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abstract The Hubbard model is one of the simplest models to describe the motion
and interaction of electrons in solids. It has been widely studied due to its
applications in the description of organic conductors and in the search for
high-Tc superconductivity.
The aim of this thesis is to contribute for the better understanding of the
behavior of the two-dimensional Hubbard model when the geometry of the
lattice is changed, namely by twisting the boundary conditions or introducing
geometric frustration.
We begin by extending the mean-field magnetic phase diagram of the Hubbard
model in a square lattice, by adding the possibility of spin density modulation,
in contrast with previous studies. This was done by considering a square
lattice divided into two sublattices, which were allowed to have different spin
densities. We found that, in some regions of the phase diagram, nonuniform
spin density throughout the lattice leads to a lower free energy.
Secondly, we introduce a variation of the square lattice, which we call
the helicoidal lattice. This lattice and the square lattice are equivalent in
the thermodynamic limit, as they differ only in the boundary conditions.
We present an effective Hamiltonian that describes the first-order energy
corrections due to transversal hoppings in the strong-coupling limit, and show
that interesting spin dynamics arises, even without the Heisenberg correction,
due to hole hoppings in the transversal direction. We present an analytic
expression for the energy correction in the case of one hole and one inverted
spin. The numerically-obtained corrections for higher number of inverted
spins are also shown.
Thirdly, we present a unifying picture for localized states of decorated square
lattices. This unification is presented in the form of what we call the "origami
rules", which include folding and unfolding localized states of tight-binding
Hamiltonians. We show that localized states of decorated lattices of the Lieb,
Mielke and Tasaki classes can be obtained from each other by applying these
rules.
We then focus on the decorated lattices of the Lieb class. We begin by
studying the time evolution of its localized states when a magnetic field is
slowly applied perpendicularly to the plane of the lattice. We find that, as
stated by the adiabatic theorem, the localized eigenstate remains localized
as long as there is an energy gap between its energy and the rest of the
Hamiltonian spectrum. Furthermore, we show that the way that the localized
state evolves can be described by a simple three-level toy Hamiltonian, whose
solution is analogous to a classical precession motion.



Lastly, we introduce the Hubbard interaction in the Lieb lattice and, using
the mean-field approximation, obtain the magnetic phase diagram of this
lattice, previously absent from the literature. We find that, in the case of
bipartite lattices with a different number of atoms on each sublattice, the
traditional mean-field approach fails to yield correct results at half-filling.
Therefore, we follow a more complex (generalized Hartree-Fock) mean-field
approach, which allows the sublattices to have different magnetizations and
charge densities. Under these new considerations, the mean-field approach
correctly reproduces the exact results at half-filling, given by Lieb’s theorem
and the uniform density theorem.



palavras-chave modelo de Hubbard, magnetismo, campo médio, Hartree-Fock, redes deco-
radas, estados localizados, sistemas de flat bands, rede de Lieb

resumo O modelo de Hubbard é um dos modelos mais simples para descrever o
movimento e a interacção de electrões em sólidos. Tem sido largamente
estudado pelas suas aplicações na descrição de condutores orgânicos e na
procura de supercondutividade a cada vez mais altas temperaturas.
O objectivo desta tese é contribuir para a melhor compreensão do comporta-
mento do modelo de Hubbard a duas dimensões quando a geometria da rede
é alterada, nomeadamente torcendo as condições de fronteira ou introduzindo
frustração geométrica.
Começa-se por fazer uma extensão do diagrama de fases magnéticas do
modelo de Hubbard numa rede quadrada usando a aproximação de campo
médio, introduzindo a possibilidade de modulação da densidade de spin,
contrastando assim com estudos anteriores. Isto foi conseguido dividindo a
rede quadrada em duas sub-redes, podendo as suas densidades de spin ser
diferentes. Concluiu-se que, em algumas regiões do diagrama de fases, esta
densidade de spin modulada permite ao sistema baixar a sua energia livre.
Em segundo lugar, introduz-se uma variação da rede quadrada, a que
chamamos rede helicoidal. Estas duas redes são equivalentes no limite
termodinâmico, visto que apenas diferem nas condições de fronteira. É
apresentado um Hamiltoniano efectivo que descreve as correcções de energia
em primeira ordem devidas aos saltos transversais no limite de acoplamento
forte (strong-coupling limit). Devido à introdução destes saltos, observa-se
uma dinâmica de spins, mesmo no limite de interacção electrónica infinita
(ou seja, sem as correcções de Heisenberg). É apresentada uma expressão
analítica para a correcção energética no caso de uma lacuna e um spin
invertido, bem como representações gráficas das correcções para vários spins
invertidos, obtidas numericamente.
Em terceiro lugar, apresenta-se uma unificação dos estados localizados de
redes quadradas decoradas. Esta unificação é apresentada na forma de
"regras de origami", que incluem dobrar e desdobrar estados localizados de
Hamiltonianos sem interacções (tight-binding). Mostra-se que os estados
localizados das redes decoradas de Lieb, Mielke e Tasaki podem ser obtidos
uns a partir dos outros aplicando estas regras.
Seguidamente, dá-se ênfase às redes decoradas da classe de Lieb. Começa-se
por estudar a evolução temporal dos seus estados localizados quando um
campo magnético é aplicado lentamente e perpendicularmente ao plano da
rede. Conclui-se que, em concordância com o teorema adiabático, o estado
localizado mantém-se localizado desde que haja uma diferença energética
finita entre a sua energia e o resto do espectro do Hamiltoniano. Além disto,
mostra-se que a forma como o estado localizado evolui pode ser descrita
por um Hamiltoniano mais simples, com apenas três níveis energéticos, cuja
solução é análoga a um movimento de precessão clássico.



Finalmente, introduz-se a interacção de Hubbard na rede de Lieb e, usando
a aproximação de campo médio, obtém-se o diagrama de fases magnéticas
desta rede, previamente inexistente na literatura. Conclui-se que, no caso
de redes bipartidas com diferente número de átomos em cada sub-rede, a
abordagem de campo médio tradicional não reproduz resultados correctos
na situação de um electrão por sítio (half filling). Posto isto, segue-se uma
abordagem em campo médio mais complexa (Hartree-Fock generalizada),
que permite que as sub-redes tenham diferentes magnetizações e densidades
de carga. Com estas modificações, a nova abordagem de campo médio já
reproduz correctamente os resultados exactos em half filling, dados pelo
teorema de Lieb e pelo teorema da densidade uniforme.
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Chapter 1

Introduction

While I was writing this thesis, I asked people who do not work in Physics what quantum
mechanics was for them. In short, the answer was: the physics of very small things, which
behave in random ways. As a follow-up, I was often asked the question "if these things behave
randomly, isn’t quantum mechanics pointless?" and, to their amazement, it turns out that it
is not. While, from the classical point of view, quantum mechanics professes to describe a
reality in which events in the future can affect the past, and particles can have several values
of the same property at the same time or travel in two opposite directions simultaneously, it is
responsible for many of the technological advances of the last hundred years. These include
CD, DVD and Blu-ray players, extremely precise clocks, higher resolution microscopes, lasers,
more and more miniaturized electronics, personal computers, and everything that contains
transistors, and uncrackable codes. Even the whole field of chemistry (and through it, biology
and medicine) would be no more than a huge set of mysterious rules which only apply to very
few cases. Naturally, chemists would eventually and inevitably invent quantum mechanics
when attempting to systematize all those rules.

At this point, the non-physicist person might ask "but if everything is random, how can
there be controllable quantum mechanical devices?". And the answer is that, while there is
a large set of probabilities (or realities), these probabilities are not necessarily random. We
humans are so smart that we are able to use these simultaneous possibilities, this uncertainty,
to our advantage. Quantum mechanics is therefore the branch of Physics which studies what
these probabilities are, how we can affect them, and how they evolve. The transition from
the quantum level to the macroscopic level still confounds the mind. At the quantum level,
observation forces the many possibilities to become only one, chosen with a certain known
probability. In the words of Pascual Jordan [1], "Observations not only disturb what has to be
measured, they produce it. We compel [particles] to assume a definite position. We ourselves
produce the results of measurements". Our common sense, however, dictates that at the
macroscopic scale, the state of our surroundings does not depend on whether we are with our
eyes open or closed. A well-known quote by Einstein, in one of his many denials of quantum
physics, is given by Abraham Pais [2]: "We often discussed his notions on objective reality.
I recall that during one walk Einstein suddenly stopped, turned to me and asked whether I
really believed that the moon exists only when I look at it".



2 Introduction

The Hubbard model

The state of a classical system is the set of all its (possibly time-dependent) properties.
In contrast, the state of a quantum system is the set of all possible values for its properties,
and their respective probabilities. The Schroedinger equation is a partial differential equation
whose solution (the wave function) describes the evolution of a quantum system; the probability
distribution equals the square of the absolute value of the wave function. Depending on the
geometry of a system, not all probability distributions are possible. The Hubbard model [3]
is the simplest model of interacting particles (fermions or bosons) in a lattice. Its solution
provides the possible distributions of the particles in the lattice, and their respective energies,
taking into account the energy gain due to particle mobility (the kinetic term, through the
hopping parameter t) and the energy cost of particle proximity (the on-site interaction term,
through the interaction parameter U). It works well for particles in periodic potentials at low
temperatures. as long as long-range particle interactions are negligible.

The Bethe ansatz [4] was proposed in 1931 to find the exact eigenvalues and eigenvectors
of the one-dimensional (1D) Heisenberg model, and was later extended to other models, such
as the Hubbard model. It provides the solution of the Hubbard model in one dimension,
which can be used to describe quasi-one-dimensional organic conductors. Nonetheless, it is
the two-dimensional (2D) Hubbard model that has attracted the most interest, particularly
since the discovery of high-temperature superconductivity, which was observed for example in
yttrium barium copper oxides [5] (the first material known to exhibit superconductivity above
77 K), with a quasi-2D structure.

In 1D, it has been shown that the Hubbard model does not display long-range magnetic
order [6, 7]. In 2D, the model has no exact solution, and is therefore studied using approxima-
tions such as mean-field theory, variational approaches, numerical Quantum Monte Carlo, or
considering some limiting cases such as infinite on-site repulsion (U →∞). In three dimensions
(3D), the ground state is known to be antiferromagnetic close to a half-filled band (one electron
per lattice site) for high enough U [8]. The purpose of this thesis is motivated by the lack
of knowledge we have on the transition from a 1D setting to a immensely different 3D one,
in particular on the appearance of magnetic behavior. We focus on several 2D geometries,
starting from the trivial case of a square lattice, and moving on to non-trivial lattices, such as
the helicoidal lattice, and decorated square lattices, emphasizing the Lieb lattice. With the
objective of better understanding them, we apply the Hubbard model to these lattices, either
by solving it exactly in some cases or employing perturbation or mean-field theory.

At half-filling, the ground state of the Hubbard model in a square lattice is known to display
antiferromagnetism, and is described by the Heisenberg antiferromagnetic exchange term [9]. If
the number of electrons and the number of lattice sites differ by 1, Nagaoka’s theorem predicts
a ferromagnetic ground state [10]. Farther from half-filling, however, little is known. While
mean-field calculations by Kanamori [11] state that for very large U , a system doped slightly
away from half-filling is always ferromagnetic, Monte Carlo calculations by Vilk [12], state that
the Hubbard model on a square lattice is never ferromagnetic. This contradiction serves to
show that the Hubbard model is still far from understood.

A review by Marder [13] includes six phase diagrams of the 2D Hubbard model. The phase
diagrams were obtained by six different groups, using a variety of approximations. Among
the included diagrams, three are mean-field approaches: one where the allowed magnetic
phases were paramagnetism, ferromagnetism, antiferromagnetism and ferrimagnetism [14],
another which adds spiral states to the list of phases [15], and a third one which considers
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finite temperature [16]. A fourth phase diagram is for a
√

10 ×
√

10 square lattice and the
authors find the magnetic phase diagram of the effective Hamiltonian in the strong-coupling
limit, restricting the Hilbert space to states with only singly-occupied sites [17]. The last two
diagrams were obtained using a variational [18] and a functional integral approach [19]. The
diagrams are remarkably different despite corresponding to the same system.

Mean-field approximation

We know that we cannot truly speak about magnetic order in finite systems (or any other
kind of order, for that matter, because phase transitions occur when the partition function
has a singularity, and partition functions of finite systems do not display singularities). A
theorem by Mermin and Wagner [20] states that at any finite temperature, one- and two-
dimensional systems with finite-range exchange interaction can be neither ferromagnetic nor
antiferromagnetic. Alas, all real-life systems are finite. Fortunately, macroscopic systems are so
large that their behavior is very close to that of an infinite system. In addition, the mean-field
theory does not really distinguish between finite and infinite systems [21], and can predict
magnetic order even in the case of small lattices, as we will see. There is both a negative and a
positive side to this. The bad side is that it predicts magnetic phase transitions in 1D and 2D,
when we know that they do not occur. The good side is that the magnetic phases predicted in
higher dimensions are quite accurate. Alternatively, we can say that phase transitions occur
for a certain finite system with N degrees of freedom and free energy FN if and only if F∞ has
a singularity [22]. This definition conveniently allows us to rely on results for infinite cases to
give us information on finite ones.

Mean-field numerical studies of the Hubbard model in a square lattice date back many
decades. First, when using mean-field theory to obtain the magnetic phase diagram of the
Hubbard model in a square lattice, one would compare the free energy of three possible magnetic
states of the lattice: paramagnetic, ferromagnetic and antiferromagnetic [14, 18, 23–25]. This
consideration would then yield a phase diagram, which consisted of a map showing, on each
point (n,U), which magnetic phase has the lowest free energy (n is the ratio between number
of electrons and number of sites). Later, spiral phases were also included (a generalization of
the traditional phases), increasing the complexity of the phase diagram [26, 27]. More recently,
the possibility of spatial phase separation was also considered [16, 28, 29], i.e., regions of the
phase diagram where several traditional magnetic phases are degenerate, and consequently
coexist in the lattice.

All the aforementioned progress still imposes two very important restrictions: that the
magnetization, m, and electronic density, n, are the same on every site of the lattice. One
consequence of this is that the usual mean-field calculations can consist simply of finding
the mean-field free energy, and then minimizing it with respect to the magnetization [27]. If,
contrariwise, one wishes to find out if the ground state of the system has a uniform particle
density, one cannot simply minimize the mean-field free energy with respect to n. In fact,
to overcome these restrictions, a generalized Hartree-Fock theory was derived by Bach and
collaborators [30]. One of the main points of the derivation is that, while the mean-field
free energy, FHF, is the free-energy of a system modeled by the mean-field Hamiltonian, the
minimum of the exact free-energy, F , is not found by minimizing the mean-field free energy
with respect to the mean-field parameters m and n, but instead by finding one of its saddle
points,

min
n,m

(F ) = min
m

max
n

(FHF). (1.1)
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This often passes unnoticed by researchers because, when forcing n to be the same in the
whole system, this expression reduces to a minimization problem in FHF. The derivation of
the generalized Hartree-Fock theory was later extended away from half-filling [31]. Alternative
approaches can be found in Refs. [32], [33] and [34]. Curiously, some authors present the
generalized Hartree-Fock results for the sake of completeness, but do not apply them to their
mean-field analysis. This means that space modulation of the parameters m and n has not
yet been studied in detail. For instance, in Ref. [28], although it is emphasized that finding
a saddle point of FHF corresponds to minimizing the grand-canonical free energy (that is,
finding the minimum of the grand-canonical free energy corresponding to a many-body state
of independent fermions), the electronic density in this Reference is assumed to be the same
on all lattice sites.

In Chapter 3 of this thesis, we further extend the study of the phase diagram of the Hubbard
model on a square lattice, by allowing the mean-field parameters to vary along the lattice. To
be more specific, we divide the square lattice into two sublattices, and allow each sublattice to
have its own value of m. On a side note, we also allowed the system to modulate n, but found
that both sublattices had the same ground-state n (an expected outcome, due to the symmetry
of the square lattice), and consequently did not include this result in the published paper.

Variations of the square lattice

Variations of the square lattice may exhibit interesting phenomena. In this work, we study
two ways to obtain variations of the square lattice: twisting its boundaries and inserting
additional sites and longer-range hoppings. Despite the limited number of lattices presented
here, some of our results also apply to other geometries.

In Chapter 4, we introduce the Hubbard model in a helicoidal lattice, which strongly
resembles the square lattice, except for the boundary conditions. In practice, our study of this
lattice in the strong-coupling limit is done first by considering only hoppings along the helix
(t||), i.e., as if the helix was simply a linear chain of atoms, and then introducing hoppings
across helix steps (t⊥) as a perturbation. In this perspective, the helix acts as a bridge between
the 1D and 2D models.

The existence of chemical compounds with helical geometry, such as DNA, has long
served as motivation for the study of electronic behavior in helicoidal lattices, both with and
without Coulomb-like interactions [35–37]. One of the first studies of the Hubbard model
in a helicoidal lattice considered a 1D chain of atoms with both nearest- and third-nearest-
neighbor hoppings [38]. The study consisted on Bethe ansatz calculations, and first-order
phase transitions were found in this system, caused by the competition between the usual 1D
nearest-neighbor hoppings and the newly-introduced third-nearest-neighbor hoppings. Later,
the model was generalized to nearest- and arbitrarily-nearest-neighbor hoppings [39]. This
generalization included a Bethe ansatz analysis of a helix with infinite diameter in order
to recover some of the properties of the 2D Hubbard model. More recently, the helicoidal
geometry was studied using the discrete nonlinear Schroedinger equation, rather than the
Hubbard model [40]. That study was partly motivated by the recently-proposed experimental
implementation of helix-shaped trapping potential for cold atoms [41], which could also be
used to test the results we present in Chapter 4. Our study of the Hubbard model on a helix
is motivated by the common belief that spin dynamics in the strong-coupling limit is only a
consequence of the Heisenberg (J) correction. Here, we show that, even for infinite U (where
the J correction is zero), interesting spin dynamics arises due to the introduction of the t⊥
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term of the Hamiltonian.
In Chapters 5-8, we study the Hubbard model in decorated square lattices, mainly focusing

on those of Lieb’s class. Decorated lattices are obtained by adding extra sites or hoppings
longer-range hopping terms to trivial lattices, such as the square lattice. The most well-known
decorated square lattices are the Lieb [42], Mielke [43] and Tasaki [44] lattices, in increasing
order of complexity (Fig. 1.1). The Lieb lattice has three atoms per unit cell, and can be
obtained from the square lattice by removing a third of its atoms (or by inserting an extra
atom between every pair of nearest neighbors). The Mielke lattice can be obtained from the
square lattice by adding next-nearest-neighbor hoppings at every other square, and the Tasaki
lattice is obtained from the square lattice by inserting an atom at the center of each square, as
well as next-nearest-neighbor hoppings for the original atoms.

Flat-band systems

The presence of a flat band in the energy spectrum in the absence of an external magnetic
field is a common feature in the Lieb, Mielke and Tasaki lattices. The Lieb lattice stands
out from the other two, however, as the flat band of the former intercalates the itinerant
bands [45], shaped like Dirac cones with symmetric energies [46], and arises simply due to its
topology, while that of the latter results from the relation between the nearest-neighbor and
more-distant-neighbor hopping parameters and has an energy lower than that of the itinerant
bands. The eigenstates of the tight-binding Hamiltonian whose energies lie in the flat band
are mostly localized states, i.e., they do not "see" the boundaries of the lattice and remain
eigenstates if more unit cells are added to the system. In their most compact form, the localized
states have non-zero probability density only on a small region of the lattice, and are trapped in
that region unless a magnetic field is applied. In Chapter 5, the compact forms of the zero-flux
localized states of the Lieb, Mielke and Tasaki lattices are shown. We also develop a set of
rules that allow one to find a localized state of a lattice knowing a localized state of a different
lattice, both in the zero- and infinite-U limits, with one electron and one hole, respectively.

Due to the Hubbard U and a generalized Hund’s rule, one finds ferromagnetism at half-
filling of the flat band [42, 47, 48]. This metallic (flat-band) ferromagnetism has motivated
the experimental study of decorated 2D lattices and the search for crystal structures which
display the geometry of the decorated lattices. However, obstacles such as the lifting of the
degeneracy of the flat band by the Jahn-Teller effect [49] (lattices with a degenerate eigenstate
may undergo a geometrical distortion which lifts this degeneracy, if that would lower its energy)
or the difficulty in controlling the filling of the lattice (so as to ensure we are working in
the flat-band region of the spectrum) hinder this research and call for different approaches.
Alternative experimental realizations of flat-band systems include quantum dot arrays [50],
arrays of optical waveguides [51, 52], exciton-polariton condensates [53, 54], and cold atoms in
optical lattices [55, 56].

Time-dependent perturbations

Another important remark is that the Lieb lattice retains its flat band in the presence of
an external magnetic field, whereas the flat band of the Mielke and Tasaki lattices becomes
dispersive. In all three cases, the plots of energy values vs magnetic field display fractal
Hofstadter butterflies [57]. The adiabatic theorem [58], by Born and Fock, states the following:

A physical system remains in its instantaneous eigenstate if a given perturbation is
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Figure 1.1: Three examples of decorated lattices: the Lieb (a), Mielke (b) and Tasaki (c)
lattices. The lines connect sites between which the hopping term is finite. The tight-binding
dispersion relation of the Lieb lattice includes a flat band due to its geometry. For the other
two lattices to display a flat band in their energy spectrum, the relation t = t′ = 2t′′ is required.
The relative thickness of the lines within each lattice reflects this relation, corresponding to
the situation in which a flat band is present.
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acting on it slowly enough and if there is a gap between the eigenvalue and the rest
of the Hamiltonian’s spectrum.

If a quantum-mechanical system is initially (t = 0) in a state ψ(x, 0), which is an eigenstate
of the initial Hamiltonian, H(0) and a time-dependent perturbation is applied and causes
the Hamiltonian to change over time, becoming H(t), the eigenstate evolves according to the
time-dependent Schroedinger equation,

i~
∂

∂t
ψ(x, t) = H(t)ψ(x, t), (1.2)

imposing the condition that at t = 0 the system is in state ψ(x, 0). The adiabatic theorem
states that the state of the system at a certain later time t1 > 0 strongly depends on how
much time has passed since we began introducing the perturbation (in this case, that is t1).
On the one hand, if t1 → ∞, the process is perfectly adiabatic and the evolved state of
the system, ψ(x, t1), is now an eigenstate of the new Hamiltonian, H(t1). Generally, this
means that the spatial probability densities encoded in ψ(x, 0) have changed, and therefore
|ψ(xi, t1)|2 6= |ψ(xi, 0)|2, for each point of space xi. On the other hand, if the perturbation
acts suddenly, the Hamiltonian changes almost instantly from H(0) to H(t1), corresponding to
the limit t1 → 0. In this case, the system does not have enough time to adapt its configuration,
and the spatial probability distribution remains the same (|ψ(xi, t1)|2 = |ψ(xi, 0)|2). If the
distribution is the same but the Hamiltonian changed, it stands to reason that the evolved
state of the system is typically no longer an eigenstate of the Hamiltonian, but instead a linear
combination of eigenstates whose probability densities amount to the initial one [59].

In Chapter 6, we verify Born’s adiabatic theorem for the case of localized states in the Lieb
lattice and describe their evolution in more detail by presenting a simple toy model such that
the evolution of one of its eigenstates mimics that of the localized states in the Lieb lattice. We
emphasize that the Lieb lattice is not the only decorated lattice to display a flat band in the
presence of a magnetic field. In fact, the AB2 chain [60] shares this property, and additionally
also has three atoms per unit cell, and is also bipartite. Although the results are not explicitly
shown here, they are essentially the same as those obtained for the Lieb lattice.

There have recently been many works that address the time-evolution of non-interacting
eigenstates of lattice Hamiltonians in the context of topological insulators [55, 61, 62]. Such
works focus on the Berry phases acquired by the states under periodic perturbations. In our
work, we take a different point of view and study the localized component of an evolving state,
going beyond the adiabatic regime.

Bipartite lattices

A lattice is said to be bipartite if it can be divided into two sublattices, A and B, such
that every electron hopping connects atoms of different sublattices. Two of the most important
and general theorems on bipartite lattices are the uniform density theorem [63] and Lieb’s
theorem [42]. These theorems are described in more detail in the next chapter, and roughly
state that, for the Hubbard model in bipartite lattices at half-filling, the electronic density on
each site is unitary, and the total spin on each unit cell is given by 1

2 |NB −NA|, where NB

and NA are the number of B sites and A sites in a unit cell, respectively. Both results are
independent of the Hubbard U .

In the case of a bipartite square lattice, the theorems simply imply that the charge density
is the same on every site, and that the total spin per unit cell is zero. As mean-field calculations
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often assume uniform charge and spin density, the application of the mean-field approximation
to the square lattice naturally agrees with what the theorems state, even when it yields a
wrong on-site magnetization.

On decorated lattices, this is not as simple. For example, the Lieb lattice has three atoms
per unit cell: two of one sublattice, say B, and one of the other sublattice, say A. Whatever
the choice of site labeling, the number of sites of each type is different, and therefore the total
spin on a unit cell is 1/2. In Chapter 7, we show that only a mean-field study that allows
modulation of spin density can produce this result. Such is the use of the generalized Hartree-
Fock theory. We begin by building the mean-field magnetic phase diagram of the Lieb lattice,
as none existed in the literature, by using the usual mean-field approach, i.e. assume fixed
charge and spin densities in the whole lattice. That assumption guarantees that the uniform
density theorem is satisfied, but fails to agree with Lieb’s theorem at low U . We then redo
our numerical calculations, allowing the system to modulate both its charge and spin density
(Chapter 8) and successfully obtain the results predicted by both theorems, namely we obtain
a ferrimagnetic phase at half-filling, with a total spin independent of U . Although we allow
the system to modulate its electronic density, the numerical mean-field calculation correctly
predicts a uniform density at half-filling. Away from half-filling, the relative occupation of the
sublattices is a known result from the literature [64], and our mean-field calculations correctly
reproduce it as well, both for small and large U .

Organization of the thesis

This thesis contains slightly modified versions of published or submitted peer-reviewed
papers from Science Citation Index (SCI) journals (Chapter 3 and Chapters 5-8). The most
obvious modification is the format. For instance, depending on the journal on which the papers
were published or to which they were submitted, the two-collumn format was changed to
one-collumn, and the font size was decreased or increased to become the same throughout the
whole thesis. The size of some figures was increased (in some of the original papers, we were
forced to reduce the size of some figures in order to fit within the page limit). The position of
some figures may have been changed automatically by LATEX. No information was added or
removed. The order chosen for the chapters is not the chronological order in which the papers
were published. Instead, they are presented in an order which confers more cohesion to this
thesis: we study the Hubbard model on a square lattice, and then on variations of the square
lattice, beginning with the helicoidal lattice and going on to decorated square lattices.

In Chapter 2, we review some known results on the Hubbard model. We briefly discuss
the basics of the Hubbard model by studying it in the limiting cases t = 0 and U = 0. We then
review two important theorems on the Hubbard model: Lieb’s theorem and the uniform density
theorem, which deal with the total spin and occupation of bipartite lattices at half-filling,
respectively. In the last section of this chapter, we briefly discuss the Hubbard model in a
ring, in the U →∞ limit, whose solution coincides with that of the same model in a helicoidal
lattice, when transversal hopping is neglected.

Chapter 3 addresses the Hubbard model in a square lattice. We use the mean-field
approximation to deal with the interaction term and extend the results of the literature on the
mean-field magnetic phase diagram of the Hubbard model in a square lattice. Whereas in the
literature the lattice is assumed to display the same magnetization (m) at every site, here we
divide the square lattice into two sublattices (1 and 2) and allow (not force) each of them to
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have a different magnetization (m1 and m2). We then find that, by allowing that modulation,
the states with m1 6= m2 are in fact more stable (have lower energy) than states with uniform
magnetization in some regions of the phase diagram. This Chapter is an adaptation of

J. D. Gouveia and R. G. Dias, Spiral ferrimagnetic phases in the two-dimensional
Hubbard model. Solid State Communications, Volume 185, May 2014, Pages 21-24

DOI: 10.1016/j.ssc.2014.01.004

Chapter 4 presents the quantum spin queue model (QSQM), introduced as a tool to tackle
the Hubbard model on a helix allowing hops in both longitudinal and transversal directions
in the strong-coupling limit (U →∞) with one empty site (called the hole). If all spins are
aligned (the ferromagnetic configuration), the problem is reduced to a spinless tight-binding
problem for the hole. We solve the model with one inverted spin analytically to study the
effect of t⊥ on the spin configuration. The eigenvalues of the QSQM Hamiltonian are also
shown for several inverted spins.

Chapter 5 introduces decorated lattices. We present a set of rules which allow one to
obtain localized states of a decorated lattice, starting from a localized state on a different
lattice. The rules include any subjacent changes to the hopping parameters or the energy of
the state, and can be applied to both the tight-binding and the strong-coupling limits, yielding
particle or hole localized states respectively. As an example, we show how the rules can be
applied to obtain a localized state of the Tasaki lattice, starting from one of the Lieb lattice.
This Chapter is an adaptation of

R. G. Dias and J. D. Gouveia, Origami rules for the construction of localized
eigenstates of the Hubbard model in decorated lattices. Scientific Reports 5, Article
number: 16852 (2015)

DOI: 10.1038/srep16852

Chapter 6 is focused on the time evolution of localized states in decorated lattices, due
to the slow introduction of a magnetic field perpendicular to the lattice. In the Lieb lattice, as
the magnetic flux increases slowly and linearly with time, the positive- and negative-energy
bands periodically touch the flat band. This causes a localized state of the Lieb lattice with no
flux to change its localized component over time, in a step-like pattern. We conceive a toy
model with only three states, one of which has zero energy (the same energy of the flat band
of the Lieb lattice). The energy of the other toy states periodically crosses the zero-energy
line, to mimic the behavior of the Lieb lattice. We then compare the evolution of localized
states of the Lieb lattice with that of the zero-energy state of the toy model. This Chapter is
an adaptation of

J. D. Gouveia, I. A. Maceira and R. G. Dias, Time evolution of localized states in
Lieb lattices. arXiv:1607.04326 [quant-ph] (2016)

Chapter 7 comprehends magnetism in the Lieb lattice. We use the mean-field approxi-
mation to build the Hubbard interaction vs electronic density magnetic phase diagram of the
Lieb lattice. Far from half-filling, the diagram was found to be similar to that of the square
lattice, but at half-filling the ground state of the Lieb lattice is ferrimagnetic, rather than
antiferromagnetic. This can be justified with Lieb’s theorem [42], and happens because the
unit cell of the Lieb lattice has a different number of atoms of each type. This Chapter is an
adaptation of
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J. D. Gouveia and R. G. Dias, Magnetic phase diagram of the Hubbard model in
the Lieb lattice. Journal of Magnetism and Magnetic Materials, Volume 382, 15
May 2015, Pages 312-317

DOI: 10.1016/j.jmmm.2015.02.005

In Chapter 8, we extend the mean-field study of the Lieb lattice by allowing each
sublattice to have a different magnetization (m) and electronic density (n). For that, we use
the generalized Hartree-Fock theory. This theory has existed for tens of years but it had
never been applied, as authors often consider the aforementioned mean-field parameters to
be uniform in the whole lattice. We show that, by employing this more complex mean-field
approach, the mean-field results coincide with those predicted by both Lieb’s theorem and the
uniform density theorem. This Chapter is an adaptation of

J. D. Gouveia and R. G. Dias, Spin and charge density waves in the Lieb lattice.
Journal of Magnetism and Magnetic Materials, Volume 405, 1 May 2016, Pages
292-303

DOI: 10.1016/j.jmmm.2015.12.096

Finally, a summary of the conclusions of all chapters is presented.
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Chapter 2

Known results on the Hubbard model

In this chapter, we briefly review the mathematical formulation of the Hubbard model
and present some known results. Most importantly, we review the tight-binding limit of the
Hubbard model, Lieb’s theorem and the uniform density theorem, and the Hubbard model
on a ring in the limit of strong coupling. For the latter, we present a new way to count how
many eigenstates have a given momentum and use that result to study some thermodynamic
functions.

2.1 The basics of the Hubbard model

The Hubbard model was independently introduced by John Hubbard, Gutzwiller and
Kanamori [1] around the same time in order to model electronic correlations in narrow energy
bands. In one dimension (1D), it describes the dynamics of organic conductors, while its
two-dimensional (2D) version can be applied to high temperature superconductivity [2]. Hans
Bethe [3] found the exact solution of the 1D Hubbard Model (wave functions of Bethe ansatz),
while the solution for higher dimensionality is not known [4].

In this model, a solid consists of ions and electrons in a crystalline structure. Due to the
high ratio between nuclear and electronic masses, the general form of the Hubbard Hamiltonian
assumes the Born-Oppenheimer approximation, i.e., it considers a solid consisting of nuclei
forming a static lattice and electrons which can hop between different atoms of the lattice.

The Hubbard Hamiltonian is the simplest model of correlated fermions, and has only two
parameters. The first is the tight-binding parameter, the hopping amplitude t, describing
the motion of electrons in the lattice (usually determined accurately using density-functional
theory). The hopping of electrons is often assumed to occur only between nearest neighbors.
In the extreme case t → 0, electrons cannot hop between sites, and the model describes an
isolated atomic system. In addition, the number t is assumed to be real, except in the presence
of a magnetic field. In the latter case, if the magnetic field ~B is constant in time or varies very
slowly, one simply needs to replace the hopping parameter,

t→ tije
i e~

∫ j
i
~A·d~l, (2.1)

where ~A is the magnetic vector potential ( ~B = ~∇× ~A). This is called the Peierls substitution,
a way to include the effect of a slowly changing magnetic field in a tight-binding model that
is extremely convenient and trivial from the computational point of view. Note that, even if
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Figure 2.1: (a) The two terms of the 1D Hubbard Hamiltonian: the kinetic term with amplitude
t and on-site electronic interaction U . (b) Energy levels and states of the one-site Hubbard
model.

t was constant throughout the lattice before, the introduction of the magnetic field implies
that t now depends on the origin (i) and destination (j) sites of the hopping in question.
The fact that ~A changes implies the emergence of an electric field, however small, equal to
the time-derivative of ~A. Nonetheless, if the rate at which the magnetic field changes is slow
enough, then the evolution of the quantum state of the system (due to the change of ~B) will
be the same regardless of the chosen gauge for ~A 1.

The second is an on-site interaction amplitude U , which describes the interaction between
electrons. This parameter is a measure of the Coulomb interaction, assumed to be screened
and finite only between electrons at the same lattice site, which is the shortest range possible.
The parameter U is often harder to estimate, and instead obtained by comparing theoretical
predictions with experimental results. Although one cannot directly control the Coulomb
interaction between a pair of electrons on the same atom, one can (in practice, equivalently)
change the ratio U/t, for example by applying pressure on the solid. Normally, one is interested
in a regime in which electrons are strongly correlated, i.e. in which U is larger than t. Fig. 2.1a
is an illustration of these two parameters.

Even though the Hubbard model is clearly an oversimplification, it is still able to exhibit a
lot of interesting phenomena that can be observed in nature, such as all types of magnetic
ordering, metal-insulator transitions, superconductivity, Tomonaga-Luttinger liquids in one
dimension, and Pomeranchuk instabilities[5].

The Hamiltonian of the Hubbard Hamiltonian is

H = −t
∑
〈j,j′〉,σ

(
c†j,σcj′,σ + c†j′,σcj,σ

)
+ U

∑
j

nj↑nj↓, (2.2)

where 〈j, j′〉 denotes nearest-neighbor pairs of sites, c†j,σ and cj,σ are the fermion creation and
annihilation operators on site j with spin σ and nj,σ = c†j,σcj,σ is the respective particle number
operator. The first term of the Hamiltonian allows electrons to hop between nearest neighbor
sites, and the second term simply counts the number of doubly occupied sites.

The Hubbard model displays some important symmetries, such as conservation of particle
number and spin (SU(2)-symmetry). In the case of bipartite lattices (lattices which can

1In Chapter 6, we show that an evolving localized state of the Lieb lattice remains localized as long as the
symmetry of ~A coincides with the point-group symmetry of the lattice.
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be divided into two sublattices, A and B, such that all neighbors of A-atoms are B-atoms,
and vice-versa), the spectrum of the tight-binding term of the Hamiltonian is symmetric
with respect to the zero-energy level. This can be checked by exchanging the sign of the
fermionic operators of one of the sublattices, say B, and further performing a particle-hole
transformation. The sign exchange of the B operators is the reason for the requirement of the
lattice being bipartite. Indeed, in the bipartite case, on every c†j,σcj′,σ set of operators in the
tight-binding term of the Hamiltonian, exactly one among j and j′ belongs to sublattice B,
and consequently exchanging the sign of the B operators is equivalent to exchanging the sign
of t. The particle-hole transformation is done by replacing cj → c†j and c

†
j → cj . After both

operations, the tight-binding term is mapped onto itself. If one includes the interaction term
when applying these transformations, the Hamiltonian of the bipartite lattice still remains
unchanged at half-filling. Furthermore, on bipartite lattices at half-filling, the model has an
additional SU(2) symmetry, resulting in an effective SU(2) × SU(2) = SO(4) symmetry [6].
This symmetry is crucial for some exact results which apply to bipartite lattices at half-filling,
such as Lieb’s theorem[7] and the uniform density theorem[8].

In the following subsections, we present some rigorous results on the Hubbard model. We
begin by addressing the two most limiting cases of the Hubbard model, namely setting t = 0
or U = 0. The former is equivalent to there being one site only, while for the latter a 1D
ring with periodic boundary conditions is studied. Secondly, we describe the Hubbard model
with two sites and two electrons, which is useful for introducing the Heisenberg Hamiltonian.
Thirdly, we introduce the strong-coupling limit (U →∞) and study a ring of atoms in this
limit. Finally, we present Lieb’s theorem and the uniform density theorem, which are used in
later chapters of this thesis.

2.1.1 Hubbard model with t = 0

The grand canonical partition function is defined as the sum of e−β(E−nµ) over all states,

Z =
∑
i

e−β(Ei−Niµ), (2.3)

where i labels the states, β is the inverse temperature, Ei and Ni are the energy and number of
particles of state i, respectively, and µ is the chemical potential. We use the partition function
to calculate the thermal expectation value of any physical quantity A,

〈A〉 =
1

Z

∑
i

Aie
−β(Ei−Niµ). (2.4)

Most of the thermodynamic variables of a system can be expressed in terms of the partition
function or its derivatives. As the temperature, T , goes to zero, 〈A〉 becomes the expectation
value of the ground state. As T goes to infinity, the Boltzmann factors, e−β(Ei−Niµ) → 1, so
that 〈A〉 becomes the classically-weighted mean of A over all possible states.

For t = 0, we are in the atomic limit of the Hubbard model (equivalent to having only
one site). The energy values and corresponding states are shown in Fig. 2.1b. Therefore, the
partition function in this case is

Z = 1 + 2eβµ + e−βU+2βµ (2.5)
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and the average occupation of the site is

〈N〉 =
2
(
eβµ + e−βU+2βµ

)
1 + 2eβµ + e−βU+2βµ

. (2.6)

As shown in Fig. 2.2a, as T goes to 0, if the chemical potential is: i) 0−, no particles are
present; ii) U/2, then we have one particle; iii) U+, the system has two particles, as no more
than two particles can occupy the same orbital, reflecting the Pauli exclusion principle.
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Figure 2.2: Average occupation number (a) and average energy (b) of the 1-site Hubbard model
as a function of the chemical potential, for several temperatures.

In addition, we can calculate the average energy,

〈E〉 = U
e−β(U−2µ)

1 + 2eβµ + e−βU+2βµ
. (2.7)

Plots of 〈E〉 are shown in Fig. 2.2b as a function of µ for several temperatures. The on-site
interaction only plays a role if more than one particle exists. In addition, the energy is zero if
there is only a single particle, or no particles at all.

2.1.2 Hubbard model with U = 0

For U = 0 (the so-called tight-binding approximation), we shall consider a 1D ring with L
sites and periodic boundary conditions (see Fig. 2.3). The results of this section can easily be
generalized to two or three dimensions. In this case, the Hamiltonian is

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ, (2.8)

with eigenstates

|Ψk,σ〉 =
1√
L

L∑
j=1

eikjc†j,σ |0〉 (2.9)
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Figure 2.3: A 1D Hubbard ring with L sites, labeled from 1 to L. Within the tight-binding
approximation, electrons can only hop to adjacent free sites, and there is no energy cost
associated with double occupations.

and eigenvalues
εk = −2t cos k, (2.10)

where k = 2πn
L with n = 0, 1, · · · , L − 1, assuming a unitary lattice constant. One usually

represents these energies under the more symmetric domain, k ∈ [−π, π]. In a D-dimensional
square lattice, the eigenvalues of the Hamiltonian become

E = −2
D∑
d=1

td cos kd, (2.11)

where d labels the dimensions and

kd =
2π

Ld
nd nd = 0, 1, ..., Ld − 1, (2.12)

Ld being the number of sites in the d-direction.
In terms of electrical conductance, in a system with U � t, electrons cannot, at half-filling,

hop between atoms and therefore one has an insulating system. On the other hand, if U � t,
there is practically no interaction between the electrons and they are allowed to freely hop along
the available sites (keeping in mind the Pauli exclusion principle), so one has a conductor. At
intermediate values of U/t, a metal-insulator transition takes place, called the Mott transition.
The phenomenon of an insulator becoming a conductor occurs only in single-valent systems
and is regarded as a transition from strongly correlated (U � t) to weakly correlated (U � t)
electrons.

2.1.3 The two-site Hubbard model

The 2-site Hubbard Model with open periodic boundary conditions describes anH2 molecule.
Here, however, we consider the periodic model in order to be consistent with the rest of the
work2. The general Hubbard Hamiltonian, when applied to two sites, becomes

H = −2t
(
c†1,↓c2,↓ + c†1,↑c2,↑ + c†2,↓c1,↓ + c†2,↑c1,↑

)
+ U (n1↑n1↓ + n2↑n2↓) . (2.13)

2In the case of two sites, the difference between periodic and open boundary conditions is purely mathematical.
The kinetic term of the Hamiltonian in the case of open boundary conditions would be −t(· · · ) instead of
−2t(· · · ).
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Assuming each atom to be single-valent, we have two electrons. The possible states of the
system are

|↑, ↓〉 = c†2,↓c
†
1,↑ |0〉 ,

|↓, ↑〉 = c†2,↑c
†
1,↓ |0〉 ,

|↑↓, �〉 = c†1,↓c
†
1,↑ |0〉 ,

|�, ↑↓〉 = c†2,↓c
†
2,↑ |0〉 .

(2.14)

The first two states are called covalent, characterized by the sharing of the pair of electrons
between the atoms, and the other two states are ionic, with oppositely charged atoms.

Considering periodic boundary conditions, the matrix representation of this Hamiltonian,
in the basis of Eq. 2.14, is

|↑, ↓〉 |↓, ↑〉 |↑↓, �〉 |�, ↑↓〉
0 0 −2t −2t
0 0 +2t +2t
−2t +2t U 0
−2t +2t 0 U

 (2.15)

For t = 0, the Hamiltonian is automatically diagonal and its eigenvalues are 0 and U (the
on-site energy for states |↑↓, �〉 and |�, ↑↓〉). For U = 0, the eigenvalues are 0, −4t and +4t. For
all other cases, we get the following eigenvalues and eigenvectors,

ε± = 1
2

(
U ±

√
64t2 + U2

)
; Ψ± = 1√

2+
ε2±
2t2

(
|↑, ↓〉 − |↓, ↑〉 − ε±

2t (|↑↓, ·〉+ |·, ↑↓〉)
)

εcov = 0; Ψcov = 1√
2

(|↑, ↓〉+ |↓, ↑〉)
εion = U ; Ψion = 1√

2
(|↑↓, ·〉 − |·, ↑↓〉) ,

(2.16)

where the superpositions of the two covalent or the two ionic states are denoted Ψcov and Ψion,
respectively. Fig. 2.4 shows the behavior of these eigenvalues as U increases.
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In the U � t limit,

ε+ = 1
2

(
U +

√
64t2 + U2

)
≈ U = εion,

ε− = 1
2

(
U −

√
64t2 + U2

)
≈ −16t2

U .
(2.17)

Up to first order, Ψ+ and Ψion become coincident, as well as Ψ− and Ψcov. On can write an
effective Hamiltonian that correctly describes the second-order energy difference between Ψ−
and Ψcov (apart from a constant factor, which we will neglect since we are only interested in
the energy difference between these two states),

Heff =
16t2

U
S1 · S2. (2.18)

In the many-site limit, these strong coupling energy differences are escribed by a generalized
form of this Hamiltonian,

Heff =
16t2

U

∑
<i,j>

Si · Sj , (2.19)

where 〈i, j〉 denotes summation between nearest neighbors. This is the Heisenberg Hamilto-
nian [9].

2.2 Lieb’s theorem

In one of his papers of 1989 [7], Lieb presents two theorems, each about the attractive
(U < 0) or repulsive (U > 0) Hubbard models. In this work, we are interested in the second
theorem, which states the following:

Let Λ be the set of all sites of a bipartite lattice, i.e., a lattice with |Λ| sites, which
can be divided into two disjoint sets (sublattices) A and B, such that the hopping
parameter txy of the Hamiltonian, H, is only finite if x and y are in different
sublattices. Furthermore, let U be the positive, site-independent, on-site electronic
interaction. Assume that the number of B sites, |B|, is greater than the number
of A sites, |A|, and that the number of electrons equals the number of lattice sites
(N = |Λ|). Under these conditions, the ground state of H has the spin

Stot =
1

2
(|B| − |A|). (2.20)

As an example, let us apply this theorem to the Lieb lattice (Fig. 1.1a), which is typical
in copper oxides [10]. Each unit cell contains one A atom and two B atoms. If the lattice is
composed of L×L unit cells, the A atoms form a square lattice with L2 sites, and the number
of B sites is 2L2. Lieb’s theorem states that the ground state of the Hubbard model on this
lattice, at half-filling, has total spin 1

2(|B| − |A|) = L2/2, or in other words, 1/2 per unit cell,
independently of the value of U . As the total spin of the ground state is proportional to the
number of sites of the system, we say that the system displays ferromagnetism in a broad
sense, or more precisely, ferrimagnetism3. In fact, in the Lieb lattice at half-filling, spins at

3If, additionally, the total spin of the ground state coincided with the maximum possible value (in the Lieb
lattice, this would be 3L2/2), it would be called saturated ferromagnetism.
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Figure 2.5: (a) The tight-binding energy spectrum of the Lieb lattice comprises three bands.
The two dispersive bands (red and blue) touch the zero-energy flat band at the Dirac point
k = (π, π). The degeneracy of each band equals the number of unit cells of the lattice. (b)
Density of states of the Lieb lattice, normalized to the number of unit cells. Due to the high
degeneracy of the flat band, there is a Dirac delta at E = 0.

neighboring sites tend to point in opposite directions, but the difference between the number
of B sites and A sites causes the system to exhibit finite magnetic moment. This occurs for
Hubbard models in any bipartite lattice in which the difference in the number of sites of the
two sublattices is proportional to the system size.

Lieb presents a single general proof of the theorem in that it applies for any positive U ,
be it small or large. In the limits of arbitrarily low U or very high U (compared with t),
the theorem is easier to understand. Let us first consider the limit of very weak interactions.
In bipartite lattices, the energy spectrum of the single-particle tight-binding Hamiltonian is
symmetric with respect to 0 (see the example of the Lieb lattice in Fig. 2.5a). Therefore,
at half-filling, all negative energy eigenstates are fully (doubly) occupied and the set of all
zero energy eigenstates is half-filled. There is a large degeneracy of this ground state of the
lattice, proportional to the degeneracy of the zero-energy level (equal to the number of unit
cells). Introducing an arbitrarily low U partially lifts this degeneracy by forcing the eigenstates
with zero energy to be filled with one electron each. Applying Hund’s rule (higher S leads to
lower energy), one concludes that all electrons have the same spin. As the degeneracy of the
zero-energy level is |B| − |A|, then the total spin is 1

2(|B| − |A|).
If, on the other hand, we restrict ourselves to the subspace of states for which each site is

occupied by one electron (this is the ground state at half-filling with U � t), the Hubbard
model becomes a Heisenberg model (as we roughly saw in Sec. 2.1.3). Consequently, the total
spin of the ground state of the Hubbard model in this limit is the same as that of the ground
state of the Heisenberg model in the same lattice, i.e., 1

2(|B| − |A|).
In summary, Lieb’s theorem states that the ground state of the Hubbard model at half-filling

is antiferromagnetic or ferrimagnetic, depending on whether the two sublattices have the same
number of sites or not, respectively. Although this is quite general, it applies only to finite
lattices. Knowing the total spin of the ground state of a finite lattice does not necessarily
determine the same property of the ground state of the corresponding infinite system. In fact,
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long-range order has been proven to exist in the ground state of the anisotropic Heisenberg
model in two or more dimensions [11], but no proof has been given for the Hubbard model, as
the latter is more complex and allows for a broader range of quantum mechanical phenomena.

2.3 Uniform density theorem

The uniform density theorem dates back to 1940 for the U = 0 case [12]. It was later
generalized to many interacting models, such as the Hubbard model [13, 14]. A simplified
proof was later given by Lieb and collaborators [8]. The theorem applies to Hubbard models
in bipartite lattices at half-filling, and is a consequence of the particle-hole symmetry [15].

Let ρσ(x, y) be the one-particle density matrix, whose entries are the expectation values
〈c†σxcσy〉 in the ground state at T = 0, where σ =↑ or ↓, and x and y are sites of the lattice.
The theorem states

Let Λ be the set of all sites of a bipartite lattice, i.e., a lattice with |Λ| sites, which
can be divided into two disjoint sets (sublattices) A and B, such that the hopping
parameter txy of the Hamiltonian, H, is only finite if x and y are in different
sublattices. If the number of electrons equals the number of lattice sites (N = |Λ|),
the ground state of H has the property

ρσ(x, y) =
1

2
δxy (2.21)

if x and y are in the same sublattice. If x and y are on different sublattices, nothing
simple can be said.

Note that the theorem does not impose any conditions on the hopping (t), or the interaction
(U) parameters, nor does it require translational invariance. This implies, for example, that it
also applies in the case of complex t, which occurs upon introduction of an external magnetic
field. However, this magnetic field would also affect the spins of electrons, and in turn affect
the particle-hole symmetry. In this thesis, we use this theorem to check our mean-field results
on the Lieb lattice. For the results to agree with the theorem, the particle density at half-filling
must be the same on every site of every sublattice and equal to

nA = nB = ρ↑(x, x) + ρ↓(x, x) =
∑
σ=↑,↓

〈c†σxcσx〉 = 1. (2.22)

2.4 Interacting electrons in a ring

In this section, we study the Hubbard model in a mesoscopic ring in the strong-coupling
limit (U → ∞). The Hamiltonian can be made translationally invariant through a gauge
transformation, so that it becomes easily diagonalizable [16, 17]. The energy eigenvalues
of this system are similar to those we obtain by applying a magnetic flux to a ring. Some
thermodynamic functions are calculated in the case of an arbitrary number of holes. Some
conclusions of this section are relevant and required for the study of the helicoidal Hubbard
model in the same limit (see Chapter 4).
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Figure 2.6: The eigenstates of the Hubbard ring in the strong coupling limit can be written as
a tensorial product of the eigenstates of a tight-binding model of independent spinless fermions
(holes) in the ring with L sites and the eigenstates of an Heisenberg model.

2.4.1 The Hubbard model in a ring

Let U → ∞, so that no states with doubly occupied sites exist, as they are pushed to
infinite energy. The Hubbard Hamiltonian (Eq. 2.2) for a ring of L sites, with no doubly
occupied sites, becomes [18]

H = −t
L∑
i=1

[
(1− ni,σ̄) c†i,σci+1,σ (1− ni+1,σ̄) +H.c.

]
. (2.23)

The eigenstates can be written as the tensorial product of the eigenstates of a tight-binding
model of independent spinless fermions (holes) in a ring with L sites, and the eigenstates of
an Heisenberg model (with exchange constant J = t2/U) in a reduced chain [16, 18–21] (see
Fig. 2.6). In the case of the Harris-Lange model, the Hamiltonian eigenvalues are determined
by the set of the spinless fermions momenta, {k}, and the spin configuration total momentum,
q.

One hole

The states of the lattice can be defined by indicating the position of the hole and the spin
configuration of the rest of the ring[16]. For example, the notation

|2, {σ1, σ2, σ3}〉 (2.24)

represents a ring with 4 sites, occupied by a hole at site 2, and the spins σ1, σ2 and σ3 on the
remaining sites (1, 3 and 4). Making the substitution c†j = njc

†
j + (1− nj)c†j and dropping the

terms associated to double occupancies, the Hamiltonian for such a system becomes

H = −t
∑
j,σ

(1− nj,σ̄)c†j,σcj+1,σ(1− nj+1,σ̄) + (1− nj+1,σ̄)c†j+1,σcj,σ(1− nj,σ̄). (2.25)

Considering the hoppings of the particles is equivalent to considering those of the hole. The
hoppings of the hole can be described using a simple tight-binding Hamiltonian, but one cannot
ignore the spin configuration, because it changes when the hole hops from site L to 1 and vice
versa, becoming one of its circular permutations. Let us introduce the circular permutation
operator Q, such that

Q |j, {σ1, σ2, ..., σL−1}〉 = |j, {σL−1, σ1, ..., σL−2}〉 , (2.26)
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i. e., the effect of Q on a state |j, {σ}〉 is equivalent to causing the hole to perform a full loop
around the ring. The eigenstates of Q are states invariant in a circular permutation,

|j, {σ}, q〉 =
1
√
rα

rα−1∑
m=0

eiqmQm |j, {σ}〉 , (2.27)

where

• rα is the periodicity of the spin configuration, that is, the number of times the hole has
to perform a full loop around the ring in order for the spins to return to their original
configuration;

• α is the label of each set of spin configurations that are circular permutations of each
other. Spin configurations with different α cannot be obtained from each other through
a circular permutation;

• q is the momentum of the spin configuration,

q =
2π

rα
n, (2.28)

where n = 0, 1, ..., rα − 1.

Applying Q to one of its eigenstates gives

Q |j, {σ}, q〉 = 1√
rα
e−iq

rα−1∑
m=0

eiq(m+1)Qm+1 |j, {σ}〉

= e−iq |j, {σ}, q〉 .
(2.29)

In order to express the Hamiltonian in this basis, we need to apply it to all vectors in the basis,

• For j = 2, 3, ..., L− 1,

H |j, {σ}, q〉 = t‖ (|j − 1, {σ}, q〉+ |j + 1, {σ}, q〉) (2.30)

• For j = 1,
H |1, {σ}, q〉 = t‖ (|2, {σ}, q〉+Q |L, {σ}, q〉)

= t‖
(
|2, {σ}, q〉+ e−iq |L, {σ}, q〉

) (2.31)

• For j = L

H |L, {σ}, q〉 = t‖
(
|L− 1, {σ}, q〉+Q−1 |1, {σ}, q〉

)
= t‖

(
|L− 1, {σ}, q〉+ eiq |1, {σ}, q〉

)
.

(2.32)

Note that neither the spin configuration nor its momentum changed after applying the
Hamiltonian, so we will drop them from this point. The Hamiltonian in this subspace becomes

H = t

( |2〉+ e−iq |L〉
)
〈1|+

(
|L− 1〉+ eiq |1〉

)
〈L|+

L−1∑
j=2

(
|j − 1〉+ |j + 1〉

)
〈j|

 . (2.33)
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The Hamiltonian can now be made translationally invariant by distributing the phase gain (or
loss) among all L sites, instead of being applied only upon the sites at the boundaries, thus
becoming

H = t

L∑
j=1

(
e−iq/L |j〉 〈j + 1|+ eiq/L |j + 1〉 〈j|

)
. (2.34)

This Hamiltonian is equivalent to the usual tight-binding model with an external flux
φ = φ0q/(2π) (here, φ0 = h/e is the flux quantum), whose eigenvectors are

|k〉 =
1√
L

L∑
j=1

eikj |j〉 , (2.35)

with the corresponding eigenvalues

E(k) = 2t cos
(
k − q

L

)
. (2.36)

On an infinite system, the ground state occurs at k − q/L = π, but on a finite system, the
momentum q for which the ground state occurs depends on the parity of the number of sites,
L. The lowest possible energy is −2t which corresponds to k − q/L = π, and

n =

{
L+1

2 , for L odd,
L
2 , for L even.

(2.37)

Using these and regarding the definitions of q and k, we can calculate the value of q for the
ground state in both situations,

q =

{
π, for L odd,
0, for L even. (2.38)

Let us study the degeneracy of these one-hole ground states. Ground states occur for
specific values of k and q, for a given L, as mentioned above. However, degeneracy occurs due
to the multiple values of rα on the ground state (and respective spin configurations).

If L is even, the ground state occurs for q = 0, which, according to the definition of q,
implies no restrictions upon rα (the period of each class of spin configurations which are circular
permutations of each other). This means that in the case of a ring on the ground state with
an even number of sites, the spins may have any configuration, thus indicating a very high
degeneracy, increasing as the number of sites L increases.

If L is odd, q = π on the ground state. According to the definition of q, this implies that
rα is even. One can only conclude that, for a ring with an odd number of sites, only the
spin configurations whose periodicity is even are allowed on the ground state. In particular,
the ferromagnetic configuration (all spins aligned in the same direction) is not allowed [16].
These are usually more than half of the possible spin configurations, again indicating high spin
degeneracy. This large degeneracy is lifted by the Heisenberg corrections (of t2/U order), as in
the case of the 2-site Hubbard model. Later in this work, it will be shown that this degeneracy
is partially lifted on a helix by the transversal hopping term of the Hamiltonian.
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Nh holes

Because there is now more than one hole, the states have to be labeled using a set
{h} = {h1, · · · , hNh} of the positions of the holes and a set {σ} = {σ1, · · · , σN} of the
positions of the spins,

|{h}; {σ}〉 =

N∏
j=1

c†bj ,σj |0〉, (2.39)

where bj = j + nj({h}) and nj({h}) is the number of holes to the left of site j.
Let us introduce the slave-fermion representation of the fermionic operators [16] in the

zero-double-occupancy subspace:

• S†j,σj , the bosonic creation operator of a spin σj on site j;

• e†k, the fermionic creation operator of a hole on site k,

such that (1 − nj,σ̄)c†j,σ = S†j,σej . Using slave-fermion notation, the state in Eq. 2.39 is
represented as

|{h}, {σ}〉 = (−1)

N∑
j=1

(bj−1) N∏
j=1

S†bj ,σj

Nh∏
k=1

e†hk |0〉sh , (2.40)

where |0〉sh is the vacuum for both spins and holes. The first factor is due to the number of

times the operator ej needs to exchange with the e†hk operators present in state
Nh∏
k=1

e†hk |0〉sh.

The Hamiltonian (Eq. 2.25) is represented as

H = t
L∑
j=1

∑
σ=↓,↑

(
S†j+1,σSj,σe

†
jej+1 + S†j,σSj+1,σe

†
j+1ej

)
. (2.41)

In order to diagonalize this Hamiltonian, we proceed in a way similar to solving the Nh = 1
case. We begin by building states invariant in a circular permutation Q,

|{h}, {σ}, q〉 =
1
√
rα

rα−1∑
m=0

eiqmQm |{h}, {σ}〉 , (2.42)

where rα is the periodicity of the spin configuration {σ} (labeled by α), and

q =
2π

rα
n, n = 0, · · · , rα − 1. (2.43)

Again, we need to apply the Hamiltonian to the state |{h}, {σ}, q〉 in order to express it in
that basis. Let ∣∣{h′}〉 = e†j+1ej |{h}〉 . (2.44)

Applying one of the Hamiltonian’s j-terms to state |{h}, {σ}, q〉 gives∑
σ

S†j,σSj+1,σe
†
j+1ej |{h}, {σ}, q〉 , (2.45)
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without changing the spin configuration, because a spin is exchanged with a hole, never
exchanged with another spin. The Hamiltonian does, however, change the positions of the
holes to {h′} and moves the spin on site j + 1 to site j, implying subtracting 1 to one of the bj ,
if j 6= L. If j = L, we need to add L− 1 to one of the bj and a phase q:

∑
σ

S†j,σSj+1,σe
†
j+1ej |{h}, {σ}, q〉 =

{
(−1) |{h′}, {σ}, q〉 ⇐ j 6= L
(−1)L−1eiq |{h′}, {σ}, q〉 ⇐ j = L

(2.46)

The application of the Hamiltonian Eq. 2.41 can only induce circular permutations of the spin
configuration and therefore does not change the actual cyclic relative positions of the spins.
This means we can discard the terms containing spin operators keeping only the hole operators,
and write the Hamiltonian as

Hq =
L∑
j=1

tj

(
e†jej+1 + e†j+1ej

)
, (2.47)

where tj 6=L = −t and tL = −tei(q−πL).
We apply a gauge transformation like the one in the previous subsection, thus distributing

the phase q − πL among all L sites, so that

tj = −tei(q−πL)/L = teiq/L, (2.48)

and the Hamiltonian becomes translationally invariant,

Hq = t
L∑
j=1

(
eiq/Le†j+1ej + e−iq/Le†jej+1

)
, (2.49)

reflecting the fact that, because the spin sequence remains unchanged, the system can be
regarded as a set of Nh independent spinless fermions on a lattice with L sites. The eigenvalues
are

E(k1, · · · , kNh) = 2t

Nh∑
j=1

cos
(
kj −

q

L

)
, (2.50)

with
kj =

2π

L
nj nj = 0, · · · , L− 1. (2.51)

The eigenvalues depend only on L, Nh and rα. It is important to note that this implies that all
eigenstates with the same spin configuration periodicity are associated to the same eigenvalues,
leading to high degeneracy. Part of this degeneracy is lifted when the geometry is changed
from a ring to a helix.

2.4.2 Counting the q states

An approach to the problem of counting the number of eigenstates of the U →∞ Hubbard
chain which have a given momentum q has already been made by Mielke [22]. Here, we present
a faster method for counting how many spin configurations have a certain periodicity. Note
that in this section, we replace the n in the definition of the momentum q of the eigenstates by
j.
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Let us consider a chain of N spins. The periodicity of that chain may range from 1 to N .
Not all values are possible, though, only those that divide N . In order to better understand
this concept, we may think of a spin chain with N spins and periodicity n, as a set of N/n
equal parts with periodicity n. For example, a chain of length N = 12 could be

↑↑↓↑↑↓↑↑↓↑↑↓ . (2.52)

Its periodicity is n = 3 and it is composed of 12/3 = 4 parts equal to

↑↑↓, (2.53)

with periodicity 3. Thus, the problem of calculating the number of possible spin configurations
of a chain with N spins and periodicity n is reduced to that of calculating the number of spin
configurations of a chain with only n spins and periodicity n.

For example, calculating the number of spin configurations that have periodicity 3 for a
chain with 90 spins is equivalent to calculating the ways in which 3 spins can be arranged to
form a chain with periodicity 3. Those ways are

↑↓↓, ↓↑↓, ↓↓↑,
↓↑↑, ↑↓↑, ↑↑↓, (2.54)

where ↑↑↑ and ↓↓↓ are not included because their periodicity is 1. In the general case, the
number of spin configurations with periodicity n is 0 if n does not divide N , and

P (n) = 2n −
∑
d

P (d), (2.55)

if n divides N . The letter d stands for all divisors of n, except for n itself. A plot of this
function for the first 20 values of n is shown in Fig. 2.7. Note the logarithmic scale of the
vertical axis, which was used to show that this function (dots) quickly approaches P (n) ≈ 2n

(full line).
To sum up, the possible periodicities of a chain of N spins are the divisors, n, of N . For

each of these divisors, the number of spin configurations which lead to that periodicity is
given by P (n). In the specific case of N prime, spin configurations can only have periodicity
1 or N . The ones with periodicity 1 are ↑↑↑ · · · ↑↑ and ↓↓↓ · · · ↓↓; all the remaining 2N − 2
configurations have periodicity N .

Now that we know how many configurations exist for each periodicity, it becomes easier to
calculate the number of eigenstates for each momentum q. The definition of q is, again,

q =
2π

rα
j j = 0, 1, · · · , rα − 1. (2.56)

Let us assume, for instance, that we have N = 6 spins and we want to know how many
eigenstates have the momentum q = 2π

6 · 4. The immediate answer would be "the number of
eigenstates with momentum 2π/6· 4 is the number of configurations with periodicity 6, divided
by 6" (we need to divide by 6 because each eigenstate is the superposition of 6 configurations
that are circular permutations of each other, implying that there are less eigenstates than
configurations), i. e., the answer would be P (6)/6. However, since we have q = 2π

6 · 4 = 2π
3 · 2,

there are P (3)/3 eigenstates made up of configurations with periodicity 3 which can also have
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Figure 2.7: Plot of the P (n) function for n ∈ [1, 20] (dots). For each n, P (n) gives the number
of spin configurations which have period n. The line is the function 2n and was added here for
comparison.

this momentum value. Therefore, in the general case, if the number of spins is N , the number
of eigenstates with momentum q = 2π

N · j is

Ns(N, q) =
∑
g

P (N/g)

N/g
, (2.57)

where the summation is taken over the common divisors of N and j. As we approach the
thermodynamic limit, Ns(N, q) ≈ 2N

N .

2.4.3 Thermodynamics

Using the results from the previous subsection, we can calculate thermodynamic functions
of the Hubbard chain in the strong-coupling limit. We begin by defining the partition function,
Z, as

Z =
∑
r

e−Er/(kBT ), (2.58)

where r labels all possible states of the system.
We know that no more than one hole can occupy each k state. This implies that each of

the Nh holes can have any value of k as long as no other hole has it. Therefore, the number of
eigenstates the holes can occupy is obtained by counting the number of combinations of Nh

values that can be extracted from the list of L possible values of k, that is,
(
L
Nh

)
.

For the N = L−Nh spins, we know from the previous subsection that the number of states
with spin momentum q is given by the function Ns(N, q).

The partition function can be numerically calculated for fixed L and Nh using the expression

Z =
∑
{k}

∑
q

Ns(N, q)e
−E({k})/(kBT ), (2.59)

where

• the first summation is taken over all the different combinations of Nh values of k;
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• the second summation is taken over q = 2π/N · j with j = 0, · · · , N − 1 (the counting of
the spin periodicities that are divisors of N is included in Ns(N, q));

• the energy eigenvalues are E({k}) = 2t‖
Nh∑
i=1

cos
(
ki − q

L

)
.

The partition function can be used to calculate the thermodynamic energy,

〈E〉 = −∂ lnZ

∂β
, (2.60)

the heat capacity,

Cv =
∂〈E〉
∂T

, (2.61)

and the entropy of the system,

S =
∂

∂T
(kBT lnZ) , (2.62)

as a function of kBT .

Energy

Fig. 2.8a shows a few plots of the energy as a function of kBT , each corresponding to
Nh = 1, · · · , 5, and fixed L = 10. It can be seen that, as the number of holes increases, the
energy decreases. Additionally, we see that for high T , the energy goes to 0, which is explained
by the fact that holes and particles have the same probability of occupying a state. There are
as many positive eigenvalues as there are negative ones, thus their average is zero.

Heat capacity

Fig. 2.8b contains plots of the heat capacity as a function of kBT , for L = 10 and different
values of Nh, ranging from 1 to 5. Both on the Cv and 〈E〉 plots, particle-hole symmetry is
present (the Hamiltonian in Eq. 2.49 also has particle-hole symmetry), so that the functions
Cv(T ) or 〈E〉(T ) for have the same expression for Nh and L−Nh.

Entropy

The entropy (Fig. 2.9) is the thermodynamic function whose analysis is the most interesting
one. The symmetry present in the previous two functions is valid no more. In fact, as S is a
measure of the number of available states, it changes when a spin is replaced by a (spinless)
hole.

For T →∞, all states are equally probable, and we can calculate the entropy analytically
in this limit. The number of states accessible to the Nh holes is

(
L
Nh

)
and the number of states

accessible to the spins is 2N , therefore

S(T →∞)/kB = S∞/kB = ln

(
L!

Nh!N !
2N
)
. (2.63)

Another effect that can be seen from the plots is the fact that, for low T , more holes mean
lower entropy. The holes occupy the k states which lead to lowest energies. However, for high
T , the system with the lowest Nh is no longer the one with the highest entropy. This occurs
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Figure 2.8: (a) Average energy, 〈E〉, and (b) heat capacity, Cv, of the strong-coupling Hubbard
chain with L = 10. The plots for Nh and for L−Nh are identical, due to particle-hole symmetry
of the Hamiltonian (Eq. 2.49).

because S∞ has a maximum with respect to Nh, which can be calculated analytically, using
Stirling’s approximation lnN ! ≈ N lnN −N , allowing the approximation of

dS∞(Nh)

dNh
= kB

d

dNh
ln

(
L!

Nh!(L−Nh)!
2L−Nh

)
, (2.64)

to

1

kB

dS∞(Nh)

dNh
≈ − ln 2 +

d

dNh
(−Nh lnNh +Nh − (L−Nh) ln(L−Nh) + (L−Nh)) . (2.65)

The equation dS∞(Nh)
dNh

= 0 has only one solution, Nh = L/3. This is the solution for continuous
Nh. For our discrete case, the maximum will occur for L/3 rounded to the nearest integer.
For L = 10 (Fig. 2.9), that integer is 3, providing the reason why the plot of S for Nh = 3 has
the highest value when T →∞.

Let us now study what happens to the entropy when we only allow ferromagnetic states
(the only states with periodicity rα = 1). The lattice now has Nh holes and L − Nh equal
spins, which implies particle-hole symmetry is present once again, because the spin chain is
only allowed two states (↑↑↑ · · · and ↓↓↓ · · · ), independently of the number of spins. Fig. 2.10
shows the entropy for lattices with L = 9 (left) and L = 10 (right) sites. In the T →∞ limit,
the entropy goes to

S∞ = kB ln(number of spin states× number of hole states)

= kB ln

[
2×

(
L

Nh

)]
= kB ln

[
2× L!

Nh!(L−Nh)!

]
(2.66)

independently of the parity of L and Nh.
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Figure 2.9: Entropy, S, of the strong-coupling Hubbard chain in the t⊥ = 0 limit, with L = 10.
For high T , the maximum entropy occurs for Nh = L/3 rounded to the nearest integer which,
in this case, is 3.
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Figure 2.10: Entropy of the ferromagnetic strong-coupling Hubbard chain in the t⊥ = 0 limit,
for (a) L = 9 (odd) and (b) L = 10 (even). In this limit, the entropy of the model shares the
particle-hole symmetry with the average energy and the heat capacity, because only two states
are allowed to the spin chain, independently of its length.
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However, in the T → 0 limit, the spins will still have only 2 allowed states, while the
holes may have a single or a doubly-degenerate ground k state. Recalling the definition of the
momentum of the holes, k = 2π

L n, with n = 0, · · · , L− 1, we conclude that the ground state
k = π is only allowed for L even. If the number of holes is odd, one of them will occupy the
bottom of the band, and the rest will fill it in pairs, symmetrically, meaning the ground state
of the holes is unique. If the number of holes is even, one hole will remain after symmetrically
filing up the states; this hole can either occupy either one of the two lowest free states in the
band, leading to a doubly-degenerate global ground state. In contrast, for an odd L, holes can
no longer occupy the k = π state. Consequently, there are two band states with the lowest
energy. Contrarily to what happens for L even, an even number of holes can only occupy one
global ground state, while an odd number of holes has two possibilities for its global ground
state.

These results for the ferromagnetic configuration are summarized in the following table
(where S is in units of kB),

S(T = 0) S(T →∞)

Nh even ln 4 ln(2×
(
L
Nh

)
)

L even
Nh odd ln 2 ln(2×

(
L
Nh

)
)

Nh even ln 2 ln(2×
(
L
Nh

)
)

L odd
Nh odd ln 4 ln(2×

(
L
Nh

)
)

For example, the entropy of the ferromagnetic strong-coupling Hubbard chain with an even
number of sites (L) and an odd number of holes (Nh) at T = 0 is ln 2.
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Chapter 3

Spiral ferrimagnetic phases in the
two-dimensional Hubbard model
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Abstract

We address the possibility of spiral ferrimagnetic phases in the mean-field phase diagram
of the two-dimensional (2D) Hubbard model. For intermediate values of the interaction U
(6 . U/t . 11) and doping n, a spiral ferrimagnetic phase is the most stable phase in the
(n,U) phase diagram. Higher values of U lead to a non-spiral ferrimagnetic phase. If phase
separation is allowed and the chemical potential µ replaces the doping n as the independent
variable, the (µ,U) phase diagram displays, in a considerable region, a spiral (for 6 . U/t . 11)
and non-spiral (for higher values of U) ferrimagnetic phase with fixed particle density, n = 0.5,
reflecting the opening of an energy gap in the mean-field quasi-particle bands.
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3.1 Introduction

The 2D Hubbard model remains the most important open theoretical problem in the field
of the strongly correlated electronic systems, despite all efforts fuelled by the advent of the
high-Tc superconductivity.[1, 2] At half-filling, the spin dynamics of the 2D Hubbard model
is described by the Heisenberg antiferromagnetic exchange term.[3] Away from half-filling,
the movement of holes through the spin background generates additional spin mixing. The
competition between the Heisenberg exchange and the spin configuration mixing generated
by hole hopping in the 2D Hubbard model is still far from understood.[4–6] In particular,
there is no consensus regarding the ground state magnetic phase diagram of the 2D Hubbard
model and different authors obtain different mean-field (MF) phase diagrams depending on the
magnetic phases allowed.[7] Traditionally, one considered ferromagnetism, antiferromagnetism
and paramagnetism phases.[8–12] The complexity of the MF phase diagram was increased
with the introduction of spiral phases[13], which appear between the "usual" magnetic phases
in the diagram. This complexity was further increased by the consideration of spatial phase
separation.[14–16]

B D 

C A 

Figure 3.1: The 2D lattice and its four sublattices A, B, C and D. We consider two situations:
(i) mA = mD = m1 and mB = mC = m2; (ii) mA = mC = m1 and mB = mD = m2.

In this paper, we extend the results above mentioned, by introducing the possibility of a
spiral ferrimagnetic phase, that is, a ferrimagnetic phase such that the orientation of magnetic
moments changes along the lattice (see Fig. 3.1). More precisely, we study the 2D Hubbard
model using the Hartree-Fock approximation in a square lattice decomposing the lattice in
four square sublattices (A, B, C and D as in Fig. 3.1) and allowing different amplitudes
for magnetizations of the spiral phases in the sublattices. Note that, even under the MF
approximation, when four sublattices are considered, it is not possible to obtain the analytical
form of the spectra of the 2D Hubbard model. Our MF approach to the 2D Hubbard model
follows that of Dzierzawa and Singh.[17, 18]
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3.2 Calculations

Introducing a different creation operator in each sublattice, A†, B†, C† and D†, the
tight-binding term of the Hubbard Hamiltonian, is

Ht =
∑
x,y

A†x,yBx,y +A†x,yCx,y

+ B†x,yDx,y + C†x,yDx,y

+ A†x,yBx,y−1 +A†x,yCx−1,y

+ B†x,yDx−1,y + C†x,yDx,y−1 +H.c., (3.1)

where we set the hopping constant equal to 1.
We consider for now only the sublattice A (we add the other sublattice terms later on).

The interaction term of the Hubbard Hamiltonian is, as usual, HU = U
∑
r
A†r↑Ar↑A

†
r↓Ar↓. We

assume that the magnetic moments align in the x-y plane, so that 〈Sz〉 = 0 and the Hartree
term becomes U

4

∑
〈n〉2, where 〈n〉 is the density of electrons on each sublattice (here assumed

to be the same on all of them).
The Fock term includes averages like 〈A†↑A↓〉 = 〈S+

A 〉 = 〈SAx + iSAy〉, whose values depend
on the magnetic phase. Let us assume the average spin in the sublattice A is

〈~S~rA〉 =
mA

2
[cos(~q · ~rA), sin(~q · ~rA), 0]. (3.2)

The vector ~q = (qx, qy) defines the magnetic phase of the system. In ~k-space we have

〈S+

A~k
〉 =

1√
L

∑
~k′

〈A†~k′,↑A~k′−~k,↓〉 =
mA

√
Lu.c.

2
δ~k,−~q, (3.3)

where Lu.c. is the number of unit cells, which gives

〈A†~k,↑A~k+~q,↓〉 =
mA

2
, (3.4)

while all the other mean values in the summation of Eq. 3.3 vanish. The Fock term in Fourier
space is

−mU
2

∑
~k

(
A†~k+~q,↓

A~k,↑ +A†~k,↑
A~k+~q,↓

)
+
ULu.c.

4
m2
A. (3.5)

Adding the tight-binding, Hartree and Fock terms, the Hamiltonian HMF reads, in the
{A~k, B~k, C~k, D~k, A~k+~q

, B~k+~q
, C~k+~q

, D~k+~q
} basis,(

Ht(~k) Hm

H†m Ht(~k + 2~q)

)
, (3.6)

plus the diagonal term

ULu.c.
4

(m2
A +m2

B +m2
C +m2

D) +
UL〈n〉2

2
. (3.7)
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Figure 3.2: (a) Mean-field phase diagram for the usual 2D Hubbard model: The system displays
antiferromagnetism (AF), ferromagnetism (F), paramagnetism (P) or spiral phases (q 6= 0, π).
The antiferromagnetic state ~q = (π, π) only occurs for n = 1 (half-filling). (b) (n,U) and (c)
(U, µ) mean-field phase diagrams for the 2D Hubbard model, allowing for phase separation
(yellow region). (d) m, (e) qx, (f) qy, (g) EMF and (h) µ as functions of the doping n and
Coulomb interaction U , for the 100× 100 2D Hubbard model.
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Here, Ht(~k) is the tight-binding term (Eq. 3.1) of the Hamiltonian in ~k-space,
0 1 + eiky 1 + eikx 0

1 + e−iky 0 0 1 + eikx

1 + e−ikx 0 0 1 + eiky

0 1 + e−ikx 1 + e−iky 0

 , (3.8)

Hm is the diagonal matrix, Hm = diag(∆A,∆B,∆C ,∆D) with

∆A = −UmA

2
, ∆B = −UmB

2
eiqy ,

∆C = −UmC

2
eiqx , ∆D = −UmD

2
eiqx+iqy .

(3.9)

3.3 Results and discussion

By setting mA = mB = mC = mD = m, we recover the MF magnetic phase diagram of
the usual 2D Hubbard model, consistent with the ones obtained by several authors[13, 15,
17] for zero temperature, as presented in Fig. 3.2a. In order to obtain such a diagram, one
minimizes either the MF energy EMF using the electronic density n as an independent variable,
or the thermodynamic potential ΩMF using the chemical potential µ, with respect to the site
magnetization amplitude m and the order parameter ~q = (qx, qy). These parameters define the
magnetic phase of the system.

A solution with m = 0 is paramagnetic and is usually ~q-degenerate, while solutions for
m 6= 0 are in general unique. In the latter case, the wave vector ~q specifies the type of
magnetic ordering. For instance, ~q = (0, 0) for the ferromagnetic phase, ~q = (π, π) for the
antiferromagnetic phase and all other choices for spiral phases. In the example shown in Fig. 3.1,
we have qx = π/18 and qy = π/6. Additionally, in the same example, the magnetization
amplitudes (denoted by the size of the arrows) are mA = mD = m1 and mB = mC = m2 < m1.
Comparing, for each pair (n,U) or (U, µ), the data obtained for m (Fig. 3.2d), qx (Fig. 3.2e)
and qy (Fig. 3.2f), the MF magnetic phase diagram displayed in Fig. 3.2a ensues. For some
values of µ, there is more than one pair (~q,m) which minimizes the thermodynamic potential.
In those cases, a first-order phase transition in the order parameters occurs. When using n as a
basic variable (and posteriorly calculating µ = ∂E/∂n ≈ ∆E/∆n using the data in Fig. 3.2g),
n seems to be multiply defined for some values of µ, which implies instability (e. g. of the
spiral phase for U = 15). The use of µ as a basic variable solves this ambiguity and leads to
plateaus in the chemical potential µ(n,U) in the regions where phase separation (PS) occurs
(see Fig. 3.2h). In each PS region of the diagram, two spatially separated phases occur: the
ones immediately to the left and to the right of the PS region in question (see Fig. 3.2b). The
two phases have different electronic densities, such that the electronic density of the whole
system amounts to n. In Fig. 3.2c, we show the same phase diagram as in Fig. 3.2a, but using
µ as the independent variable. The colors of corresponding regions are the same for easier
reading. The thick solid line indicates a discontinuity in n.

In this work, the magnetic phase diagram for the Hubbard 2D model comprising four
sublattices is obtained by finding the magnetization amplitudes (mA,mB,mC ,mD) and the
vector ~q which minimize the energy. We consider two situations: (i) mA = mD = m1 and
mB = mC = m2; (ii) mA = mC = m1 and mB = mD = m2.
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Figure 3.3: Top figures: (a) Mean-field phase diagram for the 2D Hubbard model with
sublattices with independent magnetization amplitudes. In the central (green) region of the
phase diagram, configuration (i) is the one that minimizes the MF energy, while configuration
(ii) is the most stable in the red regions. (b) (U, µ) mean-field phase diagram with phase
separation occurring on the borders of the green and red regions (thick solid lines). This phase
diagram displays spiral and non-spiral ferrimagnetic phases (green regions) with fixed particle
density, n = 0.5, reflecting the opening of an energy gap in the MF quasi-particle bands.
Bottom figures: m1(n,U) and m2(n,U) for the MF 2D Hubbard model with two sublattices
in (c) configuration (i) and (d) configuration (ii). (e) Ground state MF energy for usual 2D
(blue), case (i) (green) and case (ii) (red) for U = 9 and U = 19. (f) µ as a function of the
doping n and Coulomb interaction U . All figures represent numerical results obtained for the
100× 100 2D Hubbard model with two sublattices with different magnetization amplitudes.
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The ground state magnetization amplitude of the usual 2D Hubbard model is proportional
to n for each value of U in the ferromagnetic phase (see Fig. 3.2d). When a spiral ferrimagnetic
phase is allowed, it was found that, near zero filling (n = 0) and half-filling (n = 1), the ground
state magnetization remains the same as in the usual 2D case (see Figs. 3.3c and 3.3d). This
means that in these regions, the ground state magnetization is still constant throughout the
whole lattice. However, as one moves to intermediate n, one finds that m1 and m2 become
distinct, as shown in Figs. 3.3c and 3.3d for cases (i) and (ii) respectively, where m1 and m2

are displayed as a function of n and U . These figures show two sheets reflecting the separation
of the magnetization amplitudes. The colors green for case (i) and red for (ii) are used on all
plots of Fig. 3.3. For intermediate filling, the system is able to lower its energy by adopting
different magnetization amplitudes on sublattices 1 and 2 in both cases (i) and (ii). This is
shown in Fig. 3.3e for U = 19 and U = 9. Depending on the region of the phase diagram one
analyses, configuration (i) or (ii) may have the lowest energy, as shown in Fig. 3.3a. In this
figure, we added another layer on top of the usual 2D MF magnetic phase diagram, showing
which of the two-sublattice configurations considered has the lowest energy in the ferrimagnetic
region: green for case (i) and red for case (ii). Furthermore, the energy was minimized with
respect to qx and qy, while using the new magnetization values, but it was found that only very
small changes in ~q occur, i.e., despite the changes in magnetization amplitudes, the magnetic
phases in the diagram remain the same. For this reason, the magnetic phases are shown as
being the same as those of the usual 2D model.

The mean-field energy dispersion relation of the usual 2D Hubbard model displays two
bands. Electrons occupy the lowest band until half-filling (n = 1) and then proceed to
occupying the higher band. As can be seen in Fig. 3.2h, the fermionic density increases with
the chemical potential until the phase separation region is reached. In this region, the chemical
potential is constant despite any increase in the number of particles, up to half-filling. At
this point, any increase in n induces a jump in the value of µ, equal to the energy separation
between the two energy bands (called the energy gap). As the plot in Fig. 3.2h only goes
up to half-filling, we see µ increasing smoothly until it reaches the phase separation region,
followed by a plateau and a jump at n = 1. In both cases studied in this work, with the lattice
divided into two sublattices, the energy bands open a gap at quarter filling (n = 0.5), as shown
in Fig. 3.3f. Another gap appears at three quarter filling (n = 0.75), but only the phases with
n ≤ 1 are shown in Fig. 3.3b. The plot in Fig. 3.3b is again the same as Fig. 3.3a, but using
µ as the basic variable. In this diagram, the green region corresponds to n = 0.5, therefore
only configuration (i) for the spiral and non spiral ferrimagnetic phases is present in the phase
diagram. The dashed line separates the ferrimagnetic region from the spiral ferrimagnetic one
and the thick solid lines denote again discontinuities in n.

3.4 Conclusion

Having addressed the possibility of a spiral ferrimagnetic phase in the mean-field phase
diagram of the 2D Hubbard model, we conclude that, for intermediate values of the interaction
U and doping n, the spiral ferrimagnetic phase is the most stable phase in the (n,U) phase
diagram. Higher values of U lead to non-spiral ferrimagnetic phases. We emphasize the case
of intermediate n and higher U , for which the ground state does not appear to be purely
ferromagnetic, contrasting with results by other authors.[15] Additionally, allowing phase
separation and replacing n by µ as the independent variable, the (µ,U) phase diagram displays,
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in a considerable region, spiral (for intermediate values of U) and non-spiral (for higher values of
U) ferrimagnetic phases with fixed particle density, n = 0.5, reflecting the opening of an energy
gap in the mean-field quasi-particle bands. We further note that generalizing the ferrimagnetic
phase to cases where more than two different magnetization amplitudes are allowed should lead
to even more stable ferrimagnetic phases in certain regions of the phase diagram. Preliminary
results with three different amplitudes are consistent with this conjecture. All these results
provide strong evidence on the stability of the spiral ferrimagnetic phase in the mean field
magnetic phase diagram of the 2D Hubbard model.
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Chapter 4

Quantum spin queues in the
strong-coupling helicoidal Hubbard
model

In this chapter, we study the Hubbard model in a helicoidal lattice as a variation of the
square lattice. While previous studies of this geometry consider single-particle Hamiltonians,
here we work in the strong-coupling limit, propose an effective Hamiltonian to describe the
spin dynamics in this limit, and solve it in some cases.

4.1 Introduction

An exact solution of the Hubbard model for any value of U is known in the one-dimensional
case, given by the Bethe Ansatz method [1]. By this method, it was confirmed that there are
no phase transitions in the 1D Hubbard model with short-range correlations, in agreement
with the Mermin-Wagner theorem [2].

The Hubbard model in a helicoidal lattice was first studied in the form of a 1D chain of
atoms in which both first- and third-nearest neighbor hoppings were considered [3] and later
generalized to a helix with an arbitrary number of atoms per loop [4]. Approximate solutions
were obtained in order to recover some of the properties of the 2D Hubbard model. A third
study [5] includes arbitrary long-range hopping terms but considers no interactions. More
recently, the helicoidal geometry was studied using the discrete nonlinear Schroedinger equation,
rather than the Hubbard model [6]. This study was partly motivated by the recently-proposed
experimental implementation of helix-shaped trapping potentials for cold atoms [7]. The
helicoidal geometry has also attracted interest in the context of DNA modeling (see for instance
Ref. [8] and references therein).

A helix is a space curve with parametric equations

x = r cos(t)
y = r sin(t)
z = b t

, (4.1)

with 0 ≤ t ≤ 2πNloop, where Nloop is the number of helix loops, r is the radius of the helix and
b controls the vertical (along the z direction) separation between loops (equal to 2πb). In this
work, we consider L atoms, equidistantly placed along a helicoidal curve, with ∆ atoms per
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Figure 4.1: On the left, a helix with 15 sites (L = 15) and 3 loops of arc length 5 (∆ = 5).
We assume periodic boundary conditions at the two ends of the helix (i.e., a toroidal helix).
On the right, the one-dimensional labeling of sites used in this work, applied to the case of
a helix with 15 sites and 5 atoms per helix loop, and including the periodic boundary. Our
tight-binding Hamiltonian of the helicoidal lattice assumes a toroidal helix geometry and allows
two types of electron hop: along the helix (with hopping parameter t‖) and perpendicularly to
the helix arc (t⊥). In the traditional periodic square lattice tight-binding model, successive
applications of t‖ to state |1〉 (an empty lattice, except for an electron on site 1) would give all
states between |1〉 and |5〉. In contrast, in the helicoidal lattice, the t‖ term of the Hamiltonian
generates the full set of helix sites (from |1〉 to |15〉, in this example). Using the notation of
this manuscript, the helix shown here has L = 15 and ∆ = 5.

helix loop, so that the parameter t becomes discretized, t = 2π
∆ j, and each value of j = 1, · · · , L

corresponds to the index of an atom. The euclidean distance between any two atoms, with
indexes j1 and j2 depends only on the difference between their indexes, |j1 − j2|. The distance,
d, between nearest neighbors (|j1 − j2| = 1) is given by

d2 = 4r2 sin2(π/∆) +

(
2πb

∆

)2

. (4.2)

Therefore, for the distance between nearest neighbors to be the same as the vertical separation
between helix loops, the following relation between r and b must be satisfied,

r2 sin2(π/∆) =

(
πb

∆

)2

(∆2 − 1). (4.3)

The helicoidal Hubbard model can be regarded both as a special case of a square lattice
(because we allow electrons to hop in two orthogonal directions) and as a special case of a
linear chain of atoms (because we naturally generate all possible positions of a particle using
only one parameter). An example of site labeling for a helix of length L = 15 is shown in
Fig. 4.1. If this situation was of toroidal (periodic square lattice) geometry, mixing in the
spin configurations would take place due to hoppings (i) at the left/right boundaries of the
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lattice, (ii) at the top/bottom boundaries of the lattice, and (iii) between sites whose label
differs by 5 units. In contrast, on a helicoidal lattice, spin configurations are only mixed when
a particle/hole hops between sites 15 and 1 (as if this lattice was a ring with 15 sites), or
between corresponding sites in different helix loops.

4.2 Hubbard model

We consider finite hopping parameters along the helix (t‖) and perpendicularly to the
helix arc (t⊥). In the thermodynamic limit, the helicoidal Hubbard model is equivalent to
the usual Hubbard model in a square lattice, the difference lying in the boundary conditions
(see Fig. 4.1). The advantage of the helicoidal lattice over the usual 2D square lattice is that
a single translation operator (along the helix path) generates the full set of helix sites. In
addition, the tight-binding Hamiltonian of the helix with t⊥ = 0 is considerably less degenerate
than that of a square lattice with, for example, ty = 0. Furthermore, the eigenstates of the
helicoidal tight-binding model with t⊥ = 0 remain eigenstates when t⊥ 6= 0.

The Hubbard Hamiltonian for a system of arbitrary geometry with L sites is given by

Ĥ = −
∑
i,j

tijc
†
i,σcj,σ + U

∑
i

n̂i,↑n̂i,↓, (4.4)

where the creation (annihilation) operator of an electron at site i with spin σ is denoted by c†iσ
(ciσ) and n̂iσ is the number operator n̂iσ = c†iσciσ. The dimensionality of the Hubbard model
and its geometry is determined by the relative position dependence of the hopping integral
tij . In the particular case of the helicoidal tight-binding model considered here, we adopt a
one-dimensional indexation of sites (see Fig. 4.1), and we assume tij is non-zero for hoppings
between nearest-neighbors along the helix (ti,i+1 = t‖), and across the helix (ti,i+∆ = t⊥),
from site i to site i + ∆. The helicoidal lattice is assumed to have a total of L sites and
periodic boundary conditions as shown in Fig. 4.1. The distance between sites along the helix
is considered unitary so that the total arc length of the helix is equal to the number of sites.

In the rest of this chapter, we work in the limit U � t‖ � t⊥ � t2‖/U . The reason to
consider t‖ � t⊥ is that we assume the distance between sites is in principle smaller for adjacent
ones (along the helix) than for sites in different helix steps.

4.3 Tight-binding limit (U = 0)

In the atomic limit (tij = 0), the eigenvalues of any Hubbard model are given by ENd = Nd.U
and all states with the same number of doubly occupied sites, Nd, are degenerate.

On the other hand, for U = 0, the helicoidal Hubbard model becomes a tight-binding
model of independent electrons. For t⊥=0, one has the energy dispersion relation of a 1D chain,
εk = −2t‖ cos(k) with k = (2π/L) · n and n = 1, · · · , L. Since for t⊥ 6= 0 the tight-binding
Hamiltonian is invariant under translation along the helix, the eigenstates are again k-states,
with eigenvalues given by

Ek = −2t‖ cos(k)− 2t⊥ cos(k∆). (4.5)

This dispersion relation is illustrated in Fig. 4.2 for several lattice sizes and relative values of
t‖ = 1 and t⊥. The lattice size is 10× 10 atoms for the first three plots, and 20× 20 for the
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Figure 4.2: Illustrations of the tight-binding dispersion relation of the helicoidal model, given
by Eq. 4.5. The changes in the shape of the plots are due to tweaking the size of the lattice, as
well as the relative values of the longitudinal and transversal hoppings (t‖ and t⊥). In the first
plot (a), the dispersion relation was reduced to that of the 1D TB model, by setting t‖ = 1
and t⊥ = 0. In the other three plots, finite transversal hopping parameters were considered,
namely t⊥ = 0.1 (b) and t⊥ = 0.5 (c and d). The size of the lattice was kept at 10× 10 atoms
on all plots except the last one, for which the size is 20× 20.
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Figure 4.3: A hop along the x-direction induces a phase eik on a helix (left) or eikx on a
square lattice (right). A hop along the y-direction induces a phase eik∆ on a helix or eiky
on a 2D model. On a helix, hopping ∆ = Lx times in the x-direction induces a phase
eik∆ = eikx∆ = eikxLx = eiky , when a twisted boundary condition is imposed upon the square
lattice model.

fourth one. The plot in Fig. 4.2a corresponds to the limit t⊥ = 0 and coincides with that of
the dispersion relation of the usual TB model of a 1D periodic chain of atoms. Note that in
this limit (t⊥ = 0), changing the size of the lattice has no effect on the plot. As a matter of
fact, because the lattice is finite, one should see dots rather than a continuous line, but the
point here is that those dots fall on the same line (the line obtained for an infinite-sized chain)
regardless of the chosen lattice size. The other plots in Fig. 4.2 consider transversal hopping
with amplitude t⊥ = 0.1 (Fig 4.2b) and t⊥ = 0.5 (Figs. 4.2c and 4.2d). One concludes that the
presence of the transversal (t⊥) hopping term of the Hamiltonian leads to the appearance of
the higher-mode oscillations that can be seen in the plots in Figs. 4.2b-4.2d, whose frequency
can be controlled by changing the lattice size. One important consequence of this is that the
band acquires a larger number of maxima and minima as the lattice size increases, and the
extrema of the band may be shifted to values of k other than 0 and ±π. This effect becomes
more substantial if one considers longer-range hoppings [5].

As t⊥ increases from 0 to values of the same order of t||, the set of eigenvalues of the helix
tight-binding Hamiltonian approaches that of the square lattice, in the thermodynamic limit.
In fact, the density of states of the tight-binding model on a helix and on a square lattice
become the same in the thermodynamic limit, so long as the size of both lattices is the same
(if the dimensions of the square lattice are Lx and Ly, then the dimensions of the helix could
be Lx = ∆ and Ly = L/∆).

In Eq. 4.5, only one momentum variable, k, was used to describe a behavior that is
equivalent to the square lattice tight-binding one in the thermodynamic limit,

Ekx,ky = −2t‖ cos(kx)− 2t⊥ cos(ky), (4.6)

with
kx = 2π

Lx
nx nx = 1, · · · , Lx

ky = 2π
Ly
ny ny = 1, · · · , Ly.

(4.7)

The relation between the helicoidal lattice wave number and the square lattice wave vector
can be found by imposing the twisted boundary condition, eikxLx = eiky (this can be read
as "hopping Lx times in the x direction of the helix is equivalent to hopping once in the y
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direction"). This condition is equivalent to

kx = 2π
Lx
nx =

ky
Lx

+ 2π
Lx
n′

=
ky
Lx + k′x.

(4.8)

The equivalence between the two models requires Lx = ∆ and Ly = L/∆. We can therefore
write the dispersion relation for the square lattice with twisted boundary conditions,

E′kx,ky = −2t‖ cos

(
ky
∆

+ k′x

)
− 2t⊥ cos(ky), (4.9)

and, comparing Eqs. 4.9 and 4.5,

k =
ky
∆

+ k′x ⇔ k∆ = ky + 2πn′, (4.10)

or, in terms of n,

n =

(
L

∆

)
· nx + ny ⇒

{
nx = int

(
n

L/∆

)
,

ny = mod (n,L/∆) ,
(4.11)

From Eq. 4.9, two relations between k and (k′x, ky) can be extracted, but they are equivalent.
From the previous expressions, the usual points of the two-dimensional Brillouin zone can
be obtained: k = π ⇒ (kx, ky) = (π, 0), k = π/∆ ⇒ (kx, ky) = (0, π), and k = π + π/∆ ⇒
(kx, ky) = (π, π).

In the following table, we illustrate the correspondence between the wave vector of the
square lattice tight-binding model and the wave number of the helicoidal tight-binding model,
for Lx = 2 and Ly = 3 (and consequently L = 6).

n nx ny k kx ky
0 0 0 0 0 0
1 0 1 π

3 0 2π
3

2 0 2 2π
3 0 4π

3
3 1 0 π π 0
4 1 1 4π

3 π 2π
3

5 1 2 5π
3 π 4π

3

. (4.12)

For the remainder of this chapter, we take the strong-coupling limit (U →∞), so that all
states with double occupancies are pushed to infinite energy and are therefore not allowed. In
the absence of transversal hopping (t⊥ = 0), a helix with L sites is mathematically equivalent
to a ring with the same number of sites, and therefore its analysis is the same as that of a ring,
replacing the hopping parameter of the latter by t‖.

4.4 Strong-coupling limit (U →∞)

In the absence of the t⊥ term of the Hamiltonian, the solution of the helicoidal Hubbard
model in the strong-coupling limit reduces to that of the Hubbard chain. The eigenstates are
characterized by the momenta of the holes, {k}, and the momentum of the spin configuration,
q. The eigenvalues are

ε({k}, q) = 2t‖

Nh∑
j=1

cos
(
kj −

q

L

)
, (4.13)
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with
kj =

2π

L
nj nj = 0, · · · , L− 1. (4.14)

The existence of translation invariance in the original chain as well as in the spinless chain
and the squeezed spin chain allows a considerable simplification of the transverse hopping term
t⊥. The introduction of the t⊥ hopping term lifts the degeneracy of the eigenvalues ε({k}, q)
of the Harris-Lange model given by Eq. 2.50. The energy correction of order t⊥ requires the
diagonalization of the t⊥ hopping term within each ({k}, q) subspace.

4.4.1 Momentum

The total momentum of a state |{k}; q〉 can be obtained from the phase acquired by the
system under a translation of one site and is given by

P =

Nh∑
i=1

ki +
q

L
N + δ (4.15)

where δ = π mod(L − 1, 2). This expression can be partially confirmed since the total
momentum has to be a multiple of 2π/L due to the invariance of the problem in a translation
of L. In terms of the two-dimensional momentum vectors (kx, ky), this expression becomes

P =

Nh∑
i=1

kxi +
1

∆

Nh∑
i=1

kyi +
q

L
N + δ (4.16)

The 1/∆ factor reflects the fact that hoppings in the y direction occur only in one of ∆ sites.
The x and y components of P are

Px =

Nh∑
i=1

kxi + kx0, (4.17)

Py =

Nh∑
i=1

kyi + ky0, (4.18)

where
kx0 +

ky0

∆
=
q

L
N + δ (4.19)

so that P = Px + Py/∆. Note that q
LN + δ is a multiple of 2π/L.

4.4.2 Hamiltonian

Using the slave-fermion representation, the t⊥ hopping term becomes, in the subspace
({h}, q),

Ĥ⊥({h}, q) = t⊥

L∑
i=1
σ

e−i(
q
L
−π)∆S†i+∆,σSi,σe

†
iei+∆ + H.c. (4.20)

where the gauge transformation, Eq. 2.48, was taken into account. This term corresponds to a
jump of the electron in site i to site i+ ∆, which in turn implies a jump of a spin in site i′ of
the squeezed spin chain to a site i′+ ∆′ where ∆′ depends on the number of holes between sites
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Figure 4.4: Illustration of the effect of a hole (circle) hopping upon the spin configuration
(arrows). When a hole hops due to t⊥ (top), it induces a circular permutation of all spins
between the initial and final hole sites (bottom). Thus, to each hole hop in the "real" lattice
corresponds to a cyclic permutation of spins in the squeezed spin chain.

i and i+ ∆ (see Fig 4.4). If no holes are present between sites i and i+ ∆, then ∆′ = ∆− 1.
If nh holes are present, then ∆′ = ∆− 1− nh. In this jump, the spin previously at site i′ + ∆′

is pushed back one site to site i′ + ∆′ − 1 and as well, all the spins between site i′ and i′ + ∆′

are pushed back one site in what resembles a spin queue model. So we can write

e†iei+∆S
†
i+∆,σSi,σ = e†iei+∆

∆−1∑
nh=0

Pi,i+∆(nh)Qi′,i′+∆′ (4.21)

where Pi,i+∆(nh) is a projection operator in the subspace of states with nh holes between sites
i and i + ∆ and Qi′,i′+∆′ is the permutation operator between site i′ and site i′ + ∆′. The
operator Pi,i+∆(nh) can be written as

Pi,i+∆(nh) =
∑
{b}

 nh∏
j=1

ni+b1

∆−1∏
j=nh+1

(1− ni+bj )

 , (4.22)

where the sum is over all non-equivalent permutations {b} of the set {1, . . . ,∆ − 1} and
nb = e†beb. The operator Qi′,i′+∆′ can be written as

Qi′,i′+∆′ =

i′+∆′∏
j=i′

(
2Sj · Sj+1 +

1

2

)
(4.23)

Using the factorized form and the translation invariance in the spinless chain and in the
squeezed spin chain, one can rewrite the Hamiltonian in the ({k}, q) subspace as

Ĥ⊥({k}, q) =
L∑
i=1
σ

t⊥e
−i( q

L
−π)∆e†iei+∆

∆−1∑
nh=0

Pi,i+∆(nh)

Ns∑
i′=1

1

N
Qi′,i′+∆′ + H.c. (4.24)



Strong-coupling limit (U →∞) 57

and a matrix element of the Hamiltonian in this subspace is given by

〈{k}; {σ′}, q|Ĥ⊥|{k}; {σ}, q〉 =
∆−1∑
nh=0

〈{k}| L∑
i=1
σ

t⊥e
−i( q

L
−π)∆e†iei+∆Pi,i+∆(nh)|{k}〉

×〈{σ′}, q|
N∑
i′=1

1

N
Qi′,i′+∆′ |{σ}, q〉

]
+ H.c. (4.25)

Spin mixing occurs due to the last term in the previous equation and in order to find the
eigenvalues of the Hamiltonian, one must diagonalize this term in the q subspace of the squeezed
spin chain.

The non-Hermitian operator

HQSQM(∆′) =
1

N

N∑
i′=1

Qi′,i′+∆′ (4.26)

is what we designate by quantum spin queue model (QSQM). The non-Hermiticity of HQSQM
reflects the fact that all hole hops are in the same direction for each term in Eq. 4.24. In
fact, in order to study the Hamiltonian in Eq. 4.24 using the "particle⊗hole" factorization,
one must consider hops in only one direction, find the (complex) eigenvalues of the spin and
hole Hamiltonians separately, multiply them, and only then add the result to its complex
conjugate (to account for hoppings in both directions). In the QSQM model, particles (spin-up
or spin-down) hop a fixed number of sites pushing back the particles between the initial and the
final sites. This implies a cyclic permutation of the spin configuration between the initial and
final sites, as shown in Fig. 4.4. Note that this operator is not Hermitian but is invariant under
translation in the squeezed spin chain. Its eigenvalues will be a sum of phases 1

N

∑N
i=1 e

φi in
close analogy with the phases obtained in a tight-binding model where hops are allowed in
only one direction.

4.4.3 One hole

Let us now study the particular case of a single hole in the strong-coupling helicoidal
Hubbard model with an arbitrary number of inverted spins. The case of a single hole has been
studied in detail by Nagaoka and others in the strong-coupling Hubbard model in a square
lattice [9, 10]. Nagaoka showed that in the U → ∞ limit, the ground state of this model is
ferromagnetic. Are the excitations in this case consistent with the behavior of a ferromagnetic
system? This is the question we answer in the case of the helicoidal Hubbard model.

Due to the presence of a single hole in the helicoidal lattice, the Hamiltonian is considerably
simpler. It can be written as a tensorial product of the tight-binding Hamiltonian of one
spinless fermion (the hole) in the helix with L sites and the QSQM Hamiltonian in Eq. 4.26,
with ∆′ = ∆ − 1. The hole term in Eq. 4.25 can therefore be easily diagonalized and the
eigenvalues are

t⊥e
i∆(kh+π−q/L), (4.27)

with kh = (2π/L) · nh and nh = 1, · · · , L and q = (2π/rα)ns with ns = 1, · · · , rα, where rα is
the period of the spin configuration.
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Figure 4.5: Representation, on the complex plane, of the eigenvalues of the QSQM Hamiltonian
for a spin queue with N = 19 spins, one of which is inverted, given by Eq. 4.28. The first plot
is for ∆ = 3 and the eigenvalues roughly form a triangle in the complex plane, the second plot
is for ∆ = 4 (square), and so on, up to ∆ = 18.

Considering the subspace of states of the squeezed spin chain with one hole and one up
spin (and N − 1 down spins), a closed form for the eigenvalues is possible to obtain. Due to
translation invariance of HQSQM(∆′), the states |{↑, ↓, · · · , ↓}, q〉 constitute an eigenbasis of
HQSQM(∆′) and the respective eigenvalues in the complex plane are

e−iq(∆−1) + (∆− 1)eiq +N −∆, (4.28)

where q = 2πn/N because, with only one inverted spin, the period of the spin configuration
is necessarily the number of spins, N . Due to the real term N −∆, the eigenvalues of one
inverted spin are of that order, and since the sum of the other two terms is of order ∆, the
phases of the eigenvalues are, at most, of the order of the arctangent of ∆/(N −∆). As N
and ∆ become larger, these eigenvalues lie on a circumference of center N −∆ and radius ∆.
Several plots of the relation in Eq. 4.28 are shown in Fig. 4.5, for fixed N = 19 spins, and ∆
ranging from 3 to 18.

Note that the eigenvalues in Eq. 4.28 are for hoppings in one direction only. In order
to obtain the eigenvalues of the t⊥ term of the Hamiltonian with hoppings in both positive
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and negative directions, one simply needs to multiply the eigenvalues in Eq. 4.27 by those in
Eq. 4.28, and add the result to its complex conjugate, yielding

2t⊥

{
(N −∆) cos

[
∆(kh + π − q/L)

]
+ (∆− 1) cos

[
∆(kh + π − q/L) + q

]
+ cos

[
∆(kh + π − q/L)− q(∆− 1)

]}
. (4.29)

In the U � t‖ � t⊥ � t2‖/U limit, in the subspace without double occupancies and one
inverted spin, this result is the first-order energy correction, due to t⊥, to the eigenvalues in
Eq. 4.13. This correction remains the same under a ∆→ L−∆ transformation if L is even,
and changes its sign if L is odd.

By setting q = 0, we recover the list of eigenvalues in Eq. 4.5 because if L is even we can
drop the extra π in the gauge transformation in Eq. 2.48. Note that q = 0 does not necessarily
correspond to a ferromagnetic configuration, but includes the ferromagnetic configurations.
Indeed, if one works with hole states with that, for a given number of up and down spins, the
spin configuration is a uniform linear combination of all possible permutations of the set of
spins, then the spin configuration has momentum q = 0, and therefore one can apply circular
permutations to the spin configuration without modifying it. Such a spin configuration in the
background corresponds to a saturated ferromagnet state (see Chapter 5 for more details).

One of the results of Section 2.4 is that, for a Hubbard ring in the strong-coupling limit
with one hole, the ground state occurs for spin momentum q = 0 if L is even, and q = π if L is
odd. This result is also true for a helix with t⊥ = 0. However, if we fix k = π (the ground
state value of k for an infinite system), the t⊥ correction (Eq. 4.29) has a maximum for q = 0
and a minimum near q = π. Note that the eigenstate corresponding to the eigenvalue with
the largest real part in any plot in Figs. 4.5-4.8 (i.e. the rightmost dot) is a uniform linear
combination of all the permutations of the set of spins, with momentum q = 0. The conclusion
is that the t⊥ term does not favor a ferromagnetic ground state.

In order to generalize to an arbitrary number of inverted spins, let us consider the QSQM
Hamiltonian (Eq. 4.26) with ∆′ = ∆− 1. For each number of inverted spins, Ninv, the number
of (possibly degenerate) eigenvalues of this Hamiltonian equals the number of possible spin
configurations and is given by (

N

Ninv

)
=

N !

Ninv!(N −Ninv)!
. (4.30)

The QSQM can be solved numerically and in the complex plane the eigenvalues roughly form
a polygon with ∆ sides, as shown in Fig. 4.6, where the blue dots represent the eigenvalues for
two inverted spins, and red circles were drawn around the eigenvalues for one inverted spin.
The polygon becomes more sharply defined as the number of spins increases. As the number of
inverted spins increases, the number of eigenvalues of HQSQM increases as well. It is important
to remark that the eigenvalues of HQSQM for a certain Ninv are also eigenvalues for any higher
number of inverted spins, up to Ninv = N/2, rounded down. Consequently, the widest variety
of eigenvalues is obtained in the case where one considers the maximum number of inverted
spins, and if one finds the eigenvalues of the QSQM Hamiltonian in the this case, one will also
have found the eigenvalues for any other number of inverted spins. This is shown in Fig. 4.8,
where the transversal hopping range ∆ = 5 and a total of N = 9 spins was considered, the red
dots are the eigenvalues of the QSQM for one inverted spin, and as more inverted spins are
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Figure 4.6: Representation, on the complex plane, of the eigenvalues of the QSQM Hamiltonian
for a spin queue with N = 19 spins, two of which are inverted (blue). The red circles are the
eigenvalues for one inverted spin, obtained numerically, and coinciding with those given by
the exact result in Eq. 4.28. The eigenvalues for one inverted spin are included among the
eigenvalues for two inverted spins. The first plot is for ∆ = 3 and the eigenvalues roughly form
a triangle in the complex plane, the second plot is for ∆ = 4 (square), and so on, up to ∆ = 18.
The last plot is represented in more detail in Fig. 4.7.
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Figure 4.7: Representation, on the complex plane, of the eigenvalues of the QSQM Hamiltonian
for a spin queue with N = 19 spins, two inverted, and ∆ = N − 1 = 18. The orange dots
represent the eigenvalues and the grey lines are simply to show that the eigenvalues have
well-defined complex phases of the form (2π/N)n, with n = 1, · · · , N .

considered, more eigenvalues are added to the list, up to four inverted spins, in which case all
the plotted eigenvalues occur.

For the specific case ∆ = N − 1, with any number of spins, the eigenvalues are uniformly
distributed in terms of complex phase, and their phases are of the form (2π/N)n, with
n = 1, · · · , N . In terms of absolute value, the eigenvalues lie between two circumferences
(Fig. 4.7). Depending on Ninv, the radius and center of these circumferences varies differently
with N . For instance, for Ninv = 2, the radius of the external circumference is N − 2.1005
and the radius of the internal circumference is N − 7.3134. The center of each circumference
approaches 0.5 and −0.85, respectively, as we approach the thermodynamic limit (N →∞).
For Ninv = 3, the radius of the external circumference is N − 2.3444 and the radius of the
internal circumference is N − 10.5248, while the center of each circumference approaches 0.5
and 0.46, as N →∞.

In conclusion, we introduced the quantum spin queue model (QSQM) to describe the spin
dynamics of the Hubbard model on a helix in the strong-coupling limit. This new model is
still complex and further studies are required, especially in the case of more than one hole.
Nevertheless, the new spin dynamics displayed by this model allows for a better understanding
of the 2D Hubbard model with U =∞.
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Origami rules for the construction of
localized eigenstates of the Hubbard
model in decorated lattices

ε=0 ε=0 ε=0 ε=0

t
t

ε= -t ε= -t

ε= -t

tI
III II IV I II II

t=

ε= -tε= -tε= -t

t

V
t/2
t/2

t/2

t/2

IIII

Adapted from:
R. G. Dias and J. D. Gouveia, Origami rules for the construction of localized eigenstates of
the Hubbard model in decorated lattices. Scientific Reports 5, Article number: 16852 (2015)
DOI: 10.1038/srep16852



64
Origami rules for the construction of localized eigenstates of the Hubbard model in decorated

lattices



65

Abstract

We present a method of construction of exact localized many-body eigenstates of the
Hubbard model in decorated lattices, both for U = 0 and U →∞. These states are localized
in what concerns both hole and particle movement. The starting point of the method is the
construction of a plaquette or a set of plaquettes with a higher symmetry than that of the
whole lattice. Using a simple set of rules, the tight-binding localized state in such a plaquette
can be divided, folded and unfolded to new plaquette geometries. This set of rules is also
valid for the construction of a localized state for one hole in the U → ∞ limit of the same
plaquette, assuming a spin configuration which is a uniform linear combination of all possible
permutations of the set of spins in the plaquette.
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5.1 Introduction

The field of itinerant geometrically frustrated electronic systems has attracted considerable
interest in the last two decades [1–26]. Much of this interest was related with the study
of flat-band ferromagnetism in these systems [15–20]. Flat-band ferromagnetism occurs in
decorated lattices of the Mielke’s and Tasaki’s classes, which display degenerate localized
ground states with overlapping probability densities [21–26]. The emerging ferromagnetism can
be interpreted as resulting from a generalized Hund’s rule [27]. In the case of the lattices which
fall into the Lieb’s class, the flat bands intercalate itinerant bands [28] and mean-field studies
of the Hubbard Hamiltonian in the Lieb lattice indicate that for large U , ferromagnetism is
expected except near half-filling where a ferrimagnetic phase appears [29, 30].

These localized states are one-particle eigenstates of the tight-binding Hamiltonians for
the decorated lattices and little is known about the many-body eigenstates of an interacting
system of fermions in decorated lattices [31] (assuming Hubbard-like interactions), besides the
appearance of a ferromagnetic ground state in decorated lattices of the Mielke’s and Tasaki’s
classes [8, 22]. In particular, the interacting ground state of the Hubbard model is not known
in the case of lattices of the Lieb’s class. Approximate analytic results can be obtained in
principle in the weak coupling limit, for example applying a recently proposed procedure that
detangles the localized states from the dispersive states [32–34], and introducing the Hubbard
interaction as a perturbation of the tight-binding detangled lattice.

In this manuscript, we present a method of construction of exact localized many-body
eigenstates of the Hubbard model in decorated lattices of arbitrary dimensions, for U = 0
and U →∞. These states are localized in what concerns hole and particle movement. This
method relies in simple arguments which lead to a set of quantum “origami” rules: i) if one
plaquette or a set of plaquettes has a higher symmetry than that of the whole lattice, one
can find energy eigenstates that have zero probability density at the sites that connect the
plaquette or the set of plaquettes to the rest of the lattice (this argument is enough to justify
the existence of localized states in the case of two-dimensional decorated lattices of the Lieb’s
class); ii) given such a localized state in the symmetric plaquette, one can fold the plaquette,
either at the probability density nodes or at other equivalent sites (adjusting the probability
density at those sites and the hopping constants that involve those sites), therefore lowering
the symmetry of the plaquette; iii) the energy of the localized state can be lowered by adding
hopping terms between sites with the same localized state phase (if the hopping constant is
negative) or hopping terms between sites with opposite phases (if the hopping constant is
positive). Hopping terms between nodes of the localized state may also be added, but do not
change the energy of the localized state. The hopping terms added must preserve the symmetry
of the localized state. These two arguments justify localized states in decorated lattices of the
Mielke’s and Tasaki’s classes. Furthermore, the spin degree of freedom of the U = 0 Hubbard
Hamiltonian may be interpreted as a sublattice index and localized states can also be created
using these origami rules involving the two (up and down spin) sublattices. Such localized
states arise for instance as edge states in 1D tight-binding descriptions of topological insulators
[35–37].

The remaining part of this paper is organized in the following way. First, we review the
construction of one-particle localized eigenstates of the tight-binding decorated lattices of the
Lieb’s class. We then generalize this construction to more complex lattices using a symmetry
argument and introducing the set of origami rules. Next, we show how to extend these rules to
the case of the U →∞ limit of the Hubbard model. Finally we conclude.
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The Hubbard Hamiltonian in a decorated lattice can be written as

H =
∑
〈ij〉,σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓, (5.1)

where the creation (annihilation) of an electron at site i with spin σ is denoted by c†iσ (ciσ)
with niσ being the number operator niσ = c†iσciσ and ni = ni↑ + ni↓. The sum over 〈ij〉 is the
sum over all pairs of sites with a finite hopping probability between them and this a different
sum for each decorated lattice. The hopping constants are assumed to be equal, tij = t, unless
stated otherwise. When t = 0, all states with the same number Nd of doubly occupied sites are
degenerate. In this paper, we assume Nd = 0. The Hubbard model in the limit U →∞ is also
designated as Harris-Lange model [38]. In this limit, using the identity ciσ = ciσ[(1−niσ)+niσ],
the Hubbard model can be rewritten as

Ĥ =
∑
〈ij〉,σ

tij(1− niσ̄)c†iσcjσ(1− njσ̄) (5.2)

with σ̄ = −σ. An important point about the strong coupling limit is that the Hamiltonian
eigenfunctions, in the case of a Hubbard ring, can be written as a tensorial product of the
eigenfunctions of a tight-binding model of independent spinless fermions (holes) in the ring
with L sites and the eigenfunctions of an Heisenberg model (with exchange constant J = t2/U)
in a reduced chain [39–42].

5.2 Origami rules for tight-binding Hamiltonians

Let us first discuss the U = 0 case of the Hubbard model in decorated lattices. Flat bands
in the one-particle tight-binding energy dispersion of geometrically frustrated lattices reflect
the existence of degenerate localized eigenstates which are translated versions of the same
state |ψloc〉. The probability density associated with one of these localized states is non-zero
only in a small lattice region. In the particular case of decorated lattices of the Lieb’s class,
the localized states can be viewed as one-dimensional standing waves in tight-binding rings,
associated with paths in the 2D lattice which include one or two plaquettes [43]. For zero flux,
all one-particle energy levels of a tight-binding ring (with even number of sites) are doubly
degenerate (except for k = 0 and k = π) and the respective eigenstates have opposite momenta.
Adding or subtracting the states of opposite momenta, one obtains a standing wave with a
number of nodes that depends on k. If these nodes coincide with the sites at the vertices of a
plaquette of a decorated lattice, the electron becomes trapped inside the plaquette. Therefore,
flat band eigenstates of decorated lattices of the Lieb’s class are constructed from standing
waves such that the nodes coincide with sites at the vertices. Note that these localized states
overlap in real space, that is, they constitute a basis of the subspace of localized states but not
an orthogonal basis.

The previous argument for lattices for the Lieb’s class can be generalized to decorated
lattices of the Mielke’s and Tasaki’s classes and other decorated lattices using a symmetry
argument. First, let us discuss the case of the Lieb lattice (see Fig. 5.1). The tight-binding
Hamiltonian of one plaquette of the Lieb lattice has the symmetry of a ring of 8 sites, that
is, the plaquette Hamiltonian is invariant in a 2π/8 rotation of the set of site indices (or
equivalently in a circular permutation of the set of site indices). We emphasize that this
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Figure 5.1: The symmetry of the tight-binding Hamiltonian for the Lieb plaquette is the same
as that of the tight-binding ring and larger than that of the Lieb lattice. The distance between
adjacent sites is assumed to be a = 1. All hopping constants are equal.

rotation should not be confused with a 2π/8 rotation in real space (the plaquette is not
invariant in such a rotation). However, the rotation of 2π/4 in the set of sites indices can
be interpreted as a 2π/4 rotation in real space. In the ring of 8 sites, one has outer sites
(that are connected to the rest of the lattice) and inner sites (with connections only to sites of
the plaquette). In the case of Fig. 5.1, the inner sites are indicated by the filled circles and
the outer sites are given by the empty circles. The generator of this rotation symmetry is
the equivalent of the angular momentum in the ring (note that in a 2D lattice, the direction
of the angular momentum is always perpendicular to the lattice and therefore equal to m~,
where m can be interpreted as the m in the ring momentum k = m · 2π/N) and one can
construct an eigenbasis of the Hamiltonian which is simultaneously an eigenbasis of the angular
momentum. The time reversal symmetry of the Hamiltonian implies that each eigenstate of
the plaquette tight-binding Hamiltonian is degenerate with the respective state obtained in a
time reversal and these states have opposite angular momenta (this is equivalent to stating
that ring eigenstates with momenta k and −k are degenerate). These two states can be added
or subtracted, generating the equivalent of the standing waves in the ring, that is, states with
zero probability density at certain sites of the cluster. If the angular momentum is ~N/4,
where N is the number of sites of the ring, one has zero probability density at the inner sites
or at the outer sites of the Lieb plaquette (nodes are separated by λ/2 = 2). The latter will be
a localized eigenstate not only of the Lieb plaquette but also of the tight-binding Hamiltonian
of the full lattice. Note that this description is valid for any plaquettes which have the same
rotation symmetry as the ring. For example, one could add additional sites at the center of the
Lieb plaquette and the rotation symmetry would remain, as shown in Fig. 5.2 (in all Figures,
the relative size of the circles that represent lattice sites corresponds to the relative value of
the wavefunction amplitudes on the sites).

Thus, our first rule is that localized states can be constructed if a plaquette (or a set of
adjacent plaquettes) has a larger symmetry than the lattice, so that the Hamiltonian has two
degenerate eigenstates (which are simultaneously eigenstates of the generators of the symmetry
of the lattice) which have the same wavefunction values at the outer sites of the plaquette (see
Fig. 5.3a). This rule is enough to explain the existence of localized states in lattices of the
Lieb’s class. More complex lattices with localized states can be constructed by adding sites or
hopping bonds that do not lower the symmetry of the plaquette. These additional hoppings
can be divided into two sets: i) the set of hoppings from or to sites with probability density
nodes (these hoppings do not modify the energy of the localized state); ii) the set of hoppings
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(a) (b) (c) (d)

Figure 5.2: In these simple variations that retain the symmetry of the Lieb plaquette, two
localized states exist corresponding to two possible choices of angular momentum. The size of
the circles that represent lattice sites indicates the relative value of the wavefunction amplitudes.
There is an analogy of these states with atomic orbitals.

between sites with finite density probability (these hoppings lower or raise the energy of the
localized state).

A second rule for the construction of lattices with localized states is the following. The
existence of sites where a localized state has probability density nodes does not affect the
energy of the state and these sites can be dropped, duplicated (as well as the respective hopping
bonds), or simply added (introducing appropriate hoppings with neighboring sites) and the
localized state remains an eigenstate of the modified tight-binding model associated with
the new plaquette geometry (see Fig. 5.3b). Furthermore, if one can draw an axis through
the plaquette that crosses only nodes, then dropping these nodes one divides the localized
state into two eigenstates of the tight-binding Hamiltonians associated with the parts of the
plaquette. Bonds between nodes can also be dropped, added or duplicated. This rule justifies
the localized states in the lattice of Fig. 5.4a. In fact, sites A and B in Fig. 5.4a can be seen
as a duplication of the equivalent site of the ring of Fig. 5.1, with the addition of a hopping
bond between the duplicated nodes.

The third rule consists of the following: localized states can be folded (adjusting the
amplitude at the crossing and the respective hoppings) along an axis that crosses the plaquette
through sites that have the same wavefunction values (see Fig. 5.3c); if the folding is along an
axis that crosses nodes, no adjustment of hopping constants or wavefunctions amplitudes is
needed.

The fourth rule is that the amplitude at a given site of a localized state with zero energy
can be renormalized without changing the energy of the state, if the hopping constants to that
site are renormalized as well (see Fig. 5.3d).

The fifth rule describes the unfolding of a plaquette around a given site (see Fig. 5.3e).
Multiple rotated copies of the original plaquette can be added around a site, provided that the
amplitude of the wavefunction on this site is adjusted, as well as the hopping constants around
this site.

This set of rules justifies the existence of localized states in the Mielke and Tasaki lattices
of Fig. 5.4. In Fig. 5.5, we exemplify the application of this set of rules starting from the
localized state of the Lieb plaquette and ending at the localized state of the Tasaki lattice.

We emphasize that these rules can be applied to construct localized states in systems
of arbitrary dimension, from 0D (a molecule) to 3D crystals, since the tight-binding bonds
of Fig. 5.3 may not be coplanar and the unfolding axis can have an arbitrary direction.
Furthermore, the spin degree of freedom of a tight-binding model may be interpreted as a
sublattice index, and spin flipping terms can be interpreted as hopping terms between such
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(a) Rule I: symmetry.
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(e) Rule V: unfolding 

(α=1/ 2).

(d) Rule IV: renormalization (E= 0). (α=1/ N).

Figure 5.3: Set of origami rules for the construction of localized states in decorated lattices.
The values of α can be obtained from simple tight-binding calculations, imposing the condition
that the state is still an eigenstate after applying the rule.
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A
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(a) (b)

Figure 5.4: Localized states in the (a) Mielke lattice and (b) Tasaki lattice. All hopping
constants are the same (tij = t), except those associated with curvy lines (tij = t/2). Note
that the tight-binding Hamiltonian for the Mielke plaquette is symmetric in the exchange of
sites A and B, but the full tight-binding Hamiltonian is not. This implies the Hamiltonian
eigenfunctions must have the same amplitude value (or opposite values) at sites A and B. In
the case of the localized states, the value must be the same and the sites A and B are effectively
one site.
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Figure 5.5: Application of the rules presented in the text, starting from the localized state in
the Lieb plaquette and ending at the localized state in the Tasaki lattice. Note that the energy
of the localized state in the Tasaki lattice is determined by the central hoppings between sites
with finite probability density.
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sublattices. Localized states can also be created using the above origami rules involving the
two (up and down spin) sublattices and examples of such localized states are the edge states
in 1D models of topological insulators with spin flipping terms (see for example section 3.3. of
Ref. [35]).

Another context where this set of rules applies is that of one-magnon localized states
in frustrated quantum Heisenberg antiferromagnets. In these systems, these states generate
peculiar behavior such as magnetization plateaus around the saturation field [15, 44].

5.3 Origami rules in the U →∞ limit of the Hubbard model

Let us now discuss how much of this method can be applied in the U → ∞ limit of the
Hubbard model. We start by considering the Lieb lattice and then we generalize our conclusions
to more complex decorated lattices. As discussed previously, the Lieb plaquette is a 8-site
tight-binding ring. The eigenfunctions of the Hubbard ring in the strong coupling limit have
been obtained by several authors [39–42]. Here, we present a simple derivation of the one-hole
case when no doubly occupied sites are present. Our approach follows closely the method and
notation used by Dias and Peres [41, 42].

Let us consider a state of the U →∞ Hubbard ring with N sites and a single hole at site
i, given by

|i, {σ}〉 =
N−1∏
j=1

c†bjσj |0〉 (5.3)

where {σ} = {σ1, . . . , σN−1} is the set of particle spins in the lattice and bj = j if j < i and
bj = j + 1 if j ≥ i. Now we introduce an operator Q̂ such that

Q̂|i, σ1, . . . , σN−1〉 = |i, σN−1, σ1, . . . , σN−2〉 (5.4)

that is, it does a circular permutation of the spin configuration. When the Hamiltonian given
by Eq. 5.2 acts on such a state it simply exchanges the empty site with a spin with amplitude
t without changing the spin sequence {σ}, except when the hole is at sites 1 and L. If the hole
hops from site 1 to site N , a new spin sequence is obtained which is the circular permutation
of the previous one, {σ′} = Q̂{σ}. Therefore the hole motion mixes the spin configurations
with those spin configurations which are circular permutations of the initial one.

Given a configuration of spins {σ}, the eigenstates of the Hamiltonian will be found in the
subspace spanned by Q̂n{σ}, n = 0, · · · , rα−1, where rα is the period of the spin configuration.
The α index labels the different (not obtainable from any other by cyclic permutations) spin
configurations with period rα. Let us build states invariant in a circular permutation

|i;α, qs〉 =
1
√
rα

rα−1∑
m=0

eiqsmQ̂m|i, σ1, . . . , σN−1〉, (5.5)

where qs = ns (2π/rα) with ns = 0, · · · , rα − 1, that is, a state such that

Q̂|i;α, qs〉 = e−iqs |i;α, qs〉. (5.6)

Since the hoppings across the boundary do a cyclic permutation, the Hamiltonian in the
subspace of states |i;α, qs〉 becomes

H = −t
∑
i 6=N
|i+ 1〉〈i| − t

∑
i 6=1

|i− 1〉〈i| − t(−1)N−2
(
e−iqs |1〉〈N |+H.c.

)



74
Origami rules for the construction of localized eigenstates of the Hubbard model in decorated

lattices

where we have simplified the notation by dropping the spin configuration index α and the
spin momentum qs. This is a simple tight-binding model of one spinless fermion (hole) with
twisted boundary conditions and the respective eigenstates are Bloch states for the movement
of the hole. A gauge transformation |n〉 → |n〉ei(qs/N−π)n makes the previous model translation
invariant and one has

E(k) = 2t cos
(
k − qs

N

)
, (5.7)

with k = (2π/N)n, n = 0, . . . , N − 1.
In the case of this paper, the one-hole solution in the U →∞ limit of the Hubbard ring is

sufficient, but note that this solution can be generalised to the case of Nh holes in the Hubbard
ring (in the t2/U � 1 limit) with the Hubbard ring eigenfunctions being written as a tensor
product of the eigenfunctions of a tight-binding model of independent spinless fermions (holes)
in the ring with L sites and the eigenfunctions of an Heisenberg model (with exchange constant
J = t2/U) in a reduced chain [39–42].

So in the case of one hole, the energy dispersion given by Eq. 5.7 is that of one spinless
fermion in a tight-binding ring threaded by a fictitious magnetic flux, φ = qs, generated by the
spin configurations in the reduced Heisenberg chain (where qs is the spin momentum of the
chain). Therefore, if the spin momentum is zero (note that non-zero spin momentum destroys
the time reversal symmetry of the tight-binding model of spinless fermions), one can construct
a standing wave for one hole moving in the Hubbard ring with arbitrary spin configuration as
in the case of one particle in a tight-binding ring shown in Fig. 5.1. Since the Lieb plaquette
is a ring with 8 sites, this standing wave for one hole can be created in this plaquette with
nodes of the hole probability density at the outer sites as shown in Fig. 5.6 (this standing wave
is obtained combining the degenerate states with k = π/2 and k = −π/2). Since the hole is
trapped in a plaquette (indicated by the dashed square in Fig. 5.6), the spin configuration in
the rest of the lattice is arbitrary, in the limit of the Harris-Lange model. We emphasize that
the spin momentum mentioned above is that of the spin configuration in the Lieb plaquette (a
ring of 8 sites) and not that of the spin configuration of the total lattice (we designate the set
of sites of the Lieb lattice as Λ). More precisely, the localized hole state in the Lieb lattice will
be the antisymmetric tensor product of the hole state in the Lieb plaquette and the state of
the spins in the rest of the lattice (see Fig. 5.6). As usual, writing the full state using creation
operators assures the proper antisymmetrization of the hole localized state in the Lieb lattice
and if the hole is localized in a Lieb plaquette that we label as ip, this state has the form:

|ip; {k = ±π/2,+;α, qs = 0}; {σ}Λ′〉 = Ψ̂ip

∏
j∈Λ′

c†jσj |0〉 (5.8)

with

Ψ̂ip =

 N∑
l=1

(
ei
π
2
l + e−i

π
2
l

√
2N

)
eiπl

1
√
rα

rα−1∑
m=0

Q̂mip

N−1∏
j=1

c†bjσj

 ,
︸ ︷︷ ︸

hole localized state in the Lieb plaquette ip

(5.9)

and where N = 8 is the number of sites in the Lieb plaquette (which are labelled clockwise
from 1 to N , starting at an outer site), Λ′ is the set of sites of the Lieb lattice, excluding
those of the plaquette where the hole is trapped (see dashed square in Fig. 5.6), ip labels the
plaquette in the Lieb lattice where the localized hole is, {σ}Λ′ is the spin configuration at
the sites in Λ′, l indicates the position of the hole in the Lieb plaquette ip and with bj = j
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Figure 5.6: One hole can be trapped in a plaquette of the half-filled interacting Lieb lattice, in
the U →∞ limit of the Hubbard model, if the spin momentum of the spin configuration in that
plaquette is zero. Since the hole probability density is zero at the outer sites of the plaquette,
this plaquette effectively decouples from the rest of the lattice, where the spin configuration is
arbitrary. The red and blue sites indicate finite amplitude of the hole wavefunction (positive
and negative, respectively).

if j < l and bj = j + 1 if j ≥ l. The operator Q̂ip does a circular permutation of the spin
configuration in a single Lieb plaquette (labelled ip). The standing wave is created summing
the degenerate states (in the Lieb plaquette) with k = π/2 and k = −π/2 and this is indicated
by {k = ±π/2,+} in Eq. 5.8.

This construction can be generalized to an arbitrary number of localized holes, each one of
them in a different plaquette, as long as the plaquettes are not contiguous (plaquettes which
do not have common sites),

|{ip}; {k = ±π/2,+;α, qs = 0}; {σ}Λ′〉 =
∏
ip

Ψ̂ip

∏
j∈Λ′

c†jσj |0〉 (5.10)

with Λ′ being the set of sites of the Lieb lattice remaining after dropping the sites associated
with the plaquettes {ip}. The sites in each of these plaquettes are labelled using two indices,
(ip, l) with l = 1, · · · , N , so that the hole localized states in each of these plaquettes have still
the form given by Eq. 5.9 with bj → (ip, bj).

Does this apply to more complex plaquettes that share the rotation symmetry of the Lieb
plaquette? Taking the example shown in Fig. 5.2a, one sees that in the non-interacting case, a
localized state is present where the particle is confined to a 1D path. This leads one to suggest
that an equivalent localized state can be constructed for the hole moving in the spin background,
if we impose a qs = 0 spin momentum for the spins configuration in the 1D path (note that
we are using the same definition of spin momentum as above, since the 1D path in Fig. 5.2a
correspond to that of the Lieb plaquette). However one should note that in Fig. 5.2a, despite
the electron probability density being finite only in the outer ring, when the electron is at the
outer ring, it still hops to the center site, but summing over all the hopping possibilities from
the sites at the outer ring to the center site, the result will be zero (destructive interference).
In the case of the hole moving in the spin background, the hops of the hole from sites at the
outer ring to the center site mix the spins at the outer ring and at the center. In order for one
to have destructive interference at the center, the spin configuration must be a uniform linear
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combination of all possible permutations of the set of spins (given the number of up spins
and down spins). The reason is the following: when an electron in the localized state of Fig.
5.2a hops from a site of the outer ring to the center site, it interferes destructively with the
contributions of hoppings from the other sites of the outer ring. In the case of the hole, one has
the different spin backgrounds and the hops of the hole from the outer ring to the center should
not apparently interfere destructively. However, if one works with hole states such that, for a
given number of up and down spins in the plaquette, the spin configuration is a uniform linear
combination of all possible permutations of the set of spins, then: i) the spin configuration in
the outer ring has qs = 0 spin momentum, that is, one can apply circular permutations to the
spin configuration in the outer ring but this will not modify the spin configuration; ii) a hole
jump from a site A or B of the outer ring to the central site will generate the same final state,
independently of the initial site being A or B. Therefore, we have the same localized state
for one hole in the U →∞ limit of the Hubbard model as for one electron when U = 0. Or
better, the spin configuration in the background will be equivalent to a saturated ferromagnetic
configuration in what concerns the movement of the hole, since the spin configuration will
not change and will not generate additional phase factors. This state can be expressed as
(S−plaq)n |ψFM〉, where S−plaq is the spin-lowering operator defined within the plaquette, n is the
number of down spins and |ψFM〉 is the plaquette ferromagnetic state with one hole, which can
be written as

∑
j ψjcj,↑

∏N
i=1 c

†
i,↑ |0〉, where ψj is the hole wavefunction amplitude. Note that

this argument is also valid if the localized state occupies several plaquettes.
Let us explain in more detail the last argument using the example of the Mielke lattice in

Fig. 5.7a. The localized hole will have finite probability in the same compact set of plaquettes
as the compact localized state of the tight-binding limit (see Fig. 5.4a). If we number the sites
in this compact set of plaquettes as shown in Fig. 5.7b, one can use a mathematical formalism
similar to the one used above in the case of the interacting Lieb lattice. When one has a hole at
site 6 and the hole hops to site 9, this hopping induces a modification of the spin configuration
from {σ} = {σ1, . . . , σ11} to {σ′} = {σ1, σ2, σ3, σ4, σ5, σ8, σ6, σ7, σ9, σ10, σ11} (see Fig. 5.7b).
Let us introduce the operator P̂all that sums over all different permutations {σ′} of the spin
configuration {σ} (note that a permutation of two up-spins does not lead to a different spin
configuration),

P̂all|i, {σ}〉 =
1√
N{σ}

∑
{σ′}

|i, {σ′}〉, (5.11)

where N{σ} is the number of different permutations of the spin configuration {σ}. The
construction of a state involving the sum over spin permutations resembles the construction of
the ground state in the Brandt-Giesekus model[45, 46], although in this model only a particular
filling is considered. Starting from the state P̂all|6, {σ}〉, the hopping of the hole from site 6
to site 9 leads to P̂all|9, {σ}〉, that is, the spin configuration does not change (note that {σ′}
is a permutation of {σ}, so the sum of all permutations of {σ′} is equal to the sum of all
permutations of {σ}). Another way to state this is the following: any operation of transposition
of two spins commutes with P̂all, and therefore any permutation of the spin configuration
{σ} commutes with P̂all. Therefore, if P̂{σ}→{σ′} is the permutation of {σ} into {σ′}, then
P̂{σ}→{σ′}P̂all = P̂allP̂{σ}→{σ′} = P̂all. Note that an extra minus sign could appear if the
hopping of the hole involves an odd number of exchanges of creation operators, but this extra
sign is the same as in the case of the same hopping of the hole in a saturated ferromagnetic
background (assuming the same numbering of sites). Since it is obvious that we can create
a hole localized state in a decorated lattice with a saturated ferromagnetic background (one
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Figure 5.7: (a) The construction of a localized state for one hole in the U → ∞ limit in
an arbitrary decorated lattice is possible (if one-particle localized states exist), assuming a
spin configuration which is a uniform linear combination of all possible permutations of the
set of spins in the plaquette or set of plaquettes associated with the compact one-particle
localized states (gray region). (b) Top: Numbering of sites in the set of plaquettes where the
hole localized state has finite probability density; bottom: spin configuration using a chain
representation of the set of plaquettes, in the case of one hole at site 6 and one hole at site 9,
after a 6→ 9 hopping.

can do a particle-hole transformation and the hole localized state becomes a particle localized
state), this implies that a hole localized state can be created in the set of plaquettes shown in
the gray region of Fig. 5.7a. The spin configuration in the rest of the lattice is arbitrary.

This construction of a localized state is valid for any decorated lattice where a localized
state of one tight-binding electron exists. In the case of the states given by Eq. 10, the
localized holes occupy plaquettes with no common sites (which limits the maximum number
of localized holes to a fourth of the number of plaquettes, in the case of the Lieb lattice).
Note however that in the case of the plaquette with ferromagnetic background (or equivalently
plaquette states with a spin configuration which is a uniform linear combination of all possible
permutations of the plaquette set of spins), the maximum number of localized holes is higher
since the ferromagnetic configuration can be shared by plaquettes that have common outer
sites (sites with nodes of the hole wavefunction) but no common inner sites (in the Lieb lattice,
this would lead to a maximum of localized holes equal to half the number of plaquettes). This
has been confirmed numerically, diagonalizing exactly the Harris-Lange model in a set of few
plaquettes for several choices of decorated lattices.

Note that besides the localized state degeneracy associated with the choice of the lattice
plaquette where the localized state sits, there is a huge degeneracy associated with the possible
choices of number of up spins (or down spins) in the plaquette and in the rest of the lattice.
This degeneracy is lifted by the Heisenberg corrections of order t2/U , as in the Hubbard ring
[39–42].

Another important remark is that while the one-electron localized states of the Mielke and
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Tasaki lattices are the ground states of the respective tight-binding Hamiltonians, in the case of
the U →∞ Hubbard model, the one-hole localized state is not the ground state, for the choice
of relative hopping constants of Fig. 5.4. However, since the exact form of the hole probability
density is known as well as the hole wavefunction phase (as in the case of the one-electron
localized state), it is possible to tune the geometry, hopping constants and interactions in order
to lower the energy of the hole localized state relatively to the other states, so that the energy
of the localized state approaches the energy of the ground state.

5.4 Conclusion

In conclusion, we have presented a simple set of rules for the construction of localized
states of the Hubbard model in nearly arbitrary decorated geometries, in the tight-binding
limit (U = 0), and in the strong-coupling limit (U →∞). The first step in this method is the
choice of a plaquette or a set of plaquettes with a higher symmetry than that of the whole
lattice. In this plaquette, one has a localized state of the tight-binding Hamiltonian of the full
lattice (this state has probability density nodes at the sites shared between the plaquette and
the rest of the lattice). Using a simple set of rules, the tight-binding localized state in such
plaquette can be divided, folded or unfolded to new plaquette geometries. We have shown
that this set of rules can also be applied in the U →∞ limit of the Hubbard model, for the
construction of localized states of one hole in the plaquette, assuming a spin configuration
which is a uniform linear combination of all possible permutations of the set of spins in the
plaquette. Note that in every other plaquette, one may place a localized hole, so localized hole
states exist for hole doping between zero and a value of the order of 1/Nloc (the value depends
on the lattice geometry), where Nloc is the number of atomic sites of the set of plaquettes
where one hole is localized.

This paper presents a unifying picture of construction of localized states, in tight-binding
systems of arbitrary dimension (from 0D to 3D), arbitrary geometry (including Mielke’s and
Tasaki’s 2D geometries), without and with interactions (U = 0 or U =∞, extending in the
latter case the filling intervals where localized states are known to occur). The existence of
localized states due to spin flipping terms in tight-binding descriptions of topological models,
or the existence of one-magnon localized states in frustrated Heisenberg antiferromagnets, are
two other contexts included in this unifying picture.
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Abstract

We study the slow time evolution of localized states of the open-boundary Lieb lattice
when a magnetic flux is applied perpendicularly to the lattice and increased linearly in time.
In this system, Dirac cones periodically disappear, reappear and touch the flat band as the
flux increases. We show that the slow time evolution of a localized state in this system is
analogous to that of a zero-energy state in a three-level system whose energy levels intersect
periodically and that this evolution can be mapped into a classical precession motion with a
precession axis that rotates as times evolves. Beginning with a localized state of the Lieb lattice,
as the magnetic flux is increased linearly and slowly, the evolving state precesses around a
state with a small itinerant component and the amplitude of its localized component oscillates
around a constant value (below but close to 1), except at multiples of the flux quantum
where it may vary sharply. This behavior reflects the existence of an electric field (generated
by the time-dependent magnetic field) which breaks the C4 symmetry of the constant flux
Hamiltonian.



86 Time evolution of localized states in Lieb lattices

6.1 Introduction

In flat-band systems, there is a high energy degeneracy associated with the existence
of localized states (i.e. electrons trapped in a small region of a lattice due to destructive
wave function interference). Recent interest in this area has arisen[1, 2] due to experimental
realizations of flat-band systems using arrays of optical waveguides[3, 4], exciton-polarization
condensates[5, 6], and cold atoms in optical lattices[7]. Known lattices with flat bands include
the Lieb[8], Mielke[9] and Tasaki[10] lattices and there are methods of generating lattices of
nearly arbitrary geometry which have these localized states when the hopping constants obey
certain relations[11, 12].

These systems can be separated in two classes in what concerns the behavior of their flat
band in the presence of an external magnetic field. In particular, the Mielke and Tasaki lattices
do not display flat bands for finite magnetic flux. In contrast, lattices of the Lieb’s class are
flat-band robust in that they retain a flat band when a magnetic field is applied perpendicularly
to the lattice. However, the introduction of magnetic flux requires that localized states occupy
at least two plaquettes[13] and therefore, the flat band subspace as a whole evolves in the
Hilbert space as the magnetic field is increased. In the case of the Lieb tight-binding (TB)
model, the band structure has a Dirac point at k = (π, π). This model under an evolving
magnetic field creates an interesting theoretical scenario: i) a flat band and Dirac bands that
touch at the Dirac point when the magnetic flux per plaquette is a multiple of the flux quantum;
ii) a perturbation such that the flat band persists, and the Dirac cones disappear and reappear
periodically as the perturbation varies.

In this paper, we study the slow time evolution of localized states in the scenario described
above. As stated by the adiabatic theorem [14], if the evolution of the perturbation (magnetic
field) is slow enough, the evolving state, initially an eigenstate, is expected to closely remain
an instantaneous eigenstate of the Hamiltonian at any time, as long as there is an energy
difference between that eigenstate and the rest of eigenstates. Since energy levels periodically
cross the flat band, this time evolution will periodically leave the adiabatic regime close to the
crossing instants.

One of the questions we wish to answer is: near the energy crossing instants, can we picture
the flat band system as a three-level system with one zero-energy (flat-band) state and two
finite-energy ones? The motivation for this question is two-fold. First, if one considers a
finite-size tight-binding lattice, the Dirac cones are replaced by discrete levels and, as the
perturbation is increased, two of these levels cross the flat-band level. Second, the application
of the perturbation to the flat-band tight-binding system introduces Hamiltonian terms that
couple each dispersive state with flat-band states. However, as the flat band is degenerate, one
can rotate the basis of the flat-band subspace in a way such that the perturbation couples the
dispersive state with only one localized state (in analogy with what was done in Ref. [15]).
We find that if the magnetic flux is applied linearly and slowly, the localized component of
the evolving state oscillates around a constant value, except at energy crossing instants where
it varies sharply. This reflects an intricate precession behavior of the evolving state around
a state with a small itinerant component. Such a behavior is also found in the case of a
three-level system whose energy levels intersect periodically. This precession behavior reflects
the existence of an electric field in the Lieb lattice (generated by the time-dependent magnetic
field) which breaks the C4 symmetry of the constant flux Hamiltonian.

The paper is organized in the following way. First, we consider the tight-binding Hamiltonian
of the Lieb lattice in the presence of magnetic flux (also called t-φ model). When the magnetic
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Figure 6.1: (a) Localized state in two contiguous plaquettes of the Lieb lattice with one common
site, for the symmetric gauge A = B

2 (−y, x, 0). Labeled circles represent finite wavefunction
amplitudes, and the remaining sites are nodes of the wavefunction. (b) Energy spectrum of the
Hamiltonian H (see text) as a function of the magnetic flux through a plaquette, φ, for the
finite Lieb lattice with 4×4 plaquettes. (c) Closeup of an intersection point between the flat
band and two dispersive states, which we call the two ε states. (d) Square of the absolute value
of the projection of an evolving state |ψ(t)〉 onto the localized subspace of the eigenvectors of
H, as a function of φ. The lattice comprises 4 plaquettes (2 in each direction x or y). The
initial state is of the form of (a), with φ = π. The time evolution is due to the linear change of
the magnetic flux, φ(t) = ωt, ω = 2π × 10−5 and (x0, y0) = (−4,−4).

flux per plaquette is a multiple of the flux quantum, the flat band has two extra states, which
we label |ε±〉 states. We then analyze the time evolution of one of its localized eigenstates,
starting at a certain initial magnetic flux and then varying the magnetic flux linearly and slowly.
Secondly, we study a toy three-level system with a time-dependent Hamiltonian consisting
of one zero-energy eigenstate and two finite-energy ones, whose energy periodically crosses
the zero-energy line. We study the slow time evolution of the zero-energy state and find that
it is equivalent to a classical precession motion, but with a nutation-like oscillation of the
zero-energy component due to the rotation of the Hamiltonian eigenbasis. This precession
motion may lead to huge long-time modifications of the state if, when the level crossings
occur, the precession axis rotates with finite angular velocity. Thirdly, we show that analogous
precession behavior is found in the evolution of any localized state of the Lieb lattice under
time-dependent magnetic flux. In this case, since it is this time-dependence that leads to the
rotation of the precession axis, we can also say it is a consequence of the electric field generated
by the evolving vector potential.

6.2 Lieb lattice under magnetic flux

Let us consider the Lieb tight-binding model without magnetic flux. The Lieb lattice can
be obtained from a traditional two-dimensional (2D) square lattice by removing one quarter of
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its atoms in a regular pattern (see Fig. 6.1a). It is comprised of three sublattices (A, B and
C). The eigenvalues of the nearest-neighbor TB model of this lattice (with unitary hopping
constant) consist of three energy bands, one of which is flat, with zero energy[3, 16]. The

energy of the dispersive bands has the form ε±(k) = ±2
√

cos2 kx
2 + cos2 ky

2 , where (for periodic
boundary conditions) kα = 2πnα/Lα, with nα = 1, · · · , Lα, and Lα is the number of unit
cells in the α direction. The total number of unit cells is N = LxLy. The flat band is a
high-degeneracy eigenspace composed of localized states (these states remain eigenstates when
the system size is increased, implying that the respective probability density distribution is
localized in a region of the lattice).

On an infinite Lieb lattice, the dispersive bands have Dirac cones that touch the flat band
at the point k = (π, π). On a finite periodic Lieb lattice, this point is only allowed if both
Lx and Ly are even. When this is the case, the degeneracy of the zero-energy subspace is
N + 2. The number of localized states (degeneracy of the flat band) is N + 1. The remaining
zero-energy state is the eigenstate of the dispersive bands that is located in the Dirac point.
A localized state is also located at the Dirac point, effectively creating a two-state subspace
that is degenerate for both energy and k. 1 In contrast, on a Lieb lattice with open boundary
conditions, the flat band is N -fold degenerate in the absence of magnetic flux. Note that
localized states span only over B- and C-type atoms of the lattice, but the zero-energy dispersive
state (corresponding to the Dirac point) spans uniquely A-type atoms. This state has finite
amplitude at A-type atoms at the edges of the lattice, and consequently it is no longer an
eigenstate if more plaquettes are added. The lower and upper dispersive bands involve all
three sublattices A, B, and C. An important characteristic of the Lieb TB model is that in the
presence of magnetic flux the flat band remains flat, albeit with degeneracy N −1, that is, even
in the presence of magnetic flux, one has localized eigenstates of the TB Hamiltonian induced
by the wavefunction destructive interference associated with the particular Lieb geometry. 2

To include a magnetic field in the model, we must consider the Peierls phase gained by the
electron when it hops between lattice sites, θij = π

φ0

∫ j
i A · dl, where i and j label the (x, y)

coordinates of the initial and final sites, respectively, A is the vector potential, and φ0 = h/(2e)
is the magnetic flux quantum. Assuming the symmetric gauge, A = B

2 (−(y − y0), x− x0, 0),
where B is the magnitude of the magnetic field and (x0, y0) is the center of the vector potential
relative to the center of the lattice (0, 0), the Lieb TB Hamiltonian in the presence of magnetic
flux is obtained by applying the Peierls substitution to the standard TB Hamiltonian, and is
given by[17]

H = −
∑

all A sites

(
e−iφ

(x−x0)
8 B†x,y+1 + eiφ

(x−x0)
8 B†x,y−1

+ eiφ
(y−y0)

8 C†x+1,y + e−iφ
(y−y0)

8 C†x−1,y

)
Ax,y + H.c.,

(6.1)

where φ = 4Bπ/φ0 is the normalized magnetic flux. Open boundaries are introduced considering
only the set of the previous hopping terms within the boundaries of our lattice. The eigenvalues
of the Lieb TB Hamiltonian as a function of φ are shown in Fig. 6.1b, which includes a

1The variable k should not be designated as momentum in the case of open boundary conditions, since the
respective eigenstates are standing waves.

2The decrease in the degeneracy can be justified by the fact that, without flux, a localized state can occupy
only one plaquette, while with flux, at least two plaquettes are required, which necessarily reduces the number
of localized states.
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zoomed-in energy-crossing point, Fig. 6.1c (see also Refs. [1, 16, 18]). A double Hofstadter
butterfly arises in intervals of 2π.

The introduction of magnetic flux opens gaps between the bands, and two states, |ε+〉 and
|ε−〉 (whose energies obey the relation ε+ = −ε−), leave the flat band (see Fig. 6.1c). These
two states arise (up to zeroth order on the flux) from a combination of the two states in the
zero-flux Dirac point, one dispersive and one localized. In states |ε+〉 and |ε−〉, the electron
has equal probability of being at sublattices A or B/C. All A sites have the same probability
of occupation, but for the B/C sites the probability increases quasi-exponentially as we move
away from the center. This means that the overlap between a localized state and the |ε±〉
states is stronger the closer the localized state is to the edge of the lattice. In these two states,
the phase difference between nearest-neighbor sites is π/2 as we move clockwise in one of the
ε states and anti-clockwise in the other. This can be interpreted as the two states having
opposite angular momenta which, when coupled to the applied magnetic field, confers them
symmetric energies at the energy crossing instants.

The zero-energy crossing at zero flux (or more generally, at multiples of the flux quantum)
is rather particular. At zero flux and assuming Nx = Ny, the Lieb lattice shares the C4v

symmetry of the square lattice and therefore, one expects a zero-flux energy spectrum with non-
degenerate (double degenerate) states which are even (odd) under the C2 rotation. However,
the zero-energy crossing involves the |ε±〉 states which, when (x0, y0) = (0, 0), are even under
the C2 symmetry. The introduction of flux lowers the symmetry of the lattice (or better, of
the respective tight-binding Hamiltonian), from C4v to C4, if we consider a vector potential
which has C4 symmetry (as in the case (x0, y0) = (0, 0)), or to a lower symmetry otherwise.

Let us now consider a time-dependent magnetic flux. The time evolution of a localized
eigenstate |ψ(0)〉 of the Lieb lattice is given by the time-dependent Schroedinger equation,
i d
dt |ψ〉 = H|ψ〉, so that |ψ(t+dt)〉 = e−iH(t)dt|ψ(t)〉. We considered, as initial state, a localized
eigenstate of the Hamiltonian of the Lieb lattice at a certain magnetic flux, and numerically
studied its evolution due to a time-dependent Hamiltonian H(t) representing the slow linear
change of the magnetic flux, φ(t) = ωt, where ω is the angular frequency of the Peierls phase.
One should again note that a slowly-changing time-dependent vector potential implies a very
small electric field3.

Starting with the localized state of the Lieb lattice in Fig. 6.1a, placed at the center of a
Lieb lattice with 2× 2 plaquettes, with φ(t0) = π, the projection of |ψ(t)〉 onto the localized
subspace of H(t) is shown in Fig. 6.1d. This projection is given by P (t) =

∑
i〈0i|ψ(t)〉2,

where the summation is over all zero-energy eigenstates, |0i〉, of H. The fast oscillations with
modulated amplitude and a larger-scale staircase behavior, seen in Fig. 6.1d, are also observed
in larger lattices. Note that the sum of the state projections onto the localized basis is a
particular state |0̃〉 of the subspace of localized states, |0̃〉 =

∑
i〈0i|ψ(t)〉|0i〉.

The fact that the localized component exhibits a staircase behavior is a consequence of
|ψ(t)〉 acquiring or losing dispersive component in the two ε states (see Fig. 6.1c) whenever
the ε± energies cross the flat band (which occurs periodically, at φ = 2πn), in accordance with
the adiabatic theorem. This pattern can be successfully reproduced using a three-level toy
model, as we show in the next section. We can justify this pattern by analyzing the equation
of evolution of |ψ(t)〉 in the time-dependent eigenbasis {|εi(t)〉} of the Hamiltonian, where we

3In the context of atomic physics, a gauge such that the electric field results from a time-dependent vector
potential is designated a velocity gauge.
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Figure 6.2: (a) Energy spectrum of the three-level toy Hamiltonian H3 as a function of
φ = ω1t. The spectrum includes three energy bands, with energies 0 and ε± = ± sin(ω1t).
(b) Illustration of the solution |ψ(t)〉 of the Schroedinger equation describing our three-level
toy model as a classical mechanics precessing position vector r(t) = |ψ(t)〉. The vectors here
have the same meaning as in Eq. 6.4. The trajectory described by the vector r(t) is the curly
orange line and results from solving Eq. 6.4, with ω1 = ω2 = 2π/1000, and initial condition
r(ω1t = π/10) = (cos(π/10), sin(π/10), 0), i.e., a purely localized state. Note that the direction
of precession changes whenever the sign of ε(t) changes. (c) Projection of the evolving state
|ψ(t)〉 onto the zero-energy state of the toy Hamiltonian H3 as a function of φ. The parameters
considered are the same as in (b).

can write |ψ(t)〉 =
∑

i αi(t)|εi(t)〉. This leads to the equation

dΨ/dt = (−iHd +D)Ψ, (6.2)

where Ψ(t) = {αi(t)} is the column vector of the components of |ψ(t)〉 in the eigenbasis
{|εi(t)〉}. In the equation above, Hd is the diagonalized Hamiltonian matrix and Dij ≡
d〈εi|
dt |εj〉 = dφ

dt
d〈εi|
dφ |εj〉 where φ is the magnetic flux that will be varied quasi-adiabatically over

time. This implies dφ/dt is small enough that the energy differences between states i and j,
∆εij , are (mostly) much greater than the elements that couple those states, Dij , so that the
matrix D can be considered a perturbation of the system. In this case, the evolution is mostly
determined by the diagonalized Hamiltonian, resulting in constant |αi| of the evolving state.
However, if ∆εij is zero at some instant t1, the element Dij will dominate the evolution on a
finite interval around t1 for any (finite) choice of dφ/dt, resulting in a permanent exchange of
component weight between states i and j.

6.3 Three-level toy model

In this section, we show that the fast oscillations with modulated amplitude and the
larger-scale staircase behavior of the localized component described in the previous section
can be understood considering a simple three-level system. The three-level toy Hamiltonian,



Three-level toy model 91

before basis rotation, comprises one zero-energy eigenstate and two finite-energy ones, 4 and
its matrix representation at time t can be

H̃3 =

 0 0 0
0 0 ε(t)
0 ε(t) 0

 , (6.3)

with eigenvalues 0 and ε± = ±ε(t), where ε(t) = ε0 sin(ω1t). The eigenvalues are therefore
distinct for all times except ω1t = nπ, with n ∈ Z (see Fig. 6.2a), an effective simplification of
the zero-energy crossing instants which occur in the case of the Lieb lattice (see Fig. 6.1c).

Additionally, a rotation of the eigenbasis of the toy Hamiltonian should be considered.
We choose a simple case of a unitary transformation, the rotation matrix U about the
z axis, with angular velocity ω2, so that the zero-energy state mixes with the other two
states. The full toy Hamiltonian is H3 = UH̃3U

†. The zero-energy state of H3 at time t
is |0(t)〉 = (cos(ω2t), sin(ω2t), 0), and the (not normalized) eigenstates with energies ε± are
(sin(ω2t), cos(ω2t),±1). Other rotations could be considered by substituting ω2t with the
appropriate time-dependent functions. We comment the case of a general unitary operator U
(with complex matrix entries) in the next section.

The evolution of a quantum state due to this Hamiltonian can then be studied by solving
the time-dependent Schroedinger equation, H3|ψ(t)〉 = i d

dt |ψ(t)〉. One can then plot the
projection of the solution vector, |ψ(t)〉 = (x(t), y(t), z(t)), onto the zero-energy state, P0(t) =
|〈ψ(t)|0(t)〉|2. A numerically-obtained plot of P0(t) is shown in Fig. 6.2d, where we assumed
ω1 = ω2 for simplicity. The energy of the evolving state, 〈ψ(ε)|H3|ψ(ε)〉, was found to remain
zero (lower than 10−16 in our numerical calculations) at all times during the evolution.

The solution of this system can actually be visualized in 3D, as a position vector. First, since
x(t) and y(t) have zero imaginary part, and z(t) has zero real part, we make all three components
purely real, by replacing z with iz and consider the position vector, r(t) = (x(t), y(t), z(t)).
That turns the Hamiltonian into a skew-symmetric matrix, which can be identified as the
matrix multiplication form of a vector cross product. Finally, the Schroedinger equation
H3|ψ(t)〉 = i~ d

dt |ψ(t)〉 becomes a classical mechanics precession equation,

ṙ(t) = Ω(t)× r(t), (6.4)

with Ω(t) = ε0 sin(ω1t)
~ [cos(ω2t), sin(ω2t), 0]. This is the equation of motion that describes the

precession of a vector r(t) around the vector Ω(t), which in turn rotates about the z axis
(Fig. 6.2b). Thus, in this classical perspective, ω1 is responsible for the change of the length of
Ω(t) over time and ω2 gives the rotation of Ω(t) around the z axis.

Because the velocity, ṙ(t), is orthogonal to r(t) at all times, the norm of r(t) is kept constant.
The vector Ω(t) is the zero-energy eigenstate of the Hamiltonian, multiplied by ε0 sin(ω1t)/~.
The zero-energy component of r(t) is therefore proportional to the cosine of the angle between
r(t) and Ω(t). At the energy intersection points (ω1t = nπ), the velocity goes to zero and r(t)
moves more slowly. However, at these points, Ω(t) continues to rotate at the same angular
velocity so that, naturally, the angle between the two vectors changes considerably, inducing
the sudden increases or decreases in the localized component that can be seen in Fig. 6.2d.

4One could also consider a toy system of only two levels corresponding to one zero-energy state and one
finite energy state. However, such a toy model would fail to fix the near-zero energy of the evolving state which
is observed in flat-band systems. The evolving state needs to be allowed to mix with two other states with
symmetric energies, lest the energy change.
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Away from the intersection points, P0(t) displays rapid oscillations which reflect the precession
of r around Ω, as well as the rotation of Ω.

In the rotating frame of reference that follows the zero-energy eigenstate, the precession
vector acquires a component in the z direction, Ω = [ε0 sin(ω1t)/~, 0,−ω2]. The instantaneous
frequency of the rapid oscillations of P0(t) observed in Fig. 6.2d equals the norm of the precession
vector in the rotating frame, Ω =

√
(ε0 sin(ω1t)/~)2 + ω2

2 (however, if ω2 is zero, no oscillations
will be observed). Indeed, a WKB-like approach can be used to find an approximate solution
of the three-level model in the regime |ε(t)/~| � |ω2| ⇒ Ω(t) ≈ ε(t)/~. The approximate
solution for the localized projection 〈ψ(t)|0(t)〉 between two consecutive zero-energy crossing
instants is

c
ε0

Ω
sin(ω1t) +

√
1− c2

ω2

Ω
cos

(
− ε0

ω1
cos(ω1t) + θ0

)
, (6.5)

where −1 < c < 1 and θ0 are initial condition parameters. This is still a valid equation even
if we used a more general rotation of the eigenstates, i.e. if the z component of the rotating
frame precession vector, −ω2, was substituted by any time-dependent function. This means
that the amplitude of the high frequency oscillation of |〈ψ(t)|0(t)〉|2 will be approximately
given by |ω2/Ω|2.

6.4 Electric field symmetry

In the previous section, we showed that a simple three-level system can reproduce the basic
features of an evolving localized state in the Lieb lattice, namely the fast oscillations with
modulated amplitude of the localized component and the larger-scale staircase behavior. The
precession of r(t) in the case of the toy model implies that the oscillations observed in the case
of the Lieb lattice can be qualitatively interpreted as a precession of the evolving state around
a state which is approximately the state |0̃〉 defined in section 6.2, but also has small |ε±〉
components (and even smaller components on other itinerant states). Furthermore, the nodes
and antinodes in the amplitude of the oscillations at each step of the staircase (this effect is
more explicit for larger lattices) observed in Fig. 6.1d can also be reproduced by the toy model
by tweaking ω2, as it modulates the amplitude of the oscillations. This implies that, if in a
certain instant ω2 is zero, then a node will be observed in the amplitude of the oscillations (see
Eq. 6.5).

In the case of the Lieb lattice, and in analogy with the three-level system, a rotation
between the |ε±〉 states and the localized states occurs as time evolves. Since this rotation
occurs as the magnetic flux is increased, one expects the rotation to be proportional to the
time derivative of the Hamiltonian. Since the time dependence of the Hamiltonian is present
only in the vector potential, the rotation reflects the existence of an electric field. But does any
electric field generate such a rotation? Or equivalently, is it possible to define a time-dependent
vector potential such that the corresponding electric field does not cause the step-like behavior
of the localized component of the evolving state? The answer lies in the relative symmetry of
the lattice and the vector potential. As mentioned above, a slowly-changing time-dependent
vector potential implies a very small electric field, given by E = −∂A/∂t. In this work, we
used the symmetric gauge, A = B(t)

2 (y0 − y, x− x0, 0) with a linear time dependence of the
magnetic field, B(t) = ωtφ0/(4π). The specific case where (x0, y0) = (0, 0), meaning the center
of the gauge is the same as that of the lattice, leads to the same magnetic field, but a different
electric field, and the step-like behavior vanishes. In this case, both the system and the electric
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field possess rotation invariance at the center of the lattice and therefore, eigenstates of H
have odd or even parity in relation to the center of the lattice. In particular, one can choose a
Hamiltonian eigenbasis for the localized states, {|0i(t)〉}, such that all states have a defined
parity.

In a time-dependent evolution, the transition rate between eigenstates |ε+(t)〉 and |0i(t)〉 is
given by D+0i(t) = 〈dε+dt |0i(t)〉, if ε+ 6= 0. Using the C4 symmetries of both states, one can
show that the transition rate at the crossing points φ = 2πn is proportional to the amplitude
of the uniform component of the electric field, D+0i(φ = 2πn) ∝ ω

√
x2

0 + y2
0 (see Ref. [19] for

more details). As stated by the adiabatic theorem, a slow time evolution may only leave the
adiabatic regime if an energy difference of zero is met. However, as discussed in the analysis
of Eq. 6.2, the adiabatic regime is abandoned when the matrix elements of D are sufficiently
larger than the energy differences between the respective states. Since D+0i = 0 exactly at
the same time as the energy difference is zero, there is not a finite time interval around the
crossing instants where D+0i � ∆E+0i , so that adiabaticity is not lost even though the energy
levels meet, causing the absence of the staircase behavior when the electric field shares its
center with the lattice.

6.5 Conclusion

In conclusion, we have studied the slow time evolution of localized states of the Lieb lattice
with increasing magnetic flux. A curious step pattern of the localized component has been
found and we have shown that this behavior can be interpreted as a precession movement of
the evolving state around a time-dependent vector with a large localized component and a
much smaller dispersive component. The small dispersive component changes sharply at the
energy-crossing points and corresponds mainly to two eigenstates of the Hamiltonian whose
energy periodically crosses the zero-energy line. We have shown that this behavior can be
understood considering a simple three-level toy model consisting of a Hamiltonian with three
time-dependent eigenstates, such that one of them has constant zero energy and the other two
periodically cross the zero-energy line.

This behavior should also occur due to perturbations that, similarly to the magnetic and
electric fields, lift the C4v symmetry of the Lieb lattice. We also expect that other flat band
systems display the same features. For example, similar behavior is found in the AB2 chain[13],
which is bipartite and also has a flat band which is robust against the application of a magnetic
field.

Concerning the experimental observation of the physics described in this paper, the step
pattern may be observed in Lieb optical lattices under time-dependent perturbations or in
Lieb photonic lattices, using a spatial modulation of the properties of the waveguide[20] to
replicate the time-dependent magnetic field[21, 22], by measuring the light intensity at an
A-type waveguide over its length, we can approximately measure the itinerant component over
time.
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Abstract

We study the mean-field phase diagram of the repulsive Hubbard model in the Lieb lattice.
Far from half-filling, the most stable phases are paramagnetism for low on-site interaction
U/t and ferromagnetism for high U/t, as in the case of the mean-field phase diagram of the
square lattice Hubbard model obtained by Dzierzawa[1]. At half-filling, the ground state was
found to be ferrimagnetic [a (π, π) spiral phase], in agreement with a theorem by Lieb[2]. The
total magnetization approaches Lieb’s prediction as U/t becomes large. As we move away
from half-filling, this ferrimagnetic phase becomes a (q1, q1) spiral phase with q1 ≈ π and then
undergoes a series of first-order phase transitions, (q1, q1)→ (q1, q2)→ (q1, 0), with q2 ≈ π/2,
before becoming ferromagnetic at large U/t or paramagnetic at low U/t.



100 Mean-field phase diagram of the Hubbard model in the Lieb lattice



Introduction 101

B D 

C A 

Figure 7.1: A square lattice can be divided into four sublattices A, B, C and D. The circles
represent atomic nuclei and the arrows represent spins. The Lieb lattice can be obtained by
removing one of the sublattices.

7.1 Introduction

The Hubbard model is one of the most studied models in the area of strongly correlated
electron systems [3, 4]. However, it remains unsolved for dimensionality larger than one. For
the one-dimensional (1D) case, the exact solution is given by the Bethe Ansatz [5], while in the
case of two dimensions (2D), the solution is known only in some limiting cases or by means
of approximations, such as mean-field. The fermionic Hubbard model in a square lattice has
long been known to display antiferromagnetism (AF) at half-filling [6]. However, away from
half-filling, the ground state magnetic ordering is still an open problem [7].

Extensions of the Hubbard model to 2D decorated lattices also show interesting features,
such as flat band ferromagnetism (F) [2] and Dirac cones [8]. These decorated 2D lattices fall into
three classes: Lieb’s [2], Mielke’s [9] and Tasaki’s [10]. The pursuit for metallic ferromagnetism
has motivated the search of crystal structures matching these decorated lattices. However, there
are experimental obstacles, such as the lifting of the flat-band degeneracy by the Jahn-Teller
effect or the difficulty in controlling the filling of the lattice. An alternative experimental
approach is to study quantum dot arrays with these geometries [11]. Decorated lattices can
also be realized by manipulating cold atoms in optical lattices [12].

Here, we study one example of a 2D decorated lattice, the Lieb lattice, i.e., a line-centered
square lattice [13]. This kind of lattice can be obtained from the usual 2D square lattice by
removing a quarter of its atoms (see Fig. 7.1). Each unit cell contains one atom of each kind:
A, B and C. As a matter of fact, real materials can have their atoms arranged in a fashion
resembling the Lieb lattice. Examples include the well-known high-Tc superconductors with
weakly coupled CuO2 planes [14, 15], such as La2−xSrxCuO4 and YBa2Cu3O7, which can be
studied using the perovskite lattice, a three-dimensional (3D) generalization of the Lieb lattice
[16].

Exact results for magnetism in the Lieb lattice are known. For example, an important
theorem proven by Lieb [2] states that bipartite lattices (lattices with two sublattices, A and
B, such that each site on sublattice A has its nearest neighbors on sublattice B, and vice
versa) whose unit cell contains a different number of each kind of atom, have ferromagnetic
ground states at half-filling. This is the case of the Lieb lattice [17], as each unit cell contains
one A atom and two B-like atoms. One common argument is that these states are in fact
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ferrimagnetic [18], in the sense that although each sublattice is ferromagnetic, the full lattice is
antiferromagnetic, but the magnetization is finite due to the different number of atoms in each
sublattice. This contrasts with the antiferromagnetic ordering of the square lattice Hubbard
model in this limit. Note that Lieb’s theorem only mentions the total magnetization per unit
cell, not on-site magnetization amplitudes, which can be calculated using numerical methods,
such as mean-field. This has been done for the multi-layer Lieb optical lattice at half-filling
[19].

In this work, we use a mean-field approach to compute the magnetic phase diagram of the
Lieb lattice as a function of the average electron density n and Hubbard interaction U , thus
going away from both half-filling and the tight-binding limit. The allowed magnetic phases
are paramagnetism and spin spiral phases [20]. Ferro- and ferrimagnetism can be obtained as
particular cases of spiral phases. Note that we do not consider spatial phase separation. In
order to find such regions in the phase diagram, one needs to use the chemical potential as an
independent variable [21–23], rather than using the particle density.

The tight-binding Hamiltonian of the Lieb lattice, Ht, is given by [24]

t
Lx∑
x=1

Ly∑
y=1

[
(A†x,yBx,y +A†x,yCx,y +H.c.)

+(A†x,yBx,y−1 +A†x,yCx−1,y +H.c.)
]
.

(7.1)

Lx (Ly) is the number of unit cells along the x (y) direction. The hopping terms in the
first line are intra-unit cell and the remaining ones are inter-unit cell. The eigenvalues of Ht

originate three energy bands, one of which is flat. The dispersion relation for periodic boundary
conditions is

ε± = ±2t

√
cos2

kx
2

+ cos2
ky
2
, (7.2)

for the non-flat energy bands, where kα = 2πnα/Lα with nα = 0, 1, · · · , Lα and α ∈ {x, y}.
The flat band is LxLy-fold degenerate with zero energy. The one-particle localized states
associated with the flat bands can be written as

|loc;x, y〉 =
1

2

(
B†x,y − C†x,y +B†x,y−1 − C

†
x−1,y

)
|vac〉 . (7.3)

These states form a non-orthogonal basis of the flat band subspace.
The three tight-binding energy bands of the Lieb lattice energy bands are shown in Fig.

7.2a. At the point (kx, ky) = (π, π), the three branches touch each other. Expanding the
dispersion relation in Eq. 7.2 around this point, we find the Dirac cones ε2 = t2(k2

x + k2
y). The

flat band is built up from B- and C-type orbitals in equal shares, while the lower and upper
bands involve all three sublattices A, B and C.

The particle density of a sublattice equals the number of electrons at that sublattice divided
by the number of atoms the sublattice comprises, or the number of unit cells,

nA = NA
LxLy

nB = NB
LxLy

nC = NC
LxLy

.

(7.4)

In the non-interacting limit and at zero temperature, the particle density on sublattices A, B
and C as a function of the global particle density (number of electrons in the whole lattice
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Figure 7.2: (a) Plot of the tight-binding dispersion relation of the Hubbard model in the Lieb
lattice and (b) the respective particle density of each sublattice, A, B or C, as a function of
the total particle density.

divided by the total number of sites) is as plotted in Fig. 7.2b. The plot can be interpreted as
follows. Half of the probability density of the states in the lower dispersive band correspond
to the sublattice A, while the other half is evenly distributed among sublattices B and C.
Therefore, starting at n = 0, as we insert electrons in the system, half “choose” sublattice A,
while the other half go to sublattices B or C. At n = 2/3, we reach the flat band at ε = 0.
At this point, all sites A are singly occupied, while sites B and C are quarter-filled. Any
newly-added electrons will only go to sublattices B or C, because the flat band only comprises
these two kinds of atoms and going to sublattice A would imply going to the upper dispersive
band, which would lead to higher total energy. At n = 4/3, the flat band is completely filled,
so that for n > 4/3 electrons occupy the upper dispersive band going to sites A or B/C at a
ratio of 2:1, as in the lower dispersive band, up to the maximum filling nA = nB = nC = 2.

In this work, we address magnetism in the Lieb lattice by considering a finite on-site
Coulomb repulsion U using a mean-field approach, and build a n− U phase diagram. In the
case of a square lattice, one assumes that the occupation number is the same in the whole
lattice. Here, in the case of the Lieb lattice, we assume that the occupation number on each
sublattice is the same as in the tight-binding limit, for any U (see Fig. 7.2b). This is the
correct assumption for small U/t. Moreover, for large U/t, the results of Fig. 7.5 remain
qualitatively the same for nA = nB = nC = n.

7.2 Calculations

The interaction term of the Hubbard Hamiltonian is

HU = U
∑
sites

n↑n↓, (7.5)

that is, the on-site Coulomb repulsion U times the number of double occupancies in the lattice.
Applying the mean-field approximation to the Hubbard Hamiltonian gives single-particle
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energies given by the eigenvalues of the 6× 6 single-particle Hamiltonian HMF [1, 25, 26],


UnA
2

−t(1 + eiky ) −t(1 + eikx ) −mU
2

0 0

−t(1 + e−iky )
UnB

2
0 0 −mU

2
e−iqy 0

−t(1 + e−ikx ) 0
UnC

2
0 0 −mU

2
e−iqx

−mU
2

0 0
UnA

2
−t(1 + ei(ky+2qy)) −t(1 + ei(kx+2qx))

0 −mU
2
eiqy 0 −t(1 + e−i(ky+2qy))

UnB
2

0

0 0 −mU
2
eiqx −t(1 + e−i(kx+2qx)) 0

UnC
2


, (7.6)

plus the diagonal term
ULuc

4
(3m2 − n2

A − n2
B − n2

C). (7.7)

This is a generalization of the Hamiltonian obtained in previous studies of the 2D square lattice
Hubbard model [1, 25, 26], which did not allow for different occupations in the sublattices.
The magnetic phase of the system is defined by two order parameters: the vector ~q and the
number m, as in the works by Dzierzawa [1] and Singh [25]. The vector ~q = (qx, qy) defines the
orientation of the spins. For example, qx = 0 is a ferromagnetic phase along the x direction,
qy = π represents antiferromagnetism along the y direction, and other values of qx or qy
give spin spiral phases. The paramagnetic phase is ~q-degenerate and is characterized by zero
magnetization amplitude. The magnetization amplitude m can be identified as the amplitude
of the spin spiral wave,

〈~S~r〉 =
m

2
(cos(~q · ~r), sin(~q · ~r), 0) , (7.8)

and appears during the mean-field calculations, when computing averages such as

〈A†↑A↓〉 = 〈S+
A 〉 = 〈SA,x + iSA,y〉 =

m

2
ei~q·~rA , (7.9)

for sublattice A. Fig. 7.3 shows what the configuration of the Lieb lattice looks like when
~q = (π, π) and m is finite.

B 

C A 

Figure 7.3: According to our definition of ~q (the change in spin orientation between two
consecutive lattice sites), a Lieb lattice with ~q = (π, π) is ferromagnetic within each sublattice.
Moreover, because the magnetization amplitude m is the same in every site and each unit cell
has two spins in the same direction and one spin in the opposite direction, the total spin per
unit cell is nonzero, as predicted by Lieb [2].

From this point forward, we consider t = 1, so that U is given in units of t. It is important
to remark that, experimentally, although we cannot directly control the value of U (the on-site
interaction), we can control the ratio U/t, for example by applying pressure on the sample.
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Figure 7.4: Mean-field ground state magnetization (m) of the Lieb lattice as a function of n
and U . The plot is very similar to that of the 2D square lattice. The most noticeable difference
between the two is that, while the square lattice has zero m in the vicinity of the point
(n,U) = (1, 0), the Lieb lattice has finite m in this region of the diagram, more specifically
between n = 2/3 and n = 4/3.

7.3 Results and discussion

The n − U phase diagram is computed in the following way. For each point (n,U), the
number of electrons N is well defined, so that we can add the lowest N mean-field energies and
find the total energy of the system. By numerically minimizing this total energy (using, for
instance, the algorithm in Ref. [27]) with respect to qx, qy and m, we find the values of these
three magnetic order parameters which lead to the ground state for this pair (n,U). Repeating
this process for all desired pairs, one obtains the phase diagram.

7.3.1 Magnetization for high U/t

The plot in Fig. 7.4 shows the mean-field ground state magnetization amplitude m as a
function of n and U . This result is similar to that of the square lattice in most regions of the
diagram. Indeed, for high U , the magnetization is proportional to n between n = 0 and n = 1,
and proportional to 2− n between n = 1 and n = 2, reflecting particle-hole symmetry.

This proportionality can be justified analytically in the following way. For very high U , the
tight-binding terms of the mean-field Hamiltonian given by Eq. 7.6 are but a small perturbation,
which can be neglected as a first approximation. In this case, all sublattices become equivalent,
implying nA = nB = nC = n, with t = 0. Diagonalizing the new Hamiltonian gives two
flat bands. A three-fold degenerate band at U

2 (n −m) and a three-fold degenerate band at
U
2 (n+m). Distributing the electrons in the bands and adding up their energies, one obtains
the total energy of the system by adding the diagonal term 3ULuc

4 (m2 − n2) (see Eq. 7.7),
so that having positive m yields the same bands as negative m. Let us assume m > 0. For
n ∈ [0, 1], electrons occupy only the lowest (degenerate) energy band, with energy U

2 (n−m).
The total energy is then given by

3ULuc

4
(m2 − n2) +

U

2

∑
N

(n−m). (7.10)



106 Mean-field phase diagram of the Hubbard model in the Lieb lattice

The result of the summation is simply N(n−m) = 3nLuc(n−m). Minimizing this with respect
to m gives the expected result m = n. Performing an analogous calculation assuming n > 1
yields the relation m = 2− n, i.e., the other half of the plot in Fig. 7.4 for high U .

7.3.2 Magnetization for low U/t

The results for the magnetization amplitude m in the limit U → 0 can be explained using
first-order perturbation theory. Let us denote by H0 (the unperturbed Hamiltonian) the
tight-binding terms of Eq. 7.6, that is, Hamiltonian HMF with U = 0. Its eigenvalues are

±2t
√

cos2 kx
2 + cos2 ky

2 ,

±2t

√
cos2

(
kx
2 + qx

)
+ cos2

(
ky
2 + qy

)
,

(7.11)

and two coincident flat bands at ε = 0. Using the interaction terms of Hamiltonian 7.6 as a
perturbation yields, to first order, two key results. Firstly, the flat bands are split into two
non-degenerate nearly flat bands. One of them is shifted to positive energy by an amount
proportional to mU , while the other is shifted to negative energy, by the same amount, at
each point of the Brillouin zone. Secondly, the four non-flat bands are shifted by U

4 (nA + nB).
These two conclusions allow us to predict the behaviour of m near U = 0. For the following
calculations, one must keep in mind that the diagonal term in Eq. 7.7 is also to be accounted
for.

We begin by filling up the lower bands (which correspond to the bands with minus signs
in Eq. 7.11), distributing the particles among the sublattices according to Fig. 7.2b. For n
lower than 2/3, it is best to keep m = 0 because, up to first order, the energy of the two
lower-energy bands (associated with the Hamiltonian H0) does not depend on m, and having
finite m would only increase the total energy due to the diagonal term in Eq. 7.7. As the
total particle density reaches n ≈ 2/3 (getting closer to 2/3 as U approaches 0), we start to fill
the nearly flat bands at ε = 0. This is the point at which a finite m can be used to lower the
energy of one of the flat bands, thus lowering the total energy of the system. After the lower
flat band has been filled (note that finite U induces some modulation of the flat bands, but
the argument is valid for small perturbations), we are at n = 1 and start filling the upper flat
band. Now, it becomes advantageous to lower the value of m, so as to reduce the energy of
this band. Finally, at n ≈ 4/3, only the two higher-energy dispersive bands remain empty and
between n = 4/3 and n = 2, the value of m goes back to zero, for the same reason as when
filling the two lowest-energy bands.

Let us now compare these assertions with our numerical results in Fig. 7.4. At small U
and far from half-filling (outside the n interval [2/3; 4/3]), the ground state of the system is
paramagnetic (m = 0), coinciding with the square lattice result (see Fig. 7.5a). On the other
hand, inside the interval n ∈ [2/3; 4/3], the square lattice becomes paramagnetic (except at
exactly n = 1, where it is antiferromagnetic, and in a very small region around n = 1, where a
spiral phase arises; the width of this region goes to zero as U/t→∞) while our result suggests
that the Lieb lattice has a magnetic ordering other than paramagnetism. To know which
ordering it is, one needs to look at the results for qx and qy.



Results and discussion 107

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

U

n

Ferro

Param

(q,q)

(0,q)
(0,π)

(q,π)

2.01.81.61.41.2

Ferro

Param

(q,q)

(0,q)
(0,π)

(q,π)

AF

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

U

n

Ferro

Param
2.01.81.61.41.2

Ferro

Param(q1,q1)

(π,π)

(q1,q1)

(q1,q2)(q1,q2)

(q1,0)(q1,0)

(0,q2)(0,q2)

(b)

Figure 7.5: Mean-field magnetic phase diagrams of (a) the square lattice and (b) the Lieb
lattice. In the case of the square lattice, the value of q varies continuously in the range [0, π],
in each region labelled as such. In the case of the Lieb lattice, q1 ≈ π and q2 ≈ π/2, and the
transitions between regions labelled using q1 or q2 are discontinuous.
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7.3.3 Magnetic ordering

Fig. 7.5 shows both the mean-field magnetic phase diagram of the Lieb lattice (bottom
plot) and that of the square lattice (top plot), for comparison. The phase diagrams were
computed using the independent variables n and U , in the range (n,U) ∈ [0, 2]× [0, 20], and
were obtained by joining the results for the three order parameters: qx, qy and m. Near n = 0
and n = 2, the system is ferromagnetic for large U and paramagnetic for low U , like the square
lattice, albeit with a wider ferromagnetic region. At intermediate U and n near 0.5 or 1.5, the
system displays a (0, q2) spiral phase, characterized by q2 ≈ π/2.

The spiral phase characterized by ~q = (π, π) only occurs at exactly n = 1, for any U , as in
the square lattice. In the latter, this would be called antiferromagnetism. Nonetheless, in the
Lieb lattice, a (π, π) phase should be identified with ferrimagnetic ordering [2, 18] (see Fig.
7.3). Indeed, the spin-spin correlation in a (π, π) phase is ferromagnetic in each sublattice, but
antiferromagnetic between different sublattices. The total spin per unit cell is finite, because
m is finite at half-filling (see Fig. 7.4) and the number of sites per unit cell is odd.

When slightly doped away from half-filling (0.95 . n . 1.05), both qx and qy continuously
deviate from π and become a (q1, q1) phase with q1 ≈ π. This area becomes narrower in the
n direction as U grows larger. This phase can be interpreted as a (π − δ, π − δ) phase with
small δ, that is, a local (looking at only a few unit cells) ferrimagnet with a slow modulation
in the direction of spins along the lattice. At large U , when further doped, the system
undergoes a first-order phase transition from ~q ≈ (π, π) to ~q ≈ (q1, q2) with q2 ≈ π/2, reflecting
local antiferromagnetic correlations in the x direction, and sublattice-wise antiferromagnetism
in the y direction. In other words, each sublattice is ferromagnetic in the x direction and
antiferromagnetic in the y direction. If doped even further away from half-filling, two more
first-order phase transitions occur: first to (q1, 0) and finally to (0, 0) (ferromagnetism). At
regular intervals in n (namely 0.11, 0.22, 0.33 and their symmetric counterparts), we find
ferromagnetic dips into the paramagnetic region. These can most likely be explained using the
symmetry of the lattice and higher-order corrections.

7.4 Conclusion

In summary, we have computed and analysed the n-U mean-field magnetic phase diagram
of the Lieb lattice, and compared it to that of the square lattice. Far from half-filling, the two
phase diagrams display ferromagnetism [~q = (0, 0)] for high U and paramagnetism (m = 0) for
low U , while at exactly half-filling (one electron per lattice site) the ground state is a (π, π)
spiral phase for both lattices.

Although the diagrams coincide at n = 1, it is close to that line that their most remarkable
differences arise. In fact, at large U , as we move away from half-filling [(the (π, π) phase)], the
Lieb lattice undergoes three first-order phase transitions (π, π)→ (π, π/2)→ (π, 0)→ (0, 0),
unlike in the case of the square lattice, where the transition from antiferromagnetism to
ferromagnetism is continuous in ~q. On the other hand, near the tight-binding limit and within
the interval n ∈ [2/3, 4/3], the magnetization of the Lieb lattice is finite and the ground state is
characterised by spin spirals, contrasting with the paramagnetic ordering of the square lattice
in this region of the diagram.

Our numerical results are in agreement with a theorem by Lieb [2], which applies to
Hubbard models which comprise sublattices with different number of sites (in our case, we
have twice as many B/C sites as we have A sites). The theorem states that the ground state
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of such a system at half-filling is ferrimagnetic [18]. According to our results, the ground state
at half-filling is characterized by ~q = (π, π) and finite m, which translates into ferromagnetic
sublattices and finite total spin on each unit cell (see Fig. 7.3), which is qualitatively consistent
with the theorem. According to this theorem, however, the total magnetization per unit cell
in the Lieb lattice at half-filling should be 1 for any U . Our mean-field approach yields that
value as U grows large but deviates from 1 at low U (see Fig. 7.4). On the other hand, this
theorem is also applicable to a square lattice Hubbard model if one divides the lattice into two
sublattices. This has been done before [26] with a square lattice divided into two sublattices, A
and B, with the same number of sites each. In consonance with the aforementioned theorem by
Lieb, this square lattice has zero total spin per unit cell at half-filling, for any U , regardless of m
being zero or not. Therefore, it stands to reason to conjecture that the mean-field calculations
performed for the square lattice also return wrong values for m at low U , even though the
correct values cannot be deduced from Lieb’s theorem, as it only predicts the total spin per
unit cell.

The disparity between our mean-field results at half-filling and the prediction of Lieb’s
theorem may be due to two important restrictions that we imposed in order to simplify our
calculations. Firstly, we assumed that the occupation numbers for any U remain the same as
in the tight-binding limit (U = 0), and secondly, we assumed that the magnetization is the
same on every sublattice. If it turns out that these two assumptions are indeed the reason
for the discrepancy, that is, if the Lieb’s theorem can be satisfied in a mean-field approach
applied to this paper’s model, albeit with more relaxed constraints, such a result should be
taken into account in any other mean-field study of interacting fermions in bipartite lattices or
even more complex lattices whose unit cells contain more than two types of atoms. This is an
open question that we intend to address in the future.
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Chapter 8

Spin and charge density waves in the
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Abstract

We study the mean-field phase diagram of the two-dimensional (2D) Hubbard model in the
Lieb lattice allowing for spin and charge density waves. Previous studies of this diagram have
shown that the mean-field magnetization surprisingly deviates from the value predicted by
Lieb’s theorem [1] as the on-site repulsive Coulomb interaction (U) becomes smaller [2]. Here,
we show that in order for Lieb’s theorem to be satisfied, a more complex mean-field approach
should be followed in the case of bipartite lattices or other lattices whose unit cells contain
more than two types of atoms. In the case of the Lieb lattice, we show that, by allowing the
system to modulate the magnetization and charge density between sublattices, the difference
in the absolute values of the magnetization of the sublattices, mLieb, at half-filling, saturates
at the exact value 1/2 for any value of U , as predicted by Lieb. Additionally, Lieb’s relation,
mLieb = 1/2, is verified approximately for large U , in the n ∈ [2/3, 4/3] range. This range
includes not only the ferromagnetic region of the phase diagram of the Lieb lattice (see Ref. [2]),
but also the adjacent spiral regions. In fact, in this lattice, below or at half-filling, mLieb is
simply the filling of the quasi-flat bands in the mean-field energy dispersion both for large and
small U .
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8.1 Introduction

Despite intense research in the last few decades, the 2D Hubbard model in the square
lattice has remained an open theoretical problem in the field of the strong correlated systems
[3, 4]. Although it is known that at half-filling, the spin dynamics of the 2D Hubbard model
is described by the Heisenberg antiferromagnetic exchange term [5], there is no consensus
regarding the ground state magnetic phase diagram of this model. In fact, even at the
mean-field (MF) level, depending on the magnetic phases allowed, different authors obtain
different diagrams for the square lattice [6]. The traditional orderings are ferromagnetism,
antiferromagnetism and paramagnetism [7–11]. Later, spin spiral phases, a generalization of
the previous three, were introduced [12]. The MF phase diagram became even more complex
with the consideration of spatial phase separation [13–15].

The Hubbard model in decorated 2D lattices has also been extensively studied, motivated
by the search for metallic (flat-band) ferromagnetism. These decorated lattices fall into three
categories: the Lieb [1], Mielke [16] and Tasaki lattices [17]. All of these lattices share a
common feature: the presence of flat bands in the energy dispersion relation. In the particular
case of the Lieb’s lattices, the flat bands result from the topology of the lattice, while in the
case of Mielke and Tasaki lattices, the flat bands reflect longer-range transfer integrals in the
system. One of the most representative examples of decorated lattices is the Lieb lattice, which
can be obtained from the 2D square lattice, for example, by inserting an extra atom between
every two nearest-neighbours (see Fig. 8.1a). Each unit cell (shaded rectangle in Fig. 8.1a) has
3 atoms, one of each kind: A, B and C, whose relative occupation is depicted in Fig. 8.1b, in
the limit of no interactions. Fig. 8.1c shows the energy bands of the Lieb lattice in this limit.
Examples of materials whose structure resembles the Lieb lattice include La2−xSrxCuO4 and
YBa2Cu3O7, two well-known high-Tc superconductors with weakly coupled CuO2 planes [18,
19].

A theorem by Lieb [1] states that, in the particular case of bipartite lattices (i.e., lattices
with two sublattices, A and B, such that each site on sublattice A has its nearest neighbors
on sublattice B, and vice versa), the ground state is ferromagnetic at half-filling (n = 1, or
one electron per lattice site), as long as the number of atoms of each sublattice is different.
However, for example in the case of the Lieb lattice (a line-centered square lattice [20]), this
ground state should be identified with ferrimagnetism [21]. In fact, although each sublattice
is indeed ferromagnetic, there is antiferromagnetic ordering between every pair of nearest
neighbours [2] (see Fig. 8.1a).

The magnetic phase diagram of the Hubbard model in the Lieb lattice was recently
studied by us [2]. We showed that the mean-field magnetization per unit cell at half-filling,
mLieb = (|mB|+ |mC | − |mA|)/2, assuming the particle density (n) of the tight-binding limit
(see Fig. 8.1b) and the same magnetization (m) in the whole lattice, surprisingly deviates
from the value predicted by Lieb’s theorem [1] as the on-site repulsive Coulomb interaction
(U) becomes smaller, although these two assumptions are common in mean-field studies [2,
22–25]. Lieb’s theorem predicts that the magnetization per unit cell, mLieb, is 1/2 for any U
at half-filling. Fig. 8.2 shows both the mean-field phase diagram of the Hubbard model in the
Lieb lattice, and the value of mLieb, using the mean-field results from Ref. [2]. For the results
to agree with Lieb’s theorem, one should have mLieb = 1/2 for any U . Although in the strong
coupling limit (U � t), the mean-field result satisfies Lieb’s theorem, it is far from correct near
the tight-binding limit (U = 0).

In this manuscript, we study the magnetic phase diagram of the Lieb lattice allowing
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Figure 8.1: (a) The Lieb lattice is a line-centered square lattice, comprising three sublattices,
A, B, and C and having one atom of each type in a unit cell. The circles represent atomic
nuclei and the arrows represent spins. At half-filling, the Lieb lattice is ferromagnetic within
each sublattice but antiferromagnetic overall. Moreover, at half-filling, the total spin per unit
cell is 1/2, as predicted by Lieb [1]. (b) Plot of the tight-binding (U = 0) particle density of
each sublattice of the Lieb lattice, A, B or C, as a function of the total particle density. (c)
Plot of the tight-binding dispersion relation ε(kx, ky) of the Lieb lattice. The flat band is made
up entirely of B and C orbitals.
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Figure 8.2: (a) Mean-field magnetic phase diagram of the Hubbard model in the Lieb lattice,
obtained in Ref. [2] and (b) difference in the absolute values of the magnetization of the
sublattices, mLieb = (|mB| + |mC | − |mA|)/2, of the Lieb lattice at half-filling, using the
mean-field results from the same reference, where the on-site magnetization is assumed to be
the same on all sublattices.

for different average occupations (nA, nB, and nC) and magnetization amplitudes (mA, mB,
and mC) in each sublattice. We find that with these new considerations, Lieb’s relation,
mLieb = 1/2, is satisfied for any U at half-filling, and satisfied approximately for large U ,
in the n ∈ [2/3, 4/3] range, which includes not only the ferromagnetic region of the phase
diagram of the Lieb lattice in Fig. 8.2, but also the adjacent spiral regions (note that, away
from half-filling, mLieb is no longer the unit cell magnetization, but gives the difference in the
absolute values of the magnetization of the sublattices). An important point in this result is
that finite mLieb reflects the existence of quasi-flat bands in the mean-field energy dispersion.
These quasi-flat bands are present, not only for small U , but also for large U . In fact, below or
at half-filling, mLieb is approximately the filling of the flat bands both for large and small U .

Our mean-field approach follows that of Bach and Poelchau[26] (see also Refs. [13, 27]).
The formalism with further mathematical details can be found in Ref. [28].

The organization of this paper is as follows. We begin by presenting some key results for
the Hubbard model and mean-field. Secondly, we revisit the tight-binding limit of the Lieb
lattice. We then proceed to adding electronic interactions to the Hamiltonian and calculating
its mean-field counterpart. Finally, we show our results, discuss their meaningfulness, compare
them to analytical calculations and take conclusions. In Appendix A, we briefly outline the
derivation which leads to the results in section II, and in Appendix B, we explain in more
detail our method of calculating saddle points, which we used to obtain the results in section
V.
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8.2 Mean-field method for the Hubbard model

In this section, we adapt a key result presented as Theorem 4.14 in Ref. [28]. This derivation
was first done by Lieb and his colaborators [27] and simplified by Bach and Poelchau [26]; in
Appendix A we show an adaptation of the derivation in Ref. [26]. Alternative approaches can
be found in Refs. [25] and [29]. The result consists of the following abridged derivation.

We begin with the Hubbard Hamiltonian, given by

H = t
∑
〈x,y〉,σ

c†x,σcy,σ + U
∑
x

n̂x,↑n̂x,↓. (8.1)

Here, t is the hopping parameter between nearest neighbours and c†x,σ (cy,σ) is the creation
(annihilation) operator of an electron on site x (y) with spin σ =↑, ↓. The letters x and y
denote lattice sites, 〈x, y〉 stands for nearest neighbors and U is the on-site repulsive. The
total number of particles is N .

With the intent of finding the mean-field Helmholtz free energy, FHF, associated to this
Hamiltonian (note that we use F because we work with fixed number of particles; if we worked
with fixed chemical potential, we would use the grand canonical potential instead), we first
replace the interaction term, n̂x,↑n̂x,↓, with the Hartree and Fock terms,

n̂x,↑n̂x,↓ → n̂x,↑〈n̂x,↓〉+ 〈n̂x,↑〉n̂x,↓ − 〈n̂x,↑〉〈n̂x,↓〉

− c†x,↑cx,↓〈c
†
x,↓cx,↑〉 − 〈c

†
x,↑cx,↓〉c

†
x,↓cx,↑ + 〈c†x,↑cx,↓〉〈c

†
x↓cx,↑〉. (8.2)

Replacing the averages by the mean-field parameters ~m and n (see Appendix A for details), it
follows that the mean-field Hamiltonian, H(~m, n), corresponding to the Hamiltonian in Eq. 8.1
is

H(~m, n) = t
∑
〈x,y〉,σ

c†x,σcy,σ + U
∑
x

[
1

4

(
~m2
x − n2

x

)
+

1

2

(
nxn̂x − ~mx · ~̂sx

)]
, (8.3)

where ~̂sx and n̂x are the spin and electron density operators at the site x, and ~mx and nx are
the respective mean-field parameters.

The Helmholtz free energy F (~m, n) is calculated from H(~m, n) using the partition function,
Z(~m, n),

F (~m, n) = − 1

β
lnZ(~m, n) = − 1

β
ln
(
Tr
(
e−βH(~m,n)

))
= − 1

β
Tr
(

ln
(

1 + e−βh
))

+
U

4

∑
x

(
~m2
x − n2

x

)
,

(8.4)

where
hxσyσ′ = tδσσ′ +

U

2
(nxδσσ′ − ~mx · ~σσσ′) δxy, (8.5)

Here, ~σσσ′ is the vector of Pauli matrices.
The important result is that in the Hubbard model, the minimum of the Helmholtz free

energy, FHF, corresponds to a saddle point of its mean-field counterpart, F (~m, n),

FHF = min
~m

max
n

F (~m, n). (8.6)
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See Appendix A for a detailed discussion of the above relation.
Computing the partial derivatives of F (~m, n) with respect to ~m and n and setting them

equal to zero, we find the self-consistency relations nx = 〈n̂x〉 and ~mx = 〈~̂sx〉. In the case of
the Hubbard model, solving the Hartree-Fock equations self-consistently is actually equivalent
to finding a saddle point of the mean-field energy, F (~m, n). If one fixes the particle density, n
on all sites of the lattice, then the mean-field calculation is reduced to finding a minimum of
the mean-field energy with respect to the spin density, ~m. Note that these results are for finite
temperatures, but they are still valid in the limit T → 0 in the case of the Hubbard model, as
shown in Ref. [26].

References [13] and [28] go on to apply Eq. 8.6 to the computation of a mean-field magnetic
phase diagram of the Hubbard model in the square lattice, imposing two restrictions that
we do not adopt in this work. Namely, they restrict magnetic phases to ferromagnetic (F),
antiferromagnetic (AF), and paramagnetic (P), and additionally impose homogeneous particle
density throughout the square lattice, in which case the extremization of the free energy given
in Eq. 8.6 is reduced to a minimization problem. However, in the case of the Lieb lattice,
charge modulation occurs even in the tight-binding limit. For a mean-field calculation to
yield the correct result in the tight-binding limit, this charge modulation needs to be taken
into account. To the extent of our knowledge, this work is the first application of the result
in Eq. 8.6 which uses both n and ~m to extremize F (~m, n). To accomplish this, we use the
generalized HF theory, which turns the original minimization problem for the Helmholtz free
energy F into a saddle-point problem for the mean-field Helmholtz free energy F (~m, n) (see
Appendices).

8.3 The Lieb lattice in the tight-binding limit

The Lieb lattice is a square lattice, with a quarter of its atoms removed in a regular pattern.
Introducing a different creation operator in each sublattice, A†, B†, and C†, the tight-binding
term of the Hamiltonian of such a model, Ht, is given by [30]

t
Lx∑
x=1

Ly∑
y=1

[
(A†x,yBx,y +A†x,yCx,y + H.c.)

+(A†x,yBx,y−1 +A†x,yCx−1,y + H.c.)
]
.

(8.7)

Lx (Ly) is the number of unit cells along the x (y) direction. The hopping terms in the first
line are intra-unit cell and the remaining are inter-unit cell. Its eigenvalues originate three
energy bands, one of which is flat. The dispersion relation for periodic boundary conditions is

ε± = ±2t

√
cos2

kx
2

+ cos2
ky
2
, (8.8)

for the two non-flat energy bands, where kα = 2πnα/Lα with nα = 0, 1, · · · , Lα and α ∈ {x, y}.
The flat band is Lx × Ly-fold degenerate with zero energy. These three energy bands are
shown in Fig. 8.1c. The three branches intersect at the point (kx, ky) = (π, π). Expanding the
dispersion relation in Eq. 8.8 around this momentum, we find the Dirac cones ε2 = t2(k2

x + k2
y).

The flat band is built up from B- and C-type orbitals, while the lower and upper bands involve
all three lattices A, B, and C. This lack of uniformity in the distribution of the sublattices in
the energy bands justifies the difference in the occupation numbers of the sublattices presented
in Fig. 8.1b.
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8.4 Interactions and mean-field

In this section, we add interactions to the tight-binding Hamiltonian of the Lieb lattice, Ht,
and reduce the quartic dependance of the resulting Hamiltonian on the creation and destruction
operators to a quadratic one, using the mean-field approximation [12].

The key difference between our approach and previous approaches is that we allow sublattices
A, B, and C to have a different average occupation number each, while keeping the total
number of particles of the system, N , fixed [on each point of the (n,U) phase diagram]. We
begin by defining an average particle density on each sublattice,

nA = n+ δA
nB = n+ δB
nC = n+ δC ,

(8.9)

along with the number of particles on each sublattice. For sublattice A, this would beNA = nAL,
where L = LxLy is the number of unit cells (which in turn equals the number of sites A). To
keep the number of particles equal to N , we apply the restriction NA +NB +NC = N , which
is equivalent to

δA + δB + δC = 0. (8.10)

Setting δA = δB = δC = 0, we would obtain a lattice with its particles evenly distributed,
which is what happens in the usual 2D square lattice: all sites have the same particle
density. Aside from total particle number conservation (Eq. 8.10) and motivated by the
symmetry of the lattice, we impose is that δB = δC . This gives the important relation
δB = δC = −δA/2 ⇒ nB = 1

2(3n − nA), which leaves us with one unknown with respect to
which F (~m, n) needs to be maximized. We chose to maximize with respect to δA.

In our case, we work at T = 0, so that the mean-field free energy of the system can be
found by summing the mean-field energies of the lowest levels that the N particles can occupy
(this is the usual Fermi sea). On each point (n,U), the total energy of the system, EHF, is
obtained by adding the lowest N eigenvalues of the mean-field Hamiltonian HHF [2, 23, 24,
31],

HHF =

(
Ht(~k) +Hδ Hm

H†m Ht(~k + 2~q) +Hδ

)
, (8.11)

and then adding the diagonal terms

UL

4
(m2

A +m2
B +m2

C − (n+ δA)2 − (n+ δB)2 − (n+ δC)2). (8.12)

The smaller matrices that compose the Hamiltonian HHF are

Ht(~k) =

 0 t(1 + eiky) t(1 + eikx)
t(1 + e−iky) 0 0
t(1 + e−ikx) 0 0

 , (8.13)

Hδ =
U

2

 n+ δA 0 0
0 n+ δB 0
0 0 n+ δC

 , (8.14)
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and

Hm = −U
2

 mA 0 0
0 mBe

iqy 0
0 0 mCe

iqx

 . (8.15)

The matrix HHF above is written in the basis {A~k, B~k, C~k, A~k+2~q
, B~k+2~q

, C~k+2~q
}, where the

vector ~q = (qx, qy) defines the spin orientation in the system, as in the works by Dzierzawa [24]
and Singh [31]. In this paper, we assume that the spin spiral wavenumber ~q remains the same
as in Ref. [2], even though we allow the system to have spin and charge modulation. Ht(~k) is
the matrix that corresponds to the tight-binding term of the Hamiltonian. All other terms
have correspondence with the interaction terms of the Hamiltonian in Eq. 8.3. Namely,

U
4

∑
x
~m2
x → UL

4 (m2
A +m2

B +m2
C),

U
4

∑
x
n2
x → UL

4 ((n+ δA)2 + (n+ δB)2 + (n+ δC)2),

U
2

∑
x
nxn̂x → U

2 diag(n+ δA, n+ δB, n+ δC) = Hδ,

−U
2

∑
x
~m · ~̂sx → −U

2 diag(mA,mBe
iqy ,mCe

iqx) = Hm.

(8.16)

The extra imaginary coefficients involving components of ~q arise from coupling sites on unit
cells other than the cell labelled as (x, y). From this point forward, we consider t = 1, so that
U is given in units of t.

8.5 Results and discussion

Our results consist of the values of mA, mB and nA which, for each pair (n,U) ∈ [0, 2]×
[0, 20], correspond to a saddle point of EHF, the mean-field energy of the Lieb lattice (see
Appendix B for a more detailed explanation on how to find these saddle points). From these
three quantities, we can calculate mC = mB, and nB = nC = 1

2(3n− nA). We do not impose
different occupation or magnetization, we simply let the system choose the values which lead to a
saddle point of the mean-field energy. Before performing the calculations for the Lieb lattice, we
tested the algorithm for the Hubbard model in a square lattice and found that the occupations
of all four sublattices (A, B, C, and D) were the same, i. e., δA = δB = δC = δD = 0, while the
system chose to have two different magnetizations, mA = mD and mB = mC , reproducing our
results in Ref. [23].

The results for the Lieb lattice are in Fig. 8.3. In the following subsections, we discuss
each region of interest in more detail. In particular, we study the low U and high U regions
separately, and finally the near-half-filling region (n ≈ 1).

8.5.1 Results near the tight-binding limit (U → 0)

As expected, for low U , the average occupations of the sublattices, nA and nB = nC (Figs.
8.3a and 8.3b, respectively), approach those of the tight-binding limit, described in section 8.3
and plotted in Fig. 8.1b. As for the magnetization amplitudes, sublattice A is paramagnetic
(mA = 0) for any n and sublattice B displays a behaviour similar to that of m in Ref. [2] for
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Figure 8.3: Raw numerical results of our mean-field approach, namely for (a) nA, (b) nB, (c)
mA and (d) mB . The bold red lines highlight the U = 0 and U = 20 edges of the plots, and the
bold blue line at the center of each plot allows a clearer visualization of each plot at half-filling
(n = 1).

low U . In other words, mB is finite between n = 2/3 and n = 4/3 and zero otherwise. As
explained below, this difference is due to the fact that the flat band only involves B and C
orbitals. A first-order perturbation analysis follows, explaining this result.

Without the U perturbation, the system becomes a Lieb lattice without electron-electron
interactions and displays the electronic density in Fig. 8.1b. The energy dispersion relation
comprises three bands, as in Fig. 8.1c, which can be doubly occupied with no additional
energy cost (because of the absence of U). Keep in mind that the dispersive bands comprise
A-, B-, and C-type orbitals, while the flat band comprises only B- and C-type orbitals. The
introduction of the repulsive first-order perturbation modifies the total energy of the system by
shifting the energy bands and adding the diagonal terms of Eq. 8.12. The dispersive bands are
shifted by +UδA

8 and the flat band is shifted by −UδA
4 . Additionally, the flat band (which used

to have zero energy) splits into two bands, separated by an amount proportional to UmB.
At zero filling, the energy bands are in their original (U = 0) position, because all δ and

m are set to zero (having at least one finite m would lead to higher energy due to the term
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in Eq. 8.12). As we insert electrons in the system, they occupy the lowest states in the lower
dispersive band, with nA = 2nB = 2nC . Due to the perturbation, this slowly causes the
flat band to shift to lower energy and the dispersive bands to shift to higher energy. Note
that before the filling n ≈ 2/3, the system is able to have the lowest energy by displaying
paramagnetism (mA = mB = 0), because, to first order, the only dependance of the energy on
m is in the diagonal term of Eq. 8.12. This dependance is maintained for any n, in the case of
mA. At n ≈ 2/3, the lower dispersive band is almost full and, due to the flat bands having
shifted by the small amount −UδA

4 , electrons begin to occupy the flat bands, rather than the
dispersive bands. From here on, up to n = 1, the magnetization amplitude of sublattice B
(mB) increases, in order to separate the flat bands into two, and decrease the energy of the
lower flat band, which is the one being filled. Due to the high density of states in the flat
bands (which are related to B and C atoms only), newly added electrons choose to occupy
sublattices B and C, until both flat bands are filled, which occurs at n ≈ 4/3. Between n = 1
and n = 4/3, the magnetization mB decreases again, because the lower flat band is full and
electrons are now occupying the higher flat band, which has energy proportional to mB. For
filling n ∈ [1, 2], the behaviour is symmetrical to that of the n ∈ [0, 1] region.

8.5.2 Results in the strong coupling limit (U � t)

In this subsection, we discuss our results for high U , which we can assume to be nearly
identical to those at U → ∞, for two reasons. Firstly, through inspection of the plots in
Fig. 8.3, one readily realizes that the behaviour at U = 20 is approximately the same as, say,
U = 15, and therefore should not change with an increase in U . Moreover, if a certain value of
U is enough to impose ferromagnetism (and therefore, for n < 1, the energy bands are singly
occupied with spins in the same direction), higher values of U will have no additional effect.
Secondly, the analytical results for U →∞ which we present in the following paragraphs are
in agreement with the numerical results in Fig. 8.3 for U = 20.

One important first remark is that, as can be seen from Figs. 8.3a and 8.3b, the value of
nA or nB for U = 20 along the line n ∈ [0, 1], is the same as for U = 0 along the line n ∈ [0, 2],
but divided by two. This is because, at high U , the inequivalence of sublattices is imposed
solely by the tight-binding terms of the Hamiltonian (see Eq. 8.11). Therefore, the behaviour
of nA and nB is the same as in the tight-binding limit, albeit with all spins equally aligned. In
fact, at U = 0, the tight-binding bands become doubly occupied without any additional energy
cost, while for high U this cost is so high that all tight-binding states (thus, all sublattices)
become singly occupied before double occupancies are created.

To study the U →∞ limit from a perturbation theory point of view, we begin by setting
t = 0 in the Hamiltonian in Eq. 8.11 and taking the result as the unperturbed Hamiltonian.
Its eigenvalues are

U
2 (nA ±mA),

U
2 (nB ±mB),

U
2 (nC ±mC).

(8.17)

These are six flat bands, with L states each. Positive m and negative m give the same set of
eigenvalues, so let us assume positive m, with no loss of generality. At n < 1, electrons occupy
the three lowest energy bands: U

2 (nA −mA), U2 (nB −mB) and U
2 (nC −mC), so that the total
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mean-field energy of the system is given by

EU→∞ =
UL

4
(m2

A +m2
B +m2

C − n2
A − n2

B − n2
C)

+
U

2

∑
NA

(nA −mA) +
∑
NB

(nB −mB) +
∑
NC

(nC −mC)

 , (8.18)

where we have reintroduced the diagonal terms of Eq. 8.12. This expression can be simplified
using the symmetries mentioned above: (i) δA + δB + δC = 0, (ii) nB = nC and (iii) mB = mC .
Using these three relations and performing the summations up to some fixed ÑA = LñA, the
total energy for large U and n < 1 becomes

EU→∞ =
UL

4
(m2

A + 2m2
B −

3

2
n2
A −

9

2
n2 + 3nnA)

+
UL

2

[
ñA(nA −mA) + (3n− ñA)

(
1

2
(3n− nA)−mB

)]
. (8.19)

We find the ground state energy by taking ~∇EU→∞ = ~0, where the derivatives are taken with
respect to mA, mB and nA. The result is the self-consistency nA = ñA and the relations
mA = nA and mB = nB. These two relations hold true for U = 20, as can be realized by
comparing nA with mA, and nB with mB in Fig. 8.3. Going back to EU→∞ and replacing
nA = mA and nB = mB, we find that the three bands in Eq. 8.17 become degenerate with
zero energy. Note that setting nA = mA and nB = mB does not lead to a minimum of EU→∞,
but to a saddle point, as expected. Again, Hartree-Fock mean-field theory is not about finding
minima, but rather about finding self-consistency, as explained in section II. Finally, we remark
that having nA = mA and nB = mB is a consequence of a ferromagnetic ground state with
the bands being filled with only one spin direction.

The next step in the perturbation analysis is to introduce the hopping terms of the
Hamiltonian of Eq. 8.11, as the perturbation. This perturbation lifts the degeneracy of the
three zero-energy bands. Up to first order, one of them, comprising B- and C-type orbitals,
retains zero energy, while each of the other two bands are pushed to positive or negative energy,
proportionally to t, and comprise orbitals of the three types, A, B, and C. This new energy
band configuration mimics that of the tight-binding limit. This justifies the relative filling of
the sublattices at high U (Figs. 8.3a and 8.3b), and therefore their magnetization mA = nA
and mB = nB . We now have a lower band involving A, B, and C orbitals, an intermediate flat
band built up from B and C orbitals, and a higher energy band involving all three types of
atoms. It follows that, as we begin inserting electrons in the system, sublattice A fills at two
times the rate of the B/C sublattices. At n = 1/3, the lower band (with energy proportional
to −t) is full and nA = 1/4 = 2nB = 2× 1/8. Between n = 1/3 and n = 2/3, the flat band is
filled up using only sublattices B and C, therefore nA does not change. Finally, for n ∈ [2/3, 1],
sublattices A, B, and C become gradually half-filled as the band with energy proportional to
+t is filled. For filling n ∈ [1, 2], the behaviour is symmetrical to that of the n ∈ [0, 1] region.

8.5.3 Results near half-filling (n ≈ 1)

At half-filling, the ground state is a ~q = (π, π) phase. Lieb’s theorem [1] states that in
bipartite systems, such as our Lieb lattice, the ground state at half-filling is ferrimagnetic
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Figure 8.4: (a) Plot of the difference in the absolute values of the magnetization of the
sublattices, mLieb = 1

2(2mB −mA), as a function of n and U , using the data from the plots in
Figs. 8.3c and 8.3d. The bold red lines highlight the U = 0 and U = 20 edges of the plot, and
the bold blue line at the center allows for easier visualization of the behaviour of 1

2(2mB −mA)
at half-filling. According to a theorem by Lieb [1], the value of 1

2(2mB −mA) at half-filling
is 1/2, a value which the plot shows to have been achieved by our mean-field approach. (b)
Phase diagram illustrating the relative behavior of the magnetization of sublattices A and B,
as a function of n and U .

[21]. In our case, this ferrimagnetic ordering is ferromagnetic within each sublattice, and
antiferromagnetic between every two nearest-neighbour sites (see Fig. 8.1a). Although Lieb’s
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theorem does not provide information on the spin per site, it does state that in our system the
quantity 1

2(2mB −mA) should be equal to 1/2. This served as one of the motivations for this
work, as previous studies of the Lieb lattice using mean-field [2] failed to yield the value 1/2 at
low U . One of the reasons for this was that the magnetization amplitude was the same on all
sites, A, B, and C, and the relative occupation of the three sublattices in the tight-binding
limit was used for finite U .

One can plot the function 1
2(2mB −mA), using our results for mA and mB, in Figs. 8.3c

and 8.3d. Such a plot can be found in Fig. 8.4a. At exactly n = 1 (the bold blue line at
the center of the plot), our generalized Hartree-Fock approach succeeds in yielding the result
1
2(2mB − mA) = 1

2 , thus verifying Lieb’s theorem. This leads to the conclusion that our
mean-field study, allowing for modulation of m and n in the Lieb lattice, produces more
accurate results than imposing the same magnetization and electronic density in the whole
lattice. Moreover, this plot indicates that Lieb’s theorem is verified approximately in the wider
n ∈ [2/3, 4/3] range.

The phase diagram given by Fig. 8.4b was constructed using the relative behavior of the
magnetization of sublattices A and B. The dashed lines indicate the boundaries where the
behavior of the magnetization of each sublattice changes. The magnetization mLieb is exactly
1/2 at the central (red) dashed line (n = 1). For small U , within the interval 2/3 < n < 4/3,
only sublattice B has finite magnetization. For large U , in the n ∈ [2/3, 4/3] range, Lieb’s
theorem is verified approximately. Note that this range includes not only the ferromagnetic
region of the phase diagram of Fig. 8.2a, but surprisingly also the adjacent spiral regions.

One other theorem, by Lieb and collaborators, refers to the particle density in the sublattices
[32]. This theorem states that in the bipartite Hubbard model, there are no charge density
modulations at half-filling. In other words, it means that at half-filling all sublattices are
equally occupied and therefore half-filled, nA = nB = nC = 1. Plotting nA and nB as a
function of U at fixed n = 1, using our results for nA and nB (shown in Figs. 8.3a and 8.3b,
respectively), we checked that we obtained the lines nA = 1 and nB = 1. As discussed in
Section 8.5.2 of this paper, the behaviour of nA and nB at large U consists of two compacted
copies of the behaviour at zero U . This holds true for any bipartite system. Consequently, for
large U , not only are there not charge density modulations at half-filling, but also there are no
charge modulations at n = 1/2 and n = 3/2.

The contrasting behavior in Fig.8.4b for large and small U can be interpreted as a conse-
quence of the modifications of the mean-field energy dispersion as U increases. More precisely,
for small U , one has a single quasi-flat band (twice degenerate with energy ε ∼ 0), while for
large U , one has two non-degenerate one-particle quasi-flat bands well separated in energy
(ε ∼ 0 and ε ∼ U). Note that the flat bands for large U are present in the exact solution of
the Hubbard model in the subspace of eigenstates associated with saturated ferromagnetism.
As one can conclude from Fig. 8.4a, the difference in the absolute values of the magnetizations
of the sublattices grows only when a flat band is being filled and in fact, we can write

mLieb =
1

2
(2mB −mA) ≈ filling of flat bands, (8.20)

for filling n ≤ 1, both for large and small U . For n > 1, one has the reflected behavior of n ≤ 1.
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8.6 Conclusions

In summary, we have studied the Lieb lattice using a mean-field approach and allowing
for charge and spin density modulation. Although theory about the correspondence between
Hartree-Fock self-consistency and saddle points of the mean-field energy is relatively old (20
years old), to the extent of our knowledge, this is the first time it is in fact applied to a
system where charge modulation is known to occur. We have found that, in the limits of low
interaction (U → 0) and very high interaction (U →∞) results agree with what one would
expect. Namely, the relative occupation of sublattices A and B of the bipartite Lieb lattice
(where sublattice A comprises the atoms with four nearest neighbours, and B denotes the
remaining atoms) in the tight-binding limit coincides with the results in the literature (for
instance, in Ref. [20]). We have also found that the profile of the relative occupation of the
sublattices in both strong-coupling and tight-binding are analogous, and one can be inferred if
the other is known. The argument is relatively simple. On the one hand, in the U = 0 limit,
the energy dispersion is governed by the tight-binding terms of the Hamiltonian only and the
energy bands in the case of the Lieb lattice are as depicted in Fig. 8.1c. On the other hand, in
the limit U � t, the energy bands are separated by a very high energy gap (of the order of
U), the lower bands corresponding to no double occupancies and the higher bands to double
occupancies. The gradual filling of the system is done by singly filling all sites and only then
jumping to the higher bands and doubly occupying all sites. Each one of these two filling
regimes follows the relative occupation of sublattices that occurs in the tight-binding limit.

At half-filling, our numerical mean-field results verify two important exact results for the
Hubbard model. Firstly, one theorem [1] states that in bipartite lattices with more B-type atoms
than A-type atoms, the total spin per unit cell at half-filling is equal to mLieb = (|B| − |A|)/2,
where |x| denotes the number of x-type atoms a unit cell. In the case of our bipartite Lieb
lattice, we get (2− 1)/2 = 1/2. Our results are plotted in Fig. 8.4. At exactly half-filling we
obtained the expected value 1/2. Additionally, for large U , in the n ∈ [2/3, 4/3] range, we
found that mLieb ≈ 1/2. Interestingly, this range includes not only the ferromagnetic region of
the phase diagram of Fig. 8.2a, but also the adjacent spiral regions. Secondly, another theorem
[32] states that in the bipartite Hubbard model, there are no charge density modulations
at half-filling, that is, at half-filling all sublattices are equally occupied and half-filled. Our
numerically calculated relative occupations of sublattices A and B of a bipartite Lieb lattice,
shown in Figs. 8.3a and 8.3b, are in agreement with this theorem. In addition, we found that,
for large U , not only are there no charge density modulations at half-filling, but also there are
no charge modulations at n = 1/2 and n = 3/2.

Away from half-filling, we found that, for large and small U , the difference in the absolute
values of the sublattice magnetizations (mLieb) grows or decreases only when a flat band is
being filled and furthermore, for n ≤ 1, mLieb is given approximately by the filling of the
flat bands. Note that mLieb is the unit cell magnetization in the case of the ~q = (π, π), the
ferrimagnetic phase of the Lieb lattice found at half-filling.

We suggest that much of the above discussion is valid in the case of other bipartite lattices
with flat bands in the energy dispersion. In the case of non-bipartite lattices with more than
two types of atoms in the unit cell, the analysis is more complex because, for instance, an
antiferromagnet configuration between sublattices may not be commensurate with the unit
cell.

Bipartite lattices of various geometries can be realized by manipulating quantum dot arrays
[33] or cold atoms in optical lattices [34]. In an experimental setting, it is important to consider
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the role of disorder, and one may question how much of the behavior shown in the phase
diagram of Fig. 8.2a survives if disorder is introduced in the lattice. Indeed, the interplay of
disorder and electronic interactions in lattice models has been addressed in several works, using
a variety of theoretical and numerical approaches (such as dynamical mean field theory[35],
renormalization group approaches[36] and others[37]). However, consensus concerning the effect
of disorder in the Mott metal-insulator transition or the effect of interactions in the metal-
insulator transition (induced by disorder) has not been reached[37]. Nevertheless, disorder
in lattice models with Hubbard-like interactions is expected to oppose the appearance of the
magnetic long range spatial order. In the case of the Lieb lattice, local disorder (reflecting
the introduction of impurities or local defects in the lattice) lifts only partially the degeneracy
of the flat tight-binding band, since the localized states in their most compact form occupy
a single Lieb plaquette, and if no defect or impurity is present in that plaquette, a localized
state can be associated to that plaquette. Thus, the flat band survives in the weak disorder
limit, but loses states as disorder is increased. Note that such disorder is different from the
usual assumption of diagonal disorder (random local potentials) which has been addressed in
several works[35, 36, 38–40]. This latter type of disorder model (proposed by Anderson several
decades ago [38]) is more appropriate in the limit of stronger disorder, in our opinion. The
main justification for the existence of magnetic order even at weak coupling (in the doping
interval corresponding to the flat band) in the phase diagram of Hubbard model in a Lieb
lattice (see Fig. 8.2a) is the fact that any electronic interaction acts as a strong interaction if
degeneracy at the Fermi level is high. So, in the presence of weak disorder which lifts only
partially the flat band degeneracy, we still expect to observe magnetic order at weak coupling
but in a narrower doping interval. Note that it has been shown that in infinite dimensions,
there is always antiferromagnetic order at strong coupling, even with disorder[40].

Another relevant question is the effect of flat band broadening in the magnetic phase
diagram of the Hubbard model in the Lieb lattice. The removal of the flat band macroscopic
degeneracy can be achieved, for instance, by deforming the lattice, introducing different on-site
energies (periodically, not randomly) or introducing additional hopping terms (introducing
the third dimension, for example). In such a case, the flat band would be broadened by ∆ε.
The effect of such broadening depends on the ratio of the two energy scales, ∆ε and U . If
∆ε is large compared with U , we expect behavior similar to that of the Hubbard model in
a square lattice, that is, a paramagnetic phase is dominant except at half filling where the
antiferromagnetic phase is present (ferrimagnetic phase in the case of the Lieb lattice). If ∆ε is
small compared with U , magnetic phases should be expected. This implies that at the bottom
of our phase diagram (Fig. 8.2a), the magnetic phases would be replaced by a narrow strip of
paramagnetic phase (with height of the order of ∆ε) in the doping interval corresponding to
the flat band.

Concerning now the broadening of the flat band due to weak local disorder of the Anderson
type, one should take into account weak localization effects that are known to lead to a weak
logarithmic increase of resistance as the temperature is reduced, if interactions are absent [41].
However, note that for quasi-2D materials such logarithmic enhancement is absent (3D metals
are diffusive in the weak disorder limit[41]), but the magnetic order described in the phase
diagram of Fig. 8.2a should survive (the third dimension helps to stabilize magnetic order,
since quantum fluctuations are reduced) in the region of the phase space where the energy
scale U is dominant.
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8.7 Appendix A: Min-Max theorem for the Hubbard model

In this appendix, we discuss how the mean-field method should be applied to the Hubbard
model if particle density is not fixed and in particular, we justify Eq. 8.6. Our approach follows
the method presented in Ref. [26]. We start by presenting the usual mean-field approach and
then we explain, using the method presented in Ref. [26], why this approach is somewhat
misleading.

8.7.1 The usual mean-field method

We begin with the Hubbard Hamiltonian, given by

H = t
∑
〈x,y〉,σ

c†x,σcy,σ + U
∑
x

n̂x,↑n̂x,↓ (8.21)

We then replace the interaction term with the Hartree and Fock terms (see Eq. 8.2). These
terms are obtained by considering that each fermionic operator only deviates slightly from
its mean value, so that in a product of operators, we can neglect quadratic terms in these
deviations.

The operators c†x,↑cx,↑ and c
†
x,↑cx,↓ can be identified with the particle density operator nx

and the s+
x operator. For consistence with the notation in reference [28], the spin operators in

this appendix are
c†↑c↓ = s+ = 1

2(sx + isy)

c†↓c↑ = s− = 1
2(sx + isy)

c†↑c↑ − c
†
↓c↓ = sz.

(8.22)

The vector ~̂sx is the spin density operator on site x. The peculiarity of this definition of s+

and s− is the factor 1/2 which is often included in operators sx and sy instead. Replacing this
in the interaction term of the Hamiltonian in Eq. 8.21 gives

HHF = t
∑
〈x,y〉,σ

c†x,σcy,σ + U
∑
x

[
1

4

(
〈~̂sx〉2 − 〈n̂x〉2

)
+

1

2

(
〈n̂x〉n̂x − 〈~̂sx〉 · ~̂sx

)]
, (8.23)

We now replace the averages by the mean-field parameters ~mx and nx. These parameters
can be identified with the mean values of the magnetization and particle density, respectively,
upon extremization of the mean-field free energy, i.e., when the self-consistency equations are
satisfied. The Hartree-Fock Hamiltonian becomes

H(~m, n) =
∑

x,y,σ,σ′

hxσyσ′c
†
x,σcy,σ′ +

U

4

∑
x

(
~m2
x − n2

x

)
, (8.24)

where
hxσyσ′ = tδσσ′ +

U

2
(nxδσσ′ − ~mx · ~σσσ′) δxy. (8.25)

Here, ~σσσ′ is the vector of Pauli matrices. The function F (~m, n) is calculated from H(~m, n)
using the partition function,

F (~m, n) = − 1
β lnZ(~m, n) = − 1

β ln
(
Tr
(
e−βH(~m,n)

))
= − 1

βTr
(
ln
(
1 + e−βh

))
+ U

4

∑
x

(
~m2
x − n2

x

)
.

(8.26)
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At this stage, one usually finds the minimum free energy, FHF, by minimizing F (~m, n) with
respect to the mean-field parameters and this would lead to the usual self-consistency equations
[42]. Clearly, this works for fixed particle density, but in the previous expression we allow for
variable particle density and the respective quadratic term has a negative coefficient. If one
imposed a minimization with respect to the parameter nx, convergence would not be achieved
in a numerical approach, unless one limits the possible values of nx to a certain interval, in
which case the result of the numerical minimization would lie at the boundary of this interval.
This reflects the fact that one should not minimize with respect to the parameter nx, but
instead maximize, as we explain in the next subsection.

8.7.2 A different perspective for the mean-field method

In this subsection, we present the mean-field approach which should be applied when one
takes into account the possibility of non-uniform particle density in a lattice. For a rigorous
proof see, for instance, Refs. [26–28].

Our goal is to know the thermal equilibrium state of the system which minimizes the
free energy. These states are defined in terms of density matrices. Having an exact free
energy would require having an exact partition function, which in turn would require an exact
diagonalization of the Hubbard model. The Hartree-Fock method provides an approximation
to the exact equilibrium state, in terms of many-body states of non-interacting particles,
replacing the quartic terms of the Hamiltonian by one-particle potentials (which are adjusted
to provide the best possible approximation). The free energy obtained in the Hartree-Fock
method provides an upper bound to the exact free energy (a consequence of the variational
theorem). Since the particles are independent, the Hartree-Fock state can be written as a
one-particle density matrix, γij = 〈c†icj〉 [26]. The objective of the mean-field method is indeed
to find the minimum free energy in the set of free energies associated with the possible states
of N independent particles (or equivalently, associated with the possible one-particle density
matrices),

FHF = min
γ
F (γ) = min

γ
[E(γ)− 1

β
S(γ)]. (8.27)

where β is the einverse temperature. In the previous expression, no mean field parameters are
present and the free energy is determined for each γ using the exact Hamiltonian (the mean field
approximation is associated with the state, not with the Hamiltonian). However, calculating
minγ F (γ) going through all γ is not pratical, so one introduces mean-field parameters. In the
next paragraphs, we introduce these parameters, following a derivation in Ref. [26]. For now,
let us assume zero temperature.

In the case of the Hubbard Hamiltonian, the Hartree-Fock energy functional, E(γ), can be
written as (Ref. [26] Lemma 2)

E(γ) = Tr[Tγ] + U
∑
x

[〈n̂x〉2 − 〈~̂sx〉2], (8.28)

where x labels the lattice sites and T is the matrix whose elements txy are the transition
amplitudes of an electron to move from site x to site y or vice versa. The averages of the
electronic and spin densities at site x are

〈n̂x〉 = Tr
[
Î · γ

]
,

〈~̂sx〉 = Tr
[
(Î⊗ ~̂σ) · γ

]
,

(8.29)
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respectively.
The first step to introduce the variational parameters is to use the simple fact that

x2 ≥ 2xy − y2 for all x, y ∈ Rn, (8.30)

where equality holds if and only if x = y. This implies

x2 = max
y

(2xy − y2), (8.31)

and therefore, we can write

〈n̂x〉2 = max
nx

{
2〈n̂x〉nx − n2

x

}
(8.32)

and
−〈~̂sx〉2 = min

~mx

{
~m2
x − 2〈~̂sx〉 · ~mx

}
. (8.33)

where nx and ~mx are, at this point, an arbitrary constant and vector. Inserting this into
Eq. 8.28, the energy for a given state γ at zero temperature assumes the form

E(γ) = min
~m

max
n
{E(n, ~m, γ)} , (8.34)

where E(n, ~m, γ) is given by

E(n, ~m, γ) = Tr

[(
T − U

∑
all sites

[
nx · Î− ~mx · ~̂σ

])
γ

]
+ U

∑
all sites

(
~m2
x − n2

x

)
, (8.35)

The aim of the mean-field method is to obtain

min
γ
E(γ) = min

γ
min
~m

max
n
{E(n, ~m, γ)} . (8.36)

The crucial point of the mean-field method is the possibility of exchanging the order of the
extremization, which is implicitly done in standard mean-field. In fact, if particle density is
fixed, one has

min
γ
E(γ) = min

γ
min
~m
{E(~m, γ)} = min

~m
min
γ
{E(~m, γ)} , (8.37)

since the order of minimization is irrelevant, and one recovers the usual mean-field picture, in
which one has to minimize the energy with respect to the mean-field parameter ~m.

On the other hand, if the particle density nx is allowed to actually depend on x, in Ref. [26]
it was shown that indeed

min
γ

min
~m

max
n
{E(n, ~m, γ)} = min

~m
max
n

min
γ
{E(n, ~m, γ)} . (8.38)

Here, we present a simple physical interpretation for this result.
First, one should note that Eq. 8.35 for given ~m and n corresponds to the energy of

independent particles subjected to one-particle potentials which depend on the given ~m and n.
Looking at the left-hand side of Eq. 8.38, after one has minimized and maximized E(n, ~m, γ)
with respect to ~m and n respectively, the remaining minimization (with respect to γ) will lead,
at zero temperature, to a filled Fermi sea associated to these one-particle potentials. These
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one-particle potentials might, for instance, generate imbalance between the number of up and
down spins and lead to finite magnetization.

Second, Eqs. 8.32 and 8.33, associated with minimization and maximization with respect
to ~m and n, imply the self-consistency equations

〈n̂x〉 = nx,

〈~̂sx〉 = ~mx,
(8.39)

and therefore, computing the left-hand side of Eq. 8.38 can be interpreted as the following
instruction: "Among the set of one-particle density matrices that satisfy the self-consistency
equations, find the one with minimum energy". As we said above, this minimum energy
corresponds to a filled Fermi sea at zero temperature, so in the set of states corresponding
to filled Fermi seas, there is one that satisfies the self-consistency equations. This helps us
understand the right-hand side of Eq. 8.38 in the following way: "Among the set of all filled
Fermi seas, find (the energy of) the state which satisfies the self-consistency equations".

This argument can be generalized for finite temperature [26], taking into account the
entropy contribution. In this case, instead of filled Fermi seas, one has the one-particle density
matrices that minimize the free energy in the case of independent particles. If instead of fixed
number of particles, one imposes a fixed chemical potential (in which case the grand-canonical
potencial would replace the free energy), this one-particle density matrix would become the
Fermi-Dirac distribution function.

8.8 Appendix B: How to extremize EHF

In this appendix, we explain in more detail the algorithm we used for finding saddle points.
Our first approach to extremize EHF was perhaps the most intuitive non-brute force one.

It consisted in maximizing EHF with respect to δA, δB, and δC using our results for qx, qy,
mA and mB of the Hubbard model in a square lattice [23]. The lattice size was also kept
at 100 × 100. Due to the two restrictions imposed (fixed number of particles in the system
and equivalence of B and C sites), we are left with one parameter as maximizer of EHF. We
used δA. We note that the minimum of EHF with respect to δA was found to be negative
infinity (using the results in Ref. [23] for mA and mB as starting points). Fixing qx, qy, mA

and mB means that the magnetic phases are kept the same as our previous ones, only the
occupation numbers in the sublattices change. However, finding saddle points by starting from
a minimum with respect to one direction (the m direction) and then finding the maximum
with respect to an orthogonal direction (the n direction) turned out to diverge on most points
of the phase diagram. In fact, the suggestion that saddle points of a function can be found
by starting at a random point in the function, minimizing the function with respect to the
minimizer variables, and then using those new points to maximize the function with respect to
the maximizer variables, is false. As a matter of fact, this statement remains false even in a
more generalized case. One might think that by successively minimizing and maximizing the
function, one would eventually reach a saddle point. This is also not necessarily true. When
trying to use this method to extremize EHF, one finds that, in most points of the diagram, the
value of EHF resulting from the last maximization and the value of EHF resulting from the last
minimization differ by orders of magnitude comparable to those of EHF itself. Additionally,
the values of mA, mB, δA and δD which extremize EHF (or so one thought) do not converge
on each successive iteration, they alternate between several possible results.
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Figure 8.5: (a,b) Contour plots of the function function f(x, y) = sin(x) cos(y) in the range
x, y ∈ [−2π, 2π]. The maxima are at the center of the red circles, the minima are at the
center of the blue circles, and the saddle points are at the intersections of the green lines. The
straight bold lines overlapped with the contour plots are the path taken by an algorithm which
attempts to find a saddle point of f(x, y), by starting at point (−0.1, π − 1.5) (red asterisk),
and (a) successively minimizing in the x direction and maximizing in the y direction, and (b)
successively minimizing in the direction which makes an angle of π/10 with the x axis and
maximizing in a direction which makes an angle of π/10 with the y axis. (c) Contour plot of
the function f(x, y) = 2x3 + 6xy2−3y3−150x in the range (x, y) ∈ [−2, 6]× [−2, 5]. The small
(blue) dots represent minima of f(x, y) with respect to the x direction and the large (red) dot
represents the maximum of these minima, which is a good approximation of a saddle point.

In order to better understand why this method may fail to find saddle points, one can
consider a much simpler example, the function f(x, y) = sin(x) cos(y). This function is
periodic, oscillates between -1 and 1, and has infinitely many minima, maxima and saddle
points (Fig. 8.5). Let us now assume that we want to find the saddle points of f(x, y) using
the method of minimizing and maximizing several times alternating between the two, using x
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as minimizer and y as maximizer. If we start with a non-saddle point, the algorithm fails to
find a saddle point and instead, after 2 ou 3 steps, alternates between absolute minima and
maxima. Even if we start at a saddle point, successive iterations will move away from it and
back to jumping between maxima and minima (see Fig. 8.5a). No initial point will allow this
algorithm to converge to a saddle point, no matter how close it is to it. This is precisely what
happened with the case of EHF. Depending on the pair (n,U) in question, EHF may or not
behave in a way that allows saddle points to be found using this method.

One possible alternative approach to finding saddle points of f(x, y) is to attempt to
extremize the function in a different direction (or rotating the axes, which is another way to
see it). Instead of using x and y as variables, we can use two auxiliary variables which are
linear combinations of x and y but still orthogonal. For instance, we can alternate between
the following two:

• replace x→ x0 + r cos θ, and y → y0 + r sin θ, and minimize with respect to r;

• replace x→ x0 + r sin θ, and y → y0 − r cos θ, and maximize with respect to r.

Setting θ = 0 would reduce this to simply minimizing with respect to x and maximizing
with respect to y, as described above. Due to the symmetry of the simple function we used,
we should ideally use θ = π/4 for the fastest convergence. For angles close enough to π/4 we
can indeed find a good approximation for a saddle point. Nevertheless, if we deviate too much
from π/4, saddle points may not be found anymore. Using a "wrong" angle will make the
algorithm diverge even if we start very close to a saddle point, even if the starting point is a
saddle point itself. The algorithm will often be circling the saddle point (see Fig. 8.5b).

The conclusion is that alternating between maximization and minimization is too sensitive
to the initial point to be used to find saddle points. In the case of the simple highly-symmetric
function f(x, y), the saddle point is located at the center of the squares or rectangles that are
drawn when connecting the points given by the algorithm, but this was shown to not be the
case with EHF. Moreover, this ideal angle depends on the pair (n,U) which is being studied,
and some angles may not even produce closed polygons, but rather diverge to infinity in a
certain direction.

The working alternative is failproof in the sense that it will always converge to one saddle
point. It consists of calculating the value of f(x, y) for many points in an area which is known
to contain at least one saddle point, making a list of the maximum value of the function
for each x and then finding the minimum of all the maxima that were found. If f(x, y) is
continuous we will end up on a saddle point. In the case of EHF, we have not two variables but
three: mA, mB and δA. In order to achieve an acceptable precision, it would be reasonable
to calculate, say, 100 values of EHF in each direction (mA, mB, and δA), for a total of 106

values for each pair (n,U) in our phase diagram, which could take a long time and would
have a precision of about two decimal places. A more efficient alternative is to divide each
direction into fewer parts, say 7 or 8, finding an initial approximation to the saddle point, and
then repeating this a dozen times considering a smaller hypercube centered on the new point.
Assuming each direction is divided into 7 parts (i.e. we calculate 8 function values in each
direction) and the side of the hypercube is halved with each of 12 iterations, we now calculate
a total of 73× 12 ≈ 4000 values of EHF per pair (n,U). This was the procedure we used, which
has a precision of around 1/4096, or three decimal places. An illustration of this method is
shown in Fig. 8.5c, where we have used the function f(x, y) = 2x3 + 6xy2 − 3y3 − 150x and
successfully found the saddle point (3, 4).
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Chapter 9

Conclusions

This thesis presents the results of research performed from January 2012 to July 2016, at
the Physics Department of the University of Aveiro. The subject under consideration was
magnetism and spin dynamics of electronic systems with non-trivial geometries. The research
was done in collaboration with my supervisor, Prof. Ricardo Dias. The results concerning the
time evolution of localized states in the Lieb lattice were obtained with Ivo Maceira (M. Sc.
student).

The two-dimensional Hubbard model is the most extensively studied model in condensed
matter physics, both analytically and numerically. Nevertheless, exact results are rare and
apply only to certain limits, such as setting some parameters to zero or infinity, or considering
all sites of the system are singly occupied. Performing numerical calculations to model a certain
system inevitably forces its discretization, and imposes restrictions upon its size, giving rise
to unwanted finite-size effects. In addition, these approximate methods rely on assumptions,
and the mean-field method, used in this thesis, is no exception. In the case of the Hubbard
model, researchers have long been considering different assumptions, producing a variety of
results. One example of this is the qualitative and quantitative diversity of magnetic phase
diagrams of the two-dimensional Hubbard model which exists in the literature, every one of
them correct under its respective assumptions.

The aim of this thesis is to contribute for the understanding of the behavior of the two-
dimensional Hubbard model in what concerns its dependence on the geometry of the underlying
lattice, both in terms of boundary conditions and geometric frustration.

In Chapter 3, we extend the mean-field studies of the Hubbard model on square lattices.
Every mean-field study has its limitations, namely due to the restrictions in the allowed types
of magnetic ordering. The research which ultimately led to the results presented in this chapter
lifted one of these limitations: that the magnetization be the same throughout the whole lattice.
By lifting the aforementioned limitation, we were able to obtain ground-state energies which
are lower than the ones obtained otherwise. This shows that one should exercise caution when
using approximate methods to study the 2D Hubbard model. Furthermore, although it cannot
be seen just by inspecting the mean-field magnetic phase diagram, the energies corresponding
to the different magnetic phases are very close in the limit of high Hubbard U , which contrasts
with the opposite limit, where the different phases are well separated energetically. The results
were published as

J. D. Gouveia and R. G. Dias, Spiral ferrimagnetic phases in the two-dimensional
Hubbard model. Solid State Communications, Volume 185, May 2014, Pages 21-24
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In Chapter 4, we introduce our first case of a non-trivial geometry: the helicoidal lattice.
On the one hand, this lattice is similar to a 1D chain in what concerns electronic motion.
On the other hand, it resembles a 2D periodic square lattice (a torus) in terms of shape,
differing only on the boundary conditions. We show that a spin queue model is generated by
the transversal hopping term (t⊥) of the Hamiltonian in the U =∞ limit. While this model
appears in first order in t⊥, it provides insight on the spin dynamics of the U =∞ Hubbard
model on a square lattice. Further studies are required concerning, for example, the presence
of several holes in the lattice.

The remaining four chapters of this thesis are dedicated to flat-band systems, focusing on
the Lieb lattice. In Chapter 5, we present a set of rules for constructing localized eigenstates of
both tight-binding and Hubbard Hamiltonians in decorated lattices. While the simplest form
of localized eigenstates of these lattices was known, they were considered unrelated. By using
what we called the "origami rules", one can find the form of localized states of a certain type
of decorated lattice, starting from a localized state of another type of lattice. The rules were
obtained through simple tight-binding calculations and can be used to obtain localized states
of flat-band systems with other shapes or dimensionalities. The results were published as

R. G. Dias and J. D. Gouveia, Origami rules for the construction of localized
eigenstates of the Hubbard model in decorated lattices. Scientific Reports 5, Article
number: 16852 (2015)

DOI: 10.1038/srep16852

Chapter 6 is dedicated to the time evolution of localized states in Lieb lattices. Unexpectedly,
this subject was found to be related to classical precession systems and to the subtleties of
vector potentials. Indeed, we found that as one slowly introduces a magnetic field perpendicular
to the Lieb lattice, two zero-energy eigenstates leave the flat band and rejoin it periodically
in the magnetic flux. This causes an initially-localized eigenstate to abruptly decrease or
increase its localized character whenever those two eigenstates join the flat band. The loss or
gain of localized component is justified by the difference in the symmetries of the lattice and
the vector potential associated to the applied magnetic field. In fact, if one chooses a vector
potential with the same symmetry as the lattice, the sudden jumps cease to occur. While
one might argue that the physical characteristics of the magnetic field are independent of the
chosen gauge, it is also a fact that a time-dependent vector potential generates an electric
field. It so happens that a three-level toy model, with a zero-energy state and two states which
periodically cross the energy of the first state, correctly reproduces this behavior. Furthermore,
the solution of this toy model (a three-component time-dependent vector) can be mapped onto
a classical precession motion, with a uniformly-rotating precession vector. In the future, we
aim to extend this kind of study to other flat-band systems, like the AB2 chain. The results
have been submitted to Physical Review B and the submitted manuscript is available as

J. D. Gouveia, I. A. Maceira and R. G. Dias, Time evolution of localized states in
Lieb lattices. arXiv:1607.04326 [quant-ph] (2016)

In Chapter 7, we present the results of our mean-field analysis of the Hubbard model in
a Lieb lattice, in the form of a magnetic phase diagram. The diagram was obtained using
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standard mean-field theory, which assumes constant magnetization throughout the lattice. We
additionally assumed that the electron distribution among the sublattices was the same as
the tight-binding case (non-interacting electrons). Even with these simplifications, and even
though there are numerous similar studies for the square lattice in the literature, there was no
other diagram of the sort for the Lieb lattice. The phase diagram obtained for the Lieb lattice
is qualitatively similar to that of the square lattice far from half-filling (ferromagnetism for
high U , paramagnetism otherwise). At half-filling the Lieb lattice displays ferrimagnetism, i.e.
each sublattice is ferromagnetic, the full lattice is antiferromagnetic, and the magnetization
per unit cell is finite due to the different number of atoms of each sublattice. This contrasts
with the well-known antiferromagnetic ground state of the square lattice at half-filling. In fact,
this ferrimagnetism at half-filling is a consequence of Lieb’s theorem, and therefore serves as
qualitative confirmation of our mean-field results. An important point reflected by the phase
diagram is that, for fillings corresponding to the flat band, we are always in the strong-coupling
limit.

While Lieb’s theorem predicts a specific value of magnetization per unit cell at half-filling,
independent of U , our results only yield the correct value at high U . This discrepancy between
mean-field results and exact ones is more easily noticeable in the Lieb lattice than in the
square lattice: when assuming the same magnetization on all sites of a bipartite square lattice,
the total magnetization per unit cell will be zero (agreeing with Lieb’s theorem), even if the
on-site magnetization given by mean-field calculations is wrong. The results may be considered
somewhat disappointing in terms of correctness, but constituted the motivation for our using
the generalized Hartree-Fock theory, a study whose results are presented in Chapter 7.

In order to fix the quantitatively wrong results of our standard mean-field approach of the
Hubbard model in a Lieb lattice, we allowed the lattice to have a different magnetization on
each sublattice, and allowed the particle density to deviate from its non-interacting values.
For that, a more complex mean-field approach was followed. This approach, which takes into
account the correspondence between Hartree-Fock self-consistency and saddle points of the
mean-field energy, is relatively old (around 20 years old) but, as far as our search led us, ours
was the first instance of application of this method to a system which is known to display
charge density modulation. As it turned out, our new results agree with Lieb’s theorem and
the uniform density theorem, in both the U = 0 and U = ∞ limits. More specifically, at
half-filling, the magnetization of each unit cell saturated at the correct value of 1/2 and the
electrons were distributed uniformly throughout the two sublattices. Moreover, the mean-field
calculations produced the correct profile for the relative filling of the sublattices in both strong-
and non-interacting regimes, and for any value of lattice filling. Our results thus show that the
mean-field theory is more reliable than one might expect.

The results of these two chapters were published in the following two papers

J. D. Gouveia and R. G. Dias, Magnetic phase diagram of the Hubbard model in
the Lieb lattice. Journal of Magnetism and Magnetic Materials, Volume 382, 15
May 2015, Pages 312-317

DOI: 10.1016/j.jmmm.2015.02.005

J. D. Gouveia and R. G. Dias, Spin and charge density waves in the Lieb lattice.
Journal of Magnetism and Magnetic Materials, Volume 405, 1 May 2016, Pages
292-303

DOI: 10.1016/j.jmmm.2015.12.096
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Many questions remain unanswered or open to further exploration. For example, in the
case of the mean-field magnetic phase diagram of the square lattice, we expect that dividing
the lattice into more than two sublattices yields even lower ground-state energies. On another
topic, can analytic solutions of the quantum spin queue model for more than one inverted spin
or additional holes be obtained? Recalling the fact that our origami rules in the U →∞ limit
imply a ferromagnetic spin configuration in a small region around the localized hole state, what
consequences does that imply for the magnetic behavior of the material as a whole? Concerning
the time evolution of localized states, can our conclusions be adapted and/or generalized in
some way for other kinds of perturbations? These are questions we intend to address in the
future.
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