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o júri / the jury

presidente / president Professor Doutor Rui Lúıs Andrade Aguiar
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Resumo A evolução e crescimento da Internet tem levado a uma crescente pre-
ocupaçao tendo em vista a alocação dinâmica de recursos em redes de
grande dimensão, assim como uma adopção sem precedente de poĺıticas
de segurança baseadas em classificação de tráfego. Este fenómeno desen-
cadeou a criação de mecanismos de inspeção profunda de pacotes onde se
assiste a um acesso transversal, que assenta na obtenção de sequências de
bytes espećıficas, presentes no Payload de cada pacote, o que levanta uma
série de limitações técnicas, éticas e potencialmente legais. Com a cres-
cente necessidade de desenvolvimento de mecanismos de inspeção menos
invasivos e mais eficientes em termos de velocidade e potencialmente gestão
de memória, a comunidade cient́ıfica começou a trabalhar em outros tipos
de abordagem ao problema.

Nesta dissertação, propomos um sistema de classificação de fluxos de
tráfego que assenta em Shallow packet inspection. Tendo em conta as ulti-
mas previsões e dados estat́ısticos atuais, que estimam que cerca de 90% de
todo tráfego na Internet, seja do tipo v́ıdeo nos próximos anos, decidimos
dedicar especial atenção sobre esse tipo espećıfico. Para isso, procedemos
à recolha de informação não senśıvel, com a qual efetuamos um estudo
estat́ıstico baseado em estat́ısticas de baixo ńıvel. Os resultados obtidos
nesse estudo, foram analisados de um ponto de vista comportamental, por
forma a alcançar uma prova de conceito na extração de regras coerentes que
permitam diferenciar tipos de tráfego independentes. Por fim, estudamos,
concebemos e testamos um paradigma de organização de fluxos de forma
eficiente.

O sistema foi testado e avaliado recorrendo a testes de inundação por pa-
cotes, seguidos da medição e avaliação dos resultados em termos de tempo
de processamento, assim como, ao uso de memória principal.





Keywords Packet Capture, Traffic Classification, Packet inspection, High Performance

Abstract The evolution and growth of the Internet has led to a growing preoccupa-
tion regarding dynamic allocation of resources in large networks, as well as
to an unprecedented growing adoption of security policies based on traffic
classification. This phenomenon triggered the creation of deep inspection
mechanisms for packets where we can see a cross-access that is based on
the retrieval of specific strings present in packet’s Payload. This event raises
a number of technical, ethical, and potentially legal limitations. With the
increasing need to develop less invasive and more efficient inspection mech-
anisms, in terms of processing speed and potentially, memory management,
the scientific community began working in other types of approaches to
solve the problem.

In this dissertation, we propose a traffic flow classification system based on
Shallow packet inspection. Given the latest forecasts and current statistical
data, which estimates that about 90 % of all traffic will be video in the next
few years, we have decided to devote special attention to this specific type.
For this, we proceeded to collect non-sensitive information, with which we
perform a statistical study based on low-level statistics. The results obtained
from this study were analysed from a behavioural point of view, in order
to reach the extraction of coherent rules that allow the differentiation of
independent types of traffic. Finally, we studied, conceived and test an
efficient flow organisation paradigm.

The system has been tested and evaluated using packet flood tests. Follow-
ing to the measurement and examination of results in terms of processing
times as well as the use of main memory.
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Chapter 1

Introduction

The Internet, as we know it, has been changing throughout the years as we witness a
constant growth, to becoming the most widespread communication grid worldwide, today it
has evolved to the most powerful platform for accessing and spreading of information and
services. Actually, nowadays people can watch videos on-line, share an unlimited number of
contents, access Voice over IP (VOIP) services, watch television broadcasts, and many many
more. However, networks nowadays are increasingly being used for many areas of business,
such as, finance, research, military services, and e-commerce. Considering this fact, many
corporations rely on time critical applications where a connectivity problem or a security
breach can cost huge amounts of money. Otherwise, good network solutions, represent as we
tend to see, an increasing amount of revenues each year. With this in mind, despite the great
revolution taking place at the moment in terms of great features and platforms, all combined
increases the number of vulnerabilities and security breaches, that need to be addressed as
soon as possible. As expected, many studies were, and are still being conducted addressing
these problems [15] [16] [17].

As the Internet keeps on growing, it gets accessible to an increasingly number of clients that
demand satisfaction, by making their money, worth for each service that they contract. Ba-
sically, when talking about customer satisfaction, the problem of granting Quality-of-Service
(QoS) arises in a critical fashion. Considering the issue, it is of vital importance to look at the
problem from a large scale point of view. Therefore, to manage a huge network, such as, the
one from an Internet Service Provider (ISP) or from a big corporation, one should understand
the applications and the traffic they generate. As we know, Online Social Network (OSN),
work with the integration of a wide variety of applications and services that are implementing
new ways to communicate. In a study conducted a few years back by Nazir et al. [18] the
authors tried to measure the impact of OSN applications as they concluded that those had
significant impacts in terms of latency, resulting in direct consequences for the user experi-
ence. Being aware of this situation, made even worse by the explosion in number of users, we
can understand that mapping traffic to their origin application is vital in huge networks to
provide and balance the network’s resources for each case, or even to get information in terms
of time scale. Considering the last remark, it is particularly important for the creation of user
profiles to infer future network loads and dynamically assign resources, preventing saturation
or waste.

In conclusion, we can deduce that security will definitely benefit from an accurate mapping,
in the sense that flows generating suspicious signatures can be more easily tracked and taken
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down to protect users and platforms, or even, to prevent monetary losses that can reach tens
of millions of dollars [19]. Addressing the classification problem, several works have been
developed using different kinds of methodologies or approaches, always trying to adapt to the
evolution of the Internet. Most approaches are based in deep inspection of packet contents
and or statistical analysis of traffic patterns [20]. Classification techniques, can be divided
into two main branches of investigation as we will see in next chapter. Those being, real time
and non-real time approaches. In the first case, the classifier tries to cope with the demands,
extracting information and reaching conclusions at the pace that events occur, it is definitely
faster, however more error prone. On the other hand, non-real time relies on capturing and
later processing scheme, perhaps with more accuracy but most of the times slower.

One problem commonly associated with this field of research, a part from the technical
problems, that are going to be discussed afterwards, is that, behind most techniques, there
are other kind of challenges that arise from deep inspection of packets, such as, ethical flaws,
legality concerns, along with potential surveillance overlap, provoked by promiscuity between
private sectors and governmental power. Looking carefully at the situation, these kind of
techniques definitely changed Internet governance in a radical manner. In a study conducted
by Mueller and Asghari [21], they discussed the problem of deep inspection usage by ISP for
Bit Torrent traffic throttling in Canada and America. In the end, they have reached a clear
conclusion, that there was a ”causal relationship” between deep inspection and disruptive
Internet regulation, giving ISP more power than they probably should have. This topic is of
vital importance, as it changes the way people live and interact with each other, blurring the
boundaries of what is private and should not be tracked, and what might be of, for instance,
state security importance [22]. As we might expect, sophisticated network management, (in
most cases packet inspection awareness) is common process these days. However, the legal
consequences in terms of the liabilities, whether civil or criminal, of the Service Provider in
connection with the type of management used have been a latent problem. A very famous ex-
ample of this fact, has taken place in 2007, when Embarq authorized a third party (NebuAd)
to collect certain information from their network relating to the websites visited by some cus-
tomers in order to allow NebuAd to target these customers with specific advertisements. The
information was collected using an Ultra Transparent Device installed on Embarq’s network
allowing the customers information to be sent to NebuAd servers. The information provided,
enabled NebuAd to identify users based on an assigned number, but not to identify the cus-
tomers themselves. After the discovery, one of these customers filed a law suit in federal court
arguing that this procedure violated the Electronic Communications Privacy Act (ECPA). In
the end, Embarq won the law suit claiming that the access was only made to data to which
it has access in the ordinary course of business providing Internet service to its clients, fading
way from ECPA regulation infringement but opening, door to future use of other types of
information, including private [23].
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1.1 Motivation

Traffic classification has been a target field of research for quite a long time, with several
works being developed throughout the years. Deep packet inspection based techniques suffer
from some disadvantages, such as the introduction of great bottleneck on capture, reassemble
and analysis of traffic flows, with the increase of detailed analysis representing more impact
on the system. Thus, to keep up with the demands, ISP need to invest huge amounts of
money to mitigate performance degradation.

With that in mind, the urge for novel methods of packet capture, efficient packet handling,
along with the need of new approaches for flow classification to cope with, network’s complex-
ity, and legal limitations have been pointed out in other works [11]. Another interesting fact
that has been studied is the recent paradigm change in terms of the type of traffic flowing in
modern networks, and it can be divided into two main branches. The first is the continuous
growth in usage of encryption technologies as depicted in Figures, 1.2, 1.3, 1.4, is, indeed, a
case against deep inspection of packets. The second is the reported huge increase in video
content which is expected to reach 90% of the total traffic, in the next few years [24] [25].
This results in network stress, and nowadays, peaks have already been registered on around
60% of the total traffic in North America, with the advent of pay per view services, such as
Netflix, as can be seen in Figure 1.1. Thus, the motivation for this work was the urge and the
increasingly necessity of an answer to the limitations of DPI for traffic analysis and classifi-
cation, exploring other types of approach such as, Shallow Packet Inspection (SPI). Which,
relies on the observation of application’s behaviour. On this work, we have put special focus
on video traffic, without the need of disruptive packet analysis, along with efficiency and wide
range of benchmarking testing.

Figure 1.1: North America video services percentage, extracted from [1]

Figure 1.2: Evolution in the adoption of encrypted connections in Google taken from [2]
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Figure 1.3: Information of North America encrypted traffic in 2015 provided by [1]

Figure 1.4: Information of North America encrypted traffic in 2016 provided by [1]

1.2 Objectives

In such a diverse area of studies, there are a wide range of challenges to tackle. Therefore,
in this dissertation we want to address the following range of objectives. The first one is the
investigation of a state of the art technologies, regarding packet capturing and data structures
frameworks/libraries, along with a bibliographic revision on classification methodologies, in-
cluding their different types. The second, will be the implementation of a high speed and
a controlled memory system, for efficient packet capturing, and handling. Lastly, we want
to study flow dynamics exploring simple indicators on packet flows, such as: Packet counts,
packet lengths and inter-arrival sampling. We expect, to explore low level statistics, along
with, clustering algorithms to group flows and also apply wavelet analysis. Using the infor-
mation extracted from those statistics, we aim to propose rules for basic traffic classification
with special focus on video.
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1.3 Dissertation’s Structure

This dissertation is is structured as follows:
In Chapter 2 we are going to make a revision of the state of the art, presenting the

most relevant work in this field, and consequently for this dissertation. It will comprise the
revision on: Packet capturing libraries, Frameworks for flow accommodation and organisation;
Approaches to packet inspection, and finally classification approaches.

Chapter 3 will present the implemented solution with exhaustive description of all its
components and engineering options followed during the development. After this, we will
give room to a performance evaluation, measuring the performance of the packet handling.

Chapter 4 will present the results obtained on the classification algorithm, finishing with
other performance evaluation on classification time per flow. In the final chapter 5 we will
reflect and evaluate the outcome of this dissertation’s work, along with the analysis of the
actual limitations, finishing with final remarks over the future work that might be developed.
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Chapter 2

State of the art

This Chapter, aims to give an overview on the work that has been made so far on the
topics addressed by this dissertation. Taking that into consideration, we will present the
state of the art on, data organization libraries, packet capturing frameworks and libraries,
packet inspection approaches and techniques. Finally we will end up with traffic classification
techniques.

2.1 Packet sniffing

Packet sniffing as defined by Gandhi et. al. [26] is a technique which passively or ac-
tively captures packets travelling through a network. Typically, depending on the Network
Interface Card (NIC), where it is installed, it will perform network monitoring and packet
analysis. In this section, we have proceeded to packet capturing frameworks and libraries pre-
liminary investigations. On this field, developers are always striving for efficiency, flexibility
and standardization of the Application Programming Interface (API). Taking these premises
as a starting point we have found a series of different tools and approaches to packet sniffing
and network monitoring.

2.1.1 Libraries and Frameworks

During the research we have came across, a few libraries and frameworks that have been
developed in order to fulfill rather specific needs trying to overcome weaknesses of others.

Data Plane Development Kit (DPDK)
This framework developed by Intel, has become open source recently, which eventually
originated a significantly growth in terms of its community. DPDK comprises four main
modules [3] that implement different features at the hardware level to provide fast packet
capturing and processing. Besides this, it implements a rich Application Programming
Interface (API) featuring device managing abstractions, memory management functions,
locking premises, along with other data structures and algorithms.
Even though, it supports a wide range of Network Interface Card (NIC), it relies on
a specific installation process, and demands a rather advanced set of configurations in
order to get the best usage out of the hardware.
As can be seen, in Figure 2.1, it shows the interactions amongst different modules on
high-performance packet processing.
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Figure 2.1: Core Components Interactions, extracted from [3]

DPDK has been designed for performance, hence, its architecture denotes a few critical
development options that are worth mentioning:

1. Polling Mode
Polling mode is a very distinctive characteristic, as it permits constant interroga-
tions to the hardware [27] at a small cycle footprint, we can say it implements a
busy-wait architecture efficiently.

2. Kernel Bypass
It permits skipping the kernel network stack processing, which consistently delivers
a much better performance, relegating interrupts delays.[27]

3. Multi Core Distribution
DPDK is also capable of distributing work at processor core level, which might
represent a boost in efficiency, considering a producers-consumers approach. [28]

LIBTRACE
Libtrace was developed at Network Research Group (WAND), it aims to provide better
performance with an improved API to permit a better programming experience. Re-
cently, the library has been growing in terms of popularity, with a great quantity of
projects being developed using it [29] [30].
Amongst its main features we have [31]:

1. API
Its API has been developed aiming consistency and simpleness, in fact, a program-
mer writing libtrace program can rely on header and protocol handling by the
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library itself. Indeed, as stated, a program can be expressed in 40% fewer lines
than libpcap’s (one of its main rivals) approach.

2. Versatility
Libtrace is very versatile in the way it treats formats, as it can support a wide
variety, and can also read or write from NIC’s and Endace Data Acquisition and
Generation (DAG).

3. Compression
It supports reading and writing compressed formats, namely gzip an bzip2, doing
it in an efficient way avoiding pipes to specific applications.

4. Performance
Apart from a threaded I/O approach, libtrace has used a copy avoidance method
to scape from eventual onerous packet copies when unnecessary.

NETMAP
Netmap is a framework that started being developed at University of Pisa, Italy which
main purpose is to enable Gbit captures in commodity hardware. The basic novelty
behind it is a memory mapping approach 2.2, which allows that a NIC can be forced to
send information to the data structures implemented by netmap instead of additionally
sending those packets through the Operating System (OS) networking stack. The work
behind this feature is done recurring to basic system calls that provide the initializations
needed for the communication to occur and are used eventually for simple updates and
data validation. Taking that in consideration it allows a significant speed up when
comparing to Os networking stack [32].

Figure 2.2: Memory mapping in Netmap diagram extracted from [4]

PCAP

Pcap is a very well known, open source library, which was started as a project in Berkeley
Labs. It soon got recognition and gained a very supportive community with countless
projects using it [33] [34]. It is a piece of standard technology which main objective
was to create an horizontal abstraction to every NIC on the market, avoiding individual
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packet capturing modules, per application [35].
Considering main features, we can outline four of them [36]:

1. Support
Libpcap is one of the oldest out there it comes with good documentation and relies
on a very wide community support.

2. Versatility
It possesses the ability to capture from a wide range of devices.

3. Consistency
As the environment changes the API remains the same, on each OS.

4. Filtering
It implements Berkeley Packet Filtering (BPF) approach directly at kernel level
2.3 in order to achieve better performance

Libpcap, as said before, constitutes a reference technology even nowadays, with sig-
nificant works being developed to improve its performance taking advantage of other
techniques at kernel level to reduce the packets processing time at that level [36].

Figure 2.3: Pcap design scheme

Throughout our research, other solutions such as, PF Ring and Sniffer10G have been
investigated, although, we opted to let them out of the comparison because they are very
specific solutions and in most cases proprietary software.
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2.2 Data Structures Libraries

In this section we are going to describe some existent libraries used for data organisation,
which mainly comprise collections of data structures for general use. In this scenario it is of
particular importance because of its relevance in the overall performance of the system.

1. Tommyds

Tommyds is a collection of data structures developed by Andrea Mazzoleni designed
for high performance [10]. It comprises a set of structures and algorithms written in C,
such as:

(a) Lists
The Lists are implemented using a double linked approach, with a special feature
that differs from classic implementations, which is the usage of a single pointer to
represent the list itself, reducing the memory footprint. Another important feature
is the possibility of insertion in the end and at the start of the list. Allowing equal
elements keeping its insertion order.

(b) Arrays
The Tommy Array implementation is a very interesting implementation based on
segments of exponential growing size, this fact allows exponential growing without
reallocation. The basic algorithm behind is based on an allocation scheme, where
the pre-allocated memory is not reallocated, but rather, a new segment is allocated,
preventing heap fragmentation, and resulting in constant element addressing.

(c) Tries
A Trie is a binary tree that has keys associated with each of its leaves [9]. Tommyds
implements, two types of tries in a slightly different way. First of all, tommyds
tries are general in definition, which means that the number of leaves per node is
arbitrary. Finally the implementation comes in two flavours, an in place trie, where
the objects are not stored in order, and there is no need for an external allocator;
And the second flavour a cache optimised trie, where an external allocator is needed
and the elements are stored in order.

(d) Hash Tables
Concerning Hash tables, in tommyds the implementations come in three flavours.
The first one is a fixed size table and respectively a more naive implementation,
resulting in a performance degradation after 0.75 of load factor. Another imple-
mentation is an hash table with dynamic growing, allowing the resolution of the
load factor problem, although it is stated by the developer himself, that this im-
plementation should not be used in real time systems, as it proceeds to very costly
re-size operations (100 ms to 1 million entries) and clearly fragments the heap in
reallocations. The last implementation appears to solve the limitations evidenced
by the other two, it is based on a linear chained hashing algorithm, that we are
going to explore later in this document.
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2. Uthash
Uthash is a specific implementation of an hash table that is particularly used to store C
structures as keys. It was developed by Troy D. Hanson and is presently supported by
Arthur O’Dwyer [37]. This piece of software is not a library but rather a single header
file, as it doesn’t have any library code to link against. It is limited in terms of features
yet supports the basic operations over the data structure. It allows the programmer to
test from a wide range of hashing algorithms and is implemented using macros allowing
automatic inlining. One of its main disadvantages is the fact that in every entry has
to be embedded an explicit handler which forces an overhead of 56 bytes in a 64 bit
system.

3. Judy Arrays
Judy Arrays is a C library developed by Doug Baskins [38] that provides technology
that implements a sparse dynamic array. Judy arrays are declared simply by using
a null pointer, and consumes memory only when it is populated. Judy’s key benefits
are scalability, high performance, and memory efficiency. A Judy array is extensible
and can scale up, bounded only by machine memory which, in certain scenarios might
be a disadvantage. Judy is designed with an unbounded approach, the size of a Judy
array is not pre-allocated but grows and shrinks dynamically. It combines scalability
with ease of use. Its API is accessed with simple insert, retrieve, and delete operations.
Tuning and configuring are not required (in fact not even possible), additionally, sort,
search, count and sequential access capabilities are built in as well. Judy can be used
whenever dynamically sized arrays, associative arrays or a simple-to-use interface is
required. Judy was designed to replace common data structures, such as arrays, sparse
arrays, hash tables, B-trees, binary trees, linear lists, skiplists, other sort and search
algorithms, and counting functions.

4. Sparsehash
Google Sparsehash project was released in 2005 and offered two different hash table
implementations [39]. The Densehash developed having in mind speed and Sparsehash
optimized for space. The Sparsehash implementation, is arguably considered one of the
most space efficient hash tables available out there, requiring only two bits of overhead
per entry. Given that fact, just saying whether something exists or not costs only a
bit, which is a very interesting approach. The sparse implementation being indeed the
best solution for space conservation, it can still perform only 3 times slower than most
libraries.
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2.3 Packet Inspection

2.3.1 Deep Packet Inspection (DPI)

Deep Packet Inspection (DPI) is a well known surveillance technique, widely used, based
on a complete and multilevel packet analysis 2.4, it does not only inspects the header but also
its payload contents [40].

Figure 2.4: DPI multi level inspection

Regarding DPI, several works have been done over the years. Most times, commercial
solutions are using this technique to provide accurate predictions. They are characterized
and rely on signature, extraction and comparison [41], [42], [43]. Thus they are commercial
solutions, literature suggests that its claims cannot be correctly validated because of their
black box behaviour, in the sense that, their tests were performed using private datasets and
its code is not open source, hence, not available freely to the public [44]. Subsequently, we
will make a small introduction to some open source solutions that have been proving to be a
valid solution with high hit rates.
In fact, one of those tools was implemented in University of Waikato and it is called libpro-
toident, it is part of a project written in C to fulfill the requirements for lightweight payload
processing. One of the few definitions of lightweight DPI is proposed here [45] as the authors
claim to accomplish leveled results using only 4 bytes of packet payload instead of full payload
processing. Considering what was just stated, the authors managed to achieve acceptance
from ISPs by using traces provided by them, as they agreed, that client’s privacy wouldn’t
be put in danger while accessing such a small portion of the payload. The library uses essen-
tially a payload analysis approach, even though, it uses rules based on port classification and
statistics information for accuracy purposes [45].

Another solution, developed by ClearFoundation, is called l7-filter. It constitutes one of
the few exceptions found that, even being a commercial solution it is open source code, and
officially supported by the company itself. It is used in Linux’s Netfilter to identify a wide
range of protocols, complementing its functions with IP match approach and port rules [46].
This software is available in 2 versions, one present at kernel space and other at user space.
Considering the last one, the basic algorithm works the following way: Firstly it spawns 2
threads, in which, one is responsible to receive updates from the kernel, keeping track of new
connections, while the other creates a queue instance responsible by holding the packets for
processing, it is worth mentioning that a packet will only be processed if the first thread has
received the new connection event by that time, which in UDP flows will lead to the first
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packet of each flow being ignored. In fact, l7-filter is very customizable and it can overcome
some limitations such as the one mentioned, using extensions [47].

Finally, there is other solution that is often mentioned in literature called OpenDpi, it
started being an open source project supported by Ipoque, which was developed alongside
with PACE (their commercial version cited before), removing the support for encrypted traffic
as well as optimizations. Eventually, the corporation dropped its development and now the
project is considered close, originating one interesting fork called ndpi [44]. This technology
is particularly interesting because of its extra features aside from DPI pattern matching, it
uses behavioural and some sort of statistical analysis.

2.3.2 Shallow Packet Inspection (SPI)

In the urge to answer to the limitations of DPI, the scientific community has stepped up
developing a different approach for traffic analysis and classification which is called Shallow
Packet Inspection (SPI). Its main novelty is based on the fact that it doesn’t rely on full
or partial payload inspection but rather on observable or measured features that depend of
specific application’s behaviour. As an example we may consider, packet’s inter arrival time
and the variation of packet sizes during communications [48]. There are a few approaches
in the literature regarding what we might consider SPI, although, it lacks in dedicated tools
using this concept extensively. The techniques used will be discussed further in the following
subsection.

2.4 Traffic Classification Techniques

In this section will be discussing on DPI and SPI techniques used nowadays, some of them
already mentioned above with further explanation missing.

2.4.1 Port-Based Approaches

Port numbers are distributed in three well defined groups. Those groups were defined
by Internet Assigned Numbers Authority (IANA) and the ranges are distributed as such,
Well Known Ports span from 0 to 1023, corresponding to reserved ports for special usages;
Registered Ports vary from 1024 to 49151; Lastly, Dynamic and/or Private Ports going from
49152 to 65535 [49].

One of the most primitive classification methods would rely on the assumption that specific
applications had specific ports to bind, making them much easier to track and map [50]. There
are several examples of that, such as, port 80 being bounded to Hypertext Transfer Protocol
(HTTP) traffic, port 22 being commonly used for Secure Shell (SSH) and ports 20-21 to File
Transfer Protocol (FTP). In fact, during early stages of the Internet some work was developed
considering that principle achieving accurate results, one of the most cited works is present
here[12].

Regarding this technique, even though it has reached accurate results in the past, nowa-
days, with the advent of distributed contents, P2P technology and Voice over IP (VOIP), this
approach has revealed to be very inefficient and not suited for traffic classification on its own,
as most protocols changed to arbitrary port binding, and/or using well known ports of other
applications in order to disguise behaviours [50].
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In a study conducted by Madhukar and Williamson [51], it has been used a two year trace
from the University of Calgary and the conclusion extracted was that a port based approach
cannot be used on its own, reliably, since between 30% and 70% of the total trace has come
up unclassified. However, the results are very notable, here [12] the researchers defend that
the integration of port-based approaches might be helpful in certain scenarios, such as, in
conjunction with packet sizes and TCP header flags.

2.4.2 Payload-Based Classification Approaches

This approach to traffic classification is the basis for DPI. As mentioned before, it is
considered to be the most reliable technique out there, and it is based on the belief that most
protocols transport certain consistent strings inside its payload which, in fact, can allow the
possibility to distinguish them clearly. Technically, those strings, as a convention, are called
digital signatures.

Considering P2P traffic, it has been regarded in literature as one of the most difficult
types of traffic for classification [52]. In one of the first works on the field [53], the researchers
have proposed signatures at application level for an efficient identification of P2P traffic. The
authors have proceeded to the research analyzing data and packet traces from different P2P
clients in order to obtain the application-level signatures, which were then used to develop
filters that could efficiently track P2P traffic even at high-speed network links. Researchers
have still reached very accurate results, with a very narrow border of false positives and
false negatives. Even thought the results were promising, it had a major weakness, as the
solution required previous knowledge of every single application in order to come up with
the corresponding signatures. This spotted flaw cut the approach short, as it prevented an
automatic adaptation to new applications down the road.

On one of the most important legacy works on the subject [13] the researchers addressed
several reports that stated significant decrease in P2P file-sharing traffic activity. Their
protocol, started by measuring traffic from P2P protocols and, using reverse-engineering,
analyzed these protocols for identifying digital signatures in the payload, like the ones shown
below 2.1. Classification heuristics were proposed to make sure whether a specific trace was
generated by a P2P protocol or not. Also, including a mix approach with the analysis of
ports defined as ”known P2P ports”, in which that case the flow would be tagged as P2P.
To confirm their initial supposition, the authors compared each packet’s payload against the
obtained signatures, which allowed them to determine the exact P2P protocol. In conclusion,
their findings contradicted the previous reports claiming a decrease on the volume of P2P
traffic.

Protocol String Transport Protocol

eDonkey2000 0xe3, 0xc5 A TCP/UDP

Gnutella ”GNUT” / ”GIVE” / ”GND” TCP/UDP

MP2P GO!!, MD5, SIZ0x20 TCP

SSH ”SSH” TCP

IRC “USERHOST” TCP

Table 2.1: List of signatures adapted from [12] and [13]

In a recent work, presented early this year [5] Middlebox services were used as exam-
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ple taking in consideration nowadays challenges for deep packet inspection in cloud-based
Web applications and the fact that they typically look for known patterns that might ap-
pear anywhere in the payload. Subsequently they addressed the problem of most software
for this purpose starting to become a serious bottleneck in systems as string pattern match-
ing approaches stagnated while software packet processing technologies have paved the way
with more efficiency. During the course of their investigation, they proposed an efficient
multi-pattern string matching algorithm, on witch they claim to have achieved a significant
reduction in terms of memory accesses and cache misses by using ”small and cache-friendly
data structures” 2.5, minimizing also, sequential data dependencies. The researchers have
delivered impressive results as they claim to have out scored commercial network appliances
up to 3.6 times and also, comparing typical Web application firewalls delivering 57-160%
improvement in performance.

Figure 2.5: Accelerating String Matching approach extrcted from [5]

2.4.3 Statistical Classification Approaches

Studies regarding statistic characteristics of traffic flows, are based on the fact that, typ-
ically, most applications produce different behaviours, thus generating distinguishable traffic
patterns, which eventually enabled the identification of the underlying protocols. This ap-
proach has been taken in high regard in terms of its feasibility and accuracy.

In a revolutionary and widely cited work [54], the authors presented an approach for
mapping captured traffic to its Class-of-Service (COS) and described its foundations and
associated challenges, creating a solution for measurement based classification for QoS pur-
poses. The researchers stated that the signatures generated were not very useful for applica-
tion awareness but could rather perform exceptionally well, measuring how applications were
actually used: interactively or for bulk-data transport. The work focused on four generic
classes:

1. Interactive: This class would comprise all the traffic which would result of user requests
and responses, to perform real-time interactions with other system;
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2. Bulk data transfer: Traffic used to perform big data volume transfers without any
real-time necessity;

3. Streaming: Typically multimedia traffic with pivotal real-time constraints;

4. Transactional: Typical small number of request-response pairs;

Considering those four classes, several features were extracted from the captures at dif-
ferent levels. After that, several characteristics vectors were constructed. Then proceeding
to the classification using Linear Discriminant Analysis (LDA) and Nearest Neighbors (NN).
The quality and accuracy assurance were attested by large traffic traces.
In a recent interesting work using this classification paradigm, a methodology was presented
for the identification of application-level traffic based on the construction of statistic signa-
tures using payload size, transmission order, and direction of the first N packets in the flow
and was proposed in [14]. In this work, the authors developed a pipeline to proceed to the
signature generation, and then developed other one to do the traffic classification itself. They
started by converting the flows into packet size distribution vectors and then dividing the
flows by process, after this step, flows were grouped by the distance similarity of the flow vec-
tors generated before. After this process, the groups go under optimization right before the
signature is generated. The second pipeline, works as proof of concept, basically it generates
flows of packets that are continuously captured. Then those flows are converted to vectors
and they are matched against the Ground-truth of signatures previously generated.

Their results were very impressive, depicting precision over 99.9% for the majority of the
applications studied as can be seen in table 2.2, with the exceptions of Skype and Kartrider,
fact explained by the existence of plenty flows with only one or two packets resulting in
erroneous classifications by other application signatures.

Application Precision

Dropbox 99.99%

uTorrent 99.97%

Nateon 99.99%

Skype 97.90%

Kartrider 97.60%

Table 2.2: Precision by application adapted from [14]

2.5 Real-Time vs Non Real-Time Classification Approaches

Real-Time traffic classification is a task of great importance for many network management
decisions and operations: Knowing in real-time the applications behind the generated traffic
can be extremely valuable in ISP environments to optimize network tasks, provide constraints
direct linked to Qos, prevent network saturation, proceed to adequate resource management,
which can lead to significant money saves, as well as detect anomalous behaviours or even
attacks. Even thought this is a critical task, achieving such ability is not easy. Summing
all the factors including nowadays complexity of networks and applications, along with the
actual state of legal restrictions, preventing complete packet analysis. It all contributes to
hinder accurate real-time traffic classification.
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2.5.1 Real-Time Classification Approaches

In an innovative work published in late 2010 [55], the authors proposed a Field pro-
grammable gate array (FPGA) based approach to boost the speed of the identification on
multimedia applications, with the compromise of keeping high accuracy. Well known multime-
dia applications were studied such as, Skype and Instant Messaging. Then using algorithms
such as, k-Nearest Neighbors (KNN) and Locality Sensitive Hashing (LSH) they have shown
that the approach could be deployed in high bandwith links. Regarding that deploy they
have achieved an accuracy level higher than 99%.

Addressing a very important topic on the issue of timely P2P traffic classification, specif-
ically focused on its well renowned client BitTorrent, the following work [56], proposed a
machine learning approach for its fast classification. The research group responsible for the
work, designed a group of discriminators for better BitTorrent differentiation:

1. Minimum payload : The appearance of small packets, typically, in the range of 5 up to
17 bytes might indicate bittorrent traffic flow;

2. Small Packet Ratio: Since in bittorrent there are two types of messages: peer updates
and information exchange. This discriminator is then defined as the ratio of small
packets within total number of packets in the flow;

3. Large Packet Ratio: Ratio of large packets within a total number of packets within a
flow;

4. Smaller Payload Standard Deviation: Data transfers consist of bi-directional flows. For
each direction the standard deviation of the TCP packet size is calculated. The smallest
value is used.

Figure 2.6: Accuracy with different algorithms used from [6]
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Figure 2.7: DiffTor performance extracted from [6]

In a very interesting work published in early 2012 [6], the authors studied the Tor archi-
tecture an anonymity-preserving network, and tried to address one of its main weaknesses,
which is related with performance degradation. Their approach was based on real-time traffic
classification to deal with congestion and low relay-client ratio. The authors explored the is-
sue with the definition of classes of service. They have decided to follow that path to address
the problem related with QoS. Considering that, most of the traffic passing through Tor’s
network is mainly interactive browsing traffic, a significant volume of bulk download still
benefits from the same Qos policy. To overcome this, they proposed a real-time application
of a machine-learning-based approach called DiffTor, to classify encrypted traffic within Tor
circuits, using that information to assign proper QoS policies to each class. The work has
been well succeded. They have defined 3 classes of traffic, Streaming, Bulk and Interactive,
with overall good results on some well known machine learning algorithms explored as we can
see in image 2.6. As a result, they have shown impressive benchmarks on TOR’s performance
when compared to the regular implementation as it is depicted in image 2.7.
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Chapter 3

Architecture/Implementation

This Chapter will present a detailed description of the architecture of the developed so-
lution. First we will describe the packet capturing library and structure. Moving forward
we will be presenting and explaining the information retrieval scheme. Furthermore, we will
be describing and exploring the data structures holding the information and why they were
chosen. Considering those data structures, we will discuss their usage in terms of performance
and physical limits.

3.1 Generic Conceptual Architecture

In this section we aim to give a generic understanding of the conceptual architecture as
can be seen in image 3.1 Throughout the following chapter we will break down on each module
and try to explain and exemplify its functions.

Figure 3.1: Generic Architecture

The first two modules with a green border represent the very well known scheme used
by libpcap for packet capturing and processing. The dispatch function is called each time a
packet is popped out of the NIC’s queue. One of the parameters of the dispatch function is its
target function. The Target function is then used for packet processing. Therefore and, as we
can see, this process is clearly wrapped in a callback scheme. After, the packet is received, the
information needed is extracted and is aggregated within a flow group, responsibility given
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to ”Flow Differentiator” module. This module is rather large as it comprises all the major
operations, and possesses a data structure able to separate flows and respond quickly to basic
operations over it, contributing to mitigate a possible bottleneck on data aggregation. The
”Hashing Mechanism” is used as an auxiliary tool to the data structure intrinsic operation.
When working on flow statistics we use the ”Flow Direction” module as a calculation tool to
define if each packet belongs to upload or download stream, and ”Statistics Module” which
works on per flow statistics. ”Plot Facility” module works as an auxiliary instrument to
visualise the flows behaviour throughout the time as it generates plots from several relevant
indicators.”Stat Analyser” module work, to process statistic results and is based on the rules
defined on ”Decision Maker” takes decisions for classification. Finally, as can be seen above,
the application’s life span is potentially eternal as it keeps on capturing packets indefinitely
and autonomously. The main consequence of that behaviour is the need of a custom writ-
ten ”Memory Crawler” module, which eventually, will examine all the memory dynamically
reserved and free some memory chunks as they reach a certain time-out of inactivity or the
system starts running out of memory.

3.2 Packet Capture

As discussed previously in chapter 2, we have investigated a few libraries for creating
an abstraction with the NIC to provide packet capturing facilities. When looking for a
library/framework we have thought about a few requirements that it should meet. Considering
all the possibilities presented, we have selected libpcap for the job. We based our decision
on its simpleness, good documentation, great support by its community, its standard API
and, perhaps its main feature, versatility across different compilers and systems. Presenting
these kind of advantages the option came up straight, even considering others, perhaps more
efficient speed-wise, it turned out to be the best suited option.

The code for this dissertation has been developed as said before, using mainly libpcap
library and C programming language. The language has been chosen considering the charac-
teristics where it excels: Its maturity, versatility, and mainly, its high efficiency even across
systems and compilers.

Speaking about packet capturing we have to understand the library’s organisation scheme,
and the general layout of a libpcap sniffer so we can understand how things work. The
following steps will give a proper explanation to it:

1. The first step is also the basic parameter of the application, it consists of the specification
of the interface where we intend to do the capture on.

2. The second step is the one where we activate pcap by opening a session of capture in the
interface we passed before, actually the process is quite similar to the one of opening a
file for reading or writing, which means that, underneath, this operation creates a File
Descriptor (FD) which can be managed later.

3. The third step is denominated as ”compilation”, this process is used to make pcap aware
of the type of filter we want to apply for our application. Pcap follows BPF approach
and considering the scheme presented before in 2.3 our interest was on the selection
comprising all the packets from IP protocol version four and six as follows ”ip or ip6”.
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4. Finally, we tell pcap to start its execution loop. In this step pcap will, in our case,
behave as an infinite loop and for every packet captured it will send it to the proper
callback responsible for its processing.

The process behind packet processing has been studied and tested in different ways for
efficiency purpose. As we already know, libpcap organization demands a callback scheme.
Therefore one of the main questions lays on the fact that the capture loop gets blocked on its
associated callback during the time it consumes for processing the packet contents.

Figure 3.2: Packet Capture scheme

Considering the image above 3.2 we can easily understand why the process might be
problematic. Taking in consideration that the NIC’s queue size is always a system dependable
variable, we surely know that it has its limits. Therefore the anomalous behavior we intend to
address is the potential increasing of packet drop rate as the packet rate of incoming packets
also increases. This issue is particularly important even in a rather small company with a
few machines generating traffic.

Regarding the problem, three possibilities were tested. The first one was the most sim-
ple and rather naive approach, we basically delegated all packet processing expenses upon
the callback. The results were disappointing but expected, we witnessed a slow behaviour
and increasing packet drop during bursts and an acceptable behavior during small packet
rates. The second test was based on a uncontrolled addition of parallelism. We defined it
uncontrolled, as the approach consisted of launching a new thread for each packet captured.
In fact, this time the results were better on low packet rates, which can be justified by the
addition of parallelism to the equation, freeing the callback from potential heavy processing,
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and delegating the task on the brand new launched thread. However, we resolved to proceed
and run two small stress tests, to figure out the application’s performance under the genera-
tion of a few hundred packets per second and afterwards a few thousand packets per second
with random packet size between 100 and 1500 bytes. The results were very disappointing
for the two tests, in the first one, we started to witness a slowdown in packet processing and
mostly on the overall machine’s performance with periods of memory congestion with a high
number of simultaneous resource allocations and deallocations, and on top of that, we have
to consider constant context commutations. In the second one, we faced a rather dramatic
result as the system yielded lack of resources for the number of requests at hand, resulting in
the program unexpected end.

At this point we ended up considering two options. The first would be the introduction of
controlled parallelism and the second would be a totally different approach using a framework
for event processing based on fd’s such as one of the most renowned frameworks out there
[57]. A very important work [58] discussed whether the usage of event based approach would
deliver better performance over the usage of threads for high-concurrency servers. Their
conclusions in the end of the study came back in favor of threads, as they considered that most
arguments against thread based processing were a matter of specific thread implementations,
also considering threads a simpler and a more ”natural” programming style.

Considering the above we have decided to take the path of controlled concurrency. To
achieve our objective we have decided to use a Thread Pool 3.3.

Figure 3.3: Thread Pool use scheme

We call this approach controlled concurrency in the sense that it enables the possibility
to create a more hardware suited solution, with pre-allocation of resources and intrinsic re-
usability of them, avoiding constant memory demands for launching and disposable of threads,
resulting in a better overall performance. The implementation idea behind this concept is
rather simple. At the beginning, the internal structures are initialised and a n sized queue is
generated to hold all the jobs inserted. Clearly, in a highly concurrent environment the jobs
must be inserted and taken off the queue for processing one at a time, for that to happen
the supervisor handles the complexity behind the process. It checks for queue consistency
and manages all thread states during the run. The use of a thread pool has been the turning
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point for the problems previously at stake, as it brought more stability during runs. Perhaps,
the only downside about it, is that, it is not a size fits all solution, as the number of threads
must be tested and refined for any particular machine.

In our specific case, and considering our table of specs 3.1. After 5 consecutive runs, we
have calculated the mean of the values and we have obtained the following results depicted
in table 3.2.

Characteristic Value

OS Linux Mint 64bit

Compiler GCC version 5.4.0

Thread model Posix

Kernel 4.4.0-45-generic

Processor Intel Core I5

Disk SSD 128 GB

RAM 8GB

Table 3.1: Machine’s Specs

Pckt rate (s) 100 1000 10000 100000

1 Thd per pckt 0.0311±0.015 ms 0.0735±0.017 ms - -

ThPool/64 0.0159±0.010 ms 0.0163±0.013 ms 1.0962±0.0917 ms 2.9317±0.085 ms

ThPool/128 0.0171±0.016 ms 0.0214±0.016 ms 2.5034±0.070 ms 3.4706±0.082 ms

ThPool/256 0.0192±0.020 ms 0.0324±0.028 ms 3.3273±0.083 ms 4.3195±0.091 ms

ThPool/512 0.0234±0.031 ms 0.0337±0.032 ms 3.9939±0.093 ms 5.3643±0.153 ms

ThPool/1024 0.0234±0.032 ms 0.0509±0.041 ms 5.1003±0.145 ms 6.6256±0.185 ms

Table 3.2: Results of the simulation

From the observation of the table we have witnessed very interesting results concerning
the efficiency of each solution. The naive solution has shown, as expected, to perform reason-
ably well at low packet rates, falling clearly short after a few thousand packets per second.
Ending in a program crash right before tens of thousands of packets per second, due to the
facts explained previously. Apparently, because our test machine is an ordinary laptop with
commodity hardware, its parallelism capacities are rather limited. Even though the results,
for number of threads higher than 128 might be a little bit misleading or even confusing be-
cause of unexpected hops in times obtained. The solution with 64 initialised threads stands
out from the others as the best fit in our architecture.

3.3 Information Retrieval and Data Organization

The next step for the solution considers information extraction. At this point, we had
to make a decision on the information that we should be taken out of each packet. As said
previously, we wanted to build an approach on which privacy, efficiency and simpleness could
be gathered together. Therefore, since all the packets are treated equally by libpcap we have
analysed both versions of IP headers along with the upper headers for transport protocols.
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Taking in consideration, essentially memory efficiency purposes we have taken only the first
60 bytes out of each packet. This decision was supported by some important characteristics of
packet’s header organization that we have already assumed from our previous analysis. As we
proceeded to the analysis of packet headers, we have understood that we only needed enough
information comprised in Layer 2, IP and, finally, some essential information from transport
layer(TCP/UDP) headers, as a way to cope with our organization and classification demands,
and still preserving users privacy. The 60 byte mark is intrinsically linked with IPv6 support.
In IPv6, the header is fixed at 40 bytes, and extension headers are added when needed.
Extension headers, along with headers of higher-layer protocols such as TCP or UDP, are
chained together with the IPv6 header to form a cascade of headers, sizing 20 bytes, as can
be seen in Figures 3.4, 3.5.

Figure 3.4: IPv6 header organization extracted from [7]

Figure 3.5: IPv6 extension header organization used from [7]
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Figure 3.6: IPv4 header organization [7]

To accomplish our objective, we have proceeded for each packet, to the division of its
information in two main classes. As a consequence, since our method is flow based, we have
used the most widely used definition of flow, which is the famous fifth-tuple comprised of:

ψ=<Destination IP address, Source IP address, Destination port, Source port, Protocol>

As we can see, most of our information retrieval process was practically done after
analysing the packet’s header only, which in the ”worst” case (IPv6) will only cost us forty
bytes of memory allocations. The ψ described above works as our basic structure, it defines a
unique identifier to catalog packets per flow, that means, all Upload and Download directions
mixed up together.

Actually, after the process of defining what a flow is, we went for other information that
could be useful for the type of study that we wanted to conduct, we thought at this structure
as post identification step, where we extracted packet’s specific information for the statistic
analysis we decided to make. Considering that, and since part of our analysis is based in time
related calculations, we figure out that a time stamp would be one key, therefore, we have
used the time stamp provided by libpcap. This kind of value is a data type that comprises
two fields and it works by providing one field for elapsed time in seconds, and other that goes
up to microseconds resolution witch we thought would be a fairly good resolution considering
the range of time we wanted to address. Afterwards, we extracted a value that, as literature
suggests could be used as a good argument for traffic analyses which was packet size. Finally,
we decided to have an idea over the operations within a TCP flow so we extracted information
on the flags for connection creation and ending. Those, were the only information extracted
from each packet, upon witch we based our next processing and decisions.

3.3.1 Note on Memory Usage

When talking about low level programming, such as programming with C language, there
are several details that need to be taken care of, one of those is memory usage. In this
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sub-segment, we are going to discuss some problems and C specifics, that were taken in
consideration during the implementation, such as, dynamic memory allocation and structures
mapping in memory. The subsequent discussion, is intrinsically machine dependant, therefore
we will assume the previous table of specs 3.1, where the solution was developed and tested.

Dynamic memory Allocation

Dynamic Memory Allocation (DMA) is common place for C programmers, in the sense
that it is an extremely used resource, enabling the programmer to provide data size at run
time. However, even being aware of its extreme importance is crucial to understand its
weaknesses. As expected, we use this technique extensively. Thus the drawbacks of using
DMA in our specific context, are mainly two:

1. Seeking Bottleneck

Today’s standard allocators (used in our code) such as malloc, calloc and free, rely their
performance in multi-threaded environments to locking implementations (shipped with
pthread option on compile time). Thus they are implemented in a blocking fashion,
deteriorating performance. This problem is constant during the application life time,
being specially relevant as packet bursts need to be processed. As explained previously,
libpcap, passes arguments to its associated callback, those are, a pointer to a region
of memory where the actual packet contents are stored and the size of the packet in
bytes. It’s the programmer’s responsibility to assemble (create data structure able to
be processed) the information to process and reserve the necessary memory. Inside each
thread, the actual packets are processed, and the information, described previously, is
extracted and another two dma are performed. In our context there are, potentially,
thousands of, malloc free pairs per second.

2. Memory Fragmentation

Memory fragmentation is a very well known issue that concerns low level memory man-
agement. It happens when a memory request is issued to a memory system and even
being able to fulfill it there is no contiguous block enough to store it. To simplify, the
Percentage of fragmentation in memory is defined like this:

Fragmentation = 1− (Greatest Block of memory available)

(Total Memory Available)
∗ 100

As explained above, there are a great number of malloc, free pairs, among structures
with different sizes. Actually, in most regular applications this wouldn’t be much of
problem because of their ephemeral life time. Although, in an application with a
potential ”eternal” life time, and heavy memory usage, this might be a performance
deteriorating factor. In image 3.7 we can see a clear example of the way that might
happen.
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Figure 3.7: Fragmentation example

Usage of other solution [59], have been tested, without any apparent benefits in our ma-
chine. Moreover, in a work about memory allocators [60] it has been shown it highly fragments
memory under less core architectures. In other very important study [61] the authors discuss
whether a group of memory allocators would perform well under multi-threaded environ-
ments or not. They have clearly concluded that glibc’s implementation would perform well
in commodity hardware, typically two or four core architectures, even under largely threaded
environments. Thus, in this version we opted to use the standard implementation provided
by GNU, because it has been fully tested, and has been proved to also have good score in a
very important study about memory fragmentation [62]. Finally, even admitting that might
be a better solution, we think this is a topic of extreme importance and should be extensively
addressed in the future and tailored to any specific use or architecture.

Structures Mapping in memory

In our scenario, it is of extreme importance to understand how data types are mapped in
memory, and to take decisions to ensure robustness to our solution. Thinking about that, we
went on to study glibc’s structure memory layout and to calculate each individual type size.
This especially important because of low level structure comparison that we use extensively.
Once again, when talking about low level management, we have to take in consideration every
particular machine, therefore the study has been performed considering the specs described
in table 3.1. Before we get to the bottom of the question, we have to understand that, almost
every C compiler works with alignment constraints to provide fast access to data stored in
memory, as expected it works as far as basic data types are concerned. The convention
in C compilers at least for x86 and Arm architectures is that all basic data types are self
aligned, with no padding needed. Self alignment is a key aspect as it permits to generate
single-instruction fetches, avoiding jumps within the memory which contributes to unwanted
latency. In general, a struct instance in C will have the alignment of its widest scalar member.
Most compilers will behave that way as a technique to easily ensure that all the members are
self-aligned for fast fetch. Another important fact is that in C, the address of a struct type
will always be the address of its first member, thus avoiding leading padding. In listing 3.1 is
depicted our final layout of data types sizes and distribution in memory.
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Listing 3.1: Code Mapping for the Flow Id’s

/*IPv4 Flow id*/

typedef struct flow_id_v4 /* 24 bytes */

{

int padding; /* padding 4 bytes */

int protocol; /* protocol 4 bytes */

int port_src; /* source port 4 bytes */

int port_dest; /* destination port 4 bytes */

struct in_addr ip_src; /* source ip 4 bytes */

struct in_addr ip_dest; /* destination ip 4 bytes */

} flow_id_v4;

/*IPv6 Flow id*/

typedef struct flow_id_v6 /* 48 bytes */

{

int padding; /* padding 4 bytes */

int protocol; /* protocol 4 bytes */

int port_src; /* source port 4 bytes */

int port_dest; /* destination port 4 bytes */

struct in6_addr ip_src; /* source ip 16 bytes */

struct in6_addr ip_dest; /* destination ip 16 bytes */

} flow_id_v6;

Our first approach was written ignoring the rules described previously. Thus, the results
generated by our program were undefined. That behaviour is visually explained in image 3.8,
in green we can see the distribution of the actual elements in memory and in red we have
a representation of the hole generated by that distribution. In C, compilers tend to fill the
holes within structs applying random binary garbage. For a matter of searching within a
structure, that wouldn’t be much of a problem, as we can access all the elements individually,
knowing exactly its boundaries. However, we impose the padding ourselves, filling the holes
with ”zeros” to permit low level (complete blocks of memory) comparisons to be successful
without being affected by any kind of random garbage.

Figure 3.8: Data Alignment Memory View

30



3.3.2 Data Storage and Organisation Process

At this point after the information is extracted from the packet, it’s time to understand
how information is organised, and the relevance of our choices concerning data structures.
First of all, considering our previous premise of speed over memory efficiency, we have pro-
ceeded to a conceptual study of this compromise to make sure we found the best fit for our
needs, while choosing a data structure to hold a table of flows. When choosing a data struc-
ture for a certain need, we designed a simple example architecture to verify our basic work
flow per packet, depicted in image 3.9.

Figure 3.9: Basic Work Flow for the differentiation process

As the scheme clearly presents, for each packet processed we have, always, one query
to the data structure, to evaluate the existence, or not, of the current flow. In that sense,
this design characteristic, points a rather crucial feature for our data structure to support.
It is the capacity to perform quick lookups and data accesses, in order to avoid being the
bottleneck for the system. When a problem with potential great amounts of data, demanding
quick lookups arises, one automatically have to look for a search solution based on adapted
Symbol Tables or a Binary Search Tree (BST).
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A Symbol Table is a data structure holding items with keys associated that supports two
basic operations: insertion of a new item, and returning of a previously inserted item given
its key [9]. We can clearly state that this kind of structure works in the same sense as a
dictionary, indexing a word to its content (synonym) ordered alphabetically. As expected,
such a limited range of operations over this kind of structures makes it unusable in real life
contexts. Since this kind of solutions is of extreme importance, it has been extensively studied
throughout the years and a set of operations have been suggested to this abstract data type,
such as:

1. Create Symbol Table

2. Insert a new key item pair

3. Search for an item given the key

4. Delete a specified item

5. Symbol Table sort facility (traversal in key order)

6. Destroy table

The first approach to this kind of structure is based on Key-Indexed Search. Perhaps,
the simplest and straight forward implementation assumes small positive integer values as
keys. The solution’s code is as follows: initialising all the entries of arr[] to ”Nullref”, then
proceeding to insert each k value into its appropriate self addressed position arr[k], and
obviously, perform a search by accessing arr[k] itself. In this naive implementation we leave
to the user the responsibility of handling repeated keys. This first step is considered to be a
point of departure to all the more sophisticated symbol table implementations.

It opens doors to a very important, yet simple property that states that : ”If a key values
are positive integers less than M and items have distinct keys, the the symbol table data type
can be implemented with key-indexed arrays of items such that insert, search, and delete
operations require constant time; and initialise, select, and sort require time proportional to
M, whenever any of the operations are performed on an N-item table” [9].

Another approach, more suited for general key values from a large range for them to
be used as index, is based on an implementation that stores the items in order inside an
array. When a new item comes to insertion, all the entries behave just as an Insertion Sort,
by moving larger objects over one position to accommodate the newcomer without losing
order. Moreover, since the array holding the structure is in order, both select, and sort are
of trivial implementation. This last approach, as expected allows the possibility to overcome
the previous limitation on repeated keys [9].

A different procedure called Binary Search, is based on a divide-and-conquer paradigm
where we divide the set of items in two separated sets and then, from there, decide where to
go. The obvious way to perform the division operation is to keep the holding array sorted
and then use indexes to delimit the part of the array being worked on. From this basis an
important property can be deducted as such : ”Binary search never uses more than blogNc+1
comparisons for a search (hit or miss)” [9].
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Figure 3.10: Algorithmic Complexity Mapping [8]

Figure 3.11: Data Structures Operation Complexity [9] [8]

Data Structure Efficiency Analysis

Taking in consideration the definitions and properties explored in the previous subsection.
Naturally the table 3.11 and its respective graphical mapping present in image 3.10 covering
the space and time Big-O complexities of common data structures used in computer science,
were the conclusion extracted for some data structure that we find more relevant. As far
as speed is concerned, we aim to achieve constant time operations in the majority scenarios,
specially in search operations.
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Evaluating table 3.11 we can conclude that the major property we strive for, is only
achieved, at least in the best and average cases, by a hash table, which gives the dictionary
abstraction for our case, in flow differentiation. There is still a problem that we have to
address, which is the worst case scenario, where it results in a worse linear complexity that,
we strive to avoid. This behaviour might occur, and a hash table can degenerate in a common
array, because of a problem that is intrinsically related with the hash calculation step. As
we know, this data structure, works converting keys into direct table addresses, allowing the
constant time operations depicted in table 3.11. The second step of a hashing algorithm is to
take a decision on how to handle the case when two different keys hash to the same address.
There are two main methods to resolve collisions:

1. Separate Chaining

Figure 3.12: Graphical representation of hash table using separate chaining

This method works by creating a pointer to a chain (typically an array or linked list)
associated with every bucket (address), to deal with different keys hashing to the same
number, therefore originating the same storing address.

This method is commonly called separate chaining, because colliding items, are chained
together in each respective list. An example of this is depicted in image 3.12. As
Sedgewick [9] refers in its analisys of the issue, hash tables are a great classic example
of ”time-space trade-off” as we use more memory in exchange for speed. In separate
chaining this fact always happens, wastage of more memory with list pointers for every
bucket, but regulating speed with short length lists. In the case of separate chaining
approach, with M lists and N keys, is very probable (typically with probability around
1) that the number of keys laying on each list is a small constant factor of N/M. A
classical probabilistic analysis shows that the probability of each list having k elements
is as such: (

n

k

)(
1

M

)k (
1− 1

M

)N−k
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Assuming that choosing any k elements out of the total N presented. Those k hash
to the same address with probability of 1

M and the others N-k hash to independent
ones, with probability of the opposite event 1- 1

M . Considering α = N
M we rewrite the

expression as: (
n

k

)( α
N

)k (
1− α

M

)N−k
Making use of Poisson approximation analysis we retrieve that, it is, less than:

αke−α

k!

From this result we can see that for practical ranges of the parameters, the probability of
hashing to any list with a significant bigger length is rather low. From this analysis, we
can easily conclude that separate-chaining should be used with confidence if its hashing
function is strong and returns values approximately random [9].

2. Probing

This method is based on the principle that we can predict, in the beginning, how
many elements our table will need to hold, so one can over dimension it in order to
fill the holes up in case of collisions of conflicting keys. Such methods are commonly
denominated open-addressing hashing [9]. The simplest method on this field is linear
probing. Basically, when there is a collision, then we just check the next position for
availability, such operation is typically called a probe. This method, is recognised by the
evaluation of three distinct outcomes of a probe: If the table address possesses an item
whose key matches the search key, it results in a search hit; if the position is empty, then
we have a search miss; Finally if the position holds a key that does not match the search
key, we just keep on probing to the next position until we reach the bottom of the table,
after that event, we wrap back to the beginning of the table proceeding the same process
until the search key or an empty space are found. In the end, if we want to proceed
to an insert after this process, we should insert the item in a address that stopped
the process itself. This method’s efficiency is directly connected to the ratio α = N

M ,
even being similar to the ratio discussed in separate-chaining, this time, the relation is
interpreted as a fraction of the total table length with the number of occupied buckets,
which is commonly called load factor [9]. Using this paradigm we expect a low load
factor to permit empty spot finding with just a few probes. Otherwise, for a almost fully
table (load factor nearly 1) a search could require an impracticable number of probes,
even resulting in a infinite loop, if the table is completely full. In an analysis of speed
performance, we should be aware of the cluster concept. A cluster on this regard, is
the way items are stored in contiguous blocks of memory, allowing taking advantage
of the reference locality principle. The average behaviour of linear probing depends of
the way elements cluster together. Considering a scenario where a table is half full (M
= 2N): In a best case scenario, items would be distributed, for instance, in odd table
addresses, while the respective contiguous even addresses would be empty. However
in the worst case, we would consider the same number of items, but this time with a
totally different distribution, therefore, the first half of the table would be completely
full while the rest would completely empty. Taking that in mind, the average length for
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any cluster, regardless the case is N
2N = 1

2 , while for an unsuccessful search the average
number of probes is 1. In the best case we have the following relation:

(0 + 1 + 0 + 1 + 0 + 1 + ...)

2N
=

1

2

For the worst case analysed we have:

(N + (N − 1) + (N − 2) + ...)

2N
≈ N

4

Evaluating the previous relations, generalising them, we find that the average number
of probes defined for an unsuccessful search is directly proportional to the clusters
lengths squared. From the analysis just made, we can conclude that, given a specific
table scenario we can quickly calculate the average burden originated by unsuccessful
searches in that table. Although, the clusters being formed and distributed based on a
dynamic algorithmic process makes extremely difficult to characterise it analytically. In
conclusion, Sedgewick [9] defines that when collisions are resolved using linear probing
methods the average number of probes required in a hash table of size M containing
N = αM keys is approximately:

1

2

(
1 +

1

1− α

)
and

1

2

(
1 +

1

(1− α)2

)
Another data structure that deserves our attention, is a variation of the traditional binary

search trees, this specific implementation allows the usage of the key’s bits to position the
elements within a tree in order, this approach is called a trie. The basic idea behind this
type of ”tree” is to store keys only at the tree’s leaves level. The concept appears as solid
alternative in the field of search algorithms and search optimized structures. Tries are used
commonly within fixed number of bits per key, assuming that they are all distinct, which is a
rather decisive feature, inclusively being used in important academic projects and applications
[63] [64] [65].

In a trie, keys are kept in the leaves (node with no children) of a binary tree. As a
principle this is a very different, and actually a good idea, allowing the bits of the key guide
the search, while keeping the invariant order criteria at each node that all keys whose current
bit is 0 should fall in the left sub-tree all keys whose current bit is 1 should fall in the right
sub-tree [9]. The main difference between a BST and a trie is very well depicted on the form
that a search is performed. As said before, each key is stored in a leaf, following the path of
its leading bits from the root to that specific leaf it works in the same sense that it follows
a prefix along the way. Null links in node that are not leaves correspond to search fail as
the specific bit pattern doesn’t exist within the tree. Therefore, to proceed in a search a
key within a trie , we just branch according to its bit, avoiding comparison of internal nodes
[9]. Another peculiarity of tries is related with the main characteristic just explained, which
is that, for any set of keys, there is a unique distribution resulting in a unique tree. It is
dependent on the key set itself and also dependent on the order in which we insert the keys.
All this properties lead to another distinctive property related with its complexity which is
that, for any insertion of a random key in a trie built with N random and distinct bitstrings
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requires on average log(N) bit comparisons. The worst case being bounded by the number of
bits presented in the key.

The analysis, must be done based on the assumption of the distinctive keys, in this case we
use (infinite) sequence of bits. On average it all comes to the following probabilistic argument.
The probability that each of the N keys in a random trie differ from a random search key in
at least one of the leading t bits is (

1− 1

2t

)N
Calculating the opposite probability, which gives us the probability of one of the keys in

the trie matching all the leading t bits, it appear as:

1−
(

1− 1

2t

)N
From fundamental probabilistic analysis, the sum for t ≥ 0 of the probabilities of a random

variable is t is the average value of that random variable, it is represented by the following:

∑
t≥0

(
1−

(
1− 1

2t

)N)
As form of interpret the outcomes of the analysis we can use the elementary approximation(

1− 1
x

)x ∼ e−1, we deduct that the average cost of search is given by approximately by:∑
t≥0

(
1− e

−N
2t

)
The conclusion extracted from the relation above is that, the summand is very close to

1 for approximately log(N) terms with 2t way smaller than N; it is very close to 0 for all
the terms with 2t way bigger than N, being somewhere between 1 and 0 for the few terms
respecting 2t ≈ N . Therefore the majority is always bounded to log(N) [9].

Data Structure Library Choice

After the analysis and the choice of the kind of data structure we were interested in use,
we went on to evaluate the best options on the subject of data structure libraries written in
C. To proceed to that evaluation, we have divided the decision process in two main criteria
branches. First of all, we have used, programmer convenience, which is rather subjective and
is exclusively dependent on the developer itself. From other side, we have used analytical
indicators such as, memory and processing speed benchmarks along with previous studies
from independent users.

On the developer side (which was the least important parameter) we were interested in
find an implementation that could offer a well written interface, active support and devel-
opment, along with comprehensive documentation. From this perspective, the winner by far
came up to be TommyDs library, as it provided an active development spirit, a well written
implementation released under an open source license, good documentation, adding it up
with good examples. Another great asset in our point of view is the vast work on testing
and benchmarking of the code and on the release of that particular code as way clearing the
field for others testing. Taking that in consideration, we have used the author’s work on
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benchmarking to make up our mind on what library to use. He has performed a series of tests
with different scopes, trying to measure the impact of different sequences of instructions on
several competitor libraries. The most interesting scenario was simulating real world problem
with random sequences. The main idea consisted in storing a set of N pointers to objects
and searching them using integer keys. The point of comparing pointers instead of mapping
integers to integers is that, mapping pointers to objects makes them also dereferenced, to
simulate the object access, resulting in additional cache misses. This scheme was particularly
important, as we follow the same paradigm during the coding stage. The performed tests
were:

1. Insert test - Inserting all the objects starting from an empty container.

2. Hit test - Finding with success all the objects and dereference them.

3. Change test - Find and remove one object and reinsert it with a different key, repeating
for all objects.

For the test all the objects were pre-allocated on Heap memory, being ignored all the times
related with operations over memory such as, allocations and deallocations. The objects were
identified and stored using unique integer keys. The key domain used was dense, and defined
by the set of N even numbers starting at 0x80000000 and going until 0x80000000+2*N. The
use of even numbers allows to have missing keys inside the domain for the Miss test. Being
used in that test a domain defined by the set of N odd numbers starting at 0x80000000+1
until 0x80000000+2*N+1. The choice behind the 0x80000000 based can be explained as the
necessity to mislead the eventual effects of implementations treating zero based numbers in
a special way. The hashing process was just used on the hash table containers using the
tommy inthash u32() function. For all the rest being inserted all the keys directly without
previous hashing. In order to get advantage of our random scenario, we have analysed the
results from that context, being all the keys inserted in a random order.

As we can see in image 3.13 TommyDs stand out as the best option in the random Change
test. As expected, the hash table implementations came out with the best performance. The
event can be justified because of its randomness on access which in an environment with no
collisions, is a decisive advantage. One interesting point about this test is the little vertical
leap occurred at around 100 k objects. This fact is expected and indeed, can be explained
by the system’s cache reaching its limits, starting to get the information from main memory
instead of using the cache. In hit test depicted in image 3.14 we can see that hash table
implementation came up as the best solution with tries coming in second and binary search
trees in third. Once again Tommyds implementation got the best results with a close result by
google’s implementation. Finally, the memory test, depicted in image 3.15 has shown a rather
different conclusion when compared with the previous experiences. In this particular case,
we can clearly witness the space speed trade-off, where implementations based in tree and
trie structures got generally a better score on memory footprint than hash tables. Perhaps,
another interesting fact worth mentioning is that trees and tries have a more stable result,
most of the times, representing a similar burden in memory as the straing lines show. On the
other hand, hash tables perform generally worse and also show peculiar memory spikes and,
in same cases approximately periodic in tommyds implementation.
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Figure 3.13: Results of the change test benchmark extracted from [10]

Figure 3.14: Results of the hit test benchmark extracted from [10]
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Figure 3.15: Results of the memory test benchmark extracted from [10]

From the evaluation performed we have taken the decision of choosing Tommyds library
for all the facts previously exposed. The next step was the one where we tried to choose from
all the provided solutions which one would be the best fit for our specific use case. From that
point of view, we have evaluated two of the most interesting data structures in library, tommy
hashlin and tommy trie. Tommy trie uses a custom memory allocator, as the author states
that malloc function on itself cannot keep up with demands of a cache optimized solution
such as tommy trie. This structure is a standard implementation that stores elements in a
specific order defined by the comparison function passed by the programmer in advance. It
possesses an interesting feature related with the, as we call it, ramification factor, which is the
number of branches per node, implying that more branches is directly connected with more
speed, but at the same time, it implies more memory foot print per node, in this particular
experience we have used a the value by default which is 8 to to exactly fit a typical cache
line of 64 bytes. Tommy hashlin is one of the three implementations provided in the library,
we have chosen to test it over the other two because of its real time friendliness and capacity
to perform well under potentially big time spans as we want it to do. It basically works by
starting with the minimal size of 16 buckets, doubling its when it reaches a load factor greater
than 0.5 halving its size with a load factor lower than 0.125. The progressive resizing, by using
the linear hashing algorithm has been proved and suggested in important bibliography [66]
as being simple and efficient technique for applications, where the cardinality of the key set is
not known in advance, implying a good behaviour in real-time and interactive environments
making insert and delete operations take approximately the same time. In the resizing step
another good idea was implemented, for that, was used a dynamic array that supports access
to not contiguous segments of memory. This way, only allocating additional table segments on
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the heap, without freeing the previous table, and then not increasing the heap fragmentation,
which might influence in a long running time span.

In image 4.3 we can see the results obtained in a simple benchmark respecting the char-
acteristics previously mentioned in table 3.1. In this first one, we wanted to measure the
behaviour of each of the data structures when receiving a burst of forward order flows. The
benchmark worked by simply measuring time at the beginning of the operations and subtract-
ing the time at the final of the program. These results were obtained by calculating the mean
of ten consecutive runs of the benchmark. Evaluating the results we can see that both of the
structures responded very well and levelled its performance during most of the experience,
occurring a little leap at the four million elements. This time, the second experiment was
performed integrating the previous one, but now, measuring the time to search by a random
flow within the complete set of flows, the results are depicted in image 3.17. Once again,
the results were very tight, with a, perhaps, surprising slight advantage for the trie over the
hash table. We believe this fact can be explained by the forward order of insertion previously
mentioned. Tries tend to outscore hash tables on this specific scenario of ordered insertion,
as a result of a well balanced tree scheme.
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Figure 3.16: Results of the burst insertion benchmark
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Figure 3.17: Results of the random single look up

From the previous analysis, and being aware of such a levelled score, we have opted for
the hash table for the implementation of our solution. The choice was made after a risk
calculation was taken into the equation. Tries rely on the uniqueness of all its elements to
perform in a correct manner. Tommyds’s trie implementation require the element’s indexing
process to have an unique integer associated with each element on the insertion. Therefore,
the solutions adopted would forcibly have to be a calculated hash. At the 4 million mark the
signal of collisions has not been felt but as the structures grow to, perhaps, tens of millions
of elements, without a collision management capacity, eventual collisions might degenerate in
erroneous behaviour, destroying the solutions capabilities.

In listing 3.2 we have the code layout, used in the insertion of a new element into our
hash map. The structure is constituted by 6 fields, being divided in 2 distinct areas. The
first area can be defined has data structure’s specific use. While the second area is directly
connected with our working process. When speaking about library specific fields, one should
pay attention, first of all, to the node variable, which is used internally by hashlin to per-
form the hashing and the posterior storage. One interesting and rather unexpected field is
undoubtedly the list node, this variable is directly linked with one of tommyds’s limitations.
That limitation is related with the absence of a declared and explicit definition of an iterator,
to perform linear searches over hash maps or trees. Furthermore, as we are going to see
later, this feature is of critical importance for us throughout the life span of our application.
Therefore, our way to turn the problem around was accomplished by simultaneously adding
the node to the hash map, but right after, associating it to a list that, possesses iterating
as one of its intrinsic characteristics. Now it is time to understand the relevance of each the
remain variables, that belong to our specific work. First of all, we have the flowid, which has
been identified previously in section 3.3, it constitutes the corner stone of our model allowing
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to distinguish among all the flows passing by. The next two fields, are time related, the
timeofcreation variable, as the name indicates, is used to keep track of the time a flow started
to be track down, in practise, it matches the time a flow is added to the hash map. The
second time field is called lastinserted, it is highly updated field, being used to keep track of
the time when the last packet belonging to that specific flow has been processed and got into
the statistics. Finally, the last field is used to connect our organisational architecture with
an array of statistics that we are going to explore further in the next section.

Listing 3.2: Node inserted inside the hashmap

/**

* Structure to be inserted in the data structure hashmap IPv4

*/

typedef struct objectv4

{

tommy_node node;

tommy_node list_node;

struct flow_id_v4 *flowid;

struct timeval timeofcreation;

struct timeval lastinserted;

struct samplestatistic *stat;

} objectv4;

/**

* Structure to be inserted in the data structure hashmap IPv6

*/

typedef struct objectv6

{

tommy_node node;

tommy_node list_node;

struct flow_id_v6 *flowid;

struct timeval timeofcreation;

struct timeval lastinserted;

struct samplestatistic *stat;

} objectv6;

3.4 Statistical Work

In this section we want to provide insights on the statistic calculations that have been
performed.

Heading back to image 3.9 where is depicted the basic work flow during packet differen-
tiation, we can clearly see that the information extracted from the packet is divided in two
main objects. The first, is the well known tuple defining the flow unique identification, and
the rest being the information required for statistic calculations called ”Packet information”.
At this point, the thread responsible for that job, enters a mutual exclusion region, questions
the flow table and the algorithm progresses in one of two ways. If the flow is not already
indexed, structures depicted in listing 3.2 are created, and all its dynamic fields are created
and properly initialized, then the object is inserted in the flow table along with a reference
to the list previously referred for posterior iteration. Right after, the flow indexing process,
its information and a pointer to the flowid itself is sent to a function where the statistics are
updated. The second way is similar to the first but this time the flowid already exists and
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the object retrieved from the flow table is passed to the update statistic function as well. For
the statistics to work we have had to modulate and develop a way to distinguish whether
a specific flow would be considered download or upload. For that to happen we have used
the simplest rule, for convenience and also for efficiency. As a rule, we have assumed that
for the solution to work, we need to give the program a network context. Therefore, using
that network information we have defined following rule: All the traffic coming from an IP
inside our known network is considered upload as it is going to somewhere else outside, as a
consequence the opposite is considered download traffic. For that to happen, we have created
the network context file depicted in listing 3.3. This is a simple EXtensible Markup Language
(XML) file that has to be passed as a parameter at the beginning of the execution, in which
we write the information of the current network context we are monitoring on. The format
of the file itself is very simple, and quite self explanatory. It basically works based on tags
attributes rather than creating a mesh of nodes with nested values in it. For each line, we
have to provide the version of the IP protocol we want to consider, followed by the subnet
mask, finishing with the proper IP address. The contents of the file are loaded in memory,
converted in its binary form, and then divided in two distinct lists, one for IPv4 and other
for IPv6. Finally, from that point on, for all the packets captured the sense to which those
belong to, is calculated by our ”netutilities” module. The process is constituted by three
basic steps:

1. Iterate over the list containing pairs (network address, subnet mask);

2. Until the end of the list or until reach a verdict, apply bit-wise AND to (Source IP, net
mask) pairs;

3. Compare the previous result with network address for equality.

Listing 3.3: Supported format for Network context

<?xml version="1.0" encoding="UTF -8"?>

<networks >

<netaddr versions ="4" mask ="24" addr = "123.34.45.0"/>

<netaddr versions ="4" mask ="24" addr = "193.136.93.0"/>

<netaddr versions ="6" mask ="64" addr = "2001:4131: A213 :00D0::"/>

<netaddr versions ="6" mask ="64" addr = "2002:4130:1213:0020::"/>

</networks >

As stated before, our main intention was to perform packet inspection followed by a
statistical study based on low level statistics. To fulfil that objective we have opted to use
sampling of counters in order to have a good notion about what was going on per slot of time.

In diagram 3.18 we have distinct picture of the structures involved in the process and
how they interact among each other. In practise and, as can be seen, in listing 3.2, the
”Ds Object” has in its definition a pointer to a data structure called ”samplestatistic” which
is also depicted in listing 3.4. As most of the times in the C programming language, that
pointer variable holds the address to the first position of an array of the same type. Internally,
and concerning this specific variable, all the memory requested to it, is allocated dynamically
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and zeroed as a way of force counts at zero avoiding possible problems. The ”samplestatistic”
object is defined to hold values for the counters extracted during time samples. In order
to achieve the sampling itself, we used a simple algorithm to decide in which position of the
array a certain packet information should be going in, or what information should be updated
or not. To solve the problem we needed a pair of timestamps, a spectrum of monitoring and
lastly, a dividing constant called ∆ to position our counters at the right position within the
spectrum.

position =
⌊ timeofcreation− currenttime

∆

⌋
From this simple formula results that the field ”timeofcreation” in object ”Ds Object”

is of extreme importance as way to determine the time when the flow has arrived and the
counting has started. The, ”currenttime” field comes as way to know the moment when a
certain packet was captured, and finally the ∆ is used to transform the previous time stamp
difference in a mapping to our sampling array.

Figure 3.18: Diagram with interactions among structures
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Listing 3.4: Object holding the statistics for the sampling

/**

* Structure to hold the connection between the data structure and the data

for statistical analysis

*/

typedef struct samplestatistic

{

int npacksUp; // Number of packets going upwards (upload)

int npacksDown; // Number of packets coming downwards (download)

int avgsizeup; // Average size of the packets going upwards

int avgsizedown; // Average size of the packets going downwards

int pcksizesumup; // Sum of the size from the packets going upwards

int pcksizesumdown; // Sum of the size from the packets going downwards

int synup; // Number of "SYN" packets going upwards;

int syndown; // Number of "SYN" packets going downwards;

int resetup; // Number of "RESET" packets going upwards;

int resetdown; // Number of "RESET" packets going downwards;

}samplestatistic;

3.5 Memory Crawler

In most long lasting (potential eternal) applications or with a potential huge memory
demand. One of the most important topics to discuss is how to make a rigorous and judicious
memory management as way of avoiding system overload or great pitfalls in terms of overall
system performance.

In our specific case, perhaps, we have a conjunction of the two previous motives. Most
of the memory allocations are requested to the system dynamically, therefore the amount
of memory requested and the time that the requests will come is completely unknown and
dependable of the environment.

For all the reasons previously mentioned a solution to address these problems is particu-
larly important, and must obey three main premises:

1. Periodically and independent action;

2. Mutual exclusive;

3. Reactive in congestion.

Taking in consideration the previous premises we have come up with the conceptual design
depicted in image 3.19. For the crawler to work we have created notions called, crawler cycle
and entry time out. The crawler cycle defines the period in seconds on which the crawler
must be woken up to perform its tasks, the entry time out is used as reference to inform the
crawler on the time of inactivity of each entry, so it can decide if the memory needs to be
freed or not. Both parameters must be passed as arguments in the beginning of the program.

The mutual exclusion is granted not by the crawler itself but by the context in which it
interacts. This means that, the crawler must compete with all the threads trying to perform
operations over the data structure, this resulting in a wait by ”packet threads” while the
crawler performs its actions and doesn’t frees the lock. Other important characteristic is
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related with the last item on the list above. Under certain conditions, when the system starts
to run out of memory, and starts to export blocks of main memory to the disk, performing
swapping; One possible symptom is the failure of the memory allocation functions, such as,
malloc and calloc. When this happens, the callback function, responsible to allocate memory
when packet information is received from the NIC and queue the packet for future processing,
has a mechanism to communicate with the crawler, start it up and force it to free memory
that might be still being used.

Figure 3.19: Diagram depicting how memory is freed

The crawler, has been implemented in a very simple way, the basic concept relies on a
single thread that is created at the beginning, and then intercalating periods of activity with
periods of sleep, dependable on the crawler cycle defined. As can be seen in image 3.19 the
crawler life cycle is executed following this steps:

1. Compete for the lock to access data structure;

2. Iterate over the iterable list;

3. For each node compare the ”lastinserted” field with the entry timeout;

4. Considering the result, decide to free memory or not;

5. In the end, of both IPV4 and IPV6 iteration get back to sleep.

The memory liberation steps are performed in the opposite way of the creation in order
to avoid hierarchical failure of referenced memory at liberation process.
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Chapter 4

Classification Modules

In this chapter we aim to discuss our classification module along with other developed
module, where we perform some superficial experimental evaluation on sampled Internet
traffic in order to visualise patterns among flows. We will be starting with a description
of mathematical tools used in each module for the analysis of the frequency components of
signals and time-series. Finally, we will give some insights on the basic algorithms used for
flow classification. Finally, we intend to give an overview over the results obtained during the
last steps of this work. Those results are going to be specially focused on the analysis of the
classification modules and their efficiency in our architecture, as other results were explained
in previous sections.

4.1 Silence Analysis

Our classification module has been developed using very simple statistical and counting
methods. As described in chapter 3, we have used time sampling as a way to perform the job
of counting the packets per time slot on each flow. Taking that development option into con-
sideration, we have understood its implications by, mainly, proceeding to packet captures in
different places with different bandwidth availability, and sooner, a clear bandwidth influence
was noticed in terms of packet count per bin. Thus, from that clear characteristic, we have
thought of a method inspired in inter-arrival counting analysis. Actually, from that set of
observations, we have concluded that, more important than the amount of packets coming in
or going out in a specific time frame, other, more important parameter would be the silence
count, or the absence of packets in a specific time bin.

Using the principles and ideas just described, we went on to develop a simple, proof of
concept, module to test the system integration and, as a consequence, the success rate of each
classification. Before the implementation itself, we have decided to take on a simple and self
contained scenario where we could test the algorithms behind the concept. That self contained
scenario was chosen and is based on three specific traffic patterns that we found accessible
and important to try the classification. As so, taking in consideration our previous remarks in
chapter 1, about video traffic growth, ”youtube video”,”youtube live streaming” and, finally,
standard browsing traffic (originated by regular page visiting) were the types of traffic chosen
for the analysis. For that purpose, a set of ten characteristic flows, corresponding to each type
of traffic, were generated. Those flows were captured, processed and returned the sampling
vector requested, which has been saved in text files. As a matter of convenience, the sampling
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files were processed using, a Python script that has been written for that purpose.

At this point, we have come to the definition of silence in sampling, as a matter of
simplicity, and considering that we have used bins at the magnitude of a second, we have
considered the following relation: silence = bincount < 10.

The Python script, worked as a ground truth builder, from which, we have generated the
statistic indicators depicted in XML format in listing 4.1.

Listing 4.1: Supported format for types of traffic.

<?xml version="1.0" encoding="UTF -8"?>

<trafficcenters >

<center traffictype ="Video" mean ="70.5" variance = "17.13"/>

<center traffictype ="Browsing" mean ="104.38" variance = "23.48"/>

<center traffictype ="Youtube Live" mean ="36.14" variance = "14.40"/>

</trafficcenters >

Right after this process, we have started to think of a way to make use of the information
calculated, n order to proceed to a classification. The analysis of listing 4.1 has suggested
us the approach to a ”Cartesian Coordinate System”, as (mean,variance) would represent a
point in a two dimension axis system. Therefore, using that idea we went on to write an
algorithm on those basis, using, once again, purely C. The sort of, mental mapping that we
have come up with is depicted in image 4.1. In practical terms, the wider points represent the
position of the three applications that we want to classify, while the centre point represents
the flow needing classification.

Figure 4.1: Distance diagram

The algorithm for each flow, uses the sampling array calculated previously, counts the
number of silences on that specific flow, and then performs the calculation of distance between
each point and the generated point, using Euclidean distance, in the way it is defined. If
u = (x1, y1) and v = (x2, y2) are two points on the plane, their Euclidean distance is given
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by: √
(x1 − x2)2 + (y1 − y2)2. (4.1)

Geometrically, it’s the length of the segment joining u and v, and also the norm of the
difference vector. If a = (x1, x2, . . . , xn) and b = (y1, y2, . . . , yn), then formula 4.1 can be
generalized to n by defining the Euclidean distance from a to b as

d(a, b) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2. (4.2)

The last step on the classification algorithm is used to extract probabilities of classification
for each flow, performing a normalization in the following manner.

Pds =

1

ds
3∑
i=0

(
1

di
)

. (4.3)

Finally, the process returns an array of probabilities, in which we only consider success
on probabilities higher than 50%.

4.2 Multi-Scale Analysis Tools

Another approach that we have tested is based in signal processing tools as a way to
explore the spectral sampling already calculated. This curiosity was inspired by a very good
Phd work on traffic classification, where the author exposes some mathematical tools to traffic
patterns. [11]. As mentioned in several bibliography [11],[67],[68] Fourier Transform (FT) and
Wavelet Transform (WT) are widely used in signal processing and compressing. Being each
one of them widely used from a few years now.

4.2.1 Fourier Transform

As Mallat states the ”indisputable hegemony of the Fourier transform” with its reliance
on a time-invariant operators[68] FT’s are the most widely used technique for analyzing
the frequency spectrum of a stochastic process, doing it, by decomposing it into complex
exponential functions possessing each one of them different frequencies[67]. Formerly being
represented by:

X(ω) =

∫ ∞
−∞

x(t)e−iωt. (4.4)

Where ω refers to the frequency of the sinusoid. Since the support of the sinusoid is
not localized, FTs have a poor time resolution and are only suitable for the analysis of
stationary signals, i.e, signals with the same frequency component in the whole analysis
spectrum. Consequently, FTs are unable to provide time-frequency representation, where the
different frequency components of a non-stationary process are depicted together with the
time-intervals where they occur. Therefore, time-varying or transient signals require other
analysis tools.[68][67]
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4.2.2 Wavelet Transform

Taking in consideration that, in many cases, time-frequency representation restrictions
might be respected by the analyzed data and an accurate decomposition can be achieved.
However, Internet traffic which is very well known to be non-stationary presenting potential
drastic variations in either time and frequency. WTs, by assuming non-stationarity, are able
to provide a time-frequency representation of a signal and are widely applied in many different
areas. In fact, the usefulness of wavelets can be phrased as ”the ability to match that intuition
with mathematical rigor” [69].

Figure 4.2: Morlet Wavelet example [11]

Wavelets are mathematical functions that are used to divide a given signal into its dif-
ferent frequency components. They were introduced in 1980 by J. Morlet to perform signal
decomposition and approximation, and consist of a short duration wave-like oscillation with
a limited amplitude, occurring during a short period of time which gives it a good time and
frequency resolution. Wavelets enable the analysis of each one of the signal components in an
appropriate scale and present several advantages over other signal analysis techniques, such
as Fourier Transforms. Since wavelets, as said before, are a good instrument that allows the
analysis of any process in both time and frequency domains. Using the mother wavelet ψ,
and the set of child functions, denominated the wavelet daughters, one can map the original
time series into a function of its daughters τ and s WT’s are able to provide us with a rep-
resentation of that series in the time and frequency domains. A Wavelet Scalogram can be
defined as the normalized energy Êx(τ, s) over all possible translations (set T) in all analyzed
scales (set S), and is computed as such [11]:

Êx(τ, s) = 100

∣∣∣Ψψ
x (τ, s)

∣∣∣2∑
τ ′ ∈ T

∑
s′ ∈ S

∣∣∣Ψψ
x (τ ′, s′)

∣∣∣2 (4.5)

Our approach regarding this tool was a simply exploring in search for interesting re-
sults. Our basic algorithm depends of a very small and efficient library, written by Professor
Paulo Salvador. With which we calculate the ”ground truth” wavelet and the unclassified
flow wavelet proceeding to the subtraction of both waves, analyzing the result looking for
similarities.
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4.3 Silence Module Results

In this sub section, we are going to provide the results for the proof of concept experiences
that had been performed concerning the classification steps.

The results are going to be displayed in terms of time per classification and in the case of
the Euclidean distance Method, we are going to provide insights on the classification accuracy
study. In each one of the plots presented, we expect to give a proper context to each experience
and provide comments about the results obtained.

Right now, we are going to start by analysing the results concerning time per classification.
The experience depicted in plot 4.3 was performed respecting the following protocol :

1. Select ten packet traces for each one of the types evaluated;

2. Process each one of them consecutively;

3. Repeat the process 100 times;

4. Repeat the previous two steps for ten different spectrum lengths;

5. Calculate mean and variance for each one of the cases.

For this experience the results have been interesting in terms of the continuity regarding
the mean, as its value, does not seem to be varying that much. We can clearly see some ups
and downs along the graph but we can deduct an approximation for linear complexity. One
peculiar fact has been indeed the big numbers in terms of standard deviation. For a matter
of readability we have divided the presented values in 1

4σ. In conclusion this approach has
come up in average, as a very reliable approach, even thought its values can vary greatly.
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Figure 4.3: Plot for the Euclidean Distance simulation for different number of elements.
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The experience performed and depicted in image 4.4 followed a protocol as follows:

1. Another selection of 10 traces per type of packet;

2. Usage of the previous ground truth for classification;

3. Run the acquired traces against the ground truth;

4. Repeat the process for five different spectrum lengths, recalculating centres each time;

From the graphic observation, we can clearly see, rather positive results, and one inter-
esting phenomena that happens with Video and Streaming lines both having an opposite
behaviour, forming a hole in the middle resulting of their crossing. The results related with
Browsing stand up from the the others because of its perfect score in classification, the sim-
pler explanation is the fact that we have created a proof of concept system with only three
types of traffic in which, browsing stands up by difference from the others. Considering, video
and live streaming, their classification score is very interesting and can be justified because
of their similarity in the beginning of each flow. Live Streaming tries to keep packets rhythm
every time, while ”normal” video starts strong, and showing some periods of silence as time
goes by.
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Figure 4.4: Results of the classification for different data lengths
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4.4 Wavelet Module Results

Considering the wavelet calculation approach, we have understood that, this type of cal-
culations tend to be very complex and take time that can go up to two orders magnitude when
compared to the Euclidean Distance approach. This time, we have made the exactly same
thing by cutting the standard deviation by a quarter for the purpose of readability. Analyzing
the results we can clearly state that wavelet calculations tend to vary greatly, being hard to
predict, even though the results came up better when compared to the Euclidean distance
method.
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Figure 4.5: Plot for the Wavelet simulation for different number of elements.

The experiment performed with wavelets returned very interesting results, that were useful
to corroborate the previous work that served as an inspiration to this dissertation [11]. As
referenced in the last chapter, wavelets appear has a great mathematical tool to detect events
with the similar energy levels (y axis) along the the frequency space (x axis). The experience
performed, depicted in figure 4.6 was conducted as a way to figure out its potential. Both
signals have been obtained by simple browsing in the web reading articles in an on-line
newspaper. The signaled zone in both pictures, show the characteristics shared by each
signal in any particular frequencies. Actually, the results related with the direct analysis of
the plot are clear enough to see the common properties, as both signals tend to approach
each other in energy values and in their monotony behaviour.
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(a) Scalogram calculation with 120 s data (b) Scalogram calculation with 60 s data

Figure 4.6: Traffic behaviour depicted in wavelets

Figure 4.7: Scalogram Subtraction

Our approach to identify this type of events have been a basic subtraction of waves. By
performing the subtraction we get a result similar to a straight line around the zero level of
energy, as can be seen in image 4.7. As explained before, we didn’t go further than this but
we believe this is worth of further investigations.
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Chapter 5

Conclusion and Future Work

The emergence of the Internet as the greatest communication platform that comprises
a great number of services, applications and devices, triggered the need to perform traffic
analysis and user profiling. Several approaches were referred to in Chapter 2. Despite their
validity and scientific importance, the increasing capacity of the networks, and the increasing
complexity of Internet applications, together with disguised traffic, have made the classifica-
tion task much harder. The outcome of this dissertation proposed another kind of approach
to monitoring, processing of packet’s information and traffic classification, using basic low
level statistics. We were able to distinguish a small set of different applications, considering
their specific traffic. Concerning the packet monitoring, the performance has been measured
and a few data structures have been benchmarked for efficiency in terms of processing time
and main memory usage. We have evaluated the packet processing viability, and we believe
to have found an acceptable point of compromise between performance, resources allocation
and traffic prediction accuracy. Regarding traffic classification, we have been able to formu-
late simple rules for traffic classification, giving a small contribution on that subject. The
overall system has been tested and benchmarked, depicting stability during consecutive runs,
even during stress tests, generating flows with tens of thousands of packets at different packet
rates.

Considering that the main objectives of this dissertation were accomplished, there are a
few limitations linked with the solution, and there is a lot of potential to grow the concept
and add new features. Addressing the actual limitations, perhaps, its main flaw is an intrinsic
limitation of our approach, in the sense that a real-time approach was neglected in order to
obtain better traffic distinction. Another limitation would be the lack of testing under ”real
life” conditions, for instance, in a production server. Another limitation is definitely the
number and the variety of applications supported. We believe that the work developed in the
scope of this dissertation has been a good point for further investigations on the area.

Taking these into consideration and talking about future work, one idea would be, the
implementation of more complex rules that could eventually support different types of traffic,
even using the information that is not being used nowadays. To complement this idea, the
implementation of indexes (that started in our work but did not follow through) would,
perhaps, be a good way to go. A more profound study of real-time approaches to design a
system tailored for that paradigm, but also to provide better classifications earlier. Another
challenge would be the usage of Data mining and Machine Learning to work on low level
statistics and provide relative intelligence to the application, allowing autonomous reactions
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to suspicious traffic. Finally, in human interaction perspective, another good ways to go
would be related with delivery of structured reports, important and valuable resource, to
network managers, or even the develop of alarming systems, to give proper insights on the
fly, to understand what is going on in the network, in a wider time frame.
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[68] Stéphane Mallat. A wavelet tour of signal processing. Academic press, 1999.

[69] Esse Connell. Wavelet transforms and signal processing. Paper.

63


	Contents
	List of Figures
	List of Tables
	Listings
	Glossary
	Introduction
	Motivation
	Objectives
	Dissertation's Structure

	State of the art
	Packet sniffing
	Libraries and Frameworks

	Data Structures Libraries
	Packet Inspection
	Deep Packet Inspection (DPI)
	Shallow Packet Inspection (SPI)

	Traffic Classification Techniques
	Port-Based Approaches
	Payload-Based Classification Approaches
	Statistical Classification Approaches

	Real-Time vs Non Real-Time Classification Approaches
	Real-Time Classification Approaches


	Architecture/Implementation
	Generic Conceptual Architecture
	Packet Capture
	Information Retrieval and Data Organization
	Note on Memory Usage
	Dynamic memory Allocation
	Structures Mapping in memory

	Data Storage and Organisation Process
	Data Structure Efficiency Analysis
	Data Structure Library Choice


	Statistical Work
	Memory Crawler

	Classification Modules
	Silence Analysis
	Multi-Scale Analysis Tools
	Fourier Transform
	Wavelet Transform

	Silence Module Results
	Wavelet Module Results

	Conclusion and Future Work
	Bibliography

