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resumo 
 
 

Do ponto de vista do rápido progresso na fabricação de dispositivos eletrónicos 
de armazenamento de energia em nanoescala, o grafeno é um assunto de 
grande interesse. Como um sistema verdadeiramente bidimensional (2D), o 
grafeno possui propriedades extraordinárias de alta condutividade, grande 
mobilidade de portadores de carga, grande área de superfície (> 2600 m2 / g), 
flexibilidade e estabilidade química, que são favoráveis para aplicações 
energéticas. A síntese de grafeno de alta qualidade ainda permanece como 
um grande desafio na investigação no grafeno. Vários métodos, incluindo 
esfoliação mecânica, térmica e deposição química por vapor (CVD) são 
métodos utilizados para a produção de grafeno de alta qualidade. No entanto, 
a produção em massa de grafeno só é possível por esfoliação química de 
grafite sob agentes oxidantes fortes. Esta tese lida com o estado da arte de 
produção de óxido de grafeno reduzido (RGO) em massa usando óxido de 
grafeno (GO) como agente intermediário. Uma das ideias empolgantes em 
relação ao óxido de grafeno é a de que, devido aos grupos funcionais ligados, 
ele poderia actuar como um laboratório para várias reacções catalíticas e 
conduzir à fabricação de novos dispositivos. Os metais de transição foram 
usados para auxiliar a reacção e para atingir as novas propriedades 
desejadas. 
 
Por reações catalíticas, as nanopartículas de alta qualidade (NPs), tais como 
Ni, Co, Pd, Ag, Cu, NixB, CoxB e SiO2 foram sintetizadas e ancoradas numa 
folha de grafeno para aplicações de energia. Particularmente, para o 
armazenamento de hidrogénio um catalisador nanocompósito contendo 
paládio@níquel boreto-sílica e óxido de grafeno reduzido (Pd @ NixB-SiO2 / 
RGO, abreviado como Pd @ NSG) foi fabricado com sucesso. A experiência 
de adsorção de H2 revela diretamente o efeito de transbordo (spillover) no 
nanocompósito Pd @ NSG e sua maior capacidade de absorção de H2 (0,7 
wt.%) em comparação com SiO2 / RGO (0,05 wt.%), sob uma pressão de 50 
bar de hidrogénio à temperatura ambiente. Com base nos resultados um 
mecanismo detalhado de transbordo de hidrogénio é estabelecido que exibe a 
dissociação fácil de H2 no ativador Pd (centros activos) e o transporte 
subsequente de átomos de hidrogénio em locais receptores. Da mesma forma, 
o altamente ativo e rentável nanocompósito CoxB @ Ni / RGO foi também 
sintetizado para produção de hidrogénio através de oxidação eletroquímica de 
etanol em meio alcalino sob catálise de reacção. O comportamento 
eletroquímico do nanocompósito foi avaliado pela técnica de voltametria cíclica 
(CV). A atividade catalítica do nanocompósito foi avaliada continuamente por 
50 ciclos; surpreendentemente, os resultados mostram que o aumento da 
densidade de corrente após 50 ciclos sugere o processo de auto-limpeza e 
robustez do sistema de catalisador. 
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Para a aplicação de energia, o nanocompósito baseado em grafeno também 
tem sido usado para a redução catalítica de 4- nitrofenol (4- NP ) poluente 
orgânico . Para este trabalho, uma ampla gama de catalisadores de grafeno 
nanocompósito foi sintetizada e o esforço foi o de reduzir o tempo de reacção 
e o custo do sistema nanocatalisador.  Finalmente, o nanocompósito baseado 
em grafeno (Ni / RGO ) é usado para aplicações elétricas e eletrónicas, e 
também para fabricar os dispositivos memresistivos e biossensores de glicose. 
 
Uma vasta gama de técnicas de caracterização, principalmente difração de 
raios X (XRD), espectroscopia de infravermelhos (FTIR, Raman, 
espectroscopia de fotoeletrões de raios-X (XPS), microscopia eletrónica de 
varrimento (SEM), microscopia eletrónica de transmissão (TEM), medições de 
corrente vs. tensão (I-V), voltametria cíclica (CV) e espectroscopia de 
impedância eletroquímica (EIS), foram usadas para análise de 
nanocompósitos de grafeno dopados com metais de transição para vários tipos 
de aplicações de energia.  
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abstract 
 

In the view of rapid progress in the fabrication of nanoscale energy storage and 
electronic devices, graphene is a subject of great interest. As a truly two 
dimensional (2D) system, graphene possess extraordinary properties of high 
conductivity, high carrier mobility, large surface area (>2600 m2/g), flexibility, 
and chemical stability which are favourable for energy applications. Synthesis 
of high quality graphene still remains as a major challenge in graphene 
research. Various methods including mechanical exfoliation, thermal exfoliation 
and thermal chemical vapour deposition (CVD) methods are used for the 
production of high quality graphene. However, mass production of graphene is 
possible only by chemical exfoliation of graphite under strong oxidizing agents. 
This thesis deals with the state of the art mass production of reduced graphene 
oxide (RGO) using graphene oxide (GO) as the intermediate agent. One of the 
exciting ideas about graphene oxide is that, due to the functional groups 
attached, it could act as a laboratory for various catalytic reactions and led to 
the fabrication of novel devices. Transition metals were used to aid the reaction 
and to achieve desired novel properties. 
 
By catalytic reactions, high quality nanoparticles (NPs) such as Ni, Co, Pd Ag, 
Cu, NixB, CoxB and SiO2 were synthesized and anchored on graphene sheet 
for energy applications.  Particularly, for hydrogen storage a nanocomposite 
catalyst containing palladium@ nickel boride–silica and reduced graphene 
oxide (Pd@NixB–SiO2/RGO, abbreviated as Pd@NSG) was successfully 
fabricated. The H2 adsorption experiment directly reveals the spillover effect on 
the Pd@NSG nanocomposite and its enhanced H2 uptake capacity (0.7 wt.%) 
compared to SiO2/RGO (0.05 wt.%) under 50 bar hydrogen pressure at RT. On 
the basis of results a detailed mechanism of hydrogen spillover is established 
that exhibited the facile H2 dissociation on the Pd activator (active sites) and 
subsequent transportation of hydrogen atoms on receptor sites. Similarly, 
highly active and cost effective nanocomposite CoxB@Ni/RGO was also 
synthesized for hydrogen production through electrochemical oxidation of 
ethanol in alkaline medium under catalysis reaction. The electrochemical 
behavior of nanocomposite was evaluated by cyclic voltammetry (CV) 
technique. The catalytic activity of nanocomposite was evaluated continuously 
for 50 cyclic run; amazingly, results shows that the increase of current density 
after 50 cycle run suggests the self-cleaning process and robustness of catalyst 
system. 
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For energy application, graphene based nanocomposite has also been 
employed for catalysis reduction of 4-nitrophenol (4-NP) organic pollutant. For 
this work, a wide range of graphene nanocomposite catalysts has been 
synthesized and the effort was to reduce reaction time and cost of nanocatalyst 
system. Finally, graphene based nanocomposite (Ni/RGO) is used for electrical 
and electronics applications also, to fabricate the memristor devices and 
glucose biosensor.  
 
A wide range of characterization techniques mainly X-ray diffraction (XRD), 
fourier transform infra-red (FTIR), Raman, X-ray photoelectron spectroscopy 
(XPS), scanning electron microscopy (SEM), transmission electron microscopy 
(TEM), current vs. voltage (I-V) measurements, cyclic voltammetry (CV) and 
electrochemical impedance spectroscopy (EIS) were employed for analysis of 
transition metals doped graphene nanocomposites for various kind of energy 
applications. 
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INTRODUCTION:  

Hydrogen storage-Issue, solutions and approaches 

 

 

 

 

 

 

 

 

The aim of this chapter is to introduce various options of hydrogen storage, such as 

high pressure storage method, liquefaction technique and solid phase storage (based on metal 

hydrides and porous structures such as metal organic frameworks, zeolites, carbon nanotubes 

and graphene). It comprises main features of all these methods, techniques and their 

mechanism for hydrogen storage, current status and related critical issues. The last section of 

this chapter devoted for general introduction of graphene and their hydrogenated derivative 

‘graphane’. Recently, graphene has been growing interest in many areas such as catalysis, 

energy storage, electronic device fabrications, medicine and materials science due to its 

specific structural and chemical properties and characteristic such as 2-D structure, large 

surface area, high electrical and thermal conductivity, robustness, chemical and thermal 

stability etc.  

 

1.1 Hydrogen storage  

 

Nowadays, worldwide increasing demand of energy is a central issue which continuously 

urges the scientific community to explore more sustainable energy resources to maintain the 

harmony of this planet [1]. To conquer this major problem, the reduction of fossil fuel 

dependency and energy saving criteria are two major holistic way to control such an 

apprehensions, which might be able to subside emission of greenhouse threats [2]. 

Nevertheless, efforts are going on to circumvent such kind of problems [3]. In this contest, 

continuous work is going on to develop new class of composite materials to play massive role 

for future energy economy based on environmentally clean resources and carriers [4].  
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In subtle engineering, nanotechnology is an important tool which already involved to 

solve several intricate issues, making a hope to resolve the energy challenges also [5]. Due 

this reason, vast range of progressive research are going on to unveil and discover numerous 

type of smart nanomaterials due to their specific bulk to nanomaterials properties and 

structure [6]. Moreover, to stimulate the research environment also, it has been already proved 

that nanotechnology is a very fertile ground for great scientific and technological discoveries 

especially, for the hydrogen storage also [7,8].  

Hydrogen, is a fuel of choice and it is light weight (molar mass, 2.01588 g), contains high 

energy density (compressed at 700 bar, 5.6 MJ/L or 142MJ/kg) and its combustion emits no 

harmful chemical by-products and exothermally it combust in air and produces (−286 kJ/mol) 

energy as following equation 1.1 [9-12]: 

2 H2(g) + O2(g) → 2 H2O(l) + 572 kJ (286 kJ/mol)       (1.1) 

Vehicles and other systems powered by hydrogen has the advantage due to it emits only 

water as a waste product. Moreover, hydrogen is considered as a green energy, because it can 

be generated from renewable sources without non-polluting manner [1,13]. Nevertheless, 

there is a still significant challenge are remaining that hinders the widespread application of 

hydrogen as the fuel of choice in mobile transportation, namely, the lack of a safe and easy 

method of storage [11,14].   

 

Figure 1.1 Various options of hydrogen energy storage [14]. 
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The efficient and safe storage of hydrogen is crucial for promoting the ‘‘hydrogen 

economy’’ and developed systems are shown in Fig.1.1 [14]. The fuel cell technologies office 

(FCTO) under United States’ Department of Energy (D.O.E.) has established requirements 

that have to be met by 2017; regarding the reversible storage of hydrogen according to which 

the required gravimetric density should be 5.5 wt. % and the volumetric capacity should be 40 

g/L of H2 as described in Table 1.1 [15]: 

Table 1.1 Technical system targets for onboard hydrogen storage for light-duty fuel cell 

operated vehicles  

Storage parameters Units 2017 Ultimate 
System gravimetric capacity: Usable, specific-

energy from H2 (net useful energy/max system 

mass) 

kWh/kg 

(kg H2/kg system) 

1.8 

(0.055) 

2.5 

(0.077) 

System volumetric capacity: Usable energy 

density from H2 (net useful energy/max system 

volume) 

kWh/L 

(kg H2/L system) 

1.3 

(0.04) 

2.3 

(0.07) 

Storage system cost:  

 

 Fuel cost 

$/kWh net 

($/kgH2) 

$/gge* at pump 

12 

400 

2-4 

8 

266 

2-4 

Durability/operability: 

 Operating ambient temperature 

 Min/Max delivery temperature 

 Operational cycle life (1/4 tank to full) 

 Min delivery pressure from storage 

system 

 Max delivery pressure from storage 

system 

 

℃ 

℃ 
Cycles 

bar (abs) 

 

bar (abs) 

 

 

-40/60 (sun) 

-40/85 

1500 

5 

 

5 

 

-40/60 (sun) 

-40/85 

1500 

3 

 

12 

Charging/discharging rates: 

 System fill time (5 kg) 

 

 Minimum full flow rate 

 Start time to full flow (20℃) 

 Start time to full flow (20℃) 

 

min 

(kg H2/min) 

(g/s)/kW 

s 

s 

 

3.3 

(1.5) 

0.02 

5 

15 

 

2.5 

(2.0) 

0.02 

5 

15 

       *    1 gal. gasoline equivalent (gge) ≈ 1kg H2  

 lower heating value for H2 is 33.3 kWh/kg H2 

 

1.1.1 Various options for hydrogen storage 

At the moment, there are three possible hydrogen storage options are available. Each 

is briefly described, along with main concern problems with special examples and references 

of current status of technology [1]. 
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1.1.1.1 High Pressure hydrogen storage 

The most common method of hydrogen storage is compression of the gas phase at high 

pressure (> 200 bars or 2850 psi) [1, 11, 15]. Compressed hydrogen in hydrogen tanks at 350 

bar (5,000 psi) and 700 bar (10,000 psi) is used in hydrogen vehicles [16-18]. There are two 

approaches to increase the gravimetric and volumetric storage capacities of compressed gas 

tanks. The first approach involves cryo-compressed tanks as shown in Fig. 1.2 [17]. This is 

based on the fact that at fixed pressure and volume, the gas tank volumetric capacity increases 

as the tank temperature decreases. Thus, by cooling a tank from RT to liquid nitrogen 

temperature (77 K), its volumetric capacity increases by a factor of four [1,11,16,17]. 

However, total system volumetric capacity is less than one because of the increased volume 

required for the cooling system. The limitation of this system is the energy needed to 

compression of the gas. Approximately, 15 to 20 percent of the energy content of hydrogen is 

lost due to the storage method [16]. Moreover, the main problem consisting with conventional 

materials for high pressure hydrogen tank related to embrittlement of hydrogen stoarge 

cylinder material, during the numerous charging/discharging cycles [16-18]. These issues can 

be resolve only by the development of new class of lightweight composite cylinders which 

can allow pressure to be increased by a factor of 4 and long term durability for operation. 

 

 

Figure 1.2 Hydrogen storage in tanks (a) outer jacket (b) recently, reported inner tube lining of 

compressed tanks made by carbon nanofibers (CNFs) [16,19]. 
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1.1.1.2 Liquefaction  

The energy density of hydrogen can be improved by storing hydrogen in a liquid state 

which also known as slush hydrogen [20]. This is useful for cryogenic engine and often used 

as concentrated form of it.  Due to this reason this technology developed during the early 

space age, as it was brought along on the space vessels but nowadays, on-board fuel cells also 

operated with them. In terms of volumetric capacity, it may store 0.070 kg L−1 of hydrogen 

compared to 0.030 kg L−1 of compressed gas tanks [18]. In this storage method, first gas 

phase is compressed at high pressure then liquefy at cryogenic temperature (liquid nitrogen, 

77 K) in liquid hydrogen tank (LH2), due to its low critical temperature (33.2 K) and low 

inversion temperature (202 K) of Joule-Thompson expansion [16,21]. Further, liquid helium 

is used to maintain the sub-zero temperature due to its low boiling point (20.28 K) [22]. In 

this case the storage tanks should well insulated and the condition of low temperature is 

maintained by using cylinder (as jacket) as shown in Fig. 1.3 [23]. Although, this technology 

appears to be very promising; however, it shows many short comings. For instance, to liquefy 

the hydrogen some extra energy or technical work always require which is correspond to the ~ 

15.2 kWh/kg and this value is almost 4.8 times of theoretical energy (Wth = 3.23 kWh/kg) 

[16]. Due to this reason approximately, 30 to 40 percent of the energy content of hydrogen 

consumes which lowering their heating value for safe combustion [1,16,18,22].  In this quest, 

many other issues are also considerable they all must to be resolve before their wide 

utilization as choice of fuel [1]. 

 

 

Figure 1.3 Liquid hydrogen storage tank, horizontal mounted with double gasket and dual seal [23]. 
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For instance, weight, volume and high cost of storage tank and boiling-off of hydrogen 

are some central issues especially, the boiling-off issue of liquid hydrogen is due to its low 

critical temperature (33.2 K) [16]. In this regard, relatively large amount of energy necessary 

for liquefaction and the continuous boil-off of liquid limit this storage system for utilizations. 

The process of liquefaction involves tight binding of hydrogen atoms or molecules with other 

elements. Nowadays, a vast research is centered around the development of composite tank 

materials (combination of liquid hydrogen with a metal hydride, like Fe-Ti, to minimize the 

boil-off issue) [24]. Although, safety is also another issue with the handling of liquid 

hydrogen as does the car's tank integrity, when it storing, pressurizing and cooling the element 

to such extreme temperatures.  

1.1.1.3 Material based hydrogen storage  

As mentioned above, certainly some practical problems, which cannot be easily 

circumvented, such as safety concerns (for high pressure containment) and boil-off issues (for 

liquid storage) both are challenging for hydrogen storage [1, 16, 25]. There is a third 

possibility presents itself, in the form of material based hydrogen storage [1, 11, 16, 26-29]. In 

these systems, hydrogen molecules are stored in the materials either by chemical storage or 

physisorption [16,30,31]. In recent decades, many types of hydrogen storage materials have 

been developed and investigated, that includes vast range of hydrogen storage alloys, metal-

hydrides, carbonaceous materials, metal nitrides and imides [1,11,16,28,32-37]. Mesoporous 

materials along with nanocomposite of them such as silica (SBA-15) incorporated with 

ammonia borane (NH3BH3) is also an example as shown in Fig. 1.4 [38].  

 

Figure 1.4 Chemically hydrogen storage in ammonia-borane [38]. 
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Recently, hydrogen storage by adsorption (physisorption) gained lot of interests 

potentially due to the lowering of overall system pressure for an equivalent amount of gas, 

yielding safer operating conditions of their storage [1,39]. Currently, several kind of porous 

materials are under investigation among of them zeolites, metal organic framework (MOF), 

carbon nanotubes (CNTs), and graphene gained much more interest due to their light weight 

and high gravimetric uptake of hydrogen [1,4, 40-45]. In following section material based 

hydrogen storage is briefly discuss: 

1.2 Chemical storage of hydrogen 

Nowadays, chemical storage of hydrogen is vastly investigated and a great deal of 

effort has been made due to their safety perspective such that an extra amount of energy 

(thermal heat or electrochemical energy) or deriving force (acid, base, water or catalyst) 

inputs must be included to release the hydrogen for use. In this storage method, hydrogen 

atoms are chemically bonded or complexed with chemical storage media or incorporated into 

small organic molecules. There are two categories of bound hydrogen with storage media (i) 

solid phase and (ii) liquid form [46]. Both can releases molecular hydrogen under appropriate 

conditions of temperature and catalysts. When material is subjected to thermal decomposition 

usually an exothermic process accomplishes and self-sustainable reaction progresses, as in the 

case of sodium borohydride (NaBH4) hydrolysis in presence of water and acid [47]. Although, 

in some cases an external energy or heat is require to release the hydrogen due to their 

endothermic enthalpy of decomposition for example MgH2 [48]. Particular challenges involve 

in this field are storage capacity of system, operating temperature and pressure, number of 

cycles for reversible charging and discharging, required amount of catalyst and itself stability 

of the base material and/or catalytic systems [4,11,16,29,46]. Among of various storage 

methodologies, solid phase based chemical hydrogen storage systems can be categorized in 

four major classes: (i) metal hydrides with metal hydride alloys (ii) complex hydrides 

(borohydrides, alanates and complex metal hydrides) (iii) amides, imides and ammonia-

borane compounds and (iv) nonporous materials such as zeolite, MOF, activated carbon and 

graphene etc. [1,16,46]. 

 

 

 



Chapter 1                                                                                                                                                               Introduction 

 

 Page 10 
 

1.2.1 Hydrogen storage in metal hydrides 

Initially, metal alloys, such as LaNi5, TiFe and MgNi alloys were proposed as 

materials for hydrogen storage tanks due their easily metal hydrides formation characteristic 

as shown in Fig. 1.5 [16]. Regarding vehicle applications, metal hydrides (MHs) can be 

distinguished into high or low temperature materials [31,49]. This depends on the temperature 

at which hydrogen absorption or desorption is taking place. Normally, in MHs hydrogen 

uptake and release kinetics is considered as above or below of 150 ℃, respectively. La-based 

and Ti-based alloys are some examples of low temperature materials with their main 

drawback of very low gravimetric capacity (<2 wt. %) of hydrogen storage.  

 

Figure 1.5 A survey plot of hydrogen storage in various metal hydrides [16]. 

The formation of metal hydride is well described on the basis of thermodynamic 

aspect of gaseous hydrogen pressure-composition-temperature (PCT) isotherms, which is also 

called as pressure-composition-isotherm (p-c) as shown in Fig. 1.6 (a). Isotherm shows that 

pressure is the function of concentration of hydrogen in a hydride phase (measured at a 

constant temperature), yielding a ratio of absorbed hydrogen with respect to metal (H/M) and 

wt.% of H [11].  In the graph x- and y-axes represent the H/M ratio and pressure, respectively. 

Plot reveals that formation of hydride compound in such a way of alloy saturation. When 

alloy starts to absorb hydrogen a solid solution region is observe in the graph that indicates an 

initial formation of an α-phase (due to the dissolution of some extent of hydrogen inside of the 

host metal), which was continuously transform to the β phase with increase pressure of 

hydrogen. At the saturation or finish point graph shows the region completely belongs to β 

phase [16]. In between the α and β phases, a flat plateau is also observed in p-c isotherms that 

refers the coexistence of two phases (α + β) due to the interaction of hydrogen atoms, 

nucleation and growth of the hydride phase. 

http://upload.wikimedia.org/wikipedia/commons/1/11/Volvsgrav.png


Chapter 1                                                                                                                                                               Introduction 

 

 Page 11 
 

 

Figure 1.6 Pressure composition (p-c) isotherm for the hydrogen absorption in a typical intermetallic 

compound: (a) the solid solution (α-phase), the hydride phase (β-phase) formation and the region of 

the coexistence of the two phases flat plateau (α + β) phase and their end at critical point (Tc), (b) the 

construction of the van’t Hoff plot to calculate the enthalpy and entropy of the system, (c) 

demonstration of hysteresis in the isotherms between desorption/absorption process, and (d) schematic 

example of metal hydride formation by loading and release of hydrogen inside of metal alloy [11,16, 

50,51]. 

The length of the flat plateau demonstrates the amount of reversibly stored hydrogen 

with small pressure variations. Similarly, with varying temperatures many isotherms are 

obtain that called as “mid-plateau” and they all finishes at critical point (Tc) which indicate 

the finalization of process. Above of Tc, region indicate the direct transition of hydride alloy 

from α → β phase. The obtain points from mid-plateau provide the enthalpy of formation 

which is given by (-ΔH/R) by the plotting of ln P vs. 1/T(K), yields van′t Hoff plot, and the 

slope of the van′t Hoff line gives ΔH/R as shown in Fig. 1.6 (b) [16]. More importantly, p-c 

describes the hysteresis in the isotherms between desorption/absorption process as shown in 

Fig. 1.6 (c) [50]. In which as pressure decreased a desorption process occur. Fig. 1.6 (d) 

displays the schematic hydrogenation/dehydrogenation process where metal entity (M, for 

example AB5 alloy) first makes the metal hydride (M-Hx), which restores their structure after 

dehydrogenation process [51]. Typical metal hydrides and their properties and hydrogen 

storage capacities are summarize in Table 1.2 [50].  
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Table 1.2  Metallic and intermetallic compounds and their hydrogen storage properties 

Type Metal Hydride Space group/ structure Mass% peq, T 

Elemental Pd PdH0.6 Fm3m 0.56 0.02 bar, 298 K 

Elemental Mg MgH2 hexagonal 7.6 1 bar, 573 K 

AB5 LaNi5 LaNi5H6 P6/mmm 1.37 2 bar, 298 K 

AB3 CaNi3 CaNi3H4.4 Hexagonal 1.8 0.5 bar, 298 K 

AB2 ZrV2 ZrV2H5.5 Fd3m 3.01 10-8 bar, 323 K 

AB FeTi FeTiH2 Pm3m 1.89 5 bar, 303 K 

A2B Mg2Ni Mg2NiH4 P6222 3.59 1 bar, 555 K 

Solid solution TiV2 TiV2H4 b.c.c 2.6 10 bar, 313 K 

 

Table 1.2 displays that the high temperature materials like Mg-based alloys can reach 

a theoretical maximum capacity of hydrogen storage of 7.6 wt. %; however, they suffering 

from poor hydrogenation/ dehydrogenation kinetics and thermodynamics [4,11,16,46]. 

1.2.2 Hydrogen storage in complex hydrides 

Hydrogen storage in complex metal hydride of light weight elements such as Li, Mg, 

B, Al is very interesting due to their excess number of hydrogen atoms per metal atom 

(sometimes it is two) [11, 52-54]. Presently, hydride complexes of borane such as the 

tetrahydroborates M(BH4) and alane tetrahydroaluminate M(AlH4) receives special interest 

due to their high gravimetric density of hydrogen staorge; however, they were known to be 

stable and decompose only at elevated temperatures and often above the melting point of the 

complex [46,54]. Schlesinger et al. (1939) first time introduced the covalent bonded inorganic 

complex metal hydride Al(BH4)3 compound, which consists of two light weight metal 

elements such belongs to the I and III groups of periodic table [55]. However, its low boiling 

point (44.5), high reactivity with water, volatile nature, pyropheric behavior and high 

decomposition temperature not allows it as a choice of fuel. Soon after, same group reported 

the lithium borohydride (LiBH4) material which consist of hydrogen upto 18.3 wt.%.  

Such a high gravimetric extent of hydrogen in complex metal hydride compared to 

above described metallic hydrides is only due to the main difference between chemical 

bonding. In these compounds hydrogen atoms situated at the corner of the tetrahedra (as 

methane: CH4) and covalently bonded with tri-valent metal such as boron or aluminum which 

adopts the center position, makes a tetrahedral structure. The negative charge of the anion, 

such as in [BH4]
− and [AlH4]

− compensated by a cation, e.g. Li or Na [55]. Anyway, Al(BH4)3 

compound not suggested as promicing candidate of hydrogen stoarge material due to their 

poor dehydrogenation process [53]. Zuttel et al. demonstrated its detailed reaction kinetics 
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and they investigated above 600 ℃ temperature is require for their decomposition and only 10 

wt.% of hydrogen liberated at this condition. Some, recent research shows that addition of 

silica powder lowered its decomposition temperatures to 400 ℃. Due to these all reasons, the 

low extent of hydrogen generation, high thermodynamic stability and very complex recycling 

process abandoned it for practical application.  

Another material LiAlH4 (LAH) also suffer from similar kind of problems. It also 

contains high gravimetric weight ratio of hydrogen, seems a good candidate of hydrogen 

storage  however, only at high temperature (~ 400 ℃)  it decomposes to LiH + Al species, 

shows lower hydrogen conversion capacity (7.96 wt.%) of them. For the recycling also, its 

spent material requires an extremely high pressure (excess of 10000 bar). Due to these 

reasons, many substantial research are going on for increasing their stability during recycling 

process and lowering decomposition temperature.  

Apart of them, NaBH4 is a good candidate for hydrogen storage material, was 

intensively studied for hydrogen generation and was first described in 1953 by the same 

group. It demonstrates high hydrogen content as well as stability in ambient conditions [31]. 

Instead of thermal decomposition, this is well known for its hydrolysis reaction. In hydrolysis 

process it provided own content of hydrogen along with 2 moles of hydrogen from water. Due 

to this reason now many categories of complex hydrides are in central point of research as 

indicated in  Table [54,57] 1.3: 

Table 1.3 Physical properties of some selected complex hydrides 

Formula Mw (g mol−1) ρ (g cm−3) Tm (°C) Tdec (°C) x (mass%) 

LiBH4 21.784 0.66 268 380 18.4 

NaBH4 37.83 1.074 505 400 10.6 

LiAlH4 37.95 0.917 >125 125 9.5 

KBH4 53.94 1.178 585 500 7.4 

NaAlH4 54 1.27 178 210 7.4 

Mg2NiH4 111.3 2.72  280 3.6 

Mg2FeH6 110.5 2.72  320 5.4 

Mg3MnH7 134.9 2.3  280 5.2 

BaReH9 332.5 4.86  <100 2.7 

  Mw: molecular weight, ρ: density, Tm: melting point, Tdec: decomposition temperature, 

and    

  x: gravimetric hydrogen density 
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1.2.3 Hydrogen storage in amides and ammonia borane compounds 

 Around one century ago, Dafert (1910) reported that formation of Li3NH4 compound 

by a reaction between lithium nitride (Li3N) and H2 [58]. Although, it was discovered in first 

decade of last century but it was boosted only on this century by the pioneering work of Chen 

et al. (2002) [59].  This compound is in reality a mixture of lithium amide (LiNH2) and 

lithium hydride (LiH). In this material maximum 10.4 wt.% of hydrogen storage is predicted; 

however, only 5.2 wt.% of stored hydrogen is achievable under reasonable temperature and 

pressure conditions [46]. Recently, to improve their thermal decomposition at low 

temperature various promoters are investigated; mainly, are based on Ti based inorganic salts 

and oxides [60-61].  Due to this reason, presently one more metal-N-H system gained much 

interest which known as Mg–N–H. It composed of magnesium hydride (MgH2) and 

Mg(NH2)2 and shows the 7.4 wt.% of hydrogen content on it, commences hydrogen release at 

a lower temperature compare to Li–N–H system [62]. However, Mg–N–H system also shows 

their some drawback, the major problem concern with it reversibility of end product Mg3N2 to 

precursors MgH2 and Mg(NH2)2 due to endothermic nature of reverse reaction [63].  

Apart of them, recently ammonia borane (AB) emerges as a promising solid hydrogen 

carrier, due to its very high hydrogen gravimetric capacity (19.6 wt.%) and stability in air and 

water [46,64-67]. It is a low molecular weight (30.7 g mol-1 ) monomeric adduct compound of 

NH3BH3 as schematically shown in Fig. 17 [64]. Its structure shows that dative bonding 

between the electron rich NH3 and electron deficient BH3 groups through sp hybridization and 

their covalent bonding with surrounding H atoms.  

AB shows the system-level H2 energy storage density around 2.74 kWh/L, and can 

able to releases hydrogen relatively low temperatures as compares to other metal hydride [64-

66]. For their decomposition presently three methods are well established; they are namely, 

thermal decomposition of the solid material, catalytic dehydrocoupling in solvents and 

catalyzed solvolysis in water as schematically shown in Fig. 1.8 [46]. Thermal decomposition 

or thermolysis of AB generates 2 moles of hydrogen along with borazine, monomeric 

aminoborane, and diborane species as the side products. However, hydrolysis process shows 

the formation mainly ammonia borate as side product [67]. 
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Figure 1.7 Schematic diagram of the crystal structure of NH3BH3 (a) and a view along z axis (b) at 

(298 K) [64]. 

The main problem concerned with the AB is long time dehydrogenation process that 

would be due to the involvement of induction period. Bluhm et al. reported the thermal 

decomposition of solid state AB at 85 ℃, at this temperature negligible H2 was detected in the 

first 3 h, but after 17 h, 0.9 equiv. H2 was produced. After that, no further H2 was released 

even after prolonged heating to 67 h, indicates the requirement of induction energy for their 

decomposition [68].  

 

Figure 1.8 Schematic representation of ammonia borane (AB) decomposition for hydrogen 

generation.  Three different methods, (i) most common thermal decomposition method, however, it 

shows major drawback formation of thermodynamically stable by products borazine and their 

analogues, (ii) catalytic decomposition and (iii) hydrolysis in presence of catalyst. 
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To enhance the hydrogen release from AB various efforts has been made. Heldebrant 

et al. demonstrated that the addition of diammoniate of diborane (DADB) or ammonium 

chloride (NH4Cl) dopants led the improvement in AB dehydrogenation [69]. Similarly, 

Goldberg et al. reported very motivating results, releasing of 1 equiv. of H2 at RT within 14 

min after addition of 0.5 mol % of catalyst. They, used the transition metal complex catalysts 

based on iridium pincer complex such as (POCOP)Ir(H)2 where (POCOP = [η3 -1,3-(OP-tert-

Bu2)2C6H3]) [70]. However, due to high cost of Iridium complexes this strategy seems to be 

not feasible for commercial application such as AB dehydrogenation. 

1.3 Chemical hydrogen storage in liquid form 

Recently, hydrogen economy based on liquid hydrogen media is rapidly growing field 

of research due to their high gravimetric and volumetric content of hydrogen, easy handling of 

solution under ambient temperature and pressure conditions with existing transportation and 

refueling infrastructure. The energy sources of hydrogen carriers in liquid form are ammonia, 

hydrazine, N-ethyl carbazole, alcohols and formic acid [46,71-73].   

1.3.1 Chemical hydrogen storage in ammonia and hydrazine 

Gaseous ammonia was first isolated by Joseph Priestley in year 1774 [74]. However, 

process of ammonia synthesis was developed by Fritz Haber and Carl Bosch in 1909 [75]. 

Moreover, presently ammonia is a second demanding chemical in worldwide due to its wide 

applications for synthesizing of many industrial products such as urea fertilizer and organo-

nitrogen compounds. It shows very high hydrogen gravimetric densities ~17 wt.%  or 0.107 

kg/L volumetric (~3.60 kWh/L at 25° C) [76-80]. The volumetric hydrogen density of it 

approx. ~ 1.7 times higher than liquid hydrogen at 0.1 MPa at -253°C. However, it shows 

some drawback as hydrogen energy carrier; mainly concerns due to its physical and chemical 

properties such as high vapor pressure at ambient conditions, high coefficient of thermal 

expansion, and extremely high reactivity with water, high toxicity and pungent smell. Along 

with, PEM fuel cells which cannot tolerate ammonia, and require very effective filtration 

system and cracking reactor to avoid presence of this. These major hurdles still staggered it as 

a choice for fuel in automobile vehicles [79-82].  

Instead of that, some recent studies shows that the anhydrous hydrazine (NH2 NH2) also 

an viable option of hydrogen storage due to its high gravimetric density of hydrogen (12.5 

wt.%) [46,73]. Hydrazine can be decompose by two ways: complete decomposition and 

incomplete decomposition as following equations 1.2 and 1.3, respectively. 
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          NH2NH2 → N2(g) + 2H2(g)                              (1.2) 

                                  3NH2NH2 → 4NH3 + N2(g)                               (1.3) 

However, due to explosive nature of anhydrous hydrazine (>98%), its monohydrate 

adduct (NH2NH2.H2O) is frequently used, which contains 7.9 wt.% of  hydrogen [83]. For its 

complete decomposition indeed catalyst must needful. A recent work of Singh et al. shows 

the decomposition of hydrous hydrazine in presence of Rh (0) catalyst [84]. They formulated 

its decomposition pathway on the basis of 15N NMR spectra signals and Mass spectra profile 

as shown in equation 1.4: 

        NH2NH2 → 0.63N2 + 0.88H2 + 0.75NH3                     (1.4)  

Experimental results shows that for their decomposition under investigation with Rh (0) 

catalyst more than 3 h were consumed, and when other catalyst such as Ni or Co were applied  

the selectivity and % decomposition both were very poor and almost reaction was 

uncompleted as shown in Fig. 1.9.  

 

Figure 1.9 Decomposition of hydrous hydrazine in the presence of metal NPs (metal/N2H4) 1:10) at 

298 K. The inset shows respective TEM image of Rh(0) NPs and the corresponding SAED pattern.  

These results infer that the dependency of noble metal catalyst (Rh) for their 

decomposition along with a long reaction time for its complete decomposition mitigate its 

general appearance for choice of fuel. Moreover, safety concerns due to its explosive and 

toxic nature and economical point of view such as synthesis from ammonia oxidation are not 

allow it’s as a promising candidate for hydrogen storage media [46,73]. 
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1.3.2 Hydrogen storage in N-Heterocyclic compound 

Due to the above mentioned practical barriers with ammonia and hydrazine recently, 

scientific efforts have been made for liquid organic hydrogen carriers (LOHC) as hydrogen 

reservoir, to get the privilege of existing infrastructures [46,73,85]. These compounds can 

chemically hydrogenated/dehydrogenated as per the requirements, can easily transported to 

the desired place where it can decouple the stored hydrogen through catalytic reaction, the 

energy-lean compound transport back for recycling process. In this manner, these compounds 

known as Energy carrying compounds or ETS due to (German name “Energie-Tragende 

Stoffe”) [86]. In the beginning, in this category scientists has been investigated only alkane-

arene pairs such a decalin-naphthalene, but due to their endothermicity of the release step they 

moved to another option which is known as N based heterocyclic compounds such as 

pyrrolidine and piperidine [87,88]. The presence of N in the ring favors the dehydrogenation 

process of organic molecule due to less bond energy of N–H bond compare to the C–H bond 

[88]. Nowadays, a hetrocyclic N compound which is in focus for LOHC research is N-

ethylcarbazole (NEC) [85,87]. It can reversibly hydrogenated/dehydrogenated in presence of 

catalyst. For instance, it can be completely hydrogenated in presence of Ru catalyst at 130-

150 ℃ under 7 MPa of hydrogen gas pressure and dehydrogenated on Pd based catalyst at 

150-170 ℃ as suggested in Fig. 1.10 [46].  

 
 

Figure 1.10 Hydrogenation/dehydrogenation of NEC. 

However, NEC shows some limitations to become a potential vector for ETS such as 

low gravimetric amount of hydrogen storage (6-8 wt.%) compare to ammonia borane, and 

requirement of noble metal based catalysts for both hydrogenation/dehydrogenation process. 

Moreover, toxicity and smell of heterocyclic compounds are also some key issues with it for 

practical application [46,73,85]. 
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1.3.3 Hydrogen storage in etahnol 

Nowadays, vast research is going on for developing proton exchange membrane (PEM) 

fuel cells due to their several advantages such as high energy density, carbon free emission, 

low temperature operability and safety concerns [46,73,89]. In PEM fuel cell, hydrogen gas is 

pass through the membrane and provide the electrons in external electrical circuit as 

schematically shown in Fig. 1.11 [90].  Ethanol is widely usable fuel for PEM as energy 

source due to it offers almost closed CO2 loop with high energy conversion efficiency. 

Ethanol can readily obtain from fermentation of several biomasses such as energy plants and 

waste materials from agro-industries including forestry residues also [91].  

 

Figure 1.11 Schematic representation of PEM fuel cell [90]. 

The reactions involve for producing hydrogen from ethanol is steam reforming as 

follows equation 1.5 [92]:  

C2H5OH + 3 H2O → 2CO2 + 6H2      (1.5) 

However, steam reforming reaction of ethanol is not straight forward. It involves high 

temperature process and suffers with presence of significant amounts of toxic CO and CH4 

gases. For the application of hydrogen in PEM fuel cells, the CO content should be reduced to 

less than 10 ppm. The major challenge with ethanol to develop highly active and selective 

catalysts for steam reforming reaction which may reduce CO and CH4 gaseous content from 

outlet [89-94]. 
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1.3.4 Hydrogen storage in formic acid 

Formic acid (HCOOH) is also an attractive option for hydrogen storage in liquid form. It 

is dense, viscous and high boiling point liquid. However, its diluted form (85%) is more often 

as energy carrier due to easy to handle, relatively nontoxic, noncorrosive, and nonflammable 

behavior. It contains 4.4 wt.% of  gravimetric H2 content lesser than other liquid H2 storage 

options such as hydrazine hydrate, N-ethylcarbazole and ethanol but exceptionally, it pertains 

high volumetric hydrogen storage capacity 53 g/L [46,73,95,96]. This value is higher than that 

of most other liquid hydrogen storage materials used today and this is due to its high density 

(d = 1.22 g/L).  Hydrogen stored in formic acid can be released on demand by decomposing it 

on a catalytic surface such as Au/ZrO2 nanocatalyst [95]. The co-product of HCOOH 

oxidation the CO2 still was the significant challenge but according to a recent research by Hull 

et al. that might be also used as a hydrogen vector as shown in Fig. 1.12 [97]. They developed 

a hydrogenation process by which CO2 can be convert back to formic acid on the catalytic 

surface. 

 

 

Figure 1.12 Schematic representation of reversible and recyclable hydrogen storage of formic acid on 

the surface of organic ligands encapsulated with Ir catalyst [97].  

In this work, they demonstrated the reversible and recyclable hydrogen storage system 

under mild temperatures and pressure conditions based on proton-switchable iridium catalyst 

in aqueous media. They used CO2, formate and formic acid as the feed that was able to 

produce CO free hydrogen. They used functionalized ligands for activation and binding sites 

of Ir catalyst. If it will be industrially possible this technique will become an ultimate carbon-

neutral cycle on earth.   
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1.4 Hydrogen storage in nanoporous materials 

Among various options of hydrogen storage, physical adsorption (physisorption) of 

hydrogen into porous materials has great advantages and presents itself as an attractive option 

for them [1]. Mostly, physisorption process shows that the fast and reversible kinetics of 

hydrogen uptake and release [98]. Due to this reasons, vast efforts are carrying on for 

development of high-surface area porous materials for boosting the hydrogen economy 

[41,46,73]. Presently, porous structures   of zeolites, carbonaceous materials and MOFs 

gained more attention due their finite geometries, tunable pore sizes, comparable high 

thermal, mechanical and chemical stabilities, and wide industrial applications [1,30,46,98]. 

All options are briefly discussed in next paragraph.   

1.4.1 Hydrogen storage in Zeolites 

Zeolites are prominent candidates for hydrogen storage due to their structural stability 

and a large internal surface area [1]. Zeolites contains well defined open-pore structure, with 

often tunable pore size, and shows the notable guest-host chemistry, with important 

applications in catalysis, gas adsorption, purification and separation [1,42,99-105]. 

Additionally, this material is cheap and has been widely used in industrial processes for many 

decades. The extensive experimental survey depicts the hydrogen storage capacity of zeolites 

to be < 2 wt% at cryogenic temperatures and <0.3 wt% at RT and above [42,100-103]. 

Fig.1.13 shows that the structure of these minerals is most commonly based on a framework 

of alternating AlO4
- and SiO4

- species, with charge balancing (hydroxyl or cationic) entities, 

forming networks of cavities, channels with openings in varying dimensions [105]. 

 

Figure 1.13 A unit cell of sodium zeolite with cage and cavity [105]. 
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The specific structural configuration of the zeolite provides great influence for their 

properties with respect to adsorption, selectivity and mobility of the guest molecules. An 

important property of zeolites is their high ion-exchange capacity, which allows for the direct 

manipulation of the available void space inside the material, as well as the chemical properties 

of the binding sites, greatly influencing their storage capacity [1,99].Theoretical modeling 

also provides a  close insight of the hydrogen storage capacity of zeolite materials. More 

recently, Smith and Maeson described the molecular simulation of adsorption in zeolite 

systems [104]. In the previous decade, Darkrim et al. demonstrated the potential model of 

hydrogen storage in zeolite systems [106]. For this aspect they have deal interactions between 

zeolite and hydrogen adsorbates. They developed a theoretical model for adsorption of 

molecular hydogen in zeolite substrate on the basis of three interaction forces (i) van-der 

Waals interactions, (ii) coulomb electrostatic potential, and (c) charge polarization [100].  

1.4.2 Hydrogen storage in carbonaceous materials 

 Among the vast range of porous materials, carbonaceous materials received enormous 

research interest due to their light weight, high surface area and chemical stability [1,46]. 

Therefore, hydrogenation of carbonaceous materials e.g., activated carbon, graphite, carbon 

nanotubes and carbon foams, have been gained large technological and scientific interest for 

hydrogen storage and were included in the group of hydrogen storage materials as shown in 

Fig.1.14 [73, 107-109].  

Early experimental data for hydrogen storage particularly, in single walled carbon 

nanotubes (SWCNTs) was initially promising, indicating high hydrogen storage capacity in 

that material exceeding of DOE targets [107].  However, later experimental results unveil that 

such a high storage of hydrogen is beyond of proximities [110]. Although, above prediction 

stimulated the scientific community for further research for hydrogen storage particularly, for 

nanoporous carbon material [1].  

After the discovery of “graphene” the research moved in this direction due to their 

highest specific surface area-per-unit masses in nature, far superior to even CNTs and 

fullerenes [1,111]. It can store individual hydrogen atoms in a metallic lattice, through 

chemical bonding to a metallic host [112]. Besides the physisorption the chemisorption of 

hydrogen, graphene is even more interesting for catalysis and electronic purposes also [113-

115]. Moreover, it is the material that may make easily composite with different kind of NPs 
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and other carbon structures such as CNTs, carbon nanoscrolls (CNSs) and fullerene  [116-

118].  

 

 

Figure 1.14 A complete survey plot of hydrogen storage in metal hydrides and carbon materials [11]. 

1.4.3 Hydrogen storage in MOFs 

Lately, novel nanoporous materials like metal organic frameworks (MOFs) have been 

targeted to the hydrogen storage problem [120]. The research interests on hydrogen storage in 

MOFs have been growing since 2003 when the first MOF-based hydrogen storage material 

was introduced [121]. MOFs are highly crystalline inorganic-organic hybrid structures that 

contain metal clusters or ions or secondary building units (SBUs) as nodes and organic 

ligands as linkers as shown in Fig. 1.14 [122]. When guest molecules (solvent) occupying the 

pores are removed during solvent exchange and heating under vacuum, porous structure of 

MOFs can be achieved without destabilizing of the framework, and hydrogen molecules will 

be adsorbed onto the surface of the pores by physisorption [123]. Compared to traditional 

zeolites and porous carbon materials, MOFs contains very high number of pores and surface 

area which allow higher hydrogen uptake in a given volume [46,73,121]. However, due to 

infinite geometrical and chemical variations of MOFs scientists are trying to explore most 

approachable solution for maximum hydrogen uptake. Recently, Klontzas et al. theoretically 

investigated that insertion of light metal cation such as Li+ inside of MOFs porous network 

can improve their hydrogen storage capacity up to 10 wt.% at 77 K under 100 bar pressure as 

shown in Fig. 1.15 [125]. However, experimental results shows that less extent of hydrogen 
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storage in MOFs. For instance, Férey et al. reported the hydrogen adsorption in the 

nanoporous metal-benzenedicarboxylate M (OH) (O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53 

systems [126].   

 

Figure 1.15 Structure and H2 adsorption of MOF with and without doping. 

They have analyzed nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) 

(M = Al3+, Cr3+) and 3.8 and 3.1 wt.% hydrogen storage was obtained at 77 K under 1.6 MPa 

hydrogen pressure, respectively. This solid nanoporous structure was synthesized by simple 

chemical mixing method of precursors such as (aluminium nitrate or chromium nitrate/HF) 

and 1,4-benzenedicarboxylic acid (BDC). They have built a three-dimensional metal–organic 

framework based on encapsulation of non-reacted BDC within the pores as shown in Fig. 

1.16. 

 

Figure 1.16 Unit cell of MOF with octahedral cluster structure [121]. 

The structure was built up by trans corner sharing of octahedral MO4(OH)2 chains 

with linkage of BDC molecules. That makes 1D lozenge-shape tunnels as shown in Fig.1.17 

[126]. These tunnels were occluded by the BDC species which provided porous solid network 

after further heating at (300–320 °C) due to the decomposition and evaporation of organic 

species and water. The annealing process make sure the formation of porous structure with 

pores size of 8.5 Å with average BET surface area of 1100 m2/ g. 
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Figure 1.17  Representation of the structure of MIL-53 showing the expansion effect due to the 

removal of a water molecule from the cavities, (a) hydrated (left), (b) dehydrated (right); octahedra: 

MO4(OH)2, M = Al3+, Cr3+. The dehydrated form of MIL-53 was tested for the hydrogen adsorption 

experiment [126]. 

1.5 Theory of physisorption 

In porous materials hydrogen storage is highly dependent on physisorption 

phenomenon. This phenomenon is led by the van der Waals interaction between gases and 

solids under appropriate conditions and typically, 10–100 meV binding energy is involve [1, 

127-133].  Due to the amount of this energy is very less,  the interaction between of substrate 

(S) and the hydrogen molecule (H2) describes on the basis of London- Dispersion forces (ES–

H2), as shown in following equation 1.6 :  

 

 

where, α refer the polarizability and R  denote the interdistance between hydrogen and 

substrates molecules as shown in Fig.1.18 [132]. However, due to the non-polar behavior of 

H2 molecule, the adsorption capacity can only enhance by the increase of polarizability factor 

of substrate molecule as αH2 is fixed. Due to this reason the only way to increase the value of 

ES–H2 using of highly polarizable substrates, e.g. substrates which contains π electron 

systems. 

 

                           Figure 1.18 Polarization effect on adsorbate and adsorbent [132].  

(1.6) 
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Normally, in adsorption phenomenon a monolayer of gaseous molecules is adsorbed 

above the boiling point of the adsorbent and their value depends on the adsorption 

stereometry [127]. In this case, equilibrium between gas attraction and gas repulsion on the 

surface creates an energy minimum between 1 and 10 kJ mol-1. For hydrogen, the average 

value of energy minimum is 4-5 kJ mol-1 and this represents a very weak interaction between 

adsorbate and adsorbents as shown in Fig.1.19 (a) and (b) [129]. However, the exact value for 

the hydrogen adsorption on a flat carbon surface can be estimated by Langmuir isotherm 

equation 1.7 [130]: 

 

 

where, P is the partial pressure of the adsorbent gas (hydrogen in our case), K is rate 

constant, and θ is the surface coverage area at very low pressures θ ≈ KP and for high pressure 

θ ≈ 1. Therefore, maximum value of hydrogen adsorption on any particular material can be 

estimated on the basis of monolayer formation on that one [131, 133]. 

 

 

 

Figure 1.19 Hydrogen storage on Ni (111) catalyst support and (b) energy diagram for adsorption of 

hydrogen on to the catalyst surface [48].  

Yao (2010) recently mentioned a calculation about the hydrogen storage in carbon 

based materials [132]. He describes that the “assumptionally, if we consider the structure of 

the adsorbed hydrogen is closed-packed face centered, the minimum estimated surface area 

required for the adsorption of 1 mol of hydrogen gas to be SmL (H2) = 85.917 m2 mol-1, 

where Sml: minimum surface area required for one mole adsorption of gaseous species . 

(1.7)  or   
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Based on this approximation the theoretical hydrogen storage capacity (mads) can be 

calculated from the specific surface of the carbon (Sspec): 

mads ≈ Sspec ×2.27×10−3 wt.%                (1.8) 

The amount of adsorbed hydrogen correlates with the specific surface of carbon as 

shown in Fig.1.20 [132]. Taking equation (1.8) into account a theoretical carbon surface area 

of 2650 m2/g would be necessary to meet the 2010 DOE target. Fortunately, the surface area 

of a single graphene sheet (2600 m2 g−1) match the maximum value for the storage capacity of 

hydrogen adsorbed on the carbon system and which is calculated to be about 6.0 wt.%. This 

value, however, can be reached only at very low temperatures [132]. Therefore, hydrogen is 

adsorbed at very low temperature and desorbed with increasing temperature, and very little 

hydrogen adsorption is observed on carbon at elevated temperatures. 

 

 

Figure 1.20 Hydrogen storage in carbonaceous materials [132]. 

 

1.6 Hydrogen storage in CNTs 

There are some specific methods for hydrogenation of carbon systems and storing the 

hydrogen for particular interest [1]. Although, the experimental results for hydrogen storage 

in CNTs scatter over several orders of magnitudes. The hydrogen-storage capacity CNTs is 

reported between 0.2 and 10 wt.% [107,132,134-136]. Initial studies showed that CNTs were 

as a good material for reversible hydrogen storage, but it was later revealed that under 

ambient conditions, pristine CNTs are not such as promising [1,46,73]. Numerous studies has 

been carried out for the direct reaction of CNTs with hydrogen [134-136].  
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In most studies, it has been assumed that atomic hydrogen is produced by the 

decomposition of molecular hydrogen in the presence of catalyst, as shown in Fig.1.21 

[1,46,137,138]. However, the liquid phase hydrogenation is more generous as compare to 

gaseous phase because in this method there is no need of external high temperature source or 

specific instrumental deal to dissociate the hydrogen molecule [139]. In this regards, the 

doped CNTs with lithium atoms can considerably increase their hydrogen storage capacity 

[140]. However, later studies says that D.O.E.’s target remains unapproachable, and 

innovative materials indeed needful to reach them [73]. 

 

Figure 1.21 Hydrogen storage in CNTs [137,138]. 

In the previous decade, Pekker et al. (2001) reported the hydrogenation of CNTs and 

graphite in liquid ammonia solution [141]. They synthesized the CNTs by arc discharge 

method and hydrogenation reaction was carried out via a dissolved metal reduction method 

(in Li/liquid ammonia). For this, they  have mixed 200 mg of CNTs and 100 mg of metallic Li 

in a glove box in presence of methanol as solvent and liq. ammonia was used as hydrogen 

carrier at low temperature (-33 ℃). This reduction method is well known as Birch reduction 

where liq. ammonia directly react with metallic species Na/Li which produces the solvated 

cations and electrons [142]. This Birch reduction can be applied for the partial reduction of 

conjugated systems also and a similar reaction was used previously, for the hydrogenation of 

fullerenes [143]. The typical hydrogenation of CNTs was carried out by this reaction as 

follows: In the first steps of the hydrogenation reaction, metallic lithium reacts with ammonia 

(as equation 1.9) and afterward solvated anion reacted with C (due their strong basicity) and 

produces carbanion complex as shown in equation 1.10:   

Li + nNH3 → Li+ + e- (NH3)n                 (1.9) 

e- (NH3)n + C → nNH3 + C-              (1.10) 
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Further, carbanion reacted with methanol and decomposes it in to methoxide species (CH3O
-) 

as shown in equation 1.11. During course of this reaction, a covalent species also formed as 

hydrogenated carbon derivative (CH) which led the change in hybridization of C as sp2 to sp3.  

C- + CH3OH → CH + CH3O
-               (1.11) 

Although, direct production of hydrogen was also proposed through carbanion reaction 

instead of methoxide formation as shown in equation (1.12):  

C- + CH3OH → C + CH3O
- + 1/2H2 (1.12) 

Later, it was recognized that direct hydrogenation of CNTs is also feasible without 

exceptionally care of glove box and liquid ammonia (due to their toxic and explosive 

behavior). In the previous decade Elby et al. successfully demonstrated that the hydrogenation 

of as-grown CNTs in presence of microwave plasma [144]. Recently, Talyzin et al. reported 

the hydrogenation, purification, and unzipping of CNTs by reaction with molecular hydrogen 

as shown in Fig. 1.22 [145]. They synthesized the SWCNTs and carbon nanobuds (CNBs) by 

aerosol CVD method through pyrolysis of ferrocene molecules. By this method they have 

synthesized 1.5 nm thick (diameter) and 300 nm long CNTs. They have performed 

hydrogenation reaction in presence of hydrogen gas at high temperature and high pressure 

with long time of gaseous exposure around ∼78 h.  

 

 

Figure 1.22 Hydrogenation and unzipping of CNTs [145]. 

Bhowmick et al. also reported the hydrogen storage in CNTs in presence of Pt 

catalyst. They analyzed the hydrogen storage capacity of Pt-SWNT composites and 

demonstrated the formation of stable C-H bond through spillover mechanism on Pt active 

sites [146].  Interestingly, this method can be applied to hydrogenate various forms of carbon 

including graphene.  
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1.7 Hydrogen storage in graphene 

 The recent discovery of graphene, atomically thin layers of 2-D graphitic carbon 

system brought historic revolution in the beginning of 21st century [147].   For the first time, it 

was possible to isolate two dimensional mono layers of atoms. A suspended single layer of 

graphene is one of the stiffest known materials characterized by a remarkably high Young’s 

modulus of ~ 1 TPa. The high thermal conductivity (∼3000 Wm-1 K-1), high electron mobility 

(15000 cm2 V-1 s-1), and high specific surface area of graphene nanosheet are also few 

amazing characteristics of this material [1,46,73,111]. As an electronic material, graphene 

represents a new playground for electrons in 2, 1, and 0 dimensions where the rules are 

changed due to its linear band structure. Very low scattering in this material allowing its for 

observation of the Quantum Hall Effect (QHE), and the unique band structure of graphene 

provides old effect in a new twist as shown in Fig.1.23 [148].  

 

Figure 1.23 Band structure of mono layer graphene [147]. 

Recently, graphene has triggered enormous interest in the area of composite materials 

and solid state electronics. When incorporated into a polymer, its peculiar properties manifest 

as remarkable improvements in the host material. The mechanical and thermal properties of 

these materials rank among the best in comparison with other carbon-based composites. For 

energy applications graphene is a very suitable candidate to fabricate ultra-high charge 

capacitor or super capacitors. Here, storage capacity must be realized by rapid charging and 

discharging of composite materials [149-152]. Regarding of hydrogen storage in previous 

decade Sofo et al. coined the idea for hydrogenation of graphene through first-principle total 
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energy calculations to form a stable two dimensional hydrocarbon based on sp3 hybridized (-

C-H) bonded carbon structure by the saturation of sp2 (-C=C) bonding [153]. The compound 

termed as graphane, it was a fully saturated hydrocarbon derived from a single graphene sheet 

with formula CH. All of the carbon atoms are in sp3 hybridization forming a hexagonal 

network and the hydrogen atoms are bonded to carbon on both sides of the plane in an 

alternating manner as shown in Fig.1.24 [154].  

 

Figure 1.24 Structure of graphane in the chair conformation. The carbon atoms are shown in gray and 

the hydrogen atoms in red. The figure shows the hexagonal network with carbon in the sp3 

hybridization [154]. 

Later, Elias et al. practically demonstrated that graphene could be hydrogenated using 

cold plasma [112].  They suggested the storage of individual hydrogen atoms (H) in its 

hexagonal lattices through chemical bonding and formation of graphane structure where 

graphene acts as a metallic host and adopted the buckle structure as depicted in Fig. 1.25. It 

appears in the form of pulled up and down arrangement of alternating carbon atoms. 

 

Figure 1.25 Schematic representation of the crystal structure of graphene and theoretically predicted 

graphane. Carbon atoms are shown as blue spheres, and hydrogen atoms are shown as red spheres 

[112]. 
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Further, they confirmed the hydrogenation of graphene system (single sheet of 

graphene) using Raman spectroscopy. Particularly, Raman technique is very sensitive and 

useful for investigating the structural change in carbon materials such as diamond, CNTs and 

graphene, which directly provide the close information inside of carbon system [155-157]. In 

their work, they revealed that after the hydrogenation a new band D’ was arise at 1620 cm-1 in 

their Raman spectra as shown in Fig. 1.26 [112].  

 

Figure 1.26 Raman spectra of graphene (green), graphane (blue) and dehydrogenated product (red) 

[112].   

Interestingly, after the annealing (dehydrogenation process) both defect bands (D and 

D’) were diminished and Raman spectra of graphene was recovered, suggested the reversible 

hydrogenation of graphene. Due to this reason they revealed the idea for chemisorption of H2 

in graphene instead of physisorption. However, later Dimitrakakis et al. suggested the 

physisorption also accessible in graphene [158]. They conceptually constructed the pillared 

graphene via linking of CNTs with pristine graphene sheets as shown in Fig. 1.27; and 

theoretically predicted 7.6 wt.% storage of H2 storage at 77 K. Moreover, they have estimated 

a volumetric up-take of H2 (70 g/L) at 77 K under 100 bar pressure in pillared material to 

meet the DOE target.  
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Figure 1.27 Pillared graphene. A novel 3-D network proposed for hydrogen storage [158]. 

However, results shows that poor hydrogen uptake in pure carbonaceous material 

(graphene, CNTs and pillared) and that was only enhanced after doping of Li in pillared 3-D 

framework as shown in Fig. 1.28. 

 

Figure 1.28 Theoretical results of hydrogen storage in pillared graphene [158].  

Similarly, Bieri et al. also demonstrated the role of Li cations for hydrogen storage in 

graphene system [159]. They describes the change in electronic structure of graphene by 

using different dopant level of Li atoms and demonstrated the enhanced adsorption of H2 

molecules at defect sites. Recently, Fair et al. also theoretically demonstrated the hydrogen 

storage in graphene by insertion of alkaline metals Mg and Sr (instead of Li) and expected the 

storage of six molecule of H2 per adatoms [160]. However, all these predictions are still far 

from real achievement and experimental results reveals that only 0.4 wt.% and 0.2 wt. % of 

H2 storage in graphene at 77 K and RT, respectively under 6 MPa pressure condition [161]. 

Srinivas et al. experimentally demonstrated the only 0.092 wt.% storage of hydrogen in 

graphene system at 298 K under 10 bar H2 pressure [162]. 
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Anyway, synthesis of graphene in bulk amount for such kind of application is also a 

key issue. Graphene synthesis either by mechanical exfoliation and CVD are not satisfactory 

for the manufacture of high quality mass production [1]. On the other hand, the wet chemical 

exfoliation of graphite in presence of strong oxidizing agents is a well-known synthesis 

method of graphene. This chemically modified form of graphite is considered as graphene 

oxide (GO) [149]. GO exhibits strong covalent attachment with some oxygen functionalities 

such as hydroxyls, carbonyl, carboxylic and epoxides. Burress et al. reported the H2 storage in 

GO [163]. They demonstrated the pillaring of material for better hydrogen uptake by the 

linkage of boronic acid and hydroxyl groups of GO as shown in Fig.1.29 [163]. However, 

results were not dramatically enhanced and only 1 wt.% of H2 uptake was observed at 77 K.  

 

 

 

Figure 1.29 Linking of boronic ester with graphene oxide (GO) and construction of graphene oxide 

framework (GOF) material by the incorporation of layers graphene oxide sheets with 

benzenediboronic acid pillars (B14DBA) [163]. 

The efficient hydrogenation of graphene can also be possible by catalytic conversion 

where catalyst provides a new reduction pathway of graphene through dissociation of 

hydrogen molecule formation of radical (H) [164]. Zheng et al. demonstrated the graphene 

hydrogenation at high temperature in presence of Ni catalyst as schematically shown in 

Fig.1.30 [165]. They intercalated Ni NPs inside of the alumina matrix and kept it in the flow 

of H2 at 820 ℃ to dissociate the molecular hydrogen, and succefullay demonstrated the 

catalytic hydrogenation of graphene films and proved it by Raman technique. Although, this 

method is interesting for chemical storage of hydrogen; however, this approach suffer from 

requirement of such a high temperature for hydrogenation of graphene. Instead of that, 

hydrogen storage at ambient temperature is more encouraging. 
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       Figure 1.30 Catalytic hydrogenation of graphene film in presence of Ni catalyst at 820 ℃ [165]. 

Huang et al. reported the 0.15 wt.% of H2 storage in graphene system at 303 K after 

integration of precise metal Pt NPs with them [166]. Later, it was realized that incorporation 

of other kind of porous material, for example, MOF can also be able to induce more viable 

way of hydrogen storage at RT. For instance, Zhou et al. demonstrated the 0.77 wt.% 

hydrogen storage in Pt-loaded graphene oxide/HKUST-1 composite under 80 bar pressure 

[167]. However, high price and limited number of resources of Pt metal limit its wide 

usability to make the scalable amount of nanocomposite for commercial application [168]. 

Instead of that, Pd is widely investigated and encouraged for H2 storage due to its less price 

and low density compared to Pt [169-171]. Moreover, it can easily form PdHx hydride alloy 

which has constitution of (α+β) phase of hydride species on the basis of concentration of H2 

atmosphere [171]. Very recently, Li et al. has been reported the H2 storage capacity in Pd 

crystal and Pd loaded HKUST at 303 K [172]. They compared the storage capacity and 

demonstrated enhanced H2 storage in Pd loaded porous network of HKUST. However, 

specific synthesis protocol of porous material HKUST and over-all dependency on precise 

metals either Pt or Pd remains challengeable issue to approach real field of applications.  

Concisely, chemisorption of carbon based system such as graphene can provide more 

viable options for hydrogen storage due to the large abundance of carbon sources such as 

graphite and hydrocarbons. The conversion of graphene to graphane and their reverse reaction 

(the dehydrogenation of graphene) is really very interesting field of research. In this process 

the chemisorption/desorption of hydrogen led the changes in hybridization state of hexagonal 

graphene system. Recently, Wang et al. has been reported the highly efficient conversion of 

graphane-to-graphene via plasma-enhanced chemical vapor deposition (PECVD) method as 

shown in Fig. 1.31 [173].  
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Figure 1.31 Interconvertible patterning of graphane to graphene [173]. 

They mentioned that the inter-convertibility between graphane and graphene film 

which was deposited on Cu/Ti-coated SiO2-Si substrate. In their experiment, exfoliated 

graphene sample was used which was hydrogenated by the radio frequency plasma (RF 

plasma). After the hydrogenation they identify the change in electrical conductivity of 

graphene system due to the change of electronic states and recognized their advantageous 

position for various electronic applications. However, synthesis of high quality of graphene in 

bulk extent with reduced cost is still challengeable particularly, purpose of hydrogen storage. 

Although, scientific efforts are continuously going on to resolve all the issues.  

Recently, Zhu et al. demonstrated that the conversion of graphene sheets in box type 

of structure (graphene nanocage) can able to provide an ultimate solution of hydrogen storage 

as shown in Fig. 1.32 [174]. In their work they theoretically demonstrated that the 

hydrogenation process led the formation of graphene origami (as box) through the specific 

patterning of graphene sheet via cutting, molding and stitching of graphene sheet.  Moreover, 

in their work they proposed a programmable system for molecular hydrogen gas uptake, their 

storage, and finally release through an external electrical field.  Regarding of hydrogen uptake 

and release they used the molecular dynamic simulation approach and exhibited that reaching 

to the ultimate goal of US DOE target. 
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Figure 1.32 A systematic theoretical approach for making the hydrogenation assisted graphene 

origami (HAGO) for programmable molecular hydrogen storage [174]. 

Although the above idea, making the graphene origami seems very interesting but the 

cutting of graphene sheet (only on diagonal sides along with middle flappy region with 90 

degree angle as shown in above Figure 1.32: left image) is highly cumbersome especially, 

removing of square pieces from specific regions. Then after, molding of small graphene 

pieces to make the box or graphene nanocage (center image) really, needed a highly tentative 

idea. Though, the initial work of graphene sheet cutting by the Ci et al. shows that the 

graphene sheet can cut in the pattern of triangular shape as shown in Fig 1.33 [175].  

 

Figure 1.33 AFM image of graphene cutting which clearly shows that the formation of triangles with 

each edge related of 60° movement, a schematic representation also (inset image)  [175]. 

They, investigated that graphene sheet can cut only in 60 and 120 degree angles, not in 

the angles of 45 and 90 degrees.  This was probably, due to hexagonal networking of 

graphene sheets itself.  In the hexagonal network each carbon atoms situated with 60 degree 

angle. Therefore, the line defects or cutting only feasible in regular fashion (related to 
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minimum energy requirement for fragmentation of carbon skeleton) that yielded the triangles. 

Similar kind of results also demonstrated by Campos et al. for the synthesis of graphene 

nanoribbons [176]. They found that when graphene sheet was etched with Ni NPs under 

hydrogen environment at high temperature (at 1000 ℃) some trench were formed (due to the 

movement of Ni NPs) as shown in Fig. 1.34. But all the trenches turns only on angles of 60° 

or 120° it might be due to the symmetric bouncing of NPs in particular direction.  

 

 

Figure 1.34 Anisotropic cutting of graphene. (a) Schematic drawing of graphene cutting by metal 

nanoparticles. (b), (c) AFM of graphene and graphite after cutting, respectively [176]. 

Anyway, high temperature reaction condition and cutting of few layers of graphene on 

substrate in triangular fashion or making the graphene origami are not enough approaches to 

reach the goal of hydrogen storage. In this regards, there are two approaches with graphene 

system they itself existing together such as chemisorption (saturation of –C=C bonding to 

make –CH) and physisorption in porous materials. Particularly, chemisorption via hydrogen 

spillover is very interesting in which metal NPs dissociate the molecular hydrogen and host 

graphene layers accommodate the hydrogen atoms as shown in Fig. 1.35 [1]. 
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Figure 1.35 Hydrogen spillover mechanism on metal catalyst site and storage of hydrogen in receptor 

layers through bridge building mechanism [1].  

Therefore, it is crucial and important to introduce an innovative way for storing the 

high gravimetric amount of H2 with reduced cost using graphene as host material or receptor 

site and metal NPs as catalyst. 

1.8 Scope of the thesis 

The main aim of this thesis is the development of transition metals doped graphene 

based novel materials to solve the world wide challengeable issue of energy economy. Efforts 

has been made on hydrogen energy storage, their production and energy saving also (during 

the catalysis reactions). Moreover, graphene nanocomposites were applied for electrical and 

electronics applications also. This work is mainly focused  on five distinct applications (i) 

hydrogen storage (ii)  hydrogen generation (iii) catalysis process based on hydrogenation 

reaction (iv) electronics application (memristor property), and (v) biosensor applications. 

Chapter 2 demonstrate a novel method for hydrogenation of GO on the basis of hydrogen 

spillover mechanism. This chapter comprises two parts: the first part shows the synthesis of 

hydrogenated reduced graphene oxide (HRGO) on bulk Ni metal and, second part represents 

the synthesis of hydrogenated graphene oxide (HGO) based on nano Ni powder.  The product 

HRGO was fully characterized by XRD, FTIR, Raman, XPS and TEM/HRTEM techniques. 

Here, a detailed mechanism of hydrogen spillover on Ni also established. 
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Chapter 3 presents the hydrogen storage in Pd@NixB-SiO2/RGO nanocomposite. The 

synthesized nanocomposite was fully characterized by XRD, FTIR, Raman and XPS 

techniques. The morphological features were accessed by SEM and TEM techniques. The 

study of hydrogen storage was performed using Sievert’s instrument. The H2 up take 

measurements were performed at RT till 50 bar pressure. For the comparison, Pd@ 

SiO2/RGO, NixB-SiO2/RGO and SiO2/RGO nanocomposite were also tested. On the basis of 

hydrogen storage results, a detailed mechanism has been established to clarify the primary 

and secondary spillover sites inside of nanocomposite. 

Chapter 4 is about the theoretical modelling of hydrogen storage in nanozeolite material.  

Here, grand canonical Monte Carlo (GCMC) simulation technique was applied for assessment 

of hydrogen storage in nanomaterial. 

Chapter 5 presents the hydrogen generation through electrochemical oxidation of ethanol in 

alkaline medium. In this work Pd@NixB/RGO nanocomposite was used for catalysis reaction 

and the electrochemical behavior of nanocomposite evaluated by cyclic voltammetry (CV) 

technique. The structural and morphological features were also characterized by XRD, FTIR, 

XPS, SEM and TEM techniques. The catalytic activity of Pd@NixB/RGO nanocomposite was 

evaluated continuously for 50 cyclic run; Interestingly, results shows the increase of current 

density after 50 cycle run, suggests the self-cleaning process on catalyst and robustness of 

catalyst infers the futuristic hope for hydrogen economy. 

Chapter 6 describes the direct hydrogen production through hydrolysis of NaBH4 in aqueous 

basic medium. In this work, a novel nanocomposite CoB@Ni/RGO was synthesized by a 

facile route. Nanocatalyst was fully characterized by XRD, FTIR, Raman, SEM and TEM 

techniques. Moreover, stability and performance of CoB@Ni/RGO nanocatalyst were also 

investigated by CV and impedance spectroscopy (EIS) techniques. A detailed mechanism of 

NaBH4 decomposition on CoB@Ni/RGO nanocomposite was also elaborated.  

Chapter 7 describes the catalysis reactions on the surface of graphene nanocomposites to save 

the energy and environment. 4-nitrophenol is an industrial pollutant and for their degradation 

catalyst involvement is highly required. A wide range of catalysts has been synthesized and 

efforts are especially, has been made for decrease of reaction time and reaction temperature, 

along with price of nanocatalyst system.  



Chapter 1                                                                                                                                                               Introduction 

 

 Page 41 
 

Chapter 8 is about the study of resistive switching and memristor behavior of graphene 

nanocomposite system for nanoelectronics applications. Here, MIM structure is fabricated to 

understand the mechanism in detail. 

Chapters 9 describes the biosensors work based on Ni/RGO nanocomposite system. 

Chapter 10 of this thesis is dedicated to the final conclusions. 
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HYDROGENATION OF GRAPHENE OXIDE:  

Synthesis, characterization and results 

 

 

 

 

 

 

 

 

2.1 Introduction 

Ever since the discovery of two dimensional graphene, extensive research is going on 

to explore this material for energy application [1-2]. Recently, hydrogenation of graphene to 

make graphane has attracted tremendous attention to exploit the possibilities for hydrogen 

storage [3]. Graphane is suggested to be useful for hydrogen storage since the sp3 C–H bond 

generated by hydrogenation of graphene and reduced graphene gets easily dehydrogenated on 

photothermal heating [4]. Nevertheless, these unique properties are obtained only by efficient 

hydrogenation of graphene. Hydrogenation of graphene was first reported by Sofo et al. through 

their first principles calculation and the idea was instantly transformed into reality by the 

experimental production of hydrogenated graphene (graphane) [5]. 

2.2 Synthesis of hydrogenated reduced graphene oxide (HRGO) 

Nickel is known to be a very active hydrogenation catalyst and a hydrogen spillover 

initiator [6]. Zheng et al. demonstrated the catalytic hydrogenation of graphene films by using 

Ni/Al2O3 with the flow of H2 at 820 ℃ [7]. Subrahmanyam et al. also showed that Birch 

reduction of few-layer graphene samples at -33 ℃ gives rise to hydrogenated samples 

containing up to 5 wt.% of hydrogen [8]. However, these attempts have been limited to ex-situ 

hydrogenation of graphene under extreme conditions. The reduction of GO by metal catalysts 

(Al, Fe and Zn) is reported in other’s work also [9-13]. In the light of above reports, this is 

highly important to develop a facile and energy saving method for the reduction of GO to 

HRGO under ambient conditions. In this work, bulk nickel powder used as an active 

hydrogenation catalyst due to their hydrogen production capability (in acidic media) and 
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spillover effect. The possible mechanism of hydrogen spillover and its role in formation of 

HRGO are analyzed. Fig. 2.1 illustrates the reduction of GO by bulk Ni powder and formation 

of HRGO at RT via in-situ generated atomic hydrogen. 

 

Figure 2.1 Schematic illustration for synthesis of HRGO using nickel via in-situ generated atomic 

hydrogen. 

2.2.1 Experimental  

2.2.1.1 Chemicals 

Commercially available natural flake graphite, sulfuric acid (95-98%), potassium 

permanganate,  hydrogen peroxide, nickel powder (<150 μm, 99.99% trace metals basis)  and 

hydrochloric acid (36.5-38%) were purchased from Sigma-Aldrich and used as received. Other 

reagents were of analytical grade and were used as received without further purification. All 

aqueous solutions were prepared with deionised distilled (DD) water (>18.2MΩ.cm) from a 

Milli-Q Plus system (Millipore). 

 

2.2.1.2 Synthesis of GO 

Graphene oxide (GO) was synthesized by chemical exfoliation method of graphite 

powder [14]. The resultant suspension was extensively washed with DD water and dilute HCl 

until the pH of the filtrate was neutral and subsequently centrifuged (3000 rpm) in order to 

remove residual unexfoliated graphite and oxidizing agents. GO slurry was then freeze-dried 

and stored in a vacuum oven at RT. 
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2.2.1.3 Synthesis of HRGO  

 Dry GO powder (0.075 g) was initially dispersed in DD water (100 ml) under sonication (15 

min). Subsequently, Ni powder (1.25 g) was added to the GO suspension in a round bottom 

(RB) flask and re-sonicated (10 min) followed by stirring (200 rpm for 15 min) under ambient 

conditions. Finally, 70.0 ml of conc. HCl was slowly poured to the above solution and 

continuously stirred for next 24 hrs. After the completion of reaction final product was 

centrifuged (6000 rpm, 15 min) to remove any remaining impurities and repeatedly washed 

with DD water and dried at 70 ℃ in oven.  

2.2.2 Characterization techniques 

Phase purity and presence of crystalline phases of GO and HRGO samples were 

analysed by X-ray diffraction (XRD) analysis (Rigaku Geigerflex D/Max, C Series, Tokyo, 

Japan; CuKα radiation; 2θ angle range 5–75°; step 0.02°/s). The FTIR spectra were recorded 

using a Bruker Tensor 27 FT-IR spectrometer by mixing the sample in KBr (Aldrich, 99%, FT-

IR grade). X-ray photoelectron spectroscopy (XPS) measurements were performed using an 

ESCALAB 200A, VG Scientific (UK). For analysis, an achromatic Al (Ka) X-ray source 

operating at 15 kV (300 W) was used, and the spectrometer was operated in CAE mode with 

20 eV pass energy. Data acquisition was performed with a pressure lower than 10-6 Pa. Spectral 

analysis was performed using the XPS Peak software with Gaussian–Lorentzian peak shape. 

The binding energies of XPS spectra were determined by curve deconvolution using non-linear 

least squares fitting routine after a Shirley-type background subtraction. The Raman spectra 

were obtained at RT in back scattering configuration with a Jobin-Yvon Lab Ram HR equipped 

with a Multichannel air cooled (-70 ℃)  CCD detector. The samples for TEM were prepared by 

dipping an aliquot of suspension (HRGO in acetone, 0.1 mg/ ml) on to a carbon-coated copper 

grid. A conventional high-resolution (HR) TEM (JEOL 2200F TEM) was performed to analyze 

the crystallinity and quality of HRGO sample. Results were collected at 200 kV with a point 

resolution of 0.16 nm.  
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2.2.3 Results and discussion 

 In this work, XRD was used to probe the reduction of GO. Fig. 2.2 (a) shows the XRD 

patterns of GO and HRGO, respectively. In GO, a strong peak observed at around 10.91° 

corresponds to the (001) basal plane [9-12]. However, in HRGO the peak at 10.91° was 

diminished and a new peak appeared at around 25.2° corresponding to the (002) lattice plane, 

which infers the reduction of GO by the removal of oxygen functionalities.  

Fig. 2.2 (b) shows the FTIR spectra of GO, HRGO and RGO which clearly depicts the 

change in carbon structure and provide the evidence for successful hydrogenation of GO. The 

spectrum of GO showed no peaks in fingerprint region related to C-H stretching mode of 

vibration between 2700 and 3100 cm−1. However, the spectrum of HRGO displayed three well 

defined fingerprint C–H peaks at around 2853, 2923 and 2970 cm−1. The first two peaks were 

attributed to symmetric and asymmetric stretching modes of vibration of the sp3-CH2 bond. The 

additional mode of vibration at around 2970 cm−1 is due to asymmetric sp3-CH3 stretching 

vibration which clearly shows the formation of graphane. Similar peak positions have been 

noticed in earlier work of catalytic assisted hydrogenation of graphene by a catalytic chemical 

vapour deposition (rf-cCVD) method at 820 ℃ [7]. The typical triple features in C–H vibration 

have also been seen in hydrogenated graphene by Birch reduction [8], and in carbon nanotubes 

by dissociation of the H2 molecule at 400-550 ℃ [15].  The reduction of GO to HRGO was 

further analysed by XPS. Fig. 2.2 (c) shows the C1s XPS spectra of the HRGO sample fitted 

with four different peaks centered at 281.8, 284.6, 284.8 and 286.5 eV which are attributed to 

C–C, sp2-C, sp3-C and C–O respectively [9]. The intensity of the C1s sp3-C peak (284.8) was 

higher compared to the C1s sp2C (284.6) peak. It shows more C–H coupling and less conjugated 

π systems due to the reduction by atomic hydrogen. Interestingly, here an additional peak was 

also observed at around 281.8 eV which can be attributed to a Ni–Cx carbide bond [16].  

Further, the successful hydrogenation of the new product, HRGO, is also reflected in 

the Raman spectrum as shown in Fig. 2.2 (d). The Raman spectrum of GO displayed two 

characteristic D and G bands at 1352 and 1592 cm−1 with an ID/IG ratio of 0.91. The G band is 

an intrinsic feature of graphene oxide that is closely related to vibrations in all sp2 carbon 

materials [9]. The activation of the D band becomes prominent in GO due to the reduction in 

size of the in-plane sp2 domains, probably by extensive chemical oxidation [9-12]. Along with 

the intensity increase of the D peak (ID/IG ratio of 1.12), we observed shifts in D and G bands 

to 1345 and 1576 cm−1 in the final product which is clear evidence of transformation of GO to 
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HRGO. Our results are in agreement with the report of Wang et al. who showed a shift in D 

(1345 cm−1) and G (1580 cm−1) band positions due to the reconversion of graphane to graphene 

by dehydrogenation [17]. In addition, a shoulder peak also appeared in our sample at around 

1608 cm−1 which has been assigned as D′ activated by defects via a double resonance Raman 

process [3].  

 

 

Figure 2.2 displays (a) XRD of GO and HRGO and (b) FTIR spectra of GO HRGO and RGO (after the 

annealing). (c) XPS spectra of HRGO after deconvolution and peak fitting. (d) Raman spectra of GO, 

HRGO and RGO (after the annealing). 

 

Luo et al. also noticed the appearance of three defect induced peaks at 1340, 1620 and 

2920 cm-1 after hydrogenation of graphene under hydrogen plasma [18]. In their work, the 

appearance of the D′ band and the higher intensities of 2D (2690 cm-1) and D + G (2921 cm-1) 

bands in HRGO confirm the hydrogenation during the reduction process and formation of 

sp3 C–H bonds or saturation of the –C C– bond by the H˙ atom. The G band shift in graphene 

and carbon nanotubes is directly related to change in their electronic properties. Talyzin et al. 
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observed the shift in the G band from 1550 cm-1 to 1570 cm-1 and is attributed to the typical 

sign of conversion from metallic to semiconducting single walled carbon nanotubes by 

hydrogenation [15].  

Transmission electron microscopy (TEM) analysis was performed to investigate the 

structure and morphology of HRGO in detail. Fig. 2.3 (a) shows the TEM of HRGO sheets with 

single to few layers of graphene.  In order to probe the geometry of the resulted material, 

selective area electron diffraction (SAED) was performed focusing the electron beam on HRGO 

sheet as shown in Fig. 2.3 (b). The SAED pattern reflected distorted hexagonal lattice with 

diffused spots. These diffused spots are due to the hydrogenation and buckling in saturated (sp3 

hybridized) hexagonal ring system. In this work, the SAED shown in earlier reports are different 

probably, due to the difference in method of graphene hydrogenation. 

 

 

Figure 2.3 (a) TEM image and (b) SAED of HRGO.   

 

For example, the SAED exhibited in Elias et al.‘s work is from single sided 

hydrogenated graphene on substrate and retains periodic hexagonal diffraction spots even after 

hydrogenation [3]. This might be due to the hydrogenation of pristine graphene, and maintaining 

of their perfect hexagonal structure after hydrogenation process.  
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2.3 Rapid Electrochemical Synthesis of Hydrogenated Graphene Oxide Using Ni 

Nanoparticles 

Due to the large demand of hydrogenated graphene and low reactivity of bulk Ni (slow 

dissolution in acidic medium and agglomeration of bulk counterpart); it is highly important 

modify the method to fulfill the energy need [19]. To solve such kind of problem first time, Ni 

nanoparticles (Ni NPs size~10-25 nm) were used to make the hydrogenated graphene oxide 

(HGO) [20]. Due to nano-size effect particles are well dispersed on graphene sheet and the 

whole synthesis was accomplished within 3 h as compare to bulk Ni (24 h) and provided the 

hydrogenated graphene oxide. 

2.3.1 Synthesis of HGO 

Hydrogenated graphene oxide (HGO) was synthesized by electrochemical 

hydrogenation of GO [19] and Ni NPs in acidic condition. In this reaction H2 gas was in-situ 

generated by electrochemical reaction of Ni NPs and HCl (Ni/H+). 

2.3.2 Results and discussion 

Fig. 2.4 illustrates the instrumental representation for the synthesis of HGO.  In this 

work 30 mL well dispersed GO suspension (2 mg/mL) was poured in 250 ml round bottom 

(RB) flask. Followed by, a pre-calculated amount of Ni NPs (300 mg) were dispersed in GO 

suspension for 15 min ultrasonication at RT and homogenised suspension is referred as Ni-GO 

intermediate species. Further, 39 mL of conc. HCl was added in above suspension in three equal 

parts (13 mL each, with a time interval of 45 min) and suspension was continuously stirred by 

teflon coated mechanical stirrer for 3h. To ensure the maximum hydrogenation of GO by in-

situ generated H2, the reaction was carried out at RT (25 ℃) and acid was slowly poured during 

the reaction. The whole reaction was accomplished in well ventilated fume hood with 

temperature controller. After the completion of reaction, top part of the product (HGO) was 

precisely collected and bottom part of the solution was discarded to remove the maximum extent 

of impurities. Finally, the product was 2-3 times centrifuged (4000 rpm, 10 min) to remove the 

cationic and anionic impurities and repeatedly washed with DD water and dried at 100 ℃.   
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Figure 2.4 Instrumental setup and representation of HGO synthesis. 

Fig. 2.5 (a) shows the XRD patterns of GO, intermediate species Ni-GO and HGO 

samples. GO exhibits a sharp peak at around 9.09° corresponding to the (001) basal plane with 

d spacing of (d001 = 0.961nm). This value was higher than the interlayer spacing of graphite 

flakes (d-spacing= 0.334nm, 2θ =26.4°), due to the presence of oxygenated functional groups 

and intercalated water molecules [9-13]. After the intercalation of Ni NPs with GO three 

additional peaks (1 1 1), (2 0 0) and (2 2 0) were observed in intermediate species Ni-GO that 

were related to the various crystallographic planes of face-centred cubic (fcc) Ni-NPs [JCPDS 

card No. 04-0850] and the highest intense diffraction peak at around 44.4○ suggest the 

crystallinity of Ni-NPs [21]. In HGO all these three additional peaks were eliminated and only 

one peak was observed with small shift at 10.9° indicates hydrogenation of GO (in presence of 

Ni NPs) was more significant compared to the restoration of graphitic domains. However, 

normal reduction profile suggests the formation of RGO by XRD peak shifting towards 

characteristic graphitic peak position, either using of hydrazine hydrate or other kind of 

reducing metal species like (Mg, Al, Fe and Zn) in acidic medium [9-13]. Further, UV-vis 

absorption spectra was analyzed to under the reduction process in more detail. Fig. 2.5 (b) shows 

that the UV-vis spectra of GO, HGO and RGO. In this work RGO was synthesized by the 

reduction of GO reduced in presence of Zn/HCl (in same reaction condition, for comparison to 

investigate the recovery of conjugative C=C bonding). Spectra displays that GO possess two 

characteristic absorption bands at 230 nm and 300 nm (assigned as in shoulder form). These 

bands were related to the π→π* aromatic (C=C) and n→π* (C=O) transitions, respectively [9-

12]. While in HGO a broad band was observed in the range of 250-280 nm suggests the some 

reduction of carbonyl functionalities and enrichment of (-C-H) saturated bonds. Whereas, 

spectra of RGO shows clear distinction from GO and HGO, depicts a strong sharp peak at 
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around 267 nm suggests almost removal of oxygen functionality and establishment of C=C 

conjugated graphene structure.  

 

Figure 2.5 (a) XRD pattern of the GO, Ni-GO and HGO, (b) UV-vis. spectra of the GO, HGO and 

RGO, (c) FTIR spectra of the GO and HGO, and (d) Raman spectra of the GO and HGO. 

Fig. 2.5 (c) shows the FTIR spectra of GO and HGO samples (in the range of 2500-3000 

cm-1). In HGO, two sharp peaks were observed at around 2853 and 2923 cm-1 and both were 

attributed as corresponding symmetric and asymmetric C-H stretching mode of sp3-C (νC-H) 

vibrations. The evolution of these two peaks in HGO (with distinction of GO) directly infers 

the hydrogenation of GO. Further, to ascertain the successful hydrogenation of GO and HGO, 

Raman spectroscopy was used. This technique is very useful for assigning the corresponding 

changes of graphene material on the basis of peak position and intensity. Fig. 2.5 (d) shows the 

Raman spectrum of GO and HGO in the range of 1000-1800 cm-1.  In GO spectra two prominent 

bands D and G were located at 1349 cm−1 at 1588 cm−1 with respective ID/IG ratio of 0.98. This 

is well known fact that G band is an intrinsic feature of graphitic system and it corresponds to 

the first-order scattering of the E2g mode of sp2 domain of carbon (related to the all sp2 carbon 

vibrations in long-wavelength optical phonons TO and LO). D band is arising after the defect 

introduction and related to the characteristic breathing mode of A1g symmetry. Whereas in 

HGO, both D and G bands were shifted to lower wave number (red-shifted) and appeared at 
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1333 and 1584 cm-1, respectively with increased ID/IG ratio of ~1.36. This increment of ID/IG 

ratio in HGO provides a clear evidence for corresponding changes inside of carbon system after 

the reduction. Moreover, asymmetric shape and broadening of G band in HGO also suggests 

the possible hydrogenation of carbon system. Fig. 2.6 shows that the Laurentian peak fitted data 

of HGO and after the deconvolution of G band, two peaks were clearly observed and higher 

wave number peak around at ~1608 cm-1 represents the  D’ defect band. This was already 

reported that D’ band is related to nonzero phonon density of states above the G band and 

become active after the defect introduction or double resonance process [22]. This was due to 

the Raman scattering near to the “intra-valley” by the promotion of ‘out-of-plane’ ripple 

induced sp3 hybridization (-C-H bonding) mediated by phonons nearby Γ and K (or K′) points. 

A recent Monte Carlo simulation study also supports the sp3 (-C-H) bonding is favourable in 

rippled graphene than that of flat graphene [23]. To confirm this, we have also performed the 

microscopic analysis to investigate the morphology and microstructure of our product.  

 

Figure 2.6 Fitted Raman spectra of HGO after deconvolution of D and G band. 

Further, systematic microscopic investigation was carried out of initial materials (GO 

and Ni NPs) with intermediate composite material Ni-GO (after the loading of Ni NPs within 

the GO matrix) and final product HGO as shown in Fig. 2.7. In which Fig. 2.7 (a) and (b) shows 

the SEM images of GO and Ni nanoparticles, respectively. Image of GO clearly exhibits the 

few layer of graphitic carbon with typical wrinkle behavior. Image (b) displays the initial 

morphology and size of the Ni NPs and shows that all particles were in nano regime with 

spherical shape. 
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Figure 2.7 (a) and (b) SEM images of initial material GO and Ni nanoparticles, (c) and (d) SEM images 

of intermediate Ni-GO composite material in lower and higher magnification, and (e) and (f) SEM 

images of final product HGO in lower and higher magnification. 

Fig. 2.7 (c) and (d) shows the SEM images of intermediate species Ni-GO after the 

loading of Ni NPs with GO. Both the images depicts well intercalation of Ni NPs with graphitic 

flakes and image contrast in higher magnification image (white spots on black background) 

clearly reveals the covering of Ni NPs by single or few layers graphene sheets. Fig. 2.7 (e) and 

(f) displays the lower and higher magnifications SEM images of HGO after the reduction and 

apparently there was no particles were observed. The absence of Ni NPs was obvious because 

during the reduction process Ni NPs were oxidized by conc. HCl and produces the cations that 

were removed after washing. Interestingly, in HGO carbon sheet was less agglomerated as 

compared to Ni-GO and GO. This can be explained as: during the reduction process internal 

hydrogen bonding of carbon system related to carboxylic and carbonyl (-C=O) group of GO 

disrupted and these polar functionalities sp2 might be transformed in to the sp3 (-C-H) moiety 

and later species is less polar which pursuit’s weak interaction between graphene sheets.  
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Finally, TEM analysis was performed for detailed investigation of morphology and 

internal structure. Fig. 2.8 (a) and (b) shows the lower and higher magnification TEM images 

of Ni-GO. Here, we clearly visualized the Ni NPs homogeneously distributed on graphene sheet 

and higher magnification image shows that the all particles were lesser than 20 nm size and in 

spherical shape. Fig. 2.8 (c) and (d) shows the TEM images of final product HGO and in lower 

and higher magnifications, respectively. This can be explained as, after the hydrogenation, 

oxygen functionalities and graphitic domains get saturated and led to the formulation of sp3 (-

C-H) structure. However, initial experimental work related to hydrogenation of graphene 

(graphane synthesis) reflects the equidistance position of diffraction spots. This was probably 

due to the hydrogenation of consistent hexagonally arranged initial material (graphene) which 

pertains the sp2 hybridized regular hexagonal ring structure [3]. 

 

Figure 2.8 (a) and (b) TEM images of intermediate Ni-GO in lower and higher magnification, and (c) 

and (d) TEM images of final product HGO in lower and higher magnification. The corresponding inset 

image of (c) is SAED and (d) 4X magnified area. 
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2.3.3 Mechanism of HGO formation 

 On the basis of experimental results finally, a detailed mechanism of HGO formation 

was elaborated as schematically shown in Fig. 2.9. Initially, during the course of reaction an 

intermediate Ni-GO was formed. Which further reacts with HCl (aq.) and produces the Ni2+ and 

2e- through electrochemical reaction between Ni and hydrochloric acid (Ni + 2HCl = Ni2+ + 

2Cl¯ + 2H++ 2e-). Meanwhile, proton and electrons combines together (2H+ + 2e- = H2) and 

produces the hydrogen gas. In this process Ni NPs were continuously reacted with acid and 

reduces own size.  

 

 

Figure 2.9 Schematic representation of GO to HGO formation via intermediate species Ni-GO 

through continuous hydrogen spillover process during the reaction. 

These NPs pursuits very high catalytic activity (more smaller size tends to larger surface 

area and higher surface energy) and enhances the spillover of hydrogen (H2 = 2Ḣ·) on its 

surfaces and makes the radical hydrogen (H ̇·) which is easily adsorbed onto the GO and forms 

the HGO (GO + 2H· = HGO Red + H2O). GO can also be reduced by direct attachment of H+ and 

e- (GO + mH+ + ne- = RGO + pH2O), but due to its low redox potential (Ni = -0.28V) it losses 

electrons very slowly and instead the forming of RGO makes the HGO. It has been already 

reported that the Ni is very prominent catalyst for hydrogenation of olefinic and benzene double 

bond and for unsaturated benzene derived carbonyl functionalities also. Thermodynamic 

stability data of hydrogenation of double bond also favors the dissociative chemisorption of 

hydrogen. This was already explained as: initially an adduct species is formed on the surface of 
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catalyst by the breaking of π-π bonding and simultaneously hydrogen molecule also dissociates 

in to radical hydrogen (H-H = 2H ̇·) making the metal hydride species (Ni-H). The generated 

radical H migrates from Ni catalyst surface to the C-C bond through a “bridge” built and 

completes the process. However, in our case hydrogen molecule is generated inside the system 

through electrochemical reaction without any external source, further in-situ produced 

hydrogen easily spillover on own generator (nano Ni surface) and readily transforms to the 

unsaturated carbon sites. To describe this migration of H, here we are assuming that one Ni 

particles works as a (source, S) and simultaneously another nanoparticle works as an 

(activator, Act) to dissociate the hydrogen molecule and finally the unsaturated carbon skeleton 

(-C=O or –C=C) behaves as a (receptor, Rec). In this heterogeneous catalysis, the source and 

activator is metal (Ni) and the receptor is also semimetal (graphene) and this feature can be 

explained as diffusion of hydrogen inside the carbon system (C) like S → H2 — Act→ 2H, H + 

C→ H @ C. Moreover, here we assume that big graphene sheet own it’s on also enhances the 

hydrogenation process via charge polarization of H2 molecule as (H+δ - H-δ) due to its 

delocalized (six membered, p-π) electron cloud structure [24].  

2.4 Coclusions 

In summary, HRGO and HGO were successfully synthesized at room temperature by a 

new approach. We used the bulk and nano nickel catalysts for hydrogenation of GO and a full 

descriptive mechanism is also established for hydrogen spillover on Ni catalysts. A vast range 

of characterization techniques such as FTIR, Raman, XPS and TEM/SAED were employed to 

confirm the formation of hydrogenated product.  
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GRAPHENE NANOCOMPOSITES FOR HYDROGEN STORAGE:  

Synthesis, characterization and results 

 

This chapter deals the synthesis of novel graphene based nanomaterial for hydrogen 

storage application. A nanocomposite catalyst containing palladium–nickel boride–silica and 

reduced graphene oxide (Pd@NixB–SiO2/RGO, abbreviated as Pd@NSG) was successfully 

synthesized, well characterized with XRD, FTIR, Raman and XPS techniques. Surface 

morphology were investigated by SEM and TEM techniques. The H2 adsorption experiment 

directly reveals the spillover effect on the Pd@NSG nanocomposite due to its enhanced H2 

uptake capacity (0.7 wt.%) compared to SiO2/RGO (0.05 wt.%) under 50 bar pressure at RT. 

Experimental results shows that the facile H2 dissociation on the Pd activator (active sites) and 

subsequent transportation of hydrogen atoms on receptor sites. On the basis of results a detailed 

hydrogen spillover mechanism has been established.

 

 

 

3.1 Introduction 

  H2 is the most promising energy fuel for automobiles and small portable devices (eg.  

mobile phones and laptops) due to its light weight, high energy density and clean combustion 

[1-4]. Yet, significant challenges hinder its widespread application as a choice of fuel due to 

the lack of a safe and easy method of its storage [5]. Very recently, Li et al. reported the H2 

storage capacity of Pd crystal and Pd loaded HKUST at 303 K [6].  However, specific synthesis 

protocol of porous material HKUST and overall dependency on precious metal (Pd) were major 

drawback for their use for real field of application. 

 Recently, graphene has triggered for hydrogen storage application [7-9]; however, it is not 

yet to be choice for hydrogen storage due to mass production of high quality of graphene is not 

economically viable option, and itself graphene cannot store an appreciable amount of hydrogen 

[5]. For instance, Srinivas et al. reported the synthesis of graphene-like nanosheets and 

investigated their H2 adsorption capacity [10]. They have measured H2 adsorption-desorption 

at 298 K at pressures up to 10 bar, and yielded 0.092 wt.% of hydrogen.  
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 Therefore, it is crucial and important to introduce an innovative way of storing the high 

gravimetric amount of H2 with reduced cost. Concisely, here we have developed an idea for 

efficient storage of H2 at RT in an economic way using low cost materials NixB,  SiO2 and RGO 

as major constituents and a small percentage of Pd as an activator, and the fact that Pd and NixB 

are well-known materials for hydrogen spillover as shown in Fig. 3.1. Moreover, it has been 

reported that NixB is a well-known material for NaBH4 decomposition and Ni is a prominent 

catalyst for different kind of hydrogenation reaction due to its spillover capability [11]. Here, 

we demonstrate a stepwise synthesis of Pd@NixB@SiO2/RGO nanocomposite for H2 storage 

at RT in scalable amount (<1 g) by convenient chemical method and referred as Pd@NSG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic illustration of H2 spillover on Pd and NixB@ SiO2 (left) and adsorption of H2 in 

Pd@NSG nanocomposite (right). 

 
3.2 Experimental  

3.2.1 Chemicals 

 Flake graphite powder (particle size 100 mesh), palladium acetate, nickel (II) acetate, 

KMnO4, NaNO3, H2O2 (30% v/v), NH4OH, TEOS (98%, A.R.), conc. H2SO4 (95-98%), conc. 

HCl (36.5-38%), methanol, ethanol and isopropanol (A.R. grades) and NaBH4 were purchased 

from Sigma-Aldrich Co. All other chemicals were of analytical grade and all aqueous solutions 

were prepared in Milli-Q water (>18.2MΩ.cm). 
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3.2.2 Synthesis of GO 

 GO was synthesized by modified Hummer’s method as described in previous work [11]. 

Briefly, flakes graphite powder (2.5 g) were dispersed in conc. H2SO4 (90 mL) by magnetic 

stirring (45 min) at low temperature (0-5 ℃). Later a calculated amount of NaNO3 (1.25 g) and 

KMnO4 (12.5 g) were added slowly and continuously stirred for 2 h. Next, temperature was 

raised to 35 ℃ for 1 h and 800 mL Milli-Q water was slowly poured in to the acidic mixture.  

Furthermore, temperature was increased to 98 ℃ for 2 h.  Finally, 35 mL of 30% v/v H2O2 was 

slowly poured to the reaction mixture to subside the further process. After completion of 

reaction, resultant suspension was centrifuged (3000 rpm) and washed (with Milli-Q water and 

dil. HCl) and finally, freeze-dried and stored in a vacuum oven at RT. 

 

3.2.3 Synthesis of SiO2 /RGO nanocomposite  
 

 SiO2 nanoparticles were synthesized by modified Stöber method using TEOS as precursor 

[12]. Subsequently, 100 mL dispersion of GO was prepared in methanol (1 mg/mL) by bath 

sonication (2 h). Later, for the preparation of RGO-SiO2 nanocomposite, SiO2 nanoparticles 

were mixed in GO dispersion by repeated sonication and for GO reduction 50 mg NaBH4 was 

added and mixed by magnetic stirring for 2 h at RT.  

 

3.2.4 Synthesis of NixB-SiO2/RGO and Pd@NSG nanocomposite  

 To synthesize the NixB-SiO2/RGO nanocomposite, first nickel (II) acetate (240 mg) was 

dissolved in 5 mL DD water at RT and mixed in above suspension. Subsequently, 20 mL 

alkaline aqueous solution of NaBH4 (27 mg/mL, pH ~12.5) was slowly poured and mixed by 

mechanical stirring for 45 min at RT. After completion of reaction, resultant product was 

centrifuged (3000 rpm) and washed with Milli-Q water and ethanol. To synthesize the 

Pd@NSG nanocomposite first, NixB-SiO2/RGO nanocomposite was dispersed in 100 ml 

anhydrous methanol by repeated sonication (30 min) at RT. Later, in above dispersion 10 mL 

palladium acetate solution (conc. 6 mg/mL in anhydrous methanol) was added and mixed by 

mechanically stirring for 2 h at 45 ℃. Finally, synthesized product was centrifuged at 3000 rpm 

and multiply washed with Milli-Q water and methanol to remove the impurities and dried at 

250 ℃ for 8 h. 
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3.2.5 Characterization  
 

 Phase purity and crystallinity were accessed by X-ray diffraction (XRD) technique (Rigaku, 

Japan, CuKα radiation; 2θ angle range 10–80°; step 0.02°/s). FTIR spectra of samples were 

recorded in ATR powder mode. Raman spectra were obtained at RT in back scattering 

configuration with a Jobin-Yvon Lab Raman HR equipment. The XPS analysis was performed 

using a Kratos AXIS Ultra HSA, with VISION software for data acquisition and CASAXPS 

software for data analysis. The analysis was carried out with a monochromatic Al Kα X-ray 

source (1486.7 eV), operating at 15 kV (90 W), in FAT mode (Fixed Analyser Transmission), 

with a pass energy of 40 eV for regions ROI and 80 eV for survey. Data acquisition was 

performed with a pressure lower than 10-6 Pa, and a charge neutralisation system was used. The 

effect of the electric charge was corrected by the reference of the carbon peak (285 eV). The 

deconvolution of spectra was carried out using the XPSPEAK41, in which a peak fitting is 

performed using Gaussian-Lorentzian peak shape and Shirley type background subtraction. 

Surface morphology of GO and products were investigated by scanning electron microscope 

(SEM) SU-70 Hitachi in EDX mode. For TEM analysis conventional high-resolution (HR) 

TEM technique was used. The sample for TEM was prepared by dipping an aliquot of 

suspension (in methanol, 0.1 mg/mL) on to a carbon-coated copper grid and dried at RT. 

Volumetric H2 storage measurements were carried out at 298 K using Sievert’s instrument. 

Approximate, 1 g samples were used for adsorption isotherm and prior to measurements, 

samples were out gassed at 250 °C for 12 h. Each time, the calibration and void volume 

calculation were carried out at RT under high purity helium atmosphere. 

 

3.3 Results and discussion 

 

 Fig. 3.2 (a) shows the XRD of GO, NixB-SiO2/RGO and Pd@NSG nanocomposite. GO 

exhibits a sharp peak at around 11.2° which corresponds to the (001) basal plane suggesting the 

good exfoliation of graphite flakes due to the larger value of d-spacing (0.79 nm) of GO 

compared to 0.334 nm of graphite (2 θ =26.4°) [13]. It is well-known that after a vigorous 

oxidation of graphitic flakes in strong oxidizing environment, different kinds of oxygenated 

functional groups are attached to the graphitic plane and increase the interlayer spacing of 

graphitic sheets [14]. In XRD spectra of NixB-SiO2/RGO nanocomposite, the peak related to 

GO was completely suppressed and a new peak observed at 22.8°, which suggests the successful 

reduction process and formation of reduced graphene oxide (RGO) [15]. The XRD spectra of 

Pd@NSG shows some additional peaks also due to the diffraction from various crystallographic 
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planes of Pd/PdO phase. The major diffraction peaks at 39.9° and 46.4° can be assigned as 

diffraction from (111) and (200), respectively, planes of face-centered cubic (fcc) crystal lattice 

structure of Pd [16]. The other two peaks at 34.29° and 59.9° indicates the reflection from PdO 

(due to surface oxidation of Pd) [17]. In addition, in order to elucidate the structure of Pd@NSG 

nanocomposite and reaction mechanism in more detail, we have also carried out the FTIR 

spectroscopy. Fig. 3.2 (b) shows the FTIR spectra of GO, NixB-SiO2/RGO and Pd@NSG 

nanocomposite (in the range of 4000-800 cm-1). 

 

 

Figure 3.2 Spectroscopic analysis of GO, NixB-SiO2/RGO and Pd@NSG nano-composite: (a) XRD 

pattern, (b) FTIR and (c) Raman spectroscopy; and (d) Interpretation of Raman spectroscopy with 

accordance of ID/IG ratio of GO, NixB-SiO2/RGO and Pd@NSG nanocomposite.  

 

 In FTIR spectra of GO, a strong broad band was observed in the high frequency area (3400-

3200 cm-1 ) which is assigned to the vibration stretching mode of -OH groups due to the surface 

adsorbed water molecules [18]. After the reduction, the intensity of this band was continuously 

decreased from NixB-SiO2/RGO to Pd@NSG nanocomposites which suggests the subsequent 

removal of surface adsorbed water molecules during the reduction process. Moreover, the peak 

related to the vibration stretching mode of carbonyl functionality also became deprived in NixB-

SiO2/RGO to Pd@NSG nanocomposites indicating the elimination of edge related –C=O 

groups and formation of GO to RGO. Finally, the absorption peaks at 1385 cm-1 (stretching 

vibration of C-O of carboxylic acid) and 1110 cm-1 (C-OH of alcohol) were also efficiently 

reduced in both samples compared to the GO. However, in NixB-SiO2/RGO and Pd@NSG 

nanocomposites a new peak was observed at 1008 cm-1 which indicates the incorporation of 
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SiO2 nanoparticles [19]. Next, to ascertain the change in carbon system Raman spectroscopy 

was also performed. This technique is very useful for assigning the corresponding changes of 

graphene material on the basis of peak position and intensity [20]. Fig. 3.2 (c) shows the Raman 

spectra of GO, NixB-SiO2/RGO and Pd@NSG nanocomposite in the range of 1050-1900 cm-1. 

The Raman spectrum of GO displays the two characteristic D and G bands at 1353 and 1598 

cm-1, respectively, with an ID/IG ratio of 0.96. It has already been reported that the G band is an 

intrinsic feature of graphene and closely related to the vibrations in all sp2 carbon materials [1]. 

The D band become prominent when defects are introduced in graphene system and in GO it is 

activated due to the reduction in size of the in-plane sp2 domains due to the attachment of 

various functionalities in edge and basal plane sites [15]. In NixB-SiO2/RGO and Pd@NSG 

nanocomposite spectra, these two prominent bands (D and G) were shifted to lower wave 

numbers and are located at 1346 and 1596 and 1343 and 1594 cm-1, respectively. In both spectra 

ID/IG ratio was increased compared to GO. The continuous increment of  ID/IG ratio from GO 

to NixB-SiO2/RGO and Pd@NSG nanocomposite can be clearly observed in Fig. 3.2 (d) 

suggested the  clear change in carbon system due to the incorporation of some extra defects in 

graphene. Further, we performed the XPS analysis to identify the degree of reduction from GO 

to RGO. Fig. 3.3 (a) and (b) show the C 1s deconvoluted XPS spectra of GO and Pd@NSG 

nanocomposites, respectively. The C 1s XPS spectrum of GO as displayed in Fig. 2(a) shows 

the two large broad peaks that are deconvoluted into four peaks at approximately 284.3, 285.2, 

287.2 and 288.9 eV. The peaks at 284.3 and 285.2 eV attributed to the sp2 C=C and sp3 C-C 

bonding, respectively. The peak at around 287.2 eV is assigned to the binding energies of 

carbon in C-O and C=O and that at 288.9 eV to carbon in COOH groups [21-22].  

 

 

 

Figure 3.3 (a) and (b) show the C 1s deconvoluted XPS spectra of GO and Pd@NSG nanocomposites, 

respectively. 
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 However, the C 1s spectrum of Pd@NSG (Fig. 3.2(b)) shows only one intense broad peak 

that is deconvoluted into three peaks at approximately 284.6, 286.7 and 288.8 eV. These peaks 

are assigned to sp2 C=C, C=O and COOH, respectively. It is obviously seen that the peak 

intensity of C=O and C=O is very high in GO, but in Pd@NSG they were tremendously 

reduced; whereas, intensity of C=C peak was dramatically increased, indicated the partial 

reduction of GO to RGO during the metal nanoparticles (Ni and Pd) deposition on graphene 

sheet [1]. 

 

 

 

Figure 3.4 SEM images of: GO (a) and (b), SiO2/RGO (c) and (d) and NixB-SiO2/ RGO nanocomposites 

(e) and (f) in higher and lower magnifications, respectively. 

 

 Further, systematic microscopic investigations were carried out to understand the surface 

morphology of initial material GO, intermediate composite material RGO-SiO2, NixB-

SiO2/RGO nanocomposite and final product Pd@NSG nanocomposite. Fig. 3.4 (a) and (b) 

show the SEM images of GO (after the 2 h exfoliation in methanol at RT) at higher and lower 

magnifications, respectively. Images of GO clearly exhibit the presence of few layers of 

graphitic carbon with typical wrinkle behaviour. Fig. 3.4 (c) and (d) display the initial 
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morphology and size of the SiO2 nanoparticles with graphene sheet and show that all particles 

were small sized and with spherical shape. Moreover, images shows that SiO2 NPs are covered 

with carbon sheets and well separated without any specific agglomerations. Similar behaviour 

was observed after the intercalation of NixB nanoparticles on SiO2/RGO as observed in Figs. 

3.4 (e) and (f). Additionally, these two images show higher density of nanoparticles compared 

to previous images of SiO2/RGO indicating the successful formation of NixB-SiO2/RGO 

nanocomposite. Fig. 3.5 (a-c) shows the SEM images of the final product Pd@NSG at different 

magnifications. Fig. 3.5 (a) and (b), at lower magnification, show the intercalation of tiny Pd 

nanoparticles on NixB-SiO2/RGO nanocomposite at a superficial position and Fig. 3.5 (c) 

depicts the arrangement of the nanoparticles in a cone-type structure. This arrangement may be 

due to the grafting of small Pd nanoparticles on high defect sites of NixB-SiO2/RGO 

nanocomposite and the filling of cavities by them. Moreover, to confirm the presence of Ni and 

Pd elements, we also have carried out the EDX analysis. 

 

 

Figure 3.5 SEM images of Pd@NSG nanocomposite at different magnfications: 6000x (a) 15000x (b) 

and 40000x (c); (d) EDX spectra of Pd@NSG. 

 

 Fig. 3.5 (d) displays the EDX spectrum of Pd@NSG nanocomposite and results show the 

presence of all elements: Pd, Ni, Si, C and O with the exception of the light weight elements B 

and H. TEM analysis was also performed to confirm the shape, morphology and internal 

structure of Pd@NSG nanocomposite for detailed investigation of final product. Fig. 3.6 (a) 

and (b) show the TEM images at lower and higher magnification, respectively. The images 
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clearly displays the homogeneous distribution of NPs on the graphene sheets; the higher 

magnification image shows that all particles have spherical shape without any specific kind of 

agglomeration of them.  

 

 

 

Figure 3.6 TEM images (a) and (b) of Pd@NSG nanocomposite at lower and higher magnifications, 

respectively. 

 

 Furthermore, to establish the detailed mechanism of reduction of Pd2+ ions to Pd (0) in 

presence of anhydrous methanol (CH3OH), we have also carried out the HRTEM analysis of 

bare Pd NPs which clearly shows the formation of monodisperse small Pd NPs in the range of 

(2.5-4 nm) without any agglomeration as shown in Fig. 3.7.  

 

 

 

Figure 3.7 HRTEM image of highly crystalline spherical Pd NPs synthesized in mild reducing 

condition (scale bar 2 nm). 
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This was due to the choice of precursor and reaction conditions, Pd(OAc)2 precursor and 

methanol  as solvent provided the reducing conditions. At moderate temperature at 45 ℃ under 

sonication condition methanol easily decomposed and generated the reducing species H2 in 

the reaction medium as per the following equation (3.1): 

 

2 CH3OH  = 2 HCHO + H2                                  (3.1) 

  

Next, produced H2 reduces the Pd (OAc)2 to Pd(0) as shown in equation (3.2)  

 

                                   Pd(OAc)2 + H2 = Pd (0) + 2CH3COOH        (3.2) 

 

 Finally, to investigate the spillover effect we have performed the physical H2 storage 

measurement using Sievert’s instrument and isotherms were recorded under pressure from 1-

50 bar. Fig. 3.8 shows the H2 uptake characteristic of SiO2/RGO, NixB-SiO2/RGO, Pd-

SiO2/RGO and Pd@ NSG nanocomposite at RT. As displayed in the graph, the H2 storage 

increases in the materials with increasing pressure. At 50 bar, the maximum H2 storage of 

SiO2/RGO is 0.25 mmol while, after insertion of NPs in SiO2/RGO matrix the H2 uptake 

capacity was dramatically increased. For NixB-SiO2/RGO and Pd-SiO2/RGO nanocomposites, 

and the maximum H2 uptake was estimated to be 0.76 and 1.55 mmol, respectively.  At similar 

adsorption isotherm conditions the major changes were obtained for Pd@NSG nanocomposite 

which shows a 3.5 mmol H2 uptake.  This value was approximately 14 times higher than 

SiO2/RGO nanocomposite. The corresponding wt.% values were 0.05 and 0.7, respectively. 

This shows the enhancement of H2 uptake in Pd@NSG sample which was higher than 

SiO2/RGO in the whole range of pressures tested.  

 Above Fig. 3.1 illustrates the H2 spillover mechanism and subsequent diffusion in Pd@NSG 

nanocomposite. Here, the metal NPs (Pd and NixB@SiO2) act as spillover centre for H2 

molecules and dissociates the molecular H2 in to H• radicals. The generated H• radicals then 

migrates from the catalyst centre to the storage material and easily diffuses into the graphene 

layers. Especially, they migrate to the defect sites of graphene sheets such as the edges locations 

and saturated the hexagonal sp2 hybridized (-C=C) network. This phenomenon can be explained 

through the formation of “bridge” built structure on catalyst centre where H2 molecules easily 

form the dangling bonds with catalyst centre and dissociate into H• radicals. In detail, the Pd 

NPs work as a source, the NixB NPs act as an activator to dissociate the H2 molecules and 

finally, RGO and SiO2 play the role of receptor [1]. 
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Figure 3.8 H2 adsorption isotherm of SiO2 and Pd@NSG nanocomposite up to 50 bar pressure at RT. 

 

 Due to this process an adduct species on catalyst surface is formed by the dissociation of H2 

molecule and subsequently, π-π bonding (-C=C) of graphene gets saturated and form sp3 (C-H) 

bonding. Finally, RGO works as a primary receptor site for preferential storage of H• radicals 

via chemisorption and SiO2 NPs act as a secondary receptor to adsorbs the H2 molecule by 

physisorption. Due to these facts, the obtained result of H2 uptake for Pd@NSG nanocomposite 

at RT was remarkably higher than previously reported works.  Huang et al. reported 0.15 wt. % 

of H2 storage in Pd-Gr nanocomposite at similar conditions (298 K and 60 bar) [23]. Although, 

they have noticed that after loading of Pd metal on the graphene sheet, the H2 uptake was 

doubled. It is obviously due to the spillover capability of Pd to dissociate the H2 molecules and 

subsequent migration of H atoms on graphene sheet. The results reported here are also better 

than those obtained by Anson et al. [24]. They reported a 0.16 wt. % H2 storage at RT in Pd 

nanoparticles intercalated single walled carbon nanotube (SWNT) after applying 90 bar. 

However, in our work we applied only a maximum pressure of 50 bar and a 4 times higher H2 

storage was observed. This may be attributed due to the porous structure of SiO2, edge defects 

and large surface area of graphene along with the presence of two spillover centres. Our results 

of storage capacity of Pd@NSG are higher compared to Latroche et al. in the giant-pore MOF 

MIL-101 (∼0.43 wt. % at 80 bar), and Campesi et al. in Pd nanoparticles loaded porous carbon 

template composites at 298 K (0.08 wt. % H2 storage) [25-26].  
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3.4 Conclusions 

 

 In this work, Pd@NSG nanocomposite was successfully synthesized and characterised by 

various techniques. The successful reduction of GO was analysed by XRD, FTIR Raman and 

XPS techniques and they exhibited the change in carbon structure. Moreover, the formation of 

Pd nanoparticles was also studied using the XRD technique. To investigate the presence of Ni 

element in nanocomposite (due to formation of amorphous phase NixB) EDX analysis was also 

carried out. H2 uptake measurements of up to 50 bar pressure clearly exhibited 14 times more 

storage at RT in Pd@NSG nanocomposite compared to SiO2/RGO. Such a high storage of H2 

is attributed to the spillover mechanism on Pd and NixB on graphene sheet which can make the 

avenue for new developments in future H2 economy. 
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THEORETICAL ASPECT OF HYDROGEN STORAGE  

IN NANOMATERIALS:  

Monte Carlo simulations of hydrogen adsorption in  

NaA zeolites 

 

 

The aim of this chapter is to provide the information of theoretical aspect of hydrogen storage 

in porous materials.  The idea is to get an insight into storage properties while using graphene-

porous material nanocomposites. The chapter comprises in three parts, first part related to vast 

investigation of NaA zeolite unit cell structure and its potential cell model with innovative idea 

of Henry constant. The second part consists of systematic description of GCMC procedure and 

finally, third part related to the comprehensive evaluation of result and discussion. 

 

 

 

 

 

4.1 Introduction 

Hydrogen storage in mesoporous material is well established area of research [1]. Among 

the various mesoporous materials (like silica gel, activated carbon, lime minerals) zeolites are 

most prominent candidate for storage and separation of selective gaseous species [2-7]. Due to 

its specific geometry, stereographic rigid and regular systems and intrinsic polarity and charge 

separation phenomenon makes it a suitable candidate for such an application [8-11]. The use of 

molecular simulation techniques for gaseous adsorption in zeolites has been recently reviewed. 

Anderson et al. reported the kinetic selectivity and molecular sieving of small gaseous 

molecules in zeolite framework due to their specific geometry which shows the cavities and 

channels with size ranging of 3 Å -10 Å [6]. The zeolite framework consists of alternating 

arrangement of AlO4
- and SiO4

- tetrahedral species with cation positioning inside of them [5]. 

Here, AlO4
-   tetrahedral species produces the negative charge on to the aluminosilicate zeolite 
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framework [4].  This negative charge on frame-work negotiated by counter charge balancing 

(hydroxyl and cationic) species and provide the polarizability for guest species [2].  

In this work, we point out the grand canonical ensemble Monte Carlo (GCMC) simulations 

of single-component of small molecule hydrogen and NaA framework based zeolite system. 

The simple structure of NaA zeolite offers great hope for adsorption of  small molecule along 

with its illustrate generalized guest-host interaction for other adsorbent/adsorbate systems and 

site selection of guest entities [10].  

To construct the theoretical model, we have selected one unit cell of NaA zeolite frame-

work built with alternating Al and Si T-sites, and randomized the positions of the Na (II) and 

Na(III) atoms with adsorption of hydrogen gas into the NaA zeolite structure at different 

temperatures and gas pressures. For GCMC simulations the number of H2 molecules, and their 

positions, is allowed to fluctuate, at a constant chemical potential, temperature and volume. 

Subsequently, simulation was performed for a wide range of step wise growth of temperatures 

and pressure from T = 77 to 300 K and pressures P = 1 to 180 MPa. Innovatively, here we have 

included Henry’s constant to evaluate the partial pressure of gas in the zeolite motif at the very 

low pressure at P→0 and theoretically computed adsorption kinetics as accordance the 

adsorption behavior of guest molecule in the host active sites [10]. 

4.2 Model and methods 

4.2.1 NaA Zeolite structure 

Fig. 4.1 shows the dehydrated NaA zeolite crystal structure, which represent the Linde 

Type A (LTA) framework. This structure exhibits the cubic arrangement of unit cells with 

composition of {Na12[(AlO2)12(SiO2)12]}8. The unit cell constant is (a = 24.55Å), space group 

Fm3c, and the coordinate positions of the atoms are taken from x-ray diffraction studies. The 

LTA framework constructed by the four and six edge faces of the truncated octahedron. This is 

worthwhile that building blocks are alternating AlO4 and SiO4 species where Si or Al atoms 

(known as a T atom), those are linked with each other by corner sharing in tetrahedral 

arrangement. Further, it is considerable that each T (aluminum or silicon) atom situated at the 

center position and surrounded by 4 corner sharing oxygen atom by single covalent bonding 

[2,10]. Each oxygen atom is therefore connected to two different T atoms. These species are 

arranged in space to form a porous network of small (β) and large (α) cavities. The β cages also 

known as sodalite cage with an approximate dimension of a = ~ 8.82 Å, which are connected 

by their square faces in a cubic arrangement. This skeleton provide large opening on the center 
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of eight sodalites Per BU (per building unit) and formed α cavity with minimum free diameter 

of 11.4 Å. The porous nature of Zeolite-A is due to formation of 8-oxygen rings, which have a 

net opening of 4.1 Å through which the adsorbates can easily enter to the hollow space inside 

of the cavity where most of the adsorption is expected to be occur [5]. 

 

Figure 4.1 Unit cell of the zeolite NaA with site position of Na atoms as respective in α and β cages, 

oxygen atoms in red, T-atoms in gray and representative positions of the three types of Na+ in purple.  

The net negative charge of the Al-O-Si framework, caused by the aluminum atom in the 

O- corner sharing tetrahedral position, which is compensated by the introduction of positively, 

charged ions in extra positions of the framework. For the particular LTA case the counter ions 

such as Na+ can be easily replaced by other cations. Here, it is important to know the position 

of cations in the zeolite LTA framework for studying the hydrogen adsorption in the particular 

zeolite structure. In this regards, there are three different types of sodium cation and they are 

situated as accordance to their sites location. If we consider single unit cell of Linde type zeolite 

structure, there are 64 Na atoms of type I, 24 of type II, and 8 of type III means are total 96 Na 

atoms. The Na(I) atoms have well defined positions on the center of each 6-oxygen ring that 

make up the windows of the sodalite (β) cages. The Na(II) have an occupancy of 1/4, and each 

one will occupy one of four possible positions on the center of the α cage windows (8-Oxygen 

rings), all have approximate equal probability to get specific site location. Particularly, about 

of Na(III) atoms they have  least occupancy instead of previous two around 1/12, are placed 

off-plane at the center of the 4-oxygen rings that connect the two sodalite cages as shown in 

above Fig.1.  
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For simulation purpose we consider single unit cell, which built with alternating Al and 

Si T-sites, and as accordance randomized the positions of the Na(II) and Na(III) atoms. In 

general, we found that this randomization has no influence on the simulation results of the 

adsorption properties, within statistical accuracy. We also assume the rigid structure with some 

mobility of Na(III) atoms inside the framework [12-14]. 

4.2.2 Potential Model 

We have employed the potential model of Darkrim et al. to describe the interactions 

between the zeolite and the hydrogen adsorbates and between the hydrogen molecules 

themselves [10]. This potential model built by three major contributions viz. van der Waals 

interactions (subscript w), modeled by a Lennard-Jones 12-6 potential; Coulomb electrostatic 

potential (c); and a polarization term due to interactions of the electric field with the induced 

H2 dipole (p) and all can describes as equation 4.1-4.2:  
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Where, the indexes i and j run over three Cartesian coordinates and represent the 

summations of each molecule, those are carried over all the zeolite atoms and all the hydrogen 

molecules, as explained below. For the energy Uw, each zeolite atom and H2 molecule are 

represented by an interaction site with a specific value of Lennard-Jones parameters σ (sigma) 

and ɛ (epsilon).  

(4.2) 

(4.1) 

(4.3) 

(4.4) 
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To use equation 4.1 for a set of atoms i and j the cross L-J parameters was computed by 

Berthelot’s rules σ = (σi σj)/2 and ϵ = √ϵi ϵj. Here H2-zeolite and H2-H2 interactions also taken 

into account for calculating the value of Uw. Regarding of Coulomb interactions Uc, each zeolite 

atom is described by a fixed partial point charge, and in this case for each H2 molecule a 

quadrupole model was constructed by the distribution of 3 charges, in the way of 2 charges 

were at the position of the protons (separated by d=0.741Å) with charge q = 0.4829 |e| and one 

at the center of mass with charge -2q. Finally, Uc was evaluated for the interaction between 

each of above 3 charges along with all the zeolite atoms, as well as the other sets of charges on 

the remaining H2 in the gas. The polarization energy, Up, of an H2 molecule of index I was 

calculated by evaluating the square of the electric field E (ri) produced by all the charges of the 

zeolite at the center of mass of the molecule, ri. Importantly, here it was assumed that the H2- 

H2 mutual interactions are negligible and the polarization is independent of the orientation of 

the molecule. 

The polarization energy of a molecule was calculated by evaluating the electrical field 

produced by all the charges of the zeolite at the center of the mass of molecule. The assumptions 

used in above that the H2-H2 mutual interactions are negligible and the polarization is 

independent of the orientation of the molecule (α cage hydrogen set for the mean polarization 

value for rest hydrogen molecules). Although, this is a fair assumption at room temperature, 

but its validity can be suspected at lower temperatures. Next, to investigate the limit of low 

pressure of hydrogen gas we have evaluated the effect of Henry gas constant. 

4.2.3 Henry Coefficient 

In the limit of low pressures, the density of adsorbed molecules in the zeolite (ρa) is 

directly proportional to the pressure of the gas in the reservoir, and the proportionality 

constant is the Henry coefficient, KH: 

a HK P 
 

The Henry coefficient can then be calculated by the slope of the isotherm curve as P→0. 

This requires many simulations to be carried out in this regime. An alternative method follows 

from the fact that KH is related to the excess chemical potential of the adsorbed molecules as 

shown in equation 4.6 :  

 expH exK  
 

(4.5) 

(4.6) 
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Further, to compute this quantity directly the integral was taken in account as shown in 

equation 4.7: 

 expH UK    
 

where, ∆U is the energy of an H2 molecule only due to interactions with the zeolite 

framework. This integral can be resolved by a Monte Carlo method where a guest particle is 

added at various random positions in an empty zeolite (because the condition for equation (4.7) 

to hold is that at low pressures the hydrogen gas behaves like an ideal gas) and its energy ∆U 

is computed, until the average converges. This is computationally much less expensive than 

performing several different GCMC simulations in the low pressure regime and it is useful in 

the sense that it can be used to check the consistency of the simulation results. For higher 

pressures, it is common to describe the adsorption isotherms with the single-site Langmuir 

isotherm: 

𝜌𝑎 = 𝜌𝑠𝑎𝑡  
𝑏𝑝

1+𝑏𝑝
    

where, ρsat and b are adjustable parameters, and ρsat corresponds to the maximum density of 

adsorbed molecules. In the limit P→0 equation (4.8) transforms back into the linear relation of 

equation (4.5) and ρsatb= KH. 

4.3 Simulation details  

GCMC simulations of the adsorption of hydrogen into the zeolite structure were 

performed at different temperatures and gas pressures [11]. This simulations technique 

designed as: the sample consider as a phase space where the number of H2 molecules, and 

their positions, is allowed to fluctuate, at a constant chemical potential, temperature and 

volume. At a given Monte Carlo step, one trial move was attempted that consists of an 

insertion of one H2 at a random position in the zeolite or a removal of a random H2 from the 

configuration, and is accepted or rejected with a probability that is a function of exp(-β∆U) 

where ΔU is the energy change in the system.  

This probability injection or rejection of H2 molecule also depends on the 

thermodynamic state (µVT) where the simulation is taking place. The two operations are 

attempted with a 50% chance each. The displacement/rotation of a random particle are also 

sometimes used with this technique, but were seems unnecessary for this work. The GCMC 

(4.7) 

(4.8) 
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simulation takes as one input the chemical potential μ of the hydrogen gas reservoir, which 

is related to its pressure P by an equation of state. At low pressures, the ideal gas relation 

βp = exp(βµ)/Λ3  can be used, where Λ is the thermal de Broglie wavelength. At higher 

pressures, however, a theoretical equation of state of the model fluid, or an experimental 

one, can be used.  

We have employed the Lennard-Jones equation using the parameters for the hydrogen 

molecule, to transform pressures into input chemical potential. By using the Widom 

insertion method with the full H2-H2 potential (LJ plus the electrostatic term) and we 

confirmed that this is a good enough approximation of chemical potential at the temperature 

and pressure range considered.  

We used a simulation cell with a size of one unit cell of the NaA zeolite as described 

previously, with randomized positions of the Na II and III atoms and periodic boundary 

conditions to simulate an infinite volume. A cutoff distance of half the side of the unit cell 

(12.5) was used for the L-J potential and the usual long range corrections to the energy were 

applied. As the coulomb potential is long-ranged, the Ewald summation method was used. 

Here, the interaction of a point charge qi with a charge qj is calculated for all the images of 

qj in the infinite crystal volume, by using a mathematical technique which transforms the 

series into a rapidly converging finite sum in reciprocal space. We have calculated the 

electric field at a point ri, with accuracy and computational efficiency, by direct derivation 

of Ewald formulas for the coulomb energy of a unitary charge at that position, rather than 

evaluating the gradient numerically.  

A typical simulation run consisted of 3˄106 MC steps (one insertion or removal attempt). 

A fraction (about a third) was intended to equilibrate the system and was discarded. From 

that point, the number of observed H2 molecules per unit cell was registered every 10 MC 

steps, in order to calculate the ensemble average. The Henry coefficient was calculated by 

the particle insertion method for about 40 temperatures between 200 and 600 K. For each 

temperature, 3˄106 different random positions were generated in the unit cell, where one 

H2 molecule was placed with a random orientation, and equation (4.7) was evaluated. 
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4.4 Results 

GCMC Simulations were performed for a wide range of temperatures, from T = 77 to 

300 K, and pressures P = 1 to 180 MPa. The results for the simulated average number of H2 

molecules adsorbed in one unit cell of NaA zeolite plotted in Fig. 4.2. For temperatures 

starting from T=200K, the results were fitted to a simple Langmuir isotherm (equation 

(4.8)). For lower temperatures, however, the fitting of this simple isotherm was not 

satisfactory. It is important to stress that, while molecular simulation yields the total  amount 

of molecules inside the cell volume (the absolute value Nabs) experiments are usually 

concerned only with that portion of the gas that is adsorbed into a thin layer adjacent to the 

surface of the solid.  

 

Figure 4.2 Simulated hydrogen adsorption isotherms at various temperatures. (a) The points correspond 

to the individual simulations for temperatures of, respectively from top to bottom 77, 100, 150, 200, 

250, 273, 293, 303K. For the first three temperatures, the dashed lines simply connect the points, 

whereas, for the remaining higher temperatures, the curves are fits of the Langmuir isotherm function. 

(b) Adsorption data surface in P-T space. 

 

For P = 2 MPa we report a hydrogen uptake of 5.0 H2 molecules per unit cell, less 

than half of the experimental data. Previous report shows a hydrogen uptake for the NaA 

zeolite of 1.54 wt. % at 1.5 MPa [15]. Whereas, our results shows that almost a factor of 

two (2.7 wt.%) storage of hydrogen. This is might be due to the in this low temperature 

regime the simulation is much more sensitive to small variations in UH2 and a very precise 

interactions model is required that may provide more accurate results as this one. Further, 

the Henry coefficient was calculated by using the equation (6) for temperatures from 200 K 

up to 600 K and the results are plotted in Fig. 4.3.  
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Figure 4.3 Variation of the Henry coefficient as a function of temperature. 

Moreover, we have checked the consistency of these results by comparing the Henry 

coefficient calculated in this matter with the same value taken from GCMC simulations at 

low pressures. For this purpose, 10 additional GCMC simulations were carried out between 

0.1 and 1 MPa as represented in Fig. 4.4. Which demonstrated that the both methods yielded 

the same results and they are mutually consistent. 

 

Figure 4.4 Low pressure isotherms. The points are GCMC simulations for temperatures of, from top to 

bottom 150, 200, 250, 273, 293, 303K. The solid lines are the corresponding Henry isotherms with KH 

computed directly from the particle insertion method. Visual comparison shows that the solid lines 

follow the slope of the simulated curves adequately. 

 

Next, we have constructed the contour maps to visualization of adsorption affinity of 

the different regions of the unit cell as shown in Fig. 4.5. It represented the full guest-host 

potential energy (equations 4.1-4.4) of one H2 molecule along two different planes of the zeolite. 

The negative part of the potential is corresponds to those regions of the plane where the 
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framework atoms will exert an attractive interaction on the guest particle. The white regions on 

the figures are areas that lay in the repulsive part of this potential, which increases very rapidly 

(r-12) as the atoms begin to overlap. From classical statistical mechanics, the probability of 

finding a particle at site ri, with energy Ui (ri) is proportional to exp(-βUi ) so that adsorption is 

expected to occur for the lowest values of βUi. 

 

 

Figure 4.5 Contour maps of the total potential energy βUi of one H2 molecule in an empty zeolite, 

averaged over all possible orientations, along two (001) planes: plane (a) goes through the center of the 

α cage, and is parallel to the large windows of the cage; plane (b) goes through the center of the sodalites 

and contains the α cage windows (8-oxygen rings). Only negative values of βUi are plotted. Calculated 

for a temperature of T=293K. Also represented are the positions of the zeolite atoms in the vicinity of 

the plane: oxygens (▪), T-atoms (*), Na-I (◊), Na-II (○), Na-III (□). 

 

In Fig. 4.5 (a) clearly shows that the large volume inside the α cages are the optimal 

adsorption sites. There is a strong energy minimum in a thin layer adjacent to the internal 

surface of the cage, interrupted only by the repulsive effect of the large sodium atoms (largest 

values of σ). Darkrim et al. [10] previously demonstrated that the parameter σNa (=3.5 Å) shows 

most influential weightage for the simulated number of encapsulated molecules, and they 

justified by the fact that these atoms, positioned on the windows and inside the α cage, largely 

accommodate  the available void volume.  

However, at the center of the α cage, the interaction felt by the particles is only slightly 

attractive and the hydrogen molecules would be mostly unconstrained there. Fig. 5 (b) shows 

that there is an energetically favorable region in a small volume inside the sodalite cages, mostly 

constrained by the 8 Na (I) atoms positioned on the 6-oxygen ring windows and guest molecules 

were accumulated there only for transient time.  
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4.5 Conclusions  

In this work, an extended simulation results are presented for adsorption of hydrogen 

molecules in side of NaA zeolite. A wider range of temperatures and pressures were applied for 

the simulation purpose. Simulated results shows that good agreement for moderate to high 

pressures; however, at low pressures there were some limitations. Due to this we also verify the 

linear relation between the hydrogen uptake and input pressure in the limit of zero loading, and 

calculate the corresponding proportionality constant with the Henry coefficient. Therefore, 

systematic validation of any model at low pressures can be done by comparing such a curve 

with experimental observations of KH (T) that might be help to develop new, optimal, hydrogen 

storage materials.  
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TRANSITION METALS DOPED GRAPHENE NANOCOMPOSITE  

FOR ELECTROCHEMICAL HYDROGEN GENERATION:  

Synthesis, characterization and results 

 

 

 

 

 

 

 

 

5.1 Introduction 

Nowadays, the development of novel catalysts with high electrocatalytic activity for fuel 

cells application is a central issue to accelerate the clean energy technology in an affordable 

manner [1- 4]. Pt and Pt-based alloys are superlative have been extensively investigated for 

most of the fuel cells reactions to solve the future energy challenges [5-7]. For example, Niu 

and coworkers have prepared carbon microspheres supported Pt NPs and demonstrated their 

good electrocatalytic activity for fuel cell application [8]. However, the high price of Pt, its 

limited supply, low tolerance to CO poisoning, aggregation and dissolution in harsh 

electrochemical environments are some of the major practical challengeable issues that need to 

be resolve prior to Pt-based materials commercialization [9-11]. Alternatively, Pd-based 

electrocatalysts gained lot of interest owing to their high efficiency, high selectivity, and greater 

resistance to CO poisoning and comparable low price due their high abundance [12-14].  

Among the several liquid fuels, ethanol is the most studied and encouraged for energy 

applications such as for direct ethanol fuel cells (DEFC) applications. This is due to its low 

toxicity, high energy conversion efficiency, high power density, low pollution, easy storage and 

handling [12,15], along with its large production from agricultural products and biomass 

resources [16]. Moreover, in DEFC it can directly provide the electrical energy in a continuous 

manner. Therefore, many efforts have been devoted to the preparation of Pd-based 

nanocatalysts for the electrooxidation of ethanol in alkaline solution [17-20].  
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To improve the electrocatalytic activity, bimetallic nanocatalysts were widely 

investigated due to the possibility of extra catalytic centers and improvement of CO tolerance 

capability of Pd. For instance, Smiljanić et al. demonstrated the ethanol oxidation on 

Pd/Au(111) bimetallic surfaces in alkaline solution [21]. Similarly, Abbasi et al. showed the 

electrocatalytic oxidation of ethanol on Pd/Ag nanodendrites [22]. However, using noble metals 

(such as Au or Ag) in binary-alloys is not cost effective, limits their wide acceptability [23]. 

Instead of these, the low price material Ni provides the cost affordability along with co-catalytic 

activity [24]. It has been previously reported that Ni addition to Pd refreshes the Pd active sites 

and increases the electrocatalytic activity of the nanocatalyst [25].  For instance, Zhang et al. 

demonstrated the role of Ni for activation of Pd catalytic sites and discussed their synergetic 

effect [26]. The oxidation state of Ni plays an important role in the electrooxidation of ethanol 

and it has been also reported that the addition of metal oxides such as NiO improves the catalytic 

activity of Pd nanocatalysts [27].  

The role and use of catalyst support have also been investigated in order to develop 

electrocatalyst with higher efficiencies [28]. Recently, graphene has triggered a wide interest 

due to their high thermal and electrical conductivities, structural properties, large surface area, 

robustness and chemical inertness [29]. Due to these properties graphene has been considered 

as a promising catalyst support material in fuel cell electrodes [30]. A recent work of Ghosh et 

al. demonstrated when Pd NPs were incorporated within RGO, the electrocatalytic activity 

towards ethanol oxidation was surprisingly increased [31]. Similarly, Tan et al. reported the 

improved electrocatalytic activity towards ethanol oxidation using Pd-Ni/RGO nanocomposite 

[32].  

However, synthesis of uniform Ni NPs, without surfactant, is critical due to its magnetic 

behaviour and to the tendency to agglomerate in its absence. The reduction of Ni2+ ions to Ni 

(0) is also a time consuming process and occasionally it needed harsh reaction conditions, such 

as the involvement of toxic chemicals (hydrazine hydrate) and high-temperature reaction 

conditions (to decompose the organometallic precursors), which disfavours the process easiness 

[33-35]. Instead of that, NixB can be easily synthesised by the simple reduction of Ni2+ ions 

with NaBH4 at RT. NixB is a pronounced hydrogenation catalyst and a hydrogen generator and 

it conveniently decomposes aqueous solution of NaBH4 [36].  

 



Chapter 5                                                                                                               Electrochemically hydrogen generation 

 

 Page 100 
 

Considering the increasing need for efficient electrocatalytic ethanol oxidation and the 

fact that Pd and NixB are well-known hydrogenation catalyst, we report a stepwise synthesis of 

Pd@NixB/RGO nanocomposite. This is an economically viable method since it uses, as major 

components, low cost materials such as NixB, and RGO and a small percentage of Pd on 

superficial on them. The nanocomposite was fully characterized by several techniques which 

confirmed its successful preparation. Finally, the electrochemical studies revealed promising 

results of this type of nanocomposite towards the ethanol electrooxidation reaction.  

5.2 Experimental 

5.2.1 Synthesis 

All chemicals were of analytical grade and all aqueous solutions were prepared in Milli-

Q water (>18.2MΩ.cm). GO was synthesized by modified Hummer’s method as described in 

previous work [37]. Briefly, graphite flakes powder (2.5 g) were dispersed in conc. H2SO4 (90 

mL) by magnetic stirring (45 min) at low temperature (0-5 °C). Then, a calculated amount of 

NaNO3 (1.25 g) and KMnO4 (12.5 g) were added slowly and continuously stirred for 2 h. Next, 

the temperature was raised to 35 °C for 1 h and 800 mL Milli-Q water was slowly poured in to 

the acidic mixture.  Furthermore, temperature was increased to 98 °C for 2 h.  Finally, 35 mL 

of 30% v/v H2O2 was slowly poured to the reaction mixture to subside the further process. After 

completion of reaction, resultant product was centrifuged (3000 rpm), washed (with Milli-Q 

water and dil. HCl) and freeze-dried. Finally, prepared a suspension of GO in Milli-Q water (1 

mg/mL). To synthesize the NixB/RGO nanocomposite, first nickel chloride (240 mg) was 

dissolved in 5 mL Milli-Q water at RT and added to a GO suspension (45 mL). Then, 20 mL of 

alkaline aqueous solution of NaBH4 (27 mg/mL, pH ~12.5) was slowly poured and mixed by 

mechanical stirring for 45 min. After completion of reaction, the resultant product was 

centrifuged (3000 rpm) and washed with Milli-Q water and ethanol. First, NixB/RGO 

nanocomposite (25 mg) was dispersed in 100 mL anhydrous methanol by repeated sonication 

(30 min) at RT. Later, to the above dispersion, palladium acetate (50 mg) was added and mixed 

by mechanically stirring for 2 h at 45 °C. Finally, the synthesized product was centrifuged at 

3000 rpm and washed several times with Milli-Q water and methanol to remove the impurities 

and dried in vacuum oven at 250 °C for 8 h. 
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5.2.2 Characterization techniques 

Phase purity and crystallinity were accessed by X-ray diffraction (XRD) technique 

(Rigaku, Japan, CuKα radiation; 2θ angle range 10–80°; step 0.02°/s). FTIR spectra of samples 

were recorded in ATR powder mode. The XPS analysis was performed using a Kratos AXIS 

Ultra HSA, with VISION software for data acquisition and CASAXPS software for data 

analysis. The analysis was carried out with a monochromatic Al Kα X-ray source (1486.7 eV), 

operating at 15kV (90 W), in FAT mode (Fixed Analyser Transmission), with a pass energy of 

40 eV for regions ROI and 80 eV for survey. Data acquisition was performed with a pressure 

lower than 1.E-6 Pa, and it was used a charge neutralisation system. The effect of the electric 

charge was corrected by the reference of the carbon peak (285 eV). The deconvolution of 

spectra was carried out using the XPSPEAK41, in which a peak fitting is performed using 

Gaussian-Lorentzian peak shape and Shirley type background subtraction. Surface morphology 

of GO and products were investigated by scanning electron microscope (SEM) SU-70 Hitachi 

in EDX mode. For TEM analysis conventional high-resolution (HR) TEM technique was used. 

The sample for TEM was prepared by dipping an aliquot of suspension (in methanol, 0.1 

mg/mL) on to a carbon-coated copper grid and dried at RT. Cyclic voltammetry (CV) and 

chronoamperometry (CA) measurements were carried out using an Autolab PGSTAT 30 

potentiostat/galvanostat (EcoChimie B.V.) controlled by the GPES software. A conventional 

three-electrode system was used using the following electrodes: reference - Ag/AgCl (sat. KCl) 

(BAS, MF-2052); auxiliary - platinum wire (7.5 cm, BAS, MW-1032) and working - glassy 

carbon electrode, GCE, (3 mm diameter, BAS, MF-2012). The working cell was surrounded by 

a grounded Faraday cage and all studies were carried out at RT and under an argon flow. Ultra-

pure water (Millipore, 18.2 M cm, 25 C) was used to prepare the 1M KOH electrolyte 

solution. Prior to modification the GCE electrode was conditioned by a polishing/cleaning 

procedure using diamond pastes of 6, 3 and 1 µM (Buehler) on a nylon polishing pad (BAS 

Bioanalytical Systems Inc.) and finally aluminium oxide of particle size 0.3 µm (Buehler) on a 

microcloth polishing pad (BAS Bioanalytical Systems Inc.). Then, the electrode was rinsed with 

ultra-pure water and finally sonicated for 5 min in ethanol and ultra-pure water. Dispersions 

used to produce the modified electrodes were prepared as follows: a 0.5% Nafion dispersion (1 

mL) of the selected material - Pd@NixB/RGO and Pd@NixB, for comparison (5 mg) was 

sonicated for 10 min. Electrode modification consisted in depositing a 10 µL drop of the 

dispersion of the selected composite material onto the surface of the glassy carbon electrode 

and the solvent was evaporated under a flow of air.   
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5.3 Results and discussion 

GO was prepared via modified Hummer’s method [37,38] and it contains a large number 

of oxygen-containing functional groups, which allows GO to be well-dispersed in an aqueous 

solution [39]. In the beginning, NixB NPs were synthesized on graphene sheets by simultaneous 

reduction of GO and Ni2+ ions. This step was crucial to synthesize the Pd@NixB entity due to 

the high redox potential and hydrogen spillover capability of Pd compared to Ni [37]. The 

species NixB can only form in the absence of Pd whereas, in one step synthesis (mixing of Pd2+ 

and Ni2+ ions salt) there was a chance of formation of Pd-Ni alloy [24, 40], instead of Pd@NixB 

entity. Mechanistically, in this work the amphiphilic nature of GO sheets serves as surfactant; 

NixB NPs were dispersed on large surface area of graphene and attached on GO surface. During 

the process there was a chance of some agglomeration of RGO sheets due to the π–π 

interactions, van der Waals forces and hydrogen bonding interactions between graphene sheets 

[35, 37, 39]. However, in our case the stacking of RGO sheets were less, due to the specific 

reaction conditions which prevented their restacking. Here, we synthesized the NixB NPs by 

addition of alkaline aqueous solution of NaBH4 (pH ~12.5) at RT.  Normally, Pd NPs were 

synthesized by the reduction of salt at high temperature or using specific reducing agents such 

as L-ascorbic acid, NaBH4, redox metallic species (such as Ni or Zn), and some times toxic 

chemical hydrazine hydrate  [41-46] however, we adopt the green approach.  

Here, XRD was used to prove the crystallinity of nanomaterial. Fig. 5.1 shows the XRD 

of graphite powder, GO and Pd@NixB /RGO nanocomposite. The XRD of graphite powder 

shows a peak at 26.6° which corresponds to the diffraction from (002) plane [38,47]. However, 

after the treatment of graphite powder in harsh acidic condition the oxygenated GO exhibits a 

sharp peak at around 11.2° which corresponds to the (001) basal plane, suggesting the good 

exfoliation of graphite flakes due to the larger value of d-spacing (0.79 nm) of GO compared to 

0.334 nm of graphite (2 θ =26.4°) [37, 38, 47]. 
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Figure 5.1 XRD pattern of graphite powder, GO and Pd@NixB /RGO nanocomposite. 

  

It is well known that after a vigorous oxidation of graphitic flakes in strong oxidizing 

environment, different kinds of oxygenated functional groups are attached to the graphitic plane 

and increase the interlayer spacing of graphitic sheets [39, 47]. In XRD spectra of Pd@NixB 

/RGO nanocomposite, the peak related to GO was completely suppressed and a new peak is 

observed at 22.8°, which suggests the successful reduction process and formation of RGO [37, 

41]. The XRD spectra of Pd@NixB/RGO nanocomposite also shows some additional peaks that 

are related to the different crystallographic diffraction planes of Pd. The major diffraction peaks 

at 39.9°,  46.4° and 67.8° , corresponding to the (111), (200) and (220) crystalline planes of face 

centered cubic (FCC) Pd [41], indicated the successful reduction of Pd2+ ions in anhydrous 

methanol reducing solvent [46]. The main diffraction peak (111) of crystalline Pd at around 

39.9° was found to shifted slightly towards lower angle as compared with bulk Pd (2θ = 40.1°, 

JCPDS 00–005-0681) [48]. It was due to the increment of Pd-Pd interatomic distance related to 

their nanosize, which is consistent with a previous report [41]. The average crystallite size of 

the Pd nanoparticles was estimated from the half-widths of highest intensity peak (111) by using 

the Debye-Scherrer formula [33], and was estimated to be about 5.7 nm.  

Fig. 5.2 shows the FTIR spectra of GO and Pd@NixB/RGO nanocomposite (in the range 

of 4000-500 cm-1). In FTIR spectrum of GO, a strong broad band was observed at around 3300 

cm-1, assigned to the stretching mode of vibration of -OH groups due to the surface adsorbed 

water molecules [49]. After reduction, the intensity of this band decreased and shifted to the 

higher wave number (3425 cm-1) in Pd@NixB/RGO nanocomposite which suggests the removal 

of surface adsorbed water molecules from graphitic planes during the reduction process.  
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Figure 5.2 FTIR of GO and Pd@NixB /RGO nanocomposite. 

 

Moreover, the peak related to the stretching mode of vibration i.e. carbonyl functionality 

(-C=O) at approximately 1705 cm-1 also decreased in the reduced product and a new peak was 

observed close to 1630 cm-1, indicating the elimination of edge related –C=O groups and the 

restoration of conjugated alkene (-C=C-) system [47]. Moreover, in Pd@NixB/RGO 

nanocomposite the absence of peaks at 1364 cm-1, 1250 cm-1, and 1030 cm-1 suggested the 

removal of epoxide and the hydroxyl groups attached to the basal plane of GO [37, 39, 49]. 

Interestingly, in Pd@NixB/RGO nanocomposite one new peak was observed at 2940 cm-1 

attributed the C-H stretching band of vibration through H2 spillover mechanism on NixB entity 

and subsequent, migration of radical hydrogens to receptor sites of graphene [37]. Due the 

presence of Ni, a peak appears at 590 cm-1 in Pd@NixB/RGO nanocomposite attributed to the 

M-O stretching band between Ni and oxygen residual of RGO which confirms the well-

incorporation of Ni NPs within RGO. Fig. 5.3 (a) and (b) show the SEM images of 

Pd@NixB/RGO nanocomposite at lower and higher magnifications, respectively. Both images 

clearly depicts the exfoliated graphene nanosheets structure with well intercalation and uniform 

distribution of Pd and NixB NPs on graphene surface [37]. The exfoliation of graphene sheets 

can be rationalized as: at the time of synthesis of NixB NPs the oxygen containing functional 

groups of GO (such as epoxy, hydroxyl, carbonyl and carboxylic acid) were reduced and on 

their position some defects were introduced in carbon structure which provided the favourable 

sites for NixB NPs[47].  
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Figure 5.3 SEM images of: Pd@NixB/RGO nanocomposite at lower (a) and higher (b) magnifications; 

Pd@NixB NPs at lower (c) and higher (d) magnifications.   

 

The remaining oxygen containing functional group such as hydroxy (-OH) holds the 

NixB NPs and works as surface capping agents preventing their agglomeration. Moreover, 

hydrogen was produced through the hydrolysis of NaBH4 (Equation 5.1) [50]. The produced 

hydrogen also prevents the restacking of graphene layers, maintains their exfoliated condition 

and decreases the van der Walls interaction between them.  

                         

       NaBH4 + (2 + x) H2O                       NaBO2.xH2O + 4 H2 + heat                            (5.1) 

 

 In absence of support (RGO nanosheets), Pd@NixB NPs were highly agglomerated as 

shown in Fig. 5.3 (c) and (d) at lower and higher magnifications, respectively. This is due to 

several factors such as high surface energy, attractive van der Waals forces and coalescence 

between the NPs in absence of RGO nanosheets or any external surface capping agents [51-53]. 

Thermodynamically, agglomeration can be express as: formation of bonding between adjacent 

particles through dangling bond led the change in enthalpy of the system to negative side which 

compensated the negative entropy of the system. That resulted to the Gibbs free energy change 

to negative (ΔG= -ve) and provides a driving force for agglomeration. Whence the driving force 

was eliminated at equilibrium (ΔG=0) the system became thermodynamically stable and 

particle growth was stopped [53]. 
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Figure 5.4 (a) SEM image of Pd@NixB/RGO nanocomposite, and (b-d) corresponding elemental 

mapping of C, Ni and Pd elements in respective images. 

 

Further, to corroborate the fact that RGO sheets preventing the NPs agglomeration, we 

have carried out the SEM with elemental mapping as shown in Fig. 5.4 (b-d). Images clearly 

depict the uniform distribution of elements (C, Ni and Pd with exception of light weight B and 

H), proving the role of RGO layers for the prevention of NPs agglomeration. Moreover, it 

confirms the presence of Ni and Pd elements in Pd@NixB/RGO nanocomposite.  

To understand the reaction mechanism in detail, we have also carried out the 

TEM/HRTEM analysis of Pd@NixB/RGO nanocomposite along with bare Pd NPs. Fig. 5.5 (a) 

depicts the TEM image of GO where thin layers of graphene sheets were observed. Fig. 5.5 (b) 

shows the TEM image of Pd@NixB/RGO nanocomposite in which Pd@NixB NPs were 

uniformly dispersed onto the graphene sheets with a narrow size distribution. The average size 

of as-synthesized Pd@NixB NPs on RGO were about 8–12 nm. TEM result suggested that the 

simplicity and efficacy of our synthesis protocol.  
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Figure 5.5 TEM image of (a) GO and (b) Pd@NixB/RGO nanocomposite. 

XPS experiments were performed to identify the elemental composition of the 

Pd@NixB/RGO nanocomposite.  Fig. 5.6 (a) depicts the C 1s core level XPS spectrum of RGO 

in which an intense peak was observed. After the deconvolution three major peaks were 

identified and assigned as sp2 C=C at 284.6 eV (due to the graphitic carbon), sp3 C-O at 286.4 

eV (due to the hydroxyl and epoxy groups with graphene framework) and sp2 C=O at 288.8 eV 

(corresponds to the COOH groups) [47]. The reduction level of RGO was also evaluated by the 

analysis of O 1s core level spectrum of Pd@NixB/RGO nanocomposite as shown in Fig. 5.6 

(b). The major peak of C-O bonding was deconvoluted into 2 main peaks at around 531.7eV 

and 533.4 eV and were assigned as O=C-OH and O-C or C-OH, respectively [47]. In which 

peak intensity of sp2 carbonyl (-C=O) was much lesser than the sp3 hydroxyl or epoxy (-C-O) 

peak which clearly indicated the degree of reduction of RGO. Fig. 5.6(c) shows the XPS core 

level spectrum of 2p Ni which was deconvoluted into 2p3/2 and 2p1/2 doublets caused the by 

spin-orbital coupling [37, 38]. The two main peaks at 856.9 and 874.5 eV in the Ni 2p XPS 

spectra are assigned to the Ni 2p3/2 and Ni 2p1/2, respectively. Additionally, there was a small 

peak at approximately 853.4 eV which is attributed to metallic nickel [37] and two other peaks 

at 862.2 and 880.6 eV assigned to the formation of NiO and NiOOH species, respectively. Fig. 

5.6 (d) shows the Pd 3d core level XPS spectrum of the Pd@NixB/RGO nanocomposite. The 

binding energies of Pd 3d can be resolved into 3d5/2 and 3d3/2 doublets caused by spin-orbital 

coupling. Upon deconvolution of the spectra, the curves are fitted with two pairs of binding 

energies for Pd (0) and Pd (II) at 335.8 and 341.1 eV and 337.4 and 342.7 eV, respectively [37].  
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These values were good agreement with previously reported work of Pd NPs synthesis 

onto RGO [41]. The intensities of Pd (0) peaks were quite larger than those of Pd (II) which 

indicates the major contribution of metallic Pd phase. Moreover, the existence of B element 

was also confirmed by XPS by the presence of one peak at approximately 193 eV (Fig. 5.6 (e)). 

 

 

 

Figure 5.6 Deconvoluted XPS spectra for Pd@NixB/RGO nanocomposite: (a) C 1s, (b) O1s, (c) Ni 2p, 

(d) Pd 3d and (e) B1s. 
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The electrochemical behavior of Pd@NixB/RGO was studied in a N2-saturated 1 M 

KOH solution at a scan rate of 0.050 V s-1  in the potential range between 0.6 V and -0.4 V. Fig. 

5.7 (black line) shows the CV of the Pd@NixB/RGO modified electrode in 1 M KOH. The CV 

presents one cathodic peak at Epc ≈ -0.301 V which is attributed to the reduction of Pd (II) oxide 

according to the following equation (5.2): 

 

Pd – (O) + H2O + 2e-  ↔ Pd + 2OH-               (5.2) 

 

 

 

Figure 5.7 CV of Pd@NixB/RGO/GCE in 1 M KOH (black solid line, reference); the first (blue solid 

line) and the 50th (red solid line) cycle run in 1 M KOH + 1 M EtOH at a scan rate of 0.050 V s-1.   

 

According to previously published works [31, 54], for potential ranges lower than 

approximately -0.450 V vs Ag/AgCl the oxidation of the absorbed and adsorbed hydrogen 

occurs as following equation (5.3):  

 

Pd – (H)abs/ads + OH-  ↔ Pd + H2O +  e-      (5.3)  

  

For higher potential ranges (≈ -0.100 V) there is the formation of a layer of palladium 

(II) oxide onto the surface of the catalyst [54-56]. Although the oxidation process is still not 

clearly understood it is well accepted that the OH- ions are first chemisorbed in the initial step 

of the oxide formation [54]. The mechanism of the oxidation reaction may be explained by the 

following reactions (5.4-5.6) [57]: 
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Pd + OH-  ↔ Pd – (OH)ads + e-                              (5.4) 

Pd – (OH)ads + OH-   ↔ Pd – O + H2O + e-           (5.5) 

2 (Pd – (OH)ads) ↔ Pd – (O) + Pd + H2O           (5.6) 

 

After addition of ethanol (1M in 1 M KOH) the peak corresponding to the Pd redox 

process disappeared and two new well defined anodic peaks were observed at -0.280 V and -

0.350 V (1st cycle, blue line). These are related to the ethanol oxidation process and are defined 

as forward (Epf) and backward (Epb) peaks, respectively. The oxidation peak during the forward 

scan is attributed to the oxidation of freshly chemisorbed species from dissociative adsorption 

of ethanol (equation (5.7) and, the oxidation peak at the backward scan represents the removal 

of adsorbed carbonaceous species such as ethoxi, (CH3CO)ads from catalyst surface [54, 55, 57, 

58]. This suggests the reactivation of the Pd surface through the reduction of the Pd (II) oxide 

(equation (5.8)) before complete blockage of catalyst surface by Pd-O species [54].  Recently, 

Liang et al. has been proposed the mechanism of ethoxi removal from Pd electrode during the 

cyclic run and suggested the two-step process [57]. According to them, the first step associated 

the adsorption of carbonaceous species onto the Pd active sites which led the blockage of 

ab/adsorption of hydrogen. However, in the second step adsorbed intermediates (carbonaceous 

species) were stripped-off from the Pd electrode with the adsorbed oxygen-containing species 

(Pd–OHads). Very recently, Ghosh et al. also suggested that the generation of Pd-OH onto the 

surface of catalyst that imparts the positive impact for current continuity in ethanol oxidation 

reaction (EOR) through the development of channels of electron at the surface of the materials 

[31]. As a result, EOR proceeded continuously such that the current continues to increase with 

the potential, leads to the formation a triangular peak (as backward peak current) which is 

maintained during the ethanol oxidation process after several runs [54].  

 

Pd + CH3CH2OH ↔ Pd  ̶  (CH3CH2OH)ads               (5.7) 

Pd  ̶  (CH3CH2OH)ads + 3OH-  → Pd  ̶  (CH3CO)ads + 3H2O + 3e-   (5.8) 

 

Fig. 5.7 also shows the CV of Pd@NixB/RGO nanocomposite after 50 cycle run of EOR 

(red line). Results show that the main features determined from the CV were not significantly 

changed from the 1st to 50th cycle. The onset potential of faradaic currents (Eonset) only changes 

slightly (≈0.005V) and the Epf and Epb are the same for the 1st to 50th cycle. The forward anodic 

peak current density (jpf) and the backward peak current density (jpb) were increased after 50 

cycles from 16.9 to 19.7 mA/cm2 and 17.3 to 18.7 mA/ cm2, respectively. It results in an increase 
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of jpf/jpb ratio from 0.98 to 1.05 from the 1st to the 50th cycle which suggests that no loss of 

catalyst activity during the experiment and confirms their anti-poisoning characteristic towards 

the carbonaceous species for EOR [54]. Previously, published works have also shown that when 

pores and channels of Pd-based catalysts are open there were no losses of catalyst activity [31] 

and [59]. In present case, for Pd@NixB/RGO nanocomposite, the Pd NPs were adhere onto the 

surface of NixB/RGO entity and easily participated in the hydrogen ab/adsorption reaction. The 

NixB entity provided the tolerance capacity of catalyst towards the CO poisoning and the grain 

boundaries and dislocations of Pd and NixB NPs surfaces provided easy access of ethanol 

molecules. At the same time, RGO nanosheets provided the support for Pd and NixB NPs and 

also facilitated the high electron mobility due to conjugated sp2 network of delocalized electrons 

[32, 37]. Further, in order to investigate the role of RGO support towards the oxidation od 

ethanol we have also carried out the same experiments for Pd@NixB NPs in 1 M KOH with 1 

M Ethanol. Fig. 5.8 depicts the EOR for a glassy carbon electrode modified only with Pd@NixB 

NPs.  

 

 

 

Figure 5.8 CV of Pd@NixB/GCE in 1 M KOH (black solid line, reference), the 1st (blue solid line) and 

the 50th (red solid line) cycle run in 1 M KOH + 1 M EtOH at a scan rate of 0.050 V s-1.   

 

The cyclic voltammetric results show that in 1 M KOH (black line) there is no peak 

corresponding to the palladium (II) oxide reduction which suggests slower kinetics of Pd@NixB 

in comparison with the Pd@NixB/RGO. Second, the current densities (jpf = 5.9 and jpb = 6.7 

mA/cm2) for the 1st cycle were comparably smaller and almost half of Pd@NixB/RGO 

nanocomposite. Moreover, after 50 cycle run both current densities were decreased to 3.3 and 
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2.7 mA/ cm2, respectively, leading to a jpf/jpb ratio for the 50th cycle of 1.22 which was higher 

than the 1.04 obtained for the Pd@NixB/RGO nanocomposite. Similar behavior was already 

observed by Ghosh et al. [31] were the less active system presented the higher jpf/jpb ratio. The 

comparison of the electrochemical performance of Pd@NixB/RGO and Pd@NixB NPs 

electrocatalysts toward the EOR are also summarized in Table 5.1. 

 

Table 5.1 Comparison of the electrochemical performance of Pd@NixB/RGO 

nanocomposite and Pd@NixB NPs towards the EOR. 

Electrodes (after 1st cycles)              jpf (mA/ cm2)              jpb (mA/cm2)                      jpf/jpb 

Pd@NixB/RGO nanocomposite 16.9 17.3 0.98 

Pd@NixB NPs 5.9 6.7 0.88 

Electrodes (after 50th cycles)            jpf (mA/ cm2)              jpb (mA/cm2)                      jpf/jpb 

Pd@NixB/RGO nanocomposite 19.7 18.7 1.04 

Pd@NixB NPs 3.3 2.7 1.22 

 

The results that Pd@NixB/RGO nanocomposite is more efficient than Pd@NixB NPs 

which indicates that the graphene support is highly advantageous as it favors the easy electron 

transportation and charge transfer accessibility at the electrode/electrolyte interface [31, 32]. It 

provides higher accessible electrochemically surface area and avoids the NPs agglomeration. 

Moreover, in presence of graphene, the hydroxyl (-OH) functional groups on its surface greatly 

modified the nanostructure into 3D network/texture which helps to regenerate the active 

Pd@NixB NPs via self-cleaning process [31]. Based on these results, it can be concluded that 

the RGO support plays a vital role for enhancement of catalytic activity of Pd@NixB NPs 

towards the electrooxidation of ethanol.  

Mechanistically, it has been mentioned that main final product of EOR is acetate instead 

of acetaldehyde [12]; therefore, to understand in more detail regarding of ethanol dissociative 

product in alkaline solution the CV measurements were carried out using the 

Pd@NixB/RGO/GCE in a 1 M KOH solution containing 1M potassium acetate (CH3COOK) 

and 1 M ethanol. (CH3CHO)  [54]. Fig. 5.9 shows that in the presence of 1 M CH3COOK no 

oxidation peak related to EOR was observed which suggests the complete surface coverage by 

CH3COO¯ species and passivation of Pd catalytic active sites. Mechanistically this can be 

represented by the following equations (5.9 and 5.10) where, equation (5.9) represents the rate 

determining step [54]: 
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Figure 5.9 CV of Pd@NixB/RGO/GCE in 1 M KOH + 1 M EtOH (blue solid line), and in 1M KOH + 

1 M CH3COOK (orange solid line) at a scan rate of 0.050 V s-1.   

 

 

Pd  ̶  (CH3CO)ads  + Pd  ̶  (OH)ads  → Pd  ̶  (CH3COOH)ads + Pd     (5.9) 

 

Pd  ̶  (CH3COOH)ads + OH-   → Pd + CH3COO-  + H2O               (5.10) 

 

Finally, we have carried out CA measurements in which the current density vs. time (j 

vs. t) curves was recorded at constant potentials as shown in Fig. 5.10. This is well known that 

the catalyst stability as a function of time is an important parameter for fuel cells technology 

for practical commercial application such as DEFC. The CA experiments for Pd@NixB/RGO 

nanocomposite and Pd@NixB NPs electrocatalysts were performed in 1M KOH with 1 M 

ethanol solution under a constant potential of 0.3 V for 1200 s.  In the beginning, both catalysts 

exhibited a pronounced current decay with time but, the initial decay of current density with 

Pd@NixB/RGO nanocomposite was higher than for Pd@NixB NPs which can be attributed to 

the accumulation of poisonous intermediates on surface of RGO sheets of electrocatalysts [31]. 

However, after 450 s it became under steady state condition due to the gradual self-cleaning 

process of nanocomposites film on GCE surface, maintained own stable electrocatalytic 

performance towards EOR.   
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Figure 5.10 Chronoamperometric (CA) measurements for the EOR in 1 M KOH and 1 M ethanol at -

0.30 V vs. Ag/AgCl on a GCE modified electrodes with Pd@NixB/RGO nanocomposite (red curve) and 

Pd@NixB NPs (blue curve).  

 

More importantly, in the CA experiment, Pd@NixB/RGO nanocomposite exhibited 

higher initial current density compared to the Pd@NixB NPs with current limiting value. It can 

be rationalized that the surface properties of Pd@NixB/RGO nanocomposite are more favorable 

for EOR and lower degradation rate during the reaction progress. The enhanced EOR activity 

and stability of the Pd@NixB/RGO electrocatalyst also demonstrated the role of RGO. Which 

facilitated the easy electron transportation and provide an easy access for ethanol molecules to 

the catalytic sites.  

 

5.4 Conclusions 

In this work, we have successfully synthesized Pd@NixB/RGO nanocomposite by a 

facile and green method. XRD, FTIR and XPS studies clearly displays the reduction of GO and 

formation of RGO.  XRD and XPS studies shows the crystallinity and oxidation state of Pd 

NPs. SEM and TEM images confirms the formation of small NPs without any specific 

agglomeration. SEM elemental mapping displays the homogeneous dense distribution of Ni and 

Pd NPs on graphene surface and confirmed the presence of both metallic elements in 

Pd@NixB/RGO nanocomposite. The synthesized Pd@NixB/RGO nanocomposite exhibited 

good electrocatalytic activity towards ethanol oxidation. Moreover, it showed the enhanced 

catalytic performance upon cycling and increased current density after 50 cycles. CA plot 

clearly shows the stability of Pd@NixB/RGO nanocomposite. The obtained results provided 

valuable information for the development of new electrocatalyst to solve the ethanol 

electrooxidation issue.  
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DIRECT HYDROGEN GENERATION THROUGH NaBH4  
HYDROLYSIS REACTION –POTENTIAL ROLE  

OF GRAPHENE NANOCOMPOSITE:  

Synthesis, characterization, results and mechanism 

 

 

 

 

 

6.1 Introduction 

NaBH4 is an example which can provide clean energy without any environmental 

impact, easily stabilized in alkaline NaOH aqueous solution, it produces 4 moles of H2 in 

presence of catalyst as shown in equation (6.1) [1-6]: 

                         

       NaBH4 + (2 + x) H2O                       NaBO2.xH2O + 4 H2 + heat                            (6.1) 

 

where, x denotes the excess of water for the reaction. In order to enhance the hydrogen 

generation rate (for on-board energy demand), a vast range of catalyst were investigated such 

as Ru, Pt, Pd, W, Cr, Co and Ni [7-10].  Recently, Saha et al. demonstrated the NaBH4 

hydrolysis using graphene supported bimetallic G-Co-Pt nanohybrid catalyst [11]. Previously, 

Krishnan et al. also reported the hydrogen generation using PtRu-LiCoO2 [12]. Similarly, 

Chowdhury et al. used the Ru-Co-PEDOT nanocomposites as catalyst for hydrolysis of NaNH4 

[13]. However, in all these cases catalyst synthesis was not straightforward and at least one 

noble element was involved as a major catalyst component. In this regard, prior to process 

easiness and cost effectiveness it is highly desirable another efficient way for boosting the H2 

economy [14-15]. Co-B is a low price catalyst for NaBH4 hydrolysis and works effectively, 

therefore catalytic study of them is a central issue for future commercialization [16-19]. 

However, Co-B shows some shortcomings during the catalytic process such as particles 

agglomeration, poor conductivity (for e- transportation) and separation of catalyst after 

completion of reaction (from spent solution) [20-22].  
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Recently, graphene has gained enormous interest as a support material for anchoring of 

several types of NPs and has been involved in various kinds of applications [23-25]. Saha et al. 

proposed the electrocatalytic hydrolysis of NaBH4 using graphene supported Co-Ni catalyst 

[26]. They synthesized the Ni NPs on graphene sheets using polyol method at high temperature 

(120 °C, 5 h). However, such an involvement of high temperature or toxic hydrazine hydrate 

(for synthesis of Ni NPs) disfavor their industrial exploitation [27-28]. 

Understanding the process easiness and environmental issue, we design a smart catalyst 

Co-B@Ni/RGO on the basis of commercially available Ni NPs (which provides more efficacy 

and beneficiary for synthesizing the Ni/RGO nanocomposite due to their bulk availability and 

consistency). This strategy easily maintain the shell-core structure (superficial attachment of 

Co-B NPs on magnetic Ni core). In this work, first time, we report a facile synthesis of Co-B@ 

Ni/RGO nanocomposite for NaBH4 decomposition in aqueous alkaline medium. Further, due to 

this nanostructure we have also studied the current vs voltage (I-V) and impedance 

characteristics of nanocomposite using CV and impedance techniques. Which shows the high 

charge density and easy electron flow in Co-B@Ni/RGO nanocomposite that may directly 

useful for energy storage application such as supercapacitor, and provide the wide 

understanding of material characteristic also for research purposes.   

6.2. Experimental 

 

6.2.1 Synthesis 

 

All other chemicals were analytical grades and used as received and throughout in 

experiment Milli Q water was used. GO was synthesized by the modified Hummers method as 

our previous work [29]. To prepare the Ni/RGO nanocomposite, 60 mL of aqueous GO 

dispersion (0.5 mg/mL) was placed in round bottom (RB) flask and afterward 30 mg Ni NPs 

were added. Then after, for reduction of GO a freshly prepared aqueous solution of NaBH4 (1 

wt.%, 10 mL) was slowly added and continuously ultrasonicated for1 h, at RT and finally the 

black product Ni/RGO was magnetically separated and repeatedly washed with Milli Q water 

and ethanol and dried in vacuum oven at 100 °C for 12 h.  For the synthesis of Co-B@Ni/RGO 

nanocomposite, first a dispersion of Ni/RGO was prepared in 50 mL Milli Q water under 

ultrasonication (15 min) then, 600 mg of cobalt salt was mixed by mechanical stirring (30 min) 

at RT in three neck RB flask. To synthesize the Co-B phase on Ni/RGO, an alkaline solution of 

NaBH4 (1 wt. %) was first prepared by dissolving of 180 mg NaOH in 50 mL Milli Q water. 

Then, it was drop mixed in Ni/RGO dispersion and mechanically stirred (800 rpm) for 45 min. 
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During the reaction, the flask was placed in cooling water and all vents were opened to release 

the produced H2. The temperature of flask was maintained at 0 - 5 °C during the reaction in 

order to prevent a vigorous reaction. After completion of reaction, product was filtered and 

multiply washed with Milli Q water and ethanol and finally, dried in vacuum oven at 300 °C 

and referred as Co-B@Ni/RGO. Similar procedure was adopted to synthesis of Co-B/RGO 

nanocomposite in absence of Ni NPs (for comparison). 

 

6.2.2 Characterization 

 

Phase purity and crystallinity were characterized by X-ray diffraction (XRD) technique 

(Rigaku, Japan, CuKα radiation; 2θ angle range 10–80°; step 0.02 °/s). FTIR spectra were 

recorded in ATR powder mode. Thermogravimetric (TGA) analysis was carried out under N2 

flow in a Shimadzu TGA 50 analyzer equipped with a platinum cell. The samples were heated 

at a constant rate of 10 °C min-1 from room temperature to 700 °C. Magnetic measurements was 

carried out using a vibrating sample magnetometer (VSM) from Oxford instruments, at RT with 

parallel magnetic field between ±1 T at a rate of 0.3 T/min, and 40 Hz and 1.5 mm amplitude 

for the vibration.  Surface morphology were investigated by scanning electron microscope 

(SEM) in EDX mode. The samples for TEM were prepared by dipping an aliquot of suspension 

(in acetone, 0.1 mg/ mL) on to a carbon-coated copper grid. A conventional high-resolution 

(HR) TEM (JEOL 2200F TEM) was performed to analyse the crystallinity and quality of 

samples. Cyclic voltammetry (CV) and electrochemical impedance (EIS) measurements were 

carried out using an Autolab PGSTAT 30 potentiostat/galvanostat (EcoChimie B.V.) controlled 

by the GPES and FRA software, respectively. A three-electrode system was used with the 

following electrodes: reference - Ag/AgCl (sat. KCl) (BAS, MF-2052); auxiliary - platinum 

wire (7.5 cm, BAS, MW-1032) and working - glassy carbon electrode, GCE, (3 mm diameter, 

BAS, MF-2012). The working cell was surrounded by a grounded Faraday cage and all studies 

were carried out at room temperature and under an argon flow. For the electrochemical 

impedance measurements was used a voltage perturbation of 10 mV rms over a frequency range 

from 50 kHz to 0.01 Hz with an integration time of 60 s. Ultra-pure water (Millipore, 18.2 M 

cm, 25 C) was used to prepare the 1M KOH electrolyte solution. Prior to modification the GCE 

electrode was conditioned by a polishing/cleaning procedure using diamond pastes of 6, 3 and 

1 µm (Buehler) on a nylon polishing pad (BAS Bioanalytical Systems Inc.) and finally 

aluminium oxide of particle size 0.3 µm (Buehler) on a microcloth polishing pad (BAS 

Bioanalytical Systems Inc.). Then the electrode was rinsed with ultra-pure water and finally 
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sonicated for 5 min in ethanol and ultra-pure water. Dispersions used to produce the modified 

electrodes were prepared as follows: a 0.5% Nafion dispersion (1 mL) of the selected material 

Co-B/RGO, Ni/RGO or Co-B@Ni/RGO in all cases (5 mg each) was sonicated for 10 min. 

Electrode modification consisted in depositing a 3µL drop of the dispersion of the selected 

composite material onto the surface of the glassy carbon electrode and the solvent was 

evaporated under a flow of air.   

 

6.2.3 Hydrogen generation tests 

 

To evaluate the catalytic activity, slurry of catalysts (in Milli Q water) was introduced 

in a three neck RB flask. The middle neck was connected to mechanical stirrer, one side was 

equipped to thermometer to control the temperature. The other vent of flask was air tightened 

and connected with tubes and accessories for measurement of H2 generation. The Flask was 

immersed in a water bath to maintain the temperature constant at set point. For hydrolysis 

reaction, chemicals were placed in flask. During the process, generated H2 was released from 

the vent neck and passed from a surge flask to eliminate the effect of residual alkali and water. 

The generated H2 was collected in a graduated jar by water displacement method and the 

volume of the generated hydrogen was calculated on the basis of change in height of water with 

respect to time.  

 

6.3. Results and discussion 

 

Fig. 6.1 (a) shows the XRD of GO, Ni/RGO, Co-B/RGO and Co-B@Ni/RGO 

nanocomposites. GO exhibits a sharp peak at around 11.01° which was correspond to the (001) 

basal plane and suggests the good exfoliation of graphite [29]. This is well known fact that after 

the vigorous oxidation of graphitic flakes in strong oxidizing environment various kind of 

oxygenated functionalities attaches to the graphitic plane and increases the interlayer spacing 

of graphitic sheets.  XRD diffraction of Co-B/RGO shows a peak at 23.2° suggested the 

reduction of oxygen functionalities from graphitic planes [30]. In XRD diffraction spectra of 

Ni/RGO three additional peaks were also observed, were attributed as diffraction from (111), 

(200) and (220) various crystallographic planes of face-centred cubic (fcc) Ni-NPs [31-33]. In 

the XRD diffraction spectra of Co-B@Ni/RGO nanocomposite peak related of carbon was 

completely disappeared and crystalline Ni peak broadening was decreased. It might be due the 

formation of tiny Co-B phase on Ni NPs. Further, in order to elucidate the reaction mechanism 
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in more detail, we have also carried out the Fourier transform infrared (FTIR) spectroscopy. 

Fig. 6.1 (b) shows the FTIR spectra of GO, Co-B/RGO, Ni/RGO and Co-B@Ni/RGO 

nanocomposite samples (in the range of 4000-800 cm-1). In FTIR spectra of GO, a strong broad 

band was observed in high frequency area (3400-3200 cm-1 ) which assigned to the stretching 

vibration mode of -OH groups due to the surface adsorbed water molecules [30]. After the 

reduction, in FTIR spectra of Co-B/RGO the intensity of this band was decreased suggested the 

removal of surface adsorbed water molecules from graphitic planes during the reduction 

process. 

 

 

Figure 6.1 (a) XRD pattern and (b) FTIR spectra of GO, Co-B/RGO, Ni/RGO and Co-B@Ni/RGO 

nanocomposite. 

 

Moreover, the peak related to the stretching vibration mode of carbonyl functionality (-

C=O) at around 1725 cm-1 was also deprived in reduced products clearly indicated the 

elimination of edge related –C=O groups and formation of GO to RGO [31]. Finally, the 

absorption peaks at 1380 cm−1 (due to the stretching vibration of C-O of carboxylic acid) and 

1120 cm−1 (related of C-OH of alcohol) were also sufficiently reduced in all reduced samples 

compare to the GO. Further, to understand the stability of material and detail analysis of 

mechanism we performed the thermogravimetric (TGA) analysis under N2 flow. Fig. 6.2 depicts 

the % weight loss of the GO and final product Co-B@Ni/RGOnanocomposite. TGA plot of GO 

shows that the instability of material it was obvious due to the various surface oxygen functional 

groups on graphene.  
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Figure 6.2 TGA of GO and Co-B@Ni/RGO nanocomposite.  

 

In GO sample initially major weight loss was observed at 200 °C corresponding to the 

23% of mass, suggested the removal of surface adsorbed water [30]. Whereas, at this 

temperature in Co-B@Ni/RGO only a 9.75% weight loss was observed. Moreover, in Co-

B@Ni/RGO nanocomposite the final weight loss was around 15.5% at 750 °C whereas, in GO 

this was 39.5%. This large difference in weight loss clearly indicated the decomposition and 

pyrolysis of oxygen functional groups in GO at higher temperature and quite stability of Co-

B@Ni/RGO nanocomposite.  

Further, we have carried out the systematic microscopic investigation of initial materials 

(GO), intermediate composite material Co-B/RGO and Ni/RGO (after the reduction and loading 

of Co-B and Ni NPs within the graphene matrix) and final product Co-B@Ni/RGO 

nanocomposite. Fig. 6.3 (a) and (b) shows the SEM images of initial material GO in lower and 

higher magnifications, respectively. Images of GO clearly exhibited the few layer of graphitic 

carbon with typical wrinkle and flappy behaviour.  
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Figure 6.3 SEM images of: GO (a) and (b), Co-B/RGO (c) and (d), Ni/ RGO nanocomposites (e) and 

(f), in lower and higher magnifications, respectively. 

 

Fig. 6.3 (c) and (d) depicts the SEM images of intermediate species Co-B/RGO after the 

reduction and loading of Co-B NPs within graphene matrix. Both images show the well 

intercalation of Co-B NPs with graphitic flakes and image contrast in higher magnification 

image (white spots on black background) clearly reveals the covering of Co-B NPs by single or 

few layers graphene sheets. Similar situation was retained and became clearer in images 6.3 (e) 

and (f) after the intercalation of Ni NPs with graphene in Ni/RGO intermediate material. 

Moreover, images shows that Ni NPs were in spherical shape and well separated and distributed 

on graphene sheet without any specific agglomerations. Similar behavior was observed after 

the intercalation of Co-B NPs on Ni/RGO as observed in Fig. 6.4 (a) and (b). Additionally, 

these two images show higher density of NPs compared to previous images of Co-B/RGO and 

Ni/RGO indicating the successful formation of Co-B@Ni/RGO nanocomposite. Fig. 6.4 (a) in 

lower magnification, shows the intercalation of tiny Co-B NPs on Ni /RGO nanocomposite on 

superficial position. Higher magnification image (Fig. 6.4 (b)) clearly depicts the covering of 

small NPs within graphene layers.  
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Figure 6.4 SEM images of Co-B@Ni/RGO nanocomposites (a) and (b) lower and higher 

magnifications, respectively. (c) Elemental mapping and (d) EDX analysis of Co-B@Ni/RGO 

nanocomposite. 

 

Mechanistically, this can be explain as: during the synthesis of second entity Co-B on 

Ni/RGO nanocomposite the produced H2 (between the reaction of NaBH4 and H2O, equation 1) 

became spillover [29] on Ni/RGO and migrated on to the defect sites of RGO and grafted on to 

the catalyst surface and saturated the carbonyl functionalities. In the next step, these extra H 

atom inside of catalyst system when liberated it makes the molecular H2 which decreases the 

van der Walls interaction of graphene sheets and exfoliates the graphitic sheets. Moreover, to 

confirm the presence of Ni and Co elements within graphene layers and their distribution we 

have also carried out the elemental mapping (Fig. 6.4 (c)), which clearly shows the uniform 

distribution of both metallic entities in the Co-B@Ni/RGO nanocomposite. Fig. 6.4 (d) displays 

the EDX spectrum of CoB@Ni/RGO nanocomposite and results show the presence of all 

elements: Co, Ni, C and O with the exception of the light weight elements B and H. Fig. 6.5 (a) 

depicts the TEM image of GO in which thin layers of carbon sheets were observed without any 

specific defect inside of graphene sheet. Fig. 6.5 (b) shows the TEM image of Co-B/RGO 

nanocomposite in which amorphous Co-B NPs were grafted on to the folding and stacking site 

of graphene sheets. 
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Figure 6.5 TEM images of (a) GO, (b) Co-B/RGO, (c) Ni/ RGO and (d) Co-B@Ni/RGO 

nanocomposites. 

 

Fig. 6.5 (c) shows the TEM image of Ni/RGO in which small Ni NPs were encapsulated 

on single or few-layer graphene sheets without any agglomeration in the size range of 2-5 nm. 

In image, mostly Ni NPs were 10 nm indicated the simplicity and efficacy of our synthesis 

protocol (in which without any use of specific surface protection groups or organic functional 

moieties Ni NPs were adhere with graphene sheet). This was due to direct mixing of Ni NPs 

with GO and afterward reduction with NaBH4 at RT. Due to this reason, various kind of GO 

functional groups such as carbonyl, epoxide and carboxylic functionalities holds the Ni NPs 

and provide site specification for them. Fig. 6.5 (d) displays the TEM image of Co-B@Ni/RGO 

in which discrete assemblies of Co-B@Ni/RGO were observed with small hole in RGO sheets.  

This was due to the disruption of graphene layer by H radicals which saturated the sp2 

hybridized (-C=C) bonding of RGO to sp3 hybridized (-C-H) bonding. Which led the resilience 

between C-C bonding and makes the defect in graphene sheet [34]. Further, we have also 

studied the synthesis mechanism of Co-B NPs.  It has been already reported that the 

characteristics and properties of Co-B NPs is very sensitive on reaction conditions such as pH, 

temperature, ratio of NaBH4 and OH- and concentration of reacting species. All these factors 

significantly affected the morphology and activity of the product. At the time of reduction 

basically, two main reactions simultaneously proceeded: (i) reduction of Co2+ ion by BH4
− and 

(ii) hydrolysis of  BH4
− species as represented in equation 6.2 and 6.3 [35]: 
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xCo2+ + BH4
−  → xCo-B + 1/2H2 + 3H+                               (6.2) 

                      3BH4
− + 9H2O + 3H+ → 3H3BO3 + 12.5 H2                                               (6.3)                                 

The overall reaction can be expressed as 6.4: 

                   xCo2+ + 4BH4
− + 9H2O → xCo-B + 3H3BO3 + 12.5 H2                            (6.4) 

 

 

 

 

 

 

 

 

Figure 6.6 Schematic illustration of reduction of Co2+ ion under alkaline NaBH4 reducing condition and 

also H2 spillover mechanism on Ni/RGO and defect creation inside in graphene sheet due to H radicals. 

Reaction (6.3) indicated that decomposition of BH4
− largely dependent on pH value 

when it was high, the BH4
- species is quite stable and the rate of hydrolysis was suppressed. 

However, high pH condition (pH ~13.25) positively affected the Co2+ ion reduction due to it 

suppresses the BH4
− hydrolysis and increases the reduction efficiency of Co2+ which 

predominantly formed Co(OH)2 species as shown in Fig. 6.6. Moreover, at the same time BH4
- 

species try to attaches with metal units and exchanges the ligand (hydroxyl to hydride) and 

makes the very unstable B(OH)4
- species which further decomposes to B(OH)3 that finally 

yielded the NaBO2 side product. During the reduction process it reacted with BH4
− species and, 

suggested the transient formation of Co-BH4 species which act as a precursor for Co-B specie. 

Further, we have investigated the catalytic activity of synthesized catalysts for NaBH4 

decomposition in aqueous alkaline medium. Fig. 6.7 (a) shows the comparative H2 generation 

capability of three different catalysts i.e. the intermediate composites Ni/RGO and Co-B/RGO 

and final product Co-B@Ni/RGO at 30 °C. Experimental results exhibited the highest catalytic 

performance of Co-B@Ni/RGO nanocomposite for NaBH4 decomposition. In Fig. 6.7 (a) Co-
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B@Ni/RGO nanocomposite shows the fastest gaseous evolution (10 min) compare to 

intermediate nanocomposites that were shown 40 and 120 min, respectively. This high catalytic 

activity of Co-B@Ni/RGO nanocomposite can be explain on the basis of four major factors: (i) 

superficial attachment of boride phase on Ni/RGO support (ii) high conductivity of Ni/RGO, 

and (iii) hydrogen spillover on Ni/RGO. From our strategy, mostly Co-B NPs were on the 

Ni/RGO surface, were not within the bulk and completely exposed for catalytic reaction. Due 

to this they were easily contacted with BH4
−  species (therefore, adsorption/desorption of 

molecules was greatly enhanced).  Moreover, high conductivity of Ni/RGO also facilitated the 

catalytic reaction; where, RGO played its own role and provided the support for Co-B NPs from 

prevention of agglomeration and facilitate the easy electron transfer [25]. Importantly, Ni works 

as co-catalyst and it easily spillover the H2 to hydrogen radicals that interrupted inside of 

catalyst cavity and when these atomic H escapes out from the system at that location it created 

the vacancy and provide the channelling for entrance for BH4
− species and increased the catalytic 

activity. According to recent report of Dai et al. also, interrupted hydrogen positively affected 

the NaBH4 hydrolysis and able to reduce their induction period [36].  

 

Figure 6.7 Catalytic hydrogen generation from the hydrolysis of mix solution of 1 wt. % of NaBH4 + 

NaOH at  30 °C (a) comparative study of three catalysts (i) Ni/RGO, (ii) Co-B/RGO and (iii) Co-

B@Ni/RGO, (b) effect of NaOH extent (1 wt. %, 5 wt. %, 10 wt %, 15 wt. %) for hydrolysis of NaBH4 

at 30 °C (c) temperature dependent comparative catalytic activity of Co-B@Ni/RGO nanocomposite at 

25 °C, 30 °C, 35 °C and 40 °C. (d) Arrhenius plot ln k vs. the reciprocal temperature 1/T. 
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During the catalytic hydrolysis of NaBH4 on metal centres; an intermediate species M-

 BH4
− complex is formed which further dissociated to M-H species [36]; and whereby, 

negatively charged H reacts with H2O and makes H2 and OH−. This generated H2 facilitated the 

formation of new active sites for hydrolysis of NaBH4. Hydrolysis kinetics of NaBH4 is not 

only dependent on catalyst performances, it affected by other factors also such as NaOH 

concentration and reaction temperature. Further, we have analyzed the effect of NaOH amount. 

It is obvious that a higher NaOH concentration would provide less hydrogen density. In order 

to understand the effect of NaOH concentrations on the hydrogen generation rate, a set of 

experiments were performed with the NaOH concentrations varied from 1 to 15 wt.% while the 

NaBH4 concentration was held constant at 2 wt.%. Fig. 6.7 (b) shows the effects of NaOH 

concentration on the rate of reaction at 30 °C. A slightly delay of hydrogen evolution was 

observed for all the samples possibly due to the initial wetting of catalyst, mass-transport 

limitation and the pore diffusion resistance. Results indicated that when NaOH amount was 

highest (15 wt. %) the hydrolysis rate was slow. Whereas, at low amount of it the rate was 

higher. This gradual decrease of rate of reaction with increasing amount of NaOH might be due 

to the extra amount of NaOH produces more extant of Na+ that makes a quick NaBO2 species 

during the hydrolysis process which hinders the active site of catalyst and retard the reaction. 

Moreover, high viscosity and stability of NaBH4 at high pH imparted the rate adversity. In the 

next, we have analysed the effect of temperature on hydrolysis of NaBH4. This is obvious 

temperature plays a vital role in many catalytic reactions and manifest the high rate of reaction 

due to the more number of collision of species. Kinetic studies at different temperatures were 

also carried out using the optimized conditions. Fig. 6.7 (c) represents the hydrogen generation 

kinetic curves at a solution temperature ranging from 25 to 40 °C. To minimize the effect of 

temperature changes due to the exothermic hydrolysis reaction, this set of experiments was 

carried out using 2 wt.% NaBH4 + 1 wt. % NaOH solution. As expected, the initial hydrogen 

generation rate increases significantly with temperature. The influence of temperature is clearly 

shown by both the increasing slope values on the linear region of the plots and the decreasing 

induction period. For comparison of catalysts activities, the initial hydrogen generation rates k 

(mol min−1 g−1) were used to determine the activation energy by the following Arrhenius 

equation (6.5) [37]: 

ln k = ln k0 – (Ea/RT)                          (6.5) 

where, k0 is the rate constant (mol min−1 g−1),  R the gas constant (8.3143 kJmol−1 K−1), 

Ea the activation energy (kJ mol−1), and T is the reaction temperature (K). An Arrhenius plot, in 

which ln k is plotted against the reciprocal of absolute temperature (1/T), was plotted in Fig. 6.7 
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(d). From the slope of straight line, the activation energy was calculated to be 43.1 kJ mol−1. 

This value was comparably favourable with the reported results of Raney Ni-Co (52.5 kJ mol-

1) [38], activated carbon supported Co-B powder catalyst (57.8 kJ mol−1) [20], and Ru- catalyst 

used by the Amendola et al.  (47 kJ mol-1) [39]. Finally, to examine the effects of catalyst 

loading on the hydrogen generation rate, 0.02, 0.04, and 0. 08 g of the catalysts were employed. 

Fig. 6.8 (a) shows the hydrogen generation rate measured using the optimized catalyst and 1 

wt.% NaBH4 + 5 wt.% NaOH solution at 30 °C. As observed in Fig. 6.8 (a) with increasing 

amount of catalyst H2 production rate was increased, implying that hydrogen generation rate 

can be determined by controlling the catalyst loading used in the reactor. Moreover, we have 

investigated the recyclability of catalyst after magnetic filtration and complete washing and 

drying of the catalyst (8 h, at 100 °C). Results shows that the successful hydrolysis of the 1 wt. 

% NaBH4 + 5 wt.% NaOH solution at 30 °C  in three successive cycles, with maintaining  95 

% activity of its initial value indicated the robustness of catalyst for their reusability.   

 

 

 

 

 

 

 

 

Figure 6.8 Catalytic hydrogen generation from the hydrolysis of mix solution of 1 wt. % of NaBH4 + 

NaOH at  30 °C using Co-B@Ni/RGO (a) comparative study at three different weight (b) recyclability 

test of catalyst in three successive cycles. 

 

Additionally, we have performed the systematic CV analysis of synthesised CoB/RGO, 

Ni/RGO and CoB@Ni/RGO nanocomposites in order to investigate detail catalytic mechanism 

and their applicability in the field of charge storage (energy storage) also. The CVs of CoB/RGO 

immobilized at a glassy carbon electrode, in 1 mol dm-3 KOH solution are shown in Fig. 6.9 

(a). Under the conditions used, two pairs of peaks are observed with Epc1 ≈ 0.417 V, Epc2 ≈ 0.026 

V, Epa1 ≈ 0.480 V and Epa2 ≈ 0.117 V vs. Ag/AgCl. These two pairs of peaks (1-1`, 2-2`) are 

attributed to CoII/CoIII and CoIII/CoIV redox couples, respectively [40]. During the first 

consecutive cycles in KOH 1M some adsorption of oxygen-containing species (H2O, OH-) may 

occur leading to the presence of different cobalt species (Co(OH)2, CoOOH, CoO2) [41].  In the 
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range of scan rates (ν) between 0.010 and 0.500 V s-1, both cathodic (Epc2) and anodic (Epa2) 

peak potentials varied between 0.013 and 0.043 V, which is characteristic of a quasi-reversible 

process where the rate of the heterogeneous electron transfer is slow compared to the time scale 

of the experiment. Fig. 6.9 (b) depicts the plot of log ip vs. log ν for CoB/RGO. Since it was 

difficult to stablish a proper baseline for the first pair of peaks (1-1`) the values corresponding 

to these were not inserted.   

 

 

Figure 6.9 Cyclic voltammograms of Co/RGO immobilized at a GC electrode in 1 mol dm-3 KOH 

solution at different scan rates from 0.010 to 0.500 V s-1 (a); Plots of log ipc2 and ipa2 vs. log ν (b). 

 

These results show that for scan rates between 0.010 and 0.100 V s-1 both cathodic (ipc2) 

and anodic (ipa2) peak currents were directly proportional to ν (with r = 0.994 and 0.999, 

respectively), which indicates a surface-confined redox process. However, for scan rates higher 

than 0.100 V s-1 both ipc2 and ipa2 vary linearly with the square root of scan rate (with r = 0.998 

and 0.997, respectively) which indicates a change in the diffusion regime from a surface-

confined to a diffusion-type behaviour. Thus, diffusion and/or migration of charge 

compensating counter ions (i.e. hydrated alkali ions and hydroxide or proton species) may have 

an effect on the rate-determining step of the overall electrochemical process [41].  
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Figure 6.10 Cyclic voltammograms of CoB@Ni/RGO immobilized at a GC electrode in 1 mol dm-3 

KOH solution at different scan rates from 0.010 to 0.500 V s-1 (a); Plots of log ipc1 and ipa1 vs. log ν (b). 

 

The CVs of CoB@Ni/RGO immobilized at a GC electrode, in 1 mol dm-3 KOH solution 

are depicted in Fig. 6.10 (a). Under the same conditions as above, only one pair of peaks is 

observed with Epc1 ≈ 0.155 V and Epa1 ≈ 0.321 V vs. Ag/AgCl. Most likely, this peak has the 

contribution of both cobalt and nickel redox processes but as the latter is more intense, the 

cobalt redox process is imperceptible.  In the range of scan rates between 0.010 and 0.500 V s-

1, both the anodic and cathodic peak potentials shifted close to 0.038 V, which is characteristic 

of a quasi-reversible process. Fig. 6.10 (b) depicts the plot of log ip1 vs. log ν for CoB@Ni/RGO; 

these results show that both cathodic and anodic peak currents vary linearly with the square root 

of the scan rate (with r = 0.996 and 0.989, respectively), indicating a diffusion-controlled redox 

process. For a better understanding of the differences between the three prepared electrodes it 

is shown in Fig. 6.11 the cyclic voltammograms of CoB@Ni/RGO, CoB/RGO and Ni/RGO 

modified GC electrodes in 1 mol dm-3 KOH solution at 0.10 V s-1. The results show that 

CoB@Ni/RGO/GCE presents higher peak currents although the peak-to-peak separation (ΔEp) 

is larger than Ni/RGO/GCE. Since, the specific capacitance is usually directly proportional to 

the area of the CV curves covered, CoB@Ni/RGO has the highest specific capacitance among 

the three materials used [42].  Electrochemical impedance spectroscopy was further used in 

order to get more insights into the prepared modified electrodes. From the cyclic voltammetry 

experiments and the accessible potential window, it was decided to carry out electrochemical 

impedance experiments in 1 mol dm-3 KOH solution at values of applied potential of 0, 0.1, 0.2, 

0.3, 0.4 and 0.5 V vs Ag/AgCl; these values were chosen to cover most of the potential range 

used in CV experiments. 
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Figure 6.11 Cyclic voltammograms of CoB@Ni/RGO, CoB/RGO and Ni/RGO modified GC electrodes 

in 1 mol dm-3 KOH solution at 0.10 Vs-1.  

 

Fig. 6.12 depicts the complex plane impedance spectra of CoB@Ni/RGO modified GC 

electrodes in 1 mol dm-3 KOH solution at different applied potentials. The results show that the 

application of different potentials leads to considerable changes in the spectra: from 0 to 0.2 V 

the spectra show one depressed semicircle in the high frequency region and a linear part in the 

low frequency region. It is well accepted that the semicircle corresponds to kinetic control of 

charge-transfer process and the linear part represents the Warburg impedance, which is related 

to diffusion control [43]. 

 

                                     

 

Figure 6.12 Complex plane impedance spectra of CoB@Ni/RGO modified GC electrodes in 1 mol dm-

3 KOH solution at different applied potentials.  
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For 0.3 and 0.4 V only a linear part is observed which suggests that the semicircle region 

is very small and the spectrum is dominated by the Warburg impedance, and thence diffusion 

control, over nearly the whole range of frequencies examined. For 0.5 V the spectrum just 

presents the semicircle. Still, for all spectra, the cell resistance (R/Ω) i.e., the intercept of the real 

axis at high frequency is 1.4 Ω cm2 with exception of 0.2 V (1.2 Ω cm2). Fig. 6.13 (a) depicts 

the complex plane impedance spectra of CoB@Ni/RGO, CoB/RGO and Ni/RGO modified GC 

electrodes in 1 mol dm-3 KOH solution at 0.5 V. The Ni/RGO presents the highest diameter of 

the semicircle which indicates higher transfer resistance, Rct, (≈ 200 Ω cm2), while the 

CoB/RGO presents the lowest (≈ 40 Ω cm2). Compared to Ni/RGO, the Rct of CoB@Ni/RGO 

was decreased greatly (≈ 67%), suggesting that the introduction of CoB improved the electron 

conductivity of the new material. Also, analysis of the spectra in the high frequency region 

shows that the cell resistance for the three materials is similar. When a 0.4 V is applied to the 

system the spectra change, as it can be observed in Fig. 6.13 (b). In the low frequency range 

instead of the semicircle is now observed a straight line suggesting that that the spectrum is 

dominated by the Warburg impedance. In fact, if the high frequency range is expanded (see 

inset) it reveals that only Ni/RGO presents a semicircle. The low RΩ and Rct values suggest that 

CoB@Ni/RGO presents good electrochemical capacitive properties and that it should be 

advantageous for electrochemical applications.  

 

 

Figure 6.13 Complex plane impedance spectra of CoB@Ni/RGO, CoB/RGO and Ni/RGO modified GC 

electrodes in 1 mol dm-3 KOH solution at 0.5 V (a) and 0.4 V (b).  
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6.4 Conclusions 

 

In the present study, we successfully synthesized the Co-B@Ni/RGO nanocomposite 

by a facile method. TEM image clearly displays the superficial attachment of the Co-B NPs on 

Ni/RGO entity, also defects inside of graphene layers due the produced radical hydrogen. We 

provide the mechanistic explanation regarding of H atoms interruption in catalyst cavity and 

their spillover and migration possibility.  The synthesized Co-B@Ni/RGO nanocomposite 

exhibited their enhanced catalytic activity toward hydrolysis of alkaline mix solution of NaBH4. 

CV and impedance plot clearly shows the high charge storage capability and charge 

conductivity in Co-B@Ni/RGO nanocomposite which may provide the future 

commercialization of catalyst for complete energy application viz. H2 production and charge 

storage together.  
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GRAPHENE NANOCOMPOSITE FOR CATALYSIS REACTION:  
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7.1 Introduction 

Noble metals (Pd, Ag, Au and Pt) nanoparticles based reduced graphene oxide (RGO) 

composites have recently gathered a lot of interest due to their high catalytic activity and 

chemical inertness [1-7]. However, high costs and limited number of noble metal resources 

urge a restricted consumption of expensive materials with retention of catalytic property for 

progressive research and real field of interest. A combination of other less expensive materials 

may be a better solution to deal with this issue. First raw transition metal elements, especially 

Fe, Co and Ni are best suited propositions owing to their low cost, wide availability and co-

catalytic activity [8-10]. A very recent work shows the methanol electro-oxidation using 

Fe3O4@Au/RGO nanocomposite with high performance [11]. More interestingly, Pozun et al. 

systematically investigated the catalytic activity of the bi-metallic NPs catalyst for 

hydrogenation reaction and emphasized the role of electronic density of sates (DOS) of surface 

species [12].  They have developed the idea based on Brønsted−Evans−Polanyi (BEP) relation 

for surface reactions/adsorption energies; emphasized the role of electronic structure in metals, 

specifically the d-band center which was first modeled by Newns. Moreover, for heterogeneous 

catalysis reactions, integration of metal NPs with various kind of supports is also fast growing 

area of research due to enhance kinetics and selectivity [13].   
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4-nitrophenol (4-NP) is a common organic pollutant and effluent in many drugs and 

dyes industries and for their reduction it has been reported that catalyst is indeed needful for 

the accomplishment of reaction for their conversion to 4-aminophenol (4-AP) [14]. For the 

reduction of 4-NP it has been reported that catalyst with hydrogen spillover capability is more 

pronounced [15]. For instance, very recently Krishna et al. reported the successful reduction of 

4-NP using Ag@Co/RGO nanocomposite in a very short time (90 s) [16]. Sun et al. 

demonstrated the reduction of 4-NP using Pd/RGO nanocomposite within 120 s [17]. Similarly, 

Barman et al. presented the high catalytic activity of Pd/RGO and Pt/RGO nanocomposites 

towards reduction of 4-NP [18]. However, rate of reduction of 4-NP with non-noble metals 

catalyst was slow. For instance, Chen et al. demonstrated the reduction of 4-NP with Ni/RGO 

in 180 min [19]. The slow reduction process on Ni/RGO can be anticipated by the surface 

oxidation of metallic species during the reaction and further lowering the electronic 

conductivity.  

Considering the high cost of noble metals and slow reduction process of Ni/RGO, it is 

crucial to develop new materials for this catalysis reaction with retention of catalytic activity 

and lower price. In this aspect, it is highly desirable for the higher conductive material along 

with spillover capability. Here we demonstrate the catalytic reduction of 4-NP to 4-AP based 

on transition metal doped graphene nanocomposites. We have synthesized the three different 

nanocatalyst systems on RGO sheets as described below and briefly introduce all of them with 

their catalytic activity towards the 4-NP reduction: 

(i) Cu@Ni/RGO nanocomposite 

(ii) Ag@Co/RGO nanocomposite 

(iii) Pd@NixB-SiO2/RGO nanocomposite 

7.2 Cu@Ni/RGO nanocomposite 

7.2.1 Experimental 

In this work first, graphene oxide (GO) was synthesized by the modified Hummers 

method as previous reported [16]. Then Ni/RGO nanocomposite was synthesized as follows: 

100 mL of aqueous GO dispersion (1 mg/mL) was placed in 4-neck round bottom (RB) flask 

and mechanically stirred. Afterward, 600 mg of NiCl2.6H2O was mixed and the temperature of 

reaction was gradually increased up to 85 °C. Further, under an inert atmosphere of high purity 

Ar gas, 18 mL of hydrazine hydrate was slowly poured inside the reaction mixture and was 

continuously stirred for 25 min. Then, 450 mg of NaBH4 was very slowly added while 
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maintaining of stirring and inert atmosphere. Finally, 25 mL aqueous solution of NaOH (1 M) 

was slowly added and stirred for further 150 min. After completion of reaction the product was 

filtered and washed with ethanol and DD water to remove the impurities. Finally, vacuum dried 

at 100 °C for 3 h and referred as Ni/RGO. Finally, Cu@Ni/RGO nanocomposite was 

synthesized on Ni/RGO as follows: first, Ni/RGO dispersion was prepared in DD water (50 ml, 

2 mg/mL) by ultrasonication (15 min) then, 600 mg of CuSO4.5H2O was added in aqueous 

dispersion and mixed for 20 min with stirring. Afterward, 1M NaOH (10 mL, aq.) solution was 

added in Ni/RGO dispersion to increase the pH of mixture and stirred for 10 min at RT. After 

stirring the precipitate was filtered and re-dispersed in 25 mL DD water by ultrasonication (15 

min). Finally, 10 mL N2H4.H2O with NaBH4 (5 mg) was slowly added under inert atmosphere 

of N2 and stirred for 30 min. After completion of reaction the product was filtered, washed with 

DD water and dried at RT. 

7.2.2 Characterization 

The phase purity, crystallinity and structure of GO, Ni/RGO and Cu@Ni/RGO were 

characterized by X-ray diffraction (XRD, Cu Kα radiation; λ = 0.15414 nm) with scan rate of 

0.02° min−1, 2θ (10-80°). Raman spectra were obtained at RT in back scattering configuration 

with a Lab Ram HR using 532 nm laser line. Scanning electron microscopy (SEM) was 

performed by using SU-70 microscope. A conventional high-resolution (HR) TEM (LaB6 

TEM) was performed to analyse the crystallinity and quality of samples. UV-vis spectra were 

collected by Shimadzu UV-2501PC (UV-vis) spectrophotometer in the absorbance mode. 

7.2.3 Catalytic reduction of 4-NP 

The catalytic test of Cu@Ni/RGO nanocomposite was performed as follows: 1mL of 

each reactant solutions of 4-NP (1.0 mM) and NaBH4 (0.35 M) were transferred to a quartz 

cuvette and mixed by mild sonication. Afterward, 5 mg of the catalyst was added in order to 

start the reaction and mixed. The intensity of the absorption peak at λ = 400 nm was used to 

monitor the process of the conversion of 4-NP to 4-AP.    

 

7.2.4 Results and discussion 

During the reduction process,  GO and Ni2+ ions were simultaneously reduced to RGO 

and Ni NPs in presence of N2H4.H2O and NaBH4 reducing agents which provides the reducing 

species e- and H2.  In the beginning, due to the basic nature of N2H4.H2O it was easily protonated 
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in acidic medium owing to its high pKa value (8.1) and made the N2H5
+ species as equation 7.1 

[24]: 

N2H4 + H2O → N2H5
+ + OH-                    (7.1) 

However, at high pH in basic medium (due to NaBH4 and NaOH) it was decomposed and 

evolved the inert N2 gas and released the electrons for reduction as equation 7.2: 

N2H4 + 4OH− → N2 + 4H2O + 4e−           (7.2) 

Moreover, during the process produced e- reduces the Ni2+ (E0 = −0.25 V), due to the high redox 

potential of N2H4 (E
0 = −1.16 V) as equation 7.3 [25]: 

2Ni2+ + 4e− → 2Ni                              (7.3) 

In addition, NaBH4 also favors the reduction of Ni2+ and provide the reducing environment by 

the evolution of reducing species H2 as equation 7.4 [26]:  

NaBH4 + H2O → NaBO2 + 4H2                (7.4) 

During the process, GO was also efficiently reduced to RGO due the presence of two reducing 

species, e- and H2, as shown in equation 7.5: 

GO + aH2 + be- → cRGO + dH2O             (7.5) 

 

Fig.7.1 (a) displays the XRD patterns of GO and Ni/RGO. GO exhibits a sharp peak at around 

10.9° corresponding to the (001) basal plane with d spacing of (d001 = 0.83 nm) [16]. This value 

was higher than the interlayer spacing of graphite flakes (d-spacing= 0.334 nm) due to the 

presence of oxygenated functional groups and intercalated water molecules. After the reduction 

and intercalation of Ni NPs with graphene this peak was completely diminished and new peak 

was observed at around 23.2° suggests that the well exfoliation of the GO oxygen containing 

functionalities during the reduction process. Moreover, in Ni/RGO three additional peaks were 

also observed at 44. 5°, 51.8° and 76. 76° and attributed the crystallographic diffraction planes 

(111), (2 0 0) and (2 2 0) of face-centred cubic (fcc) Ni (JCPDS card No. 04-0850) [27], and 

the highest intense diffraction peak at around 44.5° suggests that the well crystallinity of Ni-

NPs. The mean crystallite size of Ni NPs in Ni/RGO nanocomposite was also calculated using 

Debye-Scherrer formula d = 0.9/ cos B, where d is the average crystalline size,  is the X-

ray wavelength (Cu Kα =1.54 A○) used,  the angular line width of half maximum intensity and 
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B is the angle between planes (Bragg’s angle), estimated to be around 12.7 nm indicated the 

formation of small crystals of Ni by wet aqueous reduction method compare previously reported 

hydrothermal method [28]. Further, reduction of Cu2+ to Cu (0) and formation of Cu NPs was 

also confirmed by the XRD. In basic condition, initially Cu salt make the Cu (OH)2 and 

precipitated out on Ni/RGO and after that in reducing condition it was easily reduced to Cu (0) 

as shown in equation 7.6 and 7.7 [29]: 

 

Cu2+ + 2OH−→ Cu (OH)2                               (7.6) 

2Cu (OH)2 + N2H4 → 2Cu(0) + N2 + 4H2O    (7.7) 

 

Moreover, during the reduction of Cu2+ ions to Cu (0) by N2H4 and NaBH4, Ni NPs enhances 

the reduction process. Ni is a prominent catalyst for NaBH4 hydrolysis reaction for fuel cell 

application; easily decomposes the BH4 
- species in aqueous medium in to molecular hydrogen 

(equation: 7.8) and concomitantly, it spillover the produced hydrogen and converted it in to 

radical species (equation: 7.9) [30].  

 

NaBH4 + 2H2O → NaBO2 + 2H2                                   (7.8) 

H2                                →     2 H•                                                 (7.9) 

 

XRD of Cu@Ni/RGO shows that presence of all three diffraction peaks related to 

various crystallographic planes of fcc crystal structure. However, all peaks were slightly down 

shifted and major diffraction peak (111) was located at 43.7○ which clearly indicated the 

formation of Cu NPs [31]. 

 

 

 

 

 

 

 

 

 

Figure 7.1 (a) XRD spectra and (b) Raman spectra of GO, Ni/RGO and Cu@Ni/RGO nanocomposite. 
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Further, Raman spectroscopy was used to investigate the change in carbon structure. 

This technique is very specific for carbonaceous materials and able to directly reflect distinction 

between ordered and disordered crystal structures. Fig. 7.1 (b) shows the Raman spectrum of 

GO, Ni/RGO and Cu@Ni/RGO nanocomposite in the range of 1000-1800 cm-1. The Raman 

spectrum of GO displayed two characteristic D and G bands at 1352 and 1608 cm−1 with an 

ID/IG ratio of 0.93. This was already reported that G band is an intrinsic feature of graphene and 

closely related to the vibrations in all sp2 carbon materials [32]. D band becomes prominent 

when defects are introduced in graphene. In GO it is activated due to the reduction in size of 

the in-plane sp2 domains due to the attachment of various functionalities in edge and basal plane 

sites [33]. While, in Ni/RGO and Cu@Ni/RGO nanocomposite spectra these two prominent 

bands D and G were located at 1347 cm−1 and 1597 cm−1 and 1344 cm−1  and 1595 cm−1 with 

increased ID/IG ratio of 1.02 and 1.03, respectively, which clearly indicates the corresponding 

changes inside of carbon system.  

Next, we have carried out systematic microscopic investigation of product Ni/RGO and 

Cu@Ni/RGO nanocomposite. Fig. 7.2 (a) and (b) shows the SEM images of Ni/RGO in lower 

and higher magnifications. Both the images depicts the well intercalation of Ni NPs with 

graphitic flakes and in higher magnification image clearly displays the covering of Ni NPs by 

single or few layers of graphene sheets. To confirm the presence of Ni we have also carried out 

the elemental mapping as shown in Fig. 7.2 (c), which shows the formation of small Ni NPs in 

spherical shape without any specific agglomeration [34]. Fig. 7.2 (d) and (e) shows the lower 

and higher magnification SEM images of Cu@Ni/RGO sample. Here, we clearly visualized the 

Cu NPs were homogeneously distributed and covered the Ni/RGO layers. In higher 

magnification image shows all particles were in uniform size and less than 1 µm and in spherical 

shape. To confirm the presence of Cu we have also carried out the elemental mapping of 

Cu@Ni/RGO nanocomposite as shown in Fig 7.2 (f). In which all Cu NPs were in small size 

and densely distributed as compare to Ni indicated the superficial attachment of Cu on Ni/RGO 

layers.  
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Figure 7.2 (a) and (b) SEM images of Ni/RGO in lower and higher magnifications, respectively; and 

(c) elemental mapping of Ni. (d) and (e) SEM images of Cu@Ni/RGO in lower and higher 

magnifications, respectively; and (f) elemental mapping of Cu. 

 

Moreover, to confirm the presence of Ni and Cu elements we have also carried out the 

EDX analysis. Fig. 7.3 displays the EDX spectrum of Cu@Ni/RGO nanocomposite and results 

show the presence of all elements: Cu, Ni, O and C with the exception of the light weight 

element H [16]. 

 

 

Figure 7.3 EDX spectra of Cu@Ni/RGO nanocomposite. 

TEM analysis was also performed to confirm the shape, morphology and internal 

structure of Cu@Ni/RGO nanocomposite for detailed investigation of reduction reactions. Fig. 

7.4 (a) and (b) show the TEM images of Ni/RGO nanocomposite at lower and higher 

magnification, respectively. Fig. 7.4 (a) clearly displays the homogeneous distribution of Ni 
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NPs on the graphene sheets where all particles were in spherical shape without any specific 

kind of agglomeration and mostly Ni NPs were attached to the graphene sheet. It was due to 

the electrostatic attraction of positively charged Ni2+ ions to negatively charged GO layers (zeta 

potential -37 mV at pH 7.0). The oxygen containing groups of GO acts as a surface protection 

agents and capping agents for Ni NPs which avoids the agglomeration of Ni NPs and prevents 

the nucleation and growth. TEM image shows the average particle size of Ni NPs that were 

estimated to be ∼8.8 nm. Fig. 7.4 (b) shows the High-resolution TEM (HRTEM) image of 

Ni/RGO in which magnified region clearly shows the lattice spacing of Ni (111) with a d 

spacing of 0.20 nm (inset image). 

 

 

Figure 7.4 (a) and (b) TEM images of Ni/RGO in lower and higher magnifications, respectively, and 

corresponding HRTEM image showing the lattice spacing of Ni (111) (inset image of Fig.4b) . 

Fig. 7.5 (a) and (b) shows the TEM images of Cu@Ni/RGO nanocomposite in lower 

and higher magnifications, respectively. Both images shows the change in graphene structure 

(more flappy) compared to Ni/RGO image (Fig. 7.4 (a), above). This was probably due to the 

additional reduction of RGO sheet by N2H4.H2O and NaBH4 and subsequent, spillover the 

produced H2, which led to further exfoliation of remaining oxygen functionalities at the time of 

the reduction of Cu2+ ions to Cu NPs. In both images mostly Cu NPs were encapsulated on Ni 

NPs and morphology reveals the spherical shape of them.  Higher magnification image shows 

the average particle size of Cu NPs was ∼25 nm. This was obvious due to the superficial 

attachment of Cu NPs on Ni NPs. Fig. 7.5 (c) shows the HRTEM image of Cu@Ni/RGO 

nanocomposite in which three magnified region clearly shows the detailed internal structure of 

nanocomposite. Point A depicts the layer graphitic structure and corresponding inset image 
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reveals the lattice spacing of C (002) with a d spacing of 0.37 nm. Point B indicated the 

formation of highly crystalline Cu NPs and corresponding inset image reveals the inter-planar 

spacing of Cu (111) with a d spacing of 0.23 nm. Moreover, we have also evaluated the 

formation of some extent of Cu-Ni alloy during the synthesis at the boundary region of Ni NPs 

and Cu NPs. This was due to the difference in redox potential of Cu and Ni (+ 0.34 V, Cu || -

0.25 V, Ni vs. SHE) and at the time of mixing of Cu2+ ions with Ni/RGO nanocomposite some 

part of Ni NPs were etched by the Cu2+ ions and during the reduction it converted into Cu-Ni 

alloy as depicted by the Point C and their corresponding inset image reveals the lattice spacing 

of Cu-Ni alloy (111) with a d spacing of 0.206 nm. 

 

Figure 7.5 (a) and (b) TEM images of Cu@Ni/RGO nanocomposite in lower and higher magnifications, 

respectively, and (c) corresponding HRTEM image showing the lattice spacing of C (002) (point A, 

inset image of Fig. 7.5 (c)), lattice spacing of Cu NPs (111) (point B, inset image of Fig. 7.5 (c)) and 

lattice spacing of Cu-Ni alloy (111)) (point C, inset image of Fig. 7.5 (c))  . 

 Finally, we have carried out the 4-NP reduction in order to evaluate the catalytic properties 

of the prepared nanocatalysts. Fig. 7.6 (a) depicts the UV-vis spectra of 4-NP where initially 

peak at 400 nm was due to the formation of 4-nitrophenolate intermediate ion in aqueous 

medium (due to the increment of neutral aqueous solution alkalinity by NaBH4). After the 

addition of Cu@Ni/RGO nanocomposite it was continuously decreased and almost disappeared 

within 90 s. Meanwhile, a new peak was appeared at ≈ 300 nm, suggests the successful 

reduction process and formation of 4-AP in a very short period at RT. The catalytic activity of 

Cu@Ni/RGO nanocomposite was much higher than previously reported many works [34]. This 

high catalytic activity can be attributed on the basis of catalyst conductivity and simultaneous 
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spillover effect. To confirm this fact we have also carried out the reduction of 4-NP by Cu/RGO 

and Ni/RGO nanocomposites and corresponding reduction times were 6 min and 18 min, 

respectively. Considering this, in bimetallic condition Cu and Ni works with synergism and 

provides the extra defects sites for reactions by increment of catalytic surface area. Moreover, 

metallic RGO surface also enhances the rate of reaction through their π–π interaction for 4-NP 

molecule [16], providing the high electronic charge migration accessibility and due to this 

electrons are easily transferred to sp2 hybridized nitro group of 4-NP molecules.  

 

 

    

 

 

 

 

 

 

 

 

 

Figure 7.6 UV-vis spectra of (a) time dependent reduction process of 4-NP after the addition of 

Cu@Ni/RGO nanocatalyst in reaction medium. (b) Pseudo-first order plots of 4-NP reduction reaction 

catalysed by Cu@Ni/RGO nanocatalyst (red line) and decrement of relative absorbance (blue line). (c)  

Comparison of pseudo-first order plots of 4-NP reduction reaction catalysed by different catalysts 

Ni/RGO, Cu/RGO and Cu@Ni/RGO nanocatalyst, in the presence of NaBH4. (d) Stability measurement 

of Cu@Ni/RGO nanocatalyst during 5 successive cycles.  

 

 Further, we have performed the kinetic measurement of Cu@Ni/RGO nanocomposite as 

shown in Fig. 7.6 (b). Which shows the plot of A/A0 versus reaction time (T) for the reduction 

of 4-NP along with plot between ln (A/A0) and reaction time (T). In ln (A/A0) scale a linear 

relationship was obtained which directly inferred the concentration of 4-AP via equation 7.10 

[35]. 
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k = t-1 ln (A/A0)        (7.10) 

 

  where, k is the apparent rate constant, A and A0 are the concentrations of 4-NP at time t and 

0, respectively [36]. The calculate value of k was 0.023 s-1 or 1.4 min-1 with good linear 

regression of R2 of 99.97. This k value was much higher than many previously reported works 

[17,19,34]. Fig. 7.6 (c) shows the rate constants of Cu/RGO and Ni/RGO with comparison of 

Cu@Ni/RGO and about 4 and 11 times, respectively lower with them, indicating that the 

catalytic activity of Cu NPs can be remarkably improved by combining Ni NPs entity. Finally, 

we have performed the recycling test of Cu@Ni/RGO nanocomposite for reduction of 4-NP 

organic molecule by insertion of additional aliquots (25 µl) of reagents in same reaction cell. 

After each addition, the UV was recorded and the catalysts exhibited well stability towards the 

4-NP reduction and corresponding time was increased up to 180 s for 5th cycle as shown in 

Fig. 7.6 (d), suggests the robustness of catalyst at least for 5 consecutive cycles. 
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7.3 Ag@Co/RGO nanocomposite and its high catalytic activity towards hydrogenation 

of 4-nitrophenol to 4-aminophenol 

Hydrogenation of 4-NP was also achieved using a novel catalyst Ag@Co/RGO 

nanocomposite. A recent work demonstrates the reduction of 4-NP with Ag/RGO however, it 

shows a slow process [16]. This may be due to the basic difference of Ag metal regarding for 

dissociation of NaBH4 reducing agent. It has been reported that Co and its borides (CoxB) are 

prominent catalyst for hydrogen generation from NaBH4. The combination of Co with Ag can 

provide the higher catalytic activity along with magnetic characteristic. However, Co is easily 

oxidized due to the easy diffusion of oxygen in crystal lattice and requires the protective layer 

on its surface. To solve such kind of problem we discovered a new method for easy reduction 

of Co2+ and protection of Co (0) core via using one more additional reducing agent L-AA with 

NaBH4. A facile and room temperature method has been established towards the synthesis of 

novel catalyst Ag@Co/RGO for the hydrogenation of 4-NP.  

7.3.1 Synthesis of Ag@Co/RGO catalyst  

To synthesize the nanocomposite, 500 mg of CoCl2.6H2O was mixed in a well sonicated 

35 mL dispersion of GO (3 mg/mL) via magnetic stirring (30 min) at RT in a 200 mL flask. 

Later, 350 mg of L-AA was added to above dispersion and dissolved by stirring (10 min). 

Subsequently, 15 mL of basic solution of NaBH4 (pH 12.5) was added drop wise under 

continuous mechanical stirring until the hydrogen is released. The product was magnetically 

separated and washed with DD water and methanol and redispersed in DD water by mild 

sonication for 1 h at RT. Followed by, 180 mg of AgNO3 salt was directly mixed in above 

dispersion and mechanically stirred for 5 min. To reduce the Ag+ ions, 2 mL of 1M NaBH4 was 

added in presence of 50 mg L-AA and final product was filtered and washed with DD water 3-

4 times to remove the impurities and dried in vacuum oven at 80 °C for 2 h.   

7.3.2 Catalytic reduction of 4-NP 

For catalytic testing of Ag@Co/RGO nanocomposite the reactant solutions of 4-NP and 

NaBH4 were freshly prepared in molar concentration of 1.2 mM and 0.35 M, respectively. 

Followed by, 1 mL of both solutions were added and mixed by magnetic stirring and transferred 

to a quartz cuvette. Subsequently, 5 mg of catalyst was loaded into the cuvette to start the 

reaction. The intensity of the absorption peak at 400 nm in ultraviolet-visible (UV-vis) 

spectroscopy was used to monitor the process of the conversion of 4-NP to 4-AP.   
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7.3.3 Results and discussion 

In this work, Ag@Co/RGO nanocomposite synthesized by a facile and novel method 

using two reducing agent L-AA and NaBH4 under aqueous basic condition. Initially, GO was 

dispersed in DD water by sonication (15 min) followed by mixing of Co2+ salt. By this process 

Co2+  was grafted onto the negatively charged GO sheet. Further, a pre-calculated amount of L-

AA was mixed in above dispersion by mechanical stirring at RT which makes the protective 

layer on Co2+. In the next step, NaBH4 was slowly added in reaction mixture and simultaneously 

three process were happened as depicted in equations (7.11-7.13): 

                                              NaBH4 + 2H2O = NaBO2 + 2H2                           (7.11) 

                                              aGO + bH2 ↔ cRGO + dH2O                               (7.12) 

                                              Co2+ + 2e-    = Co (0)                                             (7.13) 

In first step, hydrogen gas is generated by the decomposition of NaBH4, in second step 

it reduces the GO and in final step it makes the Co NPs. During reaction in the presence of 

NaBH4 alkaline solution, L-AA became deprotonated and makes negatively charged anion and 

easily loose the electrons and these generated electrons also  reduces the GO and Co2+ ion 

entities. Moreover, at alkaline condition it was converted into L-ascorbate ion which works as 

an anionic ligand and creates a blanketing barrier for environmental O2 diffusion and protected 

the Co core. Further, in next step, it provide the support for Ag+ ions also and prevents the 

agglomeration of Ag NPs. Here, XRD was used to probe the reduction of GO to RGO and 

formation of Ag@Co/RGO nanocomposite. Fig.7.7 shows the XRD spectra of graphite powder, 

GO and Ag@Co/RGO nanocomposite. In the spectra, the peak related to (002) crystallographic 

plane of graphite powder was shifted to 11.3 degree from 26.5 degree after the oxidation process 

and suggests the exfoliation of graphite powder [10]. After the reduction, carbon peak related 

to (001) basal plane of GO was deprived and new peaks were observed at 38.39, 44.55, 64.72, 

77.63 and 81.81 indicates the diffraction from (111), (200), (220), (311) and (222) 

crystallographic planes. The peak position and corresponding diffraction intensity from various 

lattice planes suggests the formation of fcc structure of crystalline Ag phase [30]. However, any 

specific peak of Co (0) was not observed in XRD pattern. To ascertain the presence of Co metal, 

further we have performed the magnetic measurements which may directly reflects the 

existence of metallic cobalt inside the nanocomposite.  
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Figure 7.7 XRD spectra of GO and Ag@Co/RGO nanocompsite. 

Fig. 7.8 displays the magnetic characteristic of Ag@Co/RGO nanocompsite which 

shows the typical ferromagnetic behaviour of M-H plot at RT with a saturation magnetization 

of 9.77 emu/gm and suggests the formation of Co nanocrystals within graphene matrix. In 

absence of L-AA, this value was much lesser and was estimated only 2.43 emu/gm. This 

indicates the efficacy of our synthesis procedure for preparation of magnetic Co NPs along with 

GO reduction. Further, in order to elucidate the structure of Ag@Co/RGO nanocomposite and 

reduction mechanism of graphene system in more detail, we have also carried out the Fourier 

transform infrared (FTIR) spectroscopy. Fig. 7.9 shows the FTIR spectra of GO and 

Ag@Co/RGO nanocomposite samples (in the range of 2000-1400 cm-1). In GO, two sharp 

peaks were observed at around 1725 and 1615 cm-1 and first peak was attributed as C=O 

stretching mode of sp2 vibrations and second peak was related to the surface adsorbed water 

molecule [36]. However, after the reduction both peaks were diminished and one new peak was 

observed at 1630 cm-1 which indicates the stretching mode of vibration of alkene bonding (-

C=C) and suggests the restoration of graphitic structure in reduced product. To ascertain the 

change in carbon system Raman spectroscopy was also performed.  

 

Figure 7.8 RT magnetization plot (M-H) of Ag@Co/RGO nanocompsite. 
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Fig. 7.10 shows the Raman spectrum of GO and Ag@Co/RGO in the range of 1000-

2000 cm-1. In GO spectra, two prominent bands D and G were located at 1354 cm−1 at 1601 

cm−1 with respective ID/IG ratio of 0.95. This is well known fact that G band is an intrinsic 

feature of graphitic system and it corresponds to the first-order scattering of the E2g mode of 

sp2 domain of carbon (related to the all sp2 carbon vibrations in long-wavelength optical 

phonons TO and LO) [10] and [36]. 

 

               Figure 7.9 FTIR spectra of GO and Ag@Co/RGO nanocompsite. 

D band is arising after the defect introduction and related to the characteristic breathing 

mode of A1g symmetry [37]. Whereas, in Ag@Co/RGO, both D and G bands were shifted to 

lower wave number (red-shifted) and appeared at 1349 and 1592 cm-1, respectively with 

increased ID/IG ratio of ~1.06 and this increment ratio clearly reveals that corresponding changes 

inside carbon system after the reduction due to more defects inside of graphene system.  

 

 

             Figure 7.10 Raman spectra of Ag@Co/RGO nanocompsite. 
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Further, we have carried out systematic microscopic investigation of initial materials 

GO, RGO and Ag@Co/RGO nanocomposite to show the corresponding changes in carbon 

system. Fig.7.11 (a) and (b) shows the SEM images of GO and RGO respectively. Image of GO 

clearly exhibits the few layer of graphitic carbon with typical wrinkle behavior [37].  Image (b) 

displays the morphology of RGO reduced by the NaBH4 in absence of metal salts where thin 

sheet of graphene was observed. 

 

Figure 7.11 SEM images of (a) GO and (b) RGO. Images (c) and (d) Ag@Co/RGO nanocompsite in 

higher and lower magnifications, respectively. 

Fig. 7.11 (c &d) shows the SEM images of Ag@Co/RGO nanocomposite after the 

loading of Ag NPs on Co. In higher magnification image it was clearly visualized that tiny Ag 

nanoparticles were decorated on to the surface of Co clusters and covered by the thin layer of 

graphene. Moreover, both SEM images shows the monodispersity and spherical nature of NPs 

without any specific agglomeration and indicates the efficacy of our new synthesis method. 

Further, to ascertain of Co and Ag elements in RGO matrix we have performed the EDX 

analysis also (Fig. 7.12). Which clearly shows that the presence of both metal elements.  
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Figure 7.12 EDX spectra of Ag@Co/RGO nanocompsite. 

Finally, Ag@/Co/RGO nanocomposite catalyst was applied for hydrogenation reaction 

of 4-NP reduction in presence of freshly prepared NaBH4 aqueous solution. The progress of 

reaction was monitored by UV–visible technique. It has been reported that aqueous solution of 

4-NP displays pale yellow colour and exhibit a peak at around 317 nm [31-33]. In presence of 

NaBH4 solution it turned to greenish-yellow colour and shifted to 400 nm due to the formation 

of 4-nitrophenolate ion which retained for several hours in the absence of catalyst. After the 

addition of Ag@/Co/RGO nanocomposite, immediately this peak started to decrease and 

completely disappeared within 45 s.  Fig. 7.13 (a) shows the UV-vis spectra of 4-NP reduction 

after the addition of catalyst. Where peak at 400 nm was diminished and a new peak was 

observed at around 300 nm. This indicates the successful reduction process and formation of 4-

aminophenolate and high catalytic activity of Ag@/Co/RGO nanocomposite as compared to 

previously reported works [31-33]. Further, to investigate the role of individual metal 

component (Ag and Co) in graphene matrix; we have also carried out the experiment with 

Co/RGO and Ag/RGO without altering reaction conditions. It was noticed that reduction 

process was too slow in both cases as compared to Ag@Co/RGO nanocomposite and estimated 

time was 55 and 15 min, respectively. These results suggested that such a high catalytic activity 

was only achieved due to the construction of bimetallic structure with graphene. It implies that 

the synergism effect of metal species where Co decomposes the NaBH4 and noble metal (Ag) 

spillover the hydrogen molecule into radical hydrogen [37]. Moreover, RGO also played it role 

and provide the support for 4-NP molecule and facilitate the easy hydrogen transfer to sp2 

hybridized nitro group via own π–π interactions.  
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Figure 7.13 UV-Vis spectra of (a) 4-NP reduction using Ag@Co/RGO nanocomposite; (b) stability 

measurement of catalyst during 5 successive cycles. 

Further, we have also investigated the stability of catalyst by the inserting additional 

aliquots (25 µl) of reagents in same reaction cell. After each addition, the UV was recorded and 

the catalysts exhibited well stability towards the 4-NP reduction and corresponding time was 

increased up to 90 s for 5th cycle as shown in Fig. 7.13 (b) and suggests the robustness of catalyst 

for reduction of 4-NP organic molecule. 
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7.4 Hydrogenation of 4-nitrophenol to 4-aminophenol using Pd@NSG 

The catalytic test of 4-NP reduction was also evaluated on Pd@NSG nanocatalyst 

(detailed described in chapter 3) in order to evaluate the catalytic properties of the prepared 

catalysts In absence of the catalyst, NaBH4 only produces the 4-nitrophenolate intermediate ion 

(peak at 400 nm) in aqueous medium due to the increment of neutral aqueous solution alkalinity 

which is maintained for several hours (Fig. 7.14(a)). After the addition of Pd@NSG catalyst, 

the peak related to 4-NP was drastically decreased and almost disappeared within 2 min (120 

s) as depicted in Fig. 7.14(b). At the same time, a new peak appears at around 300 nm which 

suggests the successful reduction process and the formation of 4-AP confirming the high 

catalytic activity of Pd@NSG nanocomposite compared to previously reported works. This 

higher catalytic activity of Pd@NSG nanocomposite can be attributed to the presence of bi-

metallic condition of two well-known hydrogenation reaction catalyst (Pd and NixB). 

Considering this, in bimetallic condition of Pd and NixB, the extra defects associated on metal 

nanoparticles grain boundaries (near to the interface site) allow the host species to occupy the 

defect centres. 

 

Figure 7.14 UV-vis spectra of (a) 4-NP molecule initially and after the addition of  NaBH4 in aqueous 

medium at 25 °C and (b) time dependent reduction process after the addition of Pd@NSG nanocatalyst 

in reaction medium. (c) Pseudo-first order plots of 4-NP reduction catalysed by Pd@NSG in the 

presence of NaBH4 (red) and NixB-SiO2/RGO (blue). (d) Stability measurement of Pd@NSG 

nanocatalyst during 5 successive cycles. 

Moreover, while hydride (H-) species come to the contact with bimetallic boundaries 

and faces, the different Fermi energy level of the two metal centres contacted to each other and 

rearranges their surface charge and provided their electronic population for reduction process 



Chapter 7                                                                                                                                                      Catalysis reaction 

 

 Page 164 
 

on the basis of the Hammer−Nørskov model. Due to this effect when 4-NP molecule interact 

with metal d-band centres; their electronic states overlap and split off into bonding and 

antibonding fashion. That especially, changes the d-band centre position that became farther 

from the Fermi energy level, antibonding states are increasingly populated and the overall 

chemisorption strength weakens. As Ni and Pd both belong to the d-block transition series and 

pursuit the d8 electronic configuration (3d8 and 4d8, respectively) however, due to the large 

orbital size of Pd compared to Ni, the net repulsive force of bonding and antibonding states is 

higher in case of Pd. Due to this fact the 4-NP molecule bind less tightly with Pd surface and 

fast reaction is observed. However, high binding energy of Ni the effect was opposite and 

organic entity (4-NP) bounded on it tightly and restricted the further process.  

In all such aspect, this was very important to evaluate the role of individual components 

viz. SiO2/RGO matrix, NixB-SiO2/RGO, Pd-SiO2/RGO without altering reaction conditions and 

protocol.  SiO2/RGO matrix offers an environment to prevent aggregation of Pd- NixB 

nanoparticles and provide the feasibility of H• radicals diffusion inside of channels and cavities. 

However, due to the absence of any catalytic metal centre NaBH4 was not efficiently 

decomposed on it and it suffers to show any specific effect for reduction of 4-NP. Instead of 

that, both individual metal containing counterparts (NixB-SiO2/RGO, Pd-SiO2/RGO) reduces 

the 4-NP, but the rate of reaction was too slow compared to Pd@NSG nanocomposite and 

estimated times were 22 (1320 s) and 120 min (7200 s), respectively. Here, the high catalytic 

activity of Pd-SiO2/RGO compared to NixB-SiO2/RGO can be ascribed by the high charge 

transportation from Pd metal surface and its noble behavior. Whereas, NixB only provides the 

hydrogen via hydrolysis reaction (from equation 2) but side product NaBO2 hinders the active 

sites of metal catalytic centre and 4-NP molecule is not properly contacted with generated 

radical hydrogen. This phenomenon can be described on the basis of Langmuire-Hinshelwood 

(LH) model, in which both reacting species should adsorb on to the surface of catalyst metal 

centre, where the 𝑩𝑯𝟒
− species transfer the hydrogen in a reversible manner to the surface and, 

simultaneously, 4-NP molecule should also be adsorbed on to the catalyst surface. In rate-

determining step, both reactants (hydrogen atom and 4-NP molecule) reacts each other and the 

product (4-AP) should desorb from the catalyst surface and provide the free space for new 

reacting species. Scheme 2 illustrates the overall process of 4-NP reduction on Pd@NSG where 

NixB, which is a prominent catalyst for NaBH4 hydrolysis reaction for fuel cell application, 

easily decomposes the 𝑩𝑯𝟒
− species in aqueous medium in to molecular hydrogen and 

concomitantly, metallic Pd spillover the produced hydrogen and converted it in to radical 
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species. In the next step, when 4-NP molecules  come  in  contact with Pd@NSG nanocatalyst, 

the adsorbed H atoms are directly transferred to organic entity and converted it into 4-AP. In 

addition, metallic RGO surface also enhances the rate of reaction through their π–π interaction 

with 4-NP molecule where, it provides the high electronic charge migration accessibility for 

easy electrons transfer to sp2 hybridized nitro group of 4-NP molecules. Further, we have 

performed the kinetic measurement of Pd@NSG nanocomposite as shown in Fig. 7.14 (c). The 

kinetics of the catalytic reaction measured as a function of time on the basis of absorbance at 

400 nm.16 In this reaction, the concentration of NaBH4 was in excess compared with 4-NP and 

can be regarded as constant throughout the reaction and pseudo-first-order kinetics can be 

applied with respect to 4-NP. 

 

Figure 7.15 Schematic representation of 4-NP molecule reduction on Pd@NSG nanocomposite in 

presence of NaBH4 in aqueous medium. 

 A linear relationship was obtained between ln(At/A0) and reaction time (t) which 

directly inferred the concentration of 4-AP during the reaction as ln(Ct/C0)  as given in above 

equation 7.10. The calculated value of k was 0.017 s-1 for Pd@NSG nanocomposite, a value 

higher than previously reported works. From Fig. 7.14 (c) it is clearly indicated that lnA400 

shows a good linear correlation and a R2 of 99.97. This linear relationship for Pd@NSG 

catalysts, indicate that the reaction follows first-order kinetics. The rate constants for different 

catalysts were also estimated from diffusion-coupled first order reaction kinetics using the 

slopes of the straight lines. The rate constant for Pd-SiO2/RGO was about twelve times lower 

than that obtained for Pd@NSG nanocomposites showing the catalytic activity of Pd 

nanoparticles improved remarkably by combining only with the NixB entity. The rate constant 
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of NixB-SiO2/RGO was too low compared with Pd based nanocomposite, imposing slow kinetic 

behaviour (see supplementary information for detail). Finally, we have performed the recycling 

test of Pd@NSG nanocomposite also for reduction of 4-NP organic molecule by the insertion 

of additional aliquots (25 µl) of reagents in same reaction cell. After each addition, the UV was 

recorded and the catalysts exhibited well stability towards the 4-NP reduction and 

corresponding time was increased up to 240 s for 5th cycle as shown in Fig. 7.14 (d), suggests 

the robustness of catalyst at least for 5 consecutive cycles with an efficiency of 88 %. 

7.5 Conclusions 

In the present study, we demonstrated the catalytic activity of three catalyst Cu@Ni/RGO, 

Ag@Co/RGO and Pd@NSG nanocomposites towards the reduction of environmental pollutant 

4-NP at RT. All catalysts were novel composition and synthesized by the facile approach. 

SEM/TEM images clearly exhibited the formation of specific size of NPs on graphene sheets 

without any specific agglomeration. The synthesized nanocomposites displayed the ultrafast 

response for reduction process with remarkable high stability and catalytic activity. These 

features suggested the simplicity of the process and suitability of synthesis method for possible 

commercial exploitation of heterogeneous catalysts in reduction of nitro aromatic compounds. 
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ELECTRICAL AND ELECTRONICS APPLICATIONS OF  

GRAPHENE NANOCOMPOSITE: 

Structure, measurements and results 

 

 

 

 

 

 

 

8.1 Introduction 

Graphene as a single atomic layer of graphite was first isolated at 2004, and since then 

many properties previously predicted for this 2D structure have been confirmed experimentally 

[1]. The notable feature of graphene is the ability to continuously tune the charge carriers from 

holes to electrons (gate dependence) [2]. The major problem concern with graphene with it does 

not possess any band gap; electrons can flow at any energy, and the corresponding resistivity 

changes are small [3]. So the main focus of the graphene engineers has been to find the ways 

for creating an artificial band gap using such methods as applying electric fields, doping of 

foreign radicals/functional groups or incorporation of various kind of NPs.  Due to these 

changes applicability of it’s become more pronounced as extra defects become usable for many 

electrical and electronics applications such as sensing, transistor, solar cells and memristor 

device fabrication [4-6].  

Mersister is an electrical component that limits or regulates the flow of electrical current 

in a circuit and remembers the amount of charge that has previously flowed through it [7]. This 

term first time coined in 1971 by circuit theorist Leon Chua [8]. He describe this as a missing 

non-linear passive two-terminal electrical component relating to the electric charge and 

magnetic flux linkage. Since then, the definition of memristor has been broadened to include 

any form of non-volatile memory that is based on resistance switching, which increases the 

flow of current in one direction and decreases the flow of current in the opposite direction.  

Therefore, memristors are important because they are non-volatile, meaning that they can retain 

memory without power [9]. 
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 Moreover, it is an alternative of  resistive random access memory (RRAM), it is relying 

on the resistive switching (RS) effect occurring in a metal-insulator-metal (MIM) memory cell 

[10-11]. Recently, it gained lot of interests owing to its simple structure, non-destructive 

readout, high operation speed, long retention time, low-voltage operation and high scalability 

[12]. To construct the MIM structure the properties of the insulator layer is very important, it 

should be thin, insulator, easily transferrable to any substrate and should robust. The oxidized 

derivative of graphene which called as graphene oxide (GO) is one of the various insulating 

materials that fulfill all above requirements. It consists of a single layer of graphene bounded 

to oxygen in the form of carboxyl, hydroxyl, or epoxy groups. The physical properties of GO 

are then controlled by these chemical functionalities on the surface that can be tuned at the 

nanoscale [13-14]. Due to this it can be easily and uniformly transferred onto any substrate. 

This makes it potentially useful for the fabrication of large-scale flexible, transparent, and 

printable devices. Recently, reliable and reproducible resistive switching in GO thin films and 

conjugated-polymer-functionalized GO films have been reported. Hong et al. demonstrated a 

graphene oxide based RRAM device with excellent flexibility without degradation of memory 

performance upon bending [15]. However, the mechanism responsible for the RS effect of GO 

is still not clear. Several authors attributed the resistive switching behavior to the 

formation/rupture of filaments arising from the diffusion of metallic ions from the electrodes 

under a bias voltage. On the contrary, other studies reported that the switching effect in GO and 

graphene field-effect devices originates from desorption/absorption processes of oxygen-

related groups on the GO sheets. Therefore, the study of new GO based materials is essential to 

improve the understanding of the RS mechanism and obtain nonvolatile memories with 

enhanced properties [7]. 

8.2 Resistive switching device based on Ni-doped graphene oxide thin films 

`In this work, firstly Ni-GO thin film was prepared. The film prepared by the assistance of 

polymeric hydrogel with GO. The exfoliated GO sheets were gradually added to the polyvinyl 

alcohol ( PVA) and polyacrylic acid (PAA ) mixture ( weight ratio of 2: 1) which prepared from 

a stock solution (6 mg/ mL in DI water). During the PVA -PAA gel preparation, the temperature 

was maintained at 90 ℃, and subsequently cooled down to room temperature. To prepare the 

Ni reduced graphene polymeric hydrogel, 20 mg of Ni NPs (Quantum spheres) were dispersed 

in above hydrogel. Finally, the polymeric hydrogel was treated by two distinct methods: in the 

first method the hydrogel was protonated with 200 µL dil. HCl (series 1) and in the second 
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method the hydrogel was protonated with 0.5 mL of hydrazine hydrate (N2H4. H2O) for 

subsequent reduction of GO to RGO. 

8.2.1 Fabrication of MIM structure 

The MIM structure was fabricated on Si/SiO2 substrates by the dip coating of Ni doped 

GO film. After, drying of the sample at 60 ℃ two different types of electrodes (W, Cu) were 

deposited on top of them through evaporation method and constructed a MIM structure to 

investigate the resistive switching properties.  

8.2.2 Measurements 

The current-voltage (I–V) cycles of the samples were obtained using a Keithley Source 

Meter 2400. Macroscopic electrodes of W and Cu were fabricated on top of the Ni-doped GO 

sheet using e-beam evaporation and a shadow mask. During the measurements, the voltage was 

swept in the 0 → Vmax → 0→ -Vmax→ 0 sequence (where Vmax is the max. applied voltage).  

 

8.2.3 Results 

The I–V characteristics of two representative devices are shown in Fig. 8.1. Substantial 

hysteresis was found in the case of samples of series 1 for both W and Cu contacts. With 

increasing positive voltage, the W-GO device gradually switches from the high resistance state 

(HRS or OFF state) to a low resistance state (LRS or ON state; Set process). By sweeping the 

voltage to negative values, the device recovers the HRS (Reset process). The use of Cu contacts 

increased the conductivity of the sample and led to clear sharp resistance variations at the well-

defined Set (Reset) voltage of 1.6 V (-2.8 V). Sample of series 2 showed much smaller 

hysteresis, particularly when using W contacts. The use of Cu contacts again increased the 

samples’ conductivity, although only a gradual variation of the resistance with the applied 

voltage was observed. Series 2 further showed a larger conductivity than samples of series 1; 

due to the different switching polarity of the two series, a characteristic that is maintained 

regardless of the deposited contacts on the surface of the samples. This result indicates that ions 

with different charges are involved in the switching mechanism of the two series. 

In order to further unravel the switching mechanism that occurs in our Ni-doped graphene 

oxide samples, the I–V curves in the negative voltage region were replotted in a log-log scale 

(inset of Fig. 8.1). The indicated numbers denote the slopes retrieved from linear fits to the 

experimental curves. In the LRS state, the presented samples exhibited an Ohmic behavior with 

a slope of ≈1. However, in the HRS state, our results suggest a trap-associated space charge 

limited conduction (SCLC) mechanism, with a slope of ≈2. The switching mechanism on 
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graphene oxide based devices is usually attributed to one of two mechanisms.  

 

 

Figure 8.1 I-V characteristics of samples of series (a) 1 and (b) 2, with W (open circles) and Cu (squares) 

contacts. The arrows indicate the switching polarity. Inset: I-V curves in a log-log scale; lines are linear 

fits to the experimental data.   

 

In the first, RS originates from the formation and rupture of conductive filaments in an 

insulating matrix. As described above, the switching effect in our samples has a clear 

dependence on the electrode material. This dependence is particularly visible in the I–V 

measurements of samples of series 1, where the use of copper electrodes also changed the 

switching mechanism of the sample (see Fig. 8.1). Some authors have already reported the 

influence of the electrode on resistive switching in GO. It is usually described as the 

formation/rupture of a metallic filament on the GO layer due to the diffusion of metallic ions 

under a bias voltage. While the formation of the filament leads to the LRS, its disruption under 

an opposite bias voltage returns the sample to the HRS. The second mechanism usually 

mentioned correlates switching with the dependence of the physical properties of GO on 

bounded oxygen groups. Related to the existence of these oxygen groups, GO has two 

configurations, sp2 and sp3. In the sp2 state, the conductivity of GO is increased by the 

introduction of p-electrons resulting from the removal of oxygen groups, while in the sp3 state 

the phenomenon is reversed. When a bias voltage is applied, local rearrangements of oxygen 

groups in the GO layer can increase the amount of sp2 bonds and therefore the GO conductivity 

(by generated p-electrons), switching the device into the LRS. Changing the voltage polarity, 

the oxygen ions back diffuse, reestablishing the HRS. 
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Figure 8.2 I–V characteristics of (left) series 1 and (right) series 2, with Cu contacts, produced at 

different times (A,B). Arrows indicate the switching polarity. Inset: endurance measurements up to 100 

cycles. 

 

From the above analysis, we can state that the mechanism of RS in graphene oxide depends 

on the fabrication process of the samples. In series 1, the switching is governed by the diffusion 

of positive ions (W+, Cu+) from the metallic electrodes (as confirmed by the dependence of 

switching on the used contacts). On the other hand, the reversal of the switching polarity in 

series 2 shows that its dominant RS mechanism should be related with the migration of negative 

oxygen groups [16]. Both mechanisms, however, lead to an ohmic conductance in the low 

resistance state, indicating the formation of a percolative metallic path connecting the two 

electrodes. The application of an opposite bias voltage then results in switching into the HRS 

and a change in the electronic conduction. The reproducibility of both switching and switching 

direction was confirmed by measuring different samples of the same series and nominally 

identical samples produced at different times (Fig. 8.2). We further measured the endurance of 

our devices by applying positive/negative bias voltages large enough to induce RS (inset of Fig.  

8.2). As in other GO-based devices, a degradation of the ROFF/RON ratio was observed in series 

1 when cycled up to 100 times. Series 2, however, showed much more stable switching, likely 

due to the difference in switching mechanism. 
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Figure 8.3 Maximum conductance of a sample of series 1 after consecutive positive (circles) and 

negative (squares) voltage sweeping cycles.   

 

We also conducted a preliminary study on the activity-dependent modification abilities of 

graphene-based devices. Similar studies were performed in nanoscale memristive devices using 

tungsten oxide or co-sputtered Ag and Si as switching layers. The activity-dependent 

modification of the conductance of MIM samples was shown to have common properties with 

long-term synaptic plasticity in neuromorphic systems. Biologically plausible mechanisms for 

synaptic weight modification are subject to soft-bound constraints, a property shared with the 

MIM samples presented here. Under this constraint, synaptic modifications are dependent on 

the present synaptic weight and the approach to the limiting conductance is done asymptotically 

[17]. This property is important for generating stable and unimodal distributions for the synaptic 

weights. Moreover, it has been shown that improved memory storage capacity can be achieved 

with soft-bound synaptic plasticity. Fig.8.3 shows our results, in which consecutive positive 

voltage sweeps were applied in a sample of series 1, leading to a continuous decrease of the 

sample conductance. The reciprocal mechanisms occur with consecutive negative voltage 

sweeps. The continuous increase of the current towards a constant value indicates the onset of 

the long-term-memory (LTM) stage of the device. One can also observe the occurrence of larger 

steps at the initial volt-age sweeps and smaller ones when the current approaches its constant 

value. This supports the idea that updates tend to become smaller as learning progresses [18-

20]. 
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8.3 Switching characteristic of hydrogenated graphene oxide thin films 

The RS mechanism is mostly dependent of GO material due to their restive behaviour. 

Although, due to the change in internal carbon structure sp2 to sp3 hybridization hydrogenated 

graphene oxide (HGO) can also a material for switching application [3, 16]. To corroborate this 

point here we tested the RS behaviour in HGO sample. Fig. 8.4 represents the current vs voltage 

(I-V) plot obtained on GO and HGO (dried at 50°C for 2h) samples in the range of -10 to +10V. 

In the plot GO shows extremely low current whereas, HGO shows a non-linear behaviour with 

increase amount of current. Moreover, HGO depicts a clear hysteresis in both sides with typical 

phenomenon of resistive switching material.  Moreover, in this sample at a certain voltage 

(+9V) during the positive sweep, the current value was dramatically increased, suggesting a 

set-like condition (SLC) or on-state. In negative bias voltage also a reset-like condition (RLC) 

or off-state was clearly observed, reflecting the same charge mobility by equivalent internal 

filament breakage in another side. 

 

Figure 8.4 Characteristic I vs V curve of GO and HGO in bias range of (-10 to +10V). The voltage is 

swept in the direction as follows: 0 V → 10 V → 0 V → –10 V → 0 V. 

For better understanding, we have also performed I-V measurements in higher voltage 

conditions in two different ranges -15 to +15V and -20 to +20V, respectively. Fig. 8.5 (a) also 

shows the progression of the current and evolution of similar resistive switching polarity in the 

positive region [14]. However, in the negative loop the situation was obscured and, instead of 

switching only hysteresis was retained inside the system. This was probably due to the recursion 

of internal sp3 (-C-H) bonding and restoration of sp2 (-C=C) graphitic structure during the 

process.  
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Figure 8.5 I vs V curve of HGO in bias range of (a) sweeping voltage (-15 to +15V) and (b) (-20 to 

+20V). The voltage is swept in the direction as follows: 0 V → 10 V → 0 V → –10 V → 0 V. 

However, at higher voltage (20V), both positive and negative region represents a clear 

hysteresis loop without any specific switching. This was expected because, at higher voltage 

the whole filaments were broken and current reached the saturation and only internal charge 

trapping was accessible inside the system [12,14,16].  

8.4 Resistive switching in Co/RGO nanocomposite 

In this work, instead of Ni NPs we used the Co NPs to understand the RS mechanism based 

different kind of transition metal NPs. First, we have synthesized the Co/RGO nanocomposite 

than it was fabricated on conducting ITO thin film and investigated the response of Co/RGO 

nanocomposite towards RS under bias range of [-10, +10] V.  

 

8.4.1 Synthesis of Co/RGO nanocomposite 

 

To synthesize the Co/RGO nanocomposite, 10 mL of aqueous GO dispersion (1.5 

mg/mL) was placed in a beaker and afterward CoCl2.6H2O (90 mg) was mixed by mechanical 

stirring (800 rpm) at RT. Afterward, CTAB and PVP (6.5 mg, each) were added in reaction 

mixture and thoroughly mixed by stirring (3 h). Then, NaBH4 solution (0.2 M ethanol) was 

slowly added to the reaction mixture and the stirring was maintained for further 45 min. After 

completion of the reaction, the product was centrifuged (18 000 rpm) and multiply washed with 

ethanol and Milli Q water to remove the impurities. Finally, the product was vacuum dried at 

250 °C for 12 h and referred as Co/RGO nanocomposite.  
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8.4.2 Electrical measurements 

For electrical measurements, GO and Co/RGO dispersions were prepared in 

tetrahydrofuran (THF) and drop coated on indium-tin oxide (ITO) substrates. Both samples 

were dried in oven at 60 °C for 2h.  

8.4.3 Results and discussion 

Fig. 8.6 displays the current vs voltage (I-V) plots of GO and Co/RGO nanocomposite 

samples in the range of [-10, +10] V. I-V measurement of GO shows that the extremely low 

value of current 16 nA in (Left panel).  

 

Figure 8.6 Characteristic I vs V curve of GO (Left panel) and Co/RGO nanocomposite (Right panel) in 

bias range of [-10, +10] V. The voltage is swept in the direction as follows: 0 V → 10 V → 0 V → –10 

V → 0 V. The middle circle represents the Set and Reset like conditions of current under bias voltage, 

in respective quadrants.   

This was obvious since GO is an insulator material which contains the various kinds of 

oxygen functionalities and they disrupt the sp2 hybridized conjugated graphene network and 

restrict the electrons flow [14]. The main features with them in both sides (positive and negative 

bias ranges) are that the current value was equal with linearity and current exhibited the reset  

and set like conditions, as shown in middle circle in plot with notation (Left half circle) [12]. 

However, with Co/RGO nanocomposite the situation was completely different (Right panel).  

A non-linear behavior of I-V was observed with increased amount of current value (12.5 µA). 

The non-linearity of I-V  between [-5, +5] V can be explain on the basis of the presence of 

resistive Co(OH)2 phases on core of metallic Co within graphene layers which restrict the flow 
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of electrons and behave as rectifier such as in diodes [14].  However, at high tension conditions 

more than (+5V and -5V) the current values were dramatically increased, possibly due to the 

sudden formation of filaments [13]. Interestingly, in both sides a clear hysteresis was observed 

and this phenomenon resembles a memristive behavior (in which current switches at certain 

voltage range), suggesting the complementary resistive switching kind of behavior [21]. This 

might be explain on the basis of two factors: (i) formation of ligament/filament at the junction 

points of bottom electrode and Co/RGO film on the few nm scale due to the partial oxidation 

of metallic Co to Co (OH)2 and, (ii) rupture of filaments at certain point and out flow of fermi 

level electrons to bottom electrode side. It can also be observed that, in both sides the extent of 

current was equal, reflecting the same charge mobility by equivalent internal filament breakage 

in the other side. The interesting features were there, during the positive-sweeping of voltage 

the current changed in an anticlockwise direction suggesting on-state with set like conditions. 

On the other hand, at negative bias voltage an off-state or reset like conditions were clearly 

observed (right half circle, in plot).  

8.5 New hybrid material Ni(OH)2@Ni/RGO nanocomposite for resistive switching 

applications: Observation of large hysteresis 

In this work a large hysteresis was observed under applied bias voltage in 

Ni(OH)2@Ni/RGO nanocomposite. To synthesize the nanocomposite a highly efficient process 

was developed, which yielded the novel one dimensional (1D) array of Ni(OH)2 on Ni/RGO 

nanocomposite by two step method. In first step, Ni nanoparticles (NPs) were decorated on 

reduced graphene oxide (RGO) by the simultaneous reduction of Ni2+ ions and graphene oxide 

(GO) under reducing conditions. In next step, one dimension (1D) arrays of Ni(OH)2 were 

uniformly grown on Ni/RGO by precipitation of Ni2+ ions using urea and NaOH. The reduction 

of GO, formation of Ni/RGO and Ni(OH)2@Ni/RGO nanocomposite were verified by various 

characterization techniques. 

8.5.1 Synthesis of Ni(OH)2@Ni/RGO  

Ni(OH)2 nanotubes were grown on Ni/RGO nanocomposite by homogeneous co-

precipitation of  nickel acetate salt in presence of urea and NaOH. First, a precalculated amount 

of Ni/RGO was dispersed in 60 mL DD water after exposure to ultrasound from an ultrasonic 

bath for 45 min then the mixture was heated at 90 °C for 1.5 h. Afterward, 300 mg of nickel 

acetate salt was added in above dispersion and dissolved by mechanical stirring (300 rpm). 

Then after, to precipitate the Ni2+ a precalculated amount of NaOH (300 mg) was added and 
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dissolved by stirring. When, it was cooled to RT, 400 mg urea was mixed and stirred for 8 h. 

Finally, product was collected by filtration and washed with DD water and ethanol in an attempt 

to remove impurities. In order to obtain a Ni(OH)2@Ni/RGO nanocomposite product was dried 

at 80 °C for 8 h under vacuum [22].   

8.5.2 Results and discussion 

Fig. 8.7 shows the XRD spectra of GO, Ni/RGO and Ni(OH)2@Ni/RGO nanocomposite. GO 

exhibits a sharp peak at around 11.01° corresponds to the (001) basal plane and indicates the 

good exfoliation of graphite flakes [14].  

 

 

 

 

 

 

 

Figure 8.7 XRD pattern of GO, Ni/RGO and Ni(OH)2@Ni/RGO nanocomposite. 

The successful synthesis of Ni NPs and simultaneous reduction of GO to RGO is clearly 

depicted in diffraction spectra of Ni/RGO. In which GO peak was completely diminished and 

a new peak was evolved at 22.2° suggested the removal of intercalated water molecules and 

surface oxygen functionalities during the reduction process. Moreover, in Ni/RGO diffraction 

spectra three additional peaks were also observed and located on 44. 5°, 51.8° and 76. 76° and 

attributed as diffraction from (111), (2 0 0) and (2 2 0) various crystallographic planes of face-

centred cubic (fcc) Ni (JCPDS card No. 04-0850) [14]. Further, precipitation of Ni2+ to Ni(OH)2 

in presence of under basic condition was also confirmed by the XRD. In basic condition Ni salt 

became hydrolysed and precipitated by hydroxide ions at high pH as shown in equation 8.1: 

Ni2+ + 2OH−→Ni(OH)2                    (8.1) 
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In XRD pattern of Ni(OH)2@Ni/RGO nanocomposite two extra peaks were presented 

at 19.2° and 38.3° and attributed as diffraction from (001) and (101), respectively with good 

agreement of (JCPDS card No. 14-0117). The presence of these two peaks in XRD pattern 

indicated the formation of β-Ni(OH)2 phase on Ni/RGO nanocomposite [23]. In next, we have 

carried out the RT field dependent magnetization (M–H) characterization of Ni(OH)2@Ni/RGO 

nanocomposite as shown in Fig. 8.8. The magnetization of the samples would approach the 

saturation values when the applied magnetic field increases to 1 Tesla. The saturation 

magnetization of Ni(OH)2@Ni/RGO nanocomposite was 4.8 emu/gm. This value is quite lower 

compared to bulk value of Ni 55 emu/g and previously reported Ni/RGO work [24]. The low 

value of saturation magnetization is due to the presence of an inert layer of Ni(OH)2 on the 

surface of Ni/RGO. 

 

 

 

 

 

 

 

Figure 8.8 RT magnetic measurement of Ni(OH)2@Ni/RGO nanocomposite. 

The morphology of the GO, intermediate Ni/RGO and Ni(OH)2@Ni/RGO 

nanocomposite were observed by scanning electron microscopy. Fig. 8.9 (a) and (b) shows the 

SEM images of initial material GO in lower and higher magnifications, respectively. Images of 

GO clearly exhibits the few layer of graphitic carbon with typical wrinkle and flappy behaviour 

[14]. Fig. 8.9 (c and d) depicts the SEM images of intermediate species Ni/RGO after the 

reduction and loading of Ni NPs within graphene matrix. Both the images depicts the well 

intercalation of Ni NPs with graphitic flakes [24]. The small particle size was due to the fast 

degree of nucleation comparative to crystal growth, especially, in presence of GO. Graphene 

layers works as a blanket for generated nuclei and restrict the approach of new nuclei and 

controlled the further growth. The distribution of NPs on graphene layer can also control by the 

surface functionalities of GO. Initially, surface functional groups of GO such as carboxylate 
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ions (COO-) and hydroxyl ions (OH-) behaves as a cross-linker and chelating agent and attracted 

the cationic specie (in our case Ni2+ ions from the bulk solution). After that, at the time of 

reduction mostly oxygen functionalities were deprive and leaves the defects on graphene sheets. 

Due to this when cations were reduced they specifically, anchored on graphene defects sites 

and were less agglomerated and provided the monodispersity of NPs on graphene layers. 

Moreover, in-situ generated N2 and H2 gases (by the decomposition of N2H4 and NaBH4, 

respectively; equations 2 and 4) also, efficiently exfoliate the graphene layers and provide the 

homogeneity for colloidal dispersion [22]. In this respect, both SEM images shows that Ni NPs 

were in spherical shape and well separated and distributed on graphene sheet without any 

specific agglomerations. Similar situation was retained and became more clear in Fig. 8.9 (e 

and f) after the intercalation of Ni(OH)2 on Ni/RGO intermediate material higher and lower 

magnifications, respectively. 

 

Figure 8.9 SEM images of (a and b) GO, (c and d) Ni/RGO and (e and f) Ni(OH)2@Ni/RGO 

nanocomposite at lower and higher magnifications, respectively. 

Both images shows that the high density of Ni(OH)2 nanotubes on graphene sheets and 

indicates the successful formation of Ni(OH)2@Ni/RGO nanocomposite where crumpled RGO 

platelets were closely connected with each other and forming a 3D network structure. 

Moreover, in both images tubes were stacked on to the center endowing the Ni NPs and 

presence of highly dense 1D array of nanotubes indicated that the Ni NPs works as a nucleation 

center for growth site of Ni(OH)2 species.  
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Figure 8.10 I vs V curve of Ni/RGO (Left panel) and Ni(OH)2@Ni/RGO nanocomposite (Right panel) 

under bias voltages. The voltage is swept in the direction as follows: 0 V → + V → 0 V → –V → 0 V.  

The I–V curves of the Ni/RGO and Ni(OH)2@Ni/RGO nanocomposite films presented 

in Fig. 8.10. Fig. 8.10 (a) shows that the Ni/RGO film possess less amount of current and 

behaves as an insulating material, revealing their high resistance state and low current (I ≈ 10-7 

A) without any hysteresis. However, Ni(OH)2@Ni/RGO nanocomposite revealing one order 

increase amount of current (I ≈ 10-6A) (Fig. 8.10 (b)). Along with, large hysteresis with 

nonlinear curvature and resistive switching like behavior of the current and on /off states, 

indicated a memristive structure [14]. At the positive sweeping voltage, the current changes in 

counter clockwise direction, suggesting SLC and under negative sweeping voltage, the current 

changes in clockwise direction, suggesting a RLC behavior [13]. 

8.6 Ag@SiO2/RGO nanocomposite for memristor application 

The aim of this work is finding the possibility of high conductivity with large hysteresis 

and resistive switching characteristics in nanomaterial. To construct the MIM structure, the role 

of middle layer is very important. It should form easily filament networks between the top and 

bottom electrodes. However, it has been observed that in some materials such as SiO2 NPs the 

switching property is not very much pronounced. Even though, after the integration of GO and 

RGO. This might be due to the somehow charge storage between the graphene layers and 

buckling of carbon sheet. To circumvent such kind of problem a new strategy is require that 

may help to increase conductivity of the system and boost the filament formation/rupture at 

certain point under bias voltage.  
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8.6.1 Synthesis of Ag@SiO2/RGO nanocomposite 

In this work Ag NPs were integrated with SiO2 nanotubes to make the 1-D structure of 

Ag@SiO2 and further it was integrated with graphene support. The reduction of GO was 

achieved by the exfoliation of graphene sheet in 1M NaOH in isopropanol medium at 55 ℃. 

8.6.2 Device fabrication of Ag@SiO2/RGO nanocomposite 

The nanostructure of Ag@SiO2/RGO nanocomposite was dip coated on Pt bottom electrode 

as shown in Fig. 8.11 and top electrode was made by Ag paint. During the measurements, the 

voltage swept in the direction of 0 → Vmax → 0→ -Vmax→ 0 sequence (where Vmax is the 

maximum applied voltage). No forming process was applied to activate the RS effect. 

 

 

Figure 8.11 Schematic representation of device fabrication based on Ag@SiO2/RGO nanocomposite. 

8.6.3 Results and discussion 

The morphology of the Ag@SiO2/RGO nanocomposite is shown in Fig. 8.16. In which 

SiO2 nanotubes were in cylindrical shapes and few micrometer range with the average aspect 

ratio of 1:20. Fig. 8.12 (a) and (b) displays the lower and higher magnification images of SiO2 

nanotubes, respectively. Fig. 8.12 (c) and (d) shows the SEM images of Ag@SiO2/RGO 

nanocomposite in lower and higher magnification, respectively. In which the Ag NPs were well 

intercalated with SiO2 nanotubes and graphene sheets were rolled to cylindrical SiO2 nanotubes 

and makes the contacts to each other without any agglomeration.  
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Figure 8.12 SEM images of SiO2 nanotubes (a) and (b) in lower and higher magnifications, 

respectively and (c) and (d) Ag@SiO2/RGO nanocomposite at lower and higher magnifications, 

respectively. 

Fig. 8.13 shows the I vs. V characteristic of Ag@SiO2/RGO nanocomposite in which the 

current suddenly increases (at certain point) under positive sweeping of voltage and reached to 

maximum highest capacity of system till 0.9 A (900 mA) at 0.8 V in SLC direction, suggests 

the “on” state of switching device.  

 

Figure 8.13 I vs V curve of Ag@SiO2/RGO nanocomposite (Right panel) under bias voltages. The 

voltage is swept in the direction as follows: 0 V → + V → 0 V → –V → 0 V.  

(a) (b) 

(c) (d) 
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In negative direction also same behavior was observed with opposite polarity indicating 

current “off” and RLC condition. The high current value and switching property under very low 

bias applied condition can be ascribed on the basis three facts: Initially, SiO2 nanotubes 

pursuit’s the insulator behavior so device shows that highest resistance state and at certain point 

due to the rupture of sudden filaments the conductivity was increased. Here, the presence of 

extra -OH groups are very important that were provided by SiO2 nanotubes. SiO2 is well known 

to make the SiO2 (-OH) bonding and in our synthesis protocol (in basic medium) the extra 

hydroxyl groups (-OH) easily attached of them. Moreover, the large cylindrical structure and 

hollow cavity of SiO2 nanotubes also makes two advantages: (i) it accommodated Ag NPs 

inside of them, which provided the highest conductivity at the time of filament rupture (extra 

charge to be flow), and (ii) short circuit condition through inter nanotube linkage. Moreover, 

presence of SiO2 nanotubes enhances the film formation capability of RGO.  It has been already 

reported that RGO and graphene exhibits very high water contact angle (hydrophobicity), 

makes difficulty for film formation in aqueous medium.   

Further, to confirm the extra –OH groups on surface and Ag in cavity provide the feasibility 

of RS we have synthesized the Ag@ KZ/RGO nanocomposite based on zeolite NPs under 

similar reaction conditions. It should be noted here, KZ is also a good electrical insulator 

material keeping the K+ cations inside of their cavity [24]. Interestingly, it also shows the 

resemblance of I-V characteristics as Ag@SiO2/RGO nanocomposite; however, it displays 

some distinction with them as shown in Fig. 8.13.  

 

 

Figure 8.13 I vs V curve of Ag@KZ/RGO nanocomposite (Right panel) under bias voltages. The 

voltage is swept in the direction as follows: 0 V → + V → 0 V → –V → 0 V.  
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In Ag@ KZ/RGO nanocomposite the current was three order lesser than 

Ag@SiO2/RGO nanocomposite. This was probably, due to the less conductivity of the system 

and less number of –OH groups on the surface. Although, it shows the continuous resistance 

change with bias along with hysteresis and curvature on end points of the curve, which makes 

the loop on both sides (set to reset and reset to set). Probably, it was due to the migration of   K+ 

cations from one cavity to another in rigid alternative tetrahedral network of AlO4
- and SiO4

- 

entities under applied bias field and continuous flow of the charge inside of the system. This 

phenomenon arise an interesting point formation of the “pinch hysteresis loop” and small 

curvature at the end of the loop.   

 

8.7 Conclusions 

  

 In summary, we have investigated the resistive switching behavior in transition metals 

(Ni, Co and Ag) doped nanocomposites. Results shows that resistive switching behavior highly 

dependent on MIM structure along with doped transition metal. The highest conductivity and 

resistive switching phenomenon was observed in Ag doped graphene nanocomposite; however 

repeatability, endurance and device stability was observed in Ni based graphene 

nanocomposite. 
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Ni/RGO NANOCOMPOSITE FOR GLUCOSE BIOSENSING: 

Structure, measurements and results 

 

 

 

 

 

 

 

 

 

9.1 Introduction 

Recently, vast research is going on for the detection of glucose level in blood and food, 

particularly in aqueous solutions due to their great importance in health, research, 

environmental monitoring and industrial production.  Diabetes mellitus is one of the leading 

causes of death and disability in the world. Therefore, the determination of blood glucose levels 

is an indispensable test for the diagnosis and management of diabetes mellitus. [1-3].  

In this regard, electrochemical sensors can characterized the level of glucose, with good 

sensitivity, rapid and reliable response, and, more importantly, do not require laborious sample 

pretreatment or labeling. Furthermore, commercially available low-cost miniaturized electrode 

chips and hand-held workstations (which can be controlled with a smartphone) put this 

technology ahead their competitors in the race to develop wearable analytical tools for point-

of-care solutions, in-field measurements [4-6].  

In the last decade discovered graphene, has been also used for this purpose with different 

nanocomposite systems [7-8]. The derivative of graphene which is called as graphene oxide 

(GO), indeed provided the possibility of anchoring of various kind of NPs with them to fabricate 

the biosensor array on top of glassy carbon electrode (GCE).  Due to this reason, purposely for 

biosensing application, many graphene nanocomposites have been prepared with chitosan, 

which is a deacetylated derivative of the abundant chitin polysaccharide, due to their excellent 

film forming ability and biocompatibility [9-16]. 
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The most studied graphene based nanohybrids in electroanalytical applications are based 

on Au [11], however, high price of noble metals restricts the research environment and urges 

the scientific community for more economical option for such an application. For instance, a 

cheaper system such as Ni/RGO nanocomposite still has been barely explored for glucose 

biosensing [16].  

In this work, we report the synthesis of Ni/RGO nanocomposite by the simultaneous 

reduction of Ni (II) salt with GO and their application for glucose biosensing purpose.  

 

9.2 Experimental 

 

9.2.1 Chemicals 

 

Glucose oxidase from Aspergillus Niger (GOx, Fluka), D-(+)-glucose (Merck), 

tetrapotassium hexacyanoferrate trihydrate (Fluka, K4[Fe(CN)6]·3H2O) and tripotassium 

hexacyanoferrate (Fluka, K3[Fe(CN)6]) were analytical grade and used as received. Chitosan 

deacetylated to a 95% (Chit95) was purchased from Primex (Siglufjordur, Iceland, 150-200 

kDa). Other analytical grade chemicals used in this work were purchased to Sigma Aldrich. 

Stock solutions of acetate buffer 0.1 M (AB, pH 5) and phosphate buffer saline 0.05 M (PBS, 

pH 7.3, [NaCl]=0.15 M) were prepared in ultrapure water from a Milli-RO 3 Plus system (18.2 

MΩ·cm resistivity).  

 

9.2.2 Synthesis of Ni/RGO nanocomposite 

 

GO was synthesized from graphite powder through a modified Hummers method [15]. 

Ni/RGO hybrid sheets were grown in situ as follows: 100 mL of GO aqueous dispersion (1 

mg·mL-1) were placed in a 4-neck round bottom flask and mechanically stirred at RT. 

Subsequently, 600 mg of nickel chloride hexahydrate (NiCl2.6H2O) were added and the 

temperature was gradually increased to 85 ºC. Then, 18 mL of hydrazine hydrate (65%) were 

slowly poured into the reaction mixture and stirred for 25 min in Ar atmosphere. Afterwards, 

450 mg of sodium borohydride (NaBH4) were very slowly added under stirring. Finally, 25 mL 

of a 1 M sodium hydroxide (NaOH) solution were added and stirred for further 150 min. The 

product was filtered and washed with ethanol and doubled-distilled water to remove impurities. 

Then, it was vacuum-dried at 100 ◦C for 3 h to obtain the Ni/RGO nanocmposite powder.  
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9.2.3 Preparation of Ni/RGO/Chit95/GOx Films  

 

Ni/RGO/Chit95/GOx nanocomposite film was deposited onto a glassy carbon electrode 

(GCE, Metrohm, 6.1204.300, area: 0.06 cm2) following a sequential drop-casting procedure. 

GCE was polished with 0.3 μm Alumina slurry (Buehler Micropolish II) to a mirror finish and 

washed in water, ethanol, and acetone (15 minutes each) in an ultrasound bath. Cyclic 

voltammetry (CV) was performed in H2SO4 0.5 M and the result compared to the typical 

response of clean GCE. Then, GCE was modified in three steps. First, 10 μL of Ni/RGO 

dispersion in ethanol (1 mg·mL-1) were spread onto the GCE surface and air dried. Then, 10 μL 

of a Chit95 solution in AB 0.1 M (5 mg·mL-1) were casted. Once dried, 10 μL of a GOx solution 

in PBS 0.05 M (10 mg·mL-1) were dropped.  

 

9.2.4 Characterization 

 

The phase purity, crystallinity and structure of GO and Ni/RGO were characterized by X-

ray diffraction (XRD, Cu Kα radiation; λ = 0.15414 nm) in the range 2θ=10-80° with scan rate 

of 0.02° min−1. Fourier-transformed infrared spectra (FTIRS) were recorded in the range 1200-

2600 cm-1. Scanning electron microscopy (SEM) images were taken using a SU-70 microscope. 

Conventional high-resolution tunnelling electron microscopy (LaB6, TEM) was performed to 

analyze the crystallinity and quality of the samples. Electrochemical characterization was 

conducted at room temperature in pure PBS 0.05 M electrolyte and in the presence of 2 mM 

[Fe(CN)6]
3-/4- using a Voltalab PGZ301 potentiostat (Radiometer Analytical). Before 

measurements, the electrolyte was purged with N2 for 10-15 min to remove O2. Freshly 

annealed Pt and sanded Ag wires were used as counter and reference electrodes, respectively. 

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to 

follow the construction of the film. CVs were acquired at 0.05 V s-1 in the range -0.3 to 0.6 V. 

Impedance spectra were taken at the formal potential. A sine wave of 10 mV amplitude and 

decreasing frequency in the range 10 kHz - 0.1 Hz was imposed over this bias. Unless otherwise 

stated, the spectra were fitted to a Randles-type equivalent circuit.  
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9.3 Results and Discussion 

 

Fig. 9.1 shows the XRD patterns of GO and Ni/RGO. In XRD of GO, a single sharp peak 

was found at around 11° which is ascribed to the diffraction of the (001) basal plane of GO 

[15]. The d-spacing was d001=0.83 nm which is consistent with the interlayer distance reported 

for GO but higher than in graphite flakes (0.334 nm) which confirms the introduction of 

functional groups and intercalating water molecules. After the reduction, this peak was 

disappeared and, instead, a series of new bands appeared in the XRD of Ni/RGO.  

 

 

Figure 9.1 XRD of GO and Ni/RGO. 

 

The peak at around 23○ ascribed to the (002) crystallographic plane of RGO [16], strongly 

suggests the well accomplishment of reduction process and elimination of mostly oxygen 

functionalities from basal planes and edge sites of graphene. The position and intensity of the 

other peaks presence of Ni crystals with face centered cubic structure (fcc). The highest 

intensity (111) diffraction peak at 2 = 44.4○ confirms the formation of crystalline phase. 

Deeper insights on the composition of the hybrid conjugate were obtained by means of FTIR 

spectroscopy. The spectra gathered for the GO and Ni/RGO samples are shown in Fig. 9.2. GO 

featured two well-defined peaks at 1625 and 1730 cm-1 related to the hydroxyl bending (due to 

adsorbed H2O) and asymmetric stretching of ketones (νC=O), respectively. Whereas, in FTIR of 

Ni/RGO both bands were eliminated and instead of that a new band was observed at 1610 cm-

1 ((νC=C), indicated that restoration of graphite structure. Further, the structure and morphology 

of the Ni/RGO nanocomposite was investigated by SEM and TEM techniques.  
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Figure 9.2 XRD of GO and Ni/RGO. 

 

Fig 9. 3 (a) and (b) shows the SEM images of Ni/RGO nanocomposite in lower and higher 

magnifications, respectively. Both images shows that well intercalation of Ni NPs with 

graphitic flakes. Moreover, in both images mostly Ni NPs were covered and encapsulated with 

graphene sheets and few were observed on the surface on nanocomposite, suggested the 

formation of discrete assembly of Ni NPs without any specific agglomeration. Next, to better 

understanding we have also carried out the TEM analysis as shown in Fig 9. 3 (c) and (d) 

respective, lower and higher magnification images, clearly reveals that homogeneous 

distribution of isolated spherical Ni NPs on top of graphene sheet; without any aggregation or 

producing big clusters.  The higher magnification TEM image displays the single Ni NP with 

size ranges 8-10 nm which is almost in spherical shape. 

 

 

Figure 9.3 Morphological characterization of Ni/RGO nanocomposite: SEM, (a) and (b), and TEM 

images, (c) and (d), in lower (a and c) and higher (b and d) magnifications, respectively. 
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Further, as described in the experimental section, a Ni/RGO/Chit95/GOx film was 

assembled onto a freshly cleaned GCE through a sequential drop-casting method. The buildup 

process was followed by means of electrochemical measurements in pure 0.05 M PBS.  

Fig. 9.4 presents the CVs registered for bare GCE, GCE/GOx, GCE/Chit95, 

GCE/Chit95/GOx, and GCE/Ni/RGO. As it is seen, the direct adsorption of GOx on GCE 

induced a partial blockage of the electroactivity. Accordingly, the integrated charge for 

GCE/GOx (red solid line) was reduced in a 45 % compared to that at the bare GCE (black solid 

line). This is evidencing a poor conformational stability for the enzyme on this surface. The 

unfolding of GOx must yield a hydrophobic layer that significantly reduces the capacitance of 

the GCE (i.e. the amount of charge stored in its interfacial double layer).  

 

 

 

Figure 9.4 CV response of different modified electrodes: GCE (black), GCE/GOx (red), 

GCE/Chit95/GOx (green, dash), GCE/Chit95 (green, solid) and GCE/Ni/RGO (blue), respectively in 50 

mM PBS solution with scan rate of 50 mVs-1. 

 

In contrast, the electroactivity was enhanced at the GCE/Chit95 electrode (green solid 

curve). Because of its high degree of deacetylation, chitosan may form a highly positively 

charged film under the working conditions. Hence, solution anions (and their associated water) 

would diffuse into the film to keep the electroneutrality. Thereby, the capacitance of the 

electrode must be boosted as reflected by the increased non-faradaic current densities. Contrary 

CV of GCE/Chit95/GOx (green dashed line) shows negligible changes compared to 

GCE/Chit95. This result indicates that stability of GOx is significantly improved when 

supported on chitosan which could be due to: (1) the GCE surface is densely covered by Chit95, 

or (2) the surface area of the Chit95 film is much higher than GCE´s and, then, the impact of 
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GOx unfolding is minimized. But, after all, the most notable changes in the shape of the CVs 

were shown for the GCE/Ni/RGO electrode (blue solid line in the figure). On one hand, a large 

increase in the capacitive current was noticed throughout the whole studied potential range. 

This is a common observation in graphene-modified electrodes and is due to the high surface-

to-volume ratio of graphene and its positive impact in the capacitance. On the other hand, a pair 

of sharp peaks can be identified at +0.07 and -0.27 V. Despite the significant differences in 

shape and peak positions (which could be due to the different experimental conditions of 

synthesis and characterization), a broad peak potential separation, EP, was found in both cases. 

The changes induced to this profile upon the successive deposition of Chit95 and GOx layers. 

The deposition of Chit95 only resulted in a very slight decrease of the non-faradaic current 

(double layer). However, after the application of both modification steps, the peak currents 

decreased significantly. In this regard, almost negligible anodic and cathodic peaks were 

registered for the GCE/Ni/RGO/Chit95/GOx electrode. This result strongly suggests that the 

exposed surface of the Ni NPs is increasingly passivated with the deposition of the biopolymer 

and the enzyme layers. Fig. 9.5 presents the interrogations tests performed by CV (Fig 9.5 (a)) 

and EIS (Fig 9.5 (b)) for bare GCE, GCE/GOx, GCE/Chit95/GOx, and 

GCE/Ni/RGO/Chit95/GOx in 0.05 M PBS (pH 7.3) + 2 mM [Fe(CN)6]
3-/4- + 1 mM glucose 

(dashed lines).  

 

Figure 9.5 (a) CV response of different modified electrodes: bare GCE (black, dash), GCE/GOx (black, 

solid), GCE/Chit95/GOx (green), and GCE/Ni/RGO/Chit95/GOx (blue solid and dash after the cycles) 

in 0.05 M PBS (pH 7.3) + 2 mM [Fe(CN)6]3-/4- + 1 mM glucose (dashed lines). (b) Nyquist plot of 

GCE/Ni/RGO/Chit95/GOx electrode obtained at 0.15 V using a 10 mV amplitude. The plots were fitted 

to a Randles equivalent circuit, double layer capacitance (CDL) and charge transfer resistance (RCT).  
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The most relevant physical parameters derived from these measurements can 

summarized as: in absence of glucose, the [Fe(CN)6]
3-/4- probes exhibited good reversibility in 

bare GCE. However, as happened with the non-faradaic currents in direct adsorption of GOx 

(GCE/GOx, red line) led to a strong blockage of the faradaic processes. Its Nyquist plot 

presented a semicircle in the high-medium frequency range which size was much larger than 

the one of bare GCE (black solid line).  

In this frequency region, the total impedance is controlled by the apparent charge 

transfer resistance, R2, so that wider semicircles are typically ascribed to lower values of the 

apparent electron transfer rate constant, kET
app. Agreeing with this qualitative observation, the 

quantitative value of R2 (derived in this case from fitting to an equivalent circuit without 

Warburg element: R1QR2) increased by two orders of magnitude to 60.2 k.  Whereas, after 

the modification of electrode with Ni/RGO as GCE/Ni/RGO/Chit95/GOx electrode the current 

density was increased (blue solid line) infer the redox process on surface of new modified 

electrode which was increased after the 10 cycles, suggested the high catalytic activity and 

robustness of Ni/RGO nanocomposite system towards the glucose bio-sensing application. 

 

9.4 Conclusions 

 

In this work, we successfully demonstrated the synthesis of Ni/RGO nanocomposite. 

The structure and morphology were well characterized with XRD, FTIR, SEM and TEM 

techniques. The response of Ni/RGO nanocomposite was evaluated for glucose biosensing in 

PBS buffer solution at RT. Results shows that the good CV response of modified 

GCE/Ni/RGO/Chit95/GOx electrode compare to bare one, indicated the applicability of 

Ni/RGO for glucose biosensor application also. 
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CONCLUSIONS: 

 

 

 

 

 

 

 

 

Graphene oxide (GO), the raw material for the synthesis of graphene, was harnessed in various 

ways to accomplish the synthesis of novel transition metal doped graphene products. Facile and 

energy efficient methods were employed without using any harmful and toxic chemicals in 

bulk. The synthesized products were fabricated for diverse applications including energy and 

electrical applications. 

One of the achievements, include the facile synthesis of hydrogenated reduced graphene 

oxide (HRGO) via hydrogen spillover mechanism. A new strategy has been employed for the 

reduction and hydrogenation of GO using bulk metallic Ni in acidic medium. Raman, FTIR and 

XPS were employed to probe the successful hydrogenation of GO to HRGO and results exhibits 

the same. Moreover, due to the concern of bulk Ni solubility in acidic medium further, Ni NPs 

were also used as a second approach which shows the accomplishment of reduction reaction 

within 3 h. The advantage of this method is the change in hybridization state of carbon structure 

as sp2 (-C=C) to sp3 (C-H) which might be extremely illusive for the fabrication of 

semiconductor/supercapcitive devices via tuning of band gap and metal dopant concentration. 

For hydrogen storage, Pd@NSG nanocomposite was successfully synthesized. In this 

work a new innovative strategy has been developed for the synthesis of nanocomposite by a 

facile and cost effective method.  In this work, only 2 wt.% of Pd was used and rest was NixB-

SiO2/RGO. Moreover, we have elaborated the synthesis of tiny Pd NPs (size ranges of ~2.5-4 

nm) and their superficial attachment on base material using the green and facile approach. Here, 
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a detailed spillover mechanism is established based on facile H2 dissociation on Pd (active sites) 

activator and subsequent transportation of hydrogen atom on receptor sites (NixB-SiO2/RGO). 

Further, H2 uptake measurements up to 50 bar pressure clearly exhibited the 14 times more 

storage at RT in Pd@NSG nanocomposite compared to SiO2/RGO. For the better understanding 

of hydrogen storage in porous materials a theoretical modelling work also performed using the 

grand canonical ensemble Monte Carlo (GCMC) simulations of single-component of small 

molecule hydrogen and NaA framework based on zeolite system. 

In addition to hydrogen storage, efforts were also made for the hydrogen production at 

RT without using any toxic chemicals or expensive catalyst materials. For the hydrogen 

production two distinct approaches has been used, first is the electrochemical oxidation of 

ethanol in basic medium and second is the NaBH4 hydrolysis in alkaline solution. Both methods 

produces the clean hydrogen energy with a cost-effective manner. For electrochemical 

oxidation of ethanol a novel catalyst, Pd@NixB/RGO nanocomposite was synthesized by a 

facile method. The structure and morphology of Pd@NixB/RGO nanocomposite were 

characterized by several techniques such as XRD, FTIR, SEM and TEM. The average size of 

as-synthesized Pd@NixB NPs on RGO were about 8-12 nm without any specific agglomeration 

as revealed by TEM. CV measurements of Pd@NixB/RGO nanocomposite for ethanol 

electrooxidation reaction (EOR) shows their promising electrocatalytic behavior. CV shows the 

high current density which was modified and increased upon cycling after 50 cycle, indicated 

the high catalytic activity and CO tolerance capability as compared to the unsupported 

Pd@NixB NPs. Further, CA measurement shows the better stability of the Pd@NixB/RGO 

nanocomposite compared to the Pd@NixB NPs which indicated the role of graphene support. 

For hydrolysis of NaBH4 in alkaline medium we have successfully synthesized the Co-

B@Ni/RGO nanocomposite by a facile method. TEM image clearly displays the superficial 

attachment of the Co-B NPs on Ni/RGO entity along with defects inside the graphene layers 

due the in-situ generated radical hydrogen. We provided the mechanistic explanation regarding 

H atoms interruption in catalyst cavity and their spillover and migration possibility.  The 

synthesized Co-B@Ni/RGO nanocomposite exhibited their enhanced catalytic activity towards 

the hydrolysis of alkaline mix solution of NaBH4. CV and impedance plot clearly shows the 

high charge storage capability and charge conductivity in Co-B@Ni/RGO nanocomposite 

which may provide the future commercialization of catalyst for complete energy application 

viz. H2 production and charge storage together. Moreover, graphene based nanocomposites 

were used for 4-NP pollutant reduction to resolve the water pollution issue, and results shows 
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that high performance of all nanocatalysts with their robustness and recyclability for catalysis 

reaction. 

Finally, graphene based nanocomposites has been employed for electrical and 

electronics applications such as fabrication of memristive device. In the work of activity-

dependent modifications in Ni-doped graphene oxide thin films results clearly reflects the 

cumulative study of role of nickel metal for reduction of oxygen functionalities and changes in 

electronic behavior of graphene oxide (GO) which led the resistive switching (RS) behavior in 

thin film. Moreover, Ni/RGO nanocomposite also employed for glucose biosensing application 

and results shows their promising behavior for such an application. 

In summary, various kind of graphene based nanocomposites were synthesized and 

tested for many energy related applications in constraint lab proximities. The future efforts is 

bulk synthesis of graphene based nanocomposites in a more facile and cost effective manner. 

Further work will be focused on more detailed analysis and characterizations of graphene based 

transition metal doped nanocomposites, along with their durability testing for real field of 

energy applications to resolve the climate change issue and improvement of human life and 

sustainability of green planet. 
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APPENDIX: 

 

 

 

 

 

 

 

A1: Graphene conversion 

 

Graphene is the basic building block of low dimensional carbon materials such as carbon 

nanotubes (1D) and fullerenes (0D). As a truly two dimensional (2D) system graphene possess 

unique electronic properties compared to conventional semiconductors. In order to explore their 

remarkable properties in nanoelectronics, it would be highly desirable to produce a bandgap in 

graphene, and therefore, huge efforts have been made to explore the properties of one 

dimensional graphene. However, synthesis of one dimensional graphene structures with 

uniform dimension, morphology and chemical structure remains challenging. Recently, many 

hybrid structures of graphene reported including growth of carbon nanowire using chemical 

vapor deposition (CVD) at high temperature. Particularly, graphene cut into size <100nm 

categorized as one dimensional graphene or graphene ribbons, and due to this reason a specific 

electronics effect  theoretically predicted in graphene nanoribbons which called as negative 

differential resistance (NDR).  This NDR effect offers a variety of applications in 

nanoelectronics including amplifictaion, logic and memory [1].  

In the beginning, the graphene nanoribbons (GNRs) has been fabricated with specific well 

defined shapes by multistage cutting of graphene in the presence of nickel catalyst and 

emphasized the role of hydrogen as cutting tool.  Later, several methods have also been 

developed to produce the GNRs such as plasma etching, ion implantation and laser annealing 

of graphene sheet. However, in all of these methods the experimental conditions beyond the 

ambient environment which limits the wide applicability of process [2]. 
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A1.1 Transformation of 2D graphene to different nanostructures: Tubes, wires, 

nanoribbons, triangle, parallelogram, H2 filled nanoballoon 

Here we demonstrate for the first time the structural evolution of graphene based nanoarrays 

from at ambient conditions as (i) graphene nanobelts, (ii) graphene tubes, (iii) graphene wire, 

(iv) graphene triangle, (v) graphene rectangle, and (vi) graphene balloons in briefly. 

 

Figure A. 1 Schematic illustration of graphene nanobelts formation by the simultaneous reduction of 

GO and Ni2+ in presence of Zn metal. Where, in-situ generated Ni NPs and radical hydrogen (Ḣ·) 

works as scissors and cut the graphene in small belts. 

 

Fig. A1 illustrates the formation of graphene nanobelts from precursors GO and NiCl2.6H2O 

under aqueous alcoholic medium (1:9 of water/propanol-2) via sacrificing of zinc metallic 

powder. Initially, in this reaction NiCl2.6H2O is hydrolysed into Ni2+ ions and 2Cl- ions and due 

to low redox potential of Zn compared to  Ni it reacts with H+ and produce e- through 

electrochemical reaction (Zn + 2H+ = Zn2+ + 2e-). The H+ and e- recombines and produces 

hydrogen gas (2H+ + 2e- = H2).
 Subsequently, H2 spillover  on Ni2+ and reconverted into radical 

hydrogen (H2 = 2H ̇·). Further, in-situ generated H· gets trapped in the oxygen receptor sites or 

pores of GO and reduces Ni2+ in the solution (Ni2+ +2e- = Ni0) due to low redox potential of 

Ni2+/Ni (E0 = -0.25 V). 
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Figure A.2 (a,b) TEM images of GO. (c,d,e and f) TEM images of graphene nanobelts. Inset 

of c) shows the corresponding SAED of graphene and Ni NP. 
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Figure A.3 Conversion of graphene to one dimensional array: (a) TEM images of GO. (b) and (c) TEM 

images of graphene tubes. (d) TEM image of graphene nanowire. 
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Figure A.4 Conversion of graphene to geometry (a) TEM images of graphene triangle. (b) TEM images 

of graphene parallelogram. (c) TEM image of graphene square and rectangle shapes. 
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Figure A.5 Graphene fabrication: SEM image of graphene sheets stitching to graphene nano-balloons 

filled with H2 gas can use for further energy transportation medium and for catalysis reduction 

reactions. 
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A2:  Anchoring of graphene nanosheet with various type of NPs 

 

 

 

Figure A.6 Graphene sheet decoration with different kind of NPs: SEM image (a) Cu NPs chain on 

graphene sheet. (b) Cu nanopyramid. (c) Ni NPs nanoflower on graphene. (d) Conversion of graphene 

sheets to nanorose with assistance of Cu2+ ions. (e) MnO2 nanowire on graphene sheet and (f) One 

dimensional array of Ni/Ni (OH)2 on graphene.   
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A3:  Multicatalytic applications of Pd@Ni/RGO nanocomposite 

 

(i) Formic acid electro-oxidation [3] 

 

(ii) Potassium dichromate reduction [4] 

 

(iii) Methelene blue (MB) dye removal [5] 

 

 

 
 

 

Figure A.7 (a) TEM image of Pd@Ni/RGO nanocomposite. Applications of Pd@Ni/RGO 

nanocomposite for various catalysis reactions (b) Electro-oxidation of formic acid, (c) Potassium 

dichromate reduction, and (d) MB dye reduction.  

 

 

 

 

 

 



Appendix                                                                                                                                                 Graphene extension 

 

 Page 214 
 

References 

[1] R. Krishna, E. Titus, M. Salimian, O. Okhay, S. Rajendran, A. Rajkumar, J. M. G. Sousa, 

A. L. C. Ferreira, J. C. Gil, J. Gracio. Hydrogen Storage for energy application, Intech Open, 

Europe (2012). ISBN: 978-953-51-0731-6, InTech, DOI: 10.5772/51238 

[2] L. Ci et al. Nano Res, 1 (2008), pp.116-122. 

[3] Y. She, Z. Lu, W. Fan, S. Jewell and M. K. H. Leung. J. Mater Chem, 2 (2014), pp.3894-

3898.  

[4] K. Bhowmik, A. Mukherjee, M.K. Mishra, G. De. Langmuir, 30 (2014), pp. 3209-3216. 

[5] H. Ammar, L. Hinda, K. Mohamed, E. Elimame, G. Chantal, H. Jean-Marie. Appl Catal B, 

31 (2001), pp. 145-157. 


