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palavras-chave Sistema nervoso central, lesão na espinal medula,  
neuroregeneração, modelos regenerativos, sobre- e sub-expressão 
de genes e funções, análise bioinformática  
 

resumo 
 

 

As lesões na medula espinal são uma desordem neurológica 
comum com um impacto significativo na sociedade moderna do 
ponto de visto físico, psicosocial e socioeconómico.  
Apesar de vários vertebrados serem capazes de regenerar lesões 
do sistema nervoso central, nomeadamente da medula espinal (ex. 
Rã, Peixe-zebra, Salamandra), está bem estabelecido que os seres 
humanos, e outros mamíferos adultos, não o conseguem fazer. 
Como tal, em consequência de lesões traumáticas no cérebro ou 
medula espinal, há incapacidade dos axónios crescerem 
extensivamente no tecido lesado. No entanto, um estudo importante 
realizado no virar do século por Ramón y Cajal, comprovou que a 
incapacidade das fibras nervosas regenerarem “deriva de condições 
externas, da presença ou ausência de fatores auxiliares que são 
indispensáveis para o processo regenerativo”, trazendo assim 
esperança que a neuroregeneração possa ser alcançada por 
modulação de condições celulares e moleculares. 
Esta dissertação tem como objetivo adquirir uma melhor e mais 
extensa compreensão dos genes e processos fisiológicos que são 
cruciais durante a regeneração da medula espinal, usando estudos 
de expressão genómica de modelos regenerativos, tais como 
Xenopus laevis, Xenopus tropicalis e Danio rerio, estabelecendo-se 
simultaneamente um paralelismo com os respetivos ortólogos 
humanos com o objetivo de encontrar genes candidatos no genoma 
humano passíveis de serem modulados com vista a alterar o 
estatuto não-regenerativo dos mamíferos adultos. 
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abstract 
 

Spinal cord injuries are a common neurologic disorder that have 
devastating impacts on modern society, be it from physical, 
psychosocial, or socioeconomic point of view.  
Although many small vertebrates are capable of regenerating 
lesions to the central nervous system, namely the spinal cord, 
(e.g. frog, zebrafish, salamander) it is well established that 
humans and other adult mammals cannot. As so, failure of 
axons to grow extensively through damaged central nervous 
system (CNS) tissues is a common consequence of injury to the 
brain and spinal cord on adult mammals. However, an important 
study made at the turn of the century by Ramón y Cajal, proved 
that the failure of central fibers to regrow “derives from external 
conditions, the presence or absence of auxiliary factors that are 
indispensable to the regenerative process”, thus bringing hope 
that neuroregeneration can be achieved by modulating cellular 
and molecular conditions.  
Through this dissertation, we aim to get a better understanding 
of the involvement of the genes and physiological processes 
that are crucial during regeneration of the spinal cord, using 
genome wide expression studies of regenerative models such 
as Xenopus laevis, Xenopus tropicalis, and Danio rerio, while 
drawing parallel to its human orthologues. Being our goal to find 
perfect gene candidates in the human genome that are 
predictably capable of being modulated so we can alter the non-
regenerative status of the adult mammals. 
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Chapter 1 – Introduction 

 

Spinal cord injuries (SCI) are amongst the most serious and debilitating health 

conditions, with devastating impact on a patient’s life style since it causes marked 

neuropathology and limited functional recovery. More often than not, SCI results in a 

physical disability of the patient, with tremendous impact on one’s life quality and the 

life quality of the family. Spinal cord regeneration is very inefficient in humans, causing 

paraplegia and quadriplegia. Indeed, humans, and adult mammals in general, have a 

limited capacity to regenerate, and thus severe injuries result in unsightly scarring, loss 

of function and disfigurement. However, species across the animal kingdom show a 

variable range of regenerating ability, with some fish and amphibians being capable of 

regenerating complete appendages after amputation during the entire lifespan or just 

during some stages of their lives. For example, Xenopus laevis and Xenopus tropicalis 

have a regenerative and non-regenerative stage. As tadpoles, these species are fully 

capable of functional recovery after spinal cord injury, while its juvenile form (froglet) 

loses this capacity during metamorphosis3. This remarkable ability shown by 

regenerative animals is of great interest. Studying model organisms that can 

regenerate the spinal cord in response to injury could be useful for understanding the 

cellular and molecular mechanisms that explain why this process fails in humans. As LV 

Polezhaev stated: “In order to study why regeneration of organs does not occur in 

those animals which do not possess regenerative capacity, it is necessary to know how 

the process of regeneration occurs in animals which do possess regenerative 

capacity”4. According to his ideas, in order to initiate regeneration of organs which 

under normal conditions do not regenerate, it is necessary to manipulate basic 

mechanisms directly, changing physiological events and the metabolism of the 

organism and of the organ4.  

Regeneration of the central nervous system has always been a subject of intense 

investigation, but despite the amount of scientific research and breakthroughs that we 

were able to achieve, it still feels like something out of reach. This is mainly due to 

underlying absence of conditions for this process to occur: on one hand, the lack of 

substances able to sustain and invigorate the slow and scanty growth of the sprouts, 
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and on the other hand, the scarcity in the paths or systems of interrupted nerve fibers 

of catalytic agents capable of attracting and directing the axonic current to its 

destination2. 

Meaningful rehabilitation after SCI encompasses many aspects of acute and chronic 

patient care, and the underlying basic science of wound healing in the central nervous 

systems involves fundamental concepts of cellular structure and function, and a 

functional communication between glial cells and neuronal processes, as well as 

complex molecular interactions between cells and their extracellular environments. As 

such, we can infer that should experimental biology accomplish methods for inducing 

regeneration, it is going to be as a result of a combinatorial approach and by means of 

multifactorial components. Therefore, it is essential to find and study the plethora of 

elements required for successful regeneration, and devise strategies with which to 

move more rapidly toward a clinically efficacious therapy.  

 

1.1 – The Spinal Cord 

The nervous system is broadly subdivided into Peripheral Nervous System (PNS) and 

Central Nervous System (CNS). The CNS consists of the brain and the spinal cord. The 

PNS is composed by cranial nerves and spinal nerves together with their ramifications 

and cell bodies that make up the peripheral ganglia5.  

The spinal cord or medulla spinalis, forms the elongated, nearly cylindrical, part of the 

central nervous system which is contained within the vertebral column in the upper 

two-thirds of the vertebral canal. Its average length in the male is about 45 cm and in 

the female 42 to 43 cm, while its average weight amounts to 30 grams. It extends from 

the level of the upper border of the atlas to that of the lower border of the first or 

second lumbar vertebrae6. The spinal cord major role is in controlling the functions of 

and receiving the input from the trunk and limbs via afferent and efferent connections 

that are organized in 31 pairs (12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal) of 

segmentally arranged spinal nerves that attach to the cord as dorsal and ventral 

rootlets5. 

The spinal nerves are named and numbered according to the vertebrae from which 

they emerge, and so, cervical nerves 1-7 emerge from their respective 1-7 vertebrae. 
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Since they are only seven vertebrae, the eighth cervical nerve emerges between the 

seventh cervical (C7) and the first thoracic vertebrae (T1) (Figure 1). 

  

 

 

Figure 1 – Representation of a few spinal cord segments with its associated nerve fibers. (A) Ventral 

perspective; (B) Transected cut (Adapted from 8). 

 

Each spinal nerve possesses two roots, an anterior and a posterior, which are attached 

to the surface of the medulla spinalis opposite the corresponding column of gray 

substance. The posterior or dorsal roots carry primary afferent (sensory) nerve fibers 

from cell bodies located in dorsal root ganglia, while the anterior or ventral roots carry 

efferent (motor) fibers from cell bodies located in the spinal grey matter. The sensory 

nerve roots enter the spinal cord through the dorsal roots, and the motor roots 

emerge from the cord via ventral roots, at each level5. The cell bodies from the 

afferent nerve fibers, belonging to the peripheral nervous system, are located in the 

dorsal root ganglion where a single axon bifurcates (Figure 1) giving rise to one branch 
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that connects with the periphery (e.g. the skin of a foot) and another one that 

connects with the dorsal horn of the spinal cord7. 

Internally, the spinal cord differentiates into a central core of gray matter surrounded 

by white matter. The gray matter consists of numerous nerve cells and nerve fibers 

held together by neuroglia. Throughout the most part, the gray matter presents the 

appearance of a sponge-like network, but around the central canal and on the apices 

of the posterior columns it mostly resembles a gelatinous shape.   

The grey matter is shaped into a characteristic butterfly form (Figure 2), and consists of 

two symmetrical portions, one on each half of the medulla spinalis6. 

The white matter consists of medullated nerve fibers imbedded in a sponge-like 

network of neuroglia, arranged in three funiculi: anterior, lateral and posterior. The 

anterior funiculus lies between the anterior median fissure and the most lateral of the 

anterior nerve roots; the lateral funiculus between these nerve roots and the postero-

lateral sulcus; and the posterior funiculus between the postero-lateral and the 

posterior median sulci. 

 

 

Figure 2 –Transverse \of the medulla spinalis in the mid-thoracic region (Taken from 6) . 
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1.2 – The Spinal Cord Injury through History  

The first descriptions of spinal cord injury originate in ancient Egypt (Third Dynasty, 

3000-2500 years BC). During that period, a great amount of human resources was 

dedicated to construction work, namely the creation of pyramids, which lead to a high 

incidence of trauma, enabling to describe a great variety of injuries in the human 

body9.  In 1862, the Egyptologist Edwin Smith purchased documents from that period, 

probably written by Imhotep, an Egyptian official, and architect responsible for the 

step pyramid of Sakkara and a practicing surgeon, which contained among 48 cases of 

trauma, 6 reporting to spine and/or SCI. One case (“Treatment instructions concerning 

a crushed vertebra of the back of his neck”) reports a complete SCI, caused by a 

fracture in the cervical region, presenting paralysis of both arms and legs (tetraplegia), 

loss of sensation below the level of injury, and loss of urinary bladder control, 

concluding that it was “an ailment not to be treated”9,10. Another interesting fictional 

reference to traumatic SCI dates the time of the Trojan War (1100 BC) when according 

to the epic tale of the Odyssey, Elpenor fell from the palace roof and broke his neck, 

leaving his soul to the nether world ruler, Hades9. 

Centuries later (460 - 377 BC), Hippocrates analyzed the correlation between vertebral 

and spinal cord injuries. He observed that if the spinal cord damage had only occurred 

on one side, a subsequent paralysis would be located on the same side as the damage. 

He also described clinical conditions of chronic paralysis, such as constipation, bladder 

problems, pressure sores, and venous stasis of the lower limbs, because of a traumatic 

spinal cord injury. In order to reduce spinal deformities, Hippocrates created traction 

devices (Figure 3), where spinal manipulations were carried out. These devices 

credited him for creating methods for reducing spinal deformities. These extension 

techniques with the application of traction are still widely used today in the treatment 

of spinal disorders. Nonetheless, he believed that there was no real treatment for 

individuals with fractures combined with paralysis and that they were destined to 

die11. Due to this and other efforts in the field of medicine, Hippocrates was 

considered the “father of medicine” and was able to separate medicine from 

mythology, as it is summarized in the book Corpus Hippocraticum, which he wrote9. 
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Figure 3 - Hippocratic Ladder (A) and Board (B) devices. To reduce spinal curvatures, the patient was 

hung upside down while tied on a ladder (A); the weight of the trunk and limbs would act as the 

pulling force, which would straighten the spine. In the Hippocratic Board (B) the patient was placed in 

a prone position and stretched from the shoulder area upward, and from the hips downwards; a 

wooden board would be placed crosswise over the injured area and its compression would lead to 

deformity reduction. Taken from 9,11 

  

 

Some of the greatest advances in the understanding of the spinal cord dysfunction 

were conducted by another eminent greek physician, Galen of Pergamon (130-200 AD) 

being considered the father of experimental physiology. Galen, who was initially a 

physician of gladiators, had a unique opportunity to study traumatic and often traveled 

to Alexandria to study human anatomy in particular affections to the spinal cord12. At 

that time, he not only described the anatomy of the brain, spinal column, and spinal 

cord, he proved experimentally in his work “On Anatomical Procedures” and “On 

affected areas” that injuries to the spinal cord led both to paralysis and loss of 

sensation below the lesion. More so, he described four types of spinal deformities, 

namely kyphosis, lordosis, scoliosis, and succussion12,13. Additionally, he noted that a 

longitudinal incision did not result in any symptoms but a transverse incision at the 

level of the cervical vertebras would result in paralysis and loss of sensory functions 

below the level of injury11.  
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After nearly a thousand years of medical stagnation, it was only in 1543, that the 

Flemish anatomist and physician Andreas Vesalius (1514-1564) published one of the 

most significant medical books ever written, composed of seven volumes, “De Humani 

Corporis Fabrica”, showing for the first time drawings of the human nervous system 

correctly illustrated14. Because until that time, the anatomical conception of the 

human body, as presented by Galen and Hippocrates, was mainly based on studies 

conducted on cadavers in battlefields, from observation of athletes exercising, and 

from dissections of animals, once dissection of human bodies was prohibited12. For 

these reasons, the work of Vesalius constitutes the first textbook who presents the 

human body in a detailed and correct fashion9.  

In 1646, the German surgeon Fabricius Hildanus described a new method to reduce 

cervical region dislocations: he inserted a clamp through the spinous processes in the 

neck, after which traction was applied. Almost a century later, in 1762, during the 

battle of Amenenburg, the surgeon Andre Louis successfully removed a bullet lodged 

in the lumbar spine of a soldier, and he not only survived but also regained some 

functional movement in the lower extremities11. 

During the 19th century, debate raged about the efficacy of spinal cord injury and many 

physicians considered spinal cord operations to be something fruitful: “Laying a patient 

upon his belly and by incisions laying bare bones and exposing the spinal marrow itself, 

exceeds all beliefs”. This nihilism toward this type of surgical intervention was further 

increased when Henry Cline in 1814 attempted to perform a decompressive 

laminectomy in a patient who suffered a thoracic fracture dislocation and complete 

paralysis, and the patient not only did not experience any kind of clinical improvement 

but also died nine days later9,11. Not all experiments with surgery during this period, 

however, were so negative, and English surgeons like Astley Cooper and Benjamin Bell 

still favored this application, despite such poor outcomes accomplished by their 

colleagues. It was during this period, in 1824, that Bell also included descriptions of the 

types of neurological derangements that resulted from trauma, such as the distinction 

between flaccid and spastic paralysis and the concept of spinal shock11. 

During World War I (July 28th 1914-November 11th 1918), mortality following SCI was 

as high as 80% within the first two weeks following injury. According to American data 

collected for a brief period of 4 weeks’ time, there were 147,651 admissions to the 



12 

 

hospital, whereas 598 of these patients sustained wounds to the spine. During 

wartime, medical advertisements were constant reminders of the casualties and 

disabling wounds (Figure 4)15. 

 

 

Figure 4 – Advertising devices for invalid transportation during the World War I. Taken from 15 

 

From there on, the importance of addressing care for spinal cord injury victims was 

perceived, as the education in this field became paramount in the medical schools’ 

programs. Government funding became a financial base for physical rehabilitation, 

occupational therapy, and vocational re-education. During the 1920s, neurosurgery 

was also recognized by professional societies as a specialty in the US and the UK15. 

 Thus, from the middle of the 20th century, there were great advances in the 

technology used in basic science research applied to the study of SCI. Also, during 

these decades, several associations aroused, which contributed to the diagnosis and 

comprehensive management of spinal cord injuries through annual meetings, teaching 

sessions, workshops, and research grants, and with the opening of rehabilitation 

centers. These centers opened the way for better care of spinal cord injured patients, 

not only increasing the patient’s survival but also leading them to readapt to the 

society11. 

Among the most recent advances on experiments in nerve injuries, the work of Ramon 

y Cajal in the mid-1920s is to be mentioned2. In his first chapter, he describes in detail 

the phases of Wallerian degeneration of peripheral nerves, mentioning the 

particularity that forming fibers avoid capillaries and fat cells, passing around them. 

Besides the fibers under degeneration, he also observed some emitting newly formed 
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collaterals, and others ending in growth cones that could penetrate the region of the 

scar: In contrast to the clubs and masses lacking a generative capacity, there are others 

which are active, capable of sprouting, and to which we have given the name of bud or 

club of growth because their analogy to the cone of growth of embryonic axons2,7,8 

(Figure 5).  

 
 

 

 

 

Figure 5 – Portion of the cicatricial nerve segment 

displaying fibers that are ramified around other 

cells. Taken from 7 

 

 

 

Nowadays, the care that is given to spinal cord injury patients is much more efficient, 

although it requires knowledge within a variety of medical fields and also an interest in 

development and research. Neuroprotection and regeneration are currently the main 

focus of the latter. Although healing the injured spinal cord is still out of reach, it is 

now possible to offer several therapeutic measures to improve the health and quality 

of life of spinal cord injured victims, with the aspiration of providing them a long and 

fulfilling life. 

 

 

1.3 – Epidemiology of Spinal Cord Injury  

Spinal cord injury remains one of the most important causes of morbidity and 

mortality in modern society. More than half of all the injuries to the central nervous 

system, namely in the spinal cord, result from trauma. Vehicle crashes are currently 

the leading cause of injury with an incidence around 38%, followed by falls, that 
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represent 30.5%, 13.5% from violence, and 9% as a result of sports injuries16. Some 

diseases can also cause severe injury to the spinal cord such as multiple sclerosis, 

diabetes, spina bifida and others.  

According to the National Spinal Cord Injury Statistical Center’s (NSCISC) 2016 

database, an estimated 17,000 people suffer traumatic SCI in the United States each 

year. In Europe, the estimated incidence oscillated from 3.3 to 130.6 individuals with 

traumatic SCI per million inhabitants a year. This echoes the experience of several 

countries including Bulgaria, Denmark, Finland, France, Germany, Iceland, Ireland, 

Italy, Norway, Portugal, Romania, Spain, The Netherlands, Estonia, and Turkey (Table 1 

– Annexes). Data from 2005 and forward indicates that the common age for injury is 

40.7 years and the majority (80.7%) tend to be represented by males, with a three-fold 

to four-fold increased incidence when compared with the female gender16,17.  

The number of injuries occurring around the world is alarming (Figure 6). In 2001 the 

European Council predicted that each year, 85,000 people would be confined to a 

wheel chair for the rest of their lives, after surviving a traumatic spinal cord injury. 

According to the same institute (NSCISC), since 2010 the neurologic category most 

reported to the database is incomplete tetraplegia (40.6%), followed by incomplete 

paraplegia (18%) and complete tetraplegia (11.6%). Less than 1% of persons 

experience complete neurologic recovery by hospital discharge16.  

Developing countries have the highest 1-year mortality rates and in some of them, the 

occurrence of a spinal cord injury is likely to be fatal in the first year following injury. 

Until recently, the leading cause of death was renal failure; meanwhile, the advances 

in urologic management have reduced this number of cases. Presently, pneumonia, 

pulmonary embolism, and septicemia are the main causes of the reduced life 

expectancy for this population16. Nonetheless, life expectancy for patients with spinal 

cord injuries has been improving over the last 40 years in developed countries when 

compared to under developed ones18,19. 
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Figure 6 - Global mapping of SCI from traumatic causes by WHO regions 1959–2008. Taken from 18 

 

1.4 – SCI consequences and classification 

Human spinal cord injury often results from a traumatic insult to the spinal column or 

by contusion injuries. After the trauma, there is a subsequent displacement of the 

spinal cord due to the pressure from the broken bone, disk fragments, hematoma and 

swelling inside the closed vertebral canal. The consequent injury has a series of serious 

effects on the spinal cord segment with the breakdown of connections and networks 

(Figure 7) and it may compromise either completely or incompletely its major 

functions, namely the motor, sensory, autonomic and reflex functions20.  

The functional consequences of such an injury are associated with autonomic paralysis 

including dysfunctional internal organs, limb muscle atrophy, sensory impairment, and 

chronic pain17. After a spinal cord injury, many cells die immediately, as well as 

progressively, and disconnected myelinated axon segments are phagocytosed by 

macrophages. Cyst formation (Figure 7) usually occurs in this location, and axons can 

sprout into trabeculae that are formed from ependymal cells. Many ascending and 

descending axons are interrupted and fail to regenerate over long distances1. 
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Figure 7 – Representation of a sagittal view through a region of cervical spinal cord injury (SCI), showing 

a combination of features from different types of injury. From:1. 

 

Many complications may arise from SCI including loss of bladder and bowel control, 

increased risk for urinary tract infections, sexual dysfunction, skin breakdown and 

pressure sores, spasticity, inability or reduced ability to regulate heart rate, blood 

pressure and body temperature, autonomic dysreflexia, muscle atrophy, blood clots, 

osteoporosis and cardiovascular disease can result from injury and from the 

consequent reduced physical activity21. Also, clinical reports show that spinal cord 

injured patients present a lifelong inability to maintain a neutral energy balance, 

meaning that they tend towards nutritional deficits that result in an underweight body 

mass. These patients usually represent a higher risk for developing an infection and the 

due to the insufficient subcutaneous fat mass they are at increased risk of presenting 

pressure ulcers21. 
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1.4.1 - Spinal Cord Injury Classification 

Intense inflammatory responses follow spinal cord injuries. It initially undergoes a 

primary mechanism of injury, followed by a substantial secondary damage as a result 

of an inflammatory reaction that further promotes more tissue damage, but that is 

also involved in its repair22. Overall, the first largely determines the patient’s hospital 

admission neurological stage/grade, therefore representing a strong prognostic 

indicator20, and the latter may contribute to the exacerbation of the damage caused 

and limit the healing processes, which means this secondary mechanism of injury may 

lead to overall morbidity and mortality.  

The patients are grouped into severity categories (neurologic grades) according to the 

extent of their primary injury and classified according to the American Spinal Injury 

Association (ASIA) impairment scale (AIS)17. The extent of the neurological injury is 

stratified into “complete” (ASIA grade A), when no motor functions are preserved from 

the sacral nerves (S4-5), and “incomplete” (ASIA grade B-D), with ASIA grade E 

representing a normal neurological status. ASIA grade B reflects an incomplete motor 

impairment whilst the sensory functions remain intact. In ASIA grade C and D the 

motor function is preserved below the neurological level, and more than half of key 

muscle functions below the neurological level of injury (Figure 8)17.  

There are four main characteristic mechanisms of primary injury: a) impact plus 

persistent compression, b) impact alone with transient compression, c) distraction and 

d) laceration/transection. The first one most commonly involves impact plus persistent 

compression, which is frequently seen in burst fractures with retropulsed bone 

fragments compressing the cord, fracture-dislocations, and acute disc ruptures. The 

second one involves solely an impact with only transient compressions, as are seen in 

hyperextension injuries in individuals with underlying degenerative cervical spine 

disease. The third mechanism for spinal cord injury involves distraction, forcible 

stretching of the spinal column in the axial plane20. Radiological studies may not detect 

this type of trauma, especially in children which still possess cartilaginous vertebral 

bodies, ligament laxity, and underdeveloped musculature, or in adults with underlying 

degenerative spine disease23. The last mechanism for spinal cord injury, laceration, 

may range from minor injury to complete transection and usually results from missile 

injury, sharp bone fragment dislocation, or severe distraction20. A complete 
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transaction of the spinal cord is rare but may occur from high-energy 

rotational/translational forces, as it happens in splice fractures on the C317.  

 

 

 

The consequences of a spinal cord injury may vary depending on the type, level and 

severity of the injury. Complete injuries lead to the loss of function below the level of 

injury, resulting in the absence of motor and sensory function. In incomplete injuries, 

some sensation and/or movement below the level of injury is retained. A spinal cord 

injury at the neck level may result in tetraplegia and impair the ability to breathe. 

Injuries to the lower spine may cause weakness and loss of sensation in the legs and 

lower parts of the body, and paraplegia (Figure 8)21. 

 

Figure 8 – The ASIA impairment scale. 

Levels of injury and extent of paralysis. 

Injury to specific levels of the spine can 

cause spinal cord injuries. Varying 

degrees of nerve damage often result in 

paralysis bellow the lesion site. Adapted 

from 1. 
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1.5 - Regeneration in the Central Nervous System 

For a very long time, it was widely accepted the hypothesis firstly postulated by Edwin 

Smith10 that an injured spinal cord was an untreatable condition. However, in the late 

20s, Ramon y Cajal2 conducted the above mentioned pioneer study that postulated 

that the central nervous system had an intrinsic ability to regrow after an injury, 

though this would not happen spontaneously due to lack of trophic support and the 

formation of physical barriers, such as glial scars, which would prevent the axons to 

grow past the lesion site2.  

Since then, there have been several advances in spinal cord injury research, for 

instance, the work of David and Aguayo in the early 1980s, that showed that CNS 

axonal processes were able to regenerate for significant distances when their regrowth 

was supported by long peripheral nerve bridges circumventing the spinal cord lesion24. 

However, once that peripheral nerve graft was gone the nerve fibers were not able to 

grow past that site, an observation that still holds for most therapeutic approaches, 

regarding nerve grafts in the field of SCI25.  

 

 

Figure 9 – (A) Diagram of the dorsal surface of the rat CNS, showing a peripheral nerve graft-linking the 

medulla and the thoracic spinal cord. (B) Approximate rostrocaudal position of CNS neurons (dots). 

Taken from 24.  
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In 1985, Schwab and colleagues also saw sympathetic or sensory axons invade and 

grow through sciatic nerve explants in culture, but never into and through optic nerve 

explants. This further proves what it is seen in vivo, where regenerating peripheral or 

central neurons grow well inside peripheral nerve transplants but do not grow and 

elongate within CNS environment26. The referred cultures within CNS explants were 

grown in optimal conditions, leading to the conclusion that even under optimal 

conditions the axons did not grow, because it is not only trophic factor deficiency’s 

that cause the failure in axon growth. Both living and dead optic nerve were avoided 

by the growing axons, which shows the presence of inhibitor factors that prevented 

the growth of these axons26. This means, the axonal regeneration process is limited or 

impeded due to the absence of a combination of factors that should be present 

simultaneously at the injury site, which may not occur due to some events that imped 

this environment to be formed, as myelin constituents and the presence of a glial scar 

that contributes to regenerative failure. Moreover, guidance molecules like 

semaphorins and ephrins are present at the lesion site and tend to repel regenerating 

axons in the CNS27.  

 

 

1.6 – Wallerian Degeneration 

In 1849, Augustus Waller discovered that if a bundle of fibers was to be cut, the 

portions of fibers which are separated from their cells rapidly degenerate and become 

atrophied, while the cells and the parts of the fibers connected with them undergo 

little alteration6. This was termed ‘Wallerian degeneration’ defined as the process of 

degeneration of the axon distal to the site of transection, in which the entire distal 

segment of the nerve degenerates, with disintegration of the distal axonal segment, 

degradation of the myelin sheaths and axon cytoskeleton, macrophage infiltration and 

subsequent apoptotic death of oligodendrocytes around the lesion site28. Hypotheses 

about what initiates Wallerian degeneration include loss of trophic support from the 

cell body and activation of calpain by calcium influx28. 

Axons depend on the supply of energy in form of ATP to fuel important processes like 

axonal transport, maintenance of the resting membrane potential and 
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neurotransmitter release. When these ATP levels are not met, irreversible damage to 

the axons occur. Little is known about the regulation of Wallerian degeneration, but 

the mapping of the Wld gene should give some insight. In particular, an important tool 

to study Wallerian degeneration is the axon-protective Wallerian degeneration slow 

(WLDs) mutant mouse which has shown to ameliorate the decline in axonal ATP and 

NAD levels after neurite transection29. WLDs protein is thought to act in the axon 

through its NMNAT activity, converting nicotinamide mononucleotide (NMN) and ATP 

to NAD and PPi29.  

 

Wallerian degeneration occurs in both PNS and CNS but with some differences (Figure 

10). In the PNS, after axonal degeneration, the blood-tissue barrier permeability 

increases, the myelin sheaths break down, Schwann cells that formerly ensheathed the 

axons proliferate, align to form longitudinal arrays, and increase their production of 

neurotrophic factors that can promote axon regeneration; an influx of macrophages 

further occurs to remove the cellular and myelin debris distal to the site of axonal 

injury.  

Proximal to the injury site, neuronal cell bodies react to injury by inducing expression 

of growth-related genes. In mammals, Wallerian degeneration (WD) in the PNS is fast, 

taking about 7 to 14 days, or even earlier. The initiation of WD in the severed optic 

nerve of the regenerating animal newt (Triturus viridescens) showed significant 

degeneration of nonmyelinated axons as early as six hours after lesion and was almost 

complete after 48h30,31.On the other hand, WD in the CNS of mammals is dramatically 

slower, taking months to years. These differences are probably a result of the failure to 

clear CNS myelin debris. In the CNS, this failure in myelin debris’ clearance may be due 

to a lack of extensive opening of the BBB, as it occurs in PNS, preventing the entrance 

of serum opsonins and peripheral macrophages in distal white matter tracks. As a 

result, the persistence of myelin debris in the CNS contributes to the failure of CNS 

axons to regenerate30. The myelin debris has several inhibitors of axonal regeneration 

namely Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin 

glycoprotein (OMgp), tenascin-R, proteoglycans, and chondroitin sulfate proteoglycans 

(CSPGs), which contribute to the unsuccessful regeneration of the CNS. Astrocytes at 

the site of injury also interfere with regeneration, and neurons typically fail to activate 
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the growth-associated genes30. Another key difference between the rate of WD in CNS 

and PNS involves the differential actions of Schwann cells (SCs) in the PNS and 

oligodendrocytes in the CNS. While the SC have a pivotal role in both the breakdown of 

the myelin sheath and the clearance of its debris in the PNS, in contrast, 

oligodendrocytes have little to none ability to help clear myelin and axons debris in the 

CNS30.  

 

 

Figure 10 – Comparing Wallerian degeneration (WD) in the PNS and CNS. (a) Schematic summary of the 

histological changes during WD in the PNS leading to myelin clearance. Axon degeneration triggers two 

parallel responses that result in rapid clearance of myelin debris: firstly, Schwann cells break down 

myelin into smaller myelin ovoids, then serum-derived opsonins stimulate macrophage clearance of 

myelin debris. After that, rapid removal of myelin enables axon regeneration in the PNS. BBB, brain-

blood barrier. (b) During CNS WD neither one of these processes exist. Oligodendrocytes do not clear 

myelin ovoids, and the lack of extensive opening of the Blood-Brain Barrier (BBB) prevents the entrance 

of serum opsonins and peripheral macrophages in distal white matter tracks. The persistence of myelin 

debris in the CNS contributes to the failure of CNS axons to regenerate. Taken from 30 
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Why WD is rapid and robust in the PNS but slow and incomplete in the CNS is a 

longstanding mystery, and deciphering this mystery could account for the failure of 

CNS axons to regenerate. What we do know is that in the PNS, rapid WD results in an 

extracellular environment that promote axon regeneration, whereas in mammalian 

CNS, slow WD results in the prolonged presence of myelin-associated inhibitors that 

likely contribute to the failure of axons to regenerate30. For this reason, it is plausible 

to infer that triggering rapid CNS myelin clearance may enhance CNS axon 

regeneration after injury. 

 

 

1.7 – The Glial Scar 

 

Scarring is a general tissue response after injury that promotes wound healing and 

physically separates the lesioned tissue from the external environment. It consists of a 

dense extracellular matrix network, whose backbone is made of collagen IV, and that 

serves as a binding matrix for numerous other extracellular matrix components and 

inhibitory molecules like proteoglycans and semaphorins, but also growth-promoting 

factors32. The fibrous scarring is surrounded by the glial scar which is the area of 

astrogliosis, characterized by high immunoreactivity to glial fibrillary acidic protein 

(GFAP)33. Hence, although the wound healing scar may contribute to seal the injury 

site from the spared tissue, the glial scar is far more than just a physical barrier. It’s a 

source of factors such as tenascid acid, semaphorins, ephrins, various proteoglycans, 

that make up the inhospitable biochemical milieu that makes it impossible for axons to 

regrow34. 

The glial reaction to injury results in the recruitment of microglia, oligodendrocyte 

precursors, meningeal cells and astrocytes to the lesion site. These cells give both 

structural and physiological support to neurons, and are also responsible for the 

response to injury or disease25,35,36; in theory, some of these responses should have a 

beneficial effect: they isolate the injury site and minimize the area of inflammation and 

cellular degeneration. However, many astrocytes in the lesion area become 

hypertrophic and acquire a reactive phenotype, releasing inhibitory extracellular 
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matrix molecules such as chondroitin sulphate proteoglycans (CSPGs)34. After injury, 

CSPGs expression is rapidly upregulated by reactive astrocytes, being its gradient 

highest at the center of the lesion, and diminishing gradually into the penumbra. Also, 

its spatiotemporal expression depends on glial boundaries in the developing CNS such 

as the spinal cord roof plate, optic tectum, and dorsal root entry zone (DREZ)37,38. 

There has been an interesting study by Ramer et al., in which a population of rats, after 

undergoing rhizotomy and a treatment of neurotrophin 3 (NT-3) to the dorsal root 

ganglia (DRG), showed that DRG axons were able to overcome CSPG-enriched glial 

barrier at the DREZ, but when reaching the degenerative white matter myelin their 

growth was aborted. This supports a hierarchy of inhibitory influences, in which the 

myelin shows to be more potent than the glial scar39. Controversially, DRG neurons 

microtransplanted into the spinal cord with minimal scarring were able to project their 

axons over long distances through degenerating white matter tracts, stopping only on 

contact with CSPGs at the glial scar. These conflicting reports show that both CSPGs 

and myelin-associated inhibitors (Figure 11) are likely to be involved in regenerative 

failure, although with some overlap and differences in function due to their different 

spatial and temporal regulation38. 

There are several inhibitors of axonal growth, including myelin-associated molecules 

and extracellular matrix-related inhibitors (Figure 11). In the first category, we can 

include NoGo, which is a member of the reticulon family of membrane proteins and 

has at least three isoforms (Nogo-A, -B and -C), being that the one best characterized is 

NoGo-A that is highly expressed in CNS oligodendrocytes38. There are several other 

myelin-associated components that can inhibit axon outgrowth in vitro, including 

myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), 

the transmembrane semaphorin 4D (Sema4D/CD100) and ephrin B3, being that the 

two latest have been described has repulsive guidance cues with roles in axon 

pathfinding during development and implicated as inhibitors of axon repair in the 

adult38.  
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Figure 11 – Glial inhibitors and intracellular signaling mechanisms. One of the most important molecular 

inhibitors is the CSPGs in the extracellular matrix, which is produced by hypertrophic astrocytes, and 

myelin-associated glycoprotein (MAG), Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), ephrin B3 

and the transmembrane semaphorin 4D. Among the signaling components are the RhoA and the rise of 

intracellular calcium. Taken from 38.  

 

 

In addition to the myelin-associated molecules, astrocytes produce a class of 

molecules known as proteoglycans, namely heparan sulphate proteoglycan (HSPG), 

dermatan sulphate proteoglycan (DSPG), keratan sulphate proteoglycan (KSPG) and 

chondroitin sulphate proteoglycan (CSPG). Most studies focus on CSPGs that form a 

relatively large family (aggrecan, brevican, neurocan, vesican, phosphacan and NG2) 

and KSPGs. Both are extracellular matrix molecules which consist of a protein core 

linked by four sugar moieties to a sulphated glycosaminoglycan34 (GAG) and that seem 
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to establish limitations for axonal growth in the developing brain and spinal cord 

including inhibitor effects in extending neurites40. After SCI, the expression levels of 

these ECM inhibitors are up-regulated significantly, as soon as 24 hours post-injury40. 

The glial scar thus forms both a mechanical and a molecular barrier to axonal growth, 

creating an environment that according to its constituents becomes inhospitable and 

impedes axonal growth. Beyond it, axons cannot grow and acquire a dystrophic 

appearance of stalled growth2.  

 

 

1.8 – Inflammatory Processes in Spinal Cord Injury 

When trauma to the CNS occurs, there is a tendency for researchers to categorically 

lump mechanisms of brain and spinal cord neuroinflammation together. The problem 

is that there are significant differences in the composition, magnitude and temporal 

sequence in which these inflammatory components are expressed in both structures. 

Schnell et al. proved these different responses by comparing the inflammatory 

responses provoked by identical injuries inflicted to mouse brain and spinal cord41. 

Following a parasagittal incision to the cortex or a similar incision to the dorsal spinal 

cord, marked differences in the cellular inflammation are observed: in the brain, 

neutrophil infiltration is minimal and restricted to the lesion site. As for the spinal cord, 

twice as many neutrophils infiltrate the lesion within the 24 h with large numbers of 

cells infiltrating into the surrounding parenchyma. Similarly, activation and recruitment 

of CNS macrophages were attenuated and restricted in its distribution after brain 

injury relative to SCI. Lymphocyte numbers were also 2 to 3 times greater in the spinal 

cord with increased infiltration into surrounding tissue. In the same experiment, 

neuroinflammation was induced by non-traumatic microinjection of IL-1β or TNFα, and 

similar changes were observed. In response to these cytokines, the recruitment of 

neutrophils and macrophages in the CNS was always higher in the spinal cord. After 

microinjection with IL-1β, lymphocytes infiltrated the spinal cord but never the brain. 

TNFα microinjections into the brain elicited a response comprised only of CNS 

macrophages while identical injections to the spinal cord elicited neutrophils and 

macrophages41. These differences may be due to molecular and anatomical 
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distinctions between the two structures. For example, in the spinal cord, microvascular 

injury and serum extravasation is increased in magnitude and duration relative to the 

brain, being also more susceptible to the permeabilizing effects of cytokines41,42. There 

is also a unique pattern of chemokine expression between the two CNS structures, 

which may explain the differential leukocyte recruitment. Specifically, neutrophil-

attracting chemokines (e.g. CINC) are up-regulated to a greater extent in the injured 

spinal cord than in the brain43. 

Therefore, although there is a tendency to combine the neuroinflammation processes 

that occur in the brain and in the spinal cord, this is not accurate and it is becoming 

clearer that the spinal cord should not be considered simply as an extension of the 

brain44. 

The role of neuroinflammation is nonetheless controversial, as both beneficial and 

detrimental effects have been observed and associated with microglia/macrophages, 

lymphocytes, antibodies, and cytokines. Although inflammation is a ubiquitous 

consequence of CNS trauma, there are fluctuations in the composition, magnitude and 

temporal sequence in which these inflammatory components are expressed20.  

 

 

1.8.1 – Neuroinflammation in Primary Spinal Cord Injury 

Contrary to previous belief, the CNS does not constitute an immune privileged system, 

since it shares many commonalties with other systems. Immediately after SCI, the BBB 

breakdown and blood-vessel fragmentation leads to an increased expression of 

leukocyte adhesion molecules on the surface of the endothelial cells and to an over 

flow of plasma proteins to the parenchyma of the injured tissue45. 

The primary response to a traumatic injury to spinal cord occurs as a result of the 

mechanical impact to the canal from displaced bone or intervertebral disk, or from an 

acute twisting of the spinal cord at the time of injury17. This primary response leads to 

a panoply of complex cellular responses, including astrocyte activation, 

oligodendrocyte death, ependymal cell proliferation, axonal degeneration, 

demyelination, disruption of neuronal ionic homeostasis, macrophage/microglia 

invasion, astrocyte hypertrophy and neurons and oligodendrocyte death44,46-48 (Figure 
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12). Because of its higher metabolic requirements, the initial mechanical insult tends 

to primarily damage the central grey matter, in which disruption of blood flow results 

in local infarction due to hypoxia and ischemia, sparing the great majority of the white 

matter, especially peripherally, which may be attributed to its softer consistency and 

greater vascularity20.  Also, neurons that traverse through the injury site, become 

physically disrupted and exhibit diminished myelin thickness20.  

 

 

 

 

Figure 12 – Schematic representation of a spinal cord injury site. Immediately after injury, is generated a 

robust hemorrhagic area followed by glial cell activation. Simultaneously, axons that are undergoing 

degeneration and other neuronal cells that are dead, will stimulate the recruitment of inflammatory 

cells from the periphery. Neutrophils are the first to arrive at the tissue parenchyma and begin to 

secrete molecules that eventually worsen tissue and vascular damage. After a while, monocytes 

infiltrate the spinal cord, where they become macrophages, and persist until several months at the 

injury site. Neurons not affected by trauma activate their regenerative machinery, only to fail across the 

injury site formed by the glial scar. Taken from 49. 
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Within the injured CNS, resident cells are activated in response to the traumatic 

impact and initiate a synchronized neuroinflammatory response, which includes pro-

inflammatory cytokines, chemokines, and complement activation products. 

Chemotaxis by chemokines and complement anaphylatoxins leads to transmigration of 

haematogenous inflammatory cells, such as neutrophils, macrophages, and 

lymphocytes into the injured CNS where they play a role in the removal of cellular and 

myelin debris as well as in releasing neurotoxins and cytokines that lead to neuronal 

and oligodendrocyte death 17,50. These infiltrating leukocytes perpetuate the 

neuroinflammatory response by the local release of neurotoxic molecules, including 

reactive oxygen species, nitrogen-derived free radicals, proteases, and other 

neurotoxic enzymes. Combined, these secondary pathophysiological events ultimately 

lead to the breakdown of the blood-spinal cord barrier (BSCB), resulting in an 

uncontrolled leakage of systemic toxic molecules, such as matrix metalloproteases and 

other inflammatory mediators, into the subarachnoid space in the injured spinal cord. 

After a trauma to the spinal cord, the first cells to participate in the inflammatory 

response, arriving as early as 4h post injury, are neutrophils which activate several 

mechanisms including production of a variety of oxidative and proteolytic enzymes, 

which in turn exacerbate neuropathological events, and by enlarging the lesion, 

potentially worsen neurological dysfunction22,51.  

Microglial cells from the cord also penetrate and invade locally in an attempt to repair 

the damage. They are normally present 1 day after the injury, leading to increased 

areas of CD68 immunoreactivity associated with the phagocytic phenotype of 

macrophages at 1-3 days post-injury22 Microglia are usually distributed outside areas 

of necrosis, whereas phagocytic macrophages are mostly in areas of necrosis22.  

Some unneeded damage may result from too many neutrophils accumulating in the 

area and causing “by-stander” tissue damage22. For example, in an ischemia-

reperfusion-tissue injury setting, when neutrophils and macrophages are undergoing 

oxidative burst, they will release proteases and reactive oxygen species that can cause 

substantial secondary damage by mediating lipid peroxidation and protein nitration, 

and by activating redox-sensitive signaling cascades and consumption of nitric oxide. 

Neutrophils and activated microglia are therefore the major sources of NADPH 

oxidase-derived reactive oxygen species in the injured spinal cord22. Although these 
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compounds are intended for killing pathogens, if released inappropriately, may also 

contribute to tissue damage22,52. These inflammatory mediators increase the 

expression of endothelial leukocyte adhesion molecules which in turn can damage 

endothelial cells53. This damage is in partly attributed to the overexpression of P-

Selectin, which is involved in the pathogenesis of tissue injury induced by ischemia-

reperfusion-injury. When certain stimuli are produced, such as thrombin, histamine 

and oxygen free radicals, P-Selectin - a member of the endothelial leukocyte adhesion 

molecule family - is rapidly expressed and translocated to the plasma membrane 

where it functions as a receptor for monocytes and neutrophils53-55.  

All these events combined will eventually culminate in a severe secondary 

degeneration after injury, one of the reasons why regeneration of the spinal cord fails. 

 

 

1.8.2 - Neuroinflammation and Secondary Spinal Cord Injury 

Secondary mechanisms of injury include an array of disturbances that include 

neurogenic shock, excitotoxicity, vascular insults such as hemorrhage and ischemia-

reperfusion, calcium-mediated secondary injury and fluid-electrolyte disturbances, 

immunologic injury, disturbances in mitochondrion function, apoptosis, and other 

miscellaneous processes that result in a complex inflammatory response that can 

prevail for months or years after the initial trauma22,20.  

The lesion cavity of a CNS injury expands as inflammatory cells interact with the 

surrounding reactive astrocytes and other reactive glial cells. This lesioned region is 

associated with upregulation of inhibitory extracellular matrix molecules, such as 

proteoglycans, which are highly concentrated in the lesion center and in a lower 

concentration in the penumbra. This intense inflammatory response leads to a cascade 

of secondary damage to axons not directly affected by trauma, and demyelination of 

adjacent axons. The gradient of inhibitory molecules upregulated in the areas of 

intense inflammation provides a non-permissive environment for regeneration, and 

dystrophic neurons develop in the classic way Cajal described, as sterile end-balls with 

clubbed endings, which remain characteristic of abortive attempts at regeneration56. 
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As previously said, the secondary spinal cord injury caused by neutrophils and 

macrophages is partially a result of oxidative and proteolytic enzymes, for instance, 

neutrophils and other phagocytes express myeloperoxidase (MPO)22,53 an oxidative 

enzyme that generates a hypochlorous acid that kills pathogens. Along with the 

oxidative enzymes, matrix metalloproteinases (MMPs) are also released from the 

inflammatory cells, in particular, MMP-9 that allows penetration of the blood-CNS-

barrier57.  

There are numerous others mechanisms of secondary injury, including impairment of 

spinal cord blood flow58, electrolyte changes, the release of excitotoxic amino acids, 

free radicals, and the levels of GFAP, secreted by reactive astrocytes, which begin to 

increase and form irreversible and reversible scars around the lesion site and in regions 

distal to the lesion site. This event known a7s astrogliosis is one of the hallmarks of 

CNS injury. This “vicious-cycle” of self-perpetuating exacerbated neuroinflammation 

leads to spinal edema, loss of regulation of local and systemic blood pressure, 

imbalance of activated metalloproteinases, release of cytotoxic neurotransmitters, 

expansion of the primary traumatic lesion and delayed neuronal cell death, and up to 

now there is no single pharmacological agent available that can prevent the 

development of secondary SCI and that induces regenerative processes that would 

help heal the spinal cord and restore neurological function59,60.  

 

 

1.9 - Treatment for Spinal Cord Injury Patients 

The dream of achieving spinal cord regeneration in the future entails a large effort 

from several areas, and it is believed that combinatorial treatments will be required 

when translating experimental research to find clinical therapies.  

There have been some modestly successful attempts in the past for central 

regeneration, but none of them showed to be fruitful in regards to central axonal 

regeneration in adult mammals, and the greatest obstacle on this regard seems to be 

Wallerian degeneration. Several studies have attempted to address this issue. For 

example, treatment with the enzyme chondroitinase ABC (ChABC), which breaks down 
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inhibitory sugar chains components of CSPG molecules, promotes regeneration of 

lesioned axons in the brain and spinal cord61.  

In order to axonal regeneration to become successful, two major obstacles would have 

to be solved: firstly, the regenerated axons are required to connect with their distal 

part; secondly, even if they achieve regeneration, it would be at very slow rate and by 

the time the axons would have reached the target neurons of the central grey matter 

they would imperially need to re-established their synaptic connections to be 

functional. Fortunately, the CNS’s plasticity would be of some help in this regard. 

Because severed axons distal to the injury degenerate (caudally in the motor pathways 

and rostrally in sensory tracts), even if regeneration succeeds to grow a few 

millimeters into the distal cord, there still may be twenty or more centimeters of 

pyramidal tracts below the lesion62. 

Since 1903, when Tello and Cajal63 demonstrated that the CNS could regenerate, 

experimental science has put a lot of effort into repairing the injured spinal cord. Their 

work placing peripheral nerve grafts to bridge the injury zone was successful, but 

sadly, only few evidence in human patients support its translation into the clinics2,64. 

Several studies that have combined growth factor treatment with cellular grafting 

techniques. For example, infusion of neurotrophins has been shown to enhance 

regeneration into Schwann cells grafts. Another technique that has also been used is to 

genetically modify cellular graft tissues (such as fibroblasts and Schwann cells) prior to 

transplantation to make them secrete neurotrophic factors and this way provide 

injured axons with a cellular bridge and a source of trophic support61. 

In 1979, Jaffe and Poo studied the effects of a steady electrical field upon the growth 

of nerve processes in vitro and discovered that electrical fields increase neurite 

outgrowth of chick dorsal root ganglion (DRG) explants65. Regarding electrical 

stimulation, it has also been shown that low-frequency electric stimulation (20 Hz) is 

capable of inducing alterations within the nerve cells, namely the expression of 

regeneration-associated genes in motor neurons. After a low-frequency electrical 

stimulus the intracellular calcium and cAMP level increase, that in turn alter the 

expression of several genes such as the ones related to axon regeneration including 

gap-43, bdnf, neuritin, pacap and α1-tubulin, and myelination p0 and par-366. 
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Since then, many mechanisms have been used in experimental medicine to enhance 

regeneration of the spinal cord, with success to some extent or another. These 

experimental approaches include placement of molecular, cellular or “synthetic” 

bridges in the lesion cavity; in situ hydrogels67 and hydrogel tubes68¸ stimulation of the 

injured spinal cord with growth factors; “conditioning” of neurons (which involves 

activation of transcription programs that directly enhance axonal growth potential of 

the central branches of DRG after peripheral branches being severed69) and proteins 

into an active growth state. Growth factors modulate neuronal survival, neurite 

outgrowth, synaptic plasticity, and neurotransmission70; among them, the brain-

derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), 

neurotrophin 3 (NT3) and neurotrophins 4/5 (NT-4/5), and fibroblast growth factor 

(FGF)70, have proved to show some efficacy in combination with MSCs, has a potential 

therapeutic strategy for SCI70. 

As far restorative neurology goes, there are some methods being used towards spinal 

cord treatment, namely pharmacological (baclofen), epidural electrical stimulation71, 

tonic stimulation of the lumbar cord72 and intensive sensory inputs using the 

electrified glove and massage.  

One approach to SCI treatment can be directed towards the prevention of the 

formation a collagenous scar. This may be useful in the sense that, although some 

modest successes have been accomplished in targeting single inhibitors of the scar 

since a multicity of components are involved in scarring, it seems unlikely that a single 

key component solves the problem of growth failure for all neuronal populations. 

Therefore, suppression of a collagenous scar may not influence secretion on inhibitory 

molecules by astrocytes. Nevertheless, it deprives inhibitors of their binding sites and 

prevents accumulation at the lesion center33.  One novel strategy to do so is by using 

iron chelators since one of the key enzymes of collagen IV biosynthesis is prolyl 4-

hydroxilase (P4H), which is dependent on its cofactors iron, ascorbate, and 2-

ocoglutarat. Therefore, by introducing an iron chelator we would be able to inhibit P4H 

and therefore collagen IV scarring33. 

More recent work on spinal cord injury treatments includes a microconnector system 

(mMS) (Figure 13). This device is a multi-channel system composed of 

polymethylmethacylate (PMMA) with honey-combed shaped holes and a tube 
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connected to a vacuum pump to apply negative pressure and suck the tissue into the 

device. In the case of a chronic spinal cord injury, the lesioned and scarred spinal cord 

tissue is resected over an area of 4 mm in length. After the microsurgical scar 

resection, the resulting cavity is filled with polyethylene glycol (PEG 600) which was 

found to provide an excellent substratum for cellular invasion, revascularization, 

axonal regeneration and even compact remyelination in vivo73. 

 

 

Figure 13 – Design and structure of the mMS device. E – adhesive forces keep the spinal cord stumps in 

close proximity (micrometers); F – pharmacological substances can be administered in the lumen via 4 

internal micro-channels (1-4 black arrows). Taken from 73 

 

All in all, the literature on SCI suggest that several treatment interventions can 

promote regeneration of damaged axons, although combinatory treatments prove to 

be the ones with more extensive axon regeneration61. Although the degree of such 

regeneration remains modest, it may be sufficient to account for some functional 

recovery61. 

 

 

1.10 - Animal Models of Spinal Cord Injury 

Most studies of regenerative biology that are intended for biomedical applications 

have focused on stem cells in vitro. However, to gain a full understanding of 

regeneration, the processes that are involved in it must be studied in vivo. For such 

approach, model organisms are essential tools to provide the necessary knowledge 

that will eventually allow us to manipulate and control regenerative properties 

(Annexes - Table 2). 
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Regeneration in invertebrates has been studied for more than 200 years, and the ones 

receiving more attention seem to be the diploblast Hydra vulgaris, and the triploblast 

Schimidtea mediterranea and Dugesia japonica74. Regeneration in amphibians, which 

includes the newt, salamander, and the frogs Xenopus laevis and Xenopus tropicalis, is 

thought to be mainly mediated by extensive cellular transdifferentiation. Among the 

vertebrates, the newt is generally regarded as the “champion” of regeneration: as an 

adult, it can regenerate several organs, including limbs, the tail, the brain and spinal 

cord, jaws and the heart. However, newts are difficult to breed under laboratory 

conditions, and as such, have not been accessible to traditional genetics74. 

Regeneration in mammals is, compared to other vertebrates, far less great. However, 

there is a continuous renewal of tissues in mammals as part of tissue homeostasis, as 

for example in haematopoiesis, gametogenesis, and intestinal-tract epithelium and 

skin renewal. 

 

Xenopus laevis 

 Xenopus laevis has a regenerative and non-regenerative stage. As a tadpole, it is fully 

capable of functional recovery after spinal cord injury, while its juvenile form (froglet) 

loses this capacity during metamorphosis3. X. laevis has a chromosome number 

(2n=36) nearly double of that of the Western clawed frog Xenopus tropicalis (2n=20) 

and most other diploid frogs75. X. laevis is, therefore, an allotetraploid that arose via 

the interspecific hybridization of diploid progenitors with 2n=18 followed by 

subsequent genome doubling to restore meiotic pairing and disomic inheritance76.  

On the downside, X. laevis, has a large genome, with an estimated size of 3.1 billion 

bases (Gbp) on 18 chromosomes and a generation time of 1-2 years that comprises 66 

stages of development, being the final stage achieved at day 58. 

 

Xenopus tropicalis 

X. tropicalis has a small genome, about 1.7 Gpb on 10 chromosomes, matures in only 4 

months and requires less space than X. laevis.  Also, it has a completely known genome 

sequenced and is a true diploid. Unlike mammals, teleosts fish and amphibians like 

adult urodeles and anuran larvae are capable of functional recovery after spinal cord 

transection. In Xenopus tropicalis and laevis, regeneration is restricted to larvae or 
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tadpole stages (stages 50 to 54), while once metamorphosis has concluded, the 

resulting froglets are unable to regenerate (stages 58 to 66)3. 

 

Danio rerio 

For the past three decades, Zebrafish has successfully scaled up on the list of best 

animal models, due to its hardy nature, the presence of many organs and cell types 

similar to other mammals and the fact that it’s capable of mimicking conditions that 

affect humans77. Zebrafish present some characteristics that make it a very effective 

animal model, such as external fertilization, fast growth, and high number of offspring. 

For example, the females spawn around 300 eggs per week under optimal conditions, 

which results in fecundity higher than 300,000 eggs per Kg of the female78.  They also 

present optic and embryo transparency, ease to apply classic embryological, early 

development of the cardiovascular system which translates to a unique opportunity 

for observation of blood flow and organs79, and the possibility to apply biochemical 

and molecular biological techniques77,80. 

What really stands out in Zebrafish, though, it’s the fact that in adult (90 days to 2 

years) it’s capable of re-growing injured axons after SCI and re-establish proper 

connections to recover the most significant functions81. Also, many genes and 

biological mechanisms are conserved from the Zebrafish to human. For these reasons, 

this eukaryotic fish became one of the best models for humans diseases, and it’s used 

for laboratory routine knock-down genes via morpholinos, has become routine work80.  
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Chapter 2 – Objectives 

 
Due to all the above mentioned restrains that still exist towards regeneration of 

central nervous system axons, the purpose of this dissertation was oriented in finding 

genetic targets whose modulation may help SCI repair. The candidate genes to be 

chosen correspond to the ones that are more robustly regulated whilst regeneration of 

the spinal cord in animal models occurs. The neuroregenerative animal models from 

which data will be obtained pertain to Xenopus laevis, Xenopus tropicalis and Danio 

rerio. This should be accomplished after processing and analysis of data from genome 

wide expression studies of these animals.  

With these target genes, we aim to have a better understanding of the regeneration 

processes and pathways involved, while drawing parallels to its human orthologues 

and human gene pathways. We also aim to define possible putative genes whose 

expression might be feasible to manipulate, in order to accomplish repair in the so far 

non-regenerative adult mammal, thus moving forward into a realistic approach to 

human spinal cord regeneration therapy. 
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Chapter 3 – Methods 

 

3.1 – Selection and data recovery 

Data were recovered using searches several NCBI tools, such as GEO (Gene expression 

omnibus) Datasets, Array Express and PubMed. The literature search was repeated 

without date or language restriction using the terms ‘Spinal Cord Regeneration’, ‘SCI’, 

‘Neuroregeneration’, ‘Spinal Cord Injury’, ‘CNS Regeneration’, ‘Genome Wide 

Expression Studies AND Spinal Cord Injuries’, ‘Xenopus laevis AND Spinal Cord Injury’, 

‘Xenopus tropicalis AND Spinal Cord Injury’, and ‘Zebrafish AND Spinal Cord Injury’. The 

keywords for PubMed included the above plus RNAseq, genome wide expression or 

GWE. Because our animal targets were those capable of regeneration at least in some 

stage of their lives, the search was limited to Xenopus laevis, Xenopus tropicalis, 

xenopus, frog, zebrafish, Danio rerio, Triturus viridescens, newt, salamander, and 

planarian.  

From the neuroregenerative animals cited above, five results corresponded to genome 

wide expression studies focused on regeneration. Two of these referred to 

regeneration of the tail after transection and were excluded. After this, the remaining 

three studies were referent to regeneration of the spinal cord in three animal models 

Xenopus laevis, Xenopus tropicalis, and the Danio rerio. 

 

3.2 – Data Analysis and Human orthologues 

The initial set of data used for X. laevis was Additional File 3 – Transcripts that show a 

different response to spinal cord injury in R- and NR-stages retrieved from PubMed 

Central, with the PMCID: PMC4046850. In this file, fold change appeared in the form of 

base two logarithms. 

The data used for X. tropicalis included the files: E-MEXP-2420.raw.1.zip and E-MEXP-

2420.processed.1.zip. The files were obtained from PubMed Central, with the PMCID: 

PMC3247858. The direct link can be found at http://www.ebi.ac.uk/arrayexpress/. 

In the processed data file, each Affymetrix probe name identified three replicates per 

time point, and so a mean of the gene expression values was calculated. 
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The initial data used for D. rerio included several files with differentially expressed 

genes according to functional clusters (Table S6-Table S18 from Gene Expression 

Omnibus, accession number: GSE39295). Also, fold change values were not 

represented in logarithmic scaling. For this reason, a base two logarithm was applied 

to all fold changes, followed by individual extraction from each file to compile a single 

file, with all differentially over/under-expressed genes, for each time point. 

For each study, genes were grouped separately into over expressed and under 

expressed lists according to a fixed logarithmic fold change threshold of 4 for over 

expressed genes, and -4 for under expressed genes (or log2 > 2 and log2 < -2). 

Each study had different control time points (X. laevis – day 1, 2 and 6; X. tropicalis – 

6h, 24h, and 60h; Danio rerio – Day 1, 3, 7, 10 and 15), in order to standardize the 

analysis, time point categories were considered at day 1 and day 2/3 for the Venn 

Diagrams and for further discussion. 

 

The next step was to map the human orthologues for the final list of genes of the three 

species: X. tropicalis, X. laevis and Danio rerio. 

Gene identifiers for Xenopus laevis, Xenopus tropicalis, and Danio rerio, and respective 

human orthologues were standardized through the Ensembl88, Biomart, DAVID85,90, 

bioDBnet83, ZebraMine84 and HumanMine84, by using the pre-existing gene IDs or the 

microarray probe names, to convert the gene identifiers into a single Ensembl 

database identifier. 

To convert IDs to other databases and to access human orthologues, several databases 

were used, including: BioMart, bioDBnet and InterMine. The database used in BioMart 

was Ensembl and the archives accessed were Ensembl 85: Jul 2016 and Ensembl 86: 

Oct 2016. This database allowed conversion of Affymetrix probe ID into Ensembl IDs in 

Xenopus tropicalis. It also allowed orthologue extraction through online queries in R 

for Xenopus laevis. BioMart possesses other databases such as Uniprot and HapMap 

which allow users direct access to a diverse set of data, including the possibility of 

accessing the data through online queries from R82.  

To retrieve human orthologues for Xenopus tropicalis, bioDBnet was accessed (v3.0 

2016 July). BioDBnet83 is an online resource which currently possesses 153 database 

identifiers covering several aspects of biology including genes, proteins, and pathways. 
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This online tool allows a dynamic navigation through the existing databases, offering ID 

conversion and orthologue conversions and has various tools to enhance the quality of 

the results.  

Conversion of Danio rerio IDs was performed through the InterMine platform84. 

InterMine is an open-source data warehouse initially designed for Drosophila (FlyMine) 

but has now been adopted for a number of major model organisms such as zebrafish 

(ZebrafishMine), yeast (YeastMine), rat (RatMine), mouse (MouseMine), Xenopus 

tropicalis (XenMine) and nematode worm (WormMine). Through this tool, we can 

create large biological databases from a range of heterogeneous data sources, allowing 

easy integration of new data types.  The orthologues for Xenopus tropicalis were 

therefore extracted from this free online database, namely XenMine. 

 

The Ensembl IDs for the human orthologues of the genes differentially expressed in 

Danio rerio’ were obtained from bioDBnet83 and HumanMine84 using Symbol and 

Synonyms. Obtaining Ensembl IDs for Xenopus laevis required making a script in R.  

In the script the input files were: NCBI IDs for Xenopus laevis (taken from 

ftp://ftp.xenbase.org/pub/GenePageReports/NcbiMrnaXenbaseGene_laevis.txt), a list 

of Xenopus gene IDs from XenBase91 (taken from: 

ftp://ftp.xenbase.org/pub/GenePageReports/XenbaseGenepageToGeneIdMapping.txt) 

plus a list human of orthologs with Ensembl IDs from XenBase obtained using Annotate 

Package (taken from: 

ftp://ftp.xenbase.org/pub/GenePageReports/XenbaseGeneHumanOrthologMapping.tx

t).  

Next, R was used to merge the lists and get the human gene name. For Xenopus 

tropicalis, Ensembl IDs were retrieved from Biomart. Affymetrix X. tropicalis probeset 

IDs names were uploaded to BioMart using Ensembl Genes 86 database. 

 

3.3 – Gene enrichment analyses 

For gene enrichment analysis two softwares were used, namely DAVID and PANTHER.  

Each list of differentially expressed genes was analyzed by the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) gene ontology tool 

(https://david.ncifcrf.gov/summary.jsp)85.  

ftp://ftp.xenbase.org/pub/GenePageReports/NcbiMrnaXenbaseGene_laevis.txt
ftp://ftp.xenbase.org/pub/GenePageReports/XenbaseGenepageToGeneIdMapping.txt
ftp://ftp.xenbase.org/pub/GenePageReports/XenbaseGeneHumanOrthologMapping.txt
ftp://ftp.xenbase.org/pub/GenePageReports/XenbaseGeneHumanOrthologMapping.txt
https://david.ncifcrf.gov/summary.jsp
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DAVID85 (DAVID Bioinformatics Resources 6.8) allows functional analysis of large gene 

lists derived from high-throughput approaches. In this dissertation, the most useful 

tool used in DAVID was the gene-annotation enrichment analysis that increased the 

probability of identifying the most enriched biological process in a large amount of 

data. Nonetheless, it is also possible to map a large number of genes in a list and 

associate them with other biological annotation terms such as GO Terms or Pathways.  

Genes were clustered into biological functional groups, and an enrichment score of 2 

was set as the threshold above which the clusters were considered statistically 

significant. Duplicated genes are removed automatically from the listings when 

uploaded into DAVID. For D. rerio, from a total of 243 up-regulated genes uploaded for 

functional clustering, 167 results were identified as Danio rerio and 76 were not 

mapped. As for down-regulated genes, from a total of 217 genes, 160 were mapped 

for D. rerio and 57 were not included. 

For Xenopus tropicalis from a total of 1557 up-regulated genes uploaded for functional 

clustering analysis on DAVID, 376 were mapped as Xenopus tropicalis genes, and the 

remaining were removed, on the other hand, from a total of 1477 down-regulated 

genes uploaded for functional clustering analysis, 446 were identified as X. tropicalis 

genes and the remaining were not further considered. For X. laevis from a total of 624 

up-regulated genes, 214 were identified as X. laevis genes. As for down-regulated 

genes, from a total of 296 genes uploaded for functional clustering analysis, only 79 

were identified. 

For each dataset, the Gene Functional Classification Tool was also used to perform 

pathway enrichment analysis based on Gene Ontology Terms (GO Terms) for each time 

point and for up and down-regulated genes. Secondly, broader clusters were created 

for the sum of all up-regulated and down-regulated genes of every time point, within 

each study. From all clusters obtained, only the ones with Enrichment Scores above 2 

were considered. Also, from each cluster, it was selected the category Biological 

Processes which included the higher number of genes. For Xenopus laevis, GenBank 

accession numbers were used to upload the lists and for Xenopus tropicalis and Danio 

rerio, Ensembl IDs were used. 

The next two analysis were performed using PANTHER86, a tool also used to perform 

gene enrichment analysis similar to the ones performed by DAVID. The PANTHER86 
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(PANTHER11.1 April, 2015) software provides methodologies for relating protein 

sequences and their relationships to the functions of proteins in a large scale. In fact, 

PANTHER may be used to report the size and sequence diversity of the families and 

subfamilies. We can also use PANTHER/X ontology to give a high-level representation 

of gene function across the human and mouse genomes and for ranking missense 

single nucleotide polymorphisms (SNPs) according to their likelihood of affecting 

protein another’s function. For this dissertation, it was used the Statistical 

overrepresentation test in the Gene Analysis Tools, to characterize clusters of enriched 

biological processes in the gene lists available.  

Lastly, JVenn software (http://bioinfo.genotoul.fr/jvenn/) was accessed to create the 

Venn diagrams. Jvenn87 (2015) is online platform used to easily create Venn diagrams. 

These diagrams allow better visual comparison between lists. In this dissertation, Venn 

diagrams were essential for identifying common human orthologues in all the gene 

lists available.  

In the first analysis we used Ensembl IDs from Danio rerio and Xenopus tropicalis to 

create pie charts of Biological Processes, obtained through Functional Classification 

viewed in Pie Chart Tool. This tool was firstly used separately for the time point 

categories previously considered, namely day 1 and day 2/3 and secondly considering 

all time points for up-regulated genes and down-regulated genes. Secondly, a GO-term 

enrichment analysis in PANTHER was used to define which biological processes were 

enriched. Therefore, an over-representation test with default settings was performed 

at the same time points, using Bonferroni correction. Only GO terms with a p-value 

<0.05 were considered. 

Lastly, only human orthologues with Ensembl IDs were uploaded to create the Venn 

diagrams. Venn diagrams were first created for the time points categories mentioned 

above (Day 1 and day 2 for up and down- regulated genes for all species; and later 

included the remaining time points (6h, day 3, day 7, day 10 and day 15) to create 

Venn diagrams which included all up and down-regulated genes from all species. The 

number of genes in all time points is reduced compared to data uploaded to JVenn 

program due to automatic elimination of duplicates. 

Figures 14-16 schematize fluoxograms of processing and analytical actions taken for 

each different dataset. 
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Figure 14. X. laevis data processing fluxogram. 

 

 

 

Figure 15. X. tropicalis data processing fluxogram. 

 

 

Figure 16. Danio rerio data processing fluxogram. 
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Chapter 4 – Results 

 

After data treatment, the number of genes from the initial files (Raw data) was 

significantly reduced and compiled into a file containing genes with known Ensembl 

IDs (Annex file – Complete Data Compilation). The following graphs show differentially 

expressed genes with attributed Ensembl IDs and grouped into FC > 4 for up-regulated 

genes, and FC < -4 for down-regulated genes.  

 

4.1 – Danio rerio  

4.1.1 – Differentially expressed genes 

Graphic 1 shows a representation of the number of genes that show differential 

expression at different time points after SCI in Danio rerio. The data represents gene 

expression in the injured spinal cord at five different time points of regeneration (Day 

1, Day 3, Day 7, Day 10, and Day 15). After data collection (please see files in Annex, 

Table S6 – Table S18), the researchers have observed that a total of 472 genes showed 

differential expression. From this set of annotated genes 37, 38, 131, 35 and 9 are up-

regulated at Day 1, 3, 7, 10 and 15, respectively. On the other hand, 16, 68, 49, 75 and 

14 are down-regulated in Day 1, 3, 7, 10 and 15, respectively. The maximum number of 

genes differentially expressed is found at day 7. It is also evident that the number of 

up-regulated genes is lower at earlier (day 1 and 3) and later (day 15) phases of 

regeneration, and higher at mid-phase time points (day 7 and 10). For down-regulated 

genes the dynamic of the gene expression is similar throughout the five time points, 

exception made for day 7 that is lower than corresponding up-regulated genes for the 

same time point.  

All graphics are normalized to the same scale to a better visualization and comparison 

between number of genes before and after conversion to its human orthologues.  
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Graphic 1 – Distribution of differentially expressed genes both up-regulated and down-regulated after 

SCI at different time points in Danio rerio. Established fold change (FC): >4 for up-regulated genes, <-4 

for down-regulated genes. 

 

 

Graphic 2 shows a representation of the number of known human orthologues that 

show a differential expression in the various experimental time points in Danio rerio. 

The data represents the respective known orthologues for Danio rerio genes 

differentially expressed after SCI at different time points, namely Day 1, 3, 5, 10 and 

15. A total of 414 known human orthologues showed differential expression. From this 

set of genes, 29, 32, 117, 29 and 9 are up-regulated at Day 1, 3, 7, 10 and 15 

respectively. Additionally, 14, 60, 42, 72 and 10 are down-regulated in Day 1, 3, 7, 10 

and 15 respectively. Conforming with the previous results, a maximum number of 

differentially expressed genes is presented at day 7, and up-regulated genes show 

lower expression at earlier and later phases of regeneration and a higher expression 

on mid-phase of regeneration. For down-regulated genes, the number of differentially 

expressed genes follows the same pattern described in graphic 1. 
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Graphic 2 – Distribution of differentially expressed genes (human orthologues) both up-regulated and 

down-regulated after SCI at different time points in Danio rerio. Fold change >4 and <-4. 

 

 

4.1.2 – Gene Enrichment Analysis 

A GO-Term analysis in DAVID was used to couple genes according to their biological 

similarities. Gene ontology tools analyses the genes according to three categories: 

biological processes (GOTERM_BP), that refer to a biological objective to which the 

gene or gene product contributes; molecular functions (GOTERM_MF), defined as the 

biochemical activity of a gene product and cellular components (GOTERM_CC) that 

refer to the place in the cell where a gene product is active92. This categorization 

allows us to turn information into knowledge and extract conclusions about the most 

significant biological processes occurring at each time point of the phases of 

regeneration in the three species. Annotation clusters with enrichment scores higher 

than 2 were considered biologically significant. The biological process chosen to 

represent the GO Term was the one with the higher number of genes.  

  Table 1 shows enriched biological processes in Danio rerio in Day 1, 3, 7 and 10. No 

biologically enriched clusters appeared for day 15. At day 1, Proteolysis presents as 

enriched for up-regulated genes. No enriched biological processes appeared for down-

regulated genes at this time point. Transcription regulation is enriched at day 3 in 

down-regulated genes. No enriched biological processes appeared for up-regulated 

Up-Regulated

Down-Regulated

0

50

100

150

Day 1 Day 3 Day 7 Day 10 Day 15

29 32

117

29
9

14

60
42

72

10

Differentially Expressed Genes -
Human Orthologues

DANIO RERIO

Up-Regulated Down-Regulated



48 

 

genes at this time point. Day 7 presents Transcription regulation and DNA replication 

as biologically enriched for up-regulated genes. No enriched biological processes 

appeared for down-regulated genes at this time point. Day 10 also presents 

Transcription regulation as biologically enriched in up-regulated genes, and DNA 

replication is enriched in down-regulated genes. 

 

Table 1. Significantly enriched gene ontology categories by biological processes (BP) in 

Danio rerio, day 1 for up-regulated genes, day 3 for down-regulated genes and day 7 

for up and down-regulated genes, p-value < 0,05. “% ID” indicates the percentage of 

genes associated with each GO TERM relatively to the total number of genes that were 

categorized.  

Go Term % ID Number of 
genes 

Enrichme
nt Score 

p-value Day & 
Alteration 

 

Proteolysis 

 

18.2 

 

4 

 

2.603 

 

3.24E-02 

Day 1 

Up-Regulated 

Regulation of 
transcription, DNA-

templated 

 

22.5 

 

11 

 

2.308 

 

4.21E-03 

 

Day 3 

 

Down-Regulated  

 

Regulation of 
transcription, DNA-

templated 

 

22.5 

 

11 

 

2.224 

 

4.21E-03 

Regulation of 
transcription, DNA-

templated 

 

16.7 

 

     16 

 

3.835 

 

7.76E-03 

 

Day 7 

     

Up-Regulated  

 

DNA replication 7.3 7 3.310 8.83E-06 

Regulation of 
transcription, DNA-

templated 

 

16.7 

 

      16 

 

2.103 

 

7.76E-03 

Regulation of 
transcription, DNA-

templated 

 

42.1 

 

8 

 

2.375 

 

3.58E-04 

Day 10 

Up-Regulated 

 

Down-Regulated  
DNA replication 10.9 

 

6 2.679 8.80E-06 
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Table 2 depicts enriched biological processes in the collective of up and down-

regulated genes in Danio rerio. This analysis will help us get a better understanding of 

the main biological processes that prove to be important in the process of 

regeneration among the up-regulated genes for the cumulative time points. 

Transcription regulation and DNA replication appear to be enriched in up-regulated 

genes, whereas Transcription regulation, DNA replication, Dorsal/ventral pattern 

formation and Transport appear to be enriched in down-regulated genes. 

 

Table 2. Significantly enriched gene ontology categories by biological processes (BP) in 

Danio rerio, for all up-regulated genes in all time points (Day 1, 3, 7, 10 and 15) and all 

down-regulated genes in all time points. p-value < 0,05. “% ID” indicates the 

percentage of genes associated with each GO TERM relatively to the total number of 

genes that were categorized. 

 

Go Term % ID Number 
of genes 

Enrichment 
Score 

p-value Day & Alteration 

Regulation of 
transcription, 

DNA-templated 

 

19.8 

 

33 

 

5.1511 

 

4.17E-06 

 

 

Sum of the Up-
Regulated genes DNA replication 4.2 

 

7 2.8029 2.41E-04 

 

Regulation of 
transcription, 

DNA-templated 

16.2 

 

26 4.173  

1.15E-03 

 

 

 

 

Sum of the 
Down-regulated 
genes 

Regulation of 
transcription, 

DNA-templated 

16.2 

 

26 3.2194 1.15E-03 

 

DNA replication 4.4 7 2.8555 1.87E-04 

Dorsal/Ventral 
pattern 

formation 

4.4 7 2.7115 7.99E-04 

 

Transport 6.2 10 2.0568 7.92E-01 
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4.1.3 –Biological Processes Analysis 

 

Profile of biological processes differentially regulated after SCI in regenerative stages 

The following pie charts (Figures 17-19) show how biological processes are grouped 

according to time points and per up- or down-regulation of the genes in Danio rerio. 

This analysis will help us get a better understanding of the main biological processes 

that prove to be important in the process of regeneration. Also, it allows to make a 

comparative analysis between the biological processes that are more relevant in the 

up-regulated genes vs. the down-regulated genes. 

On day 1, there are 9 biological processes corresponding to up-regulated genes (Figure 

17a) and 9 biological processes corresponding to down-regulated genes (Figure 17b). 

The biological process related to Biological adhesion is only present in up-regulated 

genes whereas Biogenesis is only present in down-regulated genes. 

 

 

               

 

 

 

 

 

 
 
 
 
Figure 17 - (a) PANTHER Analysis of Biological 
Processes for Day 1 Up-Regulated genes in Danio 
rerio. (b) PANTHER Analysis of Biological 
Processes for Day 1 Down-Regulated genes in 
Danio rerio. 
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On day 3, there are 12 biological processes corresponding to up-regulated genes 

(Figure 18a) and 13 corresponding to down-regulated genes (Figure 18b). Biological 

process related to Biological adhesion is only present in down-regulated genes.  

Collectively, there are 12 biological processes groups for up-regulated genes, and 12 

for down-regulated genes (Figure 19).   

 

 

 

                   

 

 

 

 

 

 
 
 
 
 
Figure 18 - (a) PANTHER Analysis of 
Biological Processes for Day 3 up-
Regulated genes in Danio rerio. 
(b) PANTHER Analysis of Biological 
Processes for Day 3 down-
Regulated genes in Danio rerio. 
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Figure 19 – (a) PANTHER Analysis of 
Biological Processes for the Sum of 
up-Regulated genes in Danio rerio. 
(b) PANTHER Analysis of Biological 
Processes for the Sum of down-
Regulated genes in Danio rerio. 

 

 

 

 

4.1.2.1 – Gene enrichment analysis  

 

Gene enrichment analysis was performed on all gene lists in order to find the most 

pertinent biological processes involves in regeneration of the spinal cord.  

Regarding biological processes up-regulated genes on day 1, the results revealed that 

the categories with the largest number of genes were related to response to 

endogenous stimulus (15%; p-value = 3.44E-02). 6 genes were not classified (30%; p-

value = 0). No enriched biological processes appeared for down-regulated genes at the 

same time point. No enriched biological processes appeared for up-regulated genes on 

day 3. For day 3 and concerning down-regulated genes, the results revealed that the 

categories with the largest number of genes were related to: signal transduction (36%; 

p-value = 2.02E-02), cellular processes (36%; p-value = 2.40E-03) and cell surface 

receptor signaling pathway (31%; p-value = 3.99E-03). Regarding the biological 

processes of the sum of all up-regulated genes after SCI in Danio rerio, the results 

(Table 3) showed that the categories with the largest number of genes were related to: 

cellular processes (55%; p-value = 1.81E-03), developmental processes (25%; p-value = 

8.02E-04), system development (18%; 1.24E-04), cell surface receptor signaling 

pathway (16%; p-value = 1.81E-03) and nervous system development (15%; p-value = 

3.44E-05). 25 genes were not classified (19%; p-value = 0). 
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Table 3 - Significantly enriched gene ontology categories by a biological process for the 

sum of up-regulated genes in Danio rerio. P-value < 0.05. “% ID” indicates the 

percentage of proteins associated with each GO term relative to the total number of 

genes that were categorized. 

Most Significant Biological Processes 

GO term % 
ID 

p-value GO term % 
ID 

p-value 

Cell surface receptor 
signaling pathway 

16 1.81E-03 Mitosis 9 6.89E-04 

Cellular process 55 1.11E-03 Cell cycle 13 3.63E-03 

Nervous system 
development 

15 3.44E-05 Muscle organ 
development 

7 1.02E-02 

System development 18 1.24E-04 Skeletal system 
development 

6 5.44E-03 

Developmental process 25 8.02E-04 Segment specification 5 4.59E-03 

Cell differentiation 9 3.04E-03 Pattern specification 
process 

6 2.84E-03 

 

Regarding biological processes for the sum of all down-regulated genes after SCI in 

Danio rerio, the results (Table 4) showed that the categories with the largest number 

of genes were related to: cellular processes (54%; p-value = 6.31E-03), primary 

metabolic processes (42%; p-value = 1.15E-02) and system development (15; p-value = 

1.20E-02). 27 genes were not classified (21%; p-value = 0). 

 

Table 4 - Significantly enriched gene ontology categories by a biological process for the 

sum of down-regulated genes in Danio rerio. P-value < 0.05. “% ID” indicates the 

percentage of proteins associated with each GO term relative to the total number of 

genes that were categorized. 

Most Significant Biological Processes 

GO term % 
ID 

p-value GO term % 
ID 

p-value 

Primary metabolic process 42 1.15E-02 Mitosis 8 1.66E-02 

Pattern specification 
process 

6 2.26E-03 Cell cycle 12 3.32E-02 

Skeletal system 
development 

6 3.33E-02 Cellular process 54 6.31E-03 

System development 15 1.20E-02 Mesoderm development 9 3.17E-02 

Muscle organ development 7 7.99E-03 Nervous system 
development 

12 8.48E-03 
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4.2 – Xenopus tropicalis  

4.2.1 – Differentially expressed genes 

Graphic 3 shows a representation of the number of genes that show differential 

expression in different time points post SCI in Xenopus tropicalis during a regenerative 

stage (pre-metamorphic stages 49-51). The data represents gene expression in the 

injured spinal cord at three different time points of regeneration: 6h, 24h, and 60h 

post-injury. After data collection from additional files E-MEXP-2420.raw.1.zip and E-

MEXP-2420.processed.1.zip, a total of 3032 genes showed differential expression. 

From this set of annotated genes 4, 988 and 564 are up-regulated at hour 6, 24, and 

60h respectively. On the other hand, 2, 655 and 819 are down-regulated at hour 6, 24, 

and 60h respectively. A maximum number of genes differentially expressed was found 

at day 1 (24h). The minimum number of expressed genes appears in an earlier phase 

(6h). The number of expressed genes either up- and down- regulated tends to increase 

over time, reaching its peak in an intermediate stage (24h – 1 day) and decreasing in 

later phases of regeneration (60h – 2.5 days). All graphics are normalized to the same 

scale for a better visualization and comparison of the number of Xenopus genes and 

the number of its orthologues. 

 

 

Graphic 3 – Distribution of differentially expressed genes both up-regulated and down-regulated after 

SCI at different time points in Xenopus tropicalis. Established fold change (FC): >4 for up-regulated 

genes, <-4 for down-regulated genes. 
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Graphic 4 shows a representation of the number known human orthologues that show 

a differential expression at different time points during the regenerative stage in 

Xenopus tropicalis after SCI. A total of 2138 known human orthologues showed 

differential expression. From this set of genes, 4, 702 and 386 are up-regulated at hour 

6, 24 and 60h respectively. Complementary, 0, 445 and 661 are down-regulated at 

hour 6, 24 and 60h, respectively. Conforming with the previous results, the number of 

differentially expressed genes is very low at early phases of regeneration, with a large 

increment on intermediate phase (24h), decreasing differential expression in later 

phases of regeneration (60h).  

 

 

Graphic 4 – Distribution of differentially expressed genes (human orthologues) both up-regulated and 

down-regulated after SCI at different time points in Xenopus tropicalis. Established fold change (FC): >4 

for up-regulated genes, <-4 for down-regulated genes. 
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point. After 60 hours, Collagen catabolism processes are enriched for up-regulated 

genes. No enriched biological processes appeared for down-regulated genes.  

Table 6 shows enriched biological processes for the collective of up and down-

regulated genes. For up-regulated genes, one biological process is enriched, namely 

Collagen catabolism processes. On the other hand, import of potassium is biologically 

enriched in down-regulated genes. 

 

Table 5. Significantly enriched gene ontology categories by biological processes (BP) in 

Xenopus tropicalis, for 24h for down-regulated genes, 60h for up-regulated genes p-

value < 0,05. “% ID” indicates the percentage of genes associated with each GO TERM 

relatively to the total number of genes that were categorized. 

Go Term % ID Number of 
genes 

Enrichment 
Score 

p-value Day & Alteration 

Epoxygenase 
P450 pathway 

 

2.1 

 

 

5 

 

2.097 

 

2.22E-03 

 

Day 1 (24h) 

Down-Regulated 
genes 

Collagen 
catabolic 
process 

1.3 3 2.237 2.16E-03 Day 2.5 (60h) 

Up-Regulated 
genes 

 

 

Table 6. Significantly enriched gene ontology categories by biological processes (BP) in 

Xenopus tropicalis, for all up-regulated genes in all time points (6h, 24h, and 60h) and 

all down-regulated genes in all time points. p-value < 0,05. “% ID” indicates the 

percentage of genes associated with each GO TERM relatively to the total number of 

genes that were categorized.  
 

Go Term % ID Number 
of genes 

Enrichment 
Score 

p-value Alteration 

Collagen 
catabolic process 

0.8 

 

3 2.116 4.83E-03 

 

Sum of the Up-
Regulated genes 

Potassium ion 
import 

0.9 

 

4 2.882 1.12E-02 

 

Sum of the 
Down-regulated 

genes 
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4.2.3 – Biological Process Analysis 

The following pie charts (Figure 20-22) show how biological processes are grouped 

according to time points and per up or down-regulation of the genes in Xenopus 

tropicalis. After 24h, there are 12 biological processes corresponding to up-regulated 

genes (Figure 20a) and 12 biological processes corresponding to down-regulated genes 

(Figure 20b).  

            

 

 

 
 
 
 

 
 
 
 

 
 
 
Figure 20 – (a) PANTHER Analysis of 
Biological Processes for 24h Up-
Regulated genes in Xenopus 
tropicalis. (b) PANTHER Analysis of 
Biological Processes for 24h Down-
Regulated genes in Xenopus 
tropicalis. 
 
 

 

 

 

 

 

After 60h, there are 12 biological processes corresponding to up-regulated genes 

(Figure 21a) and 12 biological processes corresponding to down-regulated genes 

(Figure 21b).  

Collectively, there are also 12 biological processes in up and down-regulated genes for 

Xenopus tropicalis (Figure 22). 
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Figure 21 – (a) PANTHER Analysis of 
Biological Processes for 60h Up-
Regulated genes in Xenopus 
tropicalis. (b) PANTHER Analysis of 
Biological Processes for 60h Down-
Regulated genes in Xenopus 
tropicalis 

 

 

Figure 22 – (a) PANTHER Analysis of Biological Processes for the Sum of Up-Regulated genes in Xenopus 
tropicalis. (b) PANTHER Analysis of Biological Processes for the Sum of Down-Regulated genes in 
Xenopus tropicalis. 
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4.2.2.1 – Gene enrichment analysis 

According to the analysis of the most pertinent biological processes, the results 

revealed that the categories with the largest number of genes at 24h concerning up-

regulated genes, were related to: immune system process (9,3%; p-value = 8.27E-03), 

and cellular component biogenesis (0,4%; p-value = 4.11E-02). 174 genes were not 

classified (32.3%; p-value = 0). The results for 24 hours after SCI concerning down-

regulated genes (Table 7) revealed that the categories with the largest number of 

genes were related to: cellular process (53%; p-value = 8.76E-06), response to stimulus 

(27%; p-value = 6.97E-11), cell communication (22%; p-value = 1.38E-05), signal 

transduction (20%; p-value = 1.24E-04) and biological regulation (19%; p-value = 1.73E-

04). 136 genes were not classified (27%; p-value = 0). 

 

Table. 7 – Significantly enriched gene ontology categories by a biological process at 

24h, down-regulated genes in Xenopus tropicalis. P-value < 0.05. “% ID” indicates the 

percentage of proteins associated with each GO term relative to the total number of 

genes that were categorized. 

Most Significant Biological Processes 

GO term % 
ID 

p-value GO term % 
ID 

p-value 

Cell adhesion 6.6 7.24E-04 Multicellular organism 
process 

15 1.38E-03 

Biological adhesion 6.6 7.24E-04 Biological regulation 19 1.73E-04 

Response to stimulus 27 6.97E-11 Cell communication 22 1.38E-05 

Developmental process 15 9.08E-03 Signal transduction 20 1.24E-04 

System process 13 6.00E-04 Cellular process 53 8.76E-06 

 

Regarding biological processes of up-regulated genes at 60h after SCI, no biological 

processes were found enriched. 141 genes were not classified (33%; p-value = 0). 

Regarding biological processes of down-regulated genes, the results revealed that the 

categories with the largest number of genes at 60h post injury were related to: cellular 

processes (53%; p-value = 1.50E-06), response to stimulus (25%; p-value = 4.34E-09), 

cell communication (21%; 1.31E-04) and signal transduction (18%; p-value = 2.23E-03). 

180 genes were not classified (28%; p-value = 0) (Table 8). 
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Table 8. Significantly enriched down-regulated biological processes at 60h post-SCI in 
Xenopus tropicalis. P-value < 0.05. “% ID” indicates the percentage of proteins 
associated with each GO term relative to the total number of genes that were 
categorized. 

Most Significant Biological Processes 

GO term % 
ID 

p-value GO term % 
ID 

p-value 

Biological regulation 16 4.98E-02 neurological system process 12 1.12E-05 

Signal transduction 18 2.23E-03 system process 15 9.47E-09 

Cell communication 21 1.31E-04 single-multicellular organism 
process 

18 6.40E-09 

Cellular process 53 1.50E-06 multicellular organismal 
process 

18 7.39E-09 

Developmental process 14 3.46E-03 response to stimulus 15 4.34E-09 

 

Table. 9 – Significantly enriched gene ontology categories by a biological process for 
the sum of down-regulated genes in Xenopus tropicalis. P-value < 0.05. “% ID” 
indicates the percentage of proteins associated with each GO term relative to the total 
number of genes that were categorized. 

Most Significant Biological Processes 

GO term % 
ID 

p-value GO term % 
ID 

p-value 

Regulation of biological 
process 

15 3.54E-05 System process 14 2.25E-09 

Biological regulation 17 3.30E-06 Single-multicellular 
organism process 

16 6.77E-09 

Signal transduction 19 3.41E-08 Multicellular organism 
process 

16 4.25E-09 

Cell communication 21 1.09E-09 Developmental process 13 6.47E-04 

Cellular process 52 7.63E-09 Response to stimulus 25 1.41E-15 

Neurological system 
process 

11 6.09E-06 Intracellular signal 
transduction 

9 2.47E-03 

 

The analysis showed that the biological processes with the largest number of collective 

up-regulated genes were related to: response to stimulus (22%; p-value = 3.81E-04), 

signal transduction (17%; p-value = 5.42E-03) and immune system response (9%; 

1.59E-03). 234 genes were not classified 32%; p-value = 0). Regarding the down-

regulated proccesses, results (Table 9) revealed that the categories with the largest 

number of collective down-regulated genes were related to: cellular process (52%; p-

value = 7.63E-09), response to stimulus (25%; p-value = 1.41E-15), cell communication 

(21%; p-value = 1.09E-09) and signal transduction (19%; p-value = 3.41E-08). 
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4.3 - Xenopus laevis 

4.3.1 – Differentially expressed genes 

Graphic 5 shows a representation of the number of genes that show differential 

expression at different time points following SCI in Xenopus laevis, during the 

regenerative stage. Genes were considered as differentially expressed when their fold 

change was higher than 4. This high fold change cutoff allows a more restrict selection 

of the genes that play a pivotal role in regeneration of the spinal cord.  

The data represents gene expression in the injured spinal cord at three different time 

points of regeneration (Day 1, Day 2, and Day 6). After data collection from Additional 

file 3, a total of 920 genes showed differential expression. From this set of annotated 

genes 304, 207 and 113 are up-regulated at Day 1, 2, and 6 respectively. On the other 

hand, 98, 106 and 92 are down-regulated in Day 1, 2 and 6, respectively. As expected 

from the analysis of the lists containing differentially expressed transcripts, the 

number of transcripts that are up-regulated throughout the three time points is higher 

than the ones that are down-regulated. Also, while up-regulated genes’ expression 

decreases over time, down-regulated genes maintain a constant pattern.  

 

 

Graphic 5 - Distribution of differentially expressed genes both up-regulated and down-regulated after 

SCI at different time points in Xenopus laevis. Established fold change (FC): >4 for up-regulated genes, <-

4 for down-regulated genes. 
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Graphic 6 shows a representation of the number known human orthologues with a 

differential expression in three different time points (day 1, day 2 and day 6) after SCI, 

during the regenerative stage in Xenopus laevis. A total of 157 known human 

orthologues showed differential expression. From this set of genes, 47, 61 and 13 are 

up-regulated at day 1, 2 and 6 respectively. Complementary, 13, 13 and 10 are down-

regulated at day 1, 2 and 6, respectively. The distribution of differentially expresses 

genes is somewhat distinct from Graphic 5. According to the data, the maximum peak 

of differentially expressed genes occurs in day 2 for up-regulated genes, as for the 

down-regulated genes, the variation is not significant. 

 

 

Graphic 6 - Distribution of differentially expressed genes (human orthologues) both up-regulated and 

down-regulated after SCI at different time points in Xenopus laevis. Established fold change (FC): >4 for 

up-regulated genes, <-4 for down-regulated genes. 

 

 

4.3.2 – Gene Enrichment Analysis 

Table 10 shows enriched biological processes for day 1 and day 2. Day 1 presents 

biological processes such as Cell cycle and Collagen catabolism as enriched in up-

regulated genes, and Immune response processes in down-regulated genes. On the 

other hand, day 2 presents only enriched biological processes for up-regulated genes, 

namely in Cell division, Microtubule-based movement, and Mitosis.  
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Table 10. Significantly enriched gene ontology categories by biological processes (BP) 

in Xenopus laevis, day 1 for up and down-regulated genes and day 2 for up-regulated 

genes, p-value < 0,05. “% ID” indicates the percentage of genes associated with each 

GO TERM relatively to the total number of genes that were categorized. 

Go Term % ID Number 
of genes 

Enrichment Score p-value Day & 
Alteration 

Cell Cycle 10.4 

 

10 4.786 2.76E-09 

 

Day 1 

Up-
Regulated 

genes 
Collagen 
Catabolic 
Processes 

3.1 3 3.249 1.69E-03 

 

Immune 
Response 

13.8 

 

4 

 

2.002 3.46E-04 

 

Down-
Regulated 

genes 

Cell Division 17.4 19 9.352 1.01E-12 Day 2 

 

 

 

 

Up-
Regulated 

genes 

Microtubule-
based 

Movement 

8.3 9 8.519 6.40E-10 

Regulation of 
G2/M transition 

of mitotic cell 
cycle 

2.8 

 

3 5.028 8.78E-04 

Mitotic 
chromosome 
condensation 

3.7 

 

4 3.802 9.52E-05 

DNA replication 
initiation 

4.6 

 

5 2.391 8.73E-05 

 

 

Table 11 depicts enriched biological processes for the collective of up and down-

regulated genes. Accordingly, biological processes enriched in up-regulated genes 

include cell division, microtubule-based movement, mitosis, and collagen catabolism 

processes. On the other hand, immune response processes are enriched in down-

regulated genes. 
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Table 11. Significantly enriched gene ontology categories by biological processes (BP) 

in Xenopus laevis, for all up-regulated genes in all time points (day 1, 2 and 6) and all 

down-regulated genes in all time points. p-value < 0,05. “% ID” indicates the 

percentage of genes associated with each GO TERM relatively to the total number of 

genes that were categorized.  

Go Term % ID Number of 
genes 

Enrichment 
Score 

p-value Alteration 

Cell Division 9.9 21 8.906 1.01E-11 
 
 
 
 
 
 
 

Sum of the 
Up-

Regulated 
genes 

Microtubule-
based movement 

4.2 

 

9 8.541 1.26E-08 

 

DNA replication 
initiation 

5.7 

 

12 6.123 4.75E-15 

 

Regulation of 
G2/M transition 

of mitotic cell 
cycle 

1.4 

 

3 3.761 1.83E-03 

 

Mitotic 
chromosome 
condensation 

1.9 

 

4 3.159 2.85E-04 

 

Collagen catabolic 
process 

2.4 5 2.813 1.81E-05 

Immune response 8.9 

 

7 5.392 2.18E-06 

 

Sum of the 
Down-

Regulated 
Genes 

 

 
4. 4 – Analysis of common orthologues using Venn Diagrams  

Using JVenn diagrams87, we were able to obtain differentially expressed genes that are 

simultaneously present in more than one species at a specific time point (Figure 23 and 

24) or in the total experimental periods evaluated, up or down-regulated (Figure 25).  

Figure 23a) shows up-regulated genes divided by species. From a total of 407 up-

regulated genes, for the same time point, 1 gene was found as present in all three 

species: MMP9; 7 genes were found to be common for X. tropicalis and X. laevis: 
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DHRS9, OLFM4, CSF3R, ALDH1A3, HSP90AA1, PRSS57 and STEAP4; and 2 shared genes 

between Xenopus tropicalis and D. rerio, namely ADAM9 and IL1B.  

Regarding down-regulated genes, illustrated in Figure 23b), the resulting diagram 

indicates that from a total of 360 down-regulated genes in day 1, uploaded to JVenn 

program, only 1 gene appeared to be simultaneously present in X. laevis and X. 

tropicalis: CYP26A1, but no common genes were revealed between the three species. 

 
 

 
Figure 23 – (a) Venn diagram showing all up-regulated human orthologues detected at day 1 for each 

species. (b) Venn diagram showing all down-regulated human orthologues detected for day 1 for each 

species. 

 

 

Figure 24a) depicts up-regulated genes in day 2 separated by specie. The results 

indicate 3 common genes between X. laevis and X. tropicalis: RACGAP1, MMP9, and 

LRAT, from a total of 258, and no common genes between the three species.  

From a total of 511 down-regulated genes in day 2 after SCI, there were no common 

genes between the three species, 2 common genes differentially expressed shared 

between X. tropicalis and D. rerio: HSP90AA1 and PAXIP1, and 1 shared gene between 

X. laevis and X. tropicalis: CYP1A1 (Figure 24b). 

b. a. 
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Figure 24 - (a) Venn diagram showing all up-regulated human orthologues detected at day 2 for each 

species. (b) Venn diagram showing all down-regulated human orthologues detected for day 2 for each 

species. 
 

 

Figure 25a) shows collectively all up-regulated genes for all time points in the three 

species. The resulting diagram indicates that from a total of 692 up-regulated genes, 

13 genes were common between X. laevis and X. tropicalis: DHRS9, OLFM4, CSF3R, 

ALDH1A3, HSP90AA1, PRSS57, STEAP4, RACGAP1, NCF2, PLEK, SASH3 and KMO; 5 

between Danio rerio and X. tropicalis: IL1B, ADAM9, ST6GAL1, MGAT3 and RUNX2; 9 

genes shared by X. laevis and D. rerio: MCM2, MCM4, SUV39H1, KIF11, LEF1, TYMS, 

CCNA2, SOCS3, and CDC20; and 1 common gene to all three species: MMP9.  

Figure 25b) displays in sum all down-regulated genes from all time points in the three 

species. The resulting diagrams indicate that from a total of 827 down-regulated 

genes, 9 genes were common between X. tropicalis and D. rerio: CDH23, SCN4B, HLA-

B, NOS2, HSP90AA1, TRPV4, PAXIP1, FZD3, and KCTD16; 3 genes were common 

between X. laevis and X. tropicalis: CYP26A1, CYP1A1 and CCNO, but there were no 

common down-regulated genes between the three species. 

a. 

 

b. 
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Figure 25 - (a) Venn diagram showing all up-regulated human orthologues detected at all time points for 

each species. (b) Venn diagram showing all down-regulated human orthologues detected for all time 

points for each species. 

 

  

a. 

 

b. 
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Table 12 – List of human orthologues that are simultaneously differentially expressed 
in the collective sum of up-regulated genes in more than one species, their biological 
function and reported relations with spinal cord, tissue injury and regeneration. 

Gene Biological 

Function 

Role in spinal cord, 
tissue injury and 

regeneration 

DHRS9 Involved in Retinol Metabolism93,94 Not documented 

OLFM4 Expressed in the inflamed colonic 
epithelium. The encoded protein is an 
antiapoptotic factor and an extracellular 
matrix glycoprotein that promotes tumor 
growth and facilitates cell adhesion95. 

Marked up-regulation 
(480 fold) after SCI at P28 

in Monodelphis 
domestica96. 

CSF3R The C-terminus of CSF3R is required for 
SHP1 down-regulation of CSF3-induced STAT 
activation97. 

Not documented 

ALDH1A3/ALDH6 Encodes retinoid signals that participate in 
vertebrate morphogenesis. Affected tissues 
include the eye, craniofacial structures, 
heart, circulatory, urogenital, respiratory 
system, limbs and the anterior-posterior axis 
of the central nervous system98. 

ALDH6 was found on a 
subset ventral of spinal 

cord interneurons98. 

GEO Profiles: Mus 
musculus, ID: 28010789. 

HSP90AA1/Hsp90α Protection of tissues from environmental 
insults; repair of damage tissue; promotes 
cell motility99. 

Hsp90α binds to LRP-1 in 
extracellular space 

promoting cell motility 
and wound closure; repair 
on non-cutaneous injured 

tissues99. 

PRSS57 Encodes an arginine-specific serine protease 
which undergoes proteolytic activation 
before storage in azurophil granules, in 
neutrophil cells. Plays a role in defense 
against microbial pathogens100.  

Not documented 

STEAP4 Appears to be involved in responses to 
nutrients and inflammatory stress, fatty 
acid, and glucose metabolism101. 

Attenuates high glucose concentrations and 
inflammation102.  

Not documented 

RACGAP1 Plays a regulatory role in the initiation of 
cytokinesis, control of cell growth, tumor 
malignancy and differentiation103.  

Not documented 

NCF2/p67-phox Cytoplasmic polypeptide subunit of 
phagocyte NADPH oxidase that plays a role 
in innate immunity. Mutations in NCF2 can 
result in immunodeficiency104.  

Not documented 

PLEK/P47 P47phox is a subunit of NADPH oxidase Regeneration of skeletal 
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involved in production of ROS105;  muscles105; PLEK 
represents a risk for 

spinal cord atrophy106. 

SASH3 Involved in cell signaling. May function as a 
signaling adapter protein in lymphocytes. 

Stimulates cell migration and 
proliferation107.  

Not documented 

LRAT Implicated in Vitamin-A metabolism and 
hepatic retinoid stores. 

Hepatic retinoid stores 
levels provided by LRAT 

are needed for liver 
regeneration after liver 

injury108. 

KMO/ DJ317G22.1 The kynurenine pathway is an important 
mediator of neuropathic pain pathology109. 

Has increased mRNA 
levels in the spinal cord 
and DRG after injury. Its 

inhibition results in 
reduced neuropathy109. 

IL1B Involved in the healing process in the 
immune microenvironment and in the tissue 
injury response. Impairs MSC proliferation, 
migration, and differentiation by inhibiting 
the Akt/GSK-3β/β-catenin pathway110.  

IL1B negatively regulate 
bone regeneration in the 

mouse. Inhibits the 
regenerative capacities of 

mesenchymal stem 
cells110. 

ADAM9 Type I trans-membrane proteins involved in 
proteolysis, adhesion, cell fusion, and in cell 
signal transduction. Plays a role during 
embryonic development and tissue 
formation111. 

Expression of ADAM9 
during chicken spinal cord 

development111 

ST6GAL1 Involved in glycosylation of macromolecules 
which in turn is key to ensuring normal cell 
differentiation and embryogenesis. 
Contributes to the regulation of pluripotency 
in human pluripotent stem cells112 

Not documented 

MGAT3 Transporter of gamma-aminobutyric acid 
(GABA). It is involved in the regulation of the 
biosynthesis and biological function of 
glycoprotein oligosaccharides. 

Not documented 

RUNX2 Is one of the major transcription factors 
required for osteogenic and osteoblastic 
differentiation and skeletal morphogenesis 
and acts as a scaffold for nucleic acids and 
regulatory factors involved in skeletal gene 
expression113. 

Not documented 

MMP9 Involved in the breakdown of extracellular 
matrix in physiological processes. Involved in 
cell migration. 

MMP9’ pathway is up-
regulated is Zebrafish 

after SCI81; altered 
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expression detected in 
spinal cord and 

surrounding tissues in rat 
after SCI114 

MCM2 Involved in the initiation and elongation of 
eukaryotic genome replication, particularly 
the formation and elongation of the 
replication fork115.  

MCM2 is a hub protein in 
PPI network constructed 

for SCI in rats. Up-
regulation of MCM2 is 

related to cell efforts in 
repairing DNA and 

regenerate themselves115. 

MCM4 Involved in the initiation and elongation of 
eukaryotic genome replication, particularly 
the formation and elongation of the 
replication fork115. 

Not documented 

SUV39H1 SUV39H1 plays a role in limiting genomic 
instability in dividing cells. SUV39H1 
downregulation may contribute to the 
establishment of senescence by increasing 
genomic instability116.  

SUV39H1 showed 
differential expression in 

the regenerating fin of 
zebrafish117. 

KIF11/Eg5/kinesin-
5 

Motor protein involved in spindle formation 
(chromosome positioning, centrosome 
separation and establishment of a bipolar 
spindle) during mitosis118. Expressed in the 
course of development during of axonal 
growth and in lower concentrations in 
adults119. 

Inhibition of Kinesin-5 
increases axonal length in 

adult mice and enables 
them to overcome CSPG 

barrier119. 

LEF1 Downstream effector and transcriptional 
target of Wnt signaling. Proliferation-
associated transcription factor. Directly 
down-regulated by knockdown of 
endogenous β-catenin120. 

Target of Wnt signaling, 
being induced in wound 

epithelial cells adjacent to 
the amputation plane 12h 

post-amputation. 
Consistently down-

regulated at day 1 post-
injury121. 

TYMS Involves in DNA repair and replication. Not documented 

CCNA2 Involved in the regulation of the cell cycle, 
promoting transition through G1/S and 
G2/M. 

Involved in cell cycle 
pathways, up-regulated in 
the hippocampus over of 
a few months after SCI122; 

decreasing levels of 
CCNA2 with age 
contributes to 

dysfunction of liver 
regeneration123. 

SOCS3 In the CNS SOCS3 expression in neurons, 
oligodendrocytes, astrocytes and microglia is 
regulated by a wide range of cytokines (IL-4, 

SOCS3-dependent 
Jak/STAT pathway plays a 

critical role during 
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-6 and -10, interferon-β and -ϒ) and 
lipopolysaccharide. Involved in inflammatory 
responses after neural injury124. 

Suppressor of axon growth125. 

neuronal loss during 
secondary damage after 
SCI124; SOCS3 negatively 
regulates mitochondrial 

STAT3 after SCI126,127. 

CDC20 Involved in cell division, including nuclear 
movement prior to anaphase and 
chromosome separation.  Plays an essential 
role in dendrite morphogenesis in 
postmitotic neurons128 

After SCI, Csc20 is 
enriched at the 

centrosome in neurons 
which is crucial for Cdc20-

depended dendrite 
development128. 

 

 

Table. 13 – List of human orthologues that are simultaneously differentially expressed 
in the collective sum of down-regulated genes in more than one species, their 
biological function and reported relations with spinal cord, tissue injury and 
regeneration. 

Gene Biological 

Function 

Role in spinal cord, 
tissue injury and 

regeneration 

CDH23 Involved in stereocilia organization and hair 
bundle formation. 

Regeneration of tip links in 
auditory hair cells129 

SCN4B The protein encoded is one of the several 
sodium channel beta subunits which interact 
with voltage-gated alpha subunits to change 
sodium channel kinetics130. SCN4β is a novel 
substrate of β site amyloid precursor protein 
cleaving enzyme (BACE1) and ϒ-secretase. 
Plays an important role in the control of 
electrical signaling and cell adhesion130. Acts 
as a metastasis-suppressor gene preventing 
hyperactivation of cell migration in breast 
cancer131. 

Not documented 

HLA-B Plays a central role in the immune system by 
presenting peptides derived from the 
endoplasmic reticulum lumen. 

Levels of HLA-B was found 
elevated in patients who 

suffered from SCI or 
severe head trauma132. 

NOS2 Reactive free radical which acts as a biological 
mediator in several processes including 
neurotransmission and antimicrobial and 
antitumoral activities. 

NOS levels are increased 
immediately after an 

injury to the spinal cord; is 
thought to play a role in 

secondary auto-
destruction of neural 
tissue following spinal 

cord injuries133. 
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HSP90AA1/ 
Hsp90α 

Protection of tissues from environmental 
insults; repair of damage tissue; promotes cell 
motility99. 

Hsp90α binds to LRP-1 in 
extracellular space 

promoting cell motility 
and wound closure; repair 
on non-cutaneous injured 

tissues99. 

TRPV4 Calcium channel, involved in the pathogenesis 
of age-related neurodegenerative diseases. 
Extensively expressed in the brain, including 
the hippocampal neurons, hypothalamus, 
basal ganglia and cerebellum, and in the spinal 
cord134.  

TRPV4 channels mediate 
Ka-K-Cl-co-transporter-

induced brain edema after 
TBI135; TRPV4 

immunoreactivity is 
increased in the spinal 

cord, hippocampal 
formation, thalamus, basal 
nuclei and cerebellum of 

aged rats134. 

PAXIP1 Involved in DNA damage response and in 
transcriptional regulation. Plays a role in early 
development. 

Not documented 

FZD3 Receptor for Wnt proteins. Coupled to the 
beta-catenin canonical signaling pathway136. 

Suppression of Wnt/β-
catenin signaling is 
required for lens 

regeneration in Xenopus 
laevis136. 

KCTD16 The KCTD subunits are cytosolic proteins that 
determine the kinetics of the GABAB receptor 
response137. 

Not documented 

CYP26A1 Encodes a member of the cytochrome P450 
superfamily which is involved in the 
metabolism of various substances in the liver 
and small intestine138. 

Important in the 
differentiation of oval cells 
into hepatoblast-like cells 

in the injured liver98; 
involved in peripheral 

nervous system 
regeneration (optic nerve 
injury) in the adult frog139 

CYP1A1 Encodes a member of the cytochrome P450 
superfamily which is involved in drug 
metabolism and synthesis of cholesterol, 
steroids, and other lipids98. 

Not documented 

CCNO Involved in the regulation of the cell cycle. 
Disruption of this gene is associated with 
primary ciliary dyskinesia-19. 

Not documented 
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Chapter 5 - Discussion and Conclusion 

 

 The goal of this dissertation was to obtain a better understanding of the extensiveness 

and implication of gene expression in the regeneration of spinal cord. To achieve this 

goal, three studies involving regenerative animal models (Xenopus laevis, Xenopus 

tropicalis, and Zebrafish) were used. The transcriptomic data was manipulated 

according to our goal standard: finding robust candidate genes that could possibly be 

modulated in humans to improve spinal cord repair. For this reason, regarding data 

analysis of up and down-regulated genes, a fold change of > 4 and <-4 (or Log2 > 2 and 

Log2 < -2) was chosen as a threshold. This does not to replicate the original studies, 

since the fold changes applied in these were fold change > 2 and <-2. 

One of the limitations encountered when doing this dissertation is due to the fact that 

not many genome-wide expression studies were yet conducted on regenerative animal 

models when concerning complete spinal cord injuries. On the other hand, many 

practical limitations also arise from lack of information databases. For example, neither 

PANTHER nor BioMart possesses Xenopus laevis database, which made it more difficult 

when enrichment analysis was performed, or when a single gene ID tried to be applied 

to all species.  

Another difficulty to overcome was related to the limited human orthologues that are 

documented. This was more obvious, but not limited to, the case of Xenopus laevis, 

where a large amount of data was lost when the correspondence was made. Data loss 

is evident in graphs 2, 4 and 6. 

Lastly, the major limitation pertains to the fact that all three studies had individual 

methodologies and therefore the results vary significantly among them in terms of the 

number of transcripts. This may also be due to the fact that there may have been more 

extensive losses of genes throughout the several analyses in one study that in the 

others.  

The first conclusion of this study pertaining the first-time point established for the 

normalization (Day 1) is that gene up-regulation of more than 4-fold represents in 

average 69% of gene expression, whereas on day 2/3, it only represents 43%. 
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Also, throughout the other time points, gene up-regulation is always more marked 

than gene down-regulation, which is common to all three studies. For instance, in 

Danio rerio, gene up-regulation is 11% higher than gene down-regulation; in Xenopus 

tropicalis, gene up-regulation is 5% higher, and in Xenopus laevis the percentage is the 

highest (53%). This suggests that there are more robust differentially expressed genes 

in up-regulation than down-regulation, demarcating more pathway activation than 

silencing.  

From non-enrichment biological process analysis of Danio rerio (Fig. 17-21), we were 

able to discern the common processes that coherently appear throughout the time 

points and species. Regarding up-regulated genes, biological processes present include 

cellular processes, biological regulation, biological adhesion, metabolic processes, 

developmental processes, response to stimulus and reproduction. Similarly, on down-

regulated genes, biological processes executed by differentially expressed genes 

pertain to cellular processes, biogenesis, developmental processes, response to 

stimulus and biological adhesion. 

After gene enrichment analysis, of danio rerio genes, it was detected a high 

predominance of genes involved in developmental processes such as “nervous system 

development”, “muscle organ development” and “skeletal system development”, in 

up-regulated genes, whereas the cellular processes categories “cell communication“ 

and “cell cycle” was observed in the down-regulated genes. Categories related to 

response to stimulus (“immune response”) were more enriched in down-regulated 

genes. Genes belonging to the cell cycle categories “mitosis”, “cell division” and “DNA 

replication” were more expressed in up-regulated genes throughout the time points.  

We can also conclude from the Venn diagrams that common genes are more abundant 

when comparing Xenopus tropicalis and Xenopus laevis than versus the other species. 

Among the three species, we have encountered 28 common genes in total in the sum 

of the up-regulated genes and 12 among the sum of down-regulated genes. 

Despite some of them not have been documented has being involved in spinal cord 

regeneration, or even regeneration for that matter (ex: CYP1A1, CCNO, KCTD16, and 

PAXIP1), several of them have. For example, ADAM9 which been reported to spinal 

cord regeneration in chicks111 is a member of the type I trans-membrane proteins, and 

is involved in proteolysis, adhesion, cell fusion and in cell signal transduction. NOS2’ 
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levels are increased immediately after the injury to the spinal cord being thought to 

play a role in secondary auto-destruction of neural tissue following spinal cord 

injuries133, among others such as HLA-B, CDC20, and SOCS3. Interest may be given to 

genes HSP9OAA1 and MMP9, which appear in two days separately, initially as up-

regulated (day 1) and in later stages as down-regulated (day3). HSP9OAA1 or Hsp90α 

has been correlated to pathological or stressful conditions leading to its rapid secretion 

by keratinocytes and dermal fibroblasts. Heat-shock protein 90 alfa will then promote 

cell motility and wound closure after its binding to the LDL-receptor related protein-1 

(LRP-1) in extracellular space99. Similarly, MMP-9, an extracellular matrix 

metalloproteinase, responsible for extracellular matrix breakdown, has been related to  

altered pathways in Zebrafish81 and rats140 after SCI. In fact, MMP-9 altered expression 

has become somewhat of a signature in SCI events, and along with MMP-2 highly 

regulates activities during wound healing140. MMPs are modulated by physiological 

inhibitors such as tissue inhibitors of matrix metalloproteinases (TIMPS), α2-

macroglobulin being also highly altered by neutrophil infiltration. Another important 

find regarding MMP9 is pertaining to its involvement in the functional clearance of 

CSPG in vitro. In fact, it was found that areas free of CSPG coincided with MMP-9 

expression141. Other genes also seem to play important roles in either the 

inflammatory response after SCI or regeneration of specific organs. For example 

SOCS3-dependent Jak/STAT pathway plays a critical role during neuronal loss during 

secondary damage after SCI124. STAT3’ pathway which when activated translates into 

higher levels of neurite and dendrite outgrowth, is negatively regulated by SOCS3 after 

its binding to both the JAK kinase and cytokine receptor. For this reason, inhibition of 

SOCS3 with IL-6 will lead to increased outcomes in neurite and dendrite outgrowth124. 

SOCS3 functions are nonetheless quite noticeable when regarding infections once 

SOCS3’ expression is rather stimulated by cytokine or innate immune response 

receptor agonists present in several viruses, bacteria, and parasites142. Another very 

interesting gene is KIFF11 also known as kinesin-5, a homotetrameric motor protein 

that generates forces between neighboring microtubules. Kinesin-5 seems to act as a 

brake on cytoplasmic dynein, and its inhibition would result in faster growing axons 

after injury119.  CDC20 has also been localized as enriched in centrosomes of neurons 

playing a crucial role during cell cycle, and particularly anaphase. CDC20 is a 
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coactivator to anaphase-promoting complex (APC), which is essential in dendrite 

morphogenesis143. Other genes such as SUV39H1 have been related to fin regeneration 

in Zebrafish116 and LRAT108 which plays a crucial role during hepatic regeneration after 

liver injuries.  

 

These group of genes, which in one way or the other seem to guide regenerative 

animals into achieving what adult mammals cannot: spinal cord regeneration, are the 

ones that may deserve our attention for future modulation prospects.  
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Chapter 7 – Annexes 
 
 

 

7. 1 – Regenerative capabilities of animal models of regeneration 

 
Table 1. Model systems in regeneration research, and their genetic and genomic tools. 
(Adapted from: 74). 
 
Table 1 - Model systems in regeneration research,  
and their genetic and genomic tools. 

  

Species  
or group 

Regenerative 
Capabilities 

Microarr
ay 

Transge
nesis 

Knockout
/ Knock 
down 

Sequenced 
Genome 

Invertebrates  

Hydra All tissues and 
organs 

No Yes RNAi No 

Planarians All tissues 
(neurons, 
muscles, 
epithelia) and 
organs (brain, 
sensory organs, 
digestive system, 
musculature) 

Yes No RNAi Yes 

Ascidians All tissues and 
organs 

Yes Yes Morpholi
nos 

Yes 

Vertebrates  

Newts Limbs, tail, heart, 
lens, spinal cord, 
brain, jaw, retina, 
hair 
cells of the inner 
ear 

Yes Yes Morpholi
nos 

No 

Axolotls Limbs, tails, 
heart, spinal 
cord, brain 

Yes Yes Morpholi
nos 

No 

Frogs Pre-metamorphic 
limbs, tail, retina, 
lens, hair cells of 
the inner ear 

Yes Yes Morpholi
nos 

Yes 

Zebrafish Fins, tail, heart, 
liver, spinal cord, 
hair cells of inner 

Yes Yes Mutagen
esis, 
Morpholi

Yes 
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7. 2 – Dataset 1: Xenopus laevis 

This dataset was obtained from PubMed Central, with the PMCID: PMC4046850. From 

the supplementary material, the following files were used: Additional file 3: Transcripts 

that show a different response to spinal cord injury in R- and NR- stages;  

In this study was performed full transection of the spinal cord at the midpoint between 

fore and hind limbs in both tadpoles (stage 50-54; R-stage) and froglets (stage 88; NR-

stage). Spinal cord transection severed all innervation between the rostral and caudal 

regions, leaving an ablation gap between the rostral and caudal stumps. Spinal cords of 

transacted animals were dissected by isolating a fragment caudal to the lesion site. 

Equivalent samples were obtained from sham-operated animals, that served as 

controls, to which the injury was only made to the dorsal skin and muscle, leaving the 

spinal cord intact. 

The gene expression was studied on three different time points, namely 1-day post-

transection (DPT), 2 dpt and 6 dpt.  

The obtained differentially expressed transcripts results were for R stage: at day 1, 

there were 868 up-regulated genes and 525 down-regulated genes; at day 2, there 

were 392 up-regulated genes and 308 down-regulated genes; at day 6 there were 166 

up-regulated genes and 189 down-regulated genes. For NR-stage: at day 1, there were 

332 up-regulated genes and 238 down-regulated genes; at day 2 there were 377 up-

regulated genes and 158 down-regulated genes; at day 6, there were 2580 up-

regulated genes and 961 down-regulated genes.  

ear, 
lateral line 

nos 

Chicks Hair cell of the 
inner ear 

Yes Yes Morpholi
nos 

Yes 

Mice Liver, digit tips Yes Yes Mutagen
esis, 
homologo
us 
recombin
ation 

Yes 
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Out of a total of 7,431 transcripts detected in all samples as differentially expressed, a 

total of 1405 (18,9%) were differentially expressed in both stages, 2199 (29,6%) were 

regulated exclusively on R stage, and 3827 (51,5%) in the NR-stage. 

 

7.3 – Dataset 2: Xenopus tropicalis 

This dataset was obtained from PubMed Central, with the PMCID: PMC3247858. 

Supplementary data was retrieved from Array Expressed Database (Experiment E-

MEXP-2420, http://www.ebi.ac.uk/arrayexpress). Additional files downloaded 

included: E-MEXP-2420.raw.1.zip and E-MEXP-2420.processed.1.zip.  

In this study, 20 pre-metamorphic tadpoles (stages 49-51) were amputated at the tail 

level including the spinal cord, notochord, muscle, and dorsal aorta. In this study, the 

controls were non-cut tails. 

In order to perform RT-qPCR, tail tissues were collected in biological triplicates at 

several time points: 0h, 6h, 12h, 24h, 36h, 48h and 72h post-amputation. 

There was a total of 58,861 targets in the array, which form that pool, only 16,059 had 

unique RefSeq protein IDs. From the 16,059 genes, approximately 45% of the gene 

targets showed at least one expression level change of greater or less than 2 fold 

between successive time points. 

 

7.4 – Dataset 3: Danio rerio 

This dataset was obtained from Gene Expression Omnibus with the accession number: 

GSE39295, available from: 

 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39295.  

Additional files used for data analysis were retrieved from PMC (PMCID: 

PMC3896338), and include: Table S6: List of differentially expressed genes related to 

M1 and M2 type macrophages after SCI in zebrafish;  Table S7: List of differentially 

expressed genes related to cell death and anti-apoptosis after SCI in zebrafish; Table 

S8: List of differentially expressed genes related to cell migration after SCI in zebrafish; 

Table S9: List of differentially expressed genes related to cellular dedifferentiation 

process after SCI in zebrafish; Table S10: List of differentially expressed genes related 

to cell cycle and cell proliferation regulation after SCI in zebrafish; Table S11: List of 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39295
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differentially expressed genes related to neurogenesis and neuronal differentiation 

after SCI in zebrafish; Table S13: List of differentially expressed genes related to 

anterior-posterior and dorsoventral pattern formation after SCI in zebrafish; Table S14: 

List of differentially expressed genes related to axonogenesis and axonal guidance 

after SCI in zebrafish; Table S15: List of differentially expressed genes related to 

different signaling pathways after SCI in zebrafish; Table S16: List of differentially 

expressed genes commonly expressed in fin, retina, heart and spinal cord regeneration 

in zebrafish; Table S17: List of differentially expressed genes related to N-glycan 

biosynthesis, one carbon folate metabolism and ion channel transport after SCI in 

zebrafish; Table S18: List of differentially expressed unannotated genes after SCI in 

zebrafish. 

A longitudinal cut at the side of the fish was made to expose the vertebral column and 

the injury to the spinal cord (crushing) was made at the level of the 15/16th vertebrae. 

Sham-operated animals served as gene expression normalizers and the tissues affected 

were only skin and muscle. The gene expression was observed at various time points, 

namely day 1, 3, 7, 10 and 15 post-injury. Approximately 1 mm length of spinal cord 

both rostrally and caudally from injury epicenter was dissected out from 50-60 fishes 

in each batch and pooled for RNA extraction. 

In this study, a total of 3,842 differentially expressed genes during spinal cord 

regeneration in zebrafish was identified.  

 

 

 


