Opuntia spp.). In the Mediterranean, Italy is the biggest producer with intensive 

plantations yielding about 70000 tons. Sicily is the responsible for nearly all of the Italian 

production and San Cono Hills, Santa Margherita Belice district, and the southwestern 

foothills of the Etna volcano are the three major production zones representing 90% of 

intensive cultivation (Inglese et al., 2002). The Opuntia ficus-indica, O. megacantha, O. 

streptacantha and O. amyclaea are the most common cultivated species (Cardador-

Martinez et al., 2011). Nevertheless, this fruit is cultivated worldwide being eaten raw or 
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processed into fruit based products. This fruit contributes substantially to the food diet in 

rural populations from Mexico, Peru and North Africa, while in Europe and the USA is 

still considered an exotic fruit (Dubeux et al., 2012). Several important biological 

proprieties have been attributed to this fruit such as antioxidant (Koubaa et al., 2015), 

anti-diabetic (Berraaouan et al., 2014), antibacterial (Ali and El-Mohamedy, 2011), anti-

inflammatory (Allegra et al., 2013; Tesoriere et al., 2014), anticancer (Zou et al., 2005), 

hepatoprotective (Galati et al., 2005), antiulcerogenic (Galati et al., 2003), 

neuroprotective (Dok-Go et al., 2003), hypolipidemic (Palumbo B. et al., 2003), and 

antiproliferative activities (Sreekanth et al., 2007). Because of all of these activities, the 

prickly pear fruit is important from a health and medical point of view since it can be used 

to control/prevent diseases. The prickly pear can be used to prepare products such as fruit 

juices, alcoholic beverages, jams, natural liquid sweetener, wine, flours for food 

supplements, squash, pickle, body lotions, shampoo, creams and flavouring agents 

(Moßhammer et al., 2006; Kaur et al., 2012; Yeddes et al., 2013). 

The pulp represents 45-67% of total fruit, while the pericarp represents 33-55% and the 

seeds 2-10% (Gurrieri et al., 2000; Piga, 2004). Thus, the processing process generates 

high amount of fruit residues, mainly peels that may create value in the entire chain-

production. The valorization is not only a market need but also an opportunity to recover 

basic nutrients and/or high value compounds (such as vitamins, carotenoids and phenolic 

compounds) and to produce relevant metabolites by chemical or biotechnological assays 

having a significant impact on industries economy (Pintado and Teixeira, 2015). Thus, 

the reuse and recycling of food residues has been highly encouraged using new 

technologies environmentally clean. Prickly pear peels are excellent sources of bioactive 

compounds, such as betalains, phenolic compounds, flavonoids, and tannins (Cardador-

Martinez et al., 2011; Chougui et al., 2015). Some prickly pear cultivars are very attractive 

due to the intense color, and depending on the cultivar, the color may change from a 

blood-red to orange-yellow due the presence of different betalains (Gurrieri et al., 2000). 

These vacuolar alkaloid pigments result from the condensation between cyclo-DOPA (L-

3,4-dihydroxy-phenylalanine)/its glucosyl derivatives and betalamic acid with amino 

acids/derivatives leading to the formation of two categories of betalains: red-violet 

betacyanins and yellow-orange betaxanthins, respectively (Jain and Gould, 2015; Khan 

and Giridhar, 2015). Betalains can be used as natural food colorant (E162), in 

pharmaceutical and cosmetics industries (Esatbeyoglu et al., 2015), having also shown 
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antioxidant activity in model rats (Allegra et al., 2014), among others biological activities, 

such as anti-inflammatory, anti-microbiological, anti-cancer, and anti-lipidemic 

properties (Gengatharan et al., 2015). Phenolic compounds are characterized by having 

one or more aromatic rings and one or more hydroxyl group and can be divided into 

phenolic acids, tannins, stilbenes, coumarins and flavonoids (Huang et al., 2009), 

presenting antioxidant and antimicrobial activities that play an important role in 

prevention of some diseases (Cushnie and Lamb, 2005; Treml and Šmejkal, 2016). The 

extraction of bioactive compounds can be done using different methods that play an 

important role in sample preparation, experimental research and qualitative and 

quantitative analysis of bioactive compounds (Bernhoft, 2010). Soxhlet, maceration and 

hydrodistillation are the widely and most used traditional extraction techniques 

(Ngamwonglumlert et al., 2015). 

 

1.3. Traditional extraction techniques 

These techniques are based on the extracting power of different solvents and the 

application of heat and/or mixing to increase the rate of mass transfer increasing the 

solubility of compounds (Wu et al., 2001). The extraction efficiency depends on the 

choice of solvents, where the polarity of the targeted compound is the most important 

factor (Shahid et al., 2013). Questions concerned with environmental safety, toxicity and 

financial feasibility should also be considered in selection of solvent.  

 

1.3.1. Extraction by Soxhlet 

Franz Ritter von Soxhlet proposed Soxhlet extraction firstly for the determination of fat 

milk (Soxhlet, 1879). Nowadays, its application was extended and is the most used 

traditional extraction technique for a number of decades, as an efficiency reference for 

the comparison of its conventional and new counterparts, surpassing the performance of 

other extraction methods (Luque de Castro and Garcı́a-Ayuso, 1998). A small amount of 

dry sample is placed in a thimble that is placed in distillation flask containing the solvent 

of interest. After reaching to an overflow level, the solution of the thimble-holder is 

aspirated by a siphon that unloads the solution back into the distillation flask. This 

solution carries extracted solutes into the bulk liquid. The solute remains in the distillation 

flask and solvent passes back to the solid bed of plant. The process runs repeatedly until 

the extraction is completed (Azmir et al., 2013). Some disadvantages of the Soxhlet 



 

7 

 

extraction are the extraction of thermolabile compounds, which undergo thermal 

degradation due to high temperature (Kanasawud and Crouzet, 1990); the very long 

extraction times, increasing the extraction cost; and the used of potential harmful organic 

solvents to the environment and health such as petroleum ether and hexane (Table 2). 

Beside peels, Soxhlet is also used to extract essential oils from seeds (Gurrieri et al., 2000; 

Ennouri et al., 2005; Xhaxhiu et al., 2013; Chemat et al., 2014; Kukeera et al., 2015). 

 

Table 2. Compounds extracted from fruit peels by Soxhlet. 

Source Compounds Solvent(s) 
OEC Max. yield 

(%) 
Reference 

T(ºC)/t(h) 

Citrus 
Nobiletin and 

tangeretin 
ethanol -/4 14.34a) Lee et al. (2010) 

Citrus 
Limonene (L) 

β-myreene (Bm) 
Linalool (Ln) 

methylene, 
chloride, 
hexane, 
acetone, 
methanol 

-/6 
0.35 (L) 

0.085 (Bm) 
0.055 (Ln) 

Xhaxhiu et al. 
(2013) 

Citrus D-limonene hexane 68/4 0.95 
Lopresto et al. 

(2014) 

Mango 
Phenolic 

compounds 
ethanol -/4 25.13a) 

Tunchaiyaphum 
et al. (2013) 

Mango 
Mangiferin (M) 

Lupeol (Lu) 
ethanol 
hexane 

-/8 
9-11a) (M) 
0.2-0.3a) 

(Lu) 

Ruiz-Montañez 
et al. (2014) 

Pomegranate 

Phenolic 
compounds (PC) 
Flavonoids (FL) 

Anthocyanins (A) 
Punicalagins (P) 
Ellagic acid (EA) 

ethyl 
acetate 

-/3-15 

2.462a) (PC) 
0.676a) (FL) 
0.421a) (A) 
7.39a) (P) 

63.61a)(EA) 

Masci et al. 
(2016) 

Pomegranate 
Phenolic 

compounds 

ethyl 
acetate, 

methanol, 
water, 

acetone 

-/4 52 
Negi et al. 

(2003) 

Banana Essential oil hexane 68/7 62.42 
Hamid et al. 

(2016) 
Garcinia 

cowa 
Organic acids 

acetone, 
methanol 

60/8 25.4 
Jena et al. 

(2002) 
OEC: optimum extraction conditions; T: Temperature; t: time; a) mg equivalent standard/g DW; DW: dried 
weight. 

 

1.3.2. Extraction by hydrodistillation 

Hydrodistillation is a traditional method very used to extract essential oils from peels 

(Table 3), but also from seeds (Zito et al., 2013; Du et al., 2014; Lee et al., 2014; Papa et 

al., 2014; Liu et al., 2015). As similar to the Soxhlet extraction, at high extraction 
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temperatures some volatile components may be lost, which limits their application for 

thermolabile compound extraction. The long extraction times is also a disadvantage, but 

the extraction by hydrodistillation is more environmental friendly since water is the main 

extraction solvent used (Azmir et al., 2013). 

 
Table 3. Essential oils extracted from fruit peels by hydrodistillation. 

Source Solvent(s) 
OEC 

Max. yield (%) Reference 
t (h) 

Bergamot - 3.0 0.60 Djenane (2015) 
Grapefruit water 3.0 0.42 Uysal et al. (2011) 

Lemon - 3.0 0.70 Djenane (2015) 
Lemon water 3.0 4.12 Gök et al. (2015) 

Mandarin - 3.0 3.5-5.5 Hosni et al. (2010) 
Orange - 3.0 1-3 Hosni et al. (2010) 
Orange water 4.0 1.63 Allaf et al. (2013a) 
Orange water 4.0 1.97a) Allaf et al. (2013b) 
Orange - 1.7 7.01 Pingret et al. (2014) 
Orange - 3.0 0.58 Djenane (2015) 
Pomelo - 3.0 1 Hosni et al. (2010) 
Pomelo water 2.0 756b) Sun et al. (2014) 

Yellow prickly 
pear 

- 3.0 0.053 (Zito et al., 2013) 

Red prickly pear - 3.0 0.071 (Zito et al., 2013) 
OEC: optimum extraction conditions; t: time; a) mg/g DW; b) μg/mL; DW: dried weight. 

 

According to Vankar (2004), there are three types of hydrodistillation: water distillation, 

direct steam distillation and water and steam distillation. Water distillation consists in the 

mixture of plant materials with water in sufficient amount and then boiled. Direct steam 

distillation consists in the injection of steam into the sample and water and steam 

distillation technique consists in a mix of both principals. Hot water and steam act as the 

main influential factors to release bioactive compounds from plant tissues. During 

hydrodistillation, the indirect cooling by water condensates the vapor mixture of water 

and oil, which flows from condenser to a separator, where oil and bioactive compounds 

are separated automatically from the water (Silva et al., 2005).  

 

1.3.3. Extraction by maceration 

Maceration is a traditional technique frequently used for a small-scale extraction. The 

plant materials are grounded to increase the surface area for mixing with solvent and 

appropriate solvent is added in a vessel. Finally, the liquid is strained off but the solid 

residue of the extraction is pressed to recover large occluded solutions. The obtained 
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strained and press liquids are mixed and filtered (Azmir et al., 2013). The main 

disadvantage of this technique is that can be very time-consuming and uses potential 

harmful organic solvents to the environment and health, but more friendly solvents are 

used such as water and ethanol (Table 4). Like Soxhlet, maceration is also used to extract 

essential oils from seeds (Yoswathana and Eshtiaghi, 2014; Jadhav et al., 2016; Lourith 

et al., 2016; Oliveira et al., 2016). 

 

Table 4. Compounds extracted from fruit peels by maceration. 

Source Compounds Solvent(s) 

OEC Max. yield 

(mg/g 

DW) 

Reference 
T(ºC)/t(h) 

Citrus Pectin water 80-82/1 15a) 
Guo et al. 

(2012) 

Citrus 

Phenolic 
compounds (PC) 
Flavonoids (FL) 
Vitamin C (VC) 
Carotenoids (C) 

methanol, 
hexane, 

dichloromethane, 
ethyl acetate, 

butanol 

-/72 

9.2 (PC) 
7.1 (FL) 

0.35 (VC) 
0.0062 (C) 

Singh et 
al. (2014) 

Grape 

Phenolic 
compounds (PC) 

Proanthocyanidins 
(Pat) 

methanol, 
acetone 

25/3 
3-41 (PC) 
1-60 (Pat) 

Sá et al. 
(2014) 

Mango 
Phenolic 

compounds (PC) 
Flavonoids (FL) 

methanol and 
ethanol 

25/240 
127 (PC) 
78 (FL) 

Vega-
Vega et 

al. (2013) 

Mango 
Mangiferin (M) 

Lupeol (Lu) 
ethanol 
hexane 

25/24 
4-6 (M) 

0.15-0.25 
(Lu) 

Ruiz-
Montañez 

et al. 
(2014) 

Pomegranate 
Antioxidant 
compounds 

water 25/4 10a) Qu et al. 
(2010) 

Persimmon 
Phenolic 

compounds 
acetone, ethanol, 
methanol, water 

25/16 18a) 
Jang et al. 

(2010) 

Hazelnuts 
Phenolic 

compounds (PC) 
Tannins (Tn) 

ethanol 20-22/20 
502 (PC) 
358 (Tn) 

Contini et 
al. (2008) 

OEC: optimum extraction conditions; T: Temperature; t: time; DW: dried weight; a) %. 
 

Exhaustive maceration can consume large volumes of solvent and lead to the loss of 

material and/or metabolites. Furthermore, some compounds may not be efficiently 

extracted if they are poorly soluble at room temperature but since extraction is performed 

at room temperature, is less likely to occur degradation of compounds sensitive to high 

temperatures (Seidel, 2012).  
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1.4. High pressure assisted extraction 

To overcome the limitations of the traditional extraction techniques and due to the fact 

that betalains and phenolic compounds are sensible compounds to high temperatures, 

light, oxygen, and other extraction conditions (Delgado-Vargas et al., 2000; Palma et al., 

2001), new and promising extraction techniques were developed such as high-pressure 

extraction, enhancing the overall yield and selectivity of bioactive components from plant 

materials. 

High pressure assisted extraction (HPE), also known as ultra-high pressure extraction or 

high hydrostatic pressure extraction, was firstly studied in 2004 by Shouqin et al. (2004). 

These authors performed some pilot studies to demonstrate the applicability of HPE of 

compounds from herbs. These authors concluded that HPE was able to shorten effectively 

the extraction time and increase the efficiency of the process. This technique has been 

applied to extract several compounds from various natural plant materials such as 

catechins, phenolic compounds and caffeine from green tea leafs (Jun, 2009; Xi et al., 

2009; Jun et al., 2010; Xi et al., 2011), lycopene from tomato paste (Xi, 2006), 

ginsenosides from ginseng power (Shin et al., 2010), flavonoids from propolis (Shouqin 

et al., 2005), phenolic compounds, flavonoids and sulforaphane from seeds (Briones-

Labarca et al., 2015). Different bioactive compounds have been also extracted frequently 

from fruit peels (Table 5). HPE consists in the application of high pressures between 100 

and 600 MPa, low volumes of organic solvents and low-to-mild temperatures, which 

results in a conservation of the compounds structure, since it does not affect covalent 

bonds (Pereira and Vicente, 2010; Jun, 2013). The extraction times are reduced, when 

compared with the traditional technologies. HPE also allows to use any type of solvent 

without solvent volatilization to occur. This extraction technique is environmental 

friendly being considered as ‘‘green technique’’ since complies with standards set by the 

Environmental Protection Agency, USA due the reduction of synthetic and organic 

chemicals used, the reduction in operational time and due the achievement of better yields 

and extracts with a high quality (Azmir et al., 2013). 
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Table 5. Compounds extracted from fruit peels by HPE and increase in extraction 
yields comparing with traditional methods. 

Source Compounds Solvent 

OEC Max. yield 

HPE / CE 

(mg/g DW) 

Reference 
P(MPa)/T(ºC)/t(min) 

Honey 
pomelo 

Pectin water 500/55/10 
Similar 
amount 

Guo et al. 
(2014) 

Lemon 
Phenolic 

compounds 
ethanol 500/25/3 

3.75-
4.00a)/3.40-

3.60a) 

Casquete 
et al. 

(2014) 

Lemon 
Phenolic 

compounds 
ethanol 300/-/3 2.66a)/2.23a) 

Casquete 
et al. 

(2015) 

Lime 
Phenolic 

compounds 
ethanol 300/-/3 3.97a)/3.62a) 

Casquete 
et al. 

(2015) 

Longan 
fruit 

Phenolic 
compounds 

ethanol 500/50/2.5 23/21 
Prasad et 

al. 
(2009b) 

Longan 
fruit 

Corilagin 

ethyl 
acetate, 
ethanol, 

methanol 
and 

water 

500/30/2.5 9.65/2.35 
Prasad et 

al. 
(2009a) 

Longan 
fruit 

Phenolic 
compounds 

ethanol 500/30/30 10.59/5.597 
Prasad et 
al. (2010) 

Orange Pectin water 500/55/10 20.44a)/15.47a) 
Guo et al. 

(2012) 

Orange 
Phenolic 

compounds 
ethanol 300/25/10 4.0b)/- 

Casquete 
et al. 

(2014) 

Orange 
Phenolic 

compounds 
ethanol 300/-/3 2.88b)/2.84b) 

Casquete 
et al. 

(2015) 

Orange 

Phenolic 
compounds 

(PC) 
Flavonoids 

(F) 

ethanol 50-100/35/30 
12-14/15-17 

(PC) 
7-9/6-8 (F) 

M’hiri et 
al. (2015) 

Mandarin Anthocyanins ethanol 600/50/30-90 
More 23b) 

than control 

Corrales 
et al. 

(2009) 

Mandarin 
Phenolic 

compounds 
ethanol 300/-/3 5.87a)/5.30a) 

Casquete 
et al. 

(2015) 
OEC: optimum extraction conditions; P: Pressure (MPa); T: Temperature (ºC); t: time (min); CE: 
conventional extraction; DW: dried weight; a) mg equivalent standard/g FW; b) %. 
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Table 5. Compounds extracted from fruit peels by HPE and increase in extraction 
yields comparing with traditional methods (continued). 

Source Compounds Solvent 

OEC Max. yield 

HPE / CE 

(mg/g DW) 

Reference 
P(MPa)/T(ºC)/t(min) 

Mandarin 

Phenolic 
compounds 

(PC) 
Anthocyanins 

(A) 

ethanol 600/70/60 

0.25-
0.38/0.18-0.25 

(PC) 
0.0061-

0.011/0.0075-
0.0079 (A) 

Corrales 
et al. 

(2008) 

Mango 
Mangiferin 

(M) 
Lupeol (Lu) 

ethanol 
and 

hexane 
150/25/20 

9.6-11.8/8.4-
10.8 (M) 

0.45-0.55/0.2-
0.28 (Lu) 

Ruiz-
Montañez 

et al. 
(2014) 

OEC: optimum extraction conditions; P: Pressure (MPa); T: Temperature (ºC); t: time (min); CE: 
conventional extraction; DW: dried weight; a) mg equivalent standard/g FW; b) %. 
 

The extraction mechanism by HPE was elucidated and reported by (Huang et al., 2013). 

The pressure increases from atmospheric to the set pressure in a short time, leading to cell 

deformation due to the large differential pressure that was created between the interior 

and the exterior of the cell, because the pressure inside the cells is very low. With the 

membranes altered and under the differential pressure, the solvent permeates very fast 

into the cells with a large rate of dissolution. The second stage occurs when the extraction 

pressure equals the set pressure and is maintained for a certain period of time (the 

extraction time) to balance the pressure inside and outside the cells. The final stage is 

finished in a matter of seconds, were occurs a suddenly pressure drop to atmospheric 

pressure. Jun et al. (2011) studied the microstructure and ultrastructure of the untreated 

and pressurized green tea leaves samples with 50% ethanol as extraction solvent by 

scanning and transmission electron microscopy. The authors concluded that untreated 

samples were in an orderly intact state and stand relatively closely in an orderly manner 

with intact organelles inside the cells, while pressurized samples were found remarkably 

cracked, distorted and loosened shape. The cell organelles were broken into pieces, the 

vacuoles were destroyed and cellular membrane was totally collapsed and disrupted, 

which resulted in broken organelles being remixed and redistributed in the cells. 
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1.5. Objectives 

No literature has reported the high pressure assisted extraction of bioactive compounds 

from yellow prickly pear peels and so, based on the present review, the objectives of this 

work were: 

 

1. Study the impact of pressure (0.1, 300 and 600 MPa), extraction time (5, 17.5, and 30 

min) and ethanol concentration (0, 40, and 80%) on total compounds such as 

phenolics, flavonoids, betalains and anthocyanins from yellow prickly pear peel. 

Evaluate the antioxidant activity by DPPH, ABTS and FRAP methods and determine 

the total yields also in the extracts; 

 

2. Analyze each parameter by response surface methodology, determine the optimum 

extraction conditions and validate the models; 

 

3. Compare the experimental optimum values with Soxhlet extraction method; 

 

4. Evaluate the antibacterial activity of extracts obtained under optimum conditions 

against Escherichia coli and Listeria innocua. 
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2. Materials and Methods 
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2.1. Chemicals 

All chemicals used were of analytical grade. DPPH (2,2-diphenyl-1-picrylhydrazyl), 

ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)), Trolox (6-hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid) and quercetin were purchased form 

Sigma-Aldrich (Missouri, EUA). TPTZ (2,4,6-Tripyridyl-s-triazine), potassium 

persulfate and aluminium chloride were obtained from Acrōs Organics (New Jersey, 

USA). Methanol, citric acid, glacial acetic acid and monopotassium phosphate were 

supplied by Chem-Lab (Zedelgem, Belgium). Folin-Ciocalteu reagent, ampicillin 

sodium, sodium carbonate and dipotassium phosphate were acquired form AppliChem 

Panreac (Darmstadt, Germany). Gallic acid, iron (III) chloride hexahydrate, potassium 

chloride and sodium acetate were purchased form Panreac (Barcelona, Spain). 

Ammonium iron sulfate (II) was supply by Fisher Chemical (Leicestershire, UK). 

Hydrochloric acid was obtained from Scharlau (Barcelona, Spain). Ringer was acquired 

form Merck KGaA (Darmstadt, Germany) and Müller-Hinton agar form Oxoid LTD 

(Hanupshire, England). 

 

2.2. Peel residue 

Yellow prickly pear peels were kindly provided by the processing industry “Cactus 

Extractus Lda” from Beja. The fermented peels were dried at 40ºC in a laboratory 

incubator equipped with an internal fan, promoting air circulation until moisture content 

around 13±2% (dry basis). Dried samples were then frozen in liquid nitrogen, grounded 

in a mill (Moulinex, Indonesia), vacuum packaged and stored at -20ºC until used for the 

extractions. 

 

2.3. Extraction procedure 

High pressure extracts were performed using an industrial hydrostatic press equipment 

(Hiperbaric 55, Hiperbaric, Burgos, Spain) with a pressure vessel of 200 mm inner 

diameter and 2000 mm length and a maximum operation pressure of 600 MPa. The 

equipment was connected to a refrigeration unit (RMA KH 40 LT, Ferroli, San Bonifacio, 

Italy) that allowed to control the temperature of the input water used as a pressurizing 

fluid. An amount of 0.5 g of grounded residue was mixed with 20 mL of ethanol (0, 40, 

and 80%) in plastic bags, which were pressurized at 300 and 600 MPa during 5, 17.5, and 

30 min, at room temperature. Control experiments at 0.1 MPa were preformed alike but 
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without the application of pressure. All the variable combinations were tested according 

to a full 33 factorial design, which are presented Table 6. 

 

Table 6. Full 33 factorial experiment design with repetition of central point 3 times. 

Pressure (MPa) Time (min) Ethanol concentration (%) Nomenclature 

0.1 

5 
0 P0.1/t5/E0 

40 P0.1/t5/E40 
80 P0.1/t5/E80 

17.5 
0 P0.1/t17.5/E0 

40 P0.1/t17.5/E40 
80 P0.1/t17.5/E80 

30 
0 P0.1/t30/E0 

40 P0.1/t30/E40 
80 P0.1/t30/E80 

300 

5 
0 P300/t5/E0 

40 P300/t5/E40 
80 P300/t5/E80 

17.5 
0 P300/t17.5/E0 

40 P300/t17.5/E40 
80 P300/t17.5/E80 

30 
0 P300/t30/E0 

40 P300/t30/E40 
80 P300/t30/E80 

600 

5 
0 P600/t5/E0 

40 P600/t5/E40 
80 P600/t5/E80 

17.5 
0 P600/t17.5/E0 

40 P600/t17.5/E40 
80 P600/t17.5/E80 

30 
0 P600/t30/E0 

40 P600/t30/E40 
80 P600/t30/E80 

300 17.5 
40 
40 
40 

P600/t17.5/E40 
P600/t17.5/E40 
P600/t17.5/E40 

 

Soxhlet extraction was performed using the method reported by Manasathien et al. 

(2012). For the extraction, 3.75 g of residue were weighted and placed inside the thimble 

of the Soxhlet extraction apparatus with 150 mL of 40% ethanol. The extraction was 

carried out in a bath of silicone oil at 115ºC for 4 h, until the extraction was complete. 
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All the extracts were centrifuged at 15.000 rpm for 10 min at 4ºC (Thermo Fisher 

Scientific, Massachusetts, USA), filtered (Whatman Nº 1) and frozen at -80ºC until used 

for compounds analyses which were performed in 96-well microplates (0.77 cm length 

path) and read in a microplate reader (Microplate Spectrophotometric Multiscan Go, 

Thermo Scientific, USA). All analyses were performed in triplicate.  

 

2.4. Total phenolic content 

The Folin-Ciocalteu assay was used to determine the total phenolic content (Singleton et 

al., 1999). Folin reagent is a mixture of phosphomolybdic and phosphotungstic acids and 

when is in the presence of phenolic compounds (reducing agents) on a alkaline medium, 

forms a blue chromophore due the phosphotungstic-phosphomolybdenum complex 

(Blainski et al., 2013). 

For the analysis, 20 µL of each extract were mixed with 100 µL of 1:4 diluted Folin-

Ciocalteu reagent. After 4 min, 75 µL of sodium carbonate solution prepared in water 

(100 g/L) was added and allowed to react in the dark, at room temperature for 2 h, after 

which the reads were performed at 750 nm. For blanks, the 20 µL of each extract were 

replaced by 20 µL of water. A gallic acid (GA) stock solution (0.2 mg/mL) was used as 

a standard and a series of gallic acid solutions (0 - 0.2 mg/mL) were prepared to establish 

the standard curve (y=0.0062x+0.0130; R2=0.9996) (Figure A1 from Appendix A). 

Results were expressed as milligrams of gallic acid equivalent per gram of dried weight 

(mg GA Eq./g DW). 

 

2.5. Total flavonoids 

Total flavonoid content was determined using the Dowd method described by Cruz et al. 

(2014). According to Magalhães et al. (2012), this spectrophotometric method relies on 

the detection at 415 nm, yellow colored complexes formed between aluminum (III) 

(aluminum trichloride) and the carbonyl and hydroxyl groups of flavonoids, in alkaline 

medium. 

For the analysis, 150 µL of each extract were mixed separately with 150 µL of an 

aluminum trichloride (AlCl3) solution prepared in methanol (0.2 mg/mL). For blanks, the 

150 µL of aluminum trichloride solution were replaced by 150 µL of methanol. All 

reactions were kept in the dark for 10 min and the absorbance was read at 415 nm. A 

quercetin (QR) stock solution (0.025 mg/mL) prepared in absolute ethanol was used as a 
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standard and several quercetin solutions (0 – 0.025 mg/mL) were prepared to establish the 

standard curve (y=0.0245x-0.0160; R2 =0.9842) (Figure A2 from Appendix A). Results 

were expressed as milligrams of quercetin equivalent per gram of dried weight (mg QR 

Eq./g DW). 

 

2.6. Total condensed tannin  

The condensed tannin content of extracts was determined by the vanillin method reported 

by Naczk et al. (2000). Price et al. (1978) reported the vanillin assay involves the reaction 

between vanillin, an aromatic aldehyde, and flavanols, the monomeric units of tannins, 

forming a red adduct that has a maximum absorbance at 500 nm. 

For the analysis, 50 µL of each extract was mixed with 150 µL of vanillin (1% in 7 M 

H2SO4) in an ice bath. The reaction was maintained in the dark, at room temperature, for 

15 min and the absorbance was read at 500 nm. Absolute ethanol (200 µL) was used as 

blank. A catechin (CT) stock solution (0.08 mg/mL) prepared in absolute ethanol was 

used as a standard and a series of catechin solutions (0 - 0.08 mg/mL) were prepared to 

establish the standard curve (y=0.0046x+0.0388; R² = 0.9785) (Figure A3 from Appendix 

A). Results were expressed as milligrams of catechin equivalent per gram of dried weight 

(mg CT Eq./g DW). 

 

2.7. Total betacyanins and betaxanthins 

Total betacyanins (BC) and betaxanthins (BX) content were determined using the method 

reported by Stintzing et al. (2005) with some minor adaptations. For this analysis, 275 μL 

of extract were mixed with 25 μL of McIlvaine buffer (pH 6.5, citrate-phosphate) to 

obtain absorption values of 0.9 ≤ A ≤ 1.1 at their maximum absorption, mixed for 10s and 

read at 480 and 538 nm for betaxanthins and betacyanins, respectively. For blanks, the 

275 µL of extracted were replaced by water. Concentrations were calculated using the 

Equation 1 reported by Castellanos-Santiago and Yahia (2008). 

 

� = � × �� × �� × 1000 × �
0.77 × � × �       (1) 

 

Where A is the observance difference between samples and blank; MW and ε is the 

molecular weights and molar extinction coefficients of betanin (BT) (MW=550g/mol; 

ε=60000 L/mol.cm in water; 538 nm) and indicaxanthin (IN) (MW=308g/mol; ε=48000 
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L/mol.cm in water; 480 nm) for quantification of betacyanins and betaxanthins, 

respectively; m and V is the mass of residue (0.5 g) and the volume of extract in liters, 

respectively. The parameter df is the dilution factor and 0.77 is the path length in 

centimeters for microplate reader. The results were expressed as milligrams of betanin 

equivalent per gram of dried weight (mg BT Eq./g DW) for betacyanins and as milligrams 

of indicaxanthin equivalent per gram of dried weight (mg IN Eq./g DW) for betaxanthins. 

 

2.8. Total monomeric anthocyanin 

Monomeric anthocyanin content was determined using a pH differential method (Lee et 

al., 2005). The pH differential method is based on the reversible structural change of the 

anthocyanin chromophore between pH 1.0 and 4.5, having a colored pink oxonium form 

and a colorless hemiketal form, respectively for each pH. These difference in absorbance 

(at the maximum absorbance) is proportional to the concentration of monomeric 

anthocyanin (Lee et al., 2005). 

For the analysis, 60 µL of each extract was mixed with 240 µL of a potassium chloride 

solution (0.025 M, pH 1.0) and 240 µL of a sodium acetate solution (0.4 M, pH 4.5) 

separately. Solutions were prepared with water and pH was adjusted with concentrated 

HCl. After 30 min, the absorbance was measured at 520 and 700 nm. For blanks, the 60 

µL of extract were replaced by 60 µL of water. Pigment content was calculated using the 

Equations 2 and 3. 

 
� = (���� − ����)�� �.� − (���� − ����)�� �.�      (2) 

 

� = � × �� × �� × 1000
0.77 × �       (3) 

 
Where, A is total difference of observances measured at 520 and 700 nm at pH 1.0 and 

4.5 without blanks; MW and ε is the molecular weights and molar extinction coefficients 

of cyanidin-3-glucoside (MW=449.2 g/mol and ε= 26.900 L/mol.cm) for quantification 

of monomeric anthocyanin. The parameter df is the dilution factor and 0.77 is the path 

length in centimeters for microplate reader. Results were expressed as milligrams of 

cyanidin-3-glucoside (CD) equivalent per gram of dried weight (mg CD Eq./g DW). 

 

2.9.  Total antioxidant activity  
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Antioxidant activity was performed using free radical DPPH scavenging capacity, radical 

cation ABTS•+ scavenging activity and ferric reducing antioxidant power (FRAP) assays 

according to the methods described by Bobo-García et al. (2015), Cardador-Martinez et 

al. (2011) and Benzie and Strain (1996), respectively.  

2.9.1. DPPH assay 

The DPPH radical is stable and has a dark purple color with a maximum absorbance at 

515 nm. When reduced, the radical originates its corresponding hydrazine (pale yellow 

color) in the presence of a substance capable of donating a hydrogen atom, losing color 

and resulting in a decreased in absorbance (Huang et al., 2005). 

For this analysis, 20 µL of extract were mixed with 180 µL of DPPH reagent (150 µM) 

in the dark at room temperature. The absorbance of mixture was read at 515 nm after 40 

min. Blanks and controls were performed with 20 µL of water more 180 µL of solvent or 

180 µL of DPPH reagent, respectively. A Trolox stock solution (0.175 mg/mL) was 

prepared in ethanol 80% was used as a standard and a series of Trolox solutions (0 - 0.122 

mg/mL) were prepared to establish the standard curve (y=0.5317x+4.4419; R2=0.9901) 

(Figure A4 from Appendix A) of the percentage of DPPH inhibition versus the 

concentration of the Trolox solutions. The percentage of DPPH inhibition was determined 

using the Equation 4. 

 

% DPPH inhibition = '1 − ( � − �)*+,-
�./,01/* − �)*+,-

23 × 100      (4) 

 
Where A is the absorbance of sample or Trolox solution and Ablank and Acontrol are the 

absorbance of the blanks and controls. Results were expressed as milligrams of Trolox 

equivalent per gram of dried weight (mg Trolox Eq./g DW). 

2.9.2. ABTS assay 

In this method, the monocationic radical of ABTS•+ is generated by oxidation of ABTS 

by potassium persulfate, resulting in a blue-green chromophore, which is then reduced in 

the presence of hydrogen or electron donor antioxidants. This reduction causes a 

discoloration that can be converted into a ABTS+ inhibition that is proportional to the 

antioxidant concentration (Re et al., 1999). For this analysis, ABTS reagent was obtained 

by the reaction of 50 mL of 7 mM ABTS with 25 mL of 2.45 mM potassium persulfate 

for 24h under constant mixing in the dark, being then diluted to an absorbance of 
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0.80±0.02 at 734 nm. A volume of 200 µL of diluted ABTS•+ solution was mixed with 

20 µL of extract for 6 min in the dark, at room temperature, and the absorbance was read 

at 734 nm. Blanks and controls were performed with 20 µL of water and 200 µL of solvent 

or 200 µL of DPPH reagent, respectively.  A Trolox stock solution (0.175 mg/mL) was 

prepared in ethanol 80% was used as a standard and a series of Trolox solutions (0 - 0.175 

mg/mL) were prepared to establish the standard curve (y=0.7767x+0.3057; R2=0.9904) 

(Figure A5 from Appendix A) of the percentage of ABTS inhibition versus the 

concentration of the Trolox solutions. The percentage of ABTS inhibition was determined 

using the Equation 5.  

 

% ABTS inhibition = '1 − ( � − �)*+,-
�./,01/* − �)*+,-

23 × 100      (5) 

 
Where A is the absorbance of sample or Trolox solution and Ablank and Acontrol are the 

absorbance of the blanks and controls. Results were expressed as milligrams of Trolox 

equivalent per gram of dried weight (mg Trolox Eq./g DW). 

2.9.3. FRAP assay 

The ferric salt is used as the oxidant and is prepared by mixing TPTZ and iron (III) 

chloride hexahydrate in acetate buffer. A FRAP unit is defined as the reduction of 1 mole 

of Fe (III) to Fe (II), leading to the formation of a dark blue complex (Huang et al., 2005). 

FRAP reagent was prepared daily mixing 50 mL of acetate buffer (300 mM, pH 3.6), 2.5 

mL of TPTZ 10 mM (0.031g of TPTZ dissolved with 10 mL of 40 mM HCl at 50ºC) and 

2.5 mL of ferric chloride 20 mM (0.054g of iron (III) chloride hexahydrate dissolved with 

10 mL of water), which was warmed at 37ºC for 10 min before used. Acetate buffer was 

prepared mixing 3.1 g of sodium acetate trihydrate with 16 mL of glacial acetic acid and 

completed for 1 L with water. 

For the analysis, 280 µL of this solution were mixed with 20 µL of extract, incubated at 

37ºC for 30 min and absorbance was read at 595 nm. For blank, the 20 µL of each extract 

were replaced by 20 µL of water. An ammonium iron (II) sulfate (AIS) stock solution 

(0.39 mg/mL) was used as a standard and a series of solutions (0 - 0.392 mg/mL) were 

prepared to establish the standard curve (y=0.0031x-0.0200; R2=0.9993) (Figure A6 from 

Appendix A). Results were expressed as milligrams of ammonium iron (II) sulfate 

equivalent per gram of dried weight (mg AIS Eq./g DW). 
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2.10. Total extraction yields 

Total extraction yields were determined according to the method described by Zhang et 

al. (2007) through Equation 6.  

 

TY (%) = �;<< =� >??@ ?ABC;DB
�;<< =� C?<E�F? × 100      (6) 

 

One milliliter of each extract was evaporated to remove the ethanol using a rotary 

evaporator (Büchi, Flawil, Switzerland), frozen at -80°C during 24 h and then freeze-

dried for 60 h (Vitris Benchtop K, Pennsylvania, USA) to determine the mass of residue. 

 

2.11.  Antibacterial activity 

Antibacterial activity was tested against Escherichia coli ATCC 25922 and Listeria 

innocua ATCC 33090 (Liofilchem, Roseto degli Abruzzi (TE), Italy) using the Kirby-

Bauer well-diffusion method reported by Biswas et al. (2013) with some adaptations to 

use a biosafety cabinet (Telstar Bio II Advance, Terrassa, Spain) (Al-Zoreky, 2009). Each 

bacteria strains was cultivated onto nutrient agar plates and incubated at 37 ºC for 24 and 

72h for Escherichia coli and Listeria innocua, respectively, to obtain the colonies. After 

incubation, colonies were selected with a sterile disposable inoculating loop and 

transferred to a glass tube of sterile physiological saline and vortex thoroughly. Each 

bacterial suspension turbidity is then compared to that of the 0.5 McFarland standard 

solution (containing about 1.5 × 108 CFU/mL). After incubation, the bacterial suspensions 

were standardized by adjusting to the scale of 0.5 MacFarland (1×108 CFU/mL), which 

corresponds to an absorbance between 0.08-0.10 at 625 nm. Plates with 13.5 cm of 

diameter were filled 30 mL of Müller-Hinton medium prepared according to the 

instruction on the fabricant. After 1 day, all plates were inoculated with the adjusted test 

bacterium with a sterile cotton swab streaking over the entire sterile agar surface and 

rotating the plate to ensure even distribution of the bacteria with a final swab around the 

rim. Then, 6 mm diameter wells have been perforated using a sterile cork borer, after 

witch 50 µL aliquots of each extract (1 mg/µL) was dispensed into each well and petri 

plates were incubated for 24 h at 37ºC. Ampicillin (10µg/100µL) prepared in 0.1 M of 

potassium phosphate buffer, pH 8.0 and water were used as positive and negative 

controls, respectively. The halos formed by inhibition zones surrounding wells were 

considered as a measurement of the antimicrobial activity and the inhibition zones 
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diameters (with wells) were measured with a ruler (error ± 0.5 mm) and results reported 

in millimeters. 

 

2.12.  Experimental design, statistical analysis and models validation 

The experimental extraction methodology was developed following a Box–Behnken 

design formed by a full 33 design, where experiments were conducted in a randomized 

order and data were analyzed by response surface methodology (RSM). The effect of 0.1, 

300 and 600 MPa, applied during 5, 17.5 and 30 min using as solvent 0, 40 and 80% of 

ethanol were analyzed on the total phenolic compounds, flavonoids, betalains, 

anthocyanins, antioxidant activity (DPPH, ABTS and FRAP methods) and total yields. 

Error assessment was based on replication of the central point (300 MPa, 17.5 min, 

ethanol 40%). The output results were fitted to a second-order polynomial equation 

(quadratic model), according to the model in Equation 7. 

 

    H = I� + K ILAL
M

LN�
+ K ILLAL�

M

LN�
+ K ILOALAO

M

LPON�
          (7) 

 

Where Y is the predicted response, β0 is the model intercept coefficient, βi, βii and βij are 

the linear, quadratic and linear interactive coefficients, respectively and xi and j 

represent the independent variables. The regression coefficients (individual linear, 

quadratic and interaction terms) were determined using analysis of variance. The 

regression coefficients were used to generate 3-D surface plots from the fitted polynomial 

equation to obtain the relationship between the response and experimental levels of each 

factor and to achieve the optimum conditions for each parameter analyzed. Analysis of 

variance (ANOVA) was performed for response variable using the full models where p-

values indicated whether the terms were significant (p<0.05) or not (p>0.05). To validate 

the models, additional extraction trials performed in triplicate were carried out at the 

predicted optimal conditions and the experimental data were compared to the values 

predicted by the regression model. Antibacterial activity was performed in triplicate only 

for these extraction conditions and were analyzed by ANOVA. Antibacterial activity and 

comparison between HPE and Soxhlet extractions was performed using one-way 

ANOVA followed by Tukey's HSD test at a 5% level of significance. 

 

 



 

26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results and Discussion 
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3.1. Total phenolic compounds, flavonoids and tannins 

The highest extraction yield obtained for total phenolics was 26.30±1.06 mg GA Eq./g 

DW, for the combination P600/t17.5/E0 (see Appendix B, and some representative 

figures are in Appendix C). This represents an increase of 14% in relation to extractions 

performed in same conditions but at atmospheric pressure (P0.1/t17.5/E0). High pressure 

impact was significant (F value of 24). In general, the use of high pressure (300 MPa and 

600 MPa) conduced to an increase in the same extraction of total phenolics of 11% when 

compared to extraction performed at 0.1 MPa. 

When the highest extraction yield is compared to the extraction performed in the same 

conditions but during 5 min (P600/t5/E0) the extraction of total phenolic compounds 

increase 22%. Extraction time had not a significant effect in the extraction (p<0.05), but 

phenolic compounds extraction increased 9% and 4% for extractions performed during 

17.5 min and 30 min when compared to extraction performed for 5 min. The ethanol 

concentration was the independent variable with the highest impact (F values of 326 and 

173 for linear and quadratic effects), following the pressure (Table 7).  

 

Table 7. Analyses of variance for linear, quadratic and crossed effects of pressure, 

extraction time and ethanol concentration at a significance level of 95% confidence 

for total phenolic compounds and flavonoids models. The significant coefficients in 

each case are written in bold. 

ANOVA 
Phenolic compounds Flavonoids 

F p F p 

P (L) 24.07 0.00 0.57 0.45 
P (Q) 0.31 0.58 0.58 0.45 
t (L) 3.21 0.08 2.01 0.16 
t (Q) 2.10 0.15 1.57 0.21 
E (L) 325.61 0.00 170.60 0.00 
E (Q) 173.95 0.00 67.76 0.00 

P (L) x t (L) 1.91 0.17 0.04 0.84 
P (L) x E (L) 9.08 0.00 3.41 0.07 
t (L) x E (L) 1.36 0.25 0.76 0.38 

R2 0.875 0.757 
R2 adjst 0.861 0.730 

L: linear; Q: quadratic; P: Pressure (MPa); t: time (min); E: Ethanol percentage (%). 
 

When ethanol (40%) was used as extraction solvent, the extraction yields increased 4%, 

when compared to the extractions performed in the same conditions but with water, while 
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ethanol 80% lead to a decreased of extraction yield of 35%. However, at this ethanol 

concentration (80%), the increase of high pressure as well as the extraction time lead to 

higher extractions (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

For total flavonoids the highest extraction yield obtained was 2.19±0.04 mg QR Eq./g 

DW, for the combination P300/t5/E40 (see Appendix B, and some representative figures 

are in Appendix D), which means an increase of 16% in relation to extractions performed 

at 0.1 MPa. High pressure impact was not significant (p<0.05), but in general, 300 and 

600 MPa conduced to an increase of the extraction of total flavonoids of 7% and 3%, 

respectively, when compared to extraction performed at 0.1 MPa. When results from the 

highest extraction yield were compared to the extraction performed in the same conditions 

but during 5 min, the total flavonoids extraction increase 110%. Similar to phenolic 

compounds, the ethanol concentration was the independent variable with the highest 

impact on extraction of flavonoids (F values of 171 and 68 for linear and quadratic effects) 

(Table 7). In general, when ethanol 40% and 80% were used as extraction solvent, the 

extraction yields increased 70%, when compared to the extractions performed in the same 

conditions with water. Figure 2 shows that when ethanol 80% was used, the highest 

extraction yields of flavonoids were obtained for higher high pressure, being necessary 

only necessary 5 min to reach the maximum extraction, meaning that extraction time had 

not a significant effect. 

 

Figure 1. Response surfaces of phenolic compounds extraction for ethanol 80%. 
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Therefore, to assure high yields of phenolic compounds and flavonoids low ethanol 

concentration and intermedium pressures should be used. In relation to time variable, 

intermedium extraction times will be preferred for extraction of phenolic compounds, and 

short extraction times are sufficient to reach maximum extraction values for flavonoids. 

Jayaprakasha et al. (2008) reported that 40 to 80% of ethanol in water were more efficient 

on the extraction of phenolic compounds from grape fruit and orange that water and pure 

ethanol. Shouqin et al. (2005) reported that flavonoids from propolis were more soluble 

in ethanol than in water, due to the weaker and stronger polarities of ethanol and water, 

respectively. Also verified that when pressure was increased from 100 to 600MPa, the 

extraction yield of flavonoids also increased from 4.19% to 4.73% using ethanol 75% for 

a extraction time of 5 min. Extraction time did not had an impact on the extraction, which 

means duration of extraction had no close relationship to the increase in the extraction. 

Prasad et al. (2009b) verified that when the ethanol concentration increased between 25 

to 50%, the phenolic compounds extracted from longan fruit pericarp also increased, but 

with ethanol 75% the concentration decreased. Extraction time also did not had a 

significant impact on the extraction. These authors also studied high pressure effect on 

total phenolics extracted from longan fruit pericarp and obtained an increase of 44% when 

500 MPa were used. The main reason for the extraction of phenolics and flavonoids 

increase with pressure increase can be related with the cell membrane breakdown. The 

influx of greater amounts of solvent to the inner membranes can facilitate the extraction 

of compounds (Casquete et al., 2015). According to the phase behavior theory, the 

0 

 
Figure 2. Response surfaces of flavonoids extraction for ethanol 80%. 
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solubility of phenolic compounds and flavonoids increase as the pressure increases and 

accordingly to the mass transfer theory, pressurized cells have an increased permeability. 

Therefore, the higher the extraction pressure is more solvent can enter into the cells and 

the more compounds can permeate out the cell membrane  (Shouqin et al., 2005). Phenolic 

compounds exhibit extensive free radical scavenging activities through their reactivity as 

hydrogen or electron-donating agents, and metal ion chelating properties. High pressure 

assisted extraction can also cause enhancement of chemical reactions in the cells, 

deprotonating charged groups, and break of salt bridges and hydrophobic bonds, resulting 

in conformational changes and denaturation of proteins and then rendering phenolic 

compounds (many times associated with proteins) more available to extraction (Oey et 

al., 2008; Prasad et al., 2009b). Moreover, may provide the possibility of inactivating 

degrading enzymes which may account for higher extraction yield and antioxidant 

activity compared to other methods (Oey et al., 2008; Prasad et al., 2009b). 

Total condensed tannins were determined for all extraction conditions, but no quantifiable 

amounts were detected in prickly pear peels extracts. According to Cardador-Martinez et 

al. (2011) this fruit is typically rich in tannins (0.3-1.4 mg CT Eq./g DW), however the 

sample used in this work was a fermented by-product. The fermentation, possibly led to 

the degradation or transformation of initial tannins present in the fresh fruit. 

 

3.2. Total betalains and monomeric anthocyanins 

Betalains were quantified in terms of red-violet betacyanins and yellow-orange 

betaxanthins. Red-violet betacyanins were not detected when compared to yellow-orange 

betaxanthins, which was expected since the prickly pear peels analyzed were yellow. The 

highest extraction yield of betaxanthins (0.25±0.01 mg IN Eq./g DW) was obtained for 

the combination at P300/t5/E40 (see Appendix B, and some representative figures are in 

Appendix E), which represented an increase of 7% and 27% in relation to extractions 

performed in same conditions at atmospheric pressure (P0.1/t5/E40) or in the same 

conditions but using water as solvent (P300/t5/E0), respectively. Concerning 

betaxanthins extraction, according to the results presented in Table 8, the ethanol 

concentration had the highest effect (F values of 1452 and 1234). High pressure and 

extraction time effects were significant presenting F values of 18 and 7, respectively. 
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Table 8. Analyses of variance for linear, quadratic and crossed effects of pressure, 

extraction time and ethanol concentration at a significance level of 95% confidence 

for total betaxanthins model. The significant coefficients in each case are written in 

bold. 

 

 

 

 

 

 

 

 

 

L: linear; Q: quadratic; P: Pressure (MPa); t: time (min); E: Ethanol percentage (%). 
 

Visually, the aqueous and 40% ethanolic extracts were orange and 80% ethanolic extracts 

were yellow (Figure 3).  

          Ethanol 0%     Ethanol 40%     Ethanol 80% 

 

 

These color differences were due to higher concentration of betaxanthins on the aqueous 

and 40% ethanolic extracts than on 80% ethanolic extracts. The 40% ethanol 

ANOVA 
Betaxanthins 

F p 

P (L) 0.68 0.41 
P (Q) 18.49 0.00 

t (L) 7.24 0.01 

t (Q) 0.75 0.39 
E (L) 1452.25 0.00 
E (Q) 1234.21 0.00 

P (L) x t (L) 0.77 0.38 
P (L) x E (L) 86.10 0.00 

t (L) x E (L) 0.98 0.33 
R2 0.973 

R2 adjst 0.970 

Figure 3. Extracts color performed during 30 min using water (left column), ethanol 
40 (middle) and 80% ethanol (right) at 0.1 (top), 300 and 600 MPa (bottom). 
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concentration increased the betaxanthins extraction in 14% when compared with 

extractions performed using water, but in relation to 80% ethanol concentration, the 

extraction of betaxanthins decreased, being preferable low concentrations to ensure 

higher yields of betaxanthins. Azeredo (2009) reported that betalains are almost 

exclusively water soluble, but they are slightly soluble in ethanol (Stintzing and Carle, 

2008). Fernandez-Lopez et al. (2012) reported that a 60% ethanol concentration increased 

betaxanthin extraction in relation to water or ethanol. This information might provide a 

possible explain for the impact of the ethanol concentration on the extraction of 

betaxanthins and the concentrations obtained are in accordance with those reported by 

Castellanos-Santiago and Yahia (2008), which used water (0.12±0.01 mg IN Eq./g DW 

to 0.44±0.03 mg IN Eq./g DW) and citrate-phosphate buffer (0.09±0.01 mg IN Eq./g DW 

to 0.84±0.12 mg IN Eq./g DW). In relation to high pressure, 300 MPa conduced to an 

increase of betaxanthins content of 13%, when compared to 0.1 MPa, however 600 MPa 

decreased slightly the total extraction yields. No literature was found about the extraction 

of betalains by high pressure. For the extraction time, extractions performed for 17.5 min 

increase the extractions in 5%, but extraction performed for 30 min decrease the 

extractions. However, it is worthy to mention that extractions performed with ethanol 

80%, the increase in pressure lead to higher extraction (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

During 5, 17.5 min and 30 min, at ethanol 80%, the extractions increase 47% and 52%, 

69% and 22%, and 74% and 81%, respectively for 300 MPa and 600 MPa, when 

compared to those performed in the same conditions but with water.  

Figure 4. Response surfaces of betaxanthins extraction for ethanol 80%. 
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Total anthocyanins were not detected in any cactus pears samples but betalains were 

quantified. Lee et al. (2009) analyzed and quantified anthocyanins in cactus pears (4.7 

mg cyanidin/g DW), but anthocyanins and betalains are mutually exclusively compounds, 

i.e., when one is present the other is not (Stafford, 1994; Khan and Giridhar, 2015). 

 

3.3. Total antioxidant activity 

The highest extraction yields of 15.34±0.45 mg Trolox Eq./g DW, 16.12±0.74 mg Trolox 

Eq./g DW and 52.58±0.54 mg AIS Eq./g DW were obtained using P300/t30/E40, 

P300/t17.5/E40 and P300/t30/E40, respectively for ABTS, DPPH and FRAP methods 

(see Appendix B, and some representative figures are in Appendices F to H). These values 

were 21%, 19% and 13% higher than the ones obtained in the same ethanol concentration 

and extraction times but at atmospheric pressure, respectively for ABTS, DPPH and 

FRAP methods. High pressure also had a significant impact when ABTS and FRAP 

methods were used (F values of 18 and 5 for ABTS, and 22 and 38 for FRAP on linear 

and quadratic effects, respectively) (Table 9). 

 

Table 9. Analyses of variance for linear, quadratic and crossed effects of pressure, 

extraction time and ethanol concentration at a significance level of 95% confidence 

for ABTS, DPPH and FRAP total antioxidant models. The significant coefficients 

in each case are written in bold. 

ANOVA 
ABTS DPPH FRAP 

F p F p F p 

P (L) 18.42 0.00 0.01 0.92 22.34 0.00 

P (Q) 5.96 0.02 1.89 0.17 37.79 0.00 

t (L) 12.40 0.00 4.80 0.03 10.72 0.00 

t (Q) 1.72 0.19 0.23 0.63 30.67 0.00 

E (L) 166.05 0.00 242.35 0.00 209.46 0.00 

E (Q) 302.43 0.00 128.17 0.00 280.84 0.00 

P (L) x t (L) 4.33 0.04 10.17 0.00 12.54 0.00 

P (L) x E (L) 0.81 0.37 9.72 0.00 0.33 0.56 
t (L) x E (L) 0.17 0.69 0.16 0.69 0.37 0.55 

R2 0.863 0.836 0.885 
R2 adjst 0.848 0.817 0.872 

L: linear; Q: quadratic; P: Pressure (MPa); t: time (min); E: Ethanol percentage (%); ABTS, DPPH and 
FRAP: antioxidant activity by the ABTS, DPPH and FRAP methods. 
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In general, the pressure of 300 MPa conduced to an increase of the total antioxidant 

activity between 6-17% when compared to extractions performed at 0.1 MPa. Using a 

pressure of 600 MPa the total antioxidant activity increased between 9-11%.  

When the highest extraction yields were compared to the corresponding extractions 

performed at the same conditions but during an extraction time of 5 min, antioxidant 

activity increased 34%, 30% and 3% for ABTS, DPPH and FRAP methods, respectively. 

Extraction time had the lowest effect but still significant for all methods presenting F 

values between 5 and 31. Globally, the extracts performed during 17.5 min and 30 min 

increased the antioxidant activity in 7% and 9% (ABTS), 0.4% and 9% (DPPH), and 9% 

and 6% (FRAP) respectively, when compared to extractions performed during 5 min. 

Also, when the highest yields were compared to the ones obtained in the same pressure 

and extraction times but using water as extraction solvent, the antioxidant activity 

increased 38%, 74% and 16% for ABTS, DPPH and FRAP methods, respectively. 

Antioxidant activity was significantly affected mainly by the ethanol concentration since 

F values were between 166 and 302 for ABTS, 242 and 128 for DPPH, 209 and 280 for 

FRAP assays for the linear and quadratic effects, respectively (Table 9). In general, when 

ethanol 40% was used, the antioxidant activity increased 17%, 5% and 11% 

comparatively to extractions performed with water, but when ethanol 80% was used, 

antioxidant activity decreased 31%, 30% and 25 % for ABTS, DPPH and FRAP methods, 

respectively. Therefore, high extraction time and intermediate ethanol concentration 

allowed higher antioxidant activity quantifications. In relation to high pressure variable, 

higher pressures will be preferred according ABTS method but only intermediate 

pressures will be necessary to improve antioxidant activity according DPPH and FRAP 

methods (Figure 5a-c). 
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The amount of phenolic compounds increased with pressure increase, which in turn lead 

to an increase of antioxidant effects. The reduction of DPPH radical by the peel extracts 

has been reported by the presence of phenolic compounds, which easily reduce protons. 

Their capacity varies from one compound to another and but there is a synergy between 

them and/or other constituents that might be present in the extracts (Casquete et al., 2015). 

ABTS and DPPH antioxidant values were relatively similar, since both assays are based 

in the same principal: stabilization of the radical oxidizing reagent. Comparing the ABTS 

and DPPH values with the individual FRAP counterparts, the last ones were higher, due 

to the fact of FRAP assay relies on a different principal than the ABTS and DPPH assays: 

the reduction of Fe (III) of the FRAP reagent to Fe (II). Casquete et al. (2015) reported 

that 300 MPa, 10 min and 500 MPa, 3 min conduced to higher quantifications of 

a) 

c) 

b) 

Figure 5. Response surfaces of a) ABTS antioxidant activity, b) DPPH antioxidant 
activity, c) FRAP antioxidant activity for ethanol 80%. 
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antioxidant activity (DPPH method) in orange and lemon peels, respectively. These 

authors obtained similar increases to ours, of 14 and 25% in the antioxidant activity of 

orange and lemon peels, respectively.  

 

3.3. Total extraction yields 

Total extraction yields were main significantly affected by the ethanol concentration since 

F values were 369 and 243 for linear and quadratic effects, respectively (Table 10). 

 

Table 10. Analyses of variance for linear, quadratic and crossed effects of pressure, 

extraction time and ethanol concentration at a significance level of 95% confidence 

for total yields model. The significant coefficients in each case are written in bold. 

 

 

 

 

 

 

 

 

 

 
L: linear; Q: quadratic; P: Pressure (MPa); t: time (min); E: Ethanol percentage (%). 
 

However, high pressure effects also were significant presenting F values of 9.86 and 

13.39 for linear and quadratic effects, while extraction time effects were not significant, 

meaning that an extraction performed during 5 min is sufficient to reach the maximum 

extraction yield. The highest total extraction yield (48.11±2.53%) was obtained for the 

combination at P300/t5/E40 (see Appendix B, and some representative figures are in 

Appendix I), which represented an increase of 12% and 17% in relation to extractions 

performed in same conditions at atmospheric pressure (P0.1/t5/E40) and in the same 

conditions with water (P300/t5/E0), respectively. In general, when ethanol 40% was used 

the extraction yields increased 6% comparatively to extractions performed with water, 

but when an 80% ethanol concentration was used the extracting yields decreased 32%. 

This might be related to the low solubility of the several compounds on the extraction 

ANOVA 
Total Yields 

F p 

P (L) 9.86 0.00 

P (Q) 13.39 0.00 

t (L) 0.00 0.98 
t (Q) 0.30 0.59 
E (L) 369.22 0.00 
E (Q) 243.25 0.00 

P (L) x t (L) 2.56 0.11 
P (L) x E (L) 30.90 0.00 

t (L) x E (L) 0.96 0.33 
R2 0.897 

R2 adjst 0.886 
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solvent or ethanol concentrations higher than 40% may affect the composition or quality 

of the compounds. Similar results were found by Jun (2009) on the total extraction yields 

of caffeine from tea leafs, where the maximum extraction yield was obtained for 

intermedium ethanol concentrations (50%). From this ethanol concentration, authors 

verified that increasing the ethanol concentration, the extraction yields decreased. 

However, when 80% ethanol was used as solvent (Figure 6), the total extraction yields 

increased when the pressure increased up to intermedium values regardless the extraction 

time used. 

 

 

 

 

 

 

 

 

 

 

 

Concerning the pressure, the 300 MPa pressure conduced to an increase in the extraction 

of total extraction yields of 6%. Same increase of 6% was obtained when an ethanol 

concentration of 40% was used, compared with extractions performed using water. Prasad 

et al. (2009b) studied the effect of high pressure extraction upon extraction yield, total 

phenolic content and antioxidant activity of longan fruit pericarp. These authors also 

observed that extraction yield was influenced by high pressure treatment, increasing more 

3% when compared to conventional extraction, and required shorter extraction time. As 

mention above, the higher pressure is, the more solvent can enter into the cell and the 

more compounds can permeate the cell membrane increasing also total extraction yields. 

The differential pressure between the cell interior and the exterior of cell membranes is 

so large that it will lead to rapid permeation. Moreover, the disruption of cellular walls 

and hydrophobic bonds in the cell membrane can increase the rate of mass transfer and 

Figure 6. Response surfaces of total extraction yields for ethanol 80%. 
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enhance solvent penetration into the cells (Oey et al., 2008). Therefore, lower ethanol 

concentrations and intermediate pressures increased total extraction yields. 

 

3.4. Models fit and adequacy 

In general, the predict values were in good agreement with the experimental results. 

Experimental and predicted values differed in average less than 6%, except for the models 

developed for flavonoids and antioxidant activity performed by DPPH method, where 

values differ in average 9 and 10% (see Appendix B), indicating that RSM is satisfactory 

and accurate.  

The coefficient of determination (R2) and adjusted coefficient of determination (R2
ajust) 

was calculated for all models by analysis of variance and are reported in the (Table 7, 

Table 8, Table 9 and Table 10). The coefficient of determination gives the total variation 

proportion of the model-predicted response, i.e., the higher the R2 is, the higher will be 

the satisfactory adjustment of the predicted values of the quadratic model to the 

experimental data (Prakash Maran and Manikandan, 2012). Betaxanthins model 

presented a very strong correlation (R2=0.973), meaning that only 2.7% of the 

experimental values were not described by the model. The total phenolic compounds, 

antioxidant activity methods (ABTS, DPPH and FRAP) and extraction yields models 

presented a modest correlation (R2 of 0.875, 0.863, 0.836, 0.885 and 0.897, respectively), 

indicating that only 12.5%, 13.7%, 16.4%, 11.5% and 10.3% of experimental values were 

not described by the model, respectively. Flavonoid model presented the lowest 

correlation (R2=0.757), meaning that the model only explain 75.7% of the obtained 

results. Despite being modest, these are considered strong correlations (Mukaka, 2012). 

The second parameter (R2
ajust) evaluate the model adequacy and fit and corrects the R2 

values relatively to the size of the sample and to the number of terms in the model 

(Prakash Maran and Manikandan, 2012). In all models the R2
ajust parameter was very close 

to the corresponding R2 values and models showed a high fit and adequacy to 

experimental data since all the developed models could explain more that 73% of the 

experimental values. Particularly for betaxanthins model, it explains 97% of total 

variation. Consequently, the regression models defined well the true behavior of the 

system representing efficiently the experimental data. 

The coefficient of variation (CV) measures the relative dispersion of the experimental 

results from the one's predictions and also were calculated (Table 11). The CV-values 
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were lower than 10% with few exceptions and according to Koocheki et al. (2009), the 

CV should not surpass 10% to express a good precision and repeatability of the conducted 

experiments. Thus, the conducted experiments presented a good precision and 

repeatability. The best method to evaluate the antioxidant activity of the prickly pear peels 

was the FRAP assay, because model presented higher R2 and R2
ajust values and the lowest 

CV values. 

 

Table 11. Coefficient of variance for all experimental results (%). 

Nomenclature PC FL BX ABTS DPPH FRAP TY 

P0.1/t5/E0 1.9 5.0 0.8 3.6 12.1 0.0 1.4 
P0.1/t5/E40 2.7 2.4 0.9 4.6 8.0 1.7 2.3 
P0.1/t5/E80 4.3 2.3 2.0 5.2 4.1 1.5 2.8 

P0.1/t17.5/E0 1.0 4.3 1.2 0.6 5.6 0.3 1.1 
P0.1/t17.5/E40 7.1 0.9 2.6 7.0 4.6 0.5 1.1 
P0.1/t17.5/E80 6.4 1.6 1.9 6.6 9.8 2.9 2.7 

P0.1/t30/E0 0.9 5.4 0.2 2.9 6.3 1.1 8.4 
P0.1/t30/E40 3.4 3.3 2.0 7.0 2.7 2.5 1.2 
P0.1/t30/E80 3.4 3.4 7.3 5.4 1.4 1.3 14.2 
P300/t5/E0 0.5 4.4 0.8 7.3 2.1 3.0 1.2 

P300/t5/E40 3.1 5.0 4.2 0.3 4.0 4.6 5.3 
P300/t5/E80 0.5 3.7 0.9 9.3 1.7 1.6 3.1 

P300/t17.5/E0 1.2 7.7 1.8 1.9 6.1 1.8 0.6 
P300/t17.5/E40 5.6 4.8 0.6 5.1 4.6 4.0 4.4 
P300/t17.5/E80 6.0 2.1 0.4 6.4 5.7 5.8 3.2 

P300/t30/E0 7.0 1.8 2.4 2.1 4.2 1.2 2.5 
P300/t30/E40 5.1 1.6 1.6 2.9 1.3 1.0 3.5 
P300/t30/E80 10.9 1.2 1.0 2.3 7.5 2.9 1.3 

P600/t5/E0 6.6 8.7 0.6 1.8 1.5 2.4 7.7 
P600/t5/E40 3.7 4.8 0.7 3.9 7.0 1.1 1.8 
P600/t5/E80 13.0 2.2 1.8 2.3 2.6 1.3 2.3 

P600/t17.5/E0 3.8 9.8 3.7 5.0 2.0 0.7 0.8 
P600/t17.5/E40 1.6 1.9 0.8 1.0 2.6 1.6 1.0 
P600/t17.5/E80 9.8 2.1 4.3 0.5 6.6 3.2 1.8 

P600/t30/E0 1.3 5.3 3.8 1.7 2.6 0.5 5.0 
P600/t30/E40 6.9 1.7 0.5 6.5 3.1 1.7 4.8 
P600/t30/E80 11.8 2.2 0.7 4.1 0.8 1.4 3.0 

P600/t17.5/E40 7.6 2.7 0.9 4.9 8.3 4.7 5.0 
P600/t17.5/E40 2.4 5.0 0.3 7.7 9.0 1.8 1.2 
P600/t17.5/E40 4.1 4.4 0.7 2.3 3.9 5.0 1.1 

P: Pressure; t: time; E: Ethanol percentage; TY: extraction yields; ABTS, DPPH and FRAP: antioxidant 
activity by the ABTS, DPPH and FRAP methods; PC: total phenolic compounds; FL: Flavonoids; BX: 
betaxanthins. 
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3.5. Correlation matrix 

The correlations coefficients (r) between the total phenolic compounds, flavonoids, 

betaxanthins and antioxidant activity were determined and are presented in Table 12. 

 

Table 12. Coefficient correlation matrix between the responses of all dependent 

variables. Bold correlations were significant at p<0.05.  

r PC FL BX ABTS DPPH FRAP TY 

PC 1 - - - - - - 

FL 0.078 1 - - - - - 

BX 0.873 -0.142 1 - - - - 

ABTS 0.738 0.013 0.828 1 - - - 

DPPH 0.611 0.092 0.793 0.590 1 - - 

FRAP 0.634 0.000 0.843 0.688 0.640 1 - 

TY 0.680 0.033 0.952 0.545 0.529 0.574 1 
TY: extraction yields; ABTS, DPPH and FRAP: antioxidant activity by the ABTS, DPPH and FRAP 
methods; PC: total phenolic compounds; FL: Flavonoids; BX: betaxanthins. 

 

All correlations were significant (p<0.05) and presented correlation values between 0.53 

and 0.95, with the exception of total extraction yield and total flavonoids content 

correlations. The strongest correlation was found between the total extraction yields and 

betaxanthins (r=0.95), however betaxanthins also presented high correlations with 

antioxidant activity assays (r=0.79-0.84) and with total phenolic compounds (r=0.87). 

The correlation values between phenolic compounds and the total extraction (r=0.68) and 

phenolic compounds with the antioxidant activity assays (r=0.73-0.63) were smaller when 

compared to phenolic compounds and betaxanthins correlations. In the case of flavonoids, 

the correlations with other parameters were not significant and very low but still were 

significant for phenolic compounds and antioxidant activity measured by DPPH method. 

This may mean that the most part of antioxidant activity maybe related with betaxanthins 

and not so much with phenolic compounds and flavonoids. Cardador-Martinez et al. 

(2011) also studied the correlation between total phenolics and antioxidant activity 

(DPPH and ABTS methods) from prickly pear peels. The authors reported similar 

significant correlation (p<0.05) between the phenolic compounds and DPPH antioxidant 

activity (0.52), and between DPPH and ABTS antioxidant activities (0.64). In the case of 

flavonoids, the authors found a significant correlation with the antioxidant activity 

measured by DPPH assay but not with ABTS, but r values founded by authors were higher 

(0.50 and 0.13, respectively). However, that authors did not study betaxanthins pigments. 
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3.6. Regression coefficients 

Each model could be expressed by the quadratic polynomial equation (Equation 7) as a 

function of the independent variables within the region under investigation by applying 

multiple regression analysis on the experimental data. The regression coefficients were 

determined and presented in Table 13.  

 

Table 13. Regression coefficients of the second-order polynomial regression equation. 

The significant coefficients are written in bold (p<0.05). 

 PC FL BX ABTS DPPH FRAP TY 

β0 21.2 1.3 0.2 9.9 10.8 40.9 42.8 
β1 4.0×10-3 5.7×10-5 1.1×10-6 -5.0×10-4 9.6×10-3 3.7×10-2 -9.1×10-4 
β1

2 -2.2×10-6 -3.9×10-7 -1.1×10-7 5.8×10-6 -5.2×10-6 -4.1×10-5 -2.2×10-5 
β2 1.5×10-1 -1.9×10-2 -7.3×10-4 6.5×10-3 5.8×10-2 -5.5×10-1 -8.4×10-2 
β2

2 -3.4×10-3 3.7×10-4 1.3×10-5 1.8×10-3 1.1×10-3 2.1×10-2 1.9×10-3 
β3 1.1×10-1 2.5×10-2 2.3×10-3 1.4×10-1 1.3×10-1 3.6×10-1 2.1×10-1 

β3
2 -3.0×10-3 -2.4×10-4 -5.0×10-5 -2.3×10-3 -2.4×10-3 -6.3×10-3 -5.2×10-3 

β12 -1.0×10-4 1.9×10-6 4.0×10-7 -8.9×10-5 -2.2×10-4 -4.3×10-4 1.7×10-4 
β13 6.9×10-5 5.3×10-6 1.3×10-6 1.2×10-5 -6.7×10-5 2.2×10-5 1.9×10-4 
β23 6.4×10-4 6.1×10-5 -3.4×10-6 -1.3×10-4 2.1×10-4 5.5×10-4 -7.8×10-4 

In regression coefficients, 0 means constant, 1 pressure, 2 extraction time and 3 ethanol concentration. TY: 
extraction yields; ABTS, DPPH and FRAP: antioxidant activity by the ABTS, DPPH and FRAP methods; 
PC: total phenolic compounds; FL: Flavonoids; BX: betaxanthins. 
 

The coefficient values obtained were generally low due to the large number of 

experiences performed. The model intercept coefficient (β0) and ethanol coefficients (β3 

and β3
2) was statistically significant for all cases (p<0.05). Pressure coefficients were 

significate for all models except for phenolic compounds and flavonoids. The regression 

coefficients that were statistically significant match to those reported in Table 7, Table 8, 

Table 9 and Table 10. 

 

3.7. Optimum extraction conditions and validation of models 

By means of partial derivatives of each model equation as a function of each of the 

independent variables studied (pressure, extraction time and ethanol concentration), the 

optimum extraction conditions and optimal extraction values for each model were 

determined (Bezerra et al., 2008). In order to validate the models, experimental 

extractions under optimum conditions were also performed and results are in Table 14. 
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Table 14. Optimum extraction conditions, predicted optimum values (POV), 

experimental optimum values (EOV) and average variation between experimental and 

predicted results.  

 PC FL BX ABTS DPPH FRAP TY 

P (MPa) 600 496 174 600 118 303 94 
t (min) 16 5 5 30 30 30 5 
E (%) 26 60 25 31 26 30 22 
POV 

(mg St. Eq./g DW) 1 
26 1.97 0.238 14 16 53 45 

EOV 
(mg St. Eq./g DW) 1 

27±1 1.81±0.02 0.236±0.002 15±0 17±1 52±1 44±1 

Average variation of 
predicted values (%) 

5 9 1 7 8 3 2 

1: mg standard equivalent/g DW except for total yields, which are presented in %; TY: extraction yields; 
PC means total phenolic content; FL means Flavonoids; BX means betaxanthins. 

 

The optimum conditions are strongly dependent of the parameter to be analyzed. 

Extraction time was the variable with lower impact in the responses and sometimes this 

impact was not significate. Thus, the optimum extraction time changed between 5 min to 

flavonoids, betaxanthins and total extraction yields and 30 min obtained for antioxidant 

activity. Optimum ethanol concentration was usually very low changing between 22 and 

31%, excepted for total flavonoids that were better extracted with 60% of ethanol. The 

optimum pressure was the variable that more changed between all parameters. The 

optimum predicted extraction values for each parameter were very close to the 

experimental results obtained experimentally under optimum conditions defined by each 

model. Results differ ones from each other’s less than 9%. Moreover, for betaxanthins, 

total extraction yields and antioxidant activity (FRAP) models, results only differ 1%, 2% 

and 3%, respectively. 

 

3.8. High pressure extraction versus Soxhlet extraction 

To compare the experimental optimum values with a traditional extraction method, a 

Soxhlet extraction was performed according to section 2.4. and results are summarized in 

Table 15.  
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Table 15. Comparison of the experimental optimum values by HPE (EOV) and Soxhlet 

extraction values (SE). Different letters indicate significant differences (p<0.05) between 

conditions (a and b).  

 PC FL BX ABTS DPPH FRAP TY 

SE 

(mg St. Eq./g DW)1 
23±1a 2.33±0.04b 0.109±0.002a 10±0a 14±1a 51±1a 45±0a 

EOV 

(mg St. Eq./g DW)1 
27±1b 1.81±0.02a 0.236±0.002b 15±0b 17±1a 52±1a 44±1a 

1: mg standard equivalent/g DW except for total yields, which are presented in %; TY: extraction yields; 
PC means total phenolic content; FL means Flavonoids; BX means betaxanthins. 

 

High pressure extraction allowed a significant higher extraction of total phenolic 

compounds, betaxanthins and antioxidant activity evaluated by ABST when compared 

with Soxhlet extraction. Moreover, extraction time was also significantly lower. 

Betacyanins, anthocyanins and tannins were also not detected in extracts performed using 

Soxhlet and CV values of quantified compounds were lower than 10%. 

 

3.9.  Antibacterial activity 

The microorganisms selected are widely found in food sources. Escherichia coli is a 

Gram-negative bacterium considered a model-organism, and the Listeria innocua is a 

Gram-positive non-pathogenic bacterium that is ubiquitous of pathogenic Listeria 

monocytogenes. To study the antimicrobial activity against these bacteria were selected 

the extracts obtained under the optimum extraction conditions and results are summarized 

in (Table 16) (see photos in Appendix C). 

 

Table 16. Inhibition halos (mm) of extracts obtained under optimum extraction 

conditions. Different letters indicate significant differences (p<0.05) between different 

extraction conditions (lower cases) and between different microorganisms (upper cases).  

Nomenclature 
Extract Ampicillin Water TY 

(%) E. coli L. innocua E. coli L. innocua E. coli L. innocua 
P600/t16/E26 n.d. 17±1a 20±1aA 34±1abB n.d. n.d. 47.3±3.6 
P496/t5/E60 10±0bA 21±1bB 20±1aA 33±1aB n.d. n.d. 36.2±4.2 
P174/t5/E25 8±1aA 18±1aB 20±2aA 34±1abB n.d. n.d. 47.3±3.9 

P600/t30/E31 8±1aA 18±1aB 20±1aA 35±1bB n.d. n.d. 54.1±0.9 
n.d.: not detected inhibition halos; TY: extraction yields. 
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Both bacteria were inhibited by the prickly pear peels extracts. Inhibition halos obtained 

for Listeria innocua vary between 17 and 21 mm, while for Escherichia coli changed 

between 8 and 10 mm. However, in both cases it was for the extract P496/t5/E60 that was 

obtained the highest inhibition halo being statistically different from the obtained with 

the other extracts. Only the extracted performed at 600 MPa, during 16 min using 26% of 

ethanol did not present a visible inhibition halo against Escherichia coli. Similar results 

were obtained by Casquete et al. (2015) when studied the effect of high pressure on 

antimicrobial activity of citrus peels. In terms of total extraction yields, it was for 

P496/t5/E60 extract that was obtained the lowest extraction yield, but also the highest 

inhibition halos. Maybe in such extraction conditions, some individual compound with a 

relevant impact in bacterial inactivation was extracted in higher amount in relation to the 

obtained with different conditions. However, to prove this individual compounds should 

be analyzed by HPLC-MS. 
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4. Conclusions and Future Work 
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The three variables studied (ethanol concentration, pressure level and extraction time) 

significantly influenced the extractions of total compounds, independently and 

interactively. Ethanol concentration was the variable that showed the highest effect on 

extraction yields, followed by high pressure effects and then extraction time had the 

lowest impact. In general, high pressure extraction increased extraction yields between 6 

and 17% and the high correlation of mathematical models indicated that the quadratic 

polynomial models could be employed to optimize extraction conditions. The fitness and 

adequacy of models were high since the R2 obtained were higher than 0.83 for all models, 

except for total flavonoids (0.76). Moreover, the predictive values were very close to the 

experimental results indicating a good adequacy of models. The optimum extraction 

conditions were established and predict and experimental results differed less than 10%. 

The selected extracts showed antibacterial activity against Escherichia coli and Listeria 

innocua. High pressure extraction provided higher extraction yields or at least similar 

than Soxhlet extraction with the main advantage of extraction time reduction. 

Agricultural processing inevitably goes along with the production of large amounts of 

agro-residues, which may represent a major residues disposal problem. The prickly pear 

peels are industrial residues that are rich in bioactive compounds and the optimizations 

obtained in this work make the high pressure technology applied to extraction process a 

promising process for scale up. However, pilot plant tests at higher scale will be necessary 

to ponder the economic viability of the process. 

For further studies as future work, it would be interesting to: 
 

1. Confirm if fermentation of the prickly peels degrades tannins, because this fruit is 

very rich in these compounds. 

2. Characterize individually all phenolic compounds, flavonoids and betaxanthins 

present in the extracts under optimum conditions by HPLC and comparing to 0.1 MPa 

to have a more detailed analyses. 

3. Test the antimicrobial activity of the selected extracts under optimum conditions 

against human pathogenic bacterium relevant in food industry and from hospital 

environment such as Bacillus spp, Salmonella spp, Streptococcus spp, Staphylococcus 

spp and Methicillin-resistant Staphylococcus aureus, among others. 
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4. Perform studies concerning the extraction of betalains by high pressure due to the lack 

of literature. 

5. Study other interesting biological activities, such as anti-inflammatory and anti-

cancer activities, among others. 

6. Study the extraction of bioactive compounds and essential oils from prickly pear 

seeds, because they are also a good source of very interesting compounds and 

constitute a food residue from prickly pear fruit transformation by the food industry.  
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Appendix A. External calibration curves for the extracts characterization 

 
 

 
 
 
A1. Gallic acid external calibration curve for determination of total phenolic compounds. 
 
 

 
 
 
A2. Quercetin external calibration curve for determination of total flavonoids. 
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A3. Catechin external calibration curve for determination of total condensed tannins. 
 

 

 
 

 

A4. Trolox external calibration curve for determination of total antioxidant activity by DPPH 
assay. 
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A5. Trolox external calibration curve for determination of total antioxidant activity by ABTS 
assay. 
 

 

 
 

A6. Ammonium iron sulfate external calibration curve for determination of total antioxidant 
activity by FRAP assay. 
 

y = 0,7767x + 0,3057
R² = 0,9904

0

20

40

60

80

100

00 20 40 60 80 100 120

A
B

T
S

 I
nh

ib
it

io
n 

(%
)

Concentration of Trolox (µg/mL)

Trolox calibration curve

y = 0,0031x - 0,0200
R² = 0,9993

0,00

0,40

0,80

1,20

1,60

00 75 150 225 300 375 450

A
bs

or
va

nc
e 

(5
93

 n
m

)

Concentration of ammonium iron (II) sulfate (µg/mL)

Ammonium iron sulfate calibration curve



 

VI 

 

Appendix B. Experimental (Exp) and predicted (Pre) values for bioactive compounds, antioxidant activity assays and total yields. 
 

Extraction 

conditions 

PC (mg/g DW)1 FL (mg/g DW)1 BX (mg/g DW)1 ABTS (mg/g DW)1 DPPH (mg/g DW)1 FRAP (mg/g DW)1 TY (%) 
Exp Pre Exp Pre Exp Pre Exp Pre Exp Pre Exp Pre Exp Pre 

P0.1/t5/E0 23.19±0.48 21.84 1.10±0.06 1.18 0.21±0.00 0.21 10.61±0.39 10.00 11.58±1.40 11.16 38.67±0.01 38.70 41.34±0.56 42.46 
P0.1/t5/E40 22.23±0.65 21.44 1.89±0.05 1.84 0.23±0.00 0.22 12.46±0.58 11.92 11.38±0.91 12.45 42.22±0.73 42.90 42.94±0.98 42.60 
P0.1/t5/E80 10.79±0.54 11.51 1.46±0.03 1.73 0.07±0.00 0.08 6.46±0.34 6.47 7.11±0.29 5.99 23.65±0.36 26.80 26.60±0.76 26.22 

P0.1/t17.5/E0 23.04±0.26 22.83 1.13±0.05 1.05 0.20±0.00 0.21 11.19±0.07 10.58 11.29±0.63 12.18 43.08±0.12 37.92 39.98±0.45 41.92 
P0.1/t17.5/E40 21.19±1.63 22.74 1.82±0.02 1.73 0.21±0.01 0.22 11.45±0.80 12.44 13.59±0.62 13.57 41.08±0.20 42.39 39.78±0.45 41.68 
P0.1/t17.5/E80 11.82±0.86 13.13 1.70±0.03 1.66 0.07±0.00 0.07 7.24±0.48 6.92 7.08±0.70 7.22 27.80±0.84 26.57 25.92±0.70 24.90 

P0.1/t30/E0 22.26±0.21 22.76 1.12±0.06 1.03 0.22±0.00 0.20 11.74±0.34 11.72 14.33±0.90 13.53 43.91±0.50 43.84 44.70±3.78 41.97 
P0.1/t30/E40 22.81±0.84 23.00 1.62±0.06 1.74 0.22±0.00 0.21 12.67±0.88 13.51 14.88±0.39 15.03 46.34±1.18 48.59 42.44±0.50 41.33 
P0.1/t30/E80 15.62±0.59 13.70 1.83±0.06 1.70 0.06±0.00 0.06 7.64±0.41 7.92 8.68±0.12 8.78 34.01±0.47 33.05 23.54±3.34 24.16 
P300/t5/E0 21.84±0.12 22.69 1.04±0.05 1.17 0.19±0.00 0.20 8.77±0.64 10.23 13.30±0.28 13.24 42.95±1.31 45.55 41.01±0.48 40.50 

P300/t5/E40 23.52±0.77 23.12 2.14±0.11 1.88 0.25±0.01 0.23 11.41±0.04 12.30 12.38±0.50 13.72 50.97±2.39 50.01 48.11±2.53 42.87 
P300/t5/E80 15.12±0.08 14.01 2.07±0.08 1.85 0.10±0.00 0.10 7.61±0.71 6.99 6.30±0.11 6.46 36.98±0.61 34.18 27.21±0.85 28.72 

P300/t17.5/E0 22.64±0.29 23.30 1.09±0.09 1.04 0.21±0.00 0.19 10.03±0.19 10.48 10.26±0.63 13.44 38.90±0.71 43.14 42.83±0.28 40.61 
P300/t17.5/E40 24.20±1.45 24.04 1.71±0.08 1.79 0.22±0.00 0.22 12.22±0.62 12.48 16.12±0.74 14.02 47.86±1.94 47.88 39.00±1.71 42.59 
P300/t17.5/E80 13.10±0.88 15.25 1.89±0.04 1.78 0.11±0.00 0.09 6.04±0.39 7.11 5.28±0.30 6.86 34.86±2.07 32.32 29.70±0.96 28.04 

P300/t30/E0 21.75±1.64 22.86 1.18±0.02 1.03 0.18±0.00 0.19 11.12±0.23 11.28 15.34±0.64 13.96 45.24±0.56 47.44 39.71±1.01 41.30 
P300/t30/E40 25.28±1.37 23.92 1.14±0.02 1.80 0.26±0.00 0.22 15.34±0.45 13.22 12.82±0.17 14.65 52.58±0.54 52.46 42.71±1.50 42.89 
P300/t30/E80 16.20±1.96 15.44 1.94±0.02 1.83 0.09±0.00 0.09 8.60±0.20 7.78 6.44±0.48 7.59 35.10±1.04 37.18 26.70±0.35 27.94 
P600/t5/E0 21.49±1.53 23.14 1.06±0.09 1.08 0.17±0.00 0.17 11.35±0.21 11.50 15.72±0.23 14.38 47.33±1.16 44.95 34.10±2.64 34.67 

P600/t5/E40 23.35±0.94 24.39 1.85±0.09 1.86 0.21±0.00 0.22 13.17±0.56 13.71 14.20±0.99 14.06 47.86±0.55 49.67 36.93±0.65 39.27 
P600/t5/E80 16.71±2.40 16.10 1.83±0.04 1.89 0.10±0.00 0.10 8.40±0.19 8.54 5.46±0.14 5.98 36.24±0.48 34.11 26.40±0.61 27.34 

P600/t17.5/E0 26.30±1.06 23.37 0.92±0.09 0.96 0.17±0.01 0.17 13.21±0.66 11.41 13.43±0.26 13.75 41.38±0.27 40.92 37.68±0.30 35.42 
P600/t17.5/E40 24.70±0.43 24.93 1.94±0.04 1.77 0.22±0.00 0.21 13.08±0.13 13.56 11.78±0.30 13.53 43.83±0.69 45.92 39.77±0.41 39.62 
P600/t17.5/E80 18.59±1.99 16.96 1.50±0.03 1.83 0.08±0.00 0.09 8.12±0.04 8.33 5.61±0.37 5.56 24.19±0.79 30.63 28.93±0.53 27.30 

P600/t30/E0 22.83±0.33 22.55 0.87±0.05 0.96 0.17±0.01 0.17 11.05±0.19 11.88 13.84±0.36 13.45 44.59±0.22 43.60 34.24±1.72 36.75 
P600/t30/E40 23.75±1.75 24.43 2.19±0.04 1.80 0.22±0.00 0.21 14.57±0.85 13.96 11.54±0.36 13.33 51.25±0.86 48.88 43.24±2.07 40.56 
P600/t30/E80 14.94±1.97 16.78 1.93±0.04 1.88 0.10±0.00 0.09 8.62±0.36 8.67 7.92±0.06 5.47 35.87±0.52 33.87 27.46±0.83 27.85 

P300/t17.5/E40 24.48±2.00 24.04 1.71±0.05 1.79 0.23±0.00 0.23 12.07±0.59 12.48 15.74±1.31 14.02 48.34±2.31 47.88 43.85±2.20 42.59 
P300/t17.5/E40 24.78±0.63 24.04 1.82±0.09 1.79 0.23±0.00 0.23 13.49±1.03 12.48 15.40±1.39 14.02 49.40±0.92 47.88 42.58±0.51 42.59 
P300/t17.5/E40 23.83±1.04 24.04 1.75±0.08 1.79 0.21±0.00 0.23 12.60±0.29 12.48 16.62±0.65 14.02 50.60±2.58 47.88 39.84±0.45 42.59 
Variation (%)2 5 9 5 6 10 5 4 

1: Results are expressed as mg of standard equivalents/g DW; 2: Avarege varaiation from the predicted values; P: Pressure (MPa); t: time (min); E: Ethanol percentage (%); Total yields (TY); ABTS, DPPH and 
FRAP: antioxidant activity by the ABTS, DPPH and FRAP methods; total phenolic compounds (PC); flavonoids (FL) and betaxanthins (BX). 
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Appendix C. Response surfaces for total phenolic compounds. 

 
 

Figure C1. Response surface of phenolic compounds extraction for ethanol 0%. 
 

 
 

Figure C2. Response surface of phenolic compounds extraction for 600 MPa. 
 

 
 

Figure C3. Response surface of phenolic compounds extraction for 17.5 min. 
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Appendix D. Response surfaces for total flavonoids.  

 

Figure D1. Response surface of flavonoids extraction for ethanol 40%. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure D2. Response surface of flavonoids extraction for 300 MPa. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure D3. Response surface of flavonoids extraction for 5 min. 
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Appendix E. Response surfaces for total betaxanthins. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure E1. Response surface of betaxanthins extraction for ethanol 40%. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure E2. Response surface of betaxanthins extraction for 300 MPa. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure E3. Response surface of betaxanthins extraction for 5 min. 
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Appendix F. Response surfaces for total ABTS antioxidant activity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure F1. Response surface of ABTS antioxidant activity for ethanol 40%. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure F2. Response surface of ABTS antioxidant activity for 300 MPa. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure F3. Response surface of ABTS antioxidant activity for 30 min. 
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Appendix G. Response surfaces for total DPPH antioxidant activity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure G1. Response surface of DPPH antioxidant activity for ethanol 40%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure G2. Response surface of DPPH antioxidant activity for 300 MPa. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure G3. Response surface of DPPH antioxidant activity for 17.5 min. 

0 

0 

0 



 

XII 

 

Appendix H. Response surfaces for total FRAP antioxidant activity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure H1. Response surface of FRAP antioxidant activity for ethanol 40%. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure H2. Response surface of FRAP antioxidant activity for 300 MPa. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure H3. Response surface of FRAP antioxidant activity for 30 min. 
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Appendix I. Response surfaces for total extraction yields. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure I1. Response surface of extraction yields for ethanol 40%. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure I2. Response surface of extraction yields for 300 MPa. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Response surface of extraction yields for 5 min. 
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Appendix J. Inhibitions zones for a) total phenolic compounds (P600/t16/E26), b) 

flavonoids (P496/t5/E60), c) betaxanthins (P174/t5/E25) and d) ABTS antioxidant 

activity (P600/t30/E31) extracts under optimum conditions against Escherichia coli 

(left column) and Listeria innocua (right column). 
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