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palavras-chave  
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supressão.  

resumo 
 

 

As mutações nonsense são mutações pontuais que originam codões de 
terminação prematura (PTCs). A expressão de genes portadores de PTCs 
pode levar à síntese de proteínas truncadas. As proteínas truncadas 
caracterizam-se por serem menores e, na maioria das vezes, não possuem 
função biológica, apesar de poderem ter funções deletérias para a célula. Em 
condições normais, transcritos portadores de PTCs são degradados 
rapidamente através do processo de nonsense mediated mRNA decay (NMD). 
Quando um PTC atinge o sítio A ribossomal, os fatores de terminação da 
tradução ligam-se ao mesmo e a tradução termina imediatamente. A terapia de 
supressão consiste numa abordagem terapêutica que tem o objetivo de utilizar 
compostos de baixo peso molecular para induzir a incorporação de aminoacil-
tRNAs quase cognatos, moléculas que possuem complementaridade para dois 
dos três nucleótidos de um códão de stop, quando o ribossoma atinge um 
PTC. Assim, a tradução não termina prematuramente. 
Estudos anteriores mostraram que alguns aminoglicósidos possuem a 
capacidade de suprimir PTCs responsáveis por doenças, como fibrose quística 
e distrofia muscular de Duchenne. Algumas mutações nonsense são 
responsáveis pela β-talassemia. 
Neste estudo foram utilizados dois aminoglicósidos, canamicina e gentamicina, 
de modo a avaliar a sua capacidade em aumentar a competitividade de tRNAs 
quase cognatos com os fatores de terminação da tradução pelo sítio A 
ribossomal, na presença de um PTC, evitando dessa forma a terminação 
prematura da tradução. 
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abstract 

 
Nonsense mutations are point mutations that originate premature termination 
codons (PTCs). The expression of PTC-containing genes may lead to the 
synthesis of truncated proteins. Truncated proteins are shorter proteins that at 
most times do not have biological function, but may have deleterious functions 
for the cell. In regular conditions, PTC-containing transcripts are taken to rapid 
decay, through nonsense mediated mRNA decay (NMD). 
When a PTC reaches the ribosomal A-site, translation release factors bind it 
and translation immediately stops. Suppression therapy is a therapeutic 
approach that aims to suppress PTCs by using low molecular weight 
compounds to induce the incorporation of near cognate aminoacyl tRNAs, 
molecules that show complementarity to two of the three nucleotides of a stop 
codon, when the ribosome reaches a PTC. Thus, translation does not 
prematurely terminates. 
Previous studies have shown that some aminoglycosides have the ability to 
suppress PTCs responsible for diseases like cystic fibrosis and Duchenne 
muscular dystrophy. Some nonsense mutations are responsible for β-
thalassemia disease. 
In this study two aminoglycoside compounds, kanamycin and gentamicin, were 
used in order to evaluate their capacity to increase the competition of near 
cognate aminoacyl tRNAs with translation release factors by the ribosomal A-
site, when the ribosome reaches a PTC, therefore avoiding the premature 
termination of translation. 
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1. Literature review 

1.1. Beta-thalassemia 

β-thalassemia consists of a heterogeneous group of diseases caused by mutations in the 

β-globin gene (HBB), present in the human chromosome 11, which lead to a reduced 

production of β-globin protein (Rund et al., 2005). It is estimated that about 1.5% of the 

world population carries β-thalassemia and that about 60000 individuals were born with 

β-thalassemia symptoms (Galanello and Origa, 2010). 

HbA (adult hemoglobin) consists of four globin chains: two α-chains and two β-chains. 

In a regular situation, the HbF (fetal hemoglobin) γ-chains are completely replaced by 

β-chains during the first six weeks after birth. In a β-thalassemia case, the symptoms of 

the disease start to arise just a few months after birth, during the time when γ-chains 

replacement should occur. This happens because there are no β-chains to be substituted 

(Galanello et al., 1989; Cao et al., 2010). The reduced production of β-globin leads to 

the precipitation of α-chains within and on the membrane of erythrocytes, resulting in 

the formation of Heinz bodies. The presence of free α-globin chains in the bone 

marrow, leads to their precipitation in erythrocytes leading to membrane disruption and 

consequent reduction in erythropoiesis efficiency. Therefore, there is a reduction in the 

number of erythrocytes in the bloodstream (Steinberg et al., 2001; Cao et al., 2010). 

Three types of β-thalassemia can be characterized based on the clinical manifestations: 

β-thalassemia major, with more severe symptoms such as jaundice, splenomegaly, 

typical skeletal variants with stunted growth and reduction in the average life 

expectancy (Borgna-Pignatti et al., 2004); β-thalassemia intermedia, being less intense 

and having less need for therapeutic intervention (Wainscoat et al., 1987, Galanello et 

al., 1989; Ho et al., 1998); β-thalassemia minor, in which individuals carry a single 
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mutant allele, and do not show symptoms, despite the possible occurrence of microcytic 

and hypochromic erythrocytes. Individuals with β-thalassemia minor have a higher 

concentration of HbA2 in the bloodstream (Steinberg et al., 2001; Borgna-Pignatti et 

al., 2004). 

 

1.2. Messenger RNA translation 

Protein synthesis occurs in the cell cytoplasm and is directly dependent on the 

translation machinery, constituted by the ribosome, tRNA molecules, tRNA aminoacyl 

synthetases, initiation factors and the mRNA molecule. The translation process consists 

of four stages: initiation, elongation, termination and recycling. The mRNA molecule 

provides the information that is read by the translation machinery (Pestova et al., 2001; 

Preiss and Hentze, 2003). 

Initiation is the most complex phase of the translation process. The eukaryotic 

translation initiation factor 3 (eIF3) binds the E-site in the small (40S) ribosomal 

subunit, in order to prevent the 60S complex from binding it, at the very beginning of 

the translation process, and in order to allow the 40S subunit to bind the mRNA 

molecule. eIF5, a GTPase activating enzyme and eIF1 and eIF1A also bind the 40S 

subunit. In this stage, it is very important to ensure that only the Peptidyl-site (P-site) is 

free in order to accept the methionyl-initiator tRNA (Met-tRNAi
Met). The eIF2 is a key 

factor in the translation initiation process. This initiation factor is a GTPase composed 

by 3 subunits. It carries the Met-tRNAi
Met, and brings it to the ribosomal P-site, forming 

the 43S pre-initiation complex (shortened as 43S PIC). It is noticeable that, once 

attached to the 43S PIC, the tRNA is still not attached to the mRNA by its anticodon. 
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(Lamphear et al., 1995; Preiss and Hentze, 2003; Agirrezabala and Frank, 2010; Nanda 

et al., 2013).  

The eIF4A, eIF4E and eIF4G combine together into the eIF4F complex. eIF4B 

stimulates the eIF4A activation. It has been shown that eIF4E binds the 5’ cap. The 

interaction between the PABPC1, located in the mRNA’s 3’ poly(A) tail, and the eIF4E 

with the 5’ cap, folds the mRNA into a closed-loop structure which leads to its 

activation, as shown in the figure 1 (Wells et al., 1998; Asano et al., 2001; Svitkin et 

al., 2001; Preiss and Hentze, 2003; Yamamoto et al., 2005; Nanda et al., 2013). 

  

 

Figure 1: mRNA activation. eIF4E, eIF4G and eIF4A form the eIF4F complex. eIF4B binds to the eIF4A 

protein. eIF4E binds to the 5’ cap. The mRNA molecule folds into a loop-like structure due to the 

interaction between the PABP, located in the 3’ poly(A)tail, and the eIF4E with the 5’ cap. This process is 

energetically expensive because it requires hydrolysis of ATP into ADP and Pi in order to occur. Adapted 

from Jackson et al., 2010. 

 

Scanning of the AUG codon is performed in a 5’-to-3’ sense. Once the translation 

machinery reaches the start codon, eIF2 hydrolyzes GTP into GDP and Pi and the Met-

tRNAi
Met binds the AUG codon in the P-site which forms the 48S initiation complex. 
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The Aminoacyl-site (A-site) is left empty (Svitkin et al., 2001; Gebauer et al., 2004; 

Matsuda et al., 2006; Jackson et al., 2010; Shin et al., 2011). 

Once the anticodon-codon bond has been established, the large ribosomal subunit (60S) 

is carried by the GTPase protein eIF5B, and is assembled in the ribosome 40S subunit. 

As this process occurs, eIF5B hydrolyzes GTP into GDP and Pi and all the other 

initiation factors are released. Thus, the 80S subunit is assembled and is ready to 

proceed to the elongation step (Ramakrishnan, 2002; Preiss and Hentze, 2003; Gebauer 

et al., 2004; Jackson et al., 2010; Nanda et al., 2013). 

The elongation step has two major phases, being these the peptide bond formation and 

the translocation of the ribosome trough the mRNA molecule. The elongation factor 1A 

(eEF1A) is a GTPase that attaches to the aminoacyl tRNA and brings it to the ribosome 

A-site, which is empty. This factor is also carrying a GTP molecule. Once in the 

ribosome A-site, eEF1A hydrolyzes its GTP into GDP and Pi and releases the tRNA 

which attaches the A-site. The protein eEF1A is recycled by a GTP exchange factor 

(GEF) composed by the elongation factors 1B, 1D and 1G. The GEF will replace the 

eEF1A’s GDP with GTP, thus eEF1A will be ready to attach another aminoacyl tRNA 

(Hotokezaka et al., 2002; Ramakrishnan, 2002; Gebauer et al., 2004; Agirrezabala and 

Frank, 2010; Li et al., 2013). 

The peptidyl transferase enzyme has a crucial role in the translation elongation because 

it catalyzes the formation of a peptide bond between the amino acids located in their 

respective tRNA molecules in the P- and A-site, respectively. As a consequence, the 

tRNA present in the P-site releases its amino acid. Then, the ribosome moves to the next 

codon, by a process called translocation, which requires eEFG and GTP. The tRNA 

present in the P-site moves to the ribosome Exit-site (E-site) and then leaves the 

translation machinery. The tRNA that was present in the ribosome A-site is now in the 
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P-site and, once the A-site is now empty, another aminoacyl tRNA binds to it. Thus, this 

process is repeated until the ribosome reaches the stop codon (being UAA, UAG or 

UGA) (Gebauer et al., 2004; Agirrezabala and Frank, 2010; Zhou et al., 2014).  

There are no aminoacyl tRNA molecules that have an anticodon that can pair with any 

of the three existing stop codons. When the stop codon of the mRNA enters the 

ribosome A-site, the eukaryotic release factor 1 (eRF1), also known as TB3-1 in 

humans, and the eukaryotic release factor 3 (eRF3), a GTPase, are recruited (Janzen and 

Geballe, 2004; Kashima et al., 2006). The eRF1 mimics the tRNA in the A-site of the 

ribosome, recognizing the stop codon. It has a major role in the translation termination, 

because it cleaves the peptidyl-tRNA bond by hydrolysis. A GTP is associated with the 

eRF3. This GTP molecule is hydrolyzed into GDP and Pi when the eRF1 binds the A-

site, providing sufficient energy which allows the cleavage of the nascent peptide 

(Frolova et al., 1996 and Wang et al., 2001; Janzen and Geballe, 2004; Kashima et al., 

2006). Thus, every translation machinery element is released and recycled as shown in 

figure 2. The same mRNA molecule may be translated more than once at a time and 

may also be translated again, before it is taken to its decay (Dever and Green, 2012). 
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Figure 2: Eukaryotic translation termination. (A) There are no tRNA molecules that can bind with the 

stop codon (represented as  UAG, in red) When a stop codon enters the ribosomal A-site, (B) eRF1/eRF3 

complex binds to it, mimetizing a tRNA molecule. (C) eRF3 acts as a GTPase and hydrolyzes GTP into 

GDP and Pi. Thus, the translation machinery disassembles completely and the mRNA molecule is free to 

a new translation cycle. Adapted from Keeling et al., 2012. 
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1.3. Nonsense mediated mRNA decay 

The mammalian nonsense mediated mRNA decay (NMD) is an mRNA surveillance 

mechanism. It has the function to degrade aberrant mRNA molecules. This gene 

expression surveillance mechanism is fast and highly conserved throughout the 

evolution of the species (Hall and Thein, 1994). 

There are four classes of transcripts that trigger NMD: 

- Alternative splicing (AS) resulting transcripts, wherein the AS event introduces 

a stop codon located at about 55 nucleotides upstream of the last exon-exon junction 

(Lareau et al., 2007; Saltzman et al., 2008); 

- Normal splicing resulting transcripts, wherein the stop codon is located at 

about 55 nucleotides upstream of the last exon-exon junction (Maquat, 2004); 

- Transcripts with long 3’-UTRs (Buhler et al., 2006; Singh et al., 2008); 

- Transcripts containing short upstream ORFs (uORFs), because the uORF stop 

codon is recognized as premature (Oliveira and McCarthy, 1995). 

 

Premature termination codons (also known as PTCs) are responsible for about a third of 

the human genetic disorders. The PTCs are originated, among other causes, due to 

nonsense and frameshift mutations in the DNA, which results in a premature 

termination of translation, producing truncated polypeptides. These polypeptides are 

shorter and, at most times, injurious for the cell. Some diseases may occur due to the 

lack of the full length proteins (Mühlemann et al., 2008). 

The deposition of exon junction complexes (EJCs), 20 to 24 nucleotides upstream to the 

exon-exon junctions of the mRNA occurs during its processing (Le Hir et al., 2000). 

The Helicase eiF4AIII joins the heterodimer Y14/Magoh and allows the EJC attaching. 
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The EJCs function as a mark for the recognition of a stop codon as premature (Kozak, 

1989; Hall and Thein, 1994; Lau et al., 2003; Le Hir et al., 2016). 

During the pioneer round of translation, the ribosome removes the EJCs. If a PTC is 

detected more than 50 to 54 nucleotides upstream to the last exon-exon junction, the 

translation stops prematurely. If this happens, at least one EJC will remain associated to 

the mRNA molecule (Nagy et al., 1998; Silva and Romão, 2009; Schweingruber et al., 

2013). As a result, the NMD is triggered and recruitment of exoribonucleases occurs. 

Exoribonucleases will degrade the mRNA. In the absence of PTCs, the ribosome 

reaches the natural termination codon, removing every single EJC stalled in the mRNA 

molecule, and a functional polypeptide is correctly synthetized. It may happen that if a 

PTC is located less than 50 to 54 nucleotides upstream to the last exon-exon junction, it 

will not be detected as premature. As a result, translation ends prematurely and a 

truncated peptide is synthetized, which may cause clinical conditions. (Nagy et al., 

1998; Holbrook et al., 2004; Amrani et al., 2006; Silva and Romão, 2009; 

Schweingruber et al., 2013). 

The UPF proteins (up-frameshift proteins) have an important role in the NMD. There 

are three types of UPF proteins: UPF1, UPF2 and UPF3. UPF2 and UPF3 proteins 

belong to the EJC. While the UPF3 binds to the mRNA during the splicing process, in 

the nucleus, the UPF2 protein binds to the UPF3 during the mRNA exportation through 

the nuclear pore (Lykke-Andersen et al., 2000; Serin et al., 2001; Kashima et al., 2006). 

In the cytoplasm, the interaction between the EJC and the translation termination 

complex promotes the interaction between the UPF2/UPF3 complex and the UPF1 

protein (Serin et al., 2001; Kadlec et al., 2004; Kashima et al., 2006). 

UPF1 proteins are mainly found hypophosphorylated in the cytoplasm. The interaction 

between UPF1 and the EJC has a direct influence in the translation termination. It has 
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been shown that CBP80, a protein found in the mRNA 5’ cap, transiently interacts with 

the UPF1/SMG1 complex, during the initiation of pioneer round of translation. In yeast, 

this weak interaction is enough to promote the contact between the UPF1/SMG1 

complex with eRF1 and eRF3, leading to the SURF complex formation. Therefore, the 

SURF complex is composed by UPF1, SMG1 (UPF1 kinase suppressor with 

morphogenetic effect on Genitalia 1), and release factors 1 and 3 (Lejeune et al., 2002; 

Kashima et al., 2006; Hwang et al., 2010; Choe et al., 2014). If a PTC is found in the 

mRNA molecule, the SURF complex binds it, and CBP80 elicits the connection 

between the UPF1/SMG1 complex and a PTC distal EJC, which has not been removed 

during the pioneer cycle of translation. Thus, UPF1 directly interacts with UPF2 and 

UPF3 bound to downstream EJC, and is activated by its kinase, SMG1, forming the 

decay-inducing complex (DECID). This chain of events subsequently represses the 

translation, and mRNA decay factors such as SMG5, SMG7 or PNRC2 (proline-rich 

nuclear receptor coactivator 2) and SMG6 are recruited. (Frolova et al., 1996; Wang et 

al., 2001; Kashima et al., 2006; Hwang et al., 2010; Peixeiro et al., 2011). These 

molecules will bind the phosphorylated UPF1, triggering the mRNA decay. SMG5, 

SMG6 and SMG7 contain an N-terminal domain consisting of 9 anti-parallel α-helices 

homologous to 14-3-3 proteins. 14-3-3 proteins are a group of proteins that bind 

molecules containing phosphorylated serines/threonines (Fukuhara et al., 2005; Obsil 

and Obsilova 2011; Jonas et al., 2013; Choe et al., 2014). 

In metazoans, in order to occur NMD, UPF1 must be dephosphorylated. SMG5, SMG6 

and SMG7 trigger UPF1 dephosphorylation by recruiting PP2A (phosphatase 2A) and 

NMD is triggered (figure 3). In humans, SMG6 promotes endonucleolytic cleavage of 

PTC-containing mRNA 5’ to the EJC, in the PTC vicinity. It is the C-terminal PIN (Pil-

T N-Terminus) domain present in SMG6 that is responsible for the mRNA cleavage. 
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(Page et al., 1999; Denning et al., 2001; Yamashita et al., 2001; Anders et al., 

2003; Chiu et al., 2003; Glavan et al., 2006; Huntzinger et al., 2008; Eberle et al., 2009; 

Okada-Katsuhata et al., 2011). 

 

Figure 3: Model for degradation of NMD targets. UPF1-bound mRNA molecules may undergo through 

two different degradation pathways. (A) UPF1 may recruit SMG6. (A.1) SMG6 binds with 

phosphorylated UPF1 attached to a PTC-containing mRNA, (A.2) its C-terminal PIN domain endocleaves 

the mRNA molecule, 5’ to the EJC. SMG6 has endocleavage activity. (A.3) Two decay intermediates 

result from the endocleavage. The 5’ decay intermediate suffers 3’-to-5’ digestion by the exosome and the 

3’ decay intermediate suffer 5’-to-3’ digestion by the XRN1. (B) UPF1 may also recruit SMG5/SMG7 

complex. SMG5/SMG7 complex has an important role in the degradation of PTC-containing mRNA 

molecules. SMG5 is an adaptor protein that forms a complex with SMG7 (B.1) N-terminus of SMG7 

interacts with the phosphorylated UPF1 that binds PTC-containing mRNA molecules. (B.2) SMG7 brings 

UPF1 into P-bodies and recruits a decapping enzyme (DCP2), that digests the 5’ cap, while deadenylases 

digest the mRNA Poly(A)tail. (B.3) Finally the mRNA molecule suffers 3’-to-5’ digestion by the 

exosome and 5’-to-3’ digestion by the XRN1. Adapted from Popp and Maquat, 2013. 

 

SMG6 endocleavage generates 5’ and 3’ decay intermediates that suffer rapid decay by 

the exosome and the 5’-to-3’ exoribonuclease 1 (XRN1) (figure 3.A). UPF1 also has 

helicase activity that is responsible for the disassembly of the RNP components bound 
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to the 3’-clevage product. (Gatfield and Izaurralde, 2004; Eberle et al., 2009; Popp and 

Maquat, 2013; Fiorini et al., 2015). 

SMG7 uses its N-terminus to interact with the phosphorylated UPF1 protein and its C-

terminus to elicit the mRNA decay. SMG7 usually brings UPF1 into P-bodies, where 

high concentrations of RNA decay factors can be found (Chang et al., 2007). SMG7 has 

also a major role in the recruitment of mRNA decay enzymes such as the DCP2, a 

decapping enzyme, and the exoribonuclease XRN1 (figure 3.B) (Unterholzner et al., 

2004; Eulalio et al., 2007; Jonas et al., 2013; Loh, 2013). 

If an mRNA molecule contains a PTC, the molecule may be committed to NMD, and its 

encoded protein may not be synthesized. In Mammalia, NMD is directly dependent on 

the splicing and translation machinery (Hall and Thein, 1994), and in general, it is not 

activated in mRNA synthetized from PTC-containing intronless genes. It has been 

shown that some PTC-containing mRNA molecules can evade the NMD process, thus 

being translated, which results in the formation of truncated proteins. The phenotype of 

an expressed truncated protein is usually more harmful to the cell than if the mRNA is 

degraded by the NMD process (Holbrook, et al., 2004). However, truncated proteins 

may have basal activity in the organism, as it has been shown in diseases like Duchenne 

muscular dystrophy (DMD), associated to some PTCs in the dystrophin gene (Dent et 

al., 2005 and Malik et al., 2010), and cystic fibrosis, associated to some PTCs in the 

CFTR gene (Kerem et al., 2008 and Sermet-Gaudelus et al., 2010). Thus, in certain 

cases, despite the NMD protective role in the organism, its induction may be more 

deleterious than if it would not occur (Malik et al., 2010, Keeling and Bedwell, 2011 

and Bartolomeo et al., 2013). 

Eventually, PTCs at the β-globin gene may be responsible for some cases of β-

thalassemia. However, it was shown that β-globin mRNA containing AUG-proximal 
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PTCs may not be taken for degradation (Romão et al., 2000). The same happens if a 

PTC is present in the third and last exon of the β-globin gene (Romão et al., 2000). For 

example, it has been shown by Salvatori and colleagues that human β-globin mRNA 

containing a PTC at codon 39 (β39 β-globin mRNA) (exon 2) is degraded by NMD, but 

β15 β-globin mRNA and β127 β-globin mRNA, both having PTCs, at the codon 15 

(exon 1) and 127 (exon 3), respectively, evade NMD (Salvatori, Breveglieri et al. 2009; 

Salvatori, Cantale et al., 2009). 

 

1.4. Suppression therapy 

Molecules of tRNA that show complementarity to two of the three nucleotides of a stop 

codon are called near cognate aminoacyl tRNA molecules. The development of 

suppression therapies presupposes an increase in the competition of near cognate 

aminoacyl tRNA molecules with the eRF1/3 complex by the ribosomal A-site, therefore 

avoiding the premature termination of translation. When a stop codon enters the 

ribosomal A-site, release factors bind to it and the translation immediately ends. When a 

near cognate aminoacyl tRNA molecule binds a premature stop codon, it triggers a 

readthrough event. As such, the PTC is not recognized as a stop codon. Thus, the 

translation mechanism does not stop and another amino acid is incorporated into the 

growing polypeptide, which was not released from the translation machinery. (Keeling 

and Bedwell, 2011; Bartolomeo et al., 2013). 

There are some ongoing studies that use antisense oligonucleotides, NMD inhibitor 

cofactors, suppressor tRNA molecules and aminoglycoside and non-aminoglycoside 

antibiotics, among others, aiming to establish a therapy for diseases due to PTCs (Malik 

et al., 2010, Goldmann et al., 2011; Tan et al., 2011; Ward et al., 2014). 
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It has been demonstrated that some aminoglycoside and some non-aminoglycoside 

molecules have the ability to suppress nonsense mutations as PTC readthrough 

compounds. These compounds increase the ability of near cognate aminoacyl tRNAs to 

compete with the translation release factors for the ribosomal A-site. Thus, mRNA 

translation does not end in the PTC and production of the full-length protein may occur 

(Mühlemann et al., 2008; Keeling and Bedwell, 2011; Sanchez-Alcudia et al., 2012; 

Keeling et al., 2012, Keeling et al., 2014).  

Aminoglycosides are a class of antibiotics that contain amino sugar substructures. These 

antibiotics are used to inhibit bacteria translation (Mingeot-Leclercq et al, 1999). The 

ribosomal decoding center has a proofreading function, verifying the codon-anticodon 

interactions and ensuring the exclusive accommodation of cognate aminoacyl tRNA 

molecules in the peptidyl transferase center. The peptidyl transferase center is the 

structure where the peptide bonds are formed. It has been shown that aminoglycoside 

molecules can bind the ribosomal decoding center, present in the eukaryotic small 

ribosomal subunit, modifying its conformation, leading to a reduced ability to 

distinguish between tRNA substrates. This results in the misincorporation of near 

cognate aminoacyl tRNA in PTCs. Therefore, antibiotic molecules may enhance a 

readthrough effect during the mRNA translation (Lynch et al., 2001; Scheunemann et 

al., 2010; Lee et al., 2012; Gómez-Grau et al., 2015). 

Readthrough effect can suppress the translation termination. However, not always the 

results are the same, depending on factors like the identity of the termination codon, the 

surrounding mRNA sequence context and the presence of stimulating compounds (Lee 

et al., 2012; Dabrowski et al., 2015). Other experiments should be performed in order to 

understand how readthrough capacity can be affected. Furthermore, when used in 
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patients, these compounds have revealed side effects like hearing loss and kidney 

damage (Malik et al., 2010; Prayle et al., 2010). 
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2. Aims 

β-thalassemia is a genetic disease that may be caused due to nonsense mutations in the 

β-globin gene. One of the consequences of this, is the synthesis of a truncated peptide 

that may not have biological function. The aim of this study is to restore physiological 

levels of full-length β-globin protein and evaluate the response of β-thalassemia 

nonsense mutations to suppression therapy using increasing concentrations of 

aminoglycoside compounds, like kanamycin and gentamicin. It is also pretended to 

evaluate and differentiate between the readthrough efficiency of gentamicin and 

kanamycin. For that, HeLa cells were transiently transfected with plasmids containing a 

PTC-containing β-globin gene and their expression was studied recurring to Western 

blot and RT-qPCR. 
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3. Materials and Methods 

3.1. Plasmid constructs 

The wild-type β-globin, as well as the human β-globin variants β15 [CD 15 

(TGGTGA)] and β39 [CD 39 (CAGTAG)], were cloned into the ClaI/BspLU11I 

sites of the pTRE2pur vector (BD Biosciences) carrying an ampicillin resistance gene, 

by overlap-extension PCR amplification of the 1806 bp ClaI/BspLU11I fragment, using 

primers with linkers for ClaI and BspLU11I, as described by Silva et al., 2006. The 

sequence of the overlapping primers is shown in table 1. 

 

Table 1: List of overlapping primers used in the β-globin gene cloning: 

Primer Sequence (5’ 3’) 

#1 CCATCGATACATTTGCTTCTGACACAACTG 

#2 TTACATGTAGGGATGGGCATAGGCATC 

 

The plasmids were used to transform competent Escherichia coli. The transformant 

colonies were selected on ampicillin-containing agar and Luria-Bertani (LB) medium. 

The plasmid DNA was then isolated and purified by minipreps, using innuPREP 

Plasmid Mini Kit (Analytik Jena AG, Germany), following the protocol: “Isolation of 

high copy plasmid DNA from bacterial lysates”, provided by the manufacturers. 

In order to increase the yield of purified plasmid DNA, NZYMaxiPrep kit (Nzytech, 

Portugal) was also used, following the manufacturer’s instructions. 

The confirmation of the sequences was performed by automatic sequencing. 
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3.2. c-myc tag cloning 

In this project, it was pretended to evaluate the effects of aminoglycosides, not only at 

the mRNA level, but also at the protein level. In previous assays, it has been 

problematic to detect the β-globin protein by Western blot, when using anti-HBB 

antibodies. In order to detect β-globin protein, a c-myc tag was added to the exon 3 of 

the β-globin gene of each type (βN, β15 and β39) cloned into the pTRE2pur vector. 

Sense (#1) and antisense (#2) oligonucleotides, containing the c-myc tag sequence, were 

previously designed. The sequence of the synthetic oligonucleotides is shown in the 

table 2. The c-myc tag sequence is shown in green. 

 

Table 2: List of oligonucleotides used in the c-myc tag cloning: 

Oligonucleotide Sequence (5’ 3’) 

#1 TTGGCATGGAGCAGAAGCTGATCTCCGAGGAGGACCTGGCCCATCACT 

#2 ATGGGCCAGGTCCTCCTCGGAGATCAGCTTCTGCTCCATGCCAAAGTG 

 

A concentration of 22.5 pmol of each sense and antisense oligonucleotide was mixed 

with annealing buffer [final concentration: Tris/HCl (50 mM), pH 7.5; spermidine (1 

mM); MgCl2 (10 mM); DTT (5 mM)], in a total volume of 22.5 µL in microcentrifuge 

tubes (1 pmol corresponds nearly to 20 ng, for a single-stranded oligonucleotide 

containing 55 nucleotides). The annealing reaction was performed in a thermocycler 

(Biometra GmbH, Germany), with the conditions described in the table 3. 
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Table 3: Stages used in the annealing of two synthetic oligonucleotides to obtain a 

double-stranded DNA fragment: 

 

 

 

 

 

 

 

 

 

The result was a double-stranded fragment at 1 pmol/µL (1 pmol/µL corresponds nearly 

to 40 ng/µL, for a double-stranded fragment containing 55 base pairs). A volume of 5 

µL of the double-stranded fragment containing the c-myc tag sequence were submitted 

to electrophoresis in a 2% (w/v) SeaKem® LE Agarose (Lonza, Switzerland) gel, at 100 

V. A volume of 10 µL of each single-stranded oligonucleotide were used as control. 

 

Digestion of 2 µg of βN, β15 or β39 gene-containing plasmid was carried out using 

BstXI enzyme (NEB, USA), in a final volume of 50 µL, following the manufacturer’s 

instructions. A volume of 10 µL of each digested product was loaded in a 0.8% (w/v) 

agarose gel and an electrophoresis was performed at 100 V. Non-digested plasmid DNA 

was used as control. 

 

 

Stage Temperature Time 

#1 95ºC 5 minutes 

#2 85ºC 10 minutes 

#3 75ºC 10 minutes 

#4 65ºC 10 minutes 
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The double-stranded fragment carrying the c-myc tag was ligated to the BstXI-digested 

plasmid DNA using 1 U of T4 DNA ligase (Roche, USA), following the manufacturer’s 

instructions, at room temperature, overnight. 

The putative c-myc tag-containing plasmids were used to transform competent 

Escherichia coli. As before, the transformant colonies were selected on ampicillin-

containing agar and Luria-Bertani (LB) medium. The plasmid DNA was isolated and 

purified as previously referred. The confirmation of the sequences was performed by 

automatic sequencing. 

 

Initially there was no success in the ligation of the c-myc tag-containing double-

stranded fragment into the BstXI site of the βN and β15 human β-globin gene-

containing plasmids. Thus, once the c-myc tag was cloned into the BstXI site of the β39 

plasmid, we used NotI and BsrGI restriction enzymes (NEB, USA) to remove the 

fragment containing the PTC at codon 39 (but not the c-myc tag), and replaced it by the 

corresponding fragment form βN and β15 genes. For that, 2 µg of β39-c-myc tag 

plasmid were digested using NotI and BsrGI, according to the manufacturer’s 

instructions. Two µg of βN and β15 plasmids were digested with the same enzymes, in 

order to obtain a 965 bp NotI/BsrGI fragment containing no nonsense mutations and 

another 965 bp NotI/BsrGI fragment containing a nonsense mutation at codon 15 of the 

human β-globin gene, respectively. The fragments were separated by electrophoresis in 

a 0.8% (w/v) agarose gel, performed at 100 V. The isolation of the fragments was 

performed using the innuPrep Gel Extraction kit (Analytik Jena AG, Germany), 

following the manufacturer’s instructions. 
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Both 965 bp isolated fragments containing the βN and β15 sequence were ligated into 

the BsrGI/NotI sites of the digested c-myc-tag-containing plasmid, using 1 U of T4 

DNA ligase, following the manufacturer’s instructions, at room temperature, overnight. 

The putative c-myc tag-containing plasmids were used to transform competent 

Escherichia coli, as mentioned before and the plasmid DNA isolation was performed as 

stated above. 

 

3.3. Sequencing 

The plasmids were sequenced with specific primers (table 4) in order to verify the β-

globin gene sequence and in order to verify if the c-myc tag was cloned in frame. 

 

Table 4: List of primers used for Automatic sequencing: 

 

For each sample a PCR mix containing 300 ng of plasmid, 1 µL of primer (2 µM), 1 µL 

of BigDye (Thermo Fisher Scientific, USA) and water added to a final volume of 10 

µL, was prepared, and incubated in a thermocycler (Biometra GmbH, Germany), with 

the following cycle conditions: 96°C for 45 seconds, followed by 25 cycles of 96°C for 

Primer Sequence (5’ 3’) 

#1 ACATTTGCTTCTGACACAAC 

#2 AACGGAATTGGGTC 

#3 CCTAATCTCTTTCTT 

#4 AGCTCGCTTTCTTGCTGTCC 

#5 CCTTGATACCAACCTGCCCA 



22 

 

20 seconds, 55ºC for 5 seconds and 60ºC for 4 minutes. The amplified samples were 

sequenced by automatic sequencing. 

 

3.4. Cell culture 

HeLa cells were carefully cultured in DMEM (Dulbecco’s modified Eagle’s medium 1x 

+ GlutaMAX-I; Gibco by Life Technologies, USA) supplemented with 10% (v/v) FBS 

(Fetal bovine serum; Gibco by Life Technologies, USA), in a humidified atmosphere of 

5% CO2 incubator at 37ºC. Cells in the mid-log growth phase were used in the 

following research. 

 

3.5. Transient transfection 

Mid-log grown HeLa cells were transfected with 3 µg of plasmid containing its 

respective β-globin gene variant, in 35 mm tissue culture dishes. 

Opti-MEM medium (Gibco by Life Technologies, USA) was used as transfection 

medium; Lipofectamine 2000 Transfection Reagent (Invitrogen by Life Technologies, 

USA) was used as transfection reagent, to transfect HeLa cells, following the 

manufacturer’s instructions. The plates were incubated at 37ºC during 24 hours. 

 

3.6. Drug treatment 

In order to prepare gentamicin and kanamycin stock solutions at 50 mg/mL, 75.2 mg of 

gentamicin (Nzytech, Portugal) were diluted in 1,504 mL of water and 98.2 mg of 

kanamycin (monosulphate, Nzytech, Portugal) were diluted in 1.960 mL of water, 

respectively. 
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Twenty four hours after transfection, HeLa cells were treated with either gentamicin or 

kanamycin at different concentrations (0 µg/mL, 10 µg/mL, 100 µg/mL and 1000 

µg/mL). The different drug solutions were prepared by diluting the drug in DMEM 

supplemented with 10% (v/v) FBS. Each culture dish had its medium removed and 

replaced with the new prepared medium supplemented with its respective drug 

concentration. 

 

3.7. Cell lysis 

After 24 hours of drug treatment, cells were lysed with NP-40 [Tris-HCl (50 mM, pH 

7.5); MgCl2 (2 mM); NaCl (100 mM); Glycerol (8.64%, v/v); NP-40 (1% v/v), Roche, 

USA]. Cells were washed with 1x PBS (Phosphate-buffered saline). After PBS removal, 

the cells were incubated with NP-40 buffer. Then, the samples were harvested and 

collected in microcentrifuge tubes and centrifuged at 13200 rpm for 2 minutes. The 

supernatant was transfered in new microcentrifuge tubes and the pellet was discarded. 

Samples were stored at -80ºC.  

 

3.8. RNA isolation 

Total RNA extraction and purification was performed using the NucleoSpin RNA II kit 

(Macherey-Nagel, Germany), following the manufacturer’s instructions. The RNA 

samples were stored at -80ºC. 
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3.9. Quantitative reverse transcription PCR (RT-qPCR) 

The cDNA synthesis from 1 µg of total RNA was performed recurring to the NZY 

Reverse Transcriptase kit (Nzytech, Portugal). For each sample, 1 µg of total RNA, 1 

µL of random hexamer primers (250 ng/µL), 1 µL of dNTP (10 mM) and water added 

to 16 µL, were incubated for 5 minutes at 65ºC. The samples were placed on ice and 2 

µL of 10x RT reaction buffer (Nzytech, Portugal), 0.1 µL of NZY Ribonuclease 

inhibitor (Nzytech, Portugal), 0.5 µL of NZY Reverse Transcriptase (Nzytech, Portugal) 

and 1.4 µL of water were added and mixed. Each sample was incubated in a 

thermocycler. The cycling conditions are mentioned in the table 5. 

 

Table 5: Cycling conditions used in cDNA synthesis: 

 

 

 

 

 

 

 

For quantitative PCR, cDNA was diluted 1:10 with water in a final volume of 40 µL. 

The SybrGreen Master Mix kit (Applied Biosystems by Life Technologies, USA) was 

used. The reaction conditions consisted of 5 µL of cDNA diluted as mentioned above, 7 

µL of Sybr Green Master Mix and 1 µM of each primer (table 6) in a final volume of 15 

µL. Quantitative PCR was carried out in the 7500 Real-Time PCR System (Applied 

Biosystems by Life Technologies, USA). The cycle conditions for quantitative PCR 

were 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds, and 62°C for 

30 seconds. The Puromycin resistance (PuroR) mRNA was used as an internal control. 

Stage Temperature Time 

Preincubation 25ºC 10 minutes 

Incubation 50ºC 50 minutes 

Reaction inactivation 85ºC 5 minutes 
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Table 6: List of primers used in the quantitative PCR: 

Gene Primer Forward (5’ 3’) Primer Reverse (5’ 3’) 

β-globin GTGGATCCTGAGAACTTCAGGC CAGCACACAGACCAGCACGT 

Puromycin 

Resistance 

GGGTCACCGAGCTGCAAGAA CACACCTTGCCGATGTCGAG 

 

Quantification was carried out by the relative standard curve method (ΔΔCt, Applied 

Biosystems by Life Technologies, USA). 

 

3.10. Western blot 

A Western blot assay was performed in order to detect the β-globin protein. The α-

tubulin protein was used to control the amount of loaded protein in each case (loading 

control).  

The proteins of the lysed HeLa cells samples were homogenized in 4 µL of sample 

buffer 5x [Tris-HCl (200 mM, pH 6.8); Glycerol (25%, v/v); SDS (25%, w/v); DTT 

525mM; bromophenol blue (0.25%, w/v)], and denatured at 95ºC, 10 minutes, in a final 

volume of 20 µL. 

The separation of the proteins was performed by SDS-PAGE. The current intensity was 

fixed at 20 mA. Table 7 shows the constitution of the polyacrylamide gel. 
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Table 7: Polyacrylamide gel constitution: 

 

 

After the polyacrylamide gel electrophoresis, the gel was kept in contact with a 

polyvinylidene difluoride (PVDF) membrane (Bio-Rad, USA). The separated proteins 

were blotted onto the membrane at a fixed electric potential difference of 100 V, for 1 

hour. Blot buffer (1x) [SDS (1.29 M); Tris (48 mM); glycine (38.7 mM); methanol 

(20%, v/v)] was used in order to perform the blotting step. 

A staining step was performed, using a Coomassie Blue solution [glacial acetic acid 

(10%, v/v); methanol (45%, v/v); Brilliant Blue G (Sigma-Aldrich, USA) (2.93mM)]. 

The destaining of the PVDF membrane was carried out by using a destaining solution 

[Methanol (45%, v/v); Acetic Acid (10%, v/v)] and three washing steps were performed 

by using TBS-Tween20 solution (TBS (1x); Tween 20 (0.1%, v/v); Sigma-Aldrich, 

USA). 

A blocking solution containing TBS-Tween 20 and milk powder (5%, w/v, Molico, 

Nestlé, Switzerland), was used to block nonspecific molecules in the membrane, for one 

hour. 

Solutions Running gel (14%) Stacking gel (4%) 

H2O (mL) 1.95 1.5 

Lower Buffer (mL) 1.25 - 

Upper Buffer (mL) - 0.25 

Acrylamide 40% (w/v)  (mL) 1.75 0.2 

SDS 10% (w/v) (mL) 0.05 0.02 

APS (µL) 50 50 

TEMED (µL) 5 5 
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Primary antibodies were diluted in the same blocking solution mentioned above. The 

membranes were incubated with a 1:10000 dilution of the anti-α-tubulin antibody 

(Roche, Switzerland) and a 1:400 dilution of the anti-HBB antibody (Sigma-Aldrich, 

USA) overnight.  

A triple washing using TBS-Tween20 solution was carried out after the overnight 

primary antibody probing. A 1:4000 dilution of the secondary antibody anti-mouse IgG 

HRP (Bio-Rad, USA) was prepared for both cases. The membranes were then incubated 

with the secondary antibody for 1 hour and the enhanced chemiluminescence reaction 

(ECL) was carried out after another triple washing step, using TBS-Tween20 solution. 

The exposure times that were used were 5 minutes, 2 minutes, 1 minute and 1 second. 

In order to detect c-myc-tagged β-globin, an overnight incubation with a 1:100 dilution 

of the anti-c-myc-tag antibody (Sigma-Aldrich, USA) was performed. As secondary 

antibody, a dilution of 1:3000 of anti-rabbit IgG HRP (Bio-Rad, USA) was prepared. 

The membrane was incubated with the secondary antibody for 1 hour. 

3.11. Statistical analysis 

Microsoft Office Excel 2013 (Microsoft, USA) and Prism GraphPad 6.01 (GraphPad 

Software, Inc., USA) softwares were used for statistical analysis. 

In order to analyze RT-qPCR data, two different normalizations were carried out: In the 

first case, the level of each mutant β-globin mRNA was normalized to the wild-type β-

globin mRNA level, at the drug concentration of 0 µg/mL. In the other case, the level of 

each variant β-globin mRNA, at one specific concentration of drug, was normalized to 

the wild-type β-globin mRNA level, at the same concentration of the drug. In order to 

detect statistical significance of data, unpaired Student’s t test was performed. 

Differences were considered as significant if p<0.05. 
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4. Results and Discussion 

4.1. Constructs 

In order to verify the sequence of either βN, β15 or β39 human β-globin gene previously 

cloned in the pTRE2pur plasmids (as described in Silva et al., 2006), a sequencing 

reaction was carried out. Recurring to the software BioEdit Sequence Alignment Editor 

(Ibis Biosciences, USA), the resulting sequences were analyzed. The presence of 

unwanted mutations was evaluated for each gene. The presence of the nonsense 

mutations at codons 15 and 39, in the β15 gene and the β39 gene, respectively, were 

also analyzed. The flanking plasmid sequences were also analyzed. It was concluded 

that the normal β-globin gene (βN) did not carry any mutation, β15 gene carrying the 

nonsense mutation at the codon 15 [CD 15 (TGGTGA)], did not have other mutations 

(figure 4), and β39 gene carrying the nonsense mutation at the codon 39 [CD 39 

(CAGTAG)], was also intact (figure 5). 

 

 

   
A. βN                                                                                     B. β15 

Figure 4: Partial electropherogram of amplified βN and β15 human β-globin gene (forward). The red 

square indicates the β-globin gene codon 15. The vertical arrow points to the changed nucleotide. (A) 

Amplified βN β-globin gene sequence. The codon 15 sequence is 5’-TGG-3’. (B) Amplified β15 β-globin 

gene sequence. The codon 15 is a PTC and its sequence is 5’-TGA-3’. 
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A. βN      B. β39 

 

Figure 5: Partial electropherogram of amplified βN and β39 human β-globin gene (forward). The red 

square indicates the β-globin gene codon 39. The vertical arrow points to the changed nucleotide. (A) 

Amplified βN β-globin gene sequence. The codon 39 sequence is 5’-CAG-3’. (B) Amplified β39 β-globin 

gene sequence. The codon 39 is a PTC and its sequence is 5’-TAG-3’. 

 

To clone the c-myc tag in the exon 3 of the of the βN, β15 and β39 genes, sense and 

antisense oligonucleotides containing the c-myc tag sequence were annealed. The 

annealing success can be observed in the figure 6. 

 

Figure 6: Agarose gel (2%, w/v) showing the success of the annealing of sense and antisense 

oligonucleotides containing the c-myc tag sequence. (A) Sense oligonucleotide (control). (B) Antisense 

oligonucleotide (control). (C) Annealed double-stranded DNA fragment containing the c-myc tag 

sequence. NZYDNA Ladder VI (Nzytech, Portugal) was used as molecular weight marker. 

 

In order to insert the c-myc tag, BstXI restriction enzyme was used to digest the β-

globin containing plasmids. The results of the digestion are shown in the figure 7. 
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Figure 7: Agarose gel (0.8%, w/v) showing the fragments obtained by the digestion of (B) βN, (C) β15 

and (D) β39 β-globin gene-containing plasmid with BstXI. (A) Uncut plasmid DNA (control). NZYDNA 

Ladder III (Nzytech, Portugal) was used as molecular weight marker. 

 

Once we were only successful in the ligation of the c-myc tag-containing double-

stranded fragment into the BstXI site of the β39 plasmids, but not into the BstXI site of 

the βN and β15 plasmids, we used NotI and BsrGI restriction enzymes to digest βN, β15 

and β39 plasmids. The results of the digestion are shown in the figure 8. 

 

Figure 8: Agarose gel (0.8%, w/v) showing the fragments of βN and β15 β-globin gene-containing 

plasmids and c-myc tagged-β39 β-globin gene-containing plasmids digested with NotI and BsrGI. 
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NZYDNA Ladder III (Nzytech, Portugal) was used as molecular weight marker. (A) Digestion of βN β-

globin gene-containing plasmid resulted in two fragments of 4575 bp and 965 bp. (B) Digestion of β15 β-

globin gene-containing plasmid resulted in two fragments of 4575 bp and 965 bp. (C) Digestion of c-myc 

tagged-β39 β-globin gene-containing plasmid resulted in two fragments of 4623 bp and 965 bp. (D) 

Uncut plasmid DNA (control). 

 

NotI and BsrGI were used to remove a fragment containing the PTC at codon 39 (but 

not the c-myc tag), in the β39 plasmid. The 965 bp NotI/BsrGI fragments containing 

either the βN or β15 sequence were ligated using DNA ligases to the 4623 bp resulting 

fragment containing the c-myc tag sequence. The whole β-globin gene sequence was 

sequenced with specific primers in order to verify if the c-myc tag was cloned in frame. 

Sequence analysis confirmed that the c-myc tag was correctly added to the codon 118 of 

the βN, β15 and β39 β-globin gene. Its sequence is shown in figure 9. 

 

 

Figure 9: Partial electropherogram of amplified β-globin gene (forward) showing that the c-myc tag is in 

frame with the β-globin gene. The red square indicates the c-myc tag sequence.  
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4.2. Analysis of the expression levels of the wild-type β-globin mRNA, 

and its variants (β15 and β39) by RT-qPCR 

It was demonstrated that the level of the β-globin mRNA with a nonsense mutation at 

codon 15 is very similar to the level of expression of the wild-type β-globin, indicating 

that it resists to NMD (Silva et al., 2008). Moreover, it was demonstrated that the level 

of the β-globin mRNA with a nonsense mutation at codon 39 is lower than the 

expression of the wild-type mRNA, showing that it is committed to NMD (Romão et 

al., 2000). In order to confirm these results, HeLa cells were transiently transfected with 

βN, β15 or β39 plasmids. Twenty-four hours after transfection, cells were harvested and 

total RNA was purified. Thus, RT-qPCR was carried out to quantify the relative β-

globin mRNA levels. Each mRNA level was normalized to the β-globin wild-type 

mRNA, as shown in figure 10.  

Results show that the level of β15 mRNA corresponds to 83% of the expression of the 

wild-type mRNA, and the β39 mRNA corresponds to 21% of the βN expression level. 

These results are in accordance with those previously described in Romão et al., 2000, 

Salvatori, Breveglieri et al. 2009 and Salvatori, Cantale et al., 2009.  

 

Figure 10: Expression levels of the wild-type (BN) and variants (B15 and B39) β-globin mRNA 

expressed in HeLa cells and quantified by RT-qPCR. β15 and β39 mRNA levels were normalized to 

those of the wild-type β-globin mRNA. 
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4.3. β-globin protein analysis by Western blot 

The suppression therapy aims to increase the amount of full-length protein expressed 

from genes carrying PTCs. In order to monitor de the translation of the transfected 

mRNAs into the respective proteins, HeLa cells were transiently transfected with βN, 

β15 and β39 plasmids. Twenty-four hours after transfection, the cells were lysed with 

NP-40. The lysates were used in a Western blot assay, using antibodies to detect the β-

globin protein. 

The β-globin resulting signal was very faint and, in some assays, even inexistent. The 

lack of signal may have been due to some experimental steps like transfection, HeLa 

cell lysis, Western blotting or even the expression of the protein itself.  Thus, some 

alterations to the initial protocol were carried out.  

Initially an amount of 500 ng of plasmid was used to transiently transfect mid-log 

grown HeLa cells. It was hypothesized that the amount of transfected plasmid was low. 

So, instead of 500 ng, 3 µg of plasmid were transfected in mid-log grown HeLa cells. 

An increase of the quantity of the lysed samples was also carried out. Duplicate 35 mm 

tissue culture dishes were prepared. Thus, the same plasmid sample was transfected in 

every two plates. 100 µL of NP-40 were used in order to lyse the transfected cells. After 

obtaining the lysed samples, each different sample was transported to its duplicate plate 

and used to lyse its cells, which increased the lysed cells quantity. 

The purpose of the c-myc-tagged constructs was to detect the β-globin protein using an 

anti-c-myc-tag antibody, instead of using anti-HBB antibodies. The length of c-myc 

tagged β-globin is 17 kDa, instead of 16 kDa. However, after some attempts, it was 

concluded that not even the c-myc-tagged β-globin could be detected with anti-c-myc 

antibodies, as shown in the figure 11.  
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Figure 11: Analysis of the c-myc tagged β-globin (17 kDa) by Western blot. The α-tubulin (55 kDa) was 

used as control. NT corresponds to the proteins from non-transfected cells. Anti-c-myc antibody was used 

as primary antibody in order to detect c-myc tagged β-globin. Anti-α-tubulin antibody was used as 

primary antibody in order to detect α-tubulin. 

 

An experiment to detect a different c-myc-tagged protein permitted to conclude that the 

primary antibody was not the cause of the lack of c-myc-tagged β-globin signal, 

because that protein signal was visible. However, c-myc-tagged β-globin signal was not 

detected and anti-HBB antibody was used again. 

It was hypothesized that because the β-globin proteins are too small (16 kDa), their low 

signal may have had to do with the blotting step. In order to increase the blotting step 

efficiency, Towbin buffer [Tris (0.025 M); glycine (0.192 M), methanol (20%)] was 

used, instead of blot bluffer 1. The blotting time was 30 minutes instead of 1 hour. 

However, no alteration was observed and there was no β-globin protein signal. Assays 

with increased exposure time (up to 10 minutes) were carried out. The β-globin signal 

remained weak or non-existent. 

Every Western blot solution had their formula verified. It was noticed that the SDS 

concentration that was being used in the blot buffer 25x was wrong, and its formula was 

corrected, as shown in Table 8. 
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Table 8: Rectification of the blot buffer 25x formula: 

 

 

 

 

 

 

It was also hypothesized that the β-globin low signal was due to the viscosity of the 

lysates, due to DNA contamination. So, in order to reduce the lysed cells samples 

viscosity, instead of using NP-40, the lysis step was performed with Sample buffer and 

Benzonase, a nuclease that hydrolyzes DNA and RNA molecules, which reduces the 

viscosity of the lysed samples. A Sample buffer/Benzonase lysis solution [Sample 

buffer (2x); MgCl2 (0.01 M); Benzonase (0.5 U/µL)] was prepared. The Benzonase 

optimal temperature is 37ºC, so, the lysis was performed at room temperature and then, 

the samples were incubated at 37ºC, for 10 minutes. However, the results maintained 

the same and the protein signal remained too weak.  

To test whether the amount of primary antibody was not enough, its concentration was 

also increased from a dilution of 1:400 to 1:250. Both β-globin and c-myc tagged β-

globin were detected with anti-HBB antibody in the same experiment, as shown in the 

figure 12, however, despite all efforts, the β-globin protein still did not appear as 

pretended, and its signal remained too weak. 

 

Solutions Wrong formula Amended formula  

SDS 4.5 mM 32.25 mM 

Tris 1.2 M 1.2 M 

Glycine 0.97 M 0.97 M 
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Figure 12: Analysis of the β-globin (16 kDa) and c-myc tagged β-globin (17 kDa) by Western blot. The 

α-tubulin (55 kDa) was used as control. NT corresponds to the proteins from non-transfected cells. Anti-

HBB antibody was used as primary antibody in order to detect β-globin. Anti-α-tubulin antibody was 

used as primary antibody in order to detect α-tubulin. 

 

In order to get expression of the β-globin gene, cells that usually express β-globin, like 

murine erythroid cells should be used. A tag should be inserted in the β-globin gene in 

order to distinguish between the native and the exogenous β-globin protein.  

 

4.4. Analysis of the expression levels of the wild-type β-globin mRNA, 

and its variants (β15 and β39), when exposed to aminoglycosides 

One of the aims of this project, was to evaluate the effect of increasing concentrations of 

aminoglycosides in transiently transfected HeLa cells on the suppression of nonsense 

mutations. For that, βN, β15 or β39 human β-globin gene-containing plasmids were 

transfected into HeLa cells. Twenty-four hours after transfection the cells were treated 

with different concentrations (0, 10, 100 or 1000 µg/mL) of either gentamicin or 

kanamycin for 24 hours. The cells were harvested and RNA purification was performed. 

Thus, RT-qPCR was carried out to quantify the relative β-globin mRNA levels.  

In order to obtain more information from data obtained by RT-qPCR, for each drug, two 

distinct normalizations (which I will call Normalization A and B, respectively, from 
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now on) were carried out. In the Normalization A, each β-globin mRNA level was 

normalized to the βN mRNA expressed in HeLa cells without drug treatment (βN.0). In 

the Normalization B, β15 and β39 mRNA expressed in HeLa cells exposed to a certain 

drug concentration, were normalized to the wild-type mRNA expressed in HeLa cells in 

the corresponding conditions. 

The major difference between the two performed normalizations is that in the 

Normalization A, every transcript is compared to a control that was not treated, whereas 

in the Normalization B, every PTC-containing transcript is compared to the same 

control treated with the same concentration of drug. In this way, it may be possible to 

understand if the drug is harmful, neutral or beneficial to the β-globin mRNA synthesis. 

 

4.4.1. Gentamicin – Normalization A 

RT-qPCR results show that the increase of gentamicin concentration may slightly 

enhance the βN gene expression, as βN mRNA levels in HeLa cells exposed to 10 

µg/mL, 100 µg/mL and 1000 µg/mL of gentamicin, correspond respectively to 138%, 

110% and 111% of the wild-type mRNA expressed in HeLa cells without treatment 

(βN.0) (figure 13). This suggests that gentamicin does not have harsh effects in the 

expression of the wild type β-globin gene. 

Gentamicin seems to have a very slight effect in the β15 mRNA level, at concentrations 

of 10 and 100 µg/mL, as the mRNA level corresponds to 115% and 119% of the wild-

type mRNA (βN.0). In this assay, the expression level of the β15 mRNA expressed in 

HeLa cells without gentamicin treatment was 82% of the wild-type mRNA expression 

level (βN.0). HeLa cells transfected with β15 gene grown in DMEM with 1000 µg/mL 

of gentamicin do not seem to be affected, once its mRNA expression level corresponds 
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to 81% of the wild-type mRNA (βN.0) (figure 13). Gentamicin does not also seem to 

negatively affect the β15 gene expression.   

 

 

Figure 13: Analysis by RT-qPCR of wild-type (BN) and variants (B15 and B39) β-globin mRNA in 

HeLa cells treated with different concentrations of gentamicin (0, 10, 100 and µg/mL). The expression 

level of each β-globin mRNA was normalized to the wild-type β-globin mRNA level expressed in HeLa 

cells without gentamicin treatment.  

 

The expression level of β39 transcripts, expressed in HeLa cells treated with 0, 10, 100 

and 1000 µg/mL of gentamicin were, respectively, 16%, 13%, 16% and 23% of the 

wild-type transcripts expressed in HeLa cells without treatment (βN.0) (figure 13). The 

main goal of this study is to check if aminoglycoside drugs have any effect on 

suppressing NMD of nonsense codon-containing transcripts. As mRNA molecules are 

directly linked to the protein synthesis, their expression study is fundamental. However, 

no significant increase was noticed (figure 13). Although, there was a slight increase in 

the β39 transcripts expressed in HeLa cells treated with 1000 µg/mL of gentamicin, it 

was not significant. Besides that, the standard deviation is too high. Further experiences 
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should be carried out in order to reduce the deviation standard and understand if there is 

any positive effect in the β39 mRNA levels. 

 

4.4.2. Gentamicin – Normalization B 

Without gentamicin treatment, the β15 and β39 transcripts are respectively expressed at 

82% and 16% of the βN mRNA levels (βN.0) (figure 14). 

 

Figure 14: Analysis by RT-qPCR of wild-type (BN) and variants (B15 and B39) β-globin mRNA in 

HeLa cells treated with different concentrations of gentamicin (0, 10, 100 and µg/mL). Each β15 or β39 

β-globin mRNA expression level, at a specific gentamicin concentration, was normalized to the wild-type 

β-globin mRNA level, at the same conditions. 

 

When HeLa cells were treated with gentamicin at 10 µg/mL, β15 and β39 mRNAs are 

respectively expressed at 100%, (although with a very huge standard deviation). and 9% 

of the wild-type transcripts (βN.10), at the same conditions, which suggests a little 

decrease in the β39 β-globin mRNA (figure 14). This scenery remains almost the same 

at the concentration of 100 µg/mL of gentamicin, as the expression level of β15 and β39 

transcripts are, respectively 107%, although with a much smaller standard deviation 

than the last one, and 12% of the wild-type transcripts (βN.100) (figure 14). 
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Something interesting can be noticed at the concentration of 1000 µg/mL of gentamicin; 

although the expression level of β15 transcripts is very similar to the predecessor 

gentamicin concentrations (95% of the wild-type transcripts), the level of expression of 

β39 transcripts is 34% of the βN transcripts (βN.1000), which is rather higher than the 

level of previous β39 transcripts. Unfortunately, the standard deviation is too high, and 

this value is not significant. With this information, further experiments using gentamicin 

at 1000 µg/mL would be interesting to perform, in order to check whether β39 mRNA 

levels increase.  

 

4.4.3. Kanamycin – Normalization A 

RT-qPCR results show that the increase of kanamycin concentration may maintain or 

slightly enhance the βN gene expression, as βN mRNA levels in HeLa cells exposed to 

10 µg/mL, 100 µg/mL and 1000 µg/mL of kanamycin, correspond to 100%, 117% and 

147% of the wild-type mRNA expressed in HeLa cells without kanamycin treatment 

(βN.0), respectively (figure 15). Kanamycin is an aminoglycoside that does not seem to 

be interfering negatively with the expression of the human β-globin gene. 

At the concentrations of 0, 10, 100 and 1000 µg/mL of kanamycin the expression level 

of β15 transcripts is 118%, 88%, 83% and 168% of the βN transcripts (βN.0) 

respectively (figure 15). β15.1000 transcripts appear to be overexpressed (figure 15). 

Kanamycin does not seem to play any role on β39 transcripts, once their expression 

level, when compared to the βN transcripts (βN.0), is 22%, 24%, 18%, 22% at the 

concentrations of 0, 10, 100 and 1000 βg/mL, respectively (figure 15). In order to 

evaluate if kanamycin has readthrough effect on β39 transcripts, different kanamycin 

concentrations could be used. 
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Figure 15: Analysis by RT-qPCR of wild-type (BN) and variants (B15 and B39) β-globin mRNA in 

HeLa cells treated with different concentrations of kanamycin (0, 10, 100 and µg/mL). The expression 

level of each β-globin mRNA was normalized to the wild-type β-globin mRNA level expressed in HeLa 

cells without kanamycin treatment. 

  

4.4.4. Kanamycin – Normalization B 

The expression levels of β15 and β39 transcripts from HeLa cells without kanamycin 

treatment is, as it has been mentioned before, 118% and 22% of the βN transcripts level 

(βN.0), respectively (figure 16). 
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Figure 16: Analysis by RT-qPCR of wild-type (BN) and variants (B15 and B39) β-globin mRNA in 

HeLa cells treated with different concentrations of kanamycin (0, 10, 100 and µg/mL). Each β15 or β39 

β-globin mRNA expression level, at a specific kanamycin concentration, was normalized to the wild-type 

β-globin mRNA level, at the same conditions. 

 

At the kanamycin concentration of 10 µg/mL, the expression levels of β15 and β39 

transcripts are respectively 88% and 23% of the expression level of the wild-type 

transcripts (βN.10) at the same conditions (figure 16). This data shows that at this 

kanamycin concentration, there are no major changes in both PTC-containing transcript 

levels. The same happens when cells are treated with a kanamycin concentration of 100 

µg/mL of kanamycin. The transcripts show an expression level of 83% and 16% of the 

wild-type mRNA (βN.100) levels, although the standard deviation is much higher in the 

β15.100 sample. 

At the concentration of 1000 µg/mL of kanamycin, the expression level of β15 and β39 

transcripts are 168% and 17% of the wild-type transcripts (βN.1000), respectively. 

Although the expression level of β15 transcripts is much higher at these conditions, 

kanamycin does not seem to be responsible for this increase. The standard deviation is 
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too high to make any assumptions. As seen before, β39 transcripts do not seem to have 

suffered any modification on their transcription level. 

Unpaired Student’s t test revealed that there were no statistically significant p-values, 

which indicates that the used concentrations of either gentamicin or kanamycin 

treatments do not have a major role on the β39 transcripts. Factors like the identity of 

the termination codon and the surrounding mRNA sequence may be responsible for 

these results (Lee et al., 2012; Dabrowski et al., 2015). 

However, a concentration of 1000 µg/mL of gentamicin revealed to be sufficient to 

modestly increase the expression level of β39 transcripts. Unfortunately, the standard 

deviation values were too high. The time of drug treatment should be increased, as well. 

As mentioned earlier, a different cell line could also be used (e.g. MEL cell line). The β-

globin gene and its variants could also be cloned in a plasmid under control of a strong 

promoter. 
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5. Conclusion and Future Perspectives 

The mechanisms of regulation of gene expression and mRNA-surveillance are crucial to 

the normal cell function. Several of these mechanisms are interconnected and 

interdependent.  

Some mutations may lead to atypical phenotypes, and even cell death. Nonsense 

mutations are a type of point mutations characterized by an alteration in the gene 

sequence, in which a non-stop codon turns into a PTC. This may lead to the formation 

of truncated proteins. Nonsense mediated mRNA decay is an mRNA-surveillance 

mechanism responsible for the rapid degradation of aberrant transcripts, like PTC-

containing mRNA.  

It has been shown that some PTC-containing mRNA molecules do not go through 

nonsense mediated mRNA decay and may produce proteins that are toxic to the cells, 

showing clinical phenotypes. β-thalassemia is a heterogeneous group of diseases that, 

among other reasons, can be caused by nonsense mutations in the β-globin gene. β39 

transcripts were shown to go through NMD and suffer rapid decay, however β15 

transcripts do not go through NMD and a truncated protein is synthetized.  

Several aminoglycosides were shown to enhance the competition between near cognate 

aminoacyl tRNAs and translation release factors, that are also directly linked to NMD, 

allowing the synthesis of full-length protein in DMD and cystic fibrosis patients. 

In this project it was pretended to use gentamicin and kanamycin as readthrough 

compounds in order to produce full-length β-globin. Their effect should have been 

studied at the mRNA level and at the protein level, however, as βN-globin protein could 

not be properly detected by Western blot, it was decided that the effect of 

aminoglycosides would only be studied at the mRNA level. 
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Different concentrations of both aminoglycosides were used, however, results show that 

gentamicin and kanamycin do not have a significant effect on β15 and β39 mRNA 

levels. 

Different assays evaluating the effect of the identity of the termination codon or the 

surrounding mRNA sequence context should be carried out in future experiments. 

Different drug concentrations or exposure times and different aminoglycosides should 

also be used in future assays. 
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