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We analyse the causal structure of the two dimensional (2D) reduced background used in

the perturbative treatment of a head-on collision of two D-dimensional Aichelburg-Sexl

gravitational shock waves. After defining all causal boundaries, namely the future light-
cone of the collision and the past light-cone of a future observer, we obtain characteristic

coordinates using two independent methods. The first is a geometrical construction of

the null rays which define the various light cones, using a parametric representation.
The second is a transformation of the 2D reduced wave operator for the problem into

a hyperbolic form. The characteristic coordinates are then compactified allowing us to

represent all causal light rays in a conformal Carter-Penrose diagram. Our construction
holds to all orders in perturbation theory. In particular, we can easily identify the singu-

larities of the source functions and of the Green’s functions appearing in the perturbative

expansion, at each order, which is crucial for a successful numerical evaluation of any
higher order corrections using this method.
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1. Introduction

The problem of solving the Einstein field equations in the strong field regime has

been, from the early days of General Relativity (GR), a very challenging one. In

particular, exact analytic solutions in the highly dynamical regime are almost im-

possible to obtain, in realistic situations, and one has to resort to elaborate, and

computationally intensive, numerical techniques. The numerical relativity commu-

nity has made a great effort, in recent years, to perfect numerical techniques and

to develop the tools necessary to produce numerical waveforms to describe astro-

physical candidate events – see Refs.1,2 for a review. In parallel, the experimental

community has achieved outstanding technological advances in the interferometry

needed to directly detect such events and has finally provided us with a break-

through: the first direct observation of one of the most fundamental predictions of

GR – the gravitational wave signal from a black hole binary merger3 by the LIGO

and Virgo collaborations.

Even though for highly dynamical processes, in GR, we are typically forced to

use fully numerical strategies, there are particular limits where one may hope to

get some insights on the underlying physics using semi-analytic techniques. Such is

the case of a head on collision of two Schwarzschild black holes in the limit where

both travel at the speed of light. In this limit, the system becomes equivalent to

two colliding particles travelling precisely at the speed of light, each described by

an Aichelburg-Sexl gravitational shock wave.4 To solve this problem, a perturba-

tive method was first developed in D = 4 space-time dimensions by D’Eath and

Chapman, and later by D’Eath and Payne.5–7 In recent years, the study of this

problem found a renewed interest in the context of higher-dimensional brane-world

models8–11 with TeV scale gravity. In such a framework, it has been suggested that

microscopic black holes (BHs) could be formed12,13 in realistic particle accelerators,

such as the LHC,14,15 or in ultra-high energy cosmic ray collisions.16–18 In fact, it

has been argued earlier by ’t Hooft that the collision of two point-like particles at

trans-Planckian center of mass energies should be well described by General Rela-

tivity.19 So far, no signs of TeV gravity have been found at the LHC. Nevertheless,

it is still of general interest to place the best bounds on the fundamental Planck

scale of such models20–24 through a better phenomenological description.25

Another approach to this problem consists of finding bounds on the amount

of gravitational radiation emitted (inelasticity) in these collisions which, in turn,

places a bound on the production cross section for BH formation. This is achieved

by studying the formation of trapped surfaces in the collision space-time of two

Aichelburg-Sexl shock waves – a method, originally due to Penrose in four space-

time dimensions, that has been extended to D dimensions and to other different sit-

uations.14,26–30 However, there is an important difference between these calculations

and the perturbative method of D’Eath and Payne. The latter is aimed at comput-

ing the metric in the future light-cone of the collision and to obtain estimates, rather

than bounds on the elasticity. Furthermore, this method has two virtues which en-
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courages its study in D > 4, namely: (i) at second order in perturbation theory

the initial data for the pre-collision exact solution of the Einstein equations is fully

taken into account; (ii) the corresponding result obtained by D’Eath and Payne, in

D = 4, for the inelasticity ε2nd order = 0.164, agrees well with the extrapolation to

the speed of light of results from numerical simulations of colliding BHs31 and other

compact objects.32,33

In previous papers,34–37 we have extended several of the results of the method by

D’Eath and Payne to D dimensions. In the process, we have found a new strikingly

simple formula for the amount of radiation emitted in the leading order approx-

imation.35 This we first found numerically and later we proved it to be exact.37

Furthermore we have proved, for the first time, a conjecture which was implicit in

the original calculations of D’Eath and Payne:5–7,38 there is an exact correspon-

dence between the order of the angular expansion of the inelasticity around the

axis of symmetry and the order of the perturbative expansion. Additionally, we

have found closed form analytic solutions for all surface terms contributing to the

gravitational wave form which were also unknown even in D = 4. Both of these

results are related to a reduction of the problem to two dimensions, which we have

extended for all D.

In this article, we complete the two dimensional (2D) reduction of the problem

by finding characteristic coordinates using two methods. First we use causality

considerations to define the future light cone of the collision event and to define the

past light cone of an observation event to the future of the collision. This is then

used to construct parametric solutions for the curves describing the 2D reduced

light rays of the various light cones, as well as the light rays corresponding to

singularities of the gravitational source terms and of the Green’s function. The

second (independent) method consists of performing a hyperbolicity analysis where

the wave operator, appearing at each order in the perturbative expansion, is reduced

to a standard characteristic form with only (second order) mixed derivative terms.

Finally, we compactify the characteristic coordinates and find a Penrose diagram

which clarifies the causal structure of the 2D reduced space-time and sets the stage

for all higher order calculations.

The structure of the paper is the following. In Sect. 2 we start with a brief review

of the setup for the problem. In Sect. 3 we analyse in detail the causal structure of

the problem in the 2D reduced description, by defining the future light cone of the

collision (Sect. 3.1) and the past light cone of an observation event (Sect. 3.2). After

identifying the characteristic coordinates, we build them again with an independent

method in Sect. 3.3. In Sect. 4 we discuss the conformal diagram for the problem

and the asymptotics for the metric functions and for the Green’s functions, at any

order in perturbation theory, for an observer at null infinity. Our conclusions are

summarised in Sect. 5.
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2. Overview of the perturbative method and previous results

In this section, we provide a brief summary of the perturbative method. Complete

details can be found in Refs.34–37,39–41 and in the early papers by D’Eath and

Payne.5–7,38 Pedagogical reviews can also be found in Refs.42,43

The basic premiss of this method comes from the observation that two light-like

particles, i.e. travelling at the speed of light, can not influence each other before they

collide. Thus, if one knows the gravitational field of one such particle moving along

the direction of the positive +z axis, we can superpose another similar solution

moving in the opposite direction. The line element for the superposition is then

exact outside the future light cone of the collision, and one can show that it can be

conveniently written in an asymmetric system of coordinates which is adapted to

one of the particles (say the particle moving along u = t− z = 0):34,42,43

ds2 = −dudv + δijdx
idxj + κΦ(ρ)δ(u)du2+{

−2h̄(u, v, ρ)∆̄ij + h̄(u, v, ρ)2
(
(D − 3)δij − (D − 4)∆̄ij

)}
dx̄idx̄j . (1)

The coordinates u, v are retarded and advance null coordinates, t is a time co-

ordinate and z a coordinate along the axis of symmetry. The coordinates xi are

Euclidean coordinates on the plane transverse to the collision axis (the z-axis).

The first line of Eq. (1) corresponds to the Aichelburg-Sexl solution for the refer-

ence point particle, u = 0, and contains a delta-function like impulsive part with a

ρ ≡ xixi dependent profile which is44

Φ(ρ) =


−2 ln(ρ) , D = 4

2

(D − 4)ρD−4
, D > 4

. (2)

The coordinate v = t + z is such that the left moving particle, colliding head on,

travels with v = 0. Here κ ≡ 8πGDE/ΩD−3 is the only parameter in the problem,

corresponding to the energy parameter of each of the colliding point like particles.

E is the energy of the point-like particle, GD the D-dimensional Newton’s constant

and ΩD−3 is the area of the D−3 sphere. Observe that the line element on the first

line of Eq.(1) is flat space in the usual Minkowski coordinates except for the last

impulsive term. In the second line of Eq. (1) we have that

h̄(u, v, ρ) ≡ −κΦ′v̄

2ρ̄
θ(v̄) (3)

∆̄ij ≡ δij − (D − 2)Γ̄iΓ̄j (4)

Γ̄i ≡
x̄i
ρ̄

(5)
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where the barred coordinates are related to the un-barred ones through

u = ū ,

v = v̄ + κθ(ū)

(
Φ +

κū(∇̄Φ)2

4

)
= v̄ + κθ(ū)

(
Φ +

κūΦ′2

4

)
,

xi = x̄i + κ
ū

2
∇̄iΦ(x̄)θ(ū)⇒

{
ρ = ρ̄

(
1 + κū θ(ū)

2ρ̄ Φ′
)

φa = φ̄a
. (6)

In a region h̄ � 1, the terms on the second line of Eq. (1) can be viewed as a

perturbation due to the v = 0 particle. In such a region we can approximate the

solution to the Einstein equations perturbatively around the reference u = 0 shock

wave.42 In fact, the exact metric in the boundary region separating the future light

cone of the collision (where the line element is unknown) from the past of the

collision (where the superposition is exact) is given by the following two branches:

gµν(u > 0, v̄ = 0, xi) = ηµν , (7)

and

gµν(u = 0+, v, xi) ≡ ηµν + hµν = ηµν + h(1)
µν + h(2)

µν . (8)

Here the h
(i)
µν can be obtained from (1) and the label i = 1, 2 corresponds to the

power of h̄ appearing in each term. The two surfaces where these conditions are set

can be better visualised in the diagram of Fig. 1 (left bottom surface).

The perturbative method, consists of assuming a perturbative ansatz in the

future region of the collision. The main steps are:

(1) Assume a perturbative ansatz with the form (here k can be identified as the

order in an expansion in κk):

gµν = ηµν +

∞∑
i=1

h(k)
µν , (9)

(2) Insert the ansatz in the Einstein equations, equate order by order, impose the de

Donder gauge condition h̄
(k)αβ

,β = 0 on the trace reversed metric perturbation

h̄(k)αβ , and obtain a tower of wave equations

�h(k)
µν = T (k−1)

µν

[
h

(m<k)
αβ

]
. (10)

Here the right hand side source at order k depends only on metric perturbations

of lower order, h(k)αβ are the metric perturbations in de Donder coordinates,

and � = −2∂u∂v + ∂i∂
i is the usual wave operator in Minkowski space.

(3) Since the solution of the wave equation with sources is well known, the general

formal solution, at each order k, is

h(k)
µν (y) = F.P.

∫
u′>0

dDy′G(y, y′)
[
2δ(u′)∂v′h

(n)
µν (y′) + T (k−1)

µν (y′)
]
, (11)



April 11, 2016 0:17

6

Fig. 1. Right: 3D space-time diagram which shows the (t, z, ρ ≡ x) axes, four regions (in red

roman numerals), the generators of the v-shock (in blue) and the collision surface (in green).
Adapted from Ref.34 Left: The top diagram shows a surface defined by the v = 0 shock null

generators (when u < 0) as they scatter through the u = 0 shock (when u > 0). The bottom one

shows the union of the two causal surfaces (u = 0 ∧ v > 0 and v̄ = 0 ∧ u > 0) which define the
future light cone of the collision (region IV). Adapted from Ref.42

where G(y, y′) is the retarded Green’s function which propagates the source

from the point y′ inside the past light cone of the observer, to the observation

point y, and F.P. denotes the finite part of the integral.34,42,43

Thus the problem reduces to evaluating the integrals Eq. (11) order by order. The

problem simplifies even further by using the axial symmetry to reduce the metric

perturbations and the source tensors. The general reduction we have found in D

dimensions is as follows:36,37,42

huu ≡ A = A(1) +A(2) + . . . hui ≡ B Γi = (B(1) +B(2) + . . .)Γi

huv ≡ C = C(1) + C(2) + . . . hvi ≡ F Γi = (F (1) + F (2) + . . .)Γi (12)

hvv ≡ G = G(1) +G(2) + . . . hij ≡ E∆ij +H δij = (E(1) + . . .)∆ij

+ (H(1) + . . .)δij .

Where all the functions A(k), B(k), . . . depend only on the coordinates (u, v, ρ). Sim-

ilarly, for the sources T
(k−1)
µν , we can find such a decomposition. The radiative com-

ponents are for example

T
(k−1)
ij = T

(k−1)
H (u, v, ρ)δij + T

(k−1)
E (u, v, ρ)∆ij . (13)
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In the remainder we denote the functions in (12) collectively by F (k)(u, v, ρ). The

associated source, i.e. the projection of T
(k−1)
µν with the same basis tensor, is denoted

by T (k−1)(u, v, ρ). Then from (11) one obtains

F (k)(u, v, ρ) = F.P.

∫
u′>0

dDy′G(y, y′)Λm

(
x · x′

ρρ′

)[
T (k−1)(u′, v′, ρ′)+

2δ(u′)∂v′F
(k)(0, v′, ρ′)

]
, (14)

where the projection scalars are (for m = {0, 1, 2}),

Λm(z) ≡
{

1, z, (D − 3)−1
(
(D − 2)z2 − 1

)}
. (15)

Here m is the rank of the axial basis tensor corresponding to F (and similarly for

T ). In particular, m = 0 for A,C,G,H, m = 1 for B,F and m = 2 for E – see

Eq. (12). For notational simplicity, in the remainder, we denote the sum of both

volume and surface sources by:

S(k)(u, v, ρ) ≡ T (k−1)(u, v, ρ) + 2δ(u)∂vF
(k)(0, v, ρ) . (16)

Finally, observe that the Green function only depends on the quantity

χ ≡ −ηµν(y − y′)µ(y − y′)ν .

3. The two-dimensionally reduced problem

In Ref.37 we have shown that there is a generalisation to D > 4 of the conformal

symmetry found in Ref.6 which allowed a further separation of variables in D = 4.

This symmetry implies that the ρ dependence can be completely factored out, and

the problem becomes effectively two-dimensional. Both the metric functions and

respective sources can then be decomposed as

F (k)(u, v, ρ) =
f (k)(p, q)

ρ(D−3)(2k+Nu−Nv)
, (17)

and

S(k)(u, v, ρ) =
s(k)(p, q)

ρ(D−3)(2k+Nu−Nv)+2
. (18)

Here

p = (v − Φ(ρ))ρD−4 , q = uρ−(D−2) . (19)

The solution for f (k)(p, q) at a certain order k in perturbation theory after this 2D

reduction is

f (k)(p, q) =

∫
dq′
∫
dp′Gkm(p, q; p′, q′)s(k)(p′, q′) , (20)

where Gkm is the reduced Green’s function,

Gkm(p, q; p′, q′) = −1

4

∫ ∞
0

dy y
D−4

2 −(D−3)(2k+Nu−Nv)ID,0m (x?) , (21)
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and x? now reads

x? =
1 + y2 − (q − q′yD−2)(p− p′y−(D−4) −Ψ(y))

2y
, (22)

Ψ(y) ≡


Φ(y) , D = 4

Φ(y)− 2

D − 4
, D > 4

. (23)

Thus all the quantities that we might need, at any order in perturbation theory, can

be computed numerically as a (at most) two-dimensional integral. Surface terms are

a particular case with a structure similar to the Green’s function,

f
(k)
S (p, q) = (−1)D+1k!f

(k)
0 (1)

(
2

q

)k ∫ ∞
0

dy y
D−4

2 −(D−3)(k+Nu−Nv)ID,km (xS) , (24)

where now

xS ≡ x?(p′ = 0, q′ = 0) =
1 + y2 − q(p−Ψ(y))

2y
. (25)

The functions f
(k)
0 (ρ) depend only on the initial conditions.34,43 In the remainder

we will focus the discussion on the construction of the characteristic coordinates so

the specific form of f
(k)
0 (ρ) and ID,nm (x?) will not be necessary.

The integration domain in Eqs. (20) and (24) is determined ultimately by con-

siderations of causality between the observation point and the source points. This

is encoded in the functions ID,nm (x?) and in x?. Considering an observation point

P = (u, v, xi) to the future of the collision, the integration point P ′ = (u′, v′, x′
i
)

must then be i) inside the future light cone of the collision (for the source to be

non-zero), and ii) inside the past light cone of the observation point P. We analyse

these two conditions in the next sub-sections.

3.1. The future light cone of the collision

In Brinkmann coordinates, the future light cone of the collision is defined by34,42,43

u = 0 ∧ v ≥ Φ(ρ) ∨ u ≥ 0 ∧ v̄ = Φ(ρ̄) +
uΦ′(ρ̄)2

4
. (26)

On the (p, q) plane, these two conditions define two important curves. The first

defines the line where the initial data has support,

p ≥ 0 ∧ q = 0 , (27)

whereas the second one separates a flat region before the collision, from the curved

region to the future of the collision. This second curve can be represented paramet-

rically by

p(ζ) = Ψ(ζ) +
ζ − 1

ζD−3
∧ q(ζ) = (ζ − 1)ζD−3 , (28)
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where ζ ∈ [1,+∞[ is the parameter. This corresponds, in the original D-dimensional

description, to optical null rays which are scattered at the collision and travel along

its light cone. In this 2D reduction it becomes one single null ray (we call it ray 1

from here on). A second solution, corresponds to the continuation of such optical

rays into the curved region (see Fig. 1) after crossing the axis. This is similarly

represented parametrically by

p(ζ) = Ψ(ζ) +
ζ + 1

ζD−3
∧ q(ζ) = (ζ + 1)ζD−3 . (29)

This curve is important because these optical rays cross at the axis of symmetry

forming a caustic which creates a singularity in the metric perturbations and in the

source (we call this ray 2). Thus, extra care needs to be taken to integrate near this

region. In summary, looking at the lowest possible values for p, q for each of the

curves, we conclude that the lower bounds for the integration variables in Eq. (20)

are

q′ ≥ 0 , p′ ≥


−∞ , D = 4

− 2

D − 4
, D > 4

. (30)

3.2. The past light cone of the observation point

The Green’s function G(u, v, xi) introduced in Sect. 2 has support on the light cone

of the observation point (χ = 0) for even D, whereas for odd D it also has support

inside it (χ ≥ 0). These conditions are equivalent, respectively, to −1 ≤ x? ≤ 1 and

x? ≤ 1. This is indeed the domain where the functions ID,0m are non-vanishing. The

region with x? > 1 is outside the past light cone of the event (u, v, xi).

To analyse the domain corresponding to the past light cone of the observation

point we define curves C±(y) corresponding to the conditions stated above, such

that

C±(y) ≡ (y ± 1)2yD−4 − (q − q′yD−2)((p−Ψ(y))yD−4 − p′) . (31)

Then we have

C−(y) ≤ 0⇔ x? − 1 ≤ 0 , C+(y) ≥ 0⇔ x? + 1 ≥ 0 . (32)

Both curves start at a non-negative value for y = 0, C±(0) ≥ 0, and grow to infinity

for large y. Moreover, C+(y) ≥ C−(y)∀ y ∈ R+
0 . So the domain becomes non-empty

when the curve C−(y) crosses the horizontal axis. The limiting case occurs when the

curve is tangent to the y axis. If the crossing exists, then the condition C−(y) ≤ 0

gives a finite domain for the y integration. The other condition, C+(y) ≥ 0, comes

into play when C+(y) starts crossing the y axis, in which case the y domain is

broken into two.

The first condition defines the boundary of the light cone (p′, q′) of the event

(p, q), whereas the second condition provides the location of the singularity of the
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Fig. 2. Characteristic curves in the (p, q) plane. We show the future light cone of the collision (blue

curves), the past/future light cones for two observers O1 and O2 (solid/dashed grey curves), and

the singularities of the source (red curve) and of the Green’s function (green curve, for observer
O2). In D = 4 (left), the blue curve goes to p = −∞, whereas in D > 4 (right) is starts at

p = −2/(D − 4).

reduced Green’s function Gkm(p, q; p′, q′). They are the solutions to

C±(y) = 0 ∧ d

dy
C±(y) = 0 . (33)

For each case there are two solutions, parameterised by y ∈ R+
0 and labeled by

n = ±1,

p′ = yD−4 [p−Ψ(y)− (1± y)∆n(p, q)] , (34)

q′ =
1

yD−2

[
q − 1± y

∆n(p, q)

]
, (35)

where

∆±(p, q) =
1±

√
1 + (2 + (D − 4)p)(D − 2)q

(D − 2)q
. (36)

If we choose the negative sign solution, then the two possibilities ∆± give two

characteristics going through (p, q). They define the light cone of the observation

point for the two dimensionally reduced problem. If we choose the + solution one

can check that the curve with ∆+ is inside the past light cone whereas the curve

with ∆− is inside the future light cone of (p, q). The latter can be identified as curves

where the Green’s function has a singularity. Later we will see, in the conformal

diagram, that the origin of this is an axis singularity, similar to the one for the

sources.

In Fig. 2 we illustrate all these curves in the (p, q) plane for D = 4 and D = 5.

The collision occurs at (p, q) = (0, 0) and the blue curves define the future light

cone of that event: the one to the right is where the initial data has support; the

one to the left (ray 1) goes to p→ −∞ in D = 4 and to a constant in D > 4 – see
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also Eq. (30). We also represent two observation points, O1 and O2, together with

their past light cones (solid grey lines) and future light cones (dashed grey lines).

The interior of their past light cones are respectively coloured in dark grey and light

grey for O1 and O2.a The future light cones of these events are inside the dashed

grey lines to the right of the diagram. Finally, the red curve indicates the second

optical ray (ray 2), where the sources are expected to be singular. The green curve

shows the location of the singularity of the Green’s function which is inside the past

light cone of observer O2.

It is also possible to write explicit equations for these curves without using a

parameter. We first define a new set of coordinates

P ≡


p , D = 4

p+
2

D − 4
, D > 4

, Q ≡ (D − 2)(2 + (D − 4)p)q . (37)

Then, using the parametric forms Eqs. (34) and (35) we solve for

y =

√
1 +Q− n(D − 3)√
1 +Q′ ± n(D − 3)

. (38)

Inserting y back in the parametric equations, we find that they can be written as

C±n(P ′, Q′) = C−n(P,Q) , (39)

with

C±(P,Q) ≡



P − 1

2
+ ln

(√
1 +Q± 1

2

)
± 1√

1 +Q± 1
, D = 4

(
P√

1 +Q± 1

) 1
D−3
√

1 +Q± (D − 3)

D − 2
− (D − 4)−

1
D−3 , D > 4

.

(40)

Using this form we can now define the light cone (P ′, Q′) of the event (P,Q) ex-

plicitly as

C±(P ′, Q′) = C±(P,Q) , (41)

and the points (P ′, Q′) where the Green’s function for the observation point (P,Q)

is singular as

C±(P ′, Q′) = C∓(P,Q) . (42)

Though we have obtained the equations for these characteristic curves using causal-

ity/geometric arguments, they can also be obtained by requiring that the differential

operator for the problem adopts a characteristic form. This is discussed in the next

section and provides a verification of this construction.

aObserve, however, that the past light cone of O1 is contained in the past light cone of O2.
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3.3. Characteristic coordinates

In our initial formulation of the problem we have presented the formal solutions

in terms of the coordinates (u, v, xi) which are adapted to the initial data on the

characteristic surface u = 0. After the reduction of the problem to two-dimensions,

it is more natural to find new characteristic coordinates (ξ, η) such that the principal

part of the 2D reduced wave operator contains only the mixed derivative term ∂ξ∂η.

Then the initial data is on a characteristic line, say, of constant ξ.

In Appendix A we obtain the differential operator acting on f (k)(p, q), Eq. (A.6).

The terms with highest derivatives come from

− 4∂p∂q + ((2 + (D − 4)p)∂p − (D − 2)q∂q)
2

+ . . . , (43)

where we ignore first derivatives. After transforming first to the coordinates (P,Q)

defined in Eq. (37) we apply a generic two dimensional coordinate transformation

(P,Q)→ (ξ(P,Q), η(P,Q)) , (44)

so that the above operator takes the form

f(Zη, Zξ)
∂η

∂P

∂ξ

∂P

∂2

∂η∂ξ
+

(
∂η

∂P

)2

C(Zη)
∂2

∂η2
+

(
∂ξ

∂P

)2

C(Zξ)
∂2

∂ξ2
+ . . . , (45)

where ZX ≡ ∂QX/∂PX. The characteristic polynomial is

C(Z) ≡ (D− 4)2P 2 + 4Q(Q− (D− 2)(D− 4))Z2− 4(D− 4)P (Q+D− 2)Z , (46)

and the explicit form of f(Zη, Zξ) in unimportant. The new coordinates (ξ, η) are

characteristics if C(Zξ) = C(Zη) = 0, or equivalently

2Q(Q− (D − 4)(D − 2))

Q+ (D − 2)(1−
√

1 +Q)

∂η

∂Q
= (D − 4)P

∂η

∂P
, (47)

2Q(Q− (D − 4)(D − 2))

Q+ (D − 2)(1 +
√

1 +Q)

∂ξ

∂Q
= (D − 4)P

∂ξ

∂P
. (48)

These allow for a solution by separation of variables and, with a convenient choice

of normalisation, a possible solution is preciselyb

ξ = C−(P,Q) , η = C+(P,Q) . (49)

In conclusion, we confirm that all the curves found in the previous section are

indeed characteristics. Expressed in the new characteristic coordinates, the light

cone events (ξ′, η′) of an event (ξ, η) are defined by

ξ′ = ξ , η′ = η . (50)

The events that we have identified as singularitues of the Green’s function are

respectively defined by ξ′ = η, inside the past light cone of (ξ, η), and η′ = ξ, inside

the future light cone of (ξ, η). Observe that we have chosen the integration constants

bIn D = 4 this reproduces the results of D’Eath and Payne6,45 if we note that (D − 4)P → 2.
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such that: i) η = 0 corresponds to the left blue curve in Fig. 2 going through the

event (p, q) = (0, 0), and ii) ξ = 0 corresponds to the second optical ray (ray 2, or

red curve in Fig. 2) obtained in parametric form in Eq. (29).

From the results above it is straightforward to conclude that the ranges of the

characteristic coordinates in the future of the collision are

ξ ∈]−∞,+∞[ , η ∈ [0,+∞[ , (51)

with ξ ≤ η inside the light cone. This suggests introducing compactified coordinates,

ξ̂ =
ξ√

1 + ξ2
, η̂ =

η√
1 + η2

, (52)

such that the integration domain becomes

ξ̂ ∈ [−1, 1] , η̂ ∈ [0, 1] . (53)

Then the volume integrals, Eq. (20), become

f (k)(ξ̂, η̂) =

∫ ξ̂

−1

dξ̂′
∫ η̂

max{0,ξ̂′}
dη̂′

∣∣∣∣∣∂(p′, q′)

∂(ξ̂′, η̂′)

∣∣∣∣∣Gkm(ξ̂, η̂; ξ̂′, η̂′)s(k)(ξ̂′, η̂′) , (54)

where the Jacobian determinant is∣∣∣∣∂(p, q)

∂(ξ, η)

∣∣∣∣ =

∣∣∣∣ ∂(p, q)

∂(P,Q)

∣∣∣∣× ∣∣∣∣∂(P,Q)

∂(ξ, η)

∣∣∣∣×
∣∣∣∣∣∂(ξ, η)

∂(ξ̂, η̂)

∣∣∣∣∣ , (55)

=

(
D − 3

D − 4

)2
P−

2
D−3Q

D−2
D−3

√
1 +Q

1

(1− η̂2)
3
2

1

(1− ξ̂2)
3
2

. (56)

4. The Carter-Penrose diagram and higher order calculations

The compactified characteristic coordinates (ξ̂, η̂) allow us to produce a conformal

Carter-Penrose diagram, Fig. 3, which captures, in a simple representation, the effec-

tive background two-dimensional space-time. In this diagram, the causal structure

and all the important curves that we have discussed become very clear.

The collision occurs at (ξ̂, η̂) = (−1, 0). From this event two light rays emerge

(in blue) to define its future light cone. At the surface ξ̂ = −1 the initial data is

provided, and the ray η̂ = 0 is the first optical ray emerging from the collision. The

left vertical boundary (thick black line) is the axis, ρ = 0, which corresponds to

ξ̂ = η̂. Future null infinity, J +, is located at η̂ = 1 and future time-like infinity

(I+) at (ξ̂, η̂) = (1, 1). We represent, in the dotted black curve, the world line of

a time-like observer. When the observer crosses the blue line (ray 1) the radiation

signal begins, and later, while crossing the red line, there is a peak in the radiation

signal (corresponding to ray 2).

The light cones of two observation points O1 and O2, are also shown. These

are solid gray lines, for the past light cones, and dashed gray lines, for the future

cone. We have coloured the interior of the past light cones in dark and light gray

for O1 and O2 respectively. Note that the singularity of the Green’s function for
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Fig. 3. Carter-Penrose diagram for the effective background two-dimensional space-time. The

colours of the lines match the corresponding curves of Fig. 2.

each observation point (green solid and dashed lines) occurs for points on its light

cone which cross the axis of symmetry (for past/future directed rays as seen in the

solid/dashed green lines). The solid green line, for example, is the location of such

singularity in the past light cone of O2. It also becomes clear that for O1 (ξ̂ < 0)

this does not exist in the past light cone of O1 because ray 2 (the red line) is the

first ray emerging from the axis.

In this diagram, the radiation signal is extracted at J + for an asymptotic ob-

server when r → +∞ (respectively η̂ → 1). Since ultimately one is interested in

extracting the radiation signal at null infinity, we now simplify all the quantities

that are necessary for an asymptotic observer to perform the computation in the

two-dimensional reduction.

The characteristic coordinates are indeed the most natural for such an asymp-

totic analysis. In fact, if we take the limit r → ∞ with τ and θ fixed, we find

that

ξ →


τ̄(τ, θ)− 1 , D = 4

1

(D − 4)
1

D−3

(
D − 4

D − 3
τ̄(τ, θ)− 1

)
, D > 4

, η → 2(D − 3)

(D − 2)
D−2
D−3

1

q̂
∼ O(r) .

(57)
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Here τ̄(τ, θ) is precisely a time coordinate that we have used in the proof of the

factorisation of the angular dependence of the news function in Ref.37 Therefore, at

null infinity when η →∞, the natural time integration variable is indeed ξ.

Now that we understand the natural coordinates to treat the problem at J + we

need to find the corresponding 2D reduced quantities that are necessary to compute

the wave form, Eq. (20). Since the source function s(k)(p′, q′) is already in a 2D form,

it remains to analyse the Green’s functions Gkm(p, q; p′, q′). We first observe that all

the dependence on the observation point (p, q) is in x?. In (P,Q) coordinates, from

Eq. (22), we know that in D = 4

x? =
4−Q(P − P ′ + 2 ln y)

8y
+

4 +Q′(P − P ′ + 2 ln y)

8
y , (58)

and that in D > 4

x? =
(D − 2)(D − 4)−Q
2(D − 2)(D − 4)y

+
(D − 2)(D − 4)−Q′

2(D − 2)(D − 4)
y

+
QP ′/P

2(D − 2)(D − 4)yD−3
+

Q′P/P ′

2(D − 2)(D − 4)
yD−3 (59)

For a general observation point it is manifest, in these coordinates, that x? is a

three-dimensional quantity, depending only on Q, Q′, and P − P ′ (in D = 4) or

P/P ′ (in D > 4). However, we are interested in the limit r → +∞ (equivalently

η → +∞), i.e. for an onservation point in J +. When taking that limit we will

loose one coordinate and the Green function will effectively depend only on two

coordinates, so it becomes a 2D quantity as well. To do so, recall that q → 0 and

p→∞ with pq → 1, so that

P →∞ , Q→ (D − 2)(D − 4) . (60)

To avoid a divergence in the term proportional to P , we scale the integration variable

y as follows

y =


Q

Q′
ŷ , D = 4

(
P ′

P

) 1
D−3

ŷ , D > 4

, (61)

such that, asymptotically,

x? →



1

2ŷ

[
ŷ2 − Q′

2

(
ln

4ŷ

Q′
+ 1− ∆′

2

)]
, D = 4

1

2ŷD−3

(
1 +

Q′ŷ2(D−3)

(D − 2)(D − 4)
− 2(D − 3)ŷD−4

(D − 4)∆′
1

D−3

)
, D > 4

, (62)
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where

∆′
1

D−3 ≡


P ′ − P + 2 +

4

Q
− 2 lnQ → P ′ − 2ξ , D = 4

(
P ′

P

) 1
D−3

(
2(D − 2)(D − 3)

Q− (D − 2)(D − 4)

)
→ P ′

1
D−3

1 + (D − 4)
1

D−3 ξ
, D > 4

.

(63)

Now it is clear that x? only depends on the observation and source point through

(∆′, Q′). Thus, factoring out the scaling factor in Eq. (61), the asymptotic Green’s

function becomes effectively 2D:

Gkm(p, q; p′, q′)→



(
Q

Q′

)1−(2k+Nu−Nv)

Gkm(∆′, Q′), D = 4

(
P ′

P

) 1
2

D−2
D−3−(2k+Nu−Nv)

Gkm(∆′, Q′) , D > 4

. (64)

Observe that the special case of surface terms can be obtained by setting q′ = p′ = 0

in x? similarly to the Green’s function. The scalling factor for y is as in Eq. (61)

without Q′ or P ′. Then, using Eq. (24) we obtain

qkf
(k)
S (p, q)→


Q1−(k+Nu−Nv)f

(k)
S (ξ), D = 4

P−
1
2

D−2
D−3 +(k+Nu−Nv)f

(k)
S (ξ) , D > 4

. (65)

This result is useful to compute the asymptotic behaviour of the second-order source

s(2)(p′, q′) near J +.

The asymptotic behaviour of the Green’s function is important for the evaluation

of the wave forms at higher orders. This determines the tail off behaviour of the

metric functions and needs to be factored out for a successful evaluation of the

radiated power. Using Eq. (64), noting that Q ∼ r−1 in D = 4 and P ∼ rD−3 in

D > 4, one concludes that the power of r (or, equivalently, of η) controlling the

decay of the Green’s funtion is

D − 2

2
− (D − 3)(2k +Nu −Nv) . (66)

Then, finally, the natural definition of the asymptotic metric function f̂ (k)(ξ̂) is the

finite limit

f̂ (k)(ξ̂) ≡ lim
η→∞

f (k)(η̂, ξ̂)×



(
Q

4

)1−(2k+Nu−Nv)

, D = 4

(
1

P

) 1
2

D−2
D−3−(2k+Nu−Nv)

, D > 4

,

=

∫ ξ̂

−1

dξ̂′
∫ 1

max{0,ξ̂′}
dη̂′Gkm(∆′, Q′)s(k)(ξ̂′, η̂′)Jk(ξ̂′, η̂′) , (67)
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where

Jk(ξ̂′, η̂′) ≡

∣∣∣∣∣∂(p′, q′)

∂(ξ̂′, η̂′)

∣∣∣∣∣×

(

4

Q′

)1−(2k+Nu−Nv)

, D = 4

P ′
1
2

D−2
D−3−(2k+Nu−Nv)

, D > 4

. (68)

These results imply that both the Green’s function and the source functions can

be tabulated independently on a two-dimensional domain. This has been imperative

to make the double integration efficient in D = 4 and is expected to be important

in D > 4 and at higher orders. In fact, there is another choice of coordinates which

is more natural for the Green’s function. These are defined

δξ ≡ C−(∆′, Q′) =
ξ′ − ξ

1 + (D − 4)
1

D−3 ξ
, (69)

δη ≡ C+(∆′, Q′) =
η′ − ξ

1 + (D − 4)
1

D−3 ξ
, (70)

together with their compactified versions,

δξ̂ ≡ δξ√
1 + δξ2

, δη̂ ≡ δη√
1 + δη2

, (71)

and they are naturally given as a shift around the observation point (ξ, η). These

definitions are very similar to those of η and ξ through C±(P ′, Q′), with the exception

that, while P ′ ≥ 0, ∆′ can also be negative.

To finalise, we remark on the domain for these coordinates. Given an observation

time ξ, the domain of (δξ, δη) depends on ξ. However, in a practical application

where the Green’s function is tabulated, we are interested in the full domain for all

values of ξ. In D = 4 we obtain

δξ̂ ∈ [−1, 0] , δη̂ ∈ [−1, 1] , with δξ̂ < δη̂ . (72)

For D > 4 the denominator of Eqs. (70)-(69) changes sign at ξ = ξ0 ≡ −(D −
4)−

1
D−3 . One can show that the full domain in this case is

δξ̂ ∈ [−1, 0] , δη̂ ∈ [ξ̂0, 1] , with δξ̂ < δη̂ , (73)

together with a rectangle,

δξ̂ ∈ [0, 1] , δη̂ ∈ [−1, ξ̂0] . (74)

This completes the description of the analytic structure of this problems at all

orders in perturbation theory in the two-dimensional reduction for all D.

5. Conclusions

In this article we have closed the discussion of the analytic structure of the 2D re-

duced problem for the collision of two D-dimensional Aichelburg-Sexl gravitational

shock waves.
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In our previous work34–37,39–43 we have extended the D = 4 method of D’Eath

and Payne to D > 4 and proved important results at all orders. Namely, the cor-

respondence between the order of the axis expansion and the order in perturbation

theory and the calculation of all surface terms in exact analytic form.37 However,

the generalisation of the characteristic coordinates to D > 4 was still missing, and

the construction of a conformal diagram for this 2D reduction did not exist at all for

any D. The latter greatly simplifies the interpretation of the various causal bound-

aries and light rays in the problem. It allows the identification of the singular points

for the source functions and Green’s functions at fixed values of the coordinates, as

well as the location of the boundaries of the integration domain. These are crucial

for the successful numerical integration to obtain the metric perturbations at any

order. Finally, we have shown that both source functions and Green’s functions ef-

fectively only depend on two variables each, so they can be numerically tabulated

in a 2D domain, at all orders.

The results in this article, together with those in previous studies,5–7,34–37,39–43

complete the discussion of this method. The computation of any higher order cor-

rection should amount to achieve a numerically stable evaluation of the various

integrals involved.
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Appendix A. 2D reduced wave operator

After using the axial symmetry, the differential equation associated with our prob-

lem is

� (F (u, v, ρ)Xm) = S(u, v, ρ)Xm . (A.1)

where Xm generically denotes one of the axial tensors with one of the ranks m =

{0, 1, 2} respectively. We can write this as

∆ ≡ ∂i∂i = ρ−(D−3)∂ρ(ρ
D−3∂ρ) + ρ−2∆SD−3 , (A.2)

where ∆SD−3 is Laplacian on the (D− 3)-sphere, for which Xm are eigenfunctions:

∆SD−3Xm = −m(m+D − 4)Xm , (A.3)

thus the equation for F (u, v, ρ) implied by Eq. (A.1) is(
−4∂u∂v + ∂2

ρ + (D − 3)ρ−1∂ρ −m(m+D − 4)ρ−2
)
F (u, v, ρ) = S(u, v, ρ) .

(A.4)
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Using Eq. (19), which defines p, q, then

∂u → ρ−(D−2)∂q , ∂v → ρD−4∂p , ∂ρ → ∂ρ −
D − 2

ρ
q∂q +

2 + (D − 4)p

ρ
∂p .

(A.5)

Inserting this in Eq. (A.4), together with Eqs. (17) and (18), we conclude that the

operator acting on f (k)(p, q) is

−4∂p∂q + ((2 + (D − 4)p)∂p − (D − 2)q∂q − (D − 3)(2k +Nu +Nv) +D − 4)×
× ((2 + (D − 4)p)∂p − (D − 2)q∂q − (D − 3)(2k +Nu +Nv))−m(m+D − 4) .

(A.6)
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