

Universidade de
Aveiro

2016

Departamento de Eletrónica,
Telecomunicações e Informática

Francisco José Pires
Vaz

VNMS: Sistema de mensagens para redes

veiculares

VNMS: Vehicular Network Messaging System

Universidade de
Aveiro

2016

Departamento de Eletrónica,
Telecomunicações e Informática

Francisco José Pires
Vaz

VNMS: Sistema de Mensagens para redes
veiculares

VNMS: Vehicular Network Messaging System

 Dissertação apresentada à Universidade de Aveiro para

cumprimento dos requisitos necessários à obtenção do grau de

Mestre em Engenharia de Computadores e Telemática, realizada

sob a orientação científica do Professor Doutor José Maria

Fernandes, Professor auxiliar do Departamento de Eletrónica,

Telecomunicações e Informática da Universidade de Aveiro e

coorientação da Professora Doutora Susana Sargento,

Professora Associada com Agregação do Departamento de

Eletrónica, Telecomunicações e Informática da Universidade de

Aveiro.

o júri

presidente Prof. Doutor Joaquim João Estrela Ribeiro Silvestre Madeira
Professor Auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Rui Pedro de Magalhães Claro Prior

Professor Auxiliar do Departamento de Ciências de
Computadores da Faculdade de Ciências da Universidade do Porto

 Prof. Doutor José Maria Amaral Fernandes

Professor Auxiliar do Departamento de Eletrónica,
Telecomunicações e Informática da Universidade de Aveiro

agradecimentos

Quero agradecer aos meus pais por todo o apoio que me
deram ao longo destes anos. Por acreditarem em mim,
pela paciência que tiveram e por terem estado ao meu
lado sempre que precisei. Sem eles eu não teria
conseguido chegar a onde estou hoje e tudo o que tenho
atualmente devo a eles.

Quero agradecer também ao professor José Maria
Fernandes e à professora Susana Sargento por todo o
apoio, conhecimento, sabedoria e experiência quem me
forneceram durante o meu percurso académico e no
desenvolvimento deste trabalho.

palavras-chave

Redes veiculares, VANET, comunicação utilizador-a-utilizador,

comunicação utilizador-a-infraestrutura, comunicação veículo-

a-veículo, Android, RabbitMQ, Beacon, Web Server.

resumo

Com conceitos como a internet das coisas a surgir e a
tornarem-se cada vez mais populares, criar ligações
entre veículos foi apenas um próximo passo lógico,
formando assim as redes ad hoc veiculares. Estas redes
são um caso particular das redes móveis ad hoc, nas
quais os veículos se ligam uns aos outros de uma forma
espontânea. Acrescentar aos veículos a capacidade de
comunicarem uns com os outros faz surgir uma
abundância de possibilidades. Contudo, atualmente já
existem diversas aplicações que fazem uso destas
redes; no entanto, a maioria destas aplicações estão
mais diretamente relacionadas com a ccomunicação
entre veículo e não entre utilizadores. Soluções como o
REINVENT fornecem a capacidade de expedir
mensagens através de uma VANET utilizando
smartphones, contudo falta-lhe uma camada lógica
capaz de suportar a expedição de mensagens de
utilizador para utilizador.

A nossa contribuição, o Sistema de Mensagens para
Redes Veiculares (VNMS), permite a troca de
mensagens entre utilizadores numa VANET. Com a
implantação de um quadro de avisos virtual nos nós da
VANET, com uma camada de reencaminhamento de
mensagens e um naming service, fornece aos
utilizadores a capacidade de trocarem mensagens entre
si sem a necessidade de informação ou serviços da
VANET. Os nós do VNMS atuam como agregadores de
mensagens, providenciando repositórios locais de
mensagens de utilizadores e reencaminhamento sobre a
rede para o utilizador alvo, i.e., o nó ao qual o utilizador
está ligado. Na perspetiva do utilizador, este pode usar
os serviços do VNMS de uma forma transparente através
de uma aplicação Android – foi criada uma aplicação de
chat que usa a VANET como prova de conceito.

keywords

Vehicular Networks, user-to-user communication, user-to-
infrastructure communication, vehicle-to-vehicle
communication, Android, RabbitMQ, Beacon, Webserver

abstract

With concepts like the internet of things currently
cropping up and getting more popular, connecting
vehicles with each other was just a logical step,
originating the vehicular ad-hoc networks (VANETs).
VANETs are a particular case of Mobile ad-hoc
networks (MANETs) in which vehicles connect with
other vehicles in ad-hoc mode and evolving
topologies. By enhancing vehicles with the ability to
communicate with each other, an abundance of
capabilities arises. However, currently most
applications using VANETs are focused on the vehicle
to vehicle communications, and not on vehicles users,
either drivers or passengers. Previous work like
REINVENT provided a solution capable of dispatching
messages through VANETs using standard
smartphones; however, it lacked a logical layer to
support user to user logical message brokering.
Our contribution, the Vehicular Network Messaging
System (VNMS), allows user to user message
exchange on VANET. By deploying virtual bulletin
boards (VBBs) in VANETs nodes, a layer of message
forwarding, and user naming service, it provides users
the ability to exchange messages without the explicit
need of any VANETs specific information or service.
VNMS nodes act as brokers for user messages,
providing local user message repositories and
VANETs routing to targeted user(s) i.e. its VANET
node. From the user perspective, it is possible to use
VNMS services transparently using Android mobile
application – we implemented a VANETs enabled
chat application as proof of concept.

i

I. Contents

I. Contents ...i

II. List of figures .. iii

1 Introduction... 1

1.1 The Problem.. 3

1.2 Solution ... 3

1.3 Motivation .. 3

1.4 Dissertation outline ... 4

2 State of the art .. 5

2.1 Vehicular Ad-hoc Networks (VANETs) ... 5

2.2 Vehicular Ad-hoc Networks Routing... 7

2.3 REINVENT .. 9

2.4 VANESS.. 11

3 Vehicular Network Messaging System .. 13

3.1 Architecture ... 13

3.2 VANET nodes (Units).. 15

3.3 Smartphone application .. 17

3.4 VNMS Protocols.. 17

3.4.1 User session protocol.. 18

3.4.2 Text Message sending protocol .. 19

3.4.3 Virtual Bulletin Board requests protocol ... 21

3.4.4 Message Retransmission and VANET Forwarding .. 22

4 VNMS Implementation ... 25

4.1 RabbitMQ as message broker .. 25

4.2 Extending REINVENT... 26

4.3 Unit’s application ... 28

4.4 Units’ databases.. 29

ii

4.5 Virtual Bulletin Board... 29

4.6 Smartphone application - VNMessenger .. 33

4.7 Messages log .. 36

5 Results .. 37

6 Conclusions and Future work... 41

7 References ... 43

8 Appendices ... 45

8.1 Protocol messages.. 45

8.1.1 Timestamp ... 45

8.1.2 Message Validity Field .. 46

8.1.3 Text messages from users to users .. 47

8.1.4 Virtual Bulletin Board Messages ... 47

8.1.5 Session Control Messages ... 49

8.1.6 Beacon Messages ... 49

8.2 VNMS dependencies .. 50

8.3 Unit configuration .. 51

iii

II. List of figures

Figure 1 – VANET’s types of communications .. 2

Figure 2 – On Board Unit ... 2

Figure 3 – VANET applications .. 7

Figure 4 – REINVENT conceptual architecture ... 9

Figure 5 – VANESS architecture.. 11

Figure 6 - VNMS components and connections .. 14

Figure 7 – Units components ... 15

Figure 8 - Smartphone application components .. 17

Figure 9 – Session protocol message exchanges ... 18

Figure 10 – Sending a text message to a user connected to the same unit. 19

Figure 11 – Sending a text message to a user connected to a different unit. 20

Figure 12 – Performing a request on a virtual bulletin board. ... 21

Figure 13 – Message retransmission and VANET forwarding modules 22

Figure 14 – Queues and exchanges deployed by the units .. 26

Figure 15 - Class diagram of a VBB message entry ... 29

Figure 16 – VNMessenger prompting for the username ... 33

Figure 17 – Main activity .. 34

Figure 18 – VNMessenger chat activity ... 35

Figure 19 – Bulletin board activities ... 35

Figure 20 – User “chico” chatting with “toni” .. 37

Figure 21 – OBU output during chat. ... 38

Figure 22 – RSU output during chat .. 38

Figure 23 – User “toni” gets messages from user “chico” ... 39

iv

1

1 Introduction

Vehicles are a leading solution used to transit either people or goods from one place to

another. With so many vehicles circulating in the roads and the expanding popularity of concepts

like “The Internet of Things” [1] [2], it is only natural that these vehicles will be integrated on a

network. Amidst all these concepts and ideas, the vehicular networks (VANETs) were created.

VANETs connect nearby vehicles and provide them with the means to communicate among

them, without the need of accessing to the internet, just like in any standard LAN without using an

internet service provider (ISP). These communications between vehicles are titled vehicle-to-

vehicle communications (V2V).

VANETs deployment implies that vehicles incorporate an appliance called On-Board Unit

(OBU) capable of wireless communication. The connectivity between the OBUs in vehicles relies

on Dedicated Short Range Communications (DSRC) technology instead of the typical Wi-Fi

because it is the only available technology in the near-term that offers the latency, accuracy and

reliability needed for active safety [3].

Although VANETs do not depend on external ISPs, they often use immobile nodes that can

act as gateways (internet access), data repositories, and permanent connection to other

geographically isolated network clusters – the Road-Side Units (RSU) provide vehicle-to-

infrastructure (V2I) communications support using the same networking solution as OBUs. In

Figure 1 we can see the types of connections that a VANET can have.

By augmenting vehicles with the ability of being able to communicate with one another, an

abundance of capabilities comes to surface that can be used to service the users of these

vehicles. The types of practical uses that can benefit from this unique type of communication can

vary from commercial, traffic orientation, safety, productive and infotainment applications.

2

Figure 1 – VANET’s types of communications [4]

However, OBUs and RSUs act as access point to other devices and do not provide any user

interface. End users then connect to the vehicle OBU via smartphones, tablets, and laptops.

These devices, typically, do not support DSRC technology, meaning that they cannot connect

directly to the VANET. In this context several works have been made to allow end users to make

use of VANETs resources transparently namely REINVENT [5] and VANESS [6]. Figure 2 shows

a photo of one of the OBUs used in the development of this system.

By enhancing the vehicles with the means to communicate among them, and the users with

the means to connect to these vehicles, the possibility of user-to-user (U2U) communication is

created, and with it a number of possible applications arise.

Figure 2 – On Board Unit

3

1.1 The Problem

Despite the technical possibilities that allow communications in VANETs, there is still an

absence of support for user level applications for the vehicle users themselves, being either

drivers or passengers. Some efforts exist, namely REINVENT which provides a system capable

of dispatching messages to a VANET in multiple platforms using a messaging solution. However,

it lacks a logical layer to support message brokering between users.

There is still a divide between the VANET and the intra-vehicular network that an OBU can

establish, and in the logical scope of U2U communication throughout a VANET regardless of the

shifting topologies, network conditions, etc. This divide becomes more perceptible when we

envision public transportation. In public transportation, when users (passengers) want to perform

a travel they will, in all likelihood, use more than one vehicle before reaching their destination,

meaning that in order to do user-wise communications, the VANET would have to know in which

vehicle a given user is connecting to the network. Furthermore, this U2U communication problem

becomes more complex as vehicles, such as buses, can carry multiple passengers, meaning

multiple users in the same vehicle. Given all these considerations, it becomes evident that plain

V2V communications are not capable enough to solve the U2U communication problem.

1.2 Solution

The solution implemented, Vehicular Network Messaging System (VNMS), is an extension of

REINVENT, by providing a user messaging broker level in the VANETs nodes (OBUs and

RSUs). While maintaining the user level abstraction at the application level, it extends the VANET

nodes with a message routing and storage ability making them act as virtual bulletin boards

(VBBs), where users can post messages in and read from. VNMS supports a distributed user

naming service to allow U2U message routing – a distributed evolution of the prior centralized

solution VANESS.

1.3 Motivation

VNMS goal and motivation is to provide vehicle users with an easy way to communicate

amongst them and doing so without requiring external services (e.g. internet access).

Additionally, VNMS also creates virtual bulletin boards (VBBs) where users can post and read

messages. VNMS provides users with a smartphone application, similar to any other chat

application, where they can add friends, send text messages, and access the VBBs, post

messages on the VBBs for his friends and get messages that were posted there, all of this using

only the VANET.

4

The idea behind the chat application is pretty simple: a user can send and receive messages

allowing them to have conversations, just like any regular chat application. The VBB is, however,

a more complex concept. In this VBBs, users can store messages with expiration dates ;

furthermore, these VBBs are geographically scattered throughout the area where the VANET

operates, and can only be accessed if the users are in its vicinities, thus creating time and space

relative messages. The idea behind this is that users can leave a “post” in one of these VBBs, in

a given area and with an expiration time, so that if any of their friends happens to be in that area

during the time that the message is valid, they will receive that message.

1.4 Dissertation outline

This dissertation is divided in 6 chapters.

The current chapter provides an introduction to the environment in which the system operates,

the obstacles derived from this environment and a proposed solution to work around them.

Chapter 2 aims to disclose an overview of the current state of vehicular networks. It describers

the characteristics, pros and cons, and methodologies that are currently being deployed and

studied to make use of their advantages as well as to overcome the shortcomings introduced by

them.

Chapter 3 describes the system architecture of the VNMS. It details the various system

components, the various features from which they are comprised and how these components

communicate with each other.

Chapter 4 describes the implementation of the system components. This chapter expresses a

more in depth view of the components and how they work internally.

Chapter 5 presents results of the system being used and achieving its desired goals.

Chapter 6 recaps the work done and what was learned during the development of this system.

It also describes new features that the system could make use of.

5

2 State of the art

Ad-hoc networks are networks formed extemporaneously as nodes/devices connect to it.

These networks have two types of topologies, they can be either heterogeneous, when some part

of the network is structured and has gateways, or they can be homogeneous, when all nodes that

build the network have the same capabilities and responsibilities.

Mobile ad-hoc networks (MANETs) are homogeneous ad-hoc networks created by mobile

devices that connect directly with each other.

2.1 Vehicular Ad-hoc Networks (VANETs)

VANETs are a form of MANETs, they use the same principles as a MANET but have some

particular characteristics. They are comprised of mobile nodes (the vehicles themselves) but can

additionally encompass fixed nodes located on the roadside that provide connectivity and support

to passing vehicles. Their main goal is to provide vehicle-to-vehicle and vehicle-to-infrastructure

communications. These are peer-to-peer multi hop networks, where all nodes have the same

authority.

The architecture of VANETs falls within three categories, they can be either pure

cellular/WLAN, pure ad hoc, or hybrid [7].

In pure cellular/WLAN networks, the vehicles connect to the network by means of cellular

gateways or by immobile WLAN access points located on the roadside. Vehicles do not

communicate between them directly and do it so by usage of the structured network

infrastructure. The limitation of this type of architecture is the need of a widely deployed

infrastructure of cellular towers and/or wireless access points. Cellular coverage is widely

accessible nowadays, but there are still some blind spots that can be induced by obstacle

shadowing, furthermore a considerable cellular network usage can be costly. In addition, covering

a wide geographical area with WLAN access points can also be a costly deed.

Pure ad-hoc networks are structureless meaning that they do not require additional

infrastructures such as cellular towers or WLAN access points. In these networks, vehicles can

only communicate with other vehicles so, in order to achieve full connectivity, they will not only be

the clients of the network but will also be gateways aiming to provide data routes to other

vehicles.

Hybrid networks results of combining pure cellular/WLAN networks with ad hoc networks.

Vehicles are provided with the ability to connect to the cellular network, to the WLAN access

6

points and to other vehicles [8]. This hybrid approach can provide an improved coverage but will

also cause new problems implementing mechanisms to provide a seamless transition of the

different types of communications amongst the different wireless systems.

To create a VANET there are several aspects that need to be accommodated, this is because

of the underlying unique characteristics these networks have [9] [10]:

 Highly dynamic topology – Due to the speed of vehicles and as they move in or out

of range of each other, transmission paths are created and severed constantly. This

results in a network with ceaseless topology changes.

 Scalability - As a result of the highly dynamic topology, VANETs need to be able to

operate seamlessly with both a small number of nodes or with a large number of

nodes.

 High quality network technology – As a result of the dynamic topology, the network

technology used to transmit data between nodes must be very dependable. It needs to

be able to quickly establish connections, have a low latency to transmit data with very

low delay, and be highly reliable [11].

 Security and privacy – As VANETs are mostly public networks, it needs to provide

safe message authentication and privacy.

Vehicles however do not comprise, by default, the means to connect to a VANET by

themselves. For a vehicle to be able to connect to a VANET, it needs to be equipped with a

specific hardware device called on board unit (OBU). Usually these OBUs are micro computers

with network devices and can additionally include other peripherals such as GPS modules,

thermometers, etc. They are responsible for retrieving information from the vehicle itself and be

able to transmit that information. For an OBU to be able to achieve communication and to

accommodate all the requirements a VANET as pertaining its network communications, standard

wireless interfaces cannot be used. The devices used for this type of communications operate on

the dedicated short-range communications (DSRC) frequency using WAVE technology. The

wireless access in vehicular environments (WAVE) is significantly different from the Wi-Fi and

cellular wireless network environments. The more prominent standards for DSRC/WAVE

networks are the IEEE802.11P and IEEE1609 [3].

By augmenting vehicles with the ability to communicate with one another, an abundance of

capabilities that can be used to service the users of these vehicles comes to surface as can be

seen in Figure 3. The types of practical uses that can benefit from this unique type of

communication, can vary in different types of applications:

 Active road safety – Automated applications can transmit data to nearby vehicles

(e.g. speed, location, heading), process data received by other vehicles and thus

7

maintaining a state of awareness of its surroundings. Additionally, by communicating to

the road side units, they can obtain information about the environment (e.g. road

hazards, accidents, weather conditions).

 Traffic orientation and fleet management – By reporting the vehicles location to

some centralized system, these networks can be used to monitor the roads traffic state

and therefore use this information to dispatch recommended route diversions in case of

road congestions.

 Infotainment – Enabling vehicles with the capability of communicating between them,

the ability of the vehicle users to communicate with each other also arises. This creates

the possibility of creating localized entertainment and social applications.

Figure 3 – VANET applications (adapted from [12])

2.2 Vehicular Ad-hoc Networks Routing

Due to the unique characteristics that define a VANET, creating an efficient and reliable

protocol presents a hefty task. The highly dynamic topology where transmission paths are

created and severed constantly require that these protocols be robust and resilient. VANET

routing protocols are usually classified in five categories: topology based routing, position based

routing, cluster based routing, geo cast routing and broadcast routing [8] [13].

Topology based routing is the simplest form of routing. These protocols make use of the links

information to perform packet forwarding, they branch in two different approaches to achieve this.

They can either be proactive or reactive. The proactive approach is a table driven approach and

works similarly to routing protocols used in the internet. Nodes periodically broadcast packets

with their knowledge of the surrounding topology to other nodes, and use this information to

create routing tables that indicate the next hop node to which they will forward the information to

reach the desired destination. In this approach, nodes also contain information of unused paths,

meaning that part of information they share on the periodical broadcasts is meaningless. As

8

nodes have to periodically broadcast information and as more nodes congregate, this can have a

severe impact on the network bandwidth. In reactive approach no knowledge of the network

topology is maintained, nodes only open a route when they need to forward data to another node

and will only keep information of the routes that are currently being used. In this approach, when

nodes need to learn a route to another node, they initiate a discovery process similar to the one

from the proactive approach in order to attain a path, thus having an increased latency when a

new route needs to be discovered. When a path is found, the discovery process ends and the

nodes can now communicate.

Position based routing, also known as geographic based routing, makes use of a node’s

position to discover a path to that node. This method is mainly used in cases where the

destination position is known like in a sensor networks with centralized data aggregators. In this

approach, nodes need only to know the location of other nodes in a single hop distance, therefore

only single hop broadcasts are necessary. As nodes send their location periodically, neighbouring

nodes can maintain their routing tables updated, and as only the information of single hop

distance nodes is maintained, this approach has a high scalability and introduces a minimal

overhead on the network which results in a low bandwidth usage [14].

Cluster based routing operates by assembling a group of nearby nodes into overlapping

clusters. Each cluster will elect one of its nodes as the cluster’s head whose duty is to manage

the intra and inter-cluster communications. Cluster’s head nodes appoint gateway nodes that are

located in the overlapping area and use them to communicate between them. By doing this the

cluster head node can attain the membership information of other clusters. This means that inter-

cluster routes are found by flooding the network through gateway nodes with route requests.

Additionally, they attain the intra cluster membership information by periodically sending single

hop distance “hello messages” and subsequently creating intra node routes. In this type of routing

the protocols responsible for cluster formation, cluster head and cluster gateway selection have a

great relevance in managing the VANETs, which will have a highly dynamic cluster formation that

can be very computing intensive [13] [15].

Geo cast routing is based on location wise multicast routing. It consists of broadcasting a

message to all nodes belonging to a well-defined geographical area called zone of relevance

(ZOR). To achieve this there are several approaches that geo cast routing protocols use with

different characteristics e.g. path strategy, scalability, message complexity and robustness. The

least complex of these approaches is the simple flooding in which, when a node receives a

message that it never received before and that originates from its ZOR, it will simply broadcast it

to all surrounding nodes. More complex approaches are based on direct flooding by defining

forwarding zones which comprise a sub set of all the network nodes. When these approaches fail

9

to deliver the message they either increase their forwarding zone or fall back to simple flooding

[16] [17].

Broadcast routing is achieved by sending a packet to all nodes in the network and the

messages need to reach vehicles beyond transmission range. To achieve this multi hops packets

are used. It is a very reliable method, but it requires a high use of bandwidth and nodes receive

duplicate messages very often.

2.3 REINVENT

REINVENT [5] [18] is a system created with the aim of simplifying the communication between

VANETs and mobile applications. It creates an abstraction layer that mobile applications make

use of, allowing them to use the VANET resources without the need to delve further into the

abstraction layers that define network communications. REINVENT’s architecture is depicted in

Figure 4.

Figure 4 – REINVENT conceptual architecture [5]

To achieve this, REINVENT employs the Representational State Transfer (REST) architecture

– an architectural style for designing networked applications [19]. REST operates on a client-

server basis that uses basic HTTP to communicate and provides support for the CRUD (create,

read, update, delete) operations. It separates the user interface from the processing segment

making it possible for the user interface to be set up on different platforms using a different

system architecture, and also improving the scalability of the servers as they are detached from

the user interface. The communications on REST are stateless meaning that requests from a

client to a server must contain all the information needed for the server to understand the

request. REST is used on REINVENT to provide an abstraction between the user application and

the modules (servers).

10

Communications between the clients and servers are made using a message-oriented

middleware (MOM). MOM is a software framework that yields the capability of sending and

receiving messages. Software MOM enables applications and devices to communicate with each

other, and work as a larger application; despite the requirements that clients must connect to their

servers, it can be used for peer-to-peer communication between two clients through these

servers. The interactions models used by this middleware can be described by either

synchronous or asynchronous interactions. Synchronous communications require that the client

must block its execution thread when making a call, and for it to wait the call termination before

resuming its execution. Asynchronous communications allow the caller to continue its execution

upon making a call, and to achieve this, it requires a message broker to handle the requests.

Message brokers use message queues to forward the requests to their designated destination

and these queues tend to work on a first-in first-out (FIFO) approach, meaning that messages will

be processed in order of arrival. Message queues can operate using two different models: the

point-to-point (PTP) model and the publish/subscribe. On the PTP model, queues are used to

send messages to a single consumer and messages are removed from the queue upon

consumption. Additionally, even though the PTP model is used to communicate to a single

consumer, multiple clients can publish messages on this type of queues. The publish/subscribe

method allows the communication amongst one client and many consumers, and the

communication amongst many clients and many consumers. Consumers subscribe to the desired

channels and topics, and clients publish the messages on these channels and topics. The

message broker will be responsible for forwarding these messages to the desired recipients.

REINVENT uses the Advanced Message Protocol [20] (AMQP) as the application layer for the

MOM.

11

2.4 VANESS

VANESS [6] [21] is a naming service to support U2U communications in a VANET, with or

without access to an ISP, focused on mobile devices. It is able to map a user to its access point

either by using only the VANET, by making use of an internet connection available to that access

point, or by using an internet connection available to some other VANET node. It is deployed over

three main components: the smartphone application, the OBUs, and on the web. On the

smartphone application, it is used for communication and authentication purposes. On the OBUs

it will allow messages to be exchanged between devices and the VANET, and between vehicles.

On the web it will deploy a centralized naming service responsible for data management, and to

allow distinct VANETS to communicate if both have internet access.

VANESS is an extension of REINVENT, and expands it by appending two modules, namely

VNS (VANET naming service), and VnAuth (VANET Authentication). VNS is responsible for

mapping the users to the vehicles, more precisely to the unit through which a user connects to

the VANET. VnAuth provides a device-centralized login and signup method that is used by the

smartphone application, allowing VANESS to know the users connected to the system, the

association of the user to the device, and subsequently the unit to which they are connected.

Figure 5 depicts the VANESS architecture.

Figure 5 – VANESS architecture [6]

REINVENT is not capable of knowing to which vehicle a user is connected, and therefore is

unable to forward him messages. VNS is internal to VANESS and transparently used by a

developer creating applications. As VANESS extends REINVENT, for an application to send a

message to a specific user, it will do it using REINVENT only, which internally will use the VNS

module to forward it to the rightful destination. The way VANESS operates is that when a

message is sent through REINVENT, a request is made to the VNS module with the destination

username, and in turn, VNS will reply with the unit’s ID to which the destination is connected.

After learning the unit’s ID, REINVENT pairs this ID to the message and sends it through the

12

VANET for it to reach the desired recipient, which will then be received by the user’s mobile

application. After doing this, the sender’s mobile application will also gain knowledge of the

addressee unit which will keep in cache.

VNS has several ways of mapping a user to a unit. Firstly, it will try to contact the web server;

as this is a centralized resource it is likely to have the most reliable information. It can achieve

this by directly contacting it through the unit’s internet access, and if not available, another unit

can perform this request and provide the answer. VNS accesses this web server by means of a

REST web service it deploys. If the web server is not available, the units themselves will translate

the request, but only if the addressee is connected to them in which case they will provide the

answer. Lastly, the smartphone application maintains in cache the locations of the recently

contacted users; in case any of the previous cases fails, this information will be used. The

mapping information is kept updated through the units by means of the VnAuth module which

every time a mobile application connects to a unit, will revise the information. However, VANESS

does not implement any mechanism to keep track if a user disconnects from the system either

manually or by getting out of communication range, meaning that if this happens, the system will

still keep information of the last known location of a given user, and will make use of it to forward

messages to him.

13

3 Vehicular Network Messaging System

Vehicular Network Messaging System (VNMS) is the main contribution of the current work.

The main goal of VNMS is to deploy a messaging system capable of user-to-user, and user-to-

infrastructure communication. VNMS is deployed over VANET nodes (both OBUs and RSUs),

allowing users, through the smartphone application, to use the VANET to communicate with other

users over the VANET transparently i.e. without explicitly handling VANET specific services or

information such as the vehicle identification or VANET topology.

VNMS provides users the ability of posting messages in the VANET nodes that are scattered

throughout the network. Users can define the time during which the message is deemed valid,

and the visibility of the message (i.e. who can read a given message). These messages can be

posted (sent) to specific users, to a group of users, or can be posted in public groups that anyone

can read if they are subscribers of this given public group. This functionality works as virtual

bulletin boards for location wise and time sensitive messages.

VNMS mobile application uses REINVENT to support smartphone communication with

VANET/VNMS nodes.

3.1 Architecture

VNMS is based on previous work of MSc, namely REINVENT [5] and VANESS [6], but its goal

is to extend their functionalities.

REINVENT’s main concept is to abstract the transport resources behind a Representational

State Transfer (REST) interface with a module that encloses the support of messaging system

already coupled with the transport layer specifications. This module incorporates the messaging

service that encapsulates the application messages in the specific transport layer protocol [5].

REINVENT however has some limitations that needed to be addressed for VNMS to achieve its

goals, namely that it only supports one user per unit, and that it does not implement a reliable

data transmission system in the case that users disconnect from the unit, resulting in message

losses. VNMS extends REINVENT by adding communication channels that support multiple

users and an acknowledge mechanism to ensure that no data is lost.

VANESS can be described as a naming service to support U2U communication in a

heterogeneous scenario comprising both VANET and traditional web. Its goal is to ease the use

of VANETs’ communication resources on mobile applications working as a naming service

14

resource transparent to developers, making exchanges of messages between users immediate to

any software running on a mobile device. It handles the translation/mapping between the user’s

alias/username and the transport level needed information [6]. VANESS uses REINVENT as

communication system between applications and the VANET, meaning that it suffers from the

same limitations of REINVENT. Furthermore, VANESS uses an external centralized naming

service that resides on the internet; VNMS replaces it with an intra-network distributed naming

service deployed on the VANET nodes, eliminating the need for internet access. It also expands

it to support multiple users connected to the same node.

The VNMS system architecture features three key components:

 Mobile application as the end user segment, through which users are serviced. This

application enables the user to send and receive messages to other users and to

access the VBB for posting and reading messages.

 Roadside units (RSUs) are stationary units located throughout the geographical area

where the VANET operates. These units can be considered as hotspots to which the

vehicular part of the network connects. In addition, these units serve as repositories

where the VBB messages are stored.

 On board units (OBUs) are located on vehicles and are responsible for exchanging

messages between users and the vehicular network. These units can connect directly

to the RSUs or through other OBUs.

As depicted in Figure 6, smartphones connect to the units via Wi-Fi interfaces and vehicular

units communicate with other units through the WAVE interface. VNMS uses a client-server

architecture, in which the smartphone applications are the clients and vehicular units deploy the

servers.

Figure 6 - VNMS components and connections

15

3.2 VANET nodes (Units)

Vehicular units, both OBUs and RSUs, are responsible for exchanging messages between

themselves and the smartphone application. They provide the access point to which users

connect to the network and system. Additionally, units also communicate with other units

establishing the VANET.

They act as network switches in the sense that they forward messages to the endpoint devices

connected to them, but also act as routers in the sense that they are responsible for finding a way

to deliver messages to users connected to different units. Units are comprised of several modules

responsible for tackling specific problems. Figure 7 depicts the modules that the units deploy.

Figure 7 – Units components

The main module sets up all the environment for the other modules to operate and initialises

them. In addition to this, it also deploys the listener responsible for attaining messages

broadcasted in the VANET. After receiving a message from the VANET, it forwards them to the

message processor.

The message processor is responsible for identifying the type of messages that arrive from

the VANET and for sending them to the respective handler. The text messages handler goal is to

forward text messages do their respective recipients. The VBB request handler processes the

VBB requests made by users, and will take different actions depending on the type of unit where

it resides. A more detailed explanation of how it works will be made on the following chapter

3.4.3.

16

The session manager keeps track of the users connected to the unit. It listens for requests

made by the smartphone application, whether they are subscriptions or drafts. This module is one

of the key extensions made to REINVENT as it allows the system to support multiple users

connected to the same unit and to observe the state of said users i.e. if still connected or not. To

achieve this, this module makes use of the connected users database that resides in the unit.

This per unit database is the evolution of VANESS and works as the intra-network distributed

naming service that was described before. Its role and functionalities are more thoroughly

explained in the following chapter 3.4.1

The beacon module is responsible for periodically sending “hello messages” announcing the

unit’s presence to other units that are in communications range, and thus, within the capability of

communicating with each other. The reason for this module is because units have no innate way

of knowing when they get in communications range of other units. This module allows units to

become aware of other units as they get in communications range.

The pending messages database contains messages that the unit received but could not

deliver to their addressees. The recent messages database contains a list of the most recent

messages that were received through the VANET. It has a fixed size, meaning that when it is full

and a new message arrives, it will discard the oldest message and save the recently received

one. Its goal is to prevent messages from looping through the network. A more comprehensive

use and function of these databases is detailed in the chapter 3.4.4.

Additionally, so that RSUs can deploy the VBB themselves, they need to contain additional

modules to yield these functionalities. RSUs contain the VBB messages database, and deploy a

web server that runs a RESTful web service to provide an interface to access the resources on

this database.

The log module, even though not necessary for the system to operate, is deployed in all units.

The goal of this module is to maintain a database for all the messages that traverse a unit for

possible statistical studies. It compiles all the text messages, VBB requests, session related

requests and beacon messages. All these messages are stored in its full form and paired with the

GPS coordinates from where the unit was located when the given message was logged by this

unit.

17

3.3 Smartphone application

The smartphone application connects directly to the units that comprise the network. In the

physical layer they communicate by means of their Wi-Fi interfaces. In the application layer it

makes use of the REINVENT messaging system. This application acts as a client to the servers

deployed by the units. On Figure 8 the components that comprise this application are depicted.

Figure 8 - Smartphone application components

The session manager is responsible for handling all the messages relative to establishing,

maintaining, and ending a session with a unit. The message handler is responsible for sending

the messages to the units, and for deploying the listeners pledged to receive the messages. Both

the session manager and the message handler conduct their communications through

REINVENT.

The messages database is a simple database were the messages sent and received

(conversations) are stored, it’s goal is to maintain a conversations log, just like any other chat

application.

3.4 VNMS Protocols

As in any other communication protocol, VNMS uses a specific set of rules for sending

messages from one node to another. Every message has an exact meaning intended to obtain a

response from a set of pre-determined responses for that particular request. These protocols

extend the REINVENT protocols to support its added features.

18

3.4.1 User session protocol

In order to connect to the system, the smartphone application needs to initially register with it.

It is only after successfully registering that it will have full access to the system capabilities.

Additionally, after being connected, keep alive messages are periodically exchanged in order to

ensure that the application is still connected. On Figure 9 we can see the order and direction of

the messages exchanged to achieve this.

Figure 9 – Session protocol message exchanges

 Registering

On Figure 9 we can see the flow of the messages exchanged for a user to register with a unit.

Detailed information on the message formats and fields that comprise them can be found on

chapter 8.1.5. The order and flow of the messages exchanged is the following:

1. The smartphone application sends a subscribe message to the unit containing user

related information requesting to register. This (subscribe) operation is stateful,

meaning that the application will be expecting a reply.

2. The unit adds an entry to the connected users database containing the username and

a timestamp with the current system date.

3. After the entry has been successfully added to the database, the unit replies to the

user’s request with a simple acknowledge message notifying it that the registration has

been completed. After this step the smartphone application becomes connected to the

system.

Additionally, the user can request at any time to end the session by sending a draft message

to the unit. After receiving such a message, the unit will delete the username’s entry from the

database and stops sending keep alive messages. This operation is stateless.

19

 Keep alive

Keep alive messages are exchanges periodically between the smartphone application and the

unit. These messages ensure the user is still connected. The order of these messages is the

following:

4. Every 5 seconds, the unit sends a query to the smartphone application to check if it’s still

connected and waits 4 seconds for a response.

5. If the unit gets a reply it will update the timestamp of the username entry on the database.

5. If the unit waits 4 seconds and doesn’t get a reply it will delete the username entry form

the database.

Due to the time constraints, namely the 5 seconds period between queries and the 4 seconds

the unit waits before considering that the query as timed out, it can take up to 9 seconds for a unit

to realise that a user as disconnected.

3.4.2 Text Message sending protocol

This protocol describes the flow and the messages exchanged that the system uses to deliver

a text message sent from one user to another. Although very similar, there are two distinct

situations that can occur and difference resides on where the addressee is connected to i.e. if to

the same unit or to a different unit. Detailed information of the message formats and fields that

comprise them can be found on chapter 8.1.3.

 Text message to a user connected to the same unit

On Figure 10 the order of operations and exchanged messages that occur when one user

sends a text message to another user connected to the same unit is depicted.

Figure 10 – Sending a text message to a user connected to the same unit.

20

1. The message sender sends a text message to the unit. This operation is stateless.

2. The text message module checks if the addressee is connected to if by searching for its

entry on the connected users database.

3. After confirming that the addressee is connected, the unit will send the message to him.

This is a stateful operation as the unit will wait for a confirmation that the message was

received.

4. After receiving the text message, the application sends an acknowledge message to the

unit notifying it was successfully received.

The flow described before is the best case scenario on which everything goes according to

plan. The unit checks if the user is connected to it and if it is the message will be sent, however

as described before in the keep alive protocol it can take up to 9 seconds for a unit to realise that

a given user has disconnected. If a message for a disconnected user arrives during this period,

the system will try to deliver it nonetheless. This will result in the unit not receiving the

acknowledge message from the application. In this case the unit will treat the message as if to a

user connected to a different unit and will take action accordingly, as is described in the next

chapter.

 Text message to a user connected to a different same unit

On Figure 11 the order of operations and exchanged messages that occur when one user

sends a text message to a user connected to a different unit.

Figure 11 – Sending a text message to a user connected to a different unit.

1. The message sender sends a text message to unit 1. This operation is stateless.

2. Unit 1 will check if the addressee is connected to if by searching for its entry on the

connected users database.

3. After ascertaining that the addressee isn’t connected to it, unit 1 will broadcast the

message through the VANET and save it on the pending messages database for

future processing.

21

4. Unit 2 checks if the addressee is connected to if by searching for its entry on the

connected users database.

5. After confirming that the addressee is connected, the unit will send the message to

him. This is a stateful operation as the unit will wait for a confirmation that the

message was received.

6. After receiving the text message, the application sends an acknowledge message to

the unit notifying it was successfully received.

On step 3, it is stated the message is saved on the pending messages database for future

processing. A detailed description of this processing is described on chapter 3.4.4.

3.4.3 Virtual Bulletin Board requests protocol

This protocol describes the flow of the messages destined to the RSUs ’ VBBs. These

messages are requests to be made on the VBB. A user can make three types of requests, he can

make a post request, a delete request or a get request. Post and delete requests do not trigger

responses but get requests do, meaning that it will be necessary to deliver a response to the

requester. Detailed information of the message formats and fields that comprise them can be

found on chapter 8.1.4. On Figure 12 we can see the order and flow of message exchanges that

occur when a request is made to a VBB.

Figure 12 – Performing a request on a virtual bulletin board.

1. The requester sends a message to the unit. This message contains the request type as well

as all the additional information relevant to the specific request.

2. OBUs will invariably forward VBB requests to the VANET in order for them to reach a RSU.

22

3. The RSU’s VBB message processor will translate the request message into a REST request

and will perform it on the unit’s web server.

4. The web server executes the REST request and depending on its type will perform the

adequate operation in the unit’s VBB messages database. In case of a post or delete request,

this flow end here and the operation is finished.

5. In case of a get request, the web server will send a reply to the message processor’s request

made in 3. This reply will be a list of messages that match the request criteria.

6. The message processor will convert all the messages in the list into modified text messages

and will forward these messages to the text message module who will be in charge of

delivering them to the requester. After this stage, as these messages are only but a modified

version of regular text messages, the same methodology used to deliver regular text

messages is used to deliver them as has been described in the previous chapter 3.4.2.

3.4.4 Message Retransmission and VANET Forwarding

In all the previously described protocols we assumed that, when a message is sent through

the VANET, it would indubitably arrive to another unit and/or subsequently to the desired

recipient. A message would be sent through the VANET and another unit would process it

accordingly. Furthermore, as described before, sometimes messages were stored in the pending

messages database for future processing. In order to assure that these messages are delivered

to their recipients, a complex mechanism takes place in the units. Figure 13 depicts all the unit’s

modules that play a role in this course of actions.

Figure 13 – Message retransmission and VANET forwarding modules

When the message processor receives a message from the VANET, it starts by checking if the

message is on the recent message database. If the message is found there, it means that the

unit recently received it ergo, it will take no action by simply discarding it. If the message is not

found there, it will insert it on that database and will clear it to be processed. The main goal of the

23

recent messages database is to disencumber the system and avoid processing repeated

messages.

After the message has been cleared for processing, the message processor module forwards

it to that message type specific module, and depending on this module, it will have a distinct

treatment.

VBB requests are treated with a best effort approach, meaning that when a request arrives to

the unit, it will simply be broadcasted through the VANET. Text messages are, in the ideal

scenario, processed as described in chapter 3.4.2; however there are multiple reasons by which

the message addressee cannot be reached. To circumvent this problem and ensure that the

message is delivered, when a unit receives a text message and fails to deliver it to the

addressee, either by him not being connected to that given unit or because of him failing to

acknowledge the reception of that message, the unit will store that message in the pending

messages database.

The pending messages database will contain all the text messages that arrived to a unit and

that given unit did not deliver to its addressee. As the name describes, these are pending

messages to be delivered, however messages on a data base will not deliver themselves. There

are two events that can trigger a unit’s attempt to deliver these messages:

 Addressee connecting to the unit – When a user connects to a unit, this unit will check

the pending messages database for messages destined to that user and will try to send

them to him. Messages will be deleted from the pending messages database only if the

recipient acknowledges their reception.

 Another unit in range of transmission – This case is where the beacon module comes

into play. When a unit receives a beacon message from another unit, it will broadcast all

the messages in the pending messages database to the VANET with the intent of

delivering them to other units to which the user might be connected, so that they can

forward these messages to other units.

In any of these cases, when a message is retrieved from the pending messages database, its

validity field (described in chapter 8.1.2) will be checked to ascertain if the message is still valid.

Only if the message is still valid it will be transmitted, if the message is deemed invalid it will be

deleted from the database and will be discarded. Furthermore, on the case that another unit

comes in range, the broadcast will occur after the beacon message is received; however, to

prevent a network message flooding and reduce bandwidth usage, this broadcast will not happen

every time a unit receives a beacon message from another unit. When a unit receives a beacon

message, the beacon module will check when was the last time that it received a beacon

24

message from that same unit. The pending messages broadcast will only occur if a determined

time has elapsed since the last time it received a beacon from that other specific unit.

In this scenario it is possible that a user changing vehicles, and thus changing the unit from

which he connects to the system, to connect to a unit that contains previously received messages

in its pending messages database. In this case it falls down to the smartphone application to

handle the duplicated messages and discard them, which will be able to do by making use of the

message ID.

25

4 VNMS Implementation

In this section, using the VNMS blueprint architecture, we describe in detail the main decisions

and implementation solutions namely new contributions (Virtual Bulletin Board, user messaging

support) and evolutions of the previous VANET related work REINVENT and VANESS (message

protocols, naming services), the VNMS implementation reference. In the end, we focus on

VNMessenger, the smartphone application that relies on VNMS for message exchange in

VANETs.

4.1 RabbitMQ as message broker

RabbitMQ is a messaging system that enables software applications to connect and exchange

data between them. It supports messages over a variety of messaging protocols and can be

deployed using a diverse collection of programing languages, allowing it to be used in different

platforms with different architectures [22]. The way RabbitMQ works is by creating message

exchanges where the messages are published, and by configuring these exchanges to work the

way its intended, they will send the messages through message queues to the desired recipients.

The methods used by VNMS are [23]:

 Publish/Subscribe – This method provides the ability to send the same message to

an assortment of users at the same time. The exchange used on this method is a

fanout type exchange, meaning that after a message is published on it, it will create a

message queue for every user that subscribed to it and it will forward the same

message to all of those users through those queues.

 Routing – This method provides the ability to selectively send a message to a given

listener. The exchange used on this method is a direct type exchange. These type of

exchanges require additional information to properly send the message to the correct

listener. When a listener subscribes to a direct type exchange it will have to provide a

binding key in which the listener identifies itself. Additionally, when a publisher

publishes a message on a direct type exchange it will have to designate the

destination’s binding key. When the message is published on the exchange with a

binding key, the exchange will create a message queue to the user that subscribed to it

using the same binding key and will send the message through it to that determined

listener only.

26

 RPC (Remote Procedure Calls) – RPC is a protocol that one application can use to

request a service to another application (usually located in another machine), and after

the request being processed, the caller will receive a response to the request it made.

This method provides the ability for callers to execute requests on the servers and

seamlessly receive a response to this request. To achieve this, initially, the caller

creates an anonymous and exclusive call-back queue through which it will receive the

reply to the request. Afterwards the caller publishes the request on the RPC queue

describing on it the call-back queue and the correlation id, this id is used to

unequivocally identify the request. The server to which the request was made is

listening for requests in the RPC queue, after receiving a request, the server processes

it and when the process has been made, it uses the call-back queue to deliver the

result. This result is paired with the correlation id the caller defined. Lastly the caller

receives the result to the request on the call-back queue and by use of the correlation

id it will associate the response to its respective request.

4.2 Extending REINVENT

VNMS uses REINVENT as the basis for its communication system; however, the limitations of

REINVENT needed to be addressed so that VNMS could achieve its goals. The main limitations

imposed by REINVENT were the inability to support a multiple number of users connected to the

same unit and the inability to keep track of the users’ states (connected/disconnected).

REINVENT uses the RabbitMQ’s framework to support the messaging service, and its limitations

were imposed due to the fact that it only used simple message queues made for communications

with a single recipient. VNMS extends REINVENT by adjusting its communication channels and

creating some additional ones. Figure 14 depicts the new and refurbished communication

channels that were added to the system. These queues and exchanges cover the communication

between units and the smartphone application.

Figure 14 – Queues and exchanges deployed by the units

27

 “Session” message queue – this queue is where the unit will be listening for session

related requests sent by the smartphone application. In this queue it will receive

session subscribe and draft RPCs. This is just a basic queue as messages that are

sent through it are only destined to the unit, as an analogy, it can be considered as a

“well known port” to which the smartphone applications send their session related

requests.

 “Session” exchange – this exchange is used by the unit to keep tabs on the users’

states i.e. if they are still connected or not. It’s through this exchange that the unit

performs the periodical keep alive RPCs on the smartphone application. It’s a direct

type exchange because it’s used to send messages to specific users.

 “TXTFromUser” message queue – this queue is where the unit receives text

messages to be sent to users. These messages can be received from the smartphone

application, and additionally, text messages that arrive to a unit over the VANET will

also be sent to this text message module by means of this queue. This is just a basic

queue as messages that are sent through it are only destined to the unit, as an

analogy, it can be considered as a “well known port” to which the smartphone

applications send outgoing text messages.

 “txtmsg” exchange – this exchange is used to send text messages to the users. Text

messages will be sent to the users as RPC as the unit will be expecting a reply

confirming that the message was received. It’s a direct type exchange because it’s

used to send messages to specific users.

 “Vbb” message queue – in this queue, units will be listening for VBB request

messages. Messages can arrive to this queue originating the smartphone application

or from the VANET. This is just a basic queue as messages that are sent through it are

only destined to the unit, as an analogy, it can be considered as a “well known port” to

which the smartphone applications send the VBB requests.

 “VbbRPC” message queue – this queue is used to perform requests pertaining the

VBB that require a response. It’s through this queue that the smartphone application

performs the operations to check the VBB messages file version and to obtain this

messages file.

The communication between units in VNMS is the same as in REINVENT. It uses the Wave

Short Message Protocol (WSMP), a service defined in the IEEE 1609.3 that allows requests from

higher layers, such as applications, for sending messages over the air by MAC Address in both

unicast and broadcast. REINVENT uses the control channel and sends messages with the

Provider Service Identifier (PSID) 80-01. To receive messages, the unit’s main module starts a

28

daemon that listens for incoming Wave Short Messages (WSM) with the defined PSID using the

command:

uswmp receiveWSM psid 80-01

By opening a pipe with this command, it allows the unit’s main module to read from the

Standard Output (stdout) of the daemon where it will write the received WSMs. After receiving a

message, the module will parse it into a message that can be interpreted by the message

processor. Sending WSMs is achieved by issuing the command:

usmp sendWSM psid 80-01 amount 1 msg [message body]

4.3 Unit’s application

The unit’s client is responsible for instantiating and starting all the modules that it requires to

run. It starts by establishing a connection to all the databases it deploys. In case these databases

don’t exist, whether it be because they were deleted or it’s the first time the client is running, it will

create them first and then it will connect to them.

Afterwards, the client will instantiate all the modules required: VBB requests handler, text

messages handler, beacon, message processor, and the session manager. All of these modules

except the message processor will have their own thread of execution as they need to be kept

running simultaneously and continuously.

The VBB requests handler, the text messages handler, and the session manager deploy their

respective queues and exchanges, the listeners responsible for retrieving these messages, and

the call-backs responsible for processing them. The beacon module will start a periodic thread

that emits the beacon messages. It also instantiates the dictionary were the timestamps of when

it received a beacon from another unit are stored.

Finally, the unit starts the daemon responsible for attaining the messages from the VANET. To

send these messages to the respective modules, it will invoke the message processor passing it

the received message.

29

4.4 Units’ databases

Units contain several databases, namely the: connected users database, pending messages

database, recent messages database, and in the case of RSUs, the VBB messages database.

The beacon dictionary could also be treated as one but as it is internal to that specific module it

will not be considered in this section.

 Connected users database – stores a list of the users connected to the unit. Its entries

contain the username and a timestamp detailing the last time they responded to a keep

alive request.

 Pending messages database – stores all the messages that the unit didn’t deliver to the

addressee. Its entries contain the username of the addressee, an internal message id,

and the message itself.

 Recent messages database – this is not a database per se, but was implemented as a

circular buffer. When it full and receives a new message it will discard the oldest one.

 VBB messages database – this is where the messages posted on a RSU’s VBB will be

stored. A more detailed overview of this database can be found on the following chapter.

4.5 Virtual Bulletin Board

The VBBs are deployed on the RSUs and run as a separate application to the unit’s client.

These VBBs are comprised of a database where the messages are stored, and of a web server

that exposes a web service to interact with the database.

Figure 15 - Class diagram of a VBB message entry

Figure 15 depicts a class diagram of the records that can be stored in the database. Its

attributes are:

 sender – the username of who posted the message;

 mid – the message identifier in conjunction with the sender attribute form a unique

identifier for the message.

 tag - used to identify the destination of the message. If a message is destined to a

single user, the tag field will be the destination’s username; however, the system

provides the functionality of sending a message to a group of users. To achieve this,

30

instead of the destination’s username, the tag field will be a group ID known to all the

members of a group. When a user wants to retrieve messages sent to it on a given

VBB, it will make a GET request using its username as the tag. If a user wants to

retrieve the messages from a group, it will use the group ID as the tag. Detailed

information of these message requests can be found on chapter 8.1.4.

 timestamp – a timestamp with the time of when the message was sent.

 ttl (time to live) – this field is used to define the expiration date of the message. It

stores a value in minutes. When combined with the timestamp the system can

determine if the message is still valid.

 text – this field will contain the message itself. These messages however will be

encoded using a known format that will be discussed further.

The web server is a separate application to the unit’s client. It runs a web service that provides

a RESTful interface to interact with the database and achieves this by exposing 3 methods:

 Get messages – used to get messages destined to a user or group.

o URL: /webserver/getMessages?tag=:tag

o Method: GET

o URL Params: tag=[string]

o Success Response: the responses to this requests will either be an empty

string in case there are no messages destined to the requester or it will be a list

containing all the messages. The items on this list are strings separated by the

“|” (pipe) character and comprised of a message identifier, the timestamp from

when the message was sent, the user name of the sender and finally the

message itself. In case there are more than one message, they will be

separated by the char sequence “<p>”.

 Ex:

10|162601144735|chico|12<p>

12|12|162601144735|joao|10#cantina#10m<p>

162601144735|toni|16#friend

31

 Add messages – used to store messages on the database.

o URL:

/webserver/addMessage?mid=:mid&sender=:sender&tag=:ta

g×tamp=:timestamp&ttl=:ttl&text=:text

o Method: PUT

o URL Params:

 mid=[integer]

 sender=[string]

 tag=[string]

 timestamp=[integer]

 ttl=[interger]

 text[string]

o Success Response:

 Message stored.

 Delete messages – used to delete a message.

o URL: /webserver/removeMessage?mid=:mid&sender=:sender

o Method: DELETE

o URL Params:

 mid=[integer]

 sender=[string]

As mentioned before, the messages stored on this database will be encoded. Furthermore,

this VBB only supports the storage of pre-defined messages that can contain some editable

fields. This restriction is imposed by the WSMP and the limited size of the messages that it can

send. VNMS uses a set of pre-defined messages that need to be known to all the system users.

These messages are distributed by the system in a JSON file with the following structure:

32

{

 "version" : 3,

 "messages": [

 {

 "ID": 10,

 "text": "I will be at # for the next #.",

 "efields": 2

 },

 {

 "ID": 12,

 "text": "Hello #! Hit me up for #. I can be found at #.",

 "efields": 3

 },

 {

 "ID": 13,

 "text": "Good Morning.",

 "efields": 0

 },

 {

 "ID": 14,

 "text": "Hello #!",

 "efields": 1

 }

]

}

When the smartphone application connects to a unit it will verify the version of its message file

and the version of the file on the unit. If the unit contains a newer version, the application will

retrieve it. This file needs to be maintained and updated throughout the system in order to ensure

a correct behaviour. With this predefined format, messages can be sent using less data and

containing more information. A message encoded in this format will only contain the ID of the

message and the values of the editable fields. To decode these messages, it is a simple matter of

looking for its ID in the file and concatenating its editable fields with the text of the message on

the file.

Ex:

 Encoded: 10#bar do deti#half hour.

Decoded: "I will be at bar do deti for the next half hour."

 Encoded: 13

Decoded: “Good Morning.”

33

4.6 Smartphone application - VNMessenger

To use VNMS, a smartphone application was developed for the Android platform called

VNMessenger. When executed for the first time, this application stars by prompting the user to

insert a username as is depicted on Figure 16. This username is what the application will use to

register in the system.

Figure 16 – VNMessenger prompting for the username

After saving the username, the application goes to its main activity1. From henceforth the first

run, the application will always start in this main activity that is shown on Figure 17.

1 An Acti vi ty i s an ap pl ication co mp onen t that p ro vides a screen w ith w hich users ca n i n te ra ct i n o rd e r

to d o s o m ething , su ch as d ia l th e p hon e, take a p ho to, sen d an em ai l, o r vi ew a m ap . Each activi ty i s given a
w i n d o w i n w h i ch to d ra w i ts u s e r i n te rfa ce [31] .

34

Figure 17 – Main activity

Here the user can set his state (online or offline), can view its contacts and its VBB

subscriptions (a subscription is either a contact or a group).

In this activity the user has the ability to switch between the contacts tab where he can send

text messages to its contacts or the bulletin board tab where he can perform operations on the

VBB. In the contacts tab the user can add new contacts so that he can send messages to him.

These contacts will also be added to the bulletin board subscriptions list so that the user can post

messages in the VBB directed to that given contact only.

35

Figure 18 – VNMessenger chat activity

 By tapping a contact name on the contacts list, the application will move to the chat activity

and the user will be able to send messages to it, and view the messages that received from it.

Figure 19 – Bulletin board activities (subscriptions list, group posts, and posting a message)

36

On the bulletin board tab, the user has the ability of adding groups as subscriptions as shown

on Figure 19. These groups are to be shared between users, and any user in this group can post

and read messages to and from. By tapping on one of these subscriptions, the user can view the

messages stored on that group and can post a message on it. These are the predefined

messages described on the previews chapter. The user can choose which message he wants to

post on the dropdown menu and depending on the number of editable fields, the application will

display text boxes where he can insert the text. A preview of the message is also available.

4.7 Messages log

The messages log deployed on the units creates a database where all the messages that

traverse a unit are stored, being text, VBB requests, session control, and beacon messages. All

the log entries in this database are paired with the GPS coordinates of the unit location upon the

log of the given message.

Messages are stored in this database directly by the unit’s modules; however, to access this

database knowledge, an additional web service that deploys a RESTful web service can be

deployed on the units. This web service is not needed for logging purposes and can be executed

only for the knowledge retrieving purpose and shut down right after, as this is not considered a

frequent operation and thus alleviating the unit’s processing unit.

The webserver runs a web service that provides a RESTful interface to interact with the

database and achieves this by exposing the method:

 Get messages – used to get messages destined to a user or group.

o URL: /webserver/getLog?tag=:tag

o Method: GET

o URL Params: tag=[string]

o Tag: the tag field can have the string values: messages, session,

vbbrequests, or beacon and depending on it, it will return the

corresponding entries.

o Success Response: the responses to this request will either be empty in the

case that there are no messages logged or a JSON file containing all the

messages relative to that specific request.

No GUI application is available to access this database, but it can easily be accessed through

any web browser if the device is connected to the unit.

37

5 Results

The focus of VNMS was on the ability to exchange user to user messages in the VANETs. In

this section we use a scenario of message exchange between two users in different vehicles (i.e.

OBUs) to track the VNMS flows of message exchange.

The scenario starts with the user “chico” connecting to the OBU. User “chico” sends two

messages (as can be seen on Figure 20) to user “toni”. As “toni” is not connected to that unit, the

messages are broadcasted into the VANET as is depicted on Figure 21.

Figure 20 – User “chico” chatting with “toni”

38

Figure 21 – OBU output during chat.

The messages arrive to another unit, in this case a RSU; however, user “toni” is not connected

to it, and this unit will also broadcast these messages into the VANET as can be seen on Figure

22.

Figure 22 – RSU output during chat

Eventually, user “toni” connects to this RSU and as he connects , the unit sends him the

pending messages it has for him. Its smartphone application notifies him of these new messages

as can be seen on Figure 23. After reading the messages, “toni” replies to “chico”. As “chico” is

39

not connected to this unit, the message is sent through the VANET and arrives to the unit where

“chico” is connected as is depicted on Figure 21.

Figure 23 – User “toni” gets messages from user “chico”

As “toni” leaves the range of the unit to which he was connected (possibly to go to the bar) the

unit realises he stopped responding and thus becomes aware that he disconnected.

40

41

6 Conclusions and Future work

The Vehicular Network Messaging System (VNMS) is the main contribution of the current

work. VNMS allows user to user message exchange on a VANET. By deploying virtual bulletin

boards (VBBs) in VANETs nodes, a layer of message forwarding and user naming service, it

provides users the ability to exchange messages without the explicit need of any VANETs

specific information or service. VNMS nodes act as user message brokers, providing local user

message repositories and VANETs routing to targeted user(s) i.e. its VANET node. From the user

perspective, it is possible to use VNMS services transparently using Android mobile application,

VNMessenger. We implemented a VANETs enabled chat application as proof of concept.

As VNMS is the natural evolution of REINVENT and VANESS, it addresses some issues

previous identified in these solutions.

First it provides a user level abstraction to REINVENT avoiding the user to deal with VANETs

specific details – REINVENT implied using OBU’s VANET address explicitly for message routing

and did not support message persistence – currently handled by VNMS VBBs.

VNMS evolves the VANESS naming solution. VANESS assumed a centralized naming service

on the internet and distributed caching on the VANETs. This implied the system to be dependent

on resources external to the VANET (the centralized name service in the internet) and to have a

temporal consistency issue on local naming service replicas on VANETs nodes vs the centralized

naming service. VNMS eliminates the need of a VANET external resource, as the VANETs nodes

rely on no external resource, but does not solve completely the consistency issue – a partial

solution is provided via message exchange between VANETs node (with some piggy backing) to

update naming service user to VANET node mapping. Although not ideal, it ensures local

consistency between connected VANETs nodes.

The system contains some limitations that must be attended before being used in a real world

scenario. It needs to provide a mechanism for user registering to ensure that there are not

multiple users with the same username; this is used as the key used to ascertain the location of a

user. If multiple users using the same username were connected to the network, any message

sent to one of them would be sent to all of them.

An authentication system needs to be added to the Virtual Bulletin Board. Currently any user

can view any message posted on these boards, it only needs to know the group’s tag to do it.

42

Currently, the only way to use the system is through the Android application developed for this

purpose and through a rudimentary java console application that was created for debugging and

testing purposes. However, in order for it to reach a broader group of users, GUI applications for

other platforms need to be created. The system was designed to have a high interoperability

allowing that applications for other platforms can interact with it seamlessly.

VNMS implements a messaging protocol with well-defined messages. These messages are

basic text strings and their headers are also strings. To reduce the message overhead, these

headers could be encoded in binary and thus reducing their size significantly. Also using string

compression algorithms would achieve a reduced bandwidth usage in the data segments of these

messages.

The log system implemented on this solution was created solely for the purpose of studying

the network usage, system loads and other statistical information that can help to understand the

network better; however, currently it is logging the messages in its totality, headers and data

segments alike. If the system were to be deployed on real world usage, this logging system would

need to be adapted to log the relevant information needed and maintain the privacy of its users

by removing any data that could compromise this.

43

7 References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Commun.
Surv. Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[2] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things - A survey of topics and
trends,” Inf. Syst. Front., vol. 17, no. 2, pp. 261–274, 2015.

[3] Y. J. Li, “An Overview of the DSRC / WAVE Technology,” 7th Int. Conf. Heterog. Netw.
Qual. Reliab. Secur. Robustness, pp. 544–558, 2012.

[4] J.-C. Kao, “Research interests.” [Online]. Available:
http://www.cs.nthu.edu.tw/~jungchuk/research.html. [Accessed: 12-Jul-2016].

[5] F. F. de Oliveira, “REINVENT: accessing Vehicular Networks in Mobile Application,”
Master’s Thesis, Universidade de Aveiro, 2013.

[6] P. J. C. dos Santos, “VANESS: DNS for nomadic users in vehicular networks,” Master’s
Thesis, Universidade de Aveiro, 2014.

[7] K. Lee, L. Uichin, and M. Gerla, “Survey of Routing Protocols in Vehicular Ad Hoc
Networks,” Inf. Sci. Ref., pp. 149–151, 2010.

[8] R. Kumar and M. Dave, “A Comparative Study of Various Routing Protocols in VANET,”
Int. J. Comput. Sci., vol. 8, no. 4, p. 6, 2011.

[9] B. Paul, M. Ibrahim, and M. Abu Naser Bikas, “VANET Routing Protocols: Pros and Cons,”
Int. J. Comput. Appl., vol. 20, no. 3, pp. 28–34, 2011.

[10] V. Kumar, S. Mishra, and N. Chand, “Applications of VANETs: Present & Future,” Sci.
Res., vol. 05, no. 01, pp. 12–15, 2013.

[11] W. Fehr, “DSRC: The Future of Safer Driving.” [Online]. Available:
http://www.its.dot.gov/factsheets/dsrc_factsheet.htm. [Accessed: 06-Jul-2016].

[12] M.-A. Lèbre, F. Le Mouël, E. Ménard, J. Dillschneider, and R. Denis, “VANET Applications:
Hot Use Cases,” HAL ArXiv ID 1407.4088, 2014.

[13] U. Nagaraj and P. Dhamal, “Broadcasting Routing Protocols in VANET,” Netw. Complex
Syst., vol. 1, no. 2, 2011.

[14] R. S. Battula and S. Dutt, “A Review of Location-Based Geographic Routing Protocols for
Wireless Sensor Networks,” Int. J. Eng. Res. Technol., vol. 2, no. 6, pp. 1170–1174, 2013.

[15] K. Jahanbakhsh and M. Hajhosseini, “Improving Performance of Cluster Based Routing
Protocol using Cross-Layer Design,” Arxiv Prepr. arXiv0802.0543, pp. 1–8, 2008.

[16] S. Kamboj and S. Chawla, “Geocast Routing in Vehicular Ad Hoc Networks :,” Int. J.
Comput. Sci. Inf. Technol., vol. 5, no. 4, pp. 5365–5370, 2014.

[17] C. Maihofer, “A survey of geocast routing protocols,” IEEE Commun. Surv. Tutorials, vol. 6,
no. 2, pp. 32–42, 2004.

[18] F. F. de Oliveira, S. Sargento, J. Fernandes, and A. Cardote, “REINVENT: accessing
Vehicular Networks in Mobile Application,” IEEE Int. Symp. Comput. Commun., 2014.

44

[19] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web Architecture,” ACM
Trans. Internet Technol., vol. 2, no. 2, pp. 115–150, 2002.

[20] “AMQP.” [Online]. Available: https://www.amqp.org. [Accessed: 19-Jul-2016].

[21] P. Santos, S. Sargento, and J. Fernandes, “VANESS: DNS for Nomadic Users in Vehicular
Networks,” 2th Int. Conf. Mob. Ubiquitous Syst. Comput. Netw. Serv. (ACM
MOBIQUITOUS 2015), 2015.

[22] “What can RabbitMQ do for you?” [Online]. Available:
https://www.rabbitmq.com/features.html. [Accessed: 07-Jul-2016].

[23] “RabbitMQ Tutorials.” [Online]. Available: https://www.rabbitmq.com/getstarted.html.
[Accessed: 07-Jul-2016].

[24] “Python.” [Online]. Available: https://www.python.org. [Accessed: 18-Jul-2016].

[25] “Introduction to Pika.” [Online]. Available: http://pika.readthedocs.io/en/0.10.0/. [Accessed:
18-Jul-2016].

[26] “CherryPy.” [Online]. Available: http://www.cherrypy.org. [Accessed: 18-Jul-2016].

[27] “PyDbLite.” [Online]. Available: http://pydblite.readthedocs.io/en/latest/. [Accessed: 18-Jul-
2016].

[28] “Requests: HTTP for Humans.” [Online]. Available: http://docs.python-
requests.org/en/master/. [Accessed: 18-Jul-2016].

[29] “Android Studio.” [Online]. Available: https://developer.android.com/studio/index.html.

[30] “prettytime.” [Online]. Available: http://www.ocpsoft.org/prettytime/. [Accessed: 18-Jul-
2016].

[31] “Activities - Android Developers.” [Online]. Available:
https://developer.android.com/guide/components/activities.html. [Accessed: 11-Jul-2016].

45

8 Appendices

8.1 Protocol messages

Messages are sent/received by components through all the methods described before.

However, all the data forming these messages must abide the formats defined so that each

module/component can retrieve information from them. Like in any network protocol, these

messages are comprised of a header and a data segment. The header of the message contains

the control information and the data segment contains the message itself. All the messages in

this system are text strings, and each field is separated by the pipe ‘|’ character.

The message header contains numerous information necessary for the system, so that it can

deliver the message to the correct destination. Additionally, the header contains information

regarding the validity of a message.

8.1.1 Timestamp

Most of the messages used in the system will have a field called the timestamp, this field

contains the time at which the message was sent. This field is comprised by a 12 characters

string that can be parsed and converted in a date with precision up to seconds.

This field format is the following:

yyMMddHHmmss

yy – Last two numbers of the year;

MM – Number of the month;

dd – Day of the month;

HH – Hour of the day

mm – minutes

ss – seconds

An example would be:

14h 47m 35s, 26th January 2016 which would be encoded as: 160126144735

46

8.1.2 Message Validity Field

When a unit receives a message for a user not connected to it, it will broadcast the message

through the VANET to any other unit in range, in addition, when a unit receives a beacon from

other unit, it will likely broadcast that message again. With all these unconditional broadcasts,

messages were fated to circulate the network ad infinitum. To phase out this problem, messages

are complemented with a validity field.

The validity field describes how many times and/or for how long a message can be

broadcasted before being deemed invalid. When a message is deemed invalid, a unit will simply

discard it. This validity field is comprised by two components:

 Hop limit – An integer value. This field specifies a limit on the number of hops a

message is allowed before being discarded. Before a message is broadcasted, this

number is decremented in one unit. When this value reaches zero, a unit will not

broadcast this message again.

 Time limit – An integer value. This field specifies the amount of time a message is

deemed valid after being sent. If the amount of time in this field elapses after the

message was sent (can be known through the validity field), the units will deem the

message invalid and will discard it.

Both these fields can be used at the same time or independently, and it is only necessary that

one of them reaches its limit for the message to be discarded. For a message to be sent ignoring

one of these fields, instead of a positive value for hops or time limit, this field should have the

value -1. These inner fields are separated by the ‘#’ character. The supported formats are the

following:

-1#-1 – message won’t have either a hops limit or a time limit. It will always be broadcasted

through the units.

10#-1 – message will hop trough units a maximum of 10 times before being discarded.

-1#15 – message won’t have hops limit and, will only be broadcasted for 15 minutes after

being sent.

10#15 – message will hop trough units a maximum of 10 times or for a maximum of 15

minutes. If any of these conditions reaches its limit, the message will be discarded.

47

8.1.3 Text messages from users to users

These are the messages that a user sends directly to other user. In addition to the timestamp

and the validity field, these messages include additional information necessary for it to reach its

destination:

1. Message type: In this case will be the string “TXT”. This field is used define the type of

message;

2. Validity field;

3. Timestamp;

4. Message ID: This message id is generated by the sender’s smartphone application

and it’s unique to each message;

5. Sender username: The username of the sender;

6. Destination username: The username of the addressee;

7. Message text: The message itself.

TXT|10#15|162601144735|33|chico|toni|good afternoon!

Message from “chico” to “toni” containing the text “good afternoon!”.

8.1.4 Virtual Bulletin Board Messages

Messages sent to the VBB need to be translated in REST requests that a RSU will make to its

webserver. Depending on the type or request, additional parameters are required. The header of

these messages is comprised by the following fields:

1. Message type: In this case will be the string “VBB”. This field is used define the type of

message;

2. Validity field;

3. Timestamp;

4. Message ID: This message id is generated by the sender’s smartphone application

and it’s unique;

5. Command: Can be either of the strings: “PUT”, “GET”, “DELETE”,

“CHECKFILEVERSION” or “GETMESSAGESFILE”.

Depending on the type of request (command), the fields that follow the previous header vary

according to each case.

48

 PUT this command is followed by 3 additional fields: the sender ID, the tag field and,

the message text.

o Ex: VBB|-1#-1|162601144735|33|PUT|chico|ua|12

o This message was sent by the user “chico” to the group named “ua” and

contains the encoded message 12.

 GET this command is followed by 2 additional fields, the ID of the user requesting

the messages and, the tag of the messages the user wants to get.

o Ex: VBB|-1#-1|162601144735|34|GET|chico|ua

o This message was sent by the user “chico” requesting to get the messages

posted with the tag “ua”

 DELETE this command is followed by 2 additional fields, the ID of the user

requesting the deletion of the message and the id of the message to be deleted.

o Ex: VBB|-1#-1|162601144735|35|DELETE|chico|33

o This message was sent by the user “chico” requesting to delete the message

with the id 33.

 CHECKFILEVERSION this command is used to check the version of the pre-

defined messages file on a unit.

o Ex: VBB|-1#-1|162601144735|35|CHECKFILEVERSION|chico

o This message was sent by the user “chico” requesting the version of the

messages file.

 GETMESSAGEFILE this command is used to check the version of the pre-defined

messages file on a unit.

o Ex: VBB|-1#-1|162601144735|35|GETMESSAGEFILE|chico

o This message was sent by the user “chico” requesting the messages file.

When a user performs a GET request to a VBB, the messages he requested, will be sent to

him as regular text messages described before, however it will have an additional field preceding

the sender id field. This additional field is comprised by two inner fields: the first one is the

keyword “vbb”, and the second one will be the tag of the message, these fields are separated by

the “#” character. In the case were the message is from another user, the tag and the sender ID

will be the same. In the case were the message is from a shared group, the tag will be the name

of the group and the sender ID will be name of the user that posted that message.

49

Ex: TXT|-1#-1|162601144735|55|vbb#ua|toni|chico|12

In this case, the user “chico” received a message posted by the user “toni” in the group “ua”.

Ex: TXT|-1#-1|162601144735|56|vbb#toni|toni|chico|12

In this case, the user “chico” received a message posted by the user “toni” whose only

destination was the user “chico”.

8.1.5 Session Control Messages

These messages are sent from the smartphone application to the unit it is connected to. As

these messages are not sent through the VANET and only have relevance in the unit itself, they

do not incorporate a validity field, or any other unnecessary information. These are quite simple

messages containing only 3 fields:

1. Message type: In this case will be the string “Session”. This field is used define the

type of message;

2. The command: Can be either “Subscribe” or “Draft”. Subscribe will be used

to request that a session is established with the unit, and Draft will be used to

terminate a session.

3. Sender username: The username of the user performing the request.

Ex: Session|Subscribe|chico

The user “chico” is requesting for a session to be established.

Ex: Session|Draft|chico

The user “chico” is requesting the termination of its session.

8.1.6 Beacon Messages

Beacon messages are periodically sent by units, to announce their presence to any other

nearby units. These messages sent through the VANET, however they are not forwarded by any

other units, meaning they do not incorporate the validity field. They are comprised of 3 fields:

50

1. Message type: In this case will be the string “BEACON”. This field is used define the

type of message;

2. Unit ID: an integer unequivocally identifying the unit that sent the message.

3. GPS Coordinates: A string containing the GPS coordinates from where the beacon

was sent. This field is used only for logging purposes and currently as no use in the

beacon system itself.

Ex: BEACON|12|(40.633066, -8.659825)

A beacon sent by unit 12 in the given coordinates.

8.2 VNMS dependencies

The unit’s module created by VNMS is based on REINVENT which was created in its original

form using Python [24]. Additionally, REINVENT uses RabbitMQ as a message broker. For the

unit’s module to be deployed and executed on a unit, this unit needs to have Python and

RabbitMQ installed. The RabbitMQ server needs to be executed before the unit’s application in

order for it to be able to create its communication channels.

RabbitMQ is supported in Python by the use of Pika which is a pure-Python implementation of

the AMQP 0-9-1 protocol that tries to stay fairly independent of the underlying network support

library [25]. Currently, Pika supports Python 3.5.x versions, however when the development of

VNMS started it did not. To ensure that the system works properly, any Python 2.7.x version must

be installed as well as the Pika library. The system was not tested with Python 3.5.x so correct

behaviour is not guaranteed if using it.

Some additional libraries were also used and need to be installed for the unit’s module to

execute. These libraries are:

 CherryPy – A minimalist python web framework [26]. Used to create the web servers

and deploy the web services on them.

 PyDbLite – A fast, pure-Python, untyped, in-memory database engine, using Python

syntax to manage data [27]. Used to implement the databases on the system.

 Requests – allows to send HTTP/1.1 requests, without the need to manually add

query strings to URLs, or to form-encode POST data [28]. Used to create the requests

to be made on the web servers.

The smartphone application was created using Android Studio [29] and requires two additional

libraries for it to compile which are:

51

 RabbitMQ Java Client – to communicate with the RabbitMQ servers deployed on the

units.

 prettytime – an open source time formatting library that creates human readable,

relative timestamps [30]. Used to format the messages timestamps.

8.3 Unit configuration

VNMS’s unit module contains several settings that need to be configured and defined for it to

operate. To easily perform this, a configuration file system was implemented as well as a Python

module with functions to read the values from this file. These values can be obtained in the

application by use of the module config.py which defines functions to get them. A sample file

would be:

board_id:12

n_recent_messages:50

client_timeout:4

client_probe_period:5

messages_json_path:/root/Gateway/vbb_messages.json

rsu_reply_max_hops:-1

rsu_reply_max_time:-1

beacon_period:5

retransmit_period:100

The fields contained in this file are:

 board_id – number unequivocally identifying a unit.

 n_recent_messages – maximum number of messages that the circular array of

the recent messages database will store.

 client_timeout – number of seconds a unit waits for the reply of a keep alive

message sent to a user before considering the user as disconnected.

 client_probe_peridod – number of seconds between the keep alive queries

that a unit makes to the smartphone application.

 messages_json_path – absolute path to where the JSON file of the VBB

predefined messages files is located.

 rsu_reply_max_hops – number of max hops a RSU will add to a modified text

message from the VBB to be sent to a user.

 RSU_reply_peridod – time expiration date, in minutes, that a RSU will add to a

modified text message from the VBB to be sent to a user.

52

 beacon_period – number of seconds between “hello” messages sent by the

beacon module.

 retransmit_peridod – time in seconds that must elapse between beacon

messages for a unit to retransmit the pending messages upon receiving a beacon

message from the same other unit.

