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resumo 
 

 

 

No trabalho de investigação para o doutoramento foi realizado um estudo 
abrangente dos efeitos do desvio estequiométrico sobre o comportamento 
magnético e o acoplamento do magnetismo com a polarização elétrica e a 
rede cristalina do óxido cerâmico multiferróico de rede hexagonal do 
LuMnxO3±δ auto-dopado no intervalo de composição (0.92≤x≤1.12). Existe 
um acoplamento complexo dos diferentes ordenamentos ferróicos. O 
cancelamento dos momentos magnéticos dos iões Mn no sistema 
antiferromagnético, a polarização elétrica com topologia específica de 
vórtice/antivórtice conduziram os investigadores a propor modelos para a 
física e química subjacentes ao acoplamento magneto-elétrico e magneto-
elásticas dos materiais multiferróicos de h- RMnO3. Neste trabalho optou-se 
pela auto-dopagem das posições R e do Mn da rede cristalina dos 
cerâmicos h-LuMnxO3±δ preparados por reacção no estado sólido como 
caminho para uma compreensão mais completa da transição 
antiferromagnética, do ferromagnetismo fraco frequentemente observado 
nas mesmas redes cristalinas e das propriedades dieléctricas e 
ferroeléctricas associadas a alterações impostas à rede pela auto-dopagem. 
Em linha com o propósito traçado para a tese de doutoramento, foram dois 
os objectivos definidos para o estudo de sinterização no primeiro capítulo 
sobre resultados experimentais. Primeiro foi feito o estudo de sinterização 
das amostras com desvio de estequiometria em correspondência com 
condições do processamento relatadas na bibliografia e conformes com os 
diagramas de fases do LuMnO3, tendo-se optado por diversas etapas de 
reacção a temperatura elevada terminando com um último passo a 1300ºC 
durante 24 horas. Numa segunda parte, explorou-se o efeito do aumento do 
tempo de recozimento até às 240 horas à mesma temperatura fixa de 1300 
ºC para melhorar as propriedades sob estudo da solução sólida. 
Caracterizaram-se todas as séries para cada tempo de recozimento dos 
cerâmicos de h-LuMnxO3±δ na tentativa de construir um referencial que 
permitisse a comparação das propriedades medidas nas composições com 
desvio de estequiometria com os resultados de outros estudos da 
bibliografia. A difracção de raios-X (DRX) e o refinamento de Rietveld dão a 
evolução dos parâmetros de rede em função de x tendo-se observado uma 
retracção nos parâmetros de rede com o aumento dos valores de x e 
identificado em primeira aproximação o limite de estabilidade da solução 
sólida pela análise dos mesmos parâmetros de rede. As evoluções do 
tamanho do grão e a da quantidade de fases residuais detectadas foram 
investigadas por técnicas de TEM, SEM, EDS e EBSD. Foram ainda 
caracterizadas as dependências do crescimento de grão e da diminuição de 
teor em fases secundárias em função da composição x e tempo de 
processo. 



A susceptibilidade magnética das amostras e a irreversibilidade magnética 
são caracterizadas e avaliadas extensivamente no capítulo seguinte da tese. 
Foram determinadas as dependências da susceptibilidade magnética, da 
temperatura de Néel da transição antiferromagnética e dos parâmetros 
principais do comportamento magnético e comparadas com observações 
feitas em outros multiferróicos. Como ferramenta de alta sensibilidade para 
detectar vestígios menores da fase magnética hausmannite, sugere-se que 
as medidas magnéticas podem ser úteis na confirmação dos diagramas de 
fase dos óxidos RMnO3. São discutidas dificuldades patentes em estudos 
anteriores sobre as interpretações dadas à anomalia magnética nos óxidos 
h-RMnO3 abaixo de 43 K sendo esta atribuída à fase Mn3O4 com suporte na 
microscopia eletrónica. No capítulo final da tese é investigado o 
acoplamento magneto-eléctrico com o ordenamento AFM acoplado às 
fronteiras de domínio da polarização dielétrica e com a determinação da 
constante dielétrica complexa em função da frequência e temperatura. 
Dentro do limite de estabilidade da solução sólida do h-LuMnxO3±δ, o 
acoplamento magneto-eléctrico em TN continua a observar-se em todo o 
intervalo do desvio estequiométrico. Tanto quanto o autor tem conhecimento 
este estudo representa o primeiro trabalho de investigação sobre 
acoplamento magneto-eléctrico modificado por auto-dopagem com lacunas 
nas redes de h-RMnO3. 
 
A observação das redes cristalinas revela distorções à escala atómica 
criadas pelas variações locais da razão x na composição do LuMnxO3±δ, 
dependentes das condições de sinterização as quais foram analisadas em 
detalhe por TEM/STEM, complementado com EDS e espectroscopia EELS 
por forma a obterem-se informações mais completas sobre relações 
cruzadas entre distorção, falta de homogeneidade composicional e estrutura 
eletrónica. Estes resultados encontram-se reunidos e são discutidos num 
capítulo específico da tese. Foram encontradas interfaces internas nas 
secções finas TEM dos grãos cristalinos de várias tipologias. São propostas 
explanações qualitativas para as propriedades magnéticas e ferroelétricas 
medidas correlacionando-as com as observações feitas à nano-escala nos 
cerâmicos de LuMnxO3±δ. Os domínios ferroelétricos e defeitos topológicos 
estão presentes tanto em imagens de TEM como de AFM/PFM. Esta última 
técnica é utilizada para a caracterização do tamanho, distribuição e 
comutação de polaridade dos domínios ferroelétricos na escala do mícron 
em relação com potenciais efeitos da dopagem por lacuna e fazendo a 
ponte com os estudos TEM sobre a estrutura atómica dos mesmos domínios 
ferroelétricos. Como suporte ao estudo experimental, foram feitas 
simulações DFT usando o código Wien2K a fim de interpretar os espectros 
de EELS da banda K do oxigénio e para obter informação sobre a 
hibridização dos catiões com o oxigénio. As linhas das bandas L3,2 do Mn 
nos espectros de EELS são utilizadas para estabelecer o estado de 
oxidação dos iões Mn no interior dos grãos cristalinos. Além disso, a 
ferroelectricidade induzida por re-hibridização é também avaliada por 
comparação com a densidade parcial de estados dos orbitais do conjunto de 
iões da estrutura cristalina e a polarização elétrica é computada e 
correlacionada com efeitos do desvio estequiométrico. 
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abstract 

 
The comprehensive study on the coupling of magnetism, electrical 
polarization and the crystalline lattice with the off-stoichiometric effects in 
self-doped multiferroic hexagonal h-LuMnxO3±δ (0.92≤x≤1.12) ceramic oxides 
was carried out for the PhD work. There is a complex coupling of the three 
ferroic degrees. The cancelation of the magnetic moments of ions in the 
antiferromagnetic order, electric polarization with specific vortex/antivortex 
topology and lattice properties have pushed researchers to find out ways to 
disclose the underlying physics and chemistry of magneto-electric and 
magneto-elastic couplings of h-RMnO3 multiferroic materials. In this research 
work, self-doping of Lu-sites or Mn-sites of h-LuMnxO3±δ ceramics prepared 
via solid state route was done to pave a way for deeper understanding of the 
antiferromagnetic transition, the weak ferromagnetism often reported in the 
same crystalline lattices and the ferroelectric properties coupled to the 
imposed lattice changes.  
Accordingly to the aim of the PhD thesis, the objectives set for the sintering 
study in the first chapter on experimental results were two. First, study of 
sintering off-stoichiometric samples within conditions reported in the 
bibliography and also extracted from the phase diagrams of the LuMnxO3±δ, 
with a multiple firings ending with a last high temperature step at 1300ºC for 
24 hours. Second, explore longer annealing times of up to 240 hours at the 
fixed temperature of 1300 ºC in a search for improving the properties of the 
solid solution under study. All series of LuMnxO3±δ ceramics for each 
annealing time were characterized to tentatively build a framework enabling 
comparison of measured properties with results of others available in 
literature. XRD and Rietveld refinement of data give the evolution the lattice 
parameters as a function to x. Shrinkage of the lattice parameters with 
increasing x values was observed, the stability limit of the solid solution being 
determined by analysis of lattice parameters. The evolution of grain size and 
presence of secondary phases have been investigated by means of TEM, 
SEM, EDS and EBSD techniques. The dependencies of grain growth and 
regression of secondary phases on composition x and time were further 
characterized. 
Magnetic susceptibility of samples and magnetic irreversibility were 
extensively examined in the present work. The dependency of magnetic 
susceptibility, Neel ordering transition and important magnetic parameters 
are determined and compared to observation in other multiferroics in the 
following chapter of the thesis. As a tool of high sensitivity to detect minor 
traces of the secondary phase hausmannite, magnetic measurements are 
suggested for cross-checking of phase diagrams. Difficulty of previous 
studies on interpreting the magnetic anomaly below 43 K in h-RMnO3 oxides 
was discussed and assigned to the Mn3O4 phase, with supported of the 
electron microscopy. Magneto-electric coupling where AFM ordering is 
coupled to dielectric polarization is investigated as a function of x and of 



sintering condition via frequency and temperature dependent complex 
dielectric constant measurements in the final chapter of the thesis. Within the 
limits of solid solubility, the crystalline lattice of off-stoichiometric ceramics 
was shown to preserve the magneto-electric coupling at TN. It represents the 
first research work on magneto-electric coupling modified by vacancy doping 
to author’s knowledge.  
Studied lattices would reveal distortions at the atomic scale imposed by local 
changes of x dependent on sintering conditions which were widely inspected 
by using TEM/STEM methods, complemented with EDS and EELS 
spectroscopy all together to provide comprehensive information on cross 
coupling of distortions, inhomogeneity and electronic structure assembled 
and discussed in a specific chapter. Internal interfaces inside crystalline 
grains were examined. Qualitative explanations of the measured magnetic 
and ferroelectric properties were established in relation to observed nano-
scale features of h-LuMnxO3±δ ceramics. Ferroelectric domains and 
topological defects are displayed both in TEM and AFM/PFM images, the 
later technique being used to look at size, distribution and switching of 
ferroelectric domains influenced by vacancy doping at the micron scale 
bridging to complementary TEM studies on the atomic structure of 
ferroelectric domains. In support to experimental study, DFT simulations 
using Wien2K code have been carried out in order to interpret the results of 
EELS spectra of O K-edge and to obtain information on the cation 
hybridization to oxygen ions. The L3,2 edges of Mn is used to access the 
oxidation state of the Mn ions inside crystalline grains. In addition, re-
hybridization driven ferroelectricity is also evaluated by comparing the partial 
density of states of the orbitals of all ions of the samples, also the 
polarization was calculated and correlated to the off-stoichiometric effect. 
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Multiferroic hexagonal RMnO3 manganites (R= Er, Ho, In, Lu, Sc, Tm, Y, Yb) deserve 

receiving large attention from researchers as these materials permitted new 

fundamental findings showing coexistence of magnetic interactions, electrical 

polarization and structural distortion of the crystalline lattices. Coupling of correlated 

ferroic orders (magnetic, electrical polarization and structural orders) in a material 

imposes in-deep exploration of physical and chemical properties to figure out the role of 

each ferroic order behind experimentally measured quantities. To the current state of 

research, these interactions can appear as a result of cross-coupling of two or even three 

of the ferroic orders, within a same unit cell or coming out as a collective mechanism 

extended in a wider scale inside the bulk volume of the material. Difficulty arises here as 

how to discern the contribution of each coupling contribution to in studied properties. In 

the hexagonal h-RMnO3 oxides and among them in LuMnO3 with Lu3+ ion with the 

smallest rare-earth ionic radii it is challenging to deduce the role of rare-earth ion, of 

transition metal ion or oxygen on each ferroic property and their cross-coupling, which 

will later provide the understanding and feasibility to control those properties and make 

technological applications in future. 

Previous research on off-stoichiometry of oxides like LaMnO3 of perovskite structure 

paved the way to look for clues on disclosing the underlying physics and chemistry of the 

h-RMnO3 oxides by introducing rare-earth vacancies or transition metal vacancies in the 

crystalline lattice. The aim of the PhD work is to assess the effect of transition metal 

vacancies (Mn vacancy in the present study) or rare-earth vacancies (strictly R-site) on 

multiferroic properties of h-RMnO3 (for the case of R=Lu) in order to find out the 

interplaying connection of magnetic moments, electrical polarization and crystalline 
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structure. Recognizing the presence of coupling effects like magneto-elastic, magneto-

electric and structural Anti-phase/FE, acting in separate or together as driving force for 

the properties, ferroic orders have to be broadly surveyed. The essential connection of 

any ferroic order to Lu or Mn cations in the LuMnO3 materials will be exposed by tuning 

the relevant A-site or B-site vacancy to changes induced on the measured physical 

property. On reviewing related literature of h-RMnO3 (R= Ho-Lu, Y and Sc) reported 

values for properties like unit cell parameters or magnetic behaviour of nominally 

stoichiometric samples present significant scatter which hypothetically comes from 

point defects in their lattices, namely cation vacancies and oxygen vacancies. 

This thesis is composed of eight chapters with this introductory outline to the research 

carried out as thesis work and the final chapter of conclusions and future work. It 

includes a review of the structure and multiferroic properties of hexagonal RMnO3 

phases focused on the LuMnO3 phase as second chapter and a description of the 

materials, preparation methods, main experimental techniques and equipment for 

testing and characterization of the samples as third chapter. Self-doping of h-LuMnxO3±δ 

ceramics in combination to sintering conditions demand refined characterization of the 

phases present in the samples of each composition. Analytical techniques such as XRD, 

EDS-mapping, EBSD and transmission electron microscopy images are used to determine 

the presence of secondary phases on both sides of composition in vacancy doped lattices. 

Limitations of each characterizing technique on tracing very minute amounts and 

minuscule particles of the secondary phases are ascertained.  

The option on taking the solid state reaction of mixed oxides as the sample preparation 

method was taken in order to simplify the number of variables under study, to preserve 

the high purity of the reactants as bought by avoiding further chemical handling, to  

assure proper retention of the cation fraction in the synthesized samples and to allow 

later comparison of results with data in the literature as conventional solid state 

sintering had been a prevalent technique for preparation of h-RMnO3 oxides. As further 

discussed in chapter four, the first set of LuMnxO3±δ samples were sintered by choosing 
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conditions of high temperature and time holds reported in related literature for the 

conventional solid state method. Then taking one step forward, efforts were devoted to 

improve measured properties in relation to increased homogeneity of the materials by 

focusing on the effect of sintering time, rarely quoted in the publications but which was 

found referenced in the studies on phase diagrams of h-RMnO3±δ (R= Ho-Lu, Y and Sc) 

oxides.  

The effects of self-doping of the hexagonal LuMnO3 materials on the lattice parameters 

and microstructural evolution are described in chapter four. Studies of self-doped 

lattices of perovskite RMnO3 (R= La, …) have shown that the direct effect of doping 

appears as changes of crystalline lattice constants. They will also be distinguishable in 

geometrically frustrated structures of h-RMnO3 oxides as titling of MnO5 polyhedron and 

buckling of R3+ ions will modify coupling of ferroic orders.  XRD Rietveld refinement 

provided the insight into lattice modification imposed by self-doping and as a function of 

sintering time at constant final temperature. Subsequently, calculating the unit cell 

parameters like buckling of MnO5 polyhedron revealed the effect of vacancy doping on 

the properties of these materials. Comparison to doped h-RMnO3 oxides available in 

literature would help to build up a model to predict or explain measured changes in 

lattice parameters. Studies on stoichiometric h-RMnO3 (R= Y, Lu) confirm, as expected, 

that lattice parameters are temperature dependent. Their evolution with temperature 

bridges the high temperature paraelectric state to room temperature ferroelectricity, 

and at even lower temperatures to AFM spin ordering with magneto-electric coupling. It 

had been shown that upon phase transition at high temperature there is an intermediary 

phase with polar characteristic along c-axis which is the direction of electrical 

polarization. The stable room temperature phase is actually anti-ferrodistortive, an 

improper ferroelectric, and would not induce the electrical polarization measured at 

room temperature and below room temperature. 

As for the lattice parameters, the magnetic behaviour, dielectric polarization, magnetic 

and ferroelectric domain formation of h-RMnO3 materials all exhibit temperature 
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dependent characteristics. Therefore, it is intention of this research to include in the 

studies of the concerned properties temperature dependent measurements bound to 

available facilities. The important feature of vacancy doping of the lattices on modifying 

the magnetic interaction of Mn3+ spins in h-LuMnO3 to which dielectric polarization is 

coupled below TN will be considered in chapter five. The extensive evaluation of the 

magnetic behaviour of off-stoichiometric samples was included to figure out the 

dependency of basal plane AFM interaction of Mn3+ ions and Curie-Weiss temperature 

(and the associated frustration factor) on the amplitude of stoichiometry shifting and 

also on extending of sintering time.  

Widespread investigation of the structure of off-stoichiometric LuMnxO3±δ ceramics was 

considered and implemented by using HRTEM and STEM imaging, completed by EELS 

and EDS spectroscopies, relevant observations being condensed in the sixth chapter. 

Linked to all measured quantities and properties, the microstructural analysis of the 

crystalline domains of a lattice with vacancies (Mn or Lu) will most probably display in-

homogeneities and defects of several types creating distortion of the lattice planes. 

Planar defects or inclusions of secondary phases would duly affect the relevant 

properties, namely the magnetic behaviour and ferroelectricity. Views of the atomic 

structure and arrangement of ions in basal plane or along c-axis, representing very exact 

pictures for the AFM interactions of the Mn3+ ions and electrical polarization induced by 

R3+ ion displacement, respectively, became of great interest for the study of h-RMnO3 

materials in recent years. Interlocking of the structural anti-phase state and ferroelectric 

state in these materials attracted high impact research work, and gives space for the 

interplay of uncompensated spins, electrical polarization and structural distortions. The 

identification of the function of off-stoichiometric shifts and understanding of the role of 

Mn3+ or Lu3+ ions on topological defects was intended to be investigated be means of 

TEM and PFM microscopy techniques. 

Dielectric measurements in chapter seven are complementary tools used to understand 

the magneto-electric coupling of LuMnxO3±δ materials under the effect of changing the 
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Mn/Lu ratio x in the composition of the self-doped samples to bring in evidence of any 

transition. Magneto-electric coupling has the benefit of not suffering from interferences 

caused by presence of hausmannite, the secondary phase of Mn, often found as impurity 

in manganites. Additional information of the interplay of ferroelectricity and off-

stoichiometric conditions can be extracted from Piezo Response Force microscopy of the 

ceramic samples. It was predicted that introducing vacancies in the lattice of LuMnxO3±δ 

ceramics would necessarily modify the unit cell in off-stoichiometric compositions, 

expectedly resulting in different piezo response of A-site and B-site vacancy doped 

samples. Ferroelectricity is of great importance as it shows itself at room temperature 

and makes these same materials of interest for memory devices. 

To shed light on enhancement or weakening of ferroelectricity in relation to off-

stoichiometry of samples the symmetry mode decomposition was done in the same 

chapter seventh based on hypothetical high temperature phase and comparing the 

amplitude of room temperature mode and the intermediary ferroelectric mode. First 

principles calculations give the insight into the energy scheme of these modes versus 

composition and additionally provided in the fifth chapter some understanding of the 

change of magnetic moments within framework of a simple model of A-type AFM 

configuration of Mn spins. EELS spectroscopy of the lattice of crystalline grains combined 

with first-principles calculations were done to bring the changes in the electronic 

structure of geometrically frustrated unit cells of h-LuMnxO3±δ oxides and inquire on the 

oxidation state of the Mn ions. Both are believed to be of significant importance for the 

magnetic behaviour and induced ferroelectricity in crystalline lattice. EELS is also a 

valuable tool in the determination of the oxidation state of the Mn ions in secondary 

phases as well as in the interfaces. 





Introduction to multiferroics  

9 
 

 

 

 

 

2. Introduction to multiferroics
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The phenomena that lead to coupling of magnetic and dielectric properties, of electric 

polarization fields, magnetoelectric, magnetocaloric and transport properties in the 

structure of multiferroic materials are necessarily complex and have created a wide field 

for interdisciplinary studies at the boundaries between Physics and Materials [1–6]. The 

coupling of properties aroused enormous interest, namely for better understanding of 

the multiferroic oxides and in sight of their technological uses in tuneable 

multifunctional devices operating on the CMR (Colossal Magneto-Resonance) and TMR 

(Tunnelling Magneto-Resistance) effects or with electrically controllable magnetic 

barriers [2,4,5]. Magnetic, electronic and lattice interactions lead to cooperative 

phenomena [7]. The fundamental physics of colossal magnetoresistance, multiferroism 

and ubiquitous phase separation phenomena and nanoscale inhomogeneities remains 

challenging [8]. The inner interfaces such as ferroelectric domain walls and hetero-

interfaces in such materials also show new properties: electronic states between two 

insulators, exchange coupling and coupling between ferroelectric and ferromagnetic 

orders occurring at the interfaces [9–16]. Manganites and other transition metal-based 

oxides (chromites, nickelites, ferrites) are representative examples of strongly correlated 

electron oxides, the manganites and ferrites being mostly studied for their multiferroic 

properties. In the wide field of research work on hexagonal rare-earth manganites that is 

running at the present time, the LuMnO3 manganite was singled out for the study of 

coupling of magnetic and ferroelectric behaviour when processed as bulk ceramics firstly 

because Lu3+ is non-magnetic and the study could be focused on the magnetism of Mn 

ions AFM ordered in trimers and second because the review of literature clearly 

suggested that accidentally or intentionally created deviations of the cation ratio from 

unit [17–19] in the chemical composition of  RMnO3 materials was the cause of 
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significant differences of values of  the multiferroic properties of the hexagonal 

manganites reported in literature. The crystalline structure and main properties 

ascribed to the multiferroic behaviour of the hexagonal manganite of LuMnO3 elected for 

the present study are characterised in literature review in the following of this 

introductory chapter. 

 

2-1 Rare-earth hexagonal manganites 

 

There is a great deal of research around rare-earth manganites, RMnO3, (R = La, …, Lu, Y). 

CMR (Colossal Magneto-Resonance) and TMR (Tunnelling Magneto-Resistance) 

phenomena were already investigated widely in the perovskite rare-earth manganites 

like LaMnO3 where the effect of doping showed significant role on changing the 

mentioned phenomena [20]. There was also interest on oxygen exchange behaviour in 

relation to structural and chemical changes at high temperatures of some of these oxides 

with expected applications in fuel cells [21]. Generally, the rare-earth manganites with 

orthorhombic perovskite structure include rare-earth elements, R3+, of large ionic radius 

(La, … , Dy) [20,22]. Rare-earth elements with smaller ionic radius (Ho-Lu, Y, Sc) form 

manganites with hexagonal structure of space group of P63cm at ambient pressure. In 

the hexagonal structure, each Mn3+ ion is in five-fold trigonal bipyramidal coordination 

surrounded by 5 oxygen ions, with two planar sheets of the Mn ions in the unit cell 

separated by the corrugated plane of R-O ions. High temperature paraelectric (P63/mmc) 

to ferroelectric (P63cm) phase transformation distorts the unit cell of the h-RMnO3 by 

reducing the symmetry of the unit cell and tripling of the volume the paraelectric unit 

cell [23]. This structural distortion occurs with Mn3+ ions forming trimers with the 

oxygen ion in the centre. There are hexagonal networks of Mn3+ trimers at z = 0 and 1/2, 

the Mn planes follow the ABABAB stacking sequence of the hexagonal lattices with large 

separation due to R and O ions in between. R3+ ions have coordination number of 7, with 
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R3+ ions making planes of rare-earth ions separating the Mn3+ planes in the unit cell 

[22,24–27].   

 

 

Figure 2-1. Room temperature dependence of lattice parameters of hexagonal RMnO3 on rare-earth ionic 

radius of Lu, Er, Yb, and Y, from reference [6]. 

 

The effect of the ionic radius on the properties of h-RMnO3 oxides either in bulk samples 

or thin films was investigated (for instance [24,25]). Figure 2-1 shows the dependence of 

the lattice constants of the crystalline structure of h-RMnO3 (R= Lu, Er, Yb, and Y) on 

ionic radius of the rare-earth element [25].  Due to this strong dependency of the 

crystalline lattice cell dimensions on the ionic radius of the rare-earth elements, the 

formation of the perovskite or hexagonal structures can be qualitatively explained by the 

value of the Goldschmidt tolerance factor t, the perovskite structure being stable only in 

the range of values of t 0.855-1.00 [25,28]. The hexagonal structure becomes the stable 

phase for values of t below the lower threshold in the given range.  

Besides differences at the atomic scale in values of the atomic positions and lattice 

constants being reported for hexagonal RMnO3 compounds, the only crystal structure 
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found under common preparation conditions (near atmosphere pressure) is the 

hexagonal P63cm crystalline structure with six formula units of LuMnO3 in the unit cell 

[24,29,30]. Figure 2-2.a shows the atomic arrangements in the hexagonal LuMnO3 unit 

cell with the Wyckoff symbol of each atom in the unit cell. The network of Mn trimers in 

the a-b plane has oxygen ion in the centre of 3 Mn3+ ions forming one trimer.  

 

a 

 

 

 

b 

Figure 2-2.(a). Schematic representation of the unit cell in h-RMnO3 with atomic positions and their 

corresponding Wyckoff positions [26]. (b) A sheet of the Mn ions in a hexagonal structure of LuMnO3 

viewed along the c-axis. The red spheres are oxygen ions and the black Mn ions (made using VESTA 

software). 

 

The space group P63cm sets 6 or 8 different magnetic structures in the h-RMnO3 phases 

depending on the rare-earth elements carrying spin or not [26,27,31]. Taking just the 

Mn3+ ions as possessing free spins (cases of R = Y, Lu), the magnetic interactions are 

restrained either to the basal plane or between consecutive basal planes. The spin 

orientation in each plane lies in the xy plane with non-collinear configuration. The spin 

orientation in the basal plane and between two adjacent planes will define the dominant 

magnetic structure. Theoretical calculations and experimental observations have proved 
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the existence of two types of nearest neighbour interactions between Mn3+ moments 

[26,31]. The first interaction takes place in the hexagonal plane with non-collinear spin 

ordering of Mn3+ ions within trimers of the Mn3+ ions with oxygen in the centre which in 

fact is the prevailing 2D antiferromagnetic interaction considering the spin orientation 

[26,27,31,32]. The spin configuration of the Mn3+ ions in basal plane and their AFM 

interactions in AFM region have been considered to result in geometrically frustrated 

structures of these oxides [26,31]. The second one is the antiferromagnetic interaction of 

the Mn3+ ions in adjacent planes along c-axis which will result in 3D magnetic ordering. 

Whereas in-plane magnetic interaction is mediated by the planar oxygen in the basal 

plane, this last interaction is the super-super-exchange magnetic interaction between Mn 

ions in adjacent x-y planes and operates via the apical oxygen ions at the apexes of MnO5 

bipyramids.   

 

2-2 Data on crystalline structure of LuMnO3 

 

Clearly dependent on details of sample synthesis routes and methods of measurement of 

the lattice constants of h-RMnO3 compounds, values of the lattice constants and atomic 

positions reported in the literature often do not match at all together. For the case of 

lattice parameters of LuMnO3, the h-RMnO3 compound of this study, Table 2-1 and 

Table 2-2 give the summary of reported values of lattice constants and the corresponding 

atomic positions, respectively. Authors assumed that samples in these three studies have 

the correct stoichiometry of the Lu, Mn and O elements [12-15].  

 

Table 2-1. Lattice parameters of LuMnO3 conventional solid state sintered extracted from the references.  

  Ref. [29] Ref. [30] Ref. [33] Ref.[34] 

a 6.038 6.1022 6.1005 6.0465 

c 11.361 11.4182 11.3598 11.367 

space group P63cm P63cm P63cm P63cm 
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Data gathered in Table 2-1 and Table 2-2. are restrictedly from samples of conventional 

solid state sintering, the method often used for preparation of RMnO3 oxides 

[29,30,33,34]. There is an apparent sensitivity of data to preparation conditions and 

measurement methods, the observed scatter in a-axis and c-axis values amounting to 0.5 

% and 0.3 %, respectively. The causes of this scatter in the values of lattice constants 

have to be found on different scales of the microstructure of the samples and in any 

chemical non-uniformity of the sintered materials. The lattice parameters in Ref.[30] 

were determined with crushed powders of the single crystal of LuMnO3, close to 

reported value of a-constant of Ref.[34] from ceramic samples of the solid state reaction, 

however, the value of c-constant is significantly different. 

 

Table 2-2. Atomic positions of the present ions in the LuMnO3 from literature [29,30,33]. 

        Ref. [29] Ref. [30] Ref. [33] Ref. [29] Ref. [30] Ref. [33] Ref. [29] Ref. [30] Ref. [33] 

Label Type multiplicity 

Wyckoff 

symbol x x x y y y z z Z 

Lu1 Lu3+ 2 a 0 0 0 0 0 0.2760(7) 0.27394(6) 0.270(1) 0 

Lu2 Lu3+ 4 b -0.66667 0.3333 0.3333(0= -0.33333 0.6667 0.66667 0.23038(2) 0.234(2) 0.2323(7) 

Mn1 Mn3+ 6 c 

-

.3355(10) 0.355(1) 0.3348(16) 

-

.3355(10) 0 0 

-

.00077(13) 0 0 

O1 O2- 6 c 

-

.3070(18) 0.323(6) 0.3039(16) 

-

.3070(18) 0 0 0.1642(6) 0.161(6) 0.1661(7) 

O2 O2- 6 c 

-

.3614(17) 0.652(6) 0.6402(16) 

-

.3614(17) 0 0 -.1638(6) 0.326(6) 0.3364(7) 

O3 O2- 2 a 0 0 0 0 0 0 -.0285(12) 0.467(5) 0.4736(7) 

O4 O2- 4 b -0.66667 0.3333 0.3333 -0.33333 0.6667 0.66667 0.0190(9) 0.011(4) 0.0220(7) 

 

2-3 Neel ordering transition and Curie-Weiss temperatures 

 

Two characteristic values are used to characterize the magnetic interactions of h-RMnO3 

oxides: the Neel temperature (TN) signals the AFM ordering temperature and the Curie-

Weiss temperature (TCW) that determines the extrapolation of the high temperature 

magnetic susceptibility. The Curie-Weiss temperature of stoichiometric LuMnO3 single 

crystal is reported as -880K [35], being -760 K [36] for polycrystalline material sintered 

at 1300C for 24 h, lower than the value of -520 K [37] found in second study of 
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polycrystalline LuMnO3 with final heating at 1400 C for 48 h . The same references gave 

values of TN of 86 K for the single crystal LuMnO3, 90 K for polycrystals sintered at     

1300 C after 24 h and 87 K for the polycrystals with final heating at 1400C for 48 h.  

The available data for TN in the off-stoichiometric ceramics is limited to YMnxO3 oxides 

reported in separate publications for Mn-rich side and Y-rich side of the solid solution 

[17,19]. In Mn-rich side of YMnxO3, TN changes from 66 K at stoichiometric composition 

to 72 K for x = 1.1. The trend observed in the absolute values of TCW goes in opposite 

direction to the increase on TN, the TCW being -330 K (x = 1) to -530 K (x = 1.1) [19]. 

Increasing the amount of Mn content to x = 1.15 did not result in further increasing of TN 

or decreasing of the TCW. The analogous study of magnetic parameters on the Y-rich side 

of YMnxO3 ceramics showed that the increase of Y content to x = 0.9 reduces the TN and 

increases the absolute value of TCW from -448 K for x = 1 to -330 K for x = 0.9 [17]. The 

values of TN and TCW of YMnxO3 present the same directions for change with x in both 

studies. 

The magnetic interaction of Mn moments in h-RMnO3 oxide can be decomposed to 

different components, two of the nearest-neighbour AFM interactions and one FM. Since 

the AFM interaction is dominant in unit cell of the stoichiometric h-RMnO3 oxide it is 

discussed with more details here. The Hamiltonian for these two AFM interactions can be 

written in the following forms: 

 𝑯𝑨𝑭𝑴 = 𝑯𝒊𝒏−𝒑𝒍𝒂𝒏𝒆 + 𝑯𝒊𝒏𝒕𝒆𝒓−𝒑𝒍𝒂𝒏𝒂𝒓 (2-1) 

 𝑯𝒊𝒏−𝒑𝒍𝒂𝒏𝒆 = ∑ 𝑱 𝑺𝒊𝒊,𝒋=𝟏,𝟐,𝟑  . 𝑺𝒋 +  ∑ 𝑱 𝑺𝒊𝒊,𝒋=𝟒,𝟓,𝟔  . 𝑺𝒋 (2-2) 

 𝑯𝒊𝒏𝒕𝒆𝒓−𝒑𝒍𝒂𝒏𝒂𝒓 = ∑ 𝑱𝒁 𝑺𝒊

𝒊=𝟏,𝟐,𝟑,𝒋=𝟒,𝟓,𝟔

 . 𝑺𝒋 
(2-3) 

 

where J is exchange interaction parameter for the Heisenberg model in basal plane, Jz the 

exchange interaction between two Mn planes with Si and Sj the spin operators [26,34,38]. 

In the above equations, asymmetric in-plane interactions of the Mn3+ ions are assumed, 

otherwise the magnetic contribution in basal plane will be zero. The value of J for two 

different paths of Mn-O3-Mn and Mn-O4-Mn is different; we consider the average value 
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for J [34]. This magnetic picture is corroborated once one looks at in-plane oxygen ions 

with different bond lengths to Mn ions in the crystal structure of the h-RMnO3 

compounds. According to the parameterization of Harrison [34,39], the magnetic 

exchange interaction between transition metal ions would depend on the reverse of 

distance between neighbouring ions as 1/d2l+1,  d shows the importance of bond lengths 

of Mn-Oapical on the strength of any magnetic component in basal plane. However, 

because of tilting of the MnO5 bipyramids, and displacement of the Lu ions which was 

shown affects the Lu-Opl bond lengths, the angles of the Mn-Opl-Mn path would also play 

a role.  

 

2-5 Magneto-elastic Coupling in LuMnO3 and YMnO3 

 

The changes of crystal lattice parameters of the RMnO3 as a function of temperature, 

rare-earth ionic radius and of (R,R´) mutual substitutions have been investigated to 

further understand the interplay of the lattice and physical properties, namely the 

magnetization and electric polarization [30,33,34,37,40–42]. Of direct relevance for the 

present research is the temperature dependence of the lattice parameters of YMnO3 and 

LuMnO3 from room temperature to below TN, in the region where antiferromagnetic 

ordering is found.  Figure 2-3 gives the variation of cell a-axis, c-axis and cell volume of 

YMnO3 and LuMnO3 with temperature where a visibly different behaviour of the c-axis of 

the lattices of the hexagonal manganite of the two non-magnetic rare-earths is observed 

[37].  
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Figure 2-3. Lattice evolution of the LuxY1-xMnO3 lattice parameters and cell volume with temperature with 

the knee at Neel temperature in a-axis constant and cell volume [37]. 

 

The displacement of ion positions within the unit cell of these oxides showed up the 

lattice parameters, Mn position and Mn-O3 and Mn-O4 bond lengths of the Mn and planar 

oxygen ions all correlated to the magnetic ordering transition at TN. The dependence of 

cell volume of YMnO3 and LuMnO3 above TN closely follow the Debye-Grüneisen (DG) 
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model with four fitting parameters [34]. Below TN the differences between the 

experimental values of unit-cell volume and the DG model are mostly due to the 

evolution of c-axis in the AFM ordered system, the difference of unit-cell volume and the 

AFM ordered magnetic moment becoming correlated [34]. This study and similar studies 

published afterwards demonstrated the existence of the coupling of the magnetic 

properties particularly at magnetic AFM ordering transition to the lattice structure of 

these oxides [27,30,34,37,43–45]. In LuMnO3 the non-zero magnetic contribution in heat 

capacity measurement above TN  [34] and FM fluctuations of the Mn3+ spins observed in 

inelastic neutron scattering both extended up to 3TN [45]  are also closely correlated to 

magneto-elastic coupling of Mn3+ ions and lattice changes as temperature crosses the 

Neel ordering transition. 

 

2-5 Topological defects of the interlocking of ferroelectric to anti-

phase domain walls 

 

Important feature of the h-RMnO3 materials is their potential for application as 

ferroelectric materials or to serve as models to novel multiferroics of the same hexagonal 

lattice that display room temperature multiferroism, as is the case of LuFeO3 [46]. The 

complex nature of coupling of ferroelectricity and spin ordering in geometrically 

frustrated magnetic materials is known for mainly two decades [9,35]. There has been 

notable improvement on the understanding of the magneto-electric coupling 

phenomenon in these materials [9,35,47]. Extensive research unraveled the underlying 

physics of the coupling of the structural distortion and electrical polarization and their 

interaction with ferroelectric domains and domain walls, particularly at room 

temperature where spin ordering in the h-RMnO3 lattices had vanished [16,48–52]. 

Experimental works and theoretical modelling showed that combining of structural 

distortion and electrical polarization results in complex shapes of the ferroelectric 

domains of h-RMnO3, with specific topology of six-folded vortex structure or the “clover-
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leaf” pattern [9,10,16,30,51]. In fact, the vortex pattern is composed of two types of 

distortions. One is the net electrical polarization induced upon reducing the symmetry of 

the high temperature, paraelectric phase (P63/mmc) to lower symmetry, ferroelectric 

phase (P63cm). The second distortion comes from tilting of the bipyramids. The angle 

between Mn-Oap (apical oxygen) is the magnitude of the tilting and the azimuthal angle, 

ɸ describing the orientation of the tilting [51,53]. Tilting of the bipyramids in the unit 

cell shifts the Lu ions along c-axis which produces upward (+) and downward (-) 

polarization in different ferroelectric domains as depicted in Figure 2-4. The arrows are 

showing the direction of the polarization for two typical domains in the ferroelectric 

phase. The allowed values for the φ are 0° and 180° (α±), 240° and 60° (β±), 120° and 

300° (γ±) where + or – represents up and down electric polarization. Combination of the 

symmetry breaking and tilting of the unit cell gives rise to six anti-phase domains. 

Therefore, in h-RMnO3 compounds, there exists interlocking of the structural translation 

domain walls, the anti-phase domain walls (APB), and ferroelectric (FE) domain walls, 

resulting in a/3 or 2a/3 displacements in the basal plane of the unit cell at the walls [54]. 

Figure 2-4.a shows the P63cm crystal structure of LuMnO3 (ferroelectric phase) as 

projected from the (001) zone axis, (c-axis view), the bipyramids with oxygen in the 

vertices and Mn in the center forming Mn trimers. There is neat tilting of the bipyramids 

in Figure 2-4.a. as the apical oxygen is not exactly at top of the Mn ion in the bipyramid. 

Tilting of the bipyramids in the ferroelectric phase, as quoted, would force rotation of the 

apical oxygen ions (those ions close to the R ions at top of the bipyramid) at different 

angles (ɸ), giving rise to the six APB/FE domains in Figure 2-4.b [51]. Current state of 

research is being continued to understand the reaction of the topological domains to the 

conditions of preparation of materials, namely heat treatment during sample 

preparation [15,55,56] or chemistry shift in the composition [57–61]. This matter is of 

great importance for the potential use of these materials in ferroelectric devices as 

control of the ferroelectric properties would be feasible by preparation processes. 
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Figure 2-4. Top view of the Lu (green spheres) and Mn (embedded inside the bipyramids) ions 

arrangements in LuMnO3 structure with oxygen ions (red spheres), the angle φ is the rotation of the 

central oxygen in respect to the zero position. (b) One of the possible vortex-like patterns with 

corresponding name of each domain due to the apical oxygen rotation (φ) as is described in the text. The 

colored circles are Lu ions with their direction up (dot) or down (cross)[51] . 

 

2-6 Weak ferromagnetism in AFM ordered h-RMnO3 lattices 

 

Although h-RMnO3 materials are known for the antiferromagnetic order below TN, there 

is evidence of the presence of weak ferromagnetism at temperatures below TN in these 

materials [10]. Four different sources or explanations of the origin of the weak 

ferromagnetism in h-RMnO3 materials are found in the literature. 

1. Presence of Mn ions of oxidation state different form Mn3+ most likely associated to 

changes of oxygen activity, antiphase-boundaries, cluster-like inclusions creating the 

magnetic interactions which are the signature of secondary phase Mn3O4 with 

ferrimagnetic transition around 43 K [17,62–70],  
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2. Spin canting driven by disordering in the lattice which had been generally assigned to 

Dzyalloshinskii-Moryia interaction inducing a net magnetization along the c-axis of the 

hexagonal lattice [31,35,71–78],  

3. Ferromagnetic ordering of uncompensated spins by the effect of exchange coupling 

with the AFM ordered spins of the bulk lattice at interfaces, namely at the antiphase-

boundaries of FE domain walls interlocked to topological defects which also creates a net 

magnetic moment at the interface parallel to c-axis of the lattice. Again, this ordering of 

spins at the interface has been partly attributed to Dzyalloshinskii-Moryia mechanism 

[9,10,16,48,50,51,79–81]. 

4.  Weak ferromagnetism of nano-particles of h-RMnO3 materials linked surfaces or core-

shell like structures in the nanoparticles [82–86].  

The weak ferromagnetic contribution of spin canting in nano-particles can seeming be 

excluded from the present study, as formation of nano-particle in h-RMnO3 oxides has 

not been reported when the synthesis is done by solid state sintering in range of 

temperature and time of annealing adopted in this work. Since magnetoelectric coupling 

is one of the most relevant features of h-RMnO3 materials, experimental setups have 

attempted to demonstrate the presence of both FE and AFM domains below TN, 

providing evidence on induction of net magnetization because of spin canting on the FE 

domain walls to which the AFM domain walls are interlocked [9,10,16,45,48,50,79–81]. 

Figure 2-5 a and b give the interlocking of vortex/anti-vortex FE domains of the PFM 

images with AFM domains in (magnetoelectric force microscopy) MeFM image of the 

(001) orientation of h-ErMnO3 single crystals [79]. The MeFM image was taken at very 

low temperature of 4 K at 8 T magnetic field. In this publication as well as in a former 

report of the same group [50] on ErMnO3 single crystals the domain wall contrast in the 

MeFM images was correlated to net domain wall magnetic moments with total 

magnetization aligned along c-axis in a crystalline lattice which presents AFM 

interactions of Mn3+ ions in the a-b plane perpendicular to the c-axis, the orientation of 

the observation. A similar experiment to reveal the AFM and FE domain walls by using 

Second Harmonic Generation (SHG) spectroscopy in single crystals of h-YMnO3 material 
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also concluded for the net ferromagnetic moment of the AFM domain walls from the 

gradual reorientation of Mn3+ spins on AFM domain walls locked to the FE domain walls 

[9]. Theoretical modelling was attempted to explain the net magnetization on the AFM 

domain walls interlocked to FE domain walls below TN by taking into account the 

distortion of the lattice on the walls and its consequences on the spin arrangements of 

the Mn ions [10,16,48,79,87]. Figure 2-5.c to f demonstrate the concept of co-existence of 

weak ferromagnetism and ferroelectric polarization on the domain walls, where the 

symmetry of the lattice breaks to lower symmetry [10]. The correlation of the spin 

configuration of Mn3+ ions in basal plane of h-LuMnO3 and polarization and 

magnetization of the lattice on the domain walls to the lattice distortion support 

previously experimental evidence on the role of lattice distortion to induce weak 

ferromagnetism coupled to electrical polarization.  In Figure 2-5.d to f, lattice distortion 

was introduced as buckling of Lu ions, two down one up and titling of MnO5 polyhedral 

or the opposite way with two Lu displaced up, one down and titling out of MnO5 

polyhedral. In Figure 2-5.e the change in polarization direction does not change the 

magnetic configuration of the Mn3+ spins, but in Figure 2-5.e the magnetic configuration 

is affected by change of the polarization orientation. At QK3(Å)=0 where there is no lattice 

distortion, polarization and c-axis magnetization are both zero, indicating the role of the 

lattice distortion on origin of the polarization and magnetization. The role of domain 

walls on producing the weak ferromagnetic contribution below TN was introduced in 

Ref.[16] where the phenomenological development of the Landau free energy in 

combination to First-principles calculations resulted in improving the present 

understanding of the interplay of the symmetry broken FE domain walls and spin 

disordering on the domain walls.  
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Figure 2-5.(a) ) PFM image at room temperature and (b) low temperature 4 K MeFM image at 8 T magnetic 

field of a (001) surface of h-ErMnO3 single crystal [79], (c) spin configurations and (d), (e) and (f) First-

Principles calculations of polarization and magnetization both along c-axis as a function of trimer 

distortion QK3 of the lattice, in (e) the antiferromagnetic spin configuration is fixed, in (f) it is rotated by  

[10].  

 

The presence of Mn ions with different oxidation state in a sample also contributes to 

magnetization of the h-RMnO3 oxides. Oxidation state of Mn can change from nominal 3+ 

either because of oxygen deficiency [17,19,64,65,88] or presence of secondary phase of 

Mn namely the Mn3O4 [62,89–91]. The ascertaining of the presence magnetic impurities 

like hausmannite will be straightforward if secondary magnetic transition appears 
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around 43 K [90,92] since the phase diagrams of h-RMnO3 materials point to 

hausmannite as a potential secondary phase impurity on the Mn-rich side for processes 

requiring temperatures above 1170 C [93–95]. However, in some references of the 

literature the transition of magnetic moment at around 40 to 45 K was assigned to spin 

canting of Mn3+, the presence of the secondary phase hausmannite was discharged by the 

authors based on XRD analysis [19,77].  Transitions of the magnetic moment reported 

below 40 K or above 45 K are rarely made dependent on magnetic secondary phase, as 

argued in the publications, oxygen vacancies [96,97], grain boundaries [65] or 

film/substrate interface [98] were given as the cause of the observed weak 

ferromagnetism, also in antiferromagnetic orthorhombic RMnO3 oxides [99,100]. To get 

a comprehensive description of the causes of weak ferromagnetism in h-RMnO3 

materials, the measurement techniques and the scale they are detecting secondary 

phases, different oxidation states of Mn or the structure of interfaces will play crucial 

role. The importance of the detection limit of the technique selected to probe such 

properties was demonstrated in Ref.[99] in TbMnO3 epitaxial thin films where local 

deficiency of Tb in the domain boundaries created additional magnetic signal below 40 K 

in the system. Deficiency of Tb on the domain boundaries with change in oxidation state 

of Mn could be detected there by using aberration corrected STEM combined with 

column-sensitive EELS mapping 

.
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The materials, experimental techniques for sample processing and characterization and 

main packages of software applied to simulation of TEM images, crystalline lattices and 

first-principle modelling are presented in this chapter. The more detailed description of 

each technique can be found in textbooks or elsewhere and it is not in the objectives of 

the chapter go into explanation of each technique in general. However, due to availability 

of different brands and variants of techniques and equipment of measurement of the 

studied properties which may result in change in measuring ranges, in-situ conditioning 

of the sample, or of sensitivity and accuracy of the measurement all main equipment that 

was used is identified and succinctly characterised in the following sections. Besides the 

measurement of properties, the procedure of synthesis and sintering of the bulk 

ceramics and special procedures for preparation of samples for microscopy or for 

particular measurement of their properties are also described because differences in 

adopted procedures of sample preparation may produce distinct levels of uncertainty in 

ascertaining the concerned properties. 

In the brief introduction on the known, important software programmes and packages 

which were used for the purpose of data analysis or simulation and modelling of given 

properties the available commercial packages or free access programs are identified. 

Depending on the source of code, different packages may also produce simulated results 

with different levels of uncertainty which has to be taken into account when discussing 

results.  
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3-1 Processing of bulk LuMnxO3± ceramics 

 

High purity oxide powders of Lu2O3 above 99.99%  purity and MnO2 supplied by Aldrich 

Co were selected for the study. The as supplied oxide powders stored in desiccators were 

dried at 120 C for few hours before weighting the due amounts of the two oxides 

needed to formulate the nine different compositions of LuMnxO3± materials form x=0.92 

to x=1.04 in steps x=0.02, and from x=1.04 to x=1.12 in steps of x=0.04 in the 

experimental plan. The mixed powders were hand milled in an agate mortar and pressed 

into cylindrical pellets of 10 mm diameter by uniaxial pressing followed by CIP- Cold 

Isostatic Pressing at 200 MPa pressure. The gridding and pressing into pellets with the 

same applied pressures was repeated for partially reacted samples after each of the 

intermediate steps in high temperature heat treatment described in the following. 

To have the possibility of assessing the solid solubility limit of the LuMnxO3± solid 

solution and studying the properties in the full range of non-stoichiometry, samples for 

sintering were prepared with different Mn content in the range (0.92 ≤ x≤ 1.12) in the 

total 9 compositions defined above. Based on the phase diagrams of hexagonal RMnO3± 

[101–104] and considering the relevance of diffusion in solid state reactions and 

sintering, the plan for synthesis of the Lu-hexagonal manganite by solid state reaction 

and sintering was defined on three steps with isothermal holds at 850°C for 24 h, 1000°C 

for 12 hours, followed by a final step of sintering at 1300°C for 1 day (Figure 3-1), 5 days 

and 10 days in three separate batches of samples, respectively. The conditions adopted 

for the first set of samples with final step of 1 day sintering time at 1300 C are often 

reported and can be found in the literature of the h-RMnO3 oxides [37,105]. This set will 

provide room to compare the results of off-stoichiometric/stoichiometric ceramics in 

this work with available data mostly of stoichiometric compositions.  

To find out the best annealing time for h-RMnO3 ceramics among published literature, 

there is only one work on sintering of InMnO3 ceramics doped with Ga ions with 120 
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hours annealing time, the authors claiming to be adequate on providing very high quality 

ceramics for studying their properties [57]. In a private communication with O. M. 

Fedorova (from reference [101]) the sintering conditions used by this author on 

producing samples reported in the phase diagram of h-LuMnxO3 ceramics were referred 

to as 1400 C annealing for about 96 hours.  The second set of samples was synthesized 

under identical conditions of the first set but with sintering time extended to 5 days.  In a 

latter phase of the works, the study on the solid solubility range and behaviour of lattice 

parameters of h-LuMnxO3 ceramics influenced by sintering conditions indicated that 

further increasing of annealing time to at least 10 days (third set of samples) was 

advised in order to confirm the properties determined in samples of previous sets and 

the evolution of grain size with time.  

 

Figure 3-1. The diagram of processing temperature versus time of sintering for each step of firing of 

samples of one day annealing. For longer annealing time, the blue curve (3th firing) was extended to more 

4 days (for 5 days annealing at 1300°C) or longer annealing time. 
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Equipment used for processing the bulk ceramics:  

Uniaxial Pressing: Initial press, 2 MPa (CARVER Laboratory press machines);  Cold 

isostatic pressing: Cold Isostatic Press (Auto CLAVE Engineering). 

High temperature firing furnaces: Two furnaces were used for sintering of all pellets 

during PhD work one with maximum temperature of 1200 C and another of 1500C ( 

Physics Department, University of Aveiro). These furnaces are of restrict use for 

annealing of ceramics superconductors and oxide materials only to ensure the cleanness 

of the furnaces from metal contaminations. 

 

3-2 XRD phase characterization 

 

The study of lattice parameters and phases present in the samples was done in two 

different XRD diffractometers with Cu (Kα1 and Kα2) sources and without 

monochromator. XRD spectra were measured with high counting and covering the range 

of 10°<2Ѳ<80° or 10°<2Ѳ<100°, step of 0.013°.  The samples for powder diffraction were 

prepared by grinding the pellets to fine powders. For each machine the LaB6 powder 

with average size of 5 μm was used as a standard. The standard sample was measured to 

extract the parameters for the machine like asymmetry which contributes on the 

Rietveld refinement of the powders under study. To create the instrumental file 

containing shape functions and asymmetry values kept fixed during refinement of 

LuMnO3 samples the XRD pattern of LaB6 standard was determined in the same 

experimental conditions as use for the samples. 

 Rietveld refinement was done using Fullprof Suit package 2.05, considering TCH 

pseudo-Voigt with axial divergence asymmetry for peak shape and the polynomial 

background model. The starting structure for the refinement was the corresponding CIF 

file available in the crystallography database, code ICSD 280779[29]. The refinement 
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proceeds by first refining the scale factor and background (6 coefficients polynomial 

function) and instrumental zero shift, then the lattice parameters and atomic positions 

and occupancy (just for the cations, the Mn and two Lu ions of different Wyckoff 

positions for occupancy and atomic positions), after the asymmetry correction, shape 

functions, grain size correction and finally adding atomic positions of oxygen ions. The 

grain size correction was introduced for 1 day and 5 days annealed samples of smaller 

grain sizes than 10 days annealed samples. The occupancy of four oxygen ions was 

refined after getting an acceptable reliability factor less than 5 (2). Testing the influence 

of changing oxygen occupancy on Rietveld refinement corroborated the expected 

supposition that fluctuations in refinement of oxygen occupancy are of low physically 

relevance, as XRD is not enough sensitive to light elements such as the oxygen in order 

establish their occupancy within acceptable accuracy in comparison to the cations 

present in the same lattices [106]. The analysis on performing different cycles of the 

iterations and comparing the results of the refinement showed that the results have 

consistency on third or fourth decimal digits, depends on the quantity being determined: 

for unit cell parameters, the value with four digits after decimal point is repeatedly 

obtained even if one change some criteria to get convergence in Rietveld refinement 

procedure. 

XRD diffractometers used in this study:  

1- Philips XPERT XRD Diffractometer with Cu Kα source (CICECO, University of Aveiro). 

Main advantaged is the fast data acquisition, low background on high statistic of data 

acquisition. It is limited to room temperature measurements. 

2- PANanalytical X´Pert PRO with Cu Kα source (Department of Materials and Ceramics 

Engineering, University of Aveiro). It offers the advantage of high temperature XRD 

measurements up to 1500 K  with low background. 
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3-3 Electron microscopy techniques 

 

The main challenge of performing transmission electron microscopy in TEM and STEM 

modes is preparing samples enough transparent for the electrons. Since the objective of 

on going through TEM/STEM analysis in this PhD work is to provide clear images of the 

atomic structures of the ceramics, diffraction pattern and EELS spectra of the interesting 

areas all in one experiment it becomes heavy dependent on the availability of thin edges 

in the TEM samples with enough stability for the analysis. 

To prepare polished surfaces in order to determine the phases and grain sizes of the 

ceramics by SEM and energy dispersive spectroscopy EDS the same mechanical polishing 

as done for TEM sample preparation was taken. However, due to sensitivity of the EBSD 

technique in SEM to the perfection of surface lands after tilting the sample surface by 

70, it was necessary to finish the mechanical polishing with colloidal pastes or with 

lapping papers of very fine grit sizes. From the experience gained one came to the 

conclusion that ion milling as done for TEM or simply using the TEM thin sections for 

EBSD with a special sample older for SEM further improved the detectability of particles 

of second phases with submicron sizes by EBSD [107]. 

 

3-3-1 Methodology for preparation TEM thin sections 

 

To overcome issues of preparing TEM thin sections of due quality, time was invested on 

sample preparation using methods often recommended for this purposes such as the 

cross sectional kit of Gatan model 601.07. However, finally we came up with a working 

solution based on more common sample preparation procedures of mechanical polishing 

and ion milling using dummy silicon slabs glued to sample that proved to be a simpler 

and less expensive option. The details of implementation of the method are given in the 

following. 
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The essentials of the method of TEM thin section preparation were learn from the 

experience of staff in Microscopy Group of Fritz Haber Institute, Berlin. The list of in-

house facilities used for sample preparation is given below. The preparation starts by 

grinding and milling the pellets to convert them to fine powders. Experience showed that 

using a piece of pellet resulted in some irregular artefacts during ion milling because of 

the topography on the surface of the ceramics. These artefacts degrade the performance 

of microscopy work for HRTEM and EELS studies. However thin sections prepared from 

a piece of pellets were used for the investigation of grain boundaries between two 

neighboring particles or in the search of particles of the secondary phases. For the 

samples sintered 10 days the grain size is large enough to facilitate the TEM section 

preparation of pellets. In this case, some samples were prepared as a piece of pellet glued 

to dummy Si to control the thickness of the sample during mechanical polishing. For the 

powders, the powders were embedded into microscopy resins (G2 bond, M bond or 

UHU), and then two dummy silicon slabs were glued together using the prepared 

mixture of resin and powder of the sample. After curing, the prepared sandwich was 

mechanically polished down to 10 µm or less, the thickness being evaluated by the color 

of silicon made transparent (red color for 10 µm thickness or yellow color for thinner 

section). For diamond polishing, lapping papers were used in sequence of 30, 15, 9, 6, 3 

and 1 μm particle sizes. Mechanical polishing was done on both sides of the prepared 

sandwich, on the second side it is done down to silicon transparency (red color of silicon 

in Figure 3-2.a).  
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Figure 3-2. (a) Optical image of cross-section sample prepared for TEM study by mixing powders in proper 

Microscopy glue, brushing on a dummy silicon surface and putting second dummy silicon on the top. (b) 

After ion milling and removing one dummy silicon (intentionally by using single mode ion milling) there 

are few particles thinned enough for TEM on the edge faced to the vacuum. The glue between particles and 

dummy silicon is used for focus and stigmatism corrections during Microscopy. 
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Final step of thinning to electron transparency was made by gentle ion milling of the 

samples. The Ar ion energy starts from 5 keV (10 min.) then is successively decreased to 

4 keV (20-40 min.), 3 keV (10-20 min.), 2 keV (10 min.) and finally to 1 keV (10 min.) 

with fixed angle of 4 for both, the top ion gun and the one from bellow (thin particles in 

Figure 3-2.b). As an option of the PIPS equipment, the ion thinning can be done either in 

single mode or in double mode. In single mode, ions hit the sample once in each 

revolution of sample. In double mode, each ion gun is activated twice pre revolution of 

sample. Experience showed that using the option of double mode modulation created 

unwanted artefacts on thin edges of the particles under study. Therefore single mode 

option was always used in the first steps of ion milling with high energy of the Ar beam. 

Only in the final step of ion etching at low energy (1 keV) was the double mode used to 

remove the surface damaged region on the edge of thin sections created by ion thinning 

at higher energy. Copper grids and copper rings are most commonly used to hold TEM 

samples. It was shown that the use of copper rings resulted in re-deposition of copper on 

the surface of the thin sections coming from hitting the ring by Ar ions during ion milling. 

Because the etching rate of Mo or Ti rings by the Ar ions is lower than for copper, mostly 

Mo rings were used to reduce re-deposition. All samples before TEM analysis were 

passed to plasma cleaner to remove surface contaminations. 

 

Equipment and mounting materials used for preparing TEM thin sections:  

1- Wire saw (WELL 3241) 

2- Two polishing/grinder units: METASERV 2000 and PACE Technologies Nano 1000T 

Grinder/Polisher. 

3- Dimple Grinder Gatan model 656 

4- Gatan Cross Section Kit model 601.07000 
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5- M-bond, G-bond No.601 and UHU (PLUS SCHNELLFES) glues, their use depends on the 

preparation steps 

6- Homemade Tripods for holding the samples during mechanical polishing 

7- Gatan Precision Ion Polishing System (PIPS) dual milling model 691 

8-Nanoclean Plasma cleaner model 1070 (4 min. under 50 W power of plasma) 

9- Dummy silicon, CrysTec, P-type, 1-20 cm, (100) orientation 

 

3-3-2 Sample preparation for SEM 

 

Polished surfaces for the EBSD analysis in SEM have to be flat, free of mechanically smear 

layers and of ploughing traces due to fine scratching by hard abrasive particles. They 

must also have very low roughness because it tends to cause shadowing when the 

sample is tilted 70 degrees in relation to the electron beam. In order to make polished 

surfaces of the LuMnxO3± ceramics ready for EBSD analysis, the same sequence of steps 

of grinding and mechanical polishing was done as for TEM sample preparation before 

the ion milling. However, due to sensitivity of the EBSD technique to the surface state it 

was necessary to end the mechanical polishing by using colloidal pastes or lapping 

papers with the particle sizes below the micron. The use of polishing pastes was 

abandoned as they tend to penetrate into the pores and cracks on the polished surface of 

samples. Instead, very fine polishing with the diamond lapping papers of 0.5, 0.2 and 0.1 

μm grain sizes was adopted to get very flat surfaces of the ceramics generally meeting 

the demands of the EBSD technique. 

Also in order to be able to study the same area of sample both in SEM and TEM, thin 

sections already prepared for TEM were used in SEM/EBSD with a special sample holder 

adapted for TEM grids in SEM Hitachi SU-70 microscope.  A thin carbon coating was 
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applied on all samples of LuMnxO3± before doing the SEM to make surfaces enough 

conductive avoiding accumulation of the electrical charge because in EDS mapping or 

EBSD the region of the sample being analysed stays long time for more than an hour 

under exposure to the electron beam. 

  

3-3-3 TEM/STEM and SEM microscopes used for microstructural analysis 

 

Selected samples were analysed with Philips CM200 FEG electron microscope equipped 

with the GIF camera for EELS spectra of the regions of the interest in HRTEM images, by 

choosing an electron lost energy range to have both oxygen K-edge and Mn L3,2 edges, 

with the energy resolution of 0.8 eV and dispersion of 200 µV/ch.  

Most samples were studied by JEOL JEM2200FS FEG TEM/STEM electron microscope 

using the electron gun energy of 200 kV, equipped with Omega filter for filtered energy 

TEM imaging and EELS in TEM mode and the EDS detector. The EDS analysis was done in 

STEM mode using 0.2 nm beam spot as the ultimately fine spot of this microscope.  

In both TEM microscopes, all HRTEM images were taken by introducing 10 eV energy slit 

to filter out the high angle scattered electrons and enhancing the contrast. 

None of the main TEM/STEM microscopes widely used during PhD work had Cs-

corrector and sub-Å resolution or energy monochromator for better resolution in EELS. 

By special courtesy of FHI/MPI Berlin and of International Iberian Nanotechnology 

Laboratory- INL, Braga, Portugal, sessions were arranged in 200 kV Cs corrected 

microscopes JEOL JEM-ARM200F FEI Titan respectively that became essential for the 

direct observation displacements of Lu ions as need to resolve upward or downward 

polarization of the ferroelectric domains. 
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Main characteristics of TEM microscopes of general for the works of the PhD thesis: 

1- LaB6 Hitachi TEM H-9000NA 300 kV TEM/STEM microscope with BF STEM detector, of 

ultimate point resolution 0.20 nm at 300 kV in TEM, equipped with a 4 Mp digital camera 

and EDS detector from Bruker (Laboratory of Electron Microscopy, CICECO/DEMaC). 

Offers the advantage of easy use, the high gun voltage 300 kV, less sensitive sample 

preparation compared to 200 FEG microscopes, large angle of double tilting holder. It 

limited to the only mode ADF-STEM and of  lesser resolution. 

2- JEOL TEM-2200FS 200 kV FE-TEM/STEM microscope equipped with in-column Omega 

Filter for EELS of 0.8 eV zero-loss resolution and filtered energy TEM image, BF/ADF 

STEM detectors, electron diffraction SAED and CEBD, EDS of Oxford, INCA system 

(Laboratory of Electron Microscopy, CICECO/DEMaC). Ultimate point resolution 0.19 nm 

in TEM, 0.20 nm (BF) and 0.13(6) nm (ADF) in STEM. It offers several advantages: the 

high resolution with the SFEG in conventional TEM/STEM, omega filter for EELS and 

energy filter imaging, BF/DF STEM imaging, light element EDS detector and EDS 

mapping. The disadvantages are the more complex alignment of the electron beam for 

each image mode of microscopy and smaller tilt angles of double tilt holder. As in all 

HRTEM imaging it demands very careful TEM thin section elaboration.  

3- Philips CM200 FEG TEM/TSEM 200 kV microscope with maximum resolution of 0.18 

nm, equipped to GIF camera (Tridiem) and EDS Genesis 4000 unit. (FHI, Berlin, 

http://www.fhi-berlin.mpg.de). In high resolution in TEM, post-column Gatan Camera for 

EELS and energy filter imaging, EELS spectroscopy presents a true advantage and makes 

operations much easier than omega filter in JEOL. There are however some 

disadvantages for the advanced user: not efficient STEM, not as robust for image filtering 

and less efficient for EDS.  

 

Cs/probe - corrected TEM/SEM microscopes used in exploratory sessions by special 

courtesy of FHI/MPI (Berlin) and INL (Braga): 
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4- JEOL JEM-ARM200F cold FEG TEM/HAADF-TSEM 200 kV microscope with Cs-corrected 

condenser and objective lenses, maximum resolution of 0.11 nm in TEM and 0.08 nm in 

STEM, with HAADF, ADF, ABF, BF detectors, equipped with Quantum GIF, Gatan 

ultrascan 4000 camera, and EDS detector. (FHI, Berlin, http://www.fhi-berlin.mpg.de). 

5- FEI Titan 200 kV ChemiStem 80-200 kV FEG TEM/HAADF-STEM with probe Cs-

corrector, TEM, BF/DF-, HAADF-STEM, EFTEM and EELS modes, Super-X EDX System. 

Ultimate resolution at 200 kV of 0.08 nm in STEM and point resolution of 0.24 nm, 

information limit of 0.11 nm in TEM (INL, Braga, Portugal, http://inl.int/equipmen) 

 

Main features of the SEM microscopes of general use in the works of the PhD thesis: 

1- Cold FEG-SEM Hitachi S4100 equipped secondary electron and backscattered electron 

detectors and Rontec light element EDS system (Laboratory of Electron Microscopy, 

CICECO/DEMaC).  Acknowledged advantages are the high brilliancy of the electron beam 

and easy use. The low signal-to-noise ratio of the EDS system in comparison with more 

recent technology constitutes a relative disadvantage as longer time is needed for EDS 

analysis. 

2- SE-FEG-SEM Hitachi SU-70, with Schottky thermal field emission gun, equipped with 

QUANTAX-400 EDS, Bruker CrystAlign QC400 EBSD systems, Raith ELPHY Plus electron 

lithography and Hitachi low voltage BF/DF STEM detectors (Laboratory of Electron 

Microscopy, CICECO/DEMaC). High resolution, fast EDS detector, EBSD and STEM 

options constitute advantages in the perspective of the work to be developed in this 

study. The higher complexity of this SEM infrastructure and the refined quality of the 

finishing of the polished surfaces required for the EBSD analysis are limitations to full 

use of the potential of the techniques installed in this SEM microscope. 
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3-4 AFM/PFM microscopy 

 

Imaging of ferroelectric domains of ceramics samples using piezoforce microscopy PFM 

also needs polished, flat surfaces. A previous study of h-RMnO3 thin films showed that 

the PFM response of the surface of the thin films is not disturbed by scratches with 4nm 

depth or dust particles with sizes of 20 nm [108]. However in case of ceramics with 

porosity and different grain topologies, more careful surface preparation is demanded. 

Damage on the surface of the sample due to excessive polishing may induce stress/strain 

states with consequences on the PFM response of the surface. The experience gained by 

dealing with some samples indicated that the best PFM response can be achieved where 

the RMS value of the roughness of the surface is less than 20 nm. Therefore, surfaces 

were mechanically polished using fine diamond lapping papers starting with 6 μm grain 

size and ending with 0.5 μm grain size lapping paper. The time of polishing was kept 

short as much as possible to avoid surface alterations. The surfaces were carefully 

controlled under optical microscope during polishing for the reduction of scratches.  

NT-MDT NTEGRA PRIMA or NTEGRA AURA modular sensor force microscopes were used 

for AFM/PFM measurements at room temperature in contact mode with 10 V AC voltage 

and 50 kHz frequency on the tip. Cantilevers from NanoSensor Co., Pointprobe-Plus 

Silicon-SPM-Sensor made of n+-doped silicon coated by Al on the detector side with the 

tip height of 10-15 microns and 10 nm tip radius were used for all measurements. Before 

the essays, all samples were heated to 130C for few hours to eliminate surface humidity. 

Silver paste was brushed on the bottom of each sample as electrode to provide electrical 

contact between the sample and the AFM cell. 

For some PFM measurements when also estimation of piezo response coefficient was 

feasible, contact mode was used with 10 V as voltage, 50 kHz frequency, 10 ms time 

constant. Silicon tip with tip curvature radius of 10 nm, height of 15 μm and Au coating 

on the reflective side from NT-MDT, Golden Silicon Probes (L 1462) was used. 
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3-5 Magnetic measurements 

 

Sample preparation: In order to do magnetic measurements, the pieces of the ceramics 

were grinded to become fine powders. Then some amount of the powder was filled into a 

small gelatin capsule, wrapped with kapton tape to protect the instrument against 

contamination.  

Magnetization measuring sequences: For temperature dependent zero-field cooled ZFC 

magnetization (M), the cycle was initiated by cooling the sample down to 5 K without 

any applied magnetic field. Then after stabilizing the temperature for few minutes, the 

heating cycle was start with the sample under applied magnetic fields (H) of 100 Oe or 

500 Oe and the magnetization measured, the process being brought to room 

temperature or above. To measure magnetization in the field cooled FC cycle, the sample 

is cooled down again to 5 K under the same applied magnetic field and the measurement 

of magnetization is repeated on heating the sample under the magnetic field. In all cases 

the magnetic transition either at TN or for hausmannite phase was calculated by taking 

the first derivative of M(T) curve in heating cycle of FC measurements. Then imported to 

Origin pro 9 software, Peak find analyzer was used to find the minimum of transition, the 

baseline was defined by taking the second derivative and smoothing the data (Adjacent-

averaging) in a region where the transition appears.  

For field dependent magnetization M vs. H at constant temperature, measurements often 

start at room temperature and measuring of MxH cycles is done accordingly to schedule 

of temperature decreasing points from room temperature down to the low value of 

temperature predefined for set of measurements. The field cycling is typically ±5 T, ±7 T 

or ±9 T depending on the instrument. For most field dependent measurements, need to 

accurately measure the magnetic remnant and coercive fields forced us to define finer 

steps of field change below 3000 Oe for T< 45 K and 1200 Oe for T> 45 K in 

programming of performing Mvs.H cycles.  
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Magnetometers used for the present study: 

1- VSM Magnetometer, Cryogenic (Physics Department). Advantages: Magnetic field up to 

10 T, fast time of acquiring M-H cycles at fixed temperature. Disadvantages: long time for 

measurement temperature dependent magnetization, noise level (sensitivity worse than 

10-5 emu), mounting sample more difficult and temperature range limited to 4-300 K. 

2- MPMS SQUID magnetometer (IFIMUP/Physics Department, University of Porto). 

Advantages: fast measurement temperature dependant magnetization, wider range of 

temperature from 4 to 380 K, easy sample mounting, low noise (sensitivity 10-7 emu). 

Disadvantages: long time for field dependant measurements and in DC mode only.  

3- QUANTUM Design SQUID MPMS3 (Physics Department). Advantages: Both DC/VSM 

measurements simultaneously made, fast measurements of temperature dependent and 

field dependant magnetization, the range of temperature from 1.8 K to 400 K, easy 

sample mounting, low noise, high resolution of detection of the magnetic signal 

(sensitivity <10-8 emu). Disadvantages: Careful sample encapsulation and mounting 

required to take advantage of the higher sensitivity of the equipment a very recent 

installation with the needed to be calibrated for holders used in each specific 

measurement. 

Since most magnetic measurements of the PhD thesis was done using this 

magnetometer, also some of the previously measured samples were repeated using this 

SQUID machine,  the test run was carried out on the holders without sample to assess the 

magnetic contribution of the holder like brass holder which is used for all measurements 

done in this magnetometer. 
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3-6 Dielectric measurements 

 

Before measurement of the dielectric constant and imaginary part of permittivity, Au 

electrodes were deposited on the opposite surfaces of the samples by dc-sputtering. The 

POLARON E5000 plasma coater with 1.2 KV voltage and 12 mA current for Ar ions was 

used for coating with gold both sides of the samples. 

Dielectric measurements were done using LCR meter with frequency range from 100 Hz 

to 1 MHz in a closed-cycle cryostat cooler allowing cooling of the sample down to 10 K. 

The temperature controller Oxford iTC that is used has precise control of temperature to 

within 0.1 K. The Precision Impedance Analyzer Agilant 429A was used for ac 

measurements. The software was programed for measuring the impedance parameters, 

amplitude and phase, in the frequency range of 100 Hz to 1000 kHz in temperature steps 

of 10 K from 13 K up to room temperature. From the two measured parameters the 

dielectric constant (´) and imaginary part of permittivity (´´) will be calculated.  

 

3-7 Software for data analysis and simulation 

 

1- Visualization of crystalline structures: VESTA 1.3.8 and CaRIne Crystallography 3.1 

were used to simulate and create visualizations of crystal structures, also to simulate 

single-crystal and powder diffraction patterns and in calculating some parameters of the 

structures such as interionic distances and bond angles. Results of Rietveld refinement 

extracted from XRD data can be visualized with VESTA 1.3.8 where bond lengths and 

bond angles then can be calculated on the visualize structure.  

2- TEM based techniques: TEM/EELS image recording and data acquisition were done 

both using proprietary Gatan Digital Micrograph 1.84.1282. Image processing to reduce 

the noise and to subtract the background from EELS spectra were also performed using 
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Gatan package. The details of the data analysis which are important for white line ratio of 

the Mn L3,2 edge in EELS will be given in section 6-4-2.  

3- TEM image simulation: The simulation HRTEM images was done using proprietary 

JEMS package and Multislice approach embedded in the package, by introducing the 

relevant crystal structure obtained from XRD Rietveld refinement of the given samples. 

Depending on the TEM microscope used to acquire specific image, a set of experimental 

parameters such as energy of electron beam, energy spread of the gun, values of the 

spherical Cs and chromatic Cc aberration coefficients, the half angle value for incoming 

electrons to the sample was inserted into program. The kinematical diffraction pattern 

simulation was often carried out in JEMS for relevant cases in this study. The supercell 

approach implemented in JEMS was used to build large structures and introduce line 

defects or vacancies to simulate their effects on the TEM image.   

4- DFT Simulations: In order to interpret the oxygen K-edge of EELS spectra and to get 

the energy of unit cell for each value of composition x, the Wien2k 14.2 package was 

used. This application and general criteria for each calculation will be discussed in more 

detail in relevant parts of chapters ahead of this thesis. In general, after getting 

convergence in the energy (0.0001 Ry), the programs TELNES, QTL, BerryPI and 

Supercell were used according to needs. Most simulations were done on Flamingo 

computing cluster of CICECO Institute of University of Aveiro. In the beginning of the 

work access to Wien2k 14.2 package was granted by Microscopy Group to use the 

computation facility in Fritz Haber Institute.  

5- TEM/STEM EDS analysis: Proprietary INCA Suite 4.09 Software for acquiring EDS 

spectra and performing line EDS or element mapping implemented in JEOL TEM 2200 FS 

was used to acquire EDS spectra in STEM mode and do off-line analysis of the same 

spectra.   
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6- SEM EDS and EBSD analysis: Proprietary Esprit 1.9 package was used to acquire 

EDS/EBSD data. The off-line analysis of the EDS data and also EBSD data were done 

using the same software package.  

7- XRD data analysis: Open access Fullprof Suite 2.05 was the only package selected for 

XRD diffraction analysis and Rietveld refinement, visualizing the crystal structures, 

producing CIF files and in calculating the instrumental contributions for XRD of the 

diffractometers machines used in the present study.  

8- Phase transition, symmetry analysis: Some of free software packages from Bilbao 

Crystallographic  Server namely the Amplimode ( calculate amplitudes of symmetry 

modes after phase transition), Symmodes (primary and secondary modes relation), 

Pseudo (find the parent structure of a subgroup)  and so on were used.  

9- AFM/PFM image processing: WSM 5.0 free package was used to carry out image 

processing, data analysis and noise reduction of the AFM/PFM data. As complementary 

software, Image Analysis 3.5.0.13365 NT-MDT was used to calculate the piezoelectric 

coefficient for selected samples.  

10- Data analysis: OriginPro and Microsoft Excel 2010 were generally used to analyze 

and plotting data and to write short iterative programs for least square fitting. 
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4. Lattice behaviour of LuMnxO3±δ 

ceramics and effect of sintering
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The microstructure of the sintered ceramics and their crystalline unit cells are 

investigated in this chapter by means of XRD and SEM techniques. As in the case of the 

self-doped YMnO3 ceramics [17], it is expected that Lu vacancies or Mn vacancies impose 

forces to the crystalline lattice of hexagonal LuMnxO3± that altered unit cell in a 

detectable way. The approach to equilibrium conditions during sintering does allow the 

atoms inside the unit cell to move further with time or temperature of annealing towards 

more regular filling up of corresponding Wyckoff positions of the P63cm space group. 

However, changing sintering conditions may produce intermediary second phases or 

contribute to eliminate them if early formed during the reactions of synthesis, hence it 

may affect average composition and the homogeneity of composition the hexagonal 

P63cm main phase. The study of the lattice parameters in the off-stoichiometric range of 

the LuMnxO3± solid solution is done by XRD and subsequent Rietveld refinement. 

Changes in microstructure with composition and sintering time are investigated by SEM 

as a complementary tool to XRD, allowing assess of grain size evolution at the fixed 

temperature of 1300 C set for the final step of the synthesis process.  

 

4-1 XRD Analysis of the lattice parameters 

 

The lattice parameters and crystalline structure of all sintered samples were determined 

by XRD analysis. Rietveld refinement was done using Fullprof Suit package 2.05 with the 

details of the refinement steps and experimental considerations given in Chapter 3, 

section 3-2. 
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4-1-1 Crystalline lattice constants from Rietveld refinement 

 

Table 4-1, Table 4-2 and Table 4-3 list the results of Rietveld refinement for lattice 

parameters, reliability factors and the crystalline phase fraction in the LuMnO3± 

ceramics of 1 day, 5 days and 10 days sintering at 1300 C, respectively 

Table 4-1. XRD Rietveld refinement results of the lattice parameters and secondary phases detectable in the powders 

of the samples sintered for one day at 1300⁰C in the last firing step. All sample show P63cm space group of the main 

phase. The identified space group for Lu2O3 and Mn3O4 phases are I a -3 and I 41/a m d, respectively. 

 

fH*-hausmannite weight fraction from XRD line intensity ratio. 

 

x (set A) 0.92 0.96 0.98 1 1.02 1.04 1.08 1.12 

a (Å) 6.0448 6.0420 6.0409 6.0417 6.0427 6.0374 6.0401 6.0363 

c(Å) 11.3681 11.3674 11.3682 11.3679 11.3709 11.3654 11.3671 11.3653 

Vc(Å3)  359.74(2) 359.38(2) 359.25(2) 359.362(2) 359.57(2) 358.77(2) 359.14(1) 358.64(1) 

Rf-Factor 1.98 4.03 2.64 4.08 3.31 2.2 2.79 2.14 

Global χ2 5.88 5.53 4.82 6.32 4.02 3.87 4.59 9 

Fraction 

(wt%) 
97.28 99.65 99.35 100 98.25 97.75 98.81 97.42 

xr  0.955 0.965 0.989 1 n.a. n.a. 1.035 1.021 

fm 

fraction, 

(wt%) 

2.72 0.35 0.65 - 1.75 2.25 1.19 2.58 

Secondary 

Phase 
Lu2O3 Lu2O3 Lu2O3 - Mn3O4 Mn3O4 Mn3O4 Mn3O4 

space 

group 
I a -3 I a -3 I a -3 - I 41/a m d I 41/a m d I 41/a m d I 41/a m d 

fH*(%) 0.49 0.21 n.a n.a. n.a. 0.45 0.62 0.67 
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Table 4-2. XRD Rietveld refinement results of the lattice parameters and secondary phases detectable in the powders 

of the samples sintered for 5 days at 1300⁰C as the last firing step.  

 

x (set B) 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.12 

a (Å) 
6.0443 6.0432 6.0426 6.0416 6.0394 6.0384 6.0364 6.0372 6.0364 

c(Å) 
11.37307 11.37075 11.36994 11.36868 11.36771 11.36802 11.36716 11.36841 11.36720 

Vc(Å3) 
359.829 359.627 359.526 359.371 359.073 358.971 358.711 358.841 358.709 

Rp 3.88 4.26 4.18 4.08 4.46 4.5 4.33 4.25 4.48 

Rwp 5.1 5.46 5.46 5.31 5.71 5.69 5.58 5.65 5.86 

Rexp 2.64 2.17 2.55 2.56 2.61 2.65 2.6 2.95 2.56 

χ2 3.73 6.34 4.59 4.28 4.8 4.6 4.62 3.65 5.25 

weight 

fraction 

(%) 

98.75 99.35 99.56 99.98 100 99.39 99.67 99.23 99.38 

xr 0.935 0.948 0.966 0.980 1.00 n.a. 1.028 1.051 1.096 

fm fraction, 

(wt%) 
1.25 0.65 0.44 0.02 - 0.61 0.33 0.77 0.70 

Secondary 

Phase 
Lu2O3 Lu2O3 Lu2O3 - - Mn3O4 Mn3O4 Mn3O4 Mn3O4 

fH* (%) 0.18 0.18 0.18 0.21 0.22 0.21 0.28 0.33 0.46 

fH+ (%) 0.003 no data 0.002 0.033 0.002 0.141 0.124 1.23 0.694 

 

fH*-hausmannite weight fraction from XRD line intensity ratio. 

 fH+-hausmannite weight fraction from magnetic susceptibility, .( section 5-3-1) 
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Table 4-3. XRD Rietveld refinement results of the lattice parameters and secondary phases detectable in the powders 

of the samples sintered for ten days at 1300⁰C in the last firing step. 

x (set C) 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.08 1.12 

a 6.0440 6.0440 6.0438 6.0421 6.0401 6.0388 6.0366 6.0369 6.0364 

c 11.37464 11.37321 11.37206 11.36885 11.36764 11.36851 11.36698 11.36719 11.36716 

Vc 359.852 359.797 359.746 359.436 359.158 359.037 358.724 358.762 358.704 

Rp 4.12 4.15 3.96 4.21 4.57 4.79 4.49 4.46 4.73 

Rwp 5.31 5.4 5.23 5.41 5.84 6.11 5.74 5.59 5.93 

Rexp 2.62 2.6 2.71 2.63 2.66 3.18 2.84 2.89 2.72 

χ2 4.12 4.32 3.73 4.23 4.81 3.7 4.09 3.74 4.74 

weight 

fraction 
98.71 99.41 99.73 100 100 100 99.31 99.25 99.4 

xr 0.936 0.948 0.964 0.980 1.00 1.020 1.014 1.052 1.097 

fm fraction 

(%) 
1.29 0.59 0.27 - - - 0.69 0.75 0.60 

Secondary 

Phase 
Lu2O3 Lu2O3 Lu2O3 - - - Mn3O4 Mn3O4 Mn3O4 

fH*(%) 0.19 0.21 0.13 0.25 0.25 0.23 0.23 0.41 0.30 

 

fH*-hausmannite weight fraction from XRD line intensity ratio. 

 

Secondary phases identified in LuMnxO3± samples by XRD and Rietveld refinement are 

either the Lu2O3 for x<1.00 samples (Lu-rich side), or the secondary phase of Mn3O4 in 

the opposite side, x>0 (Mn-rich side), Table 4-1 to Table 4-3. The XRD profiles of x=0.92 

and x=1.08 samples of 1 day annealing time are shown in Figure 4-1.a and b, 

respectively. When present in the x<1 samples, the Lu2O3 is clearly identified by the 
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corresponding (440) and (622) diffraction lines in the XRD spectrum, as in the inset of 

Figure 4-1.a. The secondary phase Mn3O4 is detectable by the (103) diffraction line of 

hausmannite, 2θ=31.69, in samples of lager values of x on the Mn-rich side, although the 

peak intensity is faint and peak is broad and easy confused with background noise as 

shown in the inset of Figure 4-1.b. XRD spectra were also checked for other phases like 

Mn2O3, LuMn2O5 and Lu2Mn2O7 but no matching of diffraction lines of these phases with 

Bragg reflections in the experimental XRD patterns could be found.  

The difficulty on carrying secondary phase Rietveld refinement rises as peak intensity of 

the phase becomes weaker. In the present study such limitation on allowed to refine the 

scale factor and lattice parameters of the secondary phase, when present. For the x>0 

side, the reliability factors of the lattice refinements are poor, so only the calculated 

weight fraction of the secondary phase is reported here in Table 4-1 to Table 4-3. 

Figure 4-1 display the Rietveld refinement of two samples selected from the set of 1 day 

annealed samples, also with the corresponding peaks of secondary phases identified in 

XRD patterns. The residuals of the refinements of the two samples in Figure 4-1 are low, 

but reliability factors like 2 close to or above 5, Table 4-1, may point to the presence to 

strain and dislocations in the lattice or slight off-positioning of some atoms in the unit 

cell from their Wyckoff positions coming from composition gradients. The limited 

reliability of the XRD Rietveld refinement of unit cells with off-stoichiometric samples of 

1 day annealing time in Table 4-1 gave inception on performing new batches of samples 

with the longer annealing times of 5 and 10 days. Figure 4-2 displays the XRD profiles 

and performed Rietveld refinements of samples with the stoichiometric composition 

x=1.00 for the three values of annealing time, showing the goodness of fit based on the 

residual of Rietveld refinement.  
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Figure 4-1. XRD data and Rietveld Refinement of the data of the LuMnxO3±δ samples x = 0.92 (a) and x = 

1.08 (b) showing P63cm space group of hexagonal LuMnO3. Inset.a represents two peaks of Lu2O3 

secondary phase of sample with x= 0.92 (2θ= 49.58) and the inset.b shows the peak of Mn3O4 secondary 

phase for sample with x=1.08 (2θ= 31.69). 
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Figure 4-2. XRD Rietveld fitting of the sample LuMn1.00O3±δ after three different annealing time as written 

in each figure. 
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The behaviour of the samples annealed for 1 day confirmed how much the atomic 

position and even peak shapes had fluctuated in comparison to the results of the two 

other sets samples of longer time of annealing. Further discussion is given in the next 

section where the lattice parameters of samples of different sintering conditions are 

compared and discussed. 

 

4-2-1 Crystalline lattice constants inside stability limits of h-LuMnO3 

 

The stability limits of hexagonal RMnO3 manganites in a wide range of temperature in air 

and oxygen atmospheres were given in a set of publications of Fedorova and co-workers 

[94,95,101,103,109]. The summary with the lower (xL) and upper (xH) solid solution 

limits of h-RMnO3 phases at 900 C and 1300 C is presented in Table 4-4. The solid 

solution limits of LuMnxO3 were determined from powder XRD results as the boundaries 

of composition where two phase fields were detected in the XRD results with the 

presence of a second phase a side of RMnO3 main phase [95,101]. The publications of this 

set did not document the changes of lattice constants and other crystallographic 

parameters that should evolve with composition of RMnO3 solid solutions [17]. However, 

such data are essential for modeling the dependence of properties the materials outside 

the strictly stoichiometric composition of RMnO3± phases. To the author´s knowledge 

the only study available on the dependence of crystallographic parameters on the change 

of the Mn/R ratio in bulk hexagonal manganites is the one done in the Y-rich side of the 

YMnO3± phase [17], also given in Table 4-4. In another study of MOCVD thin films of 

ErMnO3 and DyMnO3±, the effects of off-stoichiometry on out-of-plane c-axis of the 

crystalline lattice showed that above a critical thickness the relaxed values of c-axis of 

the thin film become proportional to the R/Mn ratio, the compositions with larger Mn 

excess displaying the lower values of c-axis [18].  
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Table 4-4. Summary of the available data of solid stability limits of h-RMnxO3 oxides with their preparation method and 

maximum temperature of annealing. The result of the current study is also given in the table for comparison.  

h-RMnxO3 T (C) xL xH Criterion Synthesis Route time (h) Reference 

LuMnO3 900 0.94 1.03 XRD-single phase Solid state reaction several days [101] 

 1300 0.94 1.20 XRD-single phase Solid state reaction several days [101] 

 1300 0.95 1.04 Cell parameters Solid state reaction 24 [91] 

 1300 0.94 1.05 Cell parameters Solid state reaction 120; 240 + 

YbMnO3 900 0.83 1.02 XRD-single phase Solid state reaction several days [103] 

 1300 0.83 1.20 XRD-single phase Solid state reaction several days [103] 

ErMnO3 900 0.94 1.06 XRD-single phase Solid state reaction several days [102] 

 1300 0.94 1.12 XRD-single phase Solid state reaction several days [102] 

 850 0.88 1.39 c-axis (C2) 
MOCVD- 100 nm thin 

film 
0.25 (O2) [18] 

HoMnO3 900 0.95 1.02 XRD-single phase Solid state reaction several days [102] 

 1300 0.91 1.21 XRD-single phase Solid state reaction several days [102] 

YMnO3 900 0.91 1.02 XRD-single phase Solid state reaction several days [102] 

 1300 0.88 1.09 XRD-single phase Solid state reaction several days [102] 

 1350 0.95 n.a. Cell parameters Pechini (citrates) n.a. [17] 

 1450 n.a. 1.15 XRD-single phase Solid state reaction several days [19] 

h-DyMnO3 850 0.93 1.40 c-axis (C2) 
MOCVD-50 nm thin 

film 
0.25 (O2) [18] 

  

 + The results of the current PhD study. 
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Making use of the criterion of absence of second phase in XRD results of Mn-rich side of 

YMnxO3 bulk samples, the value of xH=1.15 had been assigned to the upper stability limit 

of solid solution, Table 4-4. 

The dependences of a-axis and c-axis and cell volume Vc on Mn/Lu = x ratio of the 

hexagonal h-LuMnxO3± phase in Table 4-1, Table 4-2 and Table 4-3 are plotted in 

Figure 4-3 (a, b, c), respectively. 

The dependences of the same lattice parameters on the Mn/Y ratio of YMnxO3± for the 

high Y side (x  1) from reference [17] are also plotted in insets Figure 4-3.(a, b, c) 

(secondary y-axis, with equal span of values). The relative variations of Vc of the 

hexagonal structure are twice more dependent on relative changes of a-axis than of the 

c-axis, the plots of Vc in Figure 4-3.c displaying trends similar to the plots of a-axis in 

Figure 4-3.a.  The residuals of the Rietveld refinement of the XRD spectra of 5 day 

sintered LuMnxO3± samples are smaller than for those of 1 day sintered samples and the 

scatter of values of the corresponding lattice constants in Figure 4-3.a, b and c is also 

lower. 

The composition xr of the LuMnxO3± solid solution is calculated from the corresponding 

values of the nominal composition and the fraction of second phase (Lu2O3 if x<1, or 

Mn3O4 if x>1), the corresponding values being also given in Table 4-1 to Table 4-3. The 

root xr is determined with the approach that the second phases Lu2O3 and Mn3O4 are 

stoichiometric and chemically pure. The equation to determine xr can be univocally 

solved only with one secondary phase. It fails to deliver a meaningful solution in cases 

when the weight fraction of detected second phase(s) would lead to values of xr in the 

off-stoichiometry side opposite to the one of the nominal composition x of the sample. 
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Figure 4-3. Dependence of the lattice constants on Mn/Lu = x ratio of the LuMnxO3±δ hexagonal manganite: 

(a) a-axis, (b) c-axis and (c) Cell volume Vc for different sintering conditions. Insets are the same constants 

of the Y1+xMnO3 ceramics for comparison [42]. 
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The plots of weight fraction of second phases as a function of xr for samples of 5 days and 

10 days annealing time in Figure 4-4 indicate that the stability of the LuMnxO3± solid 

solution at 1300 C is limited to the composition range xL=0.936±0.001  Mn/Lu  

1.052±0.001=xH in the present study. The low stability limit xL is taken as value of xr of 

the two samples with maximum saturation of Lu2O3 (nominal composition x=0.92) 

coinciding with leveling of the corresponding values of a-axis and Vc in Figures 4-3.a and 

c. The value of the high stability limit xH is taken as value of xr of the two samples with 

net saturation of Mn3O4 (nominal composition x=1.08) and coincides with the leveling of 

all lattice parameters in the same Figure 4-3. The calculated weight fraction of Mn3O4 in 

samples x=1.12 consistent with the value of xH1.05 above would be fm=1.78 %wt, the 

triple of what was determined by Rietveld refinement (0.6-0.7 %wt), Tables 4-2 and 4-3. 

The apparent increase of xH to the new value xH1.10 determined from two x=1.12 

samples has no correspondence in the values of the lattice parameters in Figure 4-3 and 

may result from inaccuracy of Rietveld refinement to determine such low fractions of 

second phases or some hausmannite in the amount of roughly 1 %wt might have reacted 

to form some unknown intermediary phase which remained undetected. The observed 

dependences of lattice axes and of Vc on the composition of LuMnxO3± phase closely 

follow the trends reported for the Y rich side of the YMnxO3± system [17]. There is a 

nearly linear dependence of a-axis on the Mn/Lu ratio throughout the overall stability 

range of the LuMnxO3 solid solution and also of the c-axis but limited to the x<1.00 side. 

The trend shown by the values of c-axis in the Mn rich composition of LuMnxO3± is less 

clear. While the lower limit of solubility of the LuMnxO3± solid solution is close the value 

x = 0.942 previously reported [109], the upper limit of solubility of the present study 

stays well below the corresponding value of x = 1.198 reported in the same study, 

Table 4-4. The origin of such difference in Mn content of the main phase was investigated 

by HRTEM microscopy in the search for linear and planar defects of the crystalline lattice 

that may be present in the LuMnO3± crystalline grains and could accommodate large 

excess of Mn [110] and it will be presented in following chapters. 
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Figure 4-4. Weight fraction of second phases determined from Rietveld refinement of XRD data of 5 days 

and 10 days sintered samples of LuMnxO3±δ. 

 

Increasing annealing time was decided in order to get higher quality polycrystals [57] for 

the PhD work. Lattice variation in a-axis and cell volume in these samples of longer 

annealing time are now showing more visible the limit of solid solubility in the 

approximate composition range of 0.94x1.04, as derived from 5 days samples, 

Figure 4-3. After 5 days annealing the straight plateau appears in the region of x≥1.04, 

indicating the limit of solid solubility in R-site vacancy region. Even the duplication of 

annealing time to 10 days allowing for ions in the lattice be relaxed to their minimum 

energy positions, or moving grain boundaries to assist the completion of reaction by 

sweeping through the volumes of the material did not change the lattice parameters for 

samples of x1.04. On the contrary, in samples with Mn-site vacancies, 5 days annealing 

could not completely stabilize the atomic structures which demanded longer annealing 

time to get such leveling plateau of a-axis and Vc values below x<0.96, Figure 4-3. In 
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general, the reliability factors of samples of 5 and 10 days annealing time do not show 

remarkable differences, Table 4-2 and Table 4-3, indicating that the atomic positions 

defined according to the space group and XRD peak shapes considered in the Rietveld 

refinement are adequate for both sets of samples. Figure 4-4 shows that on this side of 

sample composition the 5 days and 10 days annealed samples have almost identical 

behavior concerning the secondary phases. Rietveld refinement does not directly 

evaluate extended defects and dislocations inside the particles, but generally refine 

crystal cell parameters which may be connected to either stress/strain or grain size. 

Residual Lu2O3 secondary phase (x<1) which has better defined peak shapes than the 

Mn3O4 secondary phase (x>1), can be traced in XRD patterns, Figure 4-1.a. The broad 

XRD peaks of Lu2O3 in x<0.96 samples are probably indication of dispersed nano-

particles of this phase in the sintered ceramics. Thin films of h-RMnO3 oxides with off-

stoichiometric composition developed nano-inclusions of the secondary phase of R2O3 at 

the film/substrate interface or in film [18,111].  

Inspection of the faint (103) XRD line of Mn3O4 phase in the inset of Figure 4-1.b shows 

that it does not overlap with neighbor peaks of the LuMnO3 phase. Accounting that this 

(103) XRD line is broad and poorly defined against background noise a different 

approach was used to make a straight estimate of Mn3O4 weight fraction. As shown in 

Figure 4-5 and Figure 4-6, polynomial forms of even order, np, with np4 were fitted to 

the XRD spectra in a fixed range of 2 centered in the (103) Mn3O4 line (232.5) to 

smooth the profile of the XRD peak. The difference of height between the maximum of 

the smoothed (103) peak and the straight line joining the two minima on each side of the 

peak was taken as a measure of peak intensity. 

The relative height of the (103) XRD line was calculated by dividing the (103) peak 

intensity by the height of the (112) line of LuMnO3 (233.6) discounted for the 

background. The analogous procedure applied to h-YMnO3 phase with the addition of 1.2 

%wt of Mn3O4 in Figure 1.b of reference [90] yielded the peak intensity ratio 

I(103)/I(122)=0.00642. This value is used as calibration factor of the relative intensity 
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height of the (103) XRD lines to determine the approximate weight fraction of Mn3O4 

detected in the LuMnxO3±  samples given as fH* in Table 4-1 to Table 4-3. In the trend of 

the polynomial smoothed profiles of the (103) peak of 5 day annealed LuMnxO3±  

samples in Figure 4-5 one can always detect a maximum at the 2 position of (103) line 

which suggests that there are at least traces of Mn3O4 in all samples of this set, even in 

samples of low Mn on the x<1.00 side. There is a neat increase of Mn3O4 content in 

samples of the same set with Mn excess, x1.04 when the upper stability limit of the 

LuMnxO3±  solid solution is crossed. The analogous conclusions hold for samples of 10 

day annealing time in Figure 4-6. For all compositions of the LuMnxO3±  samples with 1 

day annealing time in Figure 4-6 the detected amount of Mn3O4 second phase is always 

comparatively high and above trace levels. 
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Figure 4-5. (103) peak of hausmannite secondary phase in XRD patterns of the samples after 5 days 

annealing. 
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Figure 4-6. (103) XRD peak of hausmannite phase from XRD patterns of the samples after one day and 10 

days annealing time showing decrease in the intensity of the corresponding peak after long time annealing.  
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4-2-2 R-site doped h-RMnO3 materials 

 

As implied by the results in Figure 4-3 the overall changes of unit cell axes of LuMnxO3± 

crystalline cells between solubility limits is minute, 0.14 % for a-axis and less 0.09 % for 

c-axis, the determination of their values being very sensitive to the accuracy of the XRD 

measurements and Rietveld refinements.  

 

Figure 4-7. Data from bibliography on the change of (a) a-constant and (b) c-constant of R-site doped 

LuyR1-yMnO3 [34,72,112]. 

 

The interdependences of c-axis or a-axis of R-site doped LuyR1-yMnO3 for different solid 

solutions are plotted in Figure 4-7: co-doped solid solutions with stoichiometric Mn/R 

ratio [34,72,112]. The co-doped solid solutions (R, Lu)MnO3± where R holds for Y, Sc and 

Ho systems show different trends in the changes of a-axis and c-axis lattice constants. 

Only dopants with the same charge valence of Lu3+ were chosen for this analysis in order 

to isolate the effect of ionic radius (size effect) of the dopants. Charge valence and size 

effect have been calculated and measured to be effective on changing the unit cell 

parameters and tilting of the MnO5 bipyramids [113,114]. Doping with trivalent ions 

does not require any charge compensation [114]. Ion size effects were already studied 
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for both bulk ceramics and thin films of h-RMnO3 oxides with different rare-earth ions 

with significant impact on changing the lattice parameters [24,115–117]. Increasing 

ionic radius is generally accompanied by expansion of a-axis and c-axis lattice 

parameters, with reducing of the buckling of planes of rare-earth ion in FE phase. 

In Figure 4-7 the lattice constants for Sc-doping and for the Ho and Y dopants show 

opposite changes, due to differences of their ionic radii in relation to the Lu3+ ion. Ionic 

radii of Sc (0.87 Å) and Lu (0.977 Å) are smaller than the ones for Y (1.019Å) and Ho 

(1.015 Å), the substitution of the R1 and R2 rare-earth ions in case of Sc doping produces 

shrinkage of the lattice parameters. The later rare-earth ions have bigger ionic radius 

than Lu and Sc, when Lu content is being substituted into Y or Ho sites, the lattice also 

shrinks when the R-site is fully occupied by Lu ions. For Y-site doping of YMnO3 with 

different rare-earth ions, it was calculated that the Sc and Lu doping are more 

energetically favorable particularly for Y2 site substitution (Wyckoff position 4b) in 

comparison to Ho or other rare-earth ions with bigger ionic radii [114].  

In the same analysis on the Y-site co-doped YMnO3 system with Er, Dy, Lu in Figure 4-8 

the dependency of lattice axes on average ionic radii of the both rare-earth ions implies 

that changes of c-axis in this system does not have the same trend for all dopants. The 

ionic radii of the rare-earth ions in each compound given in Figure 4-8.a, present a 

critical ionic radius for the behavior of the Y-site doped lattice of the YyR1-yMnO3, where 

the trend for change of a-axis is reversed. The graph indicates that Dy doping on Y-site 

has opposite trend in comparison to other dopants. 

As we saw in Figure 4-7 for Lu site co-doping, Dy with ionic radius larger than Y, Er and 

Lu is expected to have different effect on lattice axis dimensions when it occupies the 

position of Y ions. On the contrary, the change of c-axis with co-doping displays a similar 

trend for all dopants, c-axis expanding as Y-content is increased, but presenting larger 

fluctuation for Er co-doping. Although not shown, for all YyR1-yMnO3 systems discussed 

here the unit cell volume, Vc is expanding as the Y-content increases except in case of Dy 

doping.  One can predict that co-doping of Y-site with Ho will give rise to same behavior 
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of lattice as for Dy doping. It was shown in theory that Lu and Sc co-doping into YMnO3 

would be more energetically favorable than Ho and perhaps Dy [114]. The substitution 

of Lu or Y ions with isovalent dopants which have smaller or large ionic radius would 

force lattice to get contracted/expanded, respectively, especially as coordination number 

of R ions is 8 oxygen, the energy scheme of surrounding environment of the rare-earth 

ion in the RO8 cage would promote lattice to respond to smaller or bigger sizes of doping 

of the R-site. 

 

Figure 4-8. Change of the a-axis (a) and c-axis (b) of the stoichiometric R-site co-doped YyR1-yMnO3 

materials [34,118,119]. a-axis (c) and c-axis (d) of Y-site self-doped Y1+xMnO3 was also given for 

comparison [17]. 
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4-2-3 Mn-site doping in h-RMnO3 materials 

 

Mn-site co-doping of h-RMnO3 materials either with trivalent dopants and vacancy 

doping, or self-doping are reviewed in this section. As before the study of co-doping is 

restrict to trivalent ions of the same valence of Mn3+ ion [113,114] unless the valence of 

the transition metals had changed due to adjustments of oxygen stoichiometry. This 

scenario is closer to self-doping of RMnxO3 oxides. Metal dopants for the Mn site are 

In3+[120], Cu2+V4+ and Cu2+Ti4+[121], Fe3+, Cr3+[70], Al3+[68] and Ga3+[122]. Figure 4-9.a 

gives the change of a-lattice for ceramic samples with the ionic radii of the dopants as 

shown in the figure. Clearly dopants with ionic radii larger than Mn3+ or very close to it 

such as Cr3+ (in 6 coordination number) cause expansion of a-lattice in proportion to the 

fraction of dopant that occupies positions of Mn3+ ions in the lattice, the same trend is 

valid for LuMnxO3 solid solution when Mn-site is self-doped with vacancies created on 

the Lu-rich side (x<1) in present study, Figure 4-7.b. In the cases of Al and Ga dopants of 

smaller ionic radii than Mn change the a-lattice is reversed in comparison to the cases 

above. Higher moduli of M3+/Mn3+ ionic radius ratio result in steeper slopes of the 

dependence of a-axis on co-doping fraction.  

Figure 4-9.a and b does show a slightly different behavior of change of c-lattice constant 

by introducing dopant into Mn site. The main changes appear for Ga and Cr now 

behaving in completely opposite way. The radii ratio of Ga/Mn is higher than Cr/Mn but 

both are below unity. Cu2+V4+ co-doping also gives rise to shrinkage of c-axis constant. 

Calculation of unit cell volume revealed that Ga and Cr like Al dopants must force unit 

cell to contract, whereas all remaining dopants show expansion of unit cell when they 

occupy the Mn sites, even Cu2+V4+ dopant results in expansion of the unit cell [113].  

The changes of a-axis and c-axis constants for self-doped h-RMnxO3 oxides in Figure 4-9.c 

and d, respectively, demonstrate expansion of the lattice axis and therefore cell volume 

by introducing Mn vacancies into Mn-sites (x<1 side of the solid solution) for all studied 

systems. The slope of the change is dependent on the ionic radius of the rare-earth ion as 
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shown in  Figure 4-9.c and d. Values of c-axis constant from off-stoichiometric thin films 

of DyMnxO3 and ErMnxO3 are also given in the figure [18]. In whole range from Dy excess 

to Dy deficiency, c –constant is decreasing. The same holds for the ErMnxO3 thin film.  

The slopes of changes in c-axis parameter for both Dy and Er self-doped samples are 

quite similar and much larger than corresponding values of slope of self-doped 

LuMnxO3±δ samples of the present study. R-site self-doping of RMnxO3 oxide with R=Lu 

(current study), Y [17] bulk ceramics and Dy and Er thin films [18] demonstrate 

expansion of the c constant as the value of R ion is increasing. Available data for Y and Lu 

bulk ceramics give the same expansion of the lattice constants and volume of the unit cell 

as R-site deficiency reduces (decreasing x in the x>1 side). Therefore R-site deficiency in 

h-RMnO3 oxide provokes retraction of the unit cell. One expects to have shorter Mn-Oap 

bond lengths when the c-constant is decreasing with more accentuated tilting of MnO5 

bipyramids [122,123].  

The size of the rare-earth ion in the plane of the unit cell which separates the MnO5 

bipyramids along c-axis may be generally used to control the amount of c-axis expansion. 

A simple explanation could be given to this as the R-Oap and Mn-Oap bond lengths are 

bridging R to Mn ions, therefore the electrostatic interaction of positive charged cations 

will affect the position of Oap plus the tilting of bipyramids in the unit cell [96]. Any 

change in Mn sites like introducing Mn vacancies may be in favor of pushing apical 

oxygen towards the rare-earth due to electrostatic attraction forces. Theoretical 

investigations of the Mn-site doping (10 atomic %) considering dopants with different 

charge valence have generally shown that the splitting of Mn-O3 and Mn-O4 ( planar 

oxygen ions) will be reduced upon doping and could result in a more symmetric network 

of Mn trimers with the subsequent effect of enhancing frustration [113]. This same study 

indicates the sensitivity of the tilting angle to the size factor as bigger ionic radius of 

dopant induces higher tilting angle of MnO5 polyhedron. That would not be the case for 

divalent or tetravalent dopants as they introduce more electron/holes into the lattice.  
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Figure 4-9. Change of the lattice parameters upon doping into Mn-site of the RMnxO3 oxides. (a) and (b) 

show lattice parameters for Mn-site co-doping with trivalent ions. The a-axis (c) and c-axis (d) constant 

dependence on x for self-doped RMnO3 materials from current study or literature (In3+[120], Cu2+V4+ and 

Cu2+Ti4+[121], Fe3+, Cr3+[70], Al3+[68] and Ga3+[122], Er and Dy [18]).  

 

Moreover, the minimum energy solution for trivalent dopants can be to somehow 

dependent on the ionic radius [113]. In the range of ionic radius ratio of 

0.9≤rM3+/rMn3+≤1.1 for Co, Ga, Fe and Cr the minimum energy decreases from Co to Cr, 

implying that Mn-site doping is more energetically favorable for dopants with larger 

ionic radius. On the other hand, Al with smallest ionic radius in the studied series of Mn-

site dopants gives rise to lower energy than Co and Ga, emphasizing that Mn-site 
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substitution may suddenly change its dependency on the ionic size of the dopant. This 

behavior is more pronounced for tilting angles, less for Al than Cr and Ga, whereas the 

buckling angle closely follows the rM3+/rMn3+ ratio and becomes smaller when this ratio 

turns higher. These are important results as the energy scheme of the unit cell is the 

collective mechanism including all ionic displacements and tilting of MnO5 polyhedrons, 

implying that dealing with Mn-site vacancies in self-doped RMnxO3 materials may not 

inevitably represent a monotonic trend in all properties or distortion of lattice 

parameters. 

 

4-2-4 Tilting and buckling in unit cell of LuMnxO3±δ ceramics, sintering effect 

 

Not only the change of lattice constants in R-site or Mn-site doped h-RMnxO3 lattices but 

also the tilting of MnO5 bipyramids and shift of the Lu ions along c-axis are important on 

dictating the electrical polarization and magnetic interactions. Figure 4-10 a and b show 

the tilting of the polyhedron of MnO5 for selected samples with off-stoichiometric 

compositions for 5 days and 10 days sintering time. Tilting is defined by the angle of O3-

O4 bond to basal plane (tilting of Opl) and angle of O1-O2 bond to c-axis (tilting of Oap) 

[30]. The values of the Oap tilt angle and Mn-Mn bond distance were extracted from 

VESTA 3.1.8 software which gives also the error bars of the calculated parameters from 

cif files of the compositions extracted from Rietveld refinement of the XRD data. 

The tilt angles in Figure 4-10.a and b reveal slightly different behaviour from left to right 

when Mn-site vacancy doping switches into R-site vacancy doping. Refining the oxygen 

atomic positions using conventional XRD is a true limitation of the method and would 

have introduce some uncertainty in the results which may explain the fluctuation of the 

calculated quantities. It appears that Oap tilting angle in Figure 4-10.b has more noise 

than the Opl tilting angle in Figure 4-10.a aside, as it could be predicted from the 

fluctuation of the experimental data of c-axis constant. Tilting angles for both sintering 
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conditions of Mn-site vacancy samples (x<1) follow a clearer trend with less fluctuation 

of their values than the ones for R-vacancy doped samples. The better defined trend of 

tilting angles for Mn-vacancy doped samples becomes more evident in change of Opl tilt 

angle, as planar oxygen ions are directly affected by Mn filled position or vacant site in 

basal plane 

 

Figure 4-10. Tilting of the MnO5 polyhedron in (a) and (b), and displacement of the Lu ions and Mn-Mn 

bond lengths of off-stoichiometric ceramics under study in (c) and (d). 

 

Figure 4-10.c and d present the displacement of Lu ions and Mn-Mn bond distance in 

basal plane, respectively, for the same sets of samples under study. Both functions show 

a trend to increase with the value of x. However both quantities in x<1 region of Mn-

vacancy doping follow parallel trend to the one observed in the values a-axis and cell 

volume, Figure 4-3.a and c,  ending in a flat plateau after 10 days annealing in this region. 
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Again fluctuation of the data in the region of R-site vacancies appears more significantly 

than in the opposite side. It is suggested that Lu-vacancies would introduce more 

complexity in the behaviour of crystalline cell than Mn-vacancies, which it may be due to 

the higher coordination number of Lu (bonded to 8 O ions) than Mn sites with 5-fold O 

coordination [96]. The Mn-Mn bond distance has a trend for expansion with x which is 

contrary of the trend for shrinking of the a-axis constant with x. Such feature is 

important in discussing the AFM interactions of Mn magnetic moments in the basal 

plane. It confirms that Mn-Opl-Mn bond angles also play significant roles on shrinkage or 

expansion of the unit cell in the basal plane.  

 

4-2-5 Energy scheme of LuMnxO3±δ compositions from First-Principles Calculations 

 

In next step of study of the crystalline lattice, it is considered helpful to have a landscape 

of the minimum energy of the unit cells of the off-stoichiometric materials under study to 

make a first time exploratory comparison with the values of minimum energy of 

stoichiometric RMnO3 lattices. For such First-Principles calculations were carried out 

using the full potential linear augmented plane wave (FP-LAPW) method implemented in 

Wien2K code [124], by fixing atomic positions and lattice parameters to the values 

obtained from XRD Rietveld refinement of selected samples the 5 days and 10 days 

sintered batches. Since the LDA method does not give band gap in these insulator oxides 

[125], after getting the convergence of the calculations with set criteria the LDA+U with 

Hubbard potential of 6 eV on Mn 3d orbitals was applied to open the band gap [126]. 

More details of the same First Principle calculations and use made in the study of the 

LuMnxO3±δ samples are left to the matters in latter chapters of this thesis.  

Figure 4-11 gives the outcome of First Principles calculations for selected samples of two 

sets under study, revealing that the energy minimum of samples with 5 days annealing 
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time occurs at stoichiometric composition while in 10 days annealed samples the lowest 

values of the calculate energy are to the left in the x<1.00 side of sample composition. 

It must be mentioned that the concept of vacancy in these calculations is introduced only 

by the indirect via implicit in atomic positions and lattice parameters from the XRD 

Rietveld refinement. Introducing any vacancy into the models of the crystalline lattices 

demands supercell calculations, volume optimization and then determination of the 

equilibrium positions of all individual atoms in the supercell. Considering of AFM spin 

configuration will increase even more the time of First Principles calculations. A-type 

AFM spin states for Mn moments was considered in the present calculations, with spins 

parallel but of opposite signs in two Mn planes in a unit cell [10,127].  The energy 

scheme for x=1.12 of 10 days annealed samples in Figure 4-11.a indicates highest value 

of energy for this composition which may imply that instability was induced in the lattice 

more than in samples of other compositions. 

Figure 4-11.b demonstrates that the change of band gap for 5 days annealed samples 

covers a broad range of energies, with stoichiometric sample in the middle of the energy 

range with a band gap of around 0.6 eV. The corresponding value of the band gap for the 

stoichiometric composition of 10 days samples is around 0.7 eV. The results of the 

calculation of band gaps for both sets of samples indicated Mn-site vacancy doping (x<1) 

leads to the crystalline lattices with smaller band gaps whereas the opposite occurs in R-

site vacancy samples in the right side of the plots of this figure. As discussed in a latter 

chapter of the thesis, the calculated partial density of states for Mn 3d, O 2p and Lu 5d 

orbitals indicate that the lowest energy states at the bottom of the conduction band could 

be assigned to the Mn 3d – 2p O hybridization [10,128]. Therefore, it would be rational to 

correlate the changes Mn-Mn bond distance in previous Figure 4-8.d with the differences 

of energy band gap. Even though the AFM configuration was simplified to A-type AFM for 

the needs of the present First Principles calculations as also reported in reference 

[10,127]. The adoption of non-collinear spin geometry of Mn3+ moments has been 
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proven that would not change much the energy scheme and band gap values in the 

YMnO3 system [129]. 

 

Figure 4-11. (a) Calculated energy of the off-stoichiometric LuMnxO3±δ ceramics and (b) evolution of the 

bad gap determined by First-Principles approach. 
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4-2-6 R-site / Mn-site vacancies through First-Principles Calculations:  

 

Up to now literature reviewing could not give any comprehensive work or way to 

introduce vacancies on First Principles simulations of vacancy doped lattices of the h-

RMnO3 oxides. Results of the current investigation of the effect of R-site or Mn-site 

vacancies in the atomic positons of the ions of the unit cell are present in this section. To 

simplify the calculation and therefore reducing the time of the calculations which 

becomes prohibitively long, the structure of the paraelectric phase of LuMnO3 was 

adopted as the sintering was also done at 1300C very close or on the edge of the phase 

transition. To introduce a low amount vacancy as at the limit of present experimental 

study (12%), the unit cell was extended by 2x2x1. Considering the Wyckoff positions of 

Lu (2a) and Mn (2c), extending of the unit cell and introducing one cation vacancy per 

supercell would be almost equivalent to the 12 % vacancy concentration of that cation. 

The same potentials and Wien2K code were taken as done in section 4-2-5. To reduce 

time of calculation after creating the supercell and introducing either Mn vacancy or Lu 

vacancy non spin polarized calculations were performed going directly to determine 

equilibrium positions of the all atoms in the supercell. Wien2k code does find the 

equilibrium positions by minimizing the forces on the nuclei. We performed 

minimization of forces with the criteria of 0.0001 Ry for energy convergence and 0.001 e 

for charge and 1 meV/Å for forces.  

The atomic arrangements of ions in the supercell in c-axis projection are shown in 

Figure 4-12. Figure 4-12.a is the starting supercell of the PE phase [41,106]. The 

corresponding orientation for the Mn vacancy and Lu vacancy supercells are presented 

in Figure 4-12.b and c, respectively. 
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Figure 4-12. (a) PE structure of the 2x2x1 supercell of the LuMnO3 stoichiometric structure viewing along 

c-axis, (b) Lu vacancy supercell, the place of Lu vacancy is located in the center of the image, Mn ions with 

different colors indicate two z-positions and (c) Mn vacancy supercell in a plane of Mn ions with pink color, 

other Mn ions are located at different z-coordinate. 
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Because converting the usual unit cell to supercell and then introducing vacancy in A-site 

or B-site will result in change of the space group, the unit cell dimensions in the images 

are not the same. In a first glance, the major disturbance in the atomic positions is for 

image b, Lu vacancy supercell. We should emphasize that the convergence for Mn 

vacancy supercell was achieved after 600 cycles of the calculations; however the one for 

Lu vacancy supercell could not get convergence within the defined criteria mentioned 

already. Therefore, the impact of the Lu vacancy on the force minimizations of the ions in 

the unit cell is too much as the convergence of the calculations could not be reached after 

many cycles (we tried 1500 cycles). However, comparing the final structure of the 

calculations may give useful information on the sensitivity of different species in the unit 

cell to the specific vacancy. In general we can summarize the result of comparison of 

calculated atomic positions and their initial positions as following: 

 

ion type Lu vacancy Mn vacancy 

Lu ions less than 0.003 Å shift in coordinates in x,y coordinates can be 0.01 Å, in 

z is smaller  

Mn ions x,y shift as large as 0.01 Å, along c-axis, 

much lower 

no shift along c-axis, shift in basal 

plane as large as 0.01 Å 

Opl shift in x,y coordinates less than the ones 

for Mn ions 

shift in x,y coordinates is more 

than the ones for other ions ( ~0.06 

Å) 

Oap shift in x,y coordinates more than z, and 

more than the ones for Opl, but less than 

Mn shift 

less shift in all coordinates in 

comparison to other species in the 

supercell 

 



LatticebehaviourofLuMnxO3±δceramicsandeffectofsintering  

82 
 

The analysis of the comparison shows that introducing Mn vacancy would provoke Lu 

ions to be displaced along c-axis more than Lu ions in a structure with Lu vacancy. Also, 

introducing Mn vacancy affects planar oxygen (Opl) coordinates significantly, in such a 

way there exists a shift in x or y coordinates as big as 0.05 Å or even bigger for ions close 

to vacancy positions. The Mn-Opl bond lengths would change from 2.08941 Å of the PE 

structure to 1.76677 Å for Mn vacancy supercell and 1.88595 Å for Lu vacancy supercell. 

In the same time, the bond angle of the Mn-Opl-Mn in basal plane has values of 143.17 

for Mn vacancy and 129.2008 for Lu vacancy supercells (in PE structure is 120). In 

calculations of the distances and the angles we have considered those ions close to the 

vacancy positions to illustrate the effect of the vacancy on adjacent positions. Change of 

Lu-Opl from PE structure (2.8 Å) is 2.7446 Å for Mn vacancy supercell and 2.57589 Å for 

Lu vacancy supercell. Thus, Lu vacancy has stronger effect on the Lu-Opl bond lengths as 

it was claimed that to be a driving force for ferroelectricty via orbital re- hybridization  of 

Lu(5dz2) – (2pz) Opl[33,130,131]. 

In complementary calculations, it would be better to first carry out the volume 

optimization in order to understand how the volume of the unit cell will change 

depending on the type of vacancy. Then using the calculated cell parameters one can 

proceed for atomic position minimization.  

Finding equilibrium positions of the atoms in the unit cell after introducing vacancy 

results in giving intuitive information on the magnitude of the change of crystal 

parameters in previous calculations. However, in performed calculations there was no 

room for oxygen vacancy which may be present at least when cation vacancy are 

introduced. Our calculations in PE phase of LuMnO3 showed that unit cell does not get 

convergence when vacancy in Lu site is introduced, whereas Mn vacancy lattice could get 

convergence after reasonable number of cycles. Thus we tried to carry out calculations at 

FE phase, with A-type AFM spin configuration of Mn ions to find out the effect of Mn 

vacancy on the volume change of the unit cell. A mesh of 553 of K-points in reciprocal 

space was chosen for the unit cell of LuMnO3, Mn ion (0.6645000, 0.0000000, 
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0.4992300) and planar oxygen ions (0.33333333, 0.66666667, 0.51900000) and 

(0.66666667, 0.33333334, 0.51900000) which are the closest ones to the chosen Mn ion 

were removed. The choice of removing oxygen planar was made as neutron diffraction 

analysis of the YMnO3-δ indicated that the planar oxygen vacancy is more favorable than 

apical oxygen vacancy [96]. Values set for expansion or contraction of the unit cell 

volume was chosen as: (-2, -1, 0, 1, 2) which covers both possibilities of expansion or 

contraction in unit cell. The main objective of this calculation will be finding the tendency 

of the change of the unit cell volume when the lattice is exposed to Mn/O vacancies. 

Criteria of 0.0001 Ry for energy convergence and 1.0 mRy/a.u. for the force were set.  

 Figure 4-13 indicates the results of the volume optimization of the unit cell with Mn/O 

vacancy. The x-axis gives the percentage of the change in volume with respect to initial 

unit cell volume (zero value), the calculated energy after reaching the convergence 

criteria for that specific volume change. Our calculations reveal that the minimum energy 

reaches for 4% change in volume of unit cell. Therefore, the reaction of the unit cell to 

Mn/O vacancy would be expansion of the volume of the unit cell. Results of volume 

optimization in Figure 4-13 confirms our experimental findings from XRD Rietveld 

refinement values of the unit cell in Figure 4-3 which show that for x≤1 (Mn vacancy) the 

unit cell becomes expanded as x value decreases.  
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Figure 4-13. Total energy versus volume change in the unit cell of LuMnO3 with Mn and Opl vacancies. 4% 

change in volume gets minimum energy among considered changes in volume, means that the unit cell 

after introducing Mn/O vacancies tends to be expanded.   

 

4-3 Morphology and elemental analysis of secondary phases 

 

Matter transport in high temperature processing of the RMnO3 materials proceeds by 

diffusion. Samples with different concentration of cation vacancies are expected to react 

differently during solid state sintering, thus yielding changes in final density and in grain 

size as well as in the distribution of secondary phases. Homogeneity of the crystalline 

particles is another matter which should also be examined because it contributes to 

modifying the properties of these materials. Evaluation of these issues is made in this 

chapter with use of scanning electron microscopy SEM/EDS analysis on polished cross 

sections of the ceramic samples. 
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4-3-1 Effects of Mn/Lu ratio on grain growth 

 

Grain boundary grooving and intergranular fracture of as sintered samples revealed the 

contours of the crystalline grains with detail allowing the characterization of grain 

coarsening by SEM on fracture surfaces without the need of polishing and etching the 

surfaces. 

At least five SEM images of each sample were taken for measuring the grains size. Cord 

lengths were determined by counting the number of grains intersected by the gauging 

straight lines on the SEM images and were later converted to the grain size according to 

the scale of the SEM pictures and averaged for each sample. 

As particles of secondary phases can be found on grain boundaries and inside the grains 

of the main phase, polished cross-section of the samples were prepared for SEM for 

detection and characterization of the distribution of secondary phases by using diamond 

lapping paper sizes from 30 micron to 0.5 micron. Tests of thermal etching of the 

polished surfaces for short time at temperatures 20 % below the sintering temperature 

were done to reveal particle grain boundaries before SEM. Selectivity of thermal etching 

for the grain boundaries of LuMnxO3± was low and surface loosed quality due to increase 

of relief in the polished surface. Since it was not know exactly what will be the reaction of 

the secondary phases at high temperature, it was avoided to apply the heat treatment for 

thermal etching of the surfaces. 

The EBSD technique in SEM was shown to be too sensitive to surface roughness, 

artefacts and damage of fine polishing of the cross sections. These difficulties were 

overcome by doing the EBSD with a special SEM sample holder to clamp the TEM thin 

sections prepared by mechanical polishing and with the surfaces finished by thinning 

with ion milling. The sample for TEM thin sections was glued between two dummy single 

crystal Si slabs. After mechanical polishing down to silicon transparency the thin section 

was ion milled and thinned to electron transparency in TEM. 

Figure 4-14 shows SEM images of fracture surfaces of 5 day sintered LuMnxO3±  samples 

of a selection of six different compositions. As seen, there is strong dependency of grain 
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size on x, the Mn/Lu ratio. The grain growth is increased by raising the value of the x 

ratio. Closed porosity at the grain boundaries is observed but with decreasing frequency 

in samples of larger values of x.  

 

Figure 4-14. Fracture surfaces of 5 day sintered LuMnxO3±δ samples of six different compositions. 

 

Figure 4-15 presents the evolution of grain size and porosity of LuMnxO3±  with high 

temperature annealing time of three selected compositions, one from each side of the 

solid stability limit of the solid solution and the nominally stoichiometric composition 

(x=1.00). The grains are looser and the particles have poorer packing in the ceramics of 

lower values of x. The slow densification of compositions with Mn/Lu  1.00 is visible for 

the shortest time period of one day and it has direct effect on reducing grain growth by 

the action of pores on pinning and slowing down the grain boundaries. Grain growth of 

the porous samples being linked to density, samples of higher density or fully dense have 

larger grain sizes, as seen in samples with x≥1. 

One must take into account that any deficiency in Lu or Mn in sample composition 

combines with the time and temperature of sintering so the whole picture of the 
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distribution of particles and their sizes can be changed. This means that by dealing with 

grain size one may modify the physical properties of LuMnxO3±  as it was reported 

before for the rare-earth manganites [85,86,132], both of perovskite type or of hexagonal 

ones, either from chemical based routes or from solid state sintering. 

 

   

   

   

LuMn0.92O3 LuMn1.00O3 LuMn1.08O3 

Figure 4-15. Evolution with time of annealing at 1300 C of densification and grain size of LuMnxO3±δ 

samples of three selected compositions. First raw, samples of one day annealing, second raw of five days 

annealing and last raw of ten days annealing. 
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Figure 4-16 gives the general view of grain growth of the complete set samples of this 

work as a function of sample composition for fixed periods of time of isothermal 

annealing at 1300 C. Grain size as found here is very sensitive to the x value. A change in 

x by just 4% modified few times more the size of the particles. Relating to the results of 

XRD in section 4-2 above, one also finds out that in x<1 range, where residuals of Lu2O3 

phase were seen in the 1 day annealed samples, the slow grain growth and 

recrystallization did not assist in the redistribution of mater and in homogenization of 

the content by the sweeping effect of moving grain-boundaries and retarded the 

elimination of residuals of the reactant Lu2O3. The content of secondary phases will be 

further analyzed in following section. 

The exponents of the power law plots of grain size as a function of annealing time in the 

inset of Figure 4-16.b range from 1/3 for x=0.92 and 0.98 to approximately 1/2 for the 

remaining 4 compositions. The observation of the Gt1/n law of grain growth is an 

approach of the growth kinetics given by the equation, 𝐷𝑛(𝑡) − 𝐷0
𝑛 = 𝐾𝐺(𝑇)𝑡, with 

𝐷0
𝑛 ≈ 0 and G, grain szie [133]. As grain growth is thermally activated, KG(T), the growth 

rate constant will be given by the Arrhenius equation. Values of grain size were squared 

to test the hypothesis of the parabolic grain growth kinetics, n=2. The analysis of plots of 

G2t of samples x=0.92 and 0.98 confirmed that the parabolic grain growth equation also 

holds for these samples, but deviation of the corresponding slopes in inset of 

Figure 4-16.b from 1/n = 1/2 resulted from the initial grain size condition, 𝐷0
2, not being 

much smaller than the values of D2(t). Within the limited accuracy of the present results, 

the values of the growth rate constant of the parabolic kinetics KG(T) in Figure 4-16.b 

reveal an approximately exponential growth with x for samples with composition within 

the stability limits of the LuMnxO3±  solid solution, 0.95x1.04 [91]. 
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Figure 4-16. Grain growth in high temperature annealing of LuMnxO3±  at 1300 C.  (a) Dependence of 

grain size  of LuMnxO3±  on x the Mn/Lu ratio for 1 day, 5 and 10 days of isothermal sintering. (b) 

Dependence of the constant of the parabolic grain growth kinetics KG(T) on x; inset, the  power law 

representation of grain growth kinetics. 
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The most severe effect of grain coarsening on sample quality for any technological use is 

the appearing of thermal expansion anisotropy induced microcracking during cooling in 

samples with grain size above a critical threshold, Gc, caused by the anisotropy of 

thermal expansion coefficient (CET) of the hexagonal lattice of LuMnO3 [30,134–136]. 

There is large thermal expansion anisotropy in LuMnO3. The following maximum and 

minimum values of CET of LuMnO3 single crystals a=12.8x10-6 K-1 and c=1.60x10-6 K-1 

were determined in the range 300-1000 K from the relative increase of the a-axis and c-

axis of the crystalline cell with temperature [30]. In the same range of temperature the 

average thermal expansion coefficient of polycrystalline YMnxO3 presents little variation 

with 0.97x1.05 [137]. 

Thermal expansion induced microcracking of YMnO3 was early reported in samples of 

high relative density, above 98% of theoretical density, the extent of microcracking being 

enhanced after thermal etching [137–140]. The contribute to nucleation and growth of 

microcracks in dense, coarse grain YMnO3 of strain induced by the relative volume 

change of the high temperature phase transition from P63/mmc to P63cm symmetry had 

been investigated [141]. The onset of intergranular and transgranular cracking formed 

during cooling was noticed in dense YMnO3 with average grain size larger than 2 µm 

sintered at 1400 C in O2 atmosphere [142]. The analysis of the microstructure of the 

LuMnxO3±  samples in Figure 4-16 shows that the start of microcrack development runs 

diagonally from the sample x=0.92 with 10 days annealing to the sample x=1.08 of 1 day 

annealing which corresponds to an almost constant critical grain size of Gc  3.3 µm. 

 

4-3-2 Dispersion of secondary phase and elemental mapping 

 

Samples with of the shorter sintering time, 1 day, are less homogenous and offer larger 

probability of finding particles of secondary phases by SEM/EDS analysis. To 
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characterize the distribution of secondary phases in relation to the grains of the main 

phase, polished cross-section of the samples were prepared as describe above. The 

microstructure of a sample with high Mn excess, x=1.08, from one day sintering time is 

shown in Figure 4-17.  

 

Figure 4-17. Microstructure of sample LuMn1.08O3±δ (a) The low magnification image displaying polishing 

pull-outs and residuals of the secondary phase (dark grey). (b) Large particle of Mn3O4 secondary phase 

and (c) corresponding Mn and Lu EDS line profiles. 
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The distribution of secondary phases in Figure 4-17.a and b, can be seen as disperse dark 

gray regions. Selective EDS analysis in dark gray regions across the surface of the sample 

in Figure 4-17.a showed some are as with ratio of Mn/Lu=1.08 the dark contrast being 

originated from polishing artifacts, others have EDS Mn/Lu ratio close to 2 or even above 

10. Due to the low sensitivity of SEM-EDS technique to oxygen quantification, more 

accurate analysis of the phase composition was not attempted. Based on the Mn/Lu ratio 

determined by EDS, those inclusions with Mn/Lu ratio close to 2 could be identified with 

the LuMn2O5 phase which would be within the predictions of the equilibrium phase 

diagram of Lu2O3-MnOx oxides, but for a lower temperature T  1000 C [17]. However, 

the X-rays coming out of the sample surface in EDS analysis carry information from a 

interaction volume a few micron deep and not just from the particles as seen on the 

surface. The values of the Mn/Lu ratio of thin bits of small particles of secondary phase 

on the polished cross-section are distorted by the fluorescent X-ray emitted from the 

main phase underneath. The effect is lesser relevant when the dimensions of the 

inclusions are well above the micron, as the inclusion in Figure 4-17.b. Figure 4-17.c 

displays the EDS line profiles of Mn and Lu in the inclusion of secondary phase and at 

both sides of the inclusion in Figure 4-17.b where there is just the main phase. 

Quantitative EDS analysis made on both the inclusion and main phase regions confirms 

that the Mn/Lu ratio in the dark gray inclusion in Figure 4-17.c is at least ten times 

higher than that in the matrix around, the secondary phase being tentatively identified as 

hausmannite. 

More detailed analysis of the secondary phases and diffusion gradients of the cations at 

the interface between main phase and secondary phase is obtained in thin sections using 

TEM microscopy. For this purpose the JEOL 2200 FS TEM/STEM microscope with EDS 

was used. 

A small particle of the secondary phase identified as hausmannite linked to the 

remaining piece of the main phase is shown in STEM-DF mode in Figure 4-18.a. Overlaid 

on the STEM image is the plot of Mn/Lu ratio calculated from EDS results collected on 

the marked points along the line crossing the interface of the two particles. The regions 
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in right (LuMnO3 phase) and left (hausmannite) indicate flat plateaus meaning that the 

compositions there get stable values of Mn/Lu ratio corresponding to the crystalline 

phases themselves. The transition region at the interface extends up to 400 nm in width 

and shows a nearly monotonic slope in the Mn/Lu ratio; if the result of an intermediary 

phase of Lu and Mn between the saturated LuMnxO3± and Mn3O4 phases its structure 

could not be determined by the analysis of crystal orientations. As the contour of the 

inclusion in the STEM image suggests the inclusion lays sidle on the main phase. The 

overlapping of the two wedges of the both crystalline phases alone can explain the 

corresponding variation of the Mn/Lu ratio averaged by their thickness in the transition 

zone. A more intricate scenario was observed with another Mn rich particle     

(LuMn1.08O3±δ) shown in Figure 4-18.b, with the corresponding EDS line profiles in 

Figure 4-18.c. The EDS line profiles of Lu and Mn ions reveal two stable regions 

corresponding to hausmannite (left side) and main phase (right side  of the image). The 

transition zone at interface is even much wider than in the previous set of particles in 

Figure 4-18.a extending up to 1 micron width, with the a sharp slope of the Mn and Lu 

signals on the side of the main phase, then two local peaks of Mn and the large Mn rich 

inclusion on the left, probably Mn3O4, with a sharp increase of Mn concentration. 

Presence of wide interface between secondary phase and main phase and the difficulty 

to assign particular phase to it can be linked to our previous discussions of Figure 4-18 

and also to the problems on identifying the correct weight fraction of the hausmannite 

phase from XRD Rietveld Refinement. 

The same analysis was done for samples with x < 1 where inclusions of unreacted Lu2O3 

phase are expected based on XRD results in Table 4-1, Table 4-2 and Table 4-3, above. 

Differently from the hausmannite phase in samples with x≥1 in Figure 4-17, the size of 

Lu2O3 particles in Figure 4-19 is similar to the grain size of the particles of the LuMnxO3±  

main phase. Residual Lu2O3 particles are mostly distributed on edges of pores and a few 

times inside larger particles of the main phase. 
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Figure 4-18. EDS element profiles of the interface zone between Mn rich inclusions and the LuMnxO3±δ 

main phase of sample x=1.08. (a) ADF STEM image the interface zone between one hausmannite particle 

and main phase with the profile of the Mn/Lu ration overlaid. (b) BF-STEM image of another set of 

hausmannite particles and main phase and (c) EDS line mapping along an interface zone between the 

hausmannite and main phase from (b). 
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Figure 4-19. Microstructure and EDS elemental mapping of polished cross-section of LuMn0.92O3±δ sample. 

(a) Isolated Lu-rich particles of the Lu2O3 secondary phase, detected by whiter contrast in SEM image. (b) 

Mn-K EDS map. (c) Lu-L EDS map. 

 

For better separation of inclusion particles that are in the surface plane from those 

buried underneath but detected by EDS, the study by EBSD in SEM was also done in a 

selection  of samples. As stated above, samples prepared for TEM by mechanical 

polishing and thinning by ion milling were used in EBSD. The samples for EBSD analysis 

are tilted by 70 in respect to incident electron beam direction of the SEM. This high tilt 

angle provides more surface thickness for Kikuchi elastic scattering of the electrons and 
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lesser dispersion deep inside the material. Figure 4-20.a shows SEM image of the 

LuMn0.92O3±δ sample, with the grain boundary relief and grain boundary contours from 

EBSD. Phase identification in the EBSD is done by automatic matching with the EBSD 

software the Kikuchi lines in EBSD sensor with calculated electron diffraction lines for 

the given lattice symmetry and lattice constants provided for the most probable 

crystalline phases in the sample. Data for the crystalline phases of Lu2O3, Mn3O4 and 

LuMnO3 was included in automatic search, according to the secondary phases detected 

by XRD. The EBSD phase map in Figure 21.b indicates the presence of Lu2O3 as the 

relevant secondary phase in LuMn0.92O3±. The XMAP grain orientation map in 

Figure 4-20.c and the color code of the crystal directions in Figure 4-20.d confirm the 

isotropic texture of the bulk polycrystalline samples from sintering of LuMnxO3± 

materials. The same holds for the associated YMAP and ZMAP grain orientation maps, 

not shown. 

Figure 4-20.b indicates the presence of Lu2O3 secondary phase and the places where this 

phase can be identified inside the sample. Differences in the relative density and grain 

sizes are notice between the left region (more dense and coarser) and the right region of 

Figure 4-20.a and b. The close observation of Figure 4-20.b confirms that the residuals of 

the Lu2O3 secondary phase are frequently located in the vicinity of pores, or on pore 

surfaces where, as reactant, the Lu2O3 particles became partially isolated and dissolution 

was slowed down. Thus, it would be expected that local fraction secondary phase will be 

diminished as the porosity is eliminated. The reaction of synthesis of the main phase is 

delayed in the more porous area on the right of Figure 4-20.b.  Comparison of the grain 

sizes in Figure 4-20.a and c) with the grain size determined from SEM images, 

Figure 4-16, confirm that they are roughly the same, 1.5 µm on average. 
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Figure 4-20. EBSD analysis of sample x=0.92, 1 day annealing. (a) SEM image with relief and grain 

boundary contours of EBSD. (b) EBSD phase map, LuMnO3 main phase (green) and Lu2O3 (red), Mn3O4 

(blue, very small regions); pixel size = 100 nm, (c) Crystal orientation map, XMAP. 
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The sample for the EBSD analysis in Figure 4-21 was taken from the Mn-rich side of off-

stoichiometric LuMnxO3±  where the XRD results in Table 4-1, Table 4-2 and Table 4-3 

and SEM/EDS confirm presence of hausmannite in large particles as secondary phase, 

Figure 4-17.c. None of such large Mn3O4 inclusions could be found in the area of this 

sample analyzed by EBSD. Besides the main phase LuMnO3 (in green color) Figure 4-21.b 

shows particles of the secondary phase Lu2O3 (red color) in less than 1% which was not 

detected neither in XRD nor by SEM/EDS. As it was discussed for x=0.92, Lu2O3 

inclusions are mostly found around pores. In Figure 4-19.b the larger Lu2O3 particle 

appears on the edge of a pore. The Lu2O3 particle size is smaller than the grain size of 

main phase. One must bear in mind that the sample in Figure 4-21 was prepared after 

long time mechanical polishing down to Si transparency and then ion milling thinned for 

TEM microscopy. If the Ar ion etching rate of hausmannite is faster than for the main 

phase, Mn3O4 may have been worn away faster from the surface. Or, as EBSD image 

acquiring is very slow, the (2) zones tried for EBSD analysis of this sample were 

statistically insufficient to find such scarce inclusions. Enlarged by 10x to reveal the 

EBSD dot scale (pixel size of 100 nm), Figure 4-21.c and 22.d taken from the phase maps 

of Figure 4-20.b and Figure 4-21.b respectively, display a distribution of fine dots in blue 

and red automatically identified by the system as submicron size particles of the 

reactants Mn3O4 and Lu2O3, respectively.  

It is noticed that in Figure 4-21.d of the LuMn1.04O3±δ solid solution where the reaction 

stage is more advanced due to faster densification and grain growth than in the 

LuMn0.92O3±δ sample, Figure 4-14 and Figure 4-16, the density of the Mn3O4 assigned blue 

dots is much lower than in Figure 4-21.c of the x=0.92 sample and isolated Lu2O3 nano-

inclusions have almost disappeared too. Due to large surface area to volume ratio the 

hausmannite nanoparticles, even in tiny weight fractions, they are important as they 

have ferromagnetic ordering transition below AFM and by exchange coupling at the 

interface with the AFM matrix may strongly interact with the LuMnO3 lattice [65,90]. 

Mn3O4 is also often reported as impurity phase for self-doped LaMnO3 solid solutions 

[110]. 
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Figure 4-21. EBSD analysis of LuMn1.04O3±δ: (a) SEM image with relief and grain boundary contours of 

EBSD. (b) EBSD phase map, LuMnO3 main phase (green) and Lu2O3 (red), Mn3O4 (blue); pixel size = 100 

nm. (c) (10x) enlargement of area taken from EBSD phase map of LuMn0.92O3 sample, Figure 21.b. (d) (10x) 

enlargement of area taken from EBSD phase map in figure (b). The large holes in the figure are not porosity 

but voids of the TEM thin section created by ion milling. 

 

To provide further support on presence of secondary phases inside the sample captured 

by means of EBSD, the same sample of Figure 4-17 which was studied in TEM, was 

investigated by EBSD. The EBSD pictures are given in Annex B to keep the main text 

shorter.  
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4-3-3 Secondary phase in samples of long annealing time 

 

In the initial part of this chapter it was shown that the secondary phase of Lu2O3 could be 

exhibited properly in XRD. Its amount decreases as the time of annealing is increased. 

However, the difficulties still persist for samples of x>1 after long time annealing where 

the trace of the hausmannite secondary phase could not be consistently detected in XRD 

results. The effort to identify the secondary phase of hausmannite in SEM images was 

much harder than finding the Lu2O3 secondary phase in samples of the Mn-site vacancy. 

 

Figure 4-22. Sample LuMn1.04O3±δ after 5 days annealing. (a) SEM image. (b) BSE image of different area 

with enhanced contrast for atomic number Z, relief and surface cracks, both images show the secondary 

phase. (c) image of SEM with large particle of secondary phase with low average atomic number and 

profile of Mn/Lu ratio of the EDS line scan overlaid on  SEM image, are taken from the upper part of 

secondary phase in (b). 
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For the study of long time annealed samples looking for traces of the secondary phases, 

the samples x=1.04 and 1.08 with 5 days annealing were chosen, as this last composition  

showed large particles of hausmannite in samples of one day annealing in previous SEM 

images, Figure 4-17.  

Figure 4-22 is taken from a wide study of different regions of sample x=1.04 after 5 days 

annealing, on the attempt to detect secondary phases on dark regions, holes and inside 

grains. To reveal the grain boundaries this sample was thermally etched at 800 C for 30 

minutes after polishing the surface. The sample had already been investigated in SEM 

before thermal etching without finding traces of the secondary phase of hausmannite. 

The surface of the sample in Figure 4-22.a and b looks similar to the one in Figure 4-17 

for short time annealing, where in that case some of dark regions showed deficiency of 

Lu few times lower than the atomic concentration of Mn.  

The search across the center of the samples did not show any secondary phase. However 

upon moving the electron beam to the borders of the polished section, the secondary 

phase hausmannite appeared in some places. The BSE image Figure 4-22.b shows the 

secondary phase of hausmannite found in the LuMn1.04O3±δ 5 days annealed sample. 

Figure 4-22.c gives the relative concentration of Mn and Lu ions as the Mn/Lu ratio in the 

zone of the interface between the secondary phase and main phase on the right of the 

inclusion. The SEM image shows that the secondary phase may be a collection of smaller 

grains of the secondary phase. The plot of Mn/Lu ratio in Figure 4-22.c exhibits 

modifications in some places which may result from overlapping of smaller particles of 

Mn3O4 with larger particles of the main phase behind them.  

Figure 4-23.a is the SEM image of a zone with two pores and grain boundaries of sample 

LuMn1.04O3±δ from 5 days annealing with subsequent thermal etching at 800 C. As Lu2O3 

secondary phase appeared mostly on the edge of pores, the image was zoomed to show 

the dark regions right on the edge of the pores as shown in Figure 4-23 and EDS 

elemental maps of Lu and Mn were taken, Figure 4-23.b and c, respectively. In both cases, 

the EDS mapping images of Mn and Lu show no counting rate variation for Mn or Lu that 
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could signal any lack or excess of one of the elements. Other points of darker contrast in 

SEM of the cross section of the LuMn1.04O3±δ sample were checked by EDS analysis but no 

shortage of Lu could be detected in relative amounts that could indicate any Mn-rich 

secondary phase or Mn3O4.  

To scrutiny in more detail if there was any particle of secondary phases in the edges of 

the pores or in grain boundaries of the area analyzed by EDS in Figure 4-23.a, EBSD 

analysis was also done in this zone of the LuMn1.08O3±δ after 5 days annealed sample, 

Figure 4-23.d and f. This region of the sample in Figure 4-23.e was chosen because it 

presents some dark regions and clear grain boundaries exposed by the thermal etching. 

As EBSD images in Figure 4-23 show that the grains are coarser than the grains in 

Figure 4-21, of the sample with shorter annealing time and composition x=1.04 close to 

the one of Figure 4-21. The EBSD phase map in Figure 4-23.e shows only the main phase 

LuMnO3 phase (in green color). There is no preferential orientation of the grains in the 

crystal orientation maps of three Euler’s angles in Figure 4-23.c to e. Increasing the 

annealing time did not give rise to modification of the random orientation of grains of the 

samples of short annealing time. 
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Figure 4-23. (a) SEM image of LuMn1.08O3±δ after 5 days annealing with EDS elemental mapping of Mn (b) 

and Lu (c) form this region, respectively. The images show pores and grain boundaries, with uniform 

distribution of Mn and Lu ions within the resolution of the image. (d) relief map and (e) EBSD phase map 

with its Euler´s components (f to g) and color code (i). 
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5. Magnetic behaviour of h-

LuMnxO3±δ solid solution
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The most essential aspect of the magnetic behaviour of the h-RMnO3 oxides is the 

antiferromagnetic ordering transition at Neel temperature as it was discussed in Chapter 

2. Hexagonal h-LuMnxO3±δ solid solution is expected to show AFM interaction with Neel 

ordering transition around 90 K wherever it preserves its space group in FE phase 

[30,34]. Since Lu does not have localized 4f14 electrons, this ion does not carry free 

magnetic moment to participate in magnetic interactions in h-LuMnO3±δ lattice and 

hence Mn3+ ions are the sole magnetic ions inside the structure. The geometrical 

frustration results in non-collinear Mn3+ spin arrangement in basal plane with AFM 

interaction of the magnetic ions. The AFM ordering is explained by 2D magnetic 

interaction of frustrated Mn3+ ions forming trimers of nearest neighbour Mn3+ ions in the 

triangular network of the basal planes of the hexagonal lattice of the RMnO3 compounds 

[30]. Any change in ionic positions of cations will duly modify magnetic moment 

(interaction), and therefore the magneto-electric coupling. The Lu-dependent or Mn-

dependent properties may reveal additional details of the interlocked dependency of 

relevant properties on stoichiometry shifts set by excess of either of the Lu or Mn 

cations. Two important matters rising on the study of the magnetic interactions of 

polycrystalline h-RMnO3 oxides are tentatively ascertained in this chapter. The first is 

that introducing vacancy in the lattice of h-RMnO3 (R= Y, Lu and Sc) with non-magnetic 

rare-earth ions, can induce any plausible correlation of the strength/weakness of the 

magnetic interactions be explored. Second, that was seldom investigated [142] and not 

extensively is the effect of sintering duration on the magnetic performance of the h-

RMnO3 ceramics particularly of LuMnO3. Present findings in Chapter 4 have shown that 

sintering time modified the lattice behaviour significantly, resulting in a trendy shift of 

the lattice parameters, namely the a-axis and volume of the unit cell with the Mn/Lu 
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ratio. It will be noteworthy to trace the change in TN as function of the stoichiometry 

variable x and sintering time as well as in other magnetic parameters like magnetic 

moments and magnetic interactions associated to the values of Curie-Weiss temperature 

and frustration factor. 

 

5-1 Contribution of secondary phases to the total magnetic moment 

 

As shown in the previous chapter the presence of hausmannite secondary phase is 

detectable in XRD pattern and in SEM images of the LuMnxO3±δ samples. It will affect the 

magnetic properties of the LuMnxO3±δ main phase, the overall magnetic properties of the 

sample, and also measurements of such variables as the parameters of the Curie-Weiss 

law. External effects of random noise, dependent on the precision of the magnetometer, 

and of background magnetic signal originated by sample holder and equipment have also 

to be accounted for in the determination of the magnetic moment of the samples. The 

potential contribution of these disturbing effects on calculated parameters of the Curie-

Weiss is established from simulations as described in the following, with details in Annex 

C. 

Since the hausmannite shows ferrimagnetic behaviour with Curie-Weiss temperature 

around 43 K, deviation of the magnetic behaviour of the samples from the linear Curie-

Weiss law when they have hausmannite extends up to higher temperatures [143]. It will 

be wise to use a function which can describe the magnetic signal of the secondary phase 

as a correction applied in proportion to the calculated amount of the secondary phase 

from the XRD Rietveld refinement and additional analysis of XRD spectrum in section 4-

2. Since samples with shorter annealing time have the higher amounts of the secondary 

phase the analysis is focused in this set of samples. Later on we will apply the same 

analysis on samples with longer annealing time.  
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5-1-1: The influence of random noise and background signal 

 

To make the dimensioning of the effect of random noise on the estimating of the 

parameters of the Curie-Weiss equation of the LuMnO3 phase the magnetic signal of the 

pure LuMnO3 sample is calculate from the susceptibility as a function of temperature 

with  reported value of the Curie-Weiss constant for LuMnO3 pure sample corresponding 

to the effective magnetic moment µeff (LuMnO3) =4.9 µB, assuming spin only contribution 

and 880 K the modulus of Curie-Weiss temperature, early reported in the literature for 

LuMnO3 single crystal (e.g.[35]). To match the system of units adopted in the main text of 

this thesis, the calculated Curie constant is expressed (emu.K/g.Oe) as: 

 𝐶𝐿𝑢𝑀𝑛𝑂3 =
𝑁𝐴 × 𝜇𝑒𝑓𝑓

2

3 × 𝑀𝑊𝐿𝑢𝑀𝑛𝑂3𝑘𝐵
 

 

(5-1) 

where NA = 6.0221x1023 mol-1 is Avogadro´s number, kB = 1.38064x10-16 erg.K-1 is the 

Boltzmann constant, µeff = 4.9 µB = 4.9x9.274x10-21 erg.G-1 and MW = 286.0701 g.mol-1 is 

the molecular weight of the pure LuMnO3, yielding 

𝐶𝐿𝑢𝑀𝑛𝑂3 = 1.049542 × 10−2
𝑒𝑟𝑔. 𝐾

𝑔𝑟. 𝐺2 
 

With the contribution of a background signal, 0, the modified equation of the Curie-

Weiss law becomes 

 
𝜒𝐿𝑢𝑀𝑛𝑂3  ( 

𝑒𝑚𝑢

𝑔𝑟. 𝑂𝑒
) = 𝜒0 +

𝐶

𝑇 − 𝑇𝐶𝑊
 

 

(5-2) 

Where C and TCW are given above and 0 in emu/g.Oe represents any background 

contribution in real magnetic measurements. From the analysis of in section C-1 of 

Annex C, the value of background correction 0 was set at 1% of the average of  of pure 

LuMnO3 in the temperature range 150-300 K. A random noise close to 1% of the 

calculated value  was added to the magnetic susceptibility LuMnO3 to simulate the 

experimental data. The calculated parameters of the magnetic susceptibility in Table 5-1 
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show a comparatively low sensitivity to the level of random noise. A change of no more 

than 6 K is found in the estimated values of TCW which links directly to the width of the 

temperature range above TN selected for least-square fitting with three adjustable 

parameters, Annex C, equation  

(5-2) . 

Table 5-1. Fitted values of the Curie-Weiss fitting, equation (5-2) for pure LuMnO3, with 0=0, showing the reliability of 
the fitting approach used to extract parameters. 

sample TCW (Initial) 

(K) 

Background 

(fixed, 

constant) 

Random Noise 

(emu/Oe.gr) 

Range of 

Fitting 

C(fitted) 

(emu.K/Oe.gr) 

Effective 

Moment 

TCW (fitted) 

(K) 

pure -880 0 ±1E-7 100-290 K 0.0105 4.90 -880.9 

pure -880 0 ±1E-7 150-290 K 0.0105 4.89 -878.6 

pure -880 0 ±1E-7 200-290 K 0.0104 4.88 -874.4 

 

5-1-2: Effect of hausmannite on the magnetic properties of the pure LuMnO3 

 

The molecular field theory for two magnetic sub-lattices like Mn3O4 with Mn2+ and Mn3+ 

ions in different positions gives a model to describe the paramagnetic behaviour of the 

temperature dependent magnetic susceptibility at T >TC, the results being adequately 

describe by the Lotgering´s equation [143]: 

 1

𝜒
(
𝑚𝑜𝑙

𝑐𝑚3) =
𝑇

𝐶
+

1

𝜒0
−

𝜎

𝑇−𝛩
     (5-3) 

where C is Curie constant, σ, χ0 and ϴ are adjustable parameters in fitting. The values of 

the constants are used here from Ref. [143] ϴ =10.2 K, σ = 1700 mol/cm3.K, 1/χ0 = 57.5 

mol.Oe/cm3, C=10.43 cm3.K/mol.Oe. Equation (5-3) is converted to the susceptibility in 

mass using the molar mass of Mn3O4 as 228.814 g/mol: 

 1

χ𝑀𝑛3O4

(
g.Oe

emu
) = 275.6818T + 1.6533x105 −

4.8881x106

T−10.2
    (5-4) 
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In present approach, the total magnetic susceptibility, Equation (5-5) is calculated as the 

linear combination of the magnetic susceptibility of the main phase with a relative 

fraction (mass fraction) (1-fm) and of the secondary hausmannite phase with the amount 

of secondary phase evaluated from Rietveld refinement of the XRD patterns (section 4-

2), the magnetic susceptibility of hausmannite being calculated with equation (5-4): 

 χmeasured  ( 
emu

g.Oe
) = (1 − fm). χLu𝑀𝑛𝑥O3.  ( 

emu

g.Oe
) + fm. χ𝑀𝑛3O4

 ( 
emu

g.Oe
)   (5-5) 

where 1- fm is the mass fraction of the main phase from XRD pattern (Table 4-1).  

Table 5-2. Results of fitting of the magnetic susceptibility of the pure LuMnO3 assuming 1-fm weight fraction of the 

main phase and fm of the hausmannite phase in equation (5-5).The overall signal of sum of magnetic signals of two 

phases is used as the raw data for fitting. Then the fm was changed (as a fix parameter) during each fitting to 

understand how much change do we have in magnetic parameters if the amount of secondary phase estimates 

incorrectly from XRD. Zero as subscript holds for initial values to start least-square fitting.   

 Mn3O4(wt fraction) TCW(K) C(emu.K/g.Oe) 1-fm R-Square 

1 0.05 -878.4 0.01044 0.949 0.99726 

2 0.04 -876.8 0.01044 0.959 0.99671 

3 0.03 -875.2 0.01045 0.969 0.99598 

4 0.02 -873.7 0.01045 0.980 0.995 

5 0.01 -872.2 0.01046 0.990 0.99366 

6 0.005 -871.5 0.01046 0.995 0.99279 

 

Figure 5-1 shows the values of TCW and µeff of least-square fitting using a simulated 

sample of LuMnO3 mixed with different amounts of hausmannite with magnetic 

susceptibility determined by the formula in equation (5-4). In these calculations, the 

background correction 0 as in previous approaches was zero (in equation (5-2). The 

fitting range was started from 90 K until 350 K. 
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Figure 5-1. Curie-Weiss temperature of 0.95LuMnO3+0.05Mn3O4 and effective magnetic moment calculated 

from least-square fitting approach considering the overestimated weight fraction of the hausmanite (circle 

denotes TCW, square, effective magnetic moment). 

 

In Figure 5-1 within the range of temperature for fitting, one percent change in amount 

of hausmannite phase results in 50 K shift in calculated values of Curie-Weiss 

temperature, which reveals large sensitivity of the estimation of the magnetic 

parameters of the main phase to the magnetic signal of hausmannite. The inverse of  is 

represented in Figure 5-2 for three different cases, the linear Curie-Weiss behaviour of 

LuMnO3 phase calculated from equation (5-2), with 0=0, the magnetic susceptibility of 

Mn3O4 given by the Lotgering equation (5-4) and the total value of 1/ for the simulated 

sample with 5 %wt of Mn3O4. The comparison of three cases portrays the non-linearity 

of inverse of magnetic susceptibility under the effect of the secondary phase extended up 

to 150 K for the mixture of two phases. Therefore, at least within this temperature range, 
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the use of Curie-Weiss law results in some uncertainty in the calculated parameters 

when samples have traces of Mn3O4. 

 

Figure 5-2. Inverse of the magnetic susceptibility for three different contributions of total magnetization 

indicating the effect of the hausmannite on the bending of the mixed phase sample (blue one). The red 

curve shows inverse of magnetic susceptibility of 5% wt. of Mn3O4 phase.  

 

5-2 Magnetic behaviour of non-stoichiometric h-LuMnxO3±δ 

 

At the beginning of this section attention is paid mostly to samples that were sintered for 

one day at 1300 C which are conditions commonly used by others in their studies on the 

properties of the h-RMnO3 oxides [34,37,70,72,75]. This section is focused on the effect 
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of off-stoichiometry on the magnetic properties and presents some of the difficulties 

raised in their determination. 

  

5-2-1 Irreversibility of off-stoichiometric ceramics after one day annealing 

 

Figure 5-3 shows the magnetic susceptibility of the selected samples of 1 day annealing 

measured in field-cooled (FC) condition under the applied magnetic field of 100 Oe with 

SQUID. With increasing x a change of magnetization right just below, or at Neel ordering 

transition around 90 K is observed. The increasing of Mn content (x=1.08 and x=1.12) in 

Figure 5-3 resulted in neatly intensification in magnetic signal below TN for the FC 

condition. 

 

Figure 5-3. FC magnetic susceptibility of the selected samples of one day annealing measured under 100 

Oe applied field, showing the effect of the off-stoichiometric on the magnetic behaviour of the sintered 

ceramics. 
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In the paramagnetic region in the temperature range above the TN, the values of 

magnetic susceptibility are all of the same order. The sharp rise of  in the temperature 

range below 45 K coincides with the ferrimagnetic ordering transition of hausmannite 

[92,143]. As found in the YMnxO3± with x1.05 [19], the nominal compositions with 

large excess of Mn displays the higher values of  in the temperature range below 40 K. 

Figure 5-4 shows the temperature dependence of the magnetic susceptibility with the 

applied magnetic field of 500 Oe for zero-field-cooled (ZFC) and field-cooled (FC) 

conditions of three samples with x = 0.92, x=1.00 and x = 1.08, respectively. 

Antiferromagnetic (AFM) ordering is seen for both sides of the off-stoichiometric range 

and in the stoichiometric composition at values of TN all close to 90K. Fitting of the 

reciprocal of the magnetic susceptibility, χ-1, to the Curie-Weiss law, determined by 

SQUID magnetometer under 100 Oe applied magnetic field, is presented in insets of 

Figure 5-4.a, b and c. Figure 5-4.a to c for x=0.92, 1.00, 1.08, respectively, demonstrate 

the difference on the magnetic behaviour observed for all samples when the ZFC and FC 

conditions used in the magnetic measurements. With increasing x ratio large differences 

of the magnetic susceptibility measured in ZFC and FC conditions appeared below TN, the 

behaviour already reported for h-RMnO3 materials exhibiting spin-glass behaviour or 

irreversibility in ZFC/FC magnetic measurements [67,70,75–77]. The reciprocal of 

magnetic susceptibility, -1, deviates from the linear dependency on T expected from 

Curie-Weiss law in the paramagnetic region approaching TN, as previously reported by 

others for h-LuMnO3 [34,35]. The deviation from Curie-Weiss law in measurements 

makes it difficult to estimate the parameters of the Curie-Weiss law itself for the overall 

set off-stoichiometric samples of the present study as discussed above in section 5-1.  
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Figure 5-4. ZFC vs FC magnetic susceptibility of LuMnxO3±δ samples, 1 day annealing, with nominal 

composition, (a) x=1.08, (b) x=1.00 and (c) x=0.92, indicating the differences in ZFC and FC magnetic 

signals appeared at Neel ordering transition (500 Oe applied magnetic field). The inset of each figure 

shows the reciprocal of  measured by SQUID under 100 Oe applied filed, and deviation of the apparent 

linear Curie-Weiss law for the sample of larger Mn content. 
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The co-existence of frustrated AFM order and weak FM order below TN has been 

observed in the temperature dependent magnetization of LuMnO3 and YMnO3, and it was 

attributed to diverse origins such as the exchange coupling between AFM and FM orders 

[68], Mn spin reorientation and Dzyalloshinskii –Moriya interaction [62,76,77,144], 

double exchange interaction of Mn2+/Mn4+ and Mn3+ ions [63] or local MnO5 distortions 

[45]. Previously reported results of magnetic susceptibility in YMn1+xO3±δ ceramics 

samples with large Mn content as in the Mn-rich side of LuMnxO3±δ samples in the 

present study also resulted in weak-ferromagnetism co-existing with the frustrated 

antiferromagnetic order [19,76].  By accounting for the secondary phases detected in off-

stoichiometric samples, section 4-2, in the Mn-rich side (x>1) the Mn3O4 phase will 

contribute to the  magnetic signal below the 43 K transition temperature [92]  in 

proportion to the fraction of this phase present in the samples. That would not be 

expected for the case of samples in the Lu-rich side with x1 which still show a rising of 

magnetic susceptibility below TN although of lower intensity with no indication of Mn3O4 

on results of Rietveld refinement of XRD (Table 4-1, section 4-2). The detailed analysis of 

the XRD lines for the presence of faint traces of Mn3O4 in Figure 4-6 indicates that 

samples of 1 day annealing time in the Lu-rich side are not completely free of this phase. 

The difference between the values of FC and ZFC magnetization is sensitive to the 

intensity of the weak ferromagnetism in the sample [71]. 

The origin of the weak ferromagnetic component of  had been explained by 

Dzyaloshinskii-Moriya exchange interaction, because of geometrically frustrated trimers 

of the Mn ions in the basal plane [70,71,74]. The plot of -1 of Figure 5-4.a for the sample 

with x= 1.08, shows two anomalies or transitions in the magnetic susceptibility below 

TN 90 K.  The first transition at temperature T1 in the range of 40 - 45 K is most likely 

correlated to the ferrimagnetism of the Mn3O4 phase. The origin of the second transition 

corresponding to T2, below 40 K is hardly known; it may originate from the spin 

reorientation of Mn3+ moment in LuMnO3 [62,77,145]. The coexistence of different 

configurations of AFM order below TN in ScMnO3 as well as in other h-RMnO3 materials 

was already observed in a Second Harmonic Generation (SHG) experiments having been 
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assigned to inhomogeneity in the crystalline lattices [145]. In the Lu-excess side of the 

samples of the present study, the difference between ZFC and FC magnetization below TN 

becomes weaker as the ratio x decreases. On the contrary, addition of Y ions in excess to 

YMn1+xO3±δ ceramics (x < 1) resulted in more pronounced irreversibility below TN with a 

slight decreasing of TN matched by an important increase in Curie-Weiss temperature, 

lower │θCW│[17]. The rising of θCW with minor changes of TN implies a decrease of fm, the 

frustration factor indicating that self-doping with Y weakens the geometrically frustrated 

magnetic interactions of Mn3+ ions in the basal plane of YMnO3 ceramics [30]. 

 

5-3 Effect of sintering time on irreversibility of magnetic behaviour   

 

The evolution of the parameters the unit cell of off-stoichiometric LuMnxO3±δ samples 

proved to be strongly influenced by the annealing time, as shown in chapter 4. The 

dependence of the lattice constant on x revealed a stable solid solution with the 

approximate range of stability of 0.94≤x≤1.04. This scenario was repeated for the 

observed evolution of grain size. The possibility of observation of the secondary phase of 

hausmannite as an impurity phase in the materials in samples of extended annealing 

time was investigated too. The trends for change of the magnetic behaviour of the 

samples annealed for different periods of time are examined in this section. 

 

5-3-1 Irreversibility of magnetization 

 

Figure 5-5 compares the field cooled (FC) magnetic susceptibility of samples of two 

different compositions in the high Mn-rich side with one day and 5 days annealing time. 

The magnetic signal of samples of both compositions after the longer annealing time has 

been visible reduced, the reduction being more prominent in the region below 50 K. The 
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magnetization in this region of temperatures can also display the contribution of 

ferrimagnetic hausmannite below 43 K [90]. The decrease in magnetization below 50 K 

in Figure 5-5 is matched by a parallel decrease in Mn3O4 fraction in XRD results in 

Table 4-1 and Table 4-2. Minor amounts of hausmannite remain in these samples after 5 

days and 10 days annealing time and are detected by XRD.  

 

Figure 5-5. FC magnetic susceptibilities of the two LuMnxO 3± samples after one day and 5 days annealing. 

(a) x=1.08 and (b) x=1.12 (100 Oe applied field). 

 

The reduction of the signal of the magnetic susceptibility from 0.0014 emu/g.Oe to 

0.0009 emu/g.Oe for x=1.08 samples and comparing the values of the residual secondary 

phase in section 4-2 from XRD data (1.19% weight fraction for one day and 0.77% 

weight fraction after 5 days annealing) quantitatively confirm that most part of the signal 

below 50 K comes from Mn3O4 secondary phase. The decrease in amount of secondary 

phase after 5 days annealing of 65% and the observed reduction in the signal of magnetic 

susceptibility 64% are roughly the same within the limit of error of the XRD detection for 

minor amounts of the secondary phases.  

It was found that for temperatures between 15 K and 45 K the shapes of ZFC 

magnetization of sample x=1.04, 5 days annealing, and of sintered hausmannite,       
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Figure 5.a in reference [92], determined under the same applied magnetic field of 1000 

kOe were almost identical, Figure 5-6.a. The fraction of hausmannite determined by 

Rietveld refinement in the same x=1.04 sample is 0.33 wt%,Table 4-2. The fitting of 

Lotgering´s equation (5-4) to this set data of pure hausmannite for temperatures above 

TC43 K was found adequate with the following values of the parameters ϴ =15.0 K, 

σ=1720 mol/cm3.K, the other two parameters 1/χ0  and C keeping the same values as 

given above in section 5-1-1, from Ref. [143]. Differences in the samples of hausmannite 

and in magnetic field 1000 Oe in Ref. [92] and 200 Oe in Ref. [143] used to determine the 

magnetic susceptibility of hausmannite in the paramagnetic region yielded the variation 

in values of parameter  and the small correction of the parameter  of Lotgering´s 

equation. Values of  of hausmannite and of the LuMn1.04O3± sample are brought to close 

matching between 15 K and 45 K in Figure 5-6.a with a calculated fraction of 

hausmannite of fH=1.8 wt%. For this same fraction of hausmannite and temperatures 

above TN of LuMnO3 the corresponding values of  determined with the Lotgering´s 

equation represents just 7-8 % of total magnetic susceptibility  of the LuMn1.04O3± 

sample, Figure 5-6.a. As also shown in Figure 5-6.a, above 80 K the difference in the 

values of  of hausmannite resulting from using one set of parameters of Lotgering´s 

equation or the other is no more relevant. Differences of aggregation and dispersion of 

the hausmannite phase in the well-sintered pellets and as disperse impurity in the 

LuMn1.04O3± sample may account for the large difference in the results of quantification 

of the hausmannite present in the sample by Rietveld refinement and by the fitting of 

values of  in Figure 5-6.a.  In the inset of Figure 5-6.b the values of FC magnetic 

susceptibility of YMnO3 with 1.2 wt% added hausmannite and of sample LuMn1.08O3±, 5 

days annealing, determined with the same applied magnetic field of 100 Oe, are much 

closer together than for the previous case analysed in Figure 5-6.a. As shown in the same 

inset, close matching of the two functions of  below 43 K is obtained for a calculated 

fraction of hausmannite of fH=0.88 wt%. The corresponding fraction of hausmannite 

determined by Rietveld refinement in this same x=1.08 sample is 0.77 wt%, Table 4-2. 

On accounting for this finding, the difference in values of FC susceptibility between 39 K 



Magnetic behaviour of h-LuMnxO3±δsolidsolution  

121 
 

and 46 K of YMnO3+1.2 wt% Mn3O4 was determined as 5.85 10-4 emu/g.Oe, original data 

from Figure S4-down, Supporting Information Ref. [90]. In a similar way, for all samples 

of the set with 5 days annealing time, the differences in values of FC susceptibility 

between two fixed values of temperature 42.3±0.3 K and 48.3±0.5 K, below and above 

the observed TC points of hausmannite, respectively, were also determined and used to 

calculate the fraction of hausmannite (fH+, last row of Table 5-2) present in the 

LuMnxO3±δ samples in proportion to the value above of the difference in  values and the 

known fraction of hausmannite in the YMnO3+1.2 wt% Mn3O4 taken as a reference. When 

the this same procedure is applied to the values of  of ScMnO3 and h-YMnO3 in Figures 

3.a and 4.a of Ref.[90], respectively, the following values fH=0.11 wt% and fH=0.005 wt% 

are obtained, the same as given by the author in Ref. [90]. The value hausmannite 

fraction in the LuMn1.08O3± sample determined with this procedure from two 

independent measurements of  is fH+=1.23 wt%, last row in Table 4-2. As given in 

Figure 5-6.b, there is a linear proportion between the fraction of hausmannite 

determined by this procedure and from the analysis of heights of the (103) XRD line of 

Mn3O4 in Figure 4-5, values in row one before the last in same Table 4-2. As also seen in 

the values of fH gathered in this table, while the detailed analysis of the (103) XRD line of 

Mn3O4 cannot detect traces of this phase below the threshold of 0.2 wt%, the large 

sensitivity of SQUID magnetometers reveals the presence of hausmannite in the 

magnetic signal and allows semi-quantified determination of weight fractions 

hausmannite as low of 0.005 wt% in the samples of h-RMnO3 materials [90]. 

Figure 5-7 presents the magnetic susceptibility of samples of two compositions x=0.92 

and x=1.00 at ZFC and FC conditions after 5 days and 10 days annealing. Spin-glassy 

state of the h-RMnO3 materials were discussed above in this chapter [67,70,75–77]. 

There is evidence in Figure 5-7 that the spin-glassy state of the stoichiometric LuMnO3 

samples and off-stoichiometric Lu-rich samples has not been much affected by annealing 

time. 
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Figure 5-6. Comparison of magnetic susceptibility of hausmannite below 45 K and of samples of the 

present study. (a) Overlapping of values of ZFC  of hausmannite for a calculated fraction fH= 1.8 wt% and 

values of ZFC  of LuMn1.04O3±, 5 days annealing, same applied magnetic field of 1000 Oe. (b) Linear 

correspondence between values weight fraction of hausmannite in samples of 5 days annealing 

determined by the method given in the inset and from the intensity of the (103) XRD line of Mn3O4 in 

Figure 4-5. Inset: FC magnetic susceptibility of YMnO3 with 1.2 wt% added hausmannite and of sample 

LuMn1.08O3±, 5 days annealing, same applied magnetic field of 100 Oe, with close overlap for calculated 

fH=0.88 wt%. Data sources, (a) Ref.[92] , (b) Ref. [143],  (c) Ref.[90] 
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In samples x=0.92 after 5 days and 10 days annealing, still there is a small peak in the 

magnetization around 43K, which indicates traces of Mn3O4 or intergrowths of planes of 

MnxO1-x, eventually of a phase very close to Mn3O4. Although evidence of secondary phase 

of hausmannite could not be found in XRD Rietveld refinement, in SEM and EBSD 

analysis of samples of x≤1 after 5 days or 10 days annealing and corresponding values of 

fH* in Table 4-2 and Table 4-3, there is an indication in Figure 4-4 that the presence of 

hausmannite is traceable directly by the almost extinguished (103) XRD line in XRD 

patterns. For the LuMnxO3±δ samples with composition in x<1 side the values of fraction 

of Mn3O4 fH+ in last row of Table 4-2 determined from the correlation between the local 

increase of magnetization of the RMnO3 materials below 50 K and the content of the 

impurity yielded values of fH+ above or at the level of the low threshold of 0.005 wt% for 

detection of Mn3O4 in YMnO3 in magnetization results determined by SQUID [90]. The 

observation of a faulty stacking sequence of atomic planes with a missing plane of Mn-O 

in the layered sequence of Lu-O/Mn-O/Mn-O/Lu-O in TEM images of the same x=0.92 

sample after one day annealing to be discussed in the next chapter is not evidence of free 

Mn3O4 in the form intergrowth planes but points towards the presence of mechanisms 

with the potential to accommodate matter of impurity phases intercalated in the 

crystalline lattice of the h-RMnO3 phase. There is evidence that the in-situ formed nano-

layers of Fe3O4 observed by HAADF-STEM in MOCVD thin films of hexagonal LuFeO3 are 

thermodynamically stable [46]. 
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Figure 5-7. Long annealing time effect of the sintering of ceramics on spin glass state of the two samples 

taken by FC vs ZFC conditions under 100 Oe applied magnetics field, x=0.92 (a) and (b) and x=1.00 (c) and 

(d). 

 

For sample x=1.00, the spin-glass state is stronger than x=0.92 after 5 days annealing, as 

the slope of FC curve sharply increases below TN, the region well above the Curie 

temperature of Mn3O4 secondary phase, Figure 5-8. The strength of the spin-glass state 

for undoped and vacancy doped lattices indicates the effect of doping on modification of 

magnetic interactions inside the lattice structure. 
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Figure 5-8. Subtraction of ZFC signal from FC signal of FC vs ZFC curves in previous figure ( c and d) for 

sample x=1.00, which shows irreversibility in AFM region.  

 

Figure 5-8 gives the difference in FC and ZFC magnetic susceptibilities of the sample 

x=1.00 for two different sintering times. In the LuMnO3 results in Figure 5-7 as in 

ScMnO3 and LuMnO3 magnetic susceptibility results previously reported [36,62,72,76] 

the presence of small ferromagnetic component appears right just at TN and its intensity 

is continuously enhanced below TN until the lowest measured temperature is 

approached [71]. 

 

5-3-2 Neel temperature of antiferromagnetic ordering  

 

Since multiferroicity in h-RMnO3 materials comes from spin ordering of Mn3+ ions in 

AFM phase at it is coupled to electrical polarization, the study of cation vacancy effect on 

TN may also assist on creating a deeper understanding of the role of cations in the 
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properties of these materials.  Figure 5-9 indicates the change of the Neel temperature of 

the LuMnxO3±δ samples after different annealing times (method of extracting TN from 

data was explained in section 3-5). The overall trend is for a decreasing of TN with 

increasing values of x. 

 

 Figure 5-9.Evolution of Neel ordering transition measured for selected samples at different sintering 

conditions. 

 

The clear change on having more trendy behaviour without significant fluctuation 

appears in set of samples sintered after5 days and 10 days. This is more evidenced on 

Lu-rich side (x =0.92) when sample with one day annealing is almost out of range of 

values for other compositions. Because AFM interaction among Mn3+ ions in basal plane 

of h-LuMnO3 oxide depends on both atomic distances of the magnetic ions and the angle 

between bonds of Mn-O3(4), in driving any conclusion we have to take into account both 

factors. The AFM interaction energy can be approximately expressed by the following 

equation:  
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(5-6) 

a function of the Jave., the super-exchange integrals mediated by the oxygen ions between 

the nearest neighbour Mn3+ ions in basal plane [146,147]. Jave. in h-RMnO3 materials in 

basal plane consists of two components J1 and J2 because there are two oxygen ions in 

basal plane, O3 and O4, which mediate the super-exchange interaction of Mn3+ ions. Also, 

any distortion inside the Mn trimers can change the values of J1 and J2 and subsequently 

the energy of AFM interaction. Therefore, the alteration of distance of two transition 

metal ions in basal plane and the bond angle of Mn-O3(4)-Mn would result in the real 

energy of AFM interactions in basal plane.  

 

5-3-3 Curie-Weiss temperature and frustration factor 

 

The Curie-Weiss temperature of the LuMnxO3± samples was calculated by the method 

described in section 5-1 and Annex C with subtraction of background correction 0 and 

the component correspondent of the Mn3O4 secondary phase from the total magnetic 

signal of the sample. The values of TCW and effective magnetic moment are given in 

Table C-6 in Annex C. Figure 5-10.a  presents the change of the TCW of the given samples 

from three sets of samples, the composition with x<1 yielding more negative values of 

TCW. Inside the stability bounds of the LuMnxO3±solid solution TCW increases in a regular 

way with x, behaviour opposite to Mn-vacancy compositions. TCW values of x<1 ranges 

from -1100 K to -700 K. On the x>1 side TCW increases up to -500 K in samples with Mn 

content above the upper stability limit of the solid solution. Curie-Weiss temperature of 

x<1 shows sensitivity to the sintering time, values of TCW increased as time of annealing 

is extended. Within the error of the calculation there in no much sensitivity to annealing 

time for samples on x>1 side of composition. Comparison is made in  

Figure 5-9Figure 5-10.a of the results of this study with the dependence of TCW of YMnxO3 

on x from two independent studies, for x1 [19] and x≤1 [17]. The effect of Mn/Y ratio on 
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the values TCW is opposite to the one observed in LuMnxO3±δ in the present study, the two 

sets of TCW data converging to similar values only for samples with nominal compostion 

above x>1.05. Linked at the same time to TN values in Figure 5-9 and to TCW the 

frustration factor f=|TCW/TN| ([30]) in Figure 5-10.b gives an indication of the diminished 

frustration of the Mn trimers in basal plane of the hexagonal lattice as composition 

moves from the high excess Lu-side to the high excess Mn-side of the LuMnxO3± solid 

solution. This frustration has been discussed as driven by the titling of the MnO5 

bipyramids and buckling of the Lu planes inside the unit cell [25,30,34,127]. Frustration 

factor f covers a range of values from 11.5 for x=0.92 to 5.6 for x=1.08. Both TCW and f 

demonstrate the important role of type of vacancies and their concentrations in self-

doping of h-RMnO3 lattices. TCW for LuMnO3 of nominal composition in the present study 

stays between -700 K and -600 K, the corresponding f factor changes from 7 to 8. Values 

of the frustration factor f and TCW of LuMnO3 polycrystals of nominally stoichiometric 

composition were reported as 5.8 (TCW= -519 K) [36], 6.76 (TCW= -602 K) [115], 8.25 

(TCW= -750 K) [34] and for LuMnO3 single crystal 10.3 (TCW= -887 K) [35]. The measured 

values of polycrystalline ceramics in current study fit well the range of values of LuMnO3 

materials of the same composition reported in the literature. 
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Figure 5-10. Curie-Wiess temperature TCW (a) and frustration factor  f (b) calculated after subtraction of secondary 

phase signal [91], for a selection of all three sintering conditions. In (a), comparison is made to the dependence of 

values of TCW of YMnxO3 on x for x1 [19] and x≤1 [17]. 

 



Magnetic behaviour of h-LuMnxO3±δsolidsolution  

130 
 

The broadening of the range of values of the magnetic parameters like TCW might result 

from the fact that preparation conditions and high temperature annealing schedules may 

significantly change some of these parameters but necessarily all of them. In a rare study 

of the effect of annealing temperature on the properties of the h-RMnO3 phases, 

hexagonal YMnO3 polycrystalline samples were prepared by sintering for short periods 

of 4 hours in oxygen at different annealing temperatures from 900 C to 1400 C [142]. 

The increasing of annealing temperatures yielded faster grain growth, improvement in 

the final density and changes in crystalline unit cell parameters as well as in magnetic 

properties, electrical conductivity, dielectric permittivity and electric polarization of the 

YMnO3 sintered ceramics [142]. The c-axis of the unit cell was increased, whereas a-axis 

constant showed shrinkage with increasing annealing temperature. The unit cell volume 

follows these changes with a maximum for samples sintered at 1100 C. In the same 

study, TCW becomes negative and YMnO3 samples display antiferromagnetic ordering 

only for sintering temperatures above 1100 C, the values of TCW decreasing to more 

negative values as the temperature of annealing was increased. The present study on the 

effect of annealing time on the magnetic properties of sintered LuMnxO3±δ materials 

reveals that the sintering time above 24 hours actually is barely effective on changing the 

main trends in Curie-Weiss temperature and frustration factor.  

Lattice parameters in Figure 4-3 of section 4-2 may in part explain the observed change 

of TCW and f parameter in  Figure 5-9. Upon 5 days annealing cell volume and a-axis of the 

crystalline cell of x>1 compositions in Figure 4-3 converge to nearly steady values and 

the observed trends are not modified by increasing annealing time to 10 days. However, 

samples of the x<1 compositions showed some instability in the experimental values of 

the lattice parameters that made difficult setting the value of composition corresponding 

to the stability limit at x0.94 even for longest annealing time of the present study. As 

stated above, the observed trends in TCW and frustration parameter f are linked to 

features of the unit cell namely to tilting of the MnO5 polyhedral and buckling in planes of 

the unit cell. In support of such hypothesis, the dependency of the magnetic parameters 

on the ionic radius of the rare-earth elements in h-RMnO3 oxides reveals that by 
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increasing the ionic radius from Sc to Lu and then from Lu to Y, the tilting of MnO5 

polyhedral and buckling of R planes decrease as also decrease in parallel TN and |TCW| the 

magnitude of Curie temperature, even for single crystals [30,115]. Volume of unit cell 

and a-axis constant both indicate expansion by increasing ionic radius of rare-earth ion, 

but the trend in c-constant is not monotonic. It is also the c-axis in samples of x<1 

compositions in Figure 4-3.b that showed the least monotonic evolution with annealing 

time. In the same way as h-RMnO3 oxides with different R ions did show the dependency 

of the lattice parameters and magnetic parameters linked to the distortion in the unit 

cell,  Figure 5-9 and Figure 5-10 of the current study also indicate that analogous effects 

of changes of the unit cell on magnetic properties are also created by self-doping.  

  

5-3-4 Remnant magnetization and coercive field of LuMnxO3± solid solution 

 

As stated in section 5-2, field dependent magnetization of LuMnxO3±δ samples sintered 

for one day at 1300 C have magnetic hysteresis with ferrimagnetic like behaviour, the 

combination of AFM and weak ferromagnetic components. Although the presence of 

secondary phase of hausmannite contributes to the magnetization in field dependent 

magnetization below 40 K, a ferromagnetic-like component above TC of Mn3O4 is still 

measurable for samples of x≥1. The contribution of hausmannite at 10 K can be 

estimated based on fraction of hausmannite assessed from XRD data. For bulk 

hausmannite, magnetic saturation occurs around 1.2291 µB/f.u. or 30 emu/g [92]. The 

presence of more than 1% hausmannite would produce a magnetic signal above 0.3 

emu/g (0.01229 µB/f.u.) in magnetic remanence of the measured M-H loops. In 

Figure 5-11, a signal as large as 0.5 emu/gr is observed at 10K with one day annealed 

sample of x=1.08. Assuming the 1 wt% of Mn3O4 secondary phase from XRD refinement 

in Table 4-1, still half of this value of the magnetic remanence must originate from the 
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remaining LuMnO3 matrix. The property of remnant magnetization in AFM matrix can be 

seen in measurements of the M-H loops above 43 K, like the one in Figure 5-11.b. 

 

Figure 5-11. Field dependent magnetization of sample x=1.08 annealed for one and 10 days measured at 

10 K (a) and above 43 K at 50 K(b). 
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Zooming of magnetization versus magnetic field of 5 selected samples from one day 

annealed samples at 80 K is shown in Figure 5-12.a. This temperature is selected as it is 

far above the TC of the Mn3O4 phase, and just below values of TN of the main phase in 

Figure 5-8. The coercive field, Hc, of 200 Oe of two samples, x=1.04 and x=1.08 is visible 

and half of this value for other samples. All together these observations prove that there 

is an additional component, a ferromagnetic like component in the magnetic interactions 

of the AFM LuMnxO3±δ matrix.  

Analogous measurements are shown in Figure 5-12.b for sample x=1.04 after five days 

annealing at two different temperatures of 40 K, below TC of hausmannite and at 50 K. 

The main features to retain here are the slope of the M-H curves when they enter the 

linear parts at high fields associated to the AFM behaviour of the material and the 

opening of the M-H loops revealing the additional magnetic component besides the AFM 

one. The effect of second magnetic component below 43 K is visible modifying the 

magnetization versus field.  Above 43 K it is expected that most of the revealed 

hysteresis in magnetic loops must come from the main phase either originated in the 

crystalline lattice or from internal interfaces. The difference in the M-H curves below and 

above 43 K is less visible in samples with x≤1. As seen in sections 4-3-2 and 4-3-3 and 

shown in Figure 4-18 the interface region of Mn3O4 phase with main phase can be broad 

and presenting gradients of the Mn/Lu ratio yielding differences of magnetic behaviour. 

This has larger probability of occurring in samples of x>1 and short annealing time. 

Figure 5-13.a shows the values of remnant magnetization, MR, versus temperature from 

5 K until 90 K for a selection of samples with different annealing conditions. Samples in 

this figure can be divided into two sets according to their behaviour. In one set, samples 

of x>1 have a large decreasing in MR between 40 K and 50 K. It closely replicates the 

analogous decrease of FC magnetization under 100 Oe applied field in the same range of 

temperatures in Figure 5-3 and Figure 5-5. As discussed in previous section 5-3-1, this 

knee in MR must also be assigned to the Mn3O4 secondary phase or else to planes with 

intergrowths of Mn-O phases. In the second set, those samples with x≤1 show a rather 
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regular decrease of MR with T with just a slight bending of MR when crossing the same 

range of temperatures. Above TC of hausmannite the values of MR of samples with x>1 

become of the same order of magnitude as the MR of the samples with nominally 

stoichiometric composition (x=1.00). 

As non-null exchange-bias magnetic field was detected in the samples, coercive field, Hc, 

in Figure 5-13.b was calculated as 𝐻𝑐 = |𝐻+ − 𝐻−|/2 and the exchange bias field in 

Figure 5-13.c as 𝐻𝐸𝐵 = (𝐻+ + 𝐻−)/2 where H+ and H- are the coercivity fields on 

increasing field and decreasing field branches of the M-H loop, respectively [65,90,148]. 

Almost the same division in two groups of samples is observed concerning the 

dependence of the Hc on T, as it was found for the MR. Figure 5-13.b gives the values Hc as 

a function of T and reveals the presence of a drop in values Hc in the range of 40 – 45 K 

for samples with x>1.  

While by analogy with the values of MR one would expect to observe for compositions 

with x>1 a decreasing trend of Hc as temperature rises from TC of Mn3O4 and approaches 

the value of TN of the main phase, in fact the values of Hc of some of these samples rise 

again at temperatures above 50 K and latter converge to the values of coercive field Hc 

determined in the samples with nominally stoichiometric composition (x=1.00). At this 

stage of the present research any explanation can hardly be attempted for the observed 

discontinuity of Hc between 40 K– 45 K of some of the samples of the LuMnxO3±δ solid 

solution with x>1 in Figure 5-12.b. The same behaviour was observed for wet chemical 

synthesis of LuMnO3 nano-crystalline where Hc gave different trend in the midway of 

temperature range of measurements from 5 K to 90 K (Fig.4 of Ref.[77]). The Hc values 

for x≤1 samples present a slow and continuous drop as T goes up which accelerates as T 

approaches TN. As for MR values, the net decreasing of Hc for x>1 samples at 40-50 K can 

be assigned to the presence of impurity phase of Mn3O4 or nano-regions with 

composition close to hausmannite left behind from incomplete reaction at some places 

inside the main phase after firing the samples and it is generally corroborated by the 

findings of Mn3O4 in samples by XRD analysis and by electron microscopy. 
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Figure 5-12. (a) Field dependent magnetization of samples with different compositions showing hysteresis 

even at 80 K for samples annealed for one day. (b) Magnetic hysteresis loops of sample LuMn1.04O3±δ after 5 

days annealing measured at 40 K and 50 K, and the dashed lines are showing the linear parts of the loops 

at high fields ( inset is magnifying parts close to H=0 region). 
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Figure 5-13. Parameters of weak ferromagnetism of selected LuMnxO3± samples from applied fields of 5.5 

T to -5.5 T. (a) Remnant magnetization MR as the average of magnetization of M-H hysteresis loops at  H=0. 

(b) The corresponding coercive fields, Hc. (c) Exchange bias values HEB at the given temperatures for  

selected compositions of 10 days annealed samples. 
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Careful observation of M-H loops revealed that the symmetry of the loops around H=0 

was generally missing. The exchange bias (EB) effect can be seen in the magnetic 

hysteresis loop of sample x=1.04, 5 days annealing, in inset of Figure 5-12.b. The values 

of HEB for a representative selection of samples with 10 days annealing time determined 

at different temperatures are plotted in Figure 5-13.c. The values of HEB disclose quite 

new features and again separate the behaviour of x>1 samples from the samples with 

x≤1. For samples with x>1 HEB shows the negative values (M-H loop shifts position in 

relation to the origin, H=0) of HEB at 10 K, with dropping the |HEB| to low values at 30 K. 

As in case of HC in Figure 5-13.b, from 40 K to 50 K, the trend of |HEB| shows 

discontinuity, first increasing of |HEB| followed by decreasing of values as temperature 

rises to TN. The exchange bias for samples of x≤1 also indicate negative values, in general 

the values of HEB are more negative for these samples in comparison to the ones of x>1. 

Sample x=0.92 reveals higher values of |HEB| among all measured samples. On the 

contrary of x>1 samples, x≤1 regime does keep the trend of change in values of HEB. 

Outside the solid stability limit determined in this study, the x=0.92 sample shows most 

negative values at 10 K which may point out the effect of lattice distortions on the 

magnetic behaviour. 

The HEB field can be due to presence of a secondary phase as it was reported for h-RMnO3 

and orthorhombic YMnO3 ceramics [90]. On the same grounds one would not expect 

stronger HEB effects for x≤1 samples at temperatures below T≤40 K, since the study of 

these samples did not show any relevant signals of the magnetic secondary phase above 

trace levels in samples annealed for 5 or 10 days. However, for the two samples with x≤1, 

HEB fields have significant amplitude in whole range of T below TN. These observations 

may be contrary to the role attributed to the Mn3O4 secondary phase in the exchange 

bias of the manganites. In thin films of Mn-rich YMnO3 it was noticed that presence of 

Mn2+/Mn3+ valence states in the film became a possible source for the observed EB effect 

below TN by the accumulation of Mn2+/Mn3+ on grain boundaries instead of being located 

inside the grains of polycrystals [65,149]. If such scenario is also the correct one for 

sintered ceramics, the x≤1 samples with smaller grain sizes and larger specific surface 
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area of grain boundaries would have more intense signals of MR, and in correspondence 

the values of Hc and HEB could also be stronger as composition variable x moves to the 

x≤1 side of the solid solution. But this is not seemingly the case of the results of the 

present study with Mn- vacancy or Lu-vacancy doped samples. Nano-particles of YMnO3 

prepared either via chemical routes [68,82] or conventional solid state sintering [150] 

showed presence of negative exchange bias, attributed to the exchange interaction of 

spins in AFM state and uncompensated spins on surface of the particles. Reversal of 

exchange bias field under the effect of electric field was reported for h-LuMnO3 which 

offers the control of sign of magnetization switchable by an applied external electric field 

for possible applications [81]. This matter was not investigated in the PhD thesis; 

however presence of negative exchange bias with change of its magnitude by x may 

suggest the preferred compositions to be used for the stronger exchange bias response 

to an external electric field. Reversal of sign of exchange bias field HEB from (usual) 

negative to positive was early reported in FeF2/Fe bilayers coupled to the increase of the 

magnetic cooling field [148]. HEB became a tuneable property of YVO3, BiFeO3−BiMnO3 

solid solutions and perovskite NdMnO3 materials as both negative and positive HEB fields 

and states of reversed magnetization can be created in one same sample [69,90,151,152].  

To explain the presence of exchange bias effect and irreversibility in sintered h-LuMnO3 

ceramics, one looked inside the crystalline lattices for defects that could be indication of 

loss of necessary regularity. The details of the nanostructure and the more extensive 

study by TEM and STEM of the crystalline lattices of the materials of this study will be 

left to the next chapter where they will be discussed. The observation of the TEM images 

of crystalline lattices in Figure 5-14 reveal that the lattices of off-stoichiometric samples, 

x=1.08 and 0.92, are both composed of nanostructured domains. 

The hexagonal symmetry of atomic arrangement in the HRTEM images in Figure 5-14 

shows the Lu ions (bright spots, a hexagon) and trimers of Mn ions (both z=0 and z= 0.5, 

less bright spots) as grey spots inside the hexagons of Lu ions. Images of the basal plane 

of the lattice show different structural zones inside the same crystalline structure but 
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they appear separated by structured domain walls of diffuse contour. The dimension of 

the nanostructure domains of sample x=1.08 in Figure 5-14.c are smaller than in the 

corresponding image of sample x=0.92 in Figure 5-14.d. 

 

Figure 5-14. HRTEM images of LuMnxO3± samples along [001] zone axis where atomic arrangements of the 

basal plane can be seen (the images were colorized to show up better different nano-regions in each 

image): (a) x=1.08 and (b) x=0.92, both from short annealing time (c) and (d), are corresponding IFFT 

images of the lattices where the change of the lattice regularity at the nanoscale can better be visualized. 
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Since magnetic and ferroelectric domains in h-RMnO3 materials are inter-locked together 

[9] and further linked to structural distortions of the crystalline lattices like APB (anti-

phase boundaries) on domain walls [79], the presence of nanostructured zones 

throughout the crystalline grains of the sintered ceramics may dictate changes in the 

magnetic behaviour. It must be mentioned that the dependencies of magnetic properties 

like spin-glassy state and exchange bias on nanograin size were already reported in h-

RMnO3 materials[77,82,84–86,132,150]. The observed low temperature magnetic 

properties of nanoparticles were explained by the presence of ordered spins in AFM 

state of the core interacting with uncompensated spins of FM state on the shell of the 

nanoparticles. Although in the present study of conventional solid state sintering of off-

stoichiometric h-LuMnxO3±δ ceramics grain size changes with the x=Mn/Lu ratio, grain 

sizes assessed in section 4-3-1 are of the order of few microns, at least the smallest ones 

can be half a micron size, much larger than what was found in case of the synthesized 

nanoparticles. Nonetheless, lattice images from inside the crystalline grains clearly 

reveal that nanostructured regions with the interfaces separating them from 

neighbouring zones can provide the equivalent scenario of compensated AFM spins 

inside the ordered crystalline lattices of the nanodomains and uncompensated FM spins 

on the interfaces. For both samples in Figure 5-14 in a small area of roughly 30 nm x 30 

nm there are several nano-regions with their wide interfaces which would promote even 

stronger interfacial effect than area on the surface of h-RMnO3 nano-particles of few tens 

of nanometer in size if they do not show such regular nanostructure inside their cores. 

Atomic structures shown in TEM images of Figure 5-14 clearly depict the Mn ions 

arrangement in basal plane, where the main component of AFM interaction exists 

[26,32]. Linked to the discussion on the effect of interfaces on the magnetic properties of 

h-RMnO3 materials, several studies were made available mostly focused on the role of 

structural/FE domain walls and their coupling to magnetic and ferroelectric properties 

of hexagonal RMnO3 oxides [9,10,16,48,79,99].  
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5-3-5 Anomalous magnetic contribution below Neel ordering transition 

 

In FC and ZFC measurements of magnetization under 100 Oe field of LuMnxO3±δ samples 

in Figure 5-3, Figure 5-6 and Figure 5-7 the weak ferromagnetic component appears 

immediately below TN and becomes more intense in the subset of samples with x>1. 

Figure 5-15 presents the increase in magnetic signal of sample with x=1.08 when the 

system becomes AFM ordered. In the following, we will discuss the change in ZFC or FC 

magnetization from TN to lower temperatures for ease of discussion, but as usual the 

measurements were done on heating cycle.  The magnetic signal increases rapidly in a 

narrow range of temperature when one looks at temperature range from TN  90 K down 

to 80 K. The ZFC magnetic susceptibility reaches a maximum around 80K and smoothly 

decreases as temperature reduces to 75 K. Comparison of  ZFC and FC results shows that 

once the magnetic signal begins to increase below TN, the FC and ZFC curves almost 

overlap together. But, after the local maximum of ZFC magnetization the FC 

magnetization presents a steady increase with cooling opposite to the decreasing trend 

in ZFC magnetization. The appearance of the sharp increase in magnetization right below 

TN implies that the component of weak ferromagnetism has the origin in the main phase 

or in a part of the system which has the magnetic moments definitively coupled, or 

exchange coupled with the antiferromagnetic ordered spins of the Mn ions in basal plane 

of the LuMnO3 phase.  
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Figure 5-15. FC and ZFC magnetic data (100 Oe external field) of sample LuMn1.08O3±δ annealed at different 

time shown the additional magnetic component on the contrary of expected basal plane AFM interaction at 

TN and below it. 
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Additional characterization of the component of weak ferromagnetism and the peak of 

ZFC magnetization observed between 70 K and 90 K was done by determining the effect 

of different magnetic fields in the range 0.01 T to 1 T on the ZFC magnetization (M/H) of 

a representative sample, the x=1.04 of 5 days annealing, given in Figure 5-16. In region 

below 45 K, as the applied magnetic field increases the shape of the magnetic peak 

becomes smoother and almost flat for the highest applied magnetic fields. With shapes 

similar to magnetization of Mn3O4 [92] smoothing of the magnetization peak below 45 K 

demonstrates well the effect of the magnetic secondary phase on the total magnetization 

of the sample [90]. The magnetic behavior of sample x=1.08 observed right below TN in 

Figure 5-15 is also present in sample x=1.04 as shown in Figure 5-16.a. One could not 

find any correlation between the intensity of the component of the weak ferromagnetism 

and the fraction of hausmannite, especially in the range of temperatures far above the TC 

of hausmannite. Therefore, the magnetic contributions observed above 43 K in 

Figure 5-15 and Figure 5-16.a might have the origin in the crystalline lattices of the 

LuMnxO3±δ phase. The magnetization normalized by the magnetic field, i.e. M/H, in the 

intermediate range of temperature 45-65 K is approximately field independent. Values of 

FC magnetization for the different magnetic fields are plotted in Figure 5-16.b Like 

magnetization in Figure 5-15 for x=1.08, FC magnetization in Figure 5-16.b does not 

display visible magnetic anomalies between 50 K and 90 K at least as clear as was seen in 

corresponding ZFC magnetization measurements. On the contrary to ZFC measurements, 

in the whole temperature range of FC measurements for all values of the applied 

magnetic field the M/H presents field dependency. In the region of temperature just 

below TN the values of M/H are field dependent and the relative contribution of the 

component of the weak ferromagnetism to total magnetic moment of the sample 

becomes gradually weaker and almost disappears as the magnetic field increases above 

0.5 T. For the highest applied fields (1 T) of the assay, M/H values of both FZC and FC 

measurements coincide at temperatures above 50 K  
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Figure 5-16. Magnetization normalized by the applied magnetic field, M/H, of the sample x=1.04 after 5 

days annealing under different applied magnetic field. (a) ZFC zero-field cooled M/H. (b) FC, field-cooled 

M/H. 
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The dependence x of the local maximum of the ZFC magnetic susceptibility on sample 

composition, with fixed measuring magnetic field of 100 Oe, observed at T81 K, is 

plotted in Figure 5-17.a for selected samples of the 5 days and 10 days annealing time. As 

displayed by the figure the intensity of this component of weak ferromagnetism of the 

LuMnxO3±δ phase develops mostly in self-doped samples with Mn-excess, starting at 

x1.00 and saturating at x=1.04 close to the upper limit of stability of the solid solution. 

The analysis for the effect of magnetic field on magnetization M of the LuMn1.04O3±δ 

sample in Figure 5-16.a, at the same local maximum of the magnetic signal reveals that M 

has a non-linear dependence on the magnetic field given by the empirical power relation 

MH (adapted from Ref. [65]), as shown in the plots of Figure 5-17.b. As implicit in the 

values of M/H in the intermediate temperature range 45-65 K being almost independent 

of magnetic field magnetization, the magnetization M at the constant temperature of 55 

K is proportional to the magnetic field, the exponent  becomes almost identical to one in 

the corresponding power law plot in Figure 5-17.b. Below the Curie temperature of 

hausmannite, at the temperature of the maximum of M/H curves (ZFC) approximately 40 

K, the exponent  of dependence of magnetization M on magnetic field is close to ½, 

caused by the effect of hausmannite on the magnetization of the sample. The values of 

the exponent  from the same analysis of FC magnetization for sample x=1.04 in 

Figure 5-16.b, as well as for the selected samples, x=0.96 and x=1.00 in same range of 

applied magnetic fields and for both ZFC and FC conditions are given in Annex D. 

The increased magnetic susceptibility below TN does not follow the characteristic change 

of  in magnetically ordered phase with AFM ordered Mn3+ ions in basal plane, as one 

would expect the magnetic signal to be reduced upon entering AFM region with 

decreasing T [35]. Instead magnetic behaviour that can be described as spin fluctuation 

appears significantly in the samples with Mn-excess and annealed for long times 

[30,153]. The lacking of this increase in magnetic susceptibility immediately below TN for 

samples with x≤1 or even the observation of the opposite trend as in Figure 5-6.c would 

back the interpretation that the Mn-excess in the lattice of the LuMnxO3±δ phase with 

x>1.00 creates these positive cusps in ZFC magnetic susceptibility. 
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Figure 5-17. Dependence of magnetization  LuMnxO3± at given values of temperature in the temperature 

below TN. (a) Dependence M/H at the maximum of ZFC, T81 K, on the Mn/Lu ratio x of selected samples 

of 5 days and 10 days annealing time, with measuring applied field of 100 Oe. (b) Dependence of 

magnetization M on applied field H  of sample LuMn1.04O3±, 5 days annealing at the given temperature 

T=40, 55 and 81 K, from M/H (ZFC) data in preceding Figure 6-16.a. 
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Increasing Mn concentration in the lattice of LuMnxO3±δ solid solution enhances the 

relative height of these magnetic cusps, Figure 5-17.a indicating that spin disorder can be 

driven by distortions of the lattice induced by Mn-excess. The analogous increased 

contribution to magnetic susceptibility just below TN was noticed in an early study of 

magnetic properties of polycrystalline ScMnO3 [35] and later reported in other works in 

polycrystalline h-RMnO3 materials of ScMnO3 [76,90], InMnO3 and YMnO3 [90] and also 

in orthorhombic ScMnO3 thin films [100]. The relative increase in the magnetic 

susceptibility just below TN is most intense in polycrystalline ScMnO3 prepared by the 

solid state method with the final step of reaction at 1150 C for 34 hours with a very 

limited fraction of hausmannite impurity of about 0.11wt% [90]. The same increase of FC 

and ZFC magnetic susceptibility of ScMnO3 starting just below TN is also reported for 

materials that present no indication of hausmannite in the temperature range 40-45K 

and have quite monotonous  dependences down to temperatures of 10-20 K [36,72]. 

Among the polycrystalline h-RMnO3 that display this anomaly below TN is the 

polycrystalline LuMnO3 material of nominal x=1 stoichiometry also prepared by the solid 

state reaction method with final step of reaction at 1100 C and accumulated time at this 

temperature of 25 hours [117]. 

 

5-4 Unit cell of LuMnxO3± ceramics and magnetic moments from the 

DFT approach 

 

Simulated results plotted in Figure 5-1 proved that significant variation of the effective 

magnetic moment µeff determined from the fitting of the Curie-Weiss law to experimental 

values of  in the paramagnetic state can be obtained when the sample is a magnetic 

composite made of the AFM main phase and the ferrimagnetic Mn3O4 secondary phase. 

The background correction and the fraction of hausmannite detectable in the samples 

were taken into account in the determination of the Curie-Weiss temperature TCW of the 
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LuMnxO3±δ samples with different times of annealing in Figure 5-10.a, the corresponding 

experimental values of effective magnetic moment per Mn ion for 5 days and 10 days of 

annealing times are plotted in Figure 5-18.a. There is a trend for μeff to increase from an 

experimental value below the theoretical value of μeff in samples with Lu-rich 

composition to values well above this reference in the set of samples with Mn-excess. 

The values of μeff of the samples in the lower and upper limit of the composition, x=0.92 

and x=1.12 respectively, present large scatter for set of samples annealed for 5 days and 

deviate to some extent from the dependence of μeff on x inside the stability domain of the 

LuMnxO3±δ solid solution. 

It was shown in sections 4-2-5 and 4-2-6 that the first-principles calculations of the unit 

cells of the samples in current study can give the effect of lattice on the energy and band 

gap. It was seen that the lattice parameters such a-axis and volume of the unit cell change 

in a trendy way with the Mn/Lu ratio x and are also dependent on annealing time. The 

same first-principle method is applied here to calculate the magnetic moment obtained 

as in sections 4-2-5 and 4-2-6 by taking LDA+U approach and considering the A-type 

AFM configuration. In this configuration, the spin direction of Mn3+ ions in one z-

coordinate is fixed up, whereas the spins in another z-coordinate are aligned 

downwards. Therefore the net magnetic moment preserves the AFM state of the whole 

unit cell. These calculations only convey the effect of the unit cell inner structure on the 

magnetic properties and necessarily ignore any interaction with features of the actual 

crystals like interfaces and secondary phases and the contributes they may have in 

creating additional magnetic components in the system. The values of magnetic moment 

per Mn3+ ion of the first-principles calculation for the 5 days and 10 days annealed 

samples are plotted in Figure 5-18.b. All values of the magnetic moment in Figure 5-18.b 

are lower than the theoretical value of magnetic moment for the h-LuMnO3 phase (4.9 

μB). In previous first-principles calculations on HoMnO3 material which used the current 

approach (AAFM) and spin-lattice coupling, magnetization for Mn3+ ions was 3.79 μB and 

3.99 μB respectively [154]. DFT approaches for YMnO3 with only Mn3+ ions as magnetic 

entity gave 3 μB [155], 3.5 μB [31] and 3.9 μB [125] in previous reports, the low magnetic 
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moment was assigned to ignoring the spin-lattice coupling [155]. Single crystals of 

LuMnO3 and YMnO3 gave values of magnetic moment less than 3.5 μB [30]. Two main 

features emerge on comparing the two sets of the samples together in Figure 5-18.b. One 

is the scatter in values of magnetic moment/Mn ion of samples with composition in the 

extremes or near the limits of the range of composition fixed for the present study, the 

samples with x=0.92 and those with x1.08. The coincidence is possibly fortuitous but, 

the unit cells of composition x=0.92 and x=1.08 returned almost the same values of 

magnetic moment in each set of samples.  

The second feature to be noticed is that values of magnetic moments of samples with 

composition in the range of 0.96≤x≤1.04 present a decrease with increasing x in same 

range of composition where the crystalline lattices are expected to be inside the solid 

solution limits of LuMnxO3±δ phase and parameters of the unit cell like the cell volume 

showed a smooth change with no flat plateau in Figure 4-3. Comparison between the 

values of magnetic moments in Figure 5-18.a and b reveals different trends with 

increasing values of x and suggests that in samples with higher values of x the magnetic 

moment includes important contributes of other magnetic components besides the AFM 

ordered magnetic moments of the crystalline lattice, or disordering in the lattice may 

favour spin-lattice coupling. One of such magnetic components might seemingly be in the 

origin of the anomalous magnetization observed below TN and object of the discussion in 

section 5-3-5 above. 
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Figure 5-18. Magnetic moment of Mn ion of LuMnxO3± solid solution (a) Effective magnetic moment 

determined from the fitting of Curie-Weiss (Table C-6), 5 days and 10 days annealed samples. The data of 

effective magnetic moment of YMnxO3±  were calculated from Ref.[19] (b) Magnetic moment of the Mn3+ 

ions from first-principles calculations considering collinear A-type AFM configuration.  
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6. TEM study and DFT calculation of 

electronic structure of LuMnxO3±δ
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The crystalline lattice of vacancy-doped LuMnxO3±δ oxide is expected to present different 

phenomenology  for x>1 or x<1 sides of the solid solution as Mn or Lu are located at two 

different crystal positions in the building block of the LuMnO3±δ unit cell. Mn ions are 

positioned in the centre of the bipyramids surrounded by five oxygen ions with their 

magnetic moment ruling the magnetic interactions. On the other hand, Lu ions 

coordinated with 8 oxygen ions separate sheets of the Mn ions along c-axis, where 

shifting of their positions induces electrical polarization aligned with c-axis. The XRD 

characterization and magnetic measurements showed that volume of the unit cell and 

AFM strength are both function of the Mn/Lu ratio. However, the cases of poor residuals 

of the Rietveld refinement of XRD data and presence of extra transitions in magnetic 

moments below TN with broad Neel ordering transition, all signal changes in crystalline 

lattices linked to two different types of  vacancies, Mn or Lu, created by the self-doping in 

the present study. In this chapter, the nanostructure of the LuMnxO3± samples is 

studied with detail to separate the potentially different roles of Lu and Mn vacancies on 

creating defective atomic arrangements, dislocations and chemical inhomogeneity in 

crystalline lattice of LuMnxO3±δ samples. Since clustering of point defects in the lattice may 

affect the local atomic arrangement of the unit cell, there is a probability of local changes 

in the electronic structure of the ions as it was more often reported for perovskite 

RMnO3 materials. To this end, the electronic structure of the Mn3+ ions in basal plane as 

the main responsible for the AFM basal plane interactions was also studied to get 

through a broader picture of magnetic interactions in samples with off-stoichiometric 

composition. Combined to the HRTEM characterization, there is also the need to take 

EELS spectra of the regions under study looking at the Oxygen K-edge for information on 
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the Mn 3d-orbitals and Mn L3,2 for assessing the presence of the different oxidation states 

of this ions beside the Mn3+ valence. Another remarkable matter of study in h-RMnO3 

materials is their improper ferroelectricity resulting from the interlocking of the 

structural distortions and the electrical polarization of the R3+ ions, that gives rise to six 

Antiphase (AP)/Ferroelectric(FE) domains in the ferroelectric phase that is present in a 

large range of temperature including room temperature. The ferroelectricity arises from 

displacement of the R3+ ions along c-axis, upwards and downwards, which dictates 180° 

rotated domains. Lowering temperature from high temperature, the highly symmetric 

P63/mmc paraelectric phase changes to the reduced symmetry P63cm ferroelectric 

phase, tripling the unit cell in the ferroelectric phase [53,58]. The tripling of the unit cell 

and the translation lost in ferroelectric phase generates three possible choices for the 

unit cell, therefore 3 types of domains are aroused. Combination of the 180° ferroelectric 

domains and three structural translation domains gives 6 APB/FE domain walls in h-

RMnO3 like LuMnO3 materials. The study of the effect of transition metals or rare-earth 

vacancies on the crystalline lattices has impact on the understanding of magnetoelectric 

coupling as it was argued that this coupling has its origin in the Mn trimers and it would 

be modified by any change of atomic arrangements in the basal plane [35,127]. Since 

translation symmetry lost during PE to FE phase transition is the reason behind of 

existing APB/FE domain walls in FE phase [156], it was investigated if the topology of 

interlocked ferroelectric to structural defect has to be revisited by chemistry change or 

interfacial defects in h-RMnO3 oxides [56,157,158]. 

 

6-1 Study of crystalline lattice of off-stoichiometric samples 

 

The behaviour of the lattice parameters shown in Table 4-1, Table 4-2 and Table 4-3 

indicating that Lu vacancy forces the unit cell to shrink whereas Mn vacancy expands the 

unit cell in relation to the dimensions of the unit cell of the stoichiometric LuMnO3, which 

results in different levels of distortion in the unit cell whenever complete chemical 
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homogenization is not attained. The reliability factor and residual of fitting of the given 

crystalline structures and phases demonstrate the presence of distortions in the lattices. 

Due to distortions, atoms are energetically favoured to be little off their regular positions 

in lattice sites. TEM investigation of selected samples is used to unravel the kind of 

distortions in the lattice of off-stoichiometric samples and the effect of the Lu and Mn 

vacancy self-doping on the density and type of the distortions and in-homogeneities in 

the atomic arrangements. 

 

6-1-1 Ferroelectric domains in TEM images 

 

Figure 6-1.a shows the low magnification dark field TEM image of sample with x=1.04 

obtained by tilting the sample little off-parallel to the (110) zone axis and taking the dark 

field (DF) image to excite spots (-220) and (-330) and enhance the contrast of the anti-

phase/ferroelectric domains. Since looking at the LuMnO3±δ along (110) zone axis shows 

the arrangement of the Lu ions and their polarization direction properly, any vacancy 

driven disordering in the arrangements of the Lu ions can be investigated. Figure 6-1.a 

clearly exhibits the small size of the 6-fold anti-phase/FE vortex-like patterns in the left 

part of the image, others being elongated most-likely because of distortion in the lattice. 

Analysis of the images of the different parts of the sample demonstrates the 100 nm as 

the size of the vortex/anti-vortex domains, in some cases even smaller than this. The 

chemical effect of substitution of Mn ions by Ti ions in YMn1-xTixO3 ceramics (x=0.175) 

resulted in reduced size of the FE domains from few microns for pure YMnO3 to 10-20 

nm in YMn0.925Ti0.175O3 [159,160].  
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Figure 6-1. (a) The dark field image of the LuMn1.04O3±δ  sample taken by choosing four spots in the SAD 

pattern showing small antiphase ferroelectric domains, (b) SAD diffraction pattern of the same particle 

oriented along (110) zone axis. (c) HRTEM image of the sample exhibiting the switching of the Lu ions 

observable due to contrast change; inset shows simulation of the image overlapped with the experimental 

one.  

 

Figure 6-1.b is the SAD pattern of the same sample taken with the thin section oriented 

along (110) zone axis showing the two main spots chosen to take dark field image in the 

Figure 6-1.a. Figure 6-1.c shows the corresponding HRTEM image, part of area in 

Figure 6-1.a, illustrating the switching of the shift of the Lu ions from top of the image to 

the bottom. The switching is observed because of shift of the positions of the Lu ions and 

the oxygen ions connected to them all appear as change in the contrast. The analysis of 

the switching of the Lu ions results in identifying the two ferroelectric domains where 
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the simulation is overlaid with image. The contrast of the bright spots and then their 

change of contrast from two bright, one less bright to two less bright, one bright is 

interpreted as phase shift of the ferroelectric domains from α- to β+ separated by a type I 

domain wall [161]. Part of the image is overlaid with the simulated image, showing well-

matched simulated and experimental images. Although the atomic arrangement of this 

sample is nearly well-defined everywhere, a part of the image shows out-of-registry 

marked as region 1 in the Figure 6-1.c, where atomic planes along c-axis  appear 

distorted, which may be indication of chemical inhomogeneity. The region of distortion 

extended more than one unit cell in wide and consists of inter-diffusion of the Mn and Lu 

planes along c-axis, resulted in the tilting of the unit cells. Figure 6-1.c proves that the 

size of the each separate ferroelectric domain should be in the scale of few tens of 

nanometres, as seen the Figure 6-1.a, because of the density of the distorted regions 

which can be seen in this image and in images taken from other parts. Lu vacancies and 

chemical in-homogeneities, although not intensively disturbing the ions out of their 

positions in the lattice are directly restricting the ferroelectric domains to a nano-scale, 

by forcing the Lu ions to shift their displacement quickly wherever the lattice faces 

distorted regions. The effect of oxygen vacancies on FE domains of YMnO3 on changing 

the FE domains of stoichiometric YMnO3 to ordered stripe patterns once the oxygen 

deficiency is introduced was already reported [97,162]. 

Figure 6-2 demonstrates the methodology used here to identify the type of domain walls 

and the phase of ferroelectric domains on both sides of the domain wall. The basic 

concept was taken from Zhang [58] and is shown in the inset of Figure 6-2.a, where three 

different phase angles of the FE domains (translation domains) and their relation are 

depicted. Each box with dash line in the inset corresponds to a unit cell and each division 

to a Lu ion with up or down orientation. To take the same procedure as Zhang, a network 

of lines with equal distances (yellow lines in the image) is made where each line should 

coincide with the first atom of the unit cell when one moves along atomic lines (b-axis) in 

the model image of two domains with opposite orientations (Figure 6-2.b).  Therefore in 
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Figure 6-2.c one expects that the lines to be always on the edges of the unit cells if the 

displacement of the Lu ions remains always up or down.  

 

Figure 6-2. . The methodology used to find ferroelectric domain switching considering the phase shift of Lu 

ions positions on the domain walls. The network inside the TEM image is used to locate the positions 

where domain wall appears and what type of domain exists on both sides of the domain wall. (a) The box 

on TEM image used in Ref.[58] to define the type of domain wall and phase shifts of Lu ions on both sides 

of the domain wall. (b) The model image of two FE domains with opposite polarization along (100) zone 

axis. (c) The TEM image of sample LuMn0.92O3±δ and network of lines; each one marks the first atom of the 

unit cell starting from left side. (d) The intensity profile of the line drawn on the TEM image clearly 

indicates the fluctuation of the up or down atoms along an atomic plane with transition of period from 1 

down – 2 up on left, to new period 1 up – 2 down on right side. 
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The lines reveal that somewhere in the image they no longer match with the staring of 

the unit cell as one moves away from left side,  the bright spots indicating the Lu ions are 

displaced downward. Counting by numbers, on position 26 the ordering of the bright 

spots is like one grey, two bright in opposite to observation in the region between 

numbers 4 and 24. Figure 6-2.d shows the intensity profile of the white line in 

Figure 6-2.c given the fluctuation of intensity of the contrast of Lu ions, confirming the 

displacement of the Lu ions in the unit cells, as higher intensity corresponds to upward 

polarization and vice versa. The classification of the two types of domain wall follows 

reference [161]. Type A domain wall includes one space between Lu ions whereas type B 

is made of 2 Lu spaces and engages 3 Lu ions.  

The HRTEM image of sample LuMn1.12O3 shown in Figure 6-3 is taken from the sample 

with composition at the extreme of Mn-excess in this work. In the upper part of the 

image ordering of the atoms in the atomic arrangements of Lu and Mn ions, with Lu as 

white spots, is different from the one in the lower left part, manifesting itself as change in 

contrast. In the upper part of the image, between pairs of bright spots, there are two less 

bright spots, whereas in the lower left part of the image, the reverse is observed. The 

inset gives the simulation of the image overlaid with the atomic positions of each 

element along (110) zone axis. As the simulation shows the shift of Lu ions and their 

connection to oxygen can be seen by the change in the contrast for up or down 

movements of the Lu ions. On the contrary of the previously observed in single crystals 

with domain walls one unit cell wide [52,161], here in Figure 6-3.a the domain walls are 

diffuse and wide and they create transient regions for atomic planes of Lu ions between 

regions where they are displaced upward or downward. These transition regions can be 

associated with chemical inhomogeneity which introduces changes in the regular 

ordering of the ions. 
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Figure 6-3. (a) HRTEM image of the sample LuMn1.12O3±δ taken along (110) zone axis with simulation 

overlaid in the upper part of the image. (b) Right part of the image in a), indicating distortion in the atomic 

planes of Mn and Lu ions. The intensity profiles on the bottom of the image display ordering in the peaks of 

the blue line and disordering in the atomic arrangement in the lattice along c-axis in the red line. (c) Left 

part of image a) showing the APB in the region marked by dash lines along basal plane. 

 

Figure 6-3.b and c give two regions of Figure 6-3.a form the right and left sides, 

respectively, of the image appearing to be out of registry and which have planar defects. 

In Figure 6-3.b, the distortion is bending the planes of Lu and Mn ions along c-axis. This 

chemically driven defect locally disturbed atomic arrangement of the lattice as it is 
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shown in the intensity profiles below Figure 6-3.b, taken along the two marked lines in 

same Figure 6-3.b. By moving from one line to the other in the Figure 6-3.b, one sees that 

the pattern of intensity of the profiles is changed, indicating the degradation of the 

organization of the atoms along the second line (red line) on the right side of the 

Figure 6-3.b. In Figure 6-3.c, a planar defect appears as APB along a-b plane (basal 

plane), indicated by dashed lines for easy recognition. The region where APB´s starts is 

little out of registry due to distortion of the lattice there. In both sides of this region, up 

and down displacement of the Lu ion switches showing different electrical polarization. 

The low magnification TEM image Figure 6-4.a was taken of a structure distortion with 

few hundred nanometres length observed in the sample with x=0.92 taken by tilting 

sample to the (110) zone axis. The lines in TEM image present  the stripe patterns similar 

to those observed in ErMnO3 single crystals exposed to shear strain above FE Curie 

temperature [56]. The stripes in ErMnO3 were explained as the shear strain creates 

energy competition between the vortex/anti-vortex and stripes in the lattice. It was 

assigned to the lattice change around vortices making stripes energetically more 

favourable by promoting the vortex/anti-vortex to move far apart from each other, 

finally stabilizing in the form of stripes. In Figure 6-4.a, the angle between lines and ab-

plane is less than 30, right after the point where they appear. However, the lines are 

changing their angle with respect to ab-plane as they are going further away of their 

origin. Ordered stripes of FE domains were also observed in oxygen deficient single 

crystals of YMnO3-δ, the oxygen deficiency forced the 6-fold cloverleaf patterns to convert 

to parallel stripes across the sample [162]. 

Figure 6-4.b is the HRTEM image of the joining area of the stripes showing high intensity 

of distortion. In the image, distortion mainly contains the APB, either at the place of the 

walls or in the centre of the distortion occurring along c-axis, or the bending of the 

atomic planes accompanied by twisting of the unit cell around central defect.  
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Figure 6-4. Structural distortion observed in sample x=0.92. (a) Low resolution TEM image taken by 

introducing the contrast aperture for better contrast along (110) zone axis, showing two lines of the APB 

(anti-phase boundaries). (b) HRTEM image of the place where the APB lines join together showing 

nanodomains around the joining point. (c) Magnified HRTEM image of the joining point of the APB lines 

indicating the high intensity of distortion. The scale in the image is a guide to find the FE switching as was 

discussed in Figure 6-2. The yellow, dashed lines indicate regions with different polarizations. (d) STEM 

image of the same joining point of the APB lines, below the image the EDS spectra from points 1 and 2 

marked in the same image.   
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In Figure 6-4.b and c, few structural domains are distinguished being separated by wide 

boundaries, where distortions like APB or twisting of the atomic planes have changed the 

contrast in these regions. In Figure 6-4.c few structural domains are distinguished being 

separated by wide boundaries, where distortions like APB or twisting of the atomic 

planes have changed the contrast of these regions. 

In the effort to identify the driving force to stimulate lattice on creating stripe lines and 

distortions in this sample, EDS characterization in STEM mode was also performed, 

looking for chemical in-homogeneity. The EDS analysis from some points in the centre 

and around this region indicated fluctuations in elemental composition. The broad area 

EDS analysis, on the contrary of the point analysis around central defect gives more Lu 

than Mn in a proportion closer to the nominal x=0.92 composition.  Figure 6-4.d shows 

BF-STEM image of a disorder area observed in Figure 6-4.a, and the two selected points, 

on the disordered region (marked as 1) and lattice (marked as 2) and their respective 

EDS spectra with a clear change of the ratio of Mn (K-line) to Lu (L-lines) in the two 

adjacent regions. Therefore, the formation of the nanodomains may be associated to 

change of chemical composition across the region. The same disturbance of the 

regularity of the crystalline was confirmed with a second particle, EDS results exhibiting 

change of the Mn/Lu ratio inside and outside of the disordered region. Therefore, as 

confirmed by Figure 6-4, the sample with high deficiency in Mn and large concentration 

of vacancies (x=0.92) shows high density of strain inside the grains associated to shifts in 

chemical composition in local regions which results in expansion/contraction of 

crystalline lattice as previously demonstrated by XRD analysis in chapter 4. This is 

hypothesized to result in stripe lines whereas vortex/anti-vortex structure is being 

annihilated as it is not energetically favourable. 
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6-1-2 Image Simulation in relation to ferroelectric switching and ion vacancies 

 

All simulation of the HRTEM images were carried out by JEMS v4, and the crystal 

structure data were obtained from the Rietveld refinement of the XRD data of the 

corresponding composition. In the simulation conditions corresponding to 200 keV 

voltage, Cc=1.1 mm, Cs=0.5 mm and energy spread of 0.3 eV were used. 

Figure 6-5 shows the simulation on the unit cell done by switching the polarization 

direction of the Lu ions with one image in upward (arrow direction) and other in 

downward polarization along (110) zone axis. The left part of the image gives the atomic 

arrangement of the unit cells, whereas in the right panel the corresponding simulated 

HRTEM images are shown. 

The simulated images with Lu in up and down polarization clearly demonstrate the 

possibility of detecting the two states of polarized ferroelectric domains, even though the 

resolution of the TEM microscope is not competitive with the Cs corrected ones. In this 

case, it is not really possible to image the displacement of Lu ions with the resolution that 

can be done in Cs corrected STEM mode, but the overall sum of the atomic potential of 

the oxygen planes and Lu ions or Mn ions follows the fluctuation in the z-direction of the 

Lu ions. The difference in the contrast of the Lu-O planes with two Lu ions in downward 

position gives sharper contrast than the image of upward polarization. 
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Figure 6-5. Left panel are the atomic arrangements of the ions of the up and down polarized unit cells 

viewed along (110) zone axis. Right panel are the HRTEM simulated images corresponding to these two 

atomic arrangements; the difference in the contrast of the atomic rows makes it feasible to distinguish the 

polarization of FE domains even in non-Cs corrected TEM/STEM. 
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Figure 6-6. Simulated HRTEM images of the LuMn0.92O3±δ structure using 2x2x1 superstructure and 

imposing presence of vacancies. a. 2 Mn ion vacancies in z=0 and 1/2, b. 6 oxygen ion vacancies 

surrounded the Mn ions with their positions as the ones in (a) and (c). 2 Mn ion in (a) and 6 oxygen ion 

vacancies in (b). The dashed circles indicate places of vacancies, in each image, it is repeated four times 

according to the size of the supercell simulated here. 

 

Figure 6-6 and Figure 6-7 deal with theoretical hypothesis based on defect chemistry of 

vacancies, showing possible pictures related to the presence vacancies of R-sites and Mn-

type in TEM images with the operation condition of the microscope identical to that used 

in the previous simulation.  Because in a unit cell of LuMnO3, there are 6 chemical 
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formula units, introducing one vacancy in either Mn or Lu sites would represent a high 

percentage of vacancies. Taking out one Mn ion out of 6 Mn ions in unit cell (Wyckoff 

position 6 a), would result in a concentration of more than 16% of Mn vacancies. 

 

Figure 6-7. Series of HRTEM image simulation of LuMn1.08O3 sample considering (a). no vacancy in 2×2×1 

superstructure, (b) 2 Lu ions vacancy located in a sheet of Lu ions between two Mn basal planes in unit cell, 

(c) six oxygen vacancies around the 2 Lu ions considered in (b) and (d) vacancy of 2 Lu ions and 6 oxygen 

ions. Circles are showing one of the four Lu+O deficient regions in the model considered here. 

 

To figure out this problem, we had to build a superstructure of 2×2×1. In this structure, it 

is easy to introduce 8% of vacancies of Mn or Lu. Our hypothesis of neutrality of charge 

inside unit cell would dictate introducing also oxygen vacancies according to the 

following formula of the simplified effective charge neutrality condition: 

 3[𝑉𝑀𝑛
′′′ ] = 2[𝑉𝑂

..] (6-1) 
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 3[𝑉𝐿𝑢
′′′] = 2[𝑉𝑂

..] (6-2) 

The oxygen ions to be considered as vacancies by changing their occupancy to zero are 

chosen around the cation vacancy positions to simulate the clustering of vacancies. 

Simulated images before including the vacancies, with vacancies of the cation and 

additionally oxygen vacancies are shown. Regions marked by the circle clearly indicate 

different contrast, darker contrast than the in remaining of the superlattice. This may 

occur in TEM images, that the changed contrast can come from vacancies, however it will 

remain difficult to be proven in a single TEM image. Performing STEM using HAADF 

detector will eventually be more useful to discriminate by contrast of cation deficient 

regions. 

 

6-1-3 Imaging defects in the basal plane by TEM 

 

Since in h-RMnO3 materials the in-plane Mn-O-Mn AFM interaction is stronger in basal 

plane rather than inter-plane Mn-O-O-Mn between two planes of Mn ions (AFM along c-

axis)[26,31,32], and the bond angle and bond lengths of Mn-O-Mn in a basal plane will 

affect the AFM interaction[34], it is important to investigate the effect of the off-

stoichiometry on the atomic arrangements of the ions in basal plane. In single crystals of 

stoichiometric h-RMnO3, it was already revealed that the presence of the domain walls 

creates planar defects like anti-phase boundaries at the position of the walls [18,49,89]., 

Theoretical modelling was also successful to predict presence of the anti-phase 

boundaries on the walls of the FE domains coupled to structural distortion [16,51]. 

Moreover, interest is rising on the effect of doping in h-RMnO3 lattices, where room for 

appearing different topologies of structural translation domains is opened [57,58]. To 

shed light on the presence of the planar defects like anti-phase boundaries in basal plane 

which affects the geometry of the Mn-O-Mn bond angles and lengths of trimers, the 
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vacancy doped samples were analysed by orienting the samples parallel to the (001) 

zone axis. Figure 6-8.a gives the HRTEM image of a LuMn0.92O3±δ particle oriented along 

(001) direction, the inset of the figure is the simulated lattice view of the TEM image, 

showing the arrangement of the atoms in the TEM image, matched to the simulation. The 

bright spots show Lu ions forming hexagons, and the grey spots in the hexagons are the 

two sets of Mn trimers in z=0 and z= ½ planes, respectively. Figure 6-8.b is the schematic 

representation of the atomic structure of the unit cell along the same (001) zone axis.  

The arrow in image in Figure 6-8.a points to the plane of the Mn ions which plays the role 

of a mirror plane for the nano-twins on the both sides of this Mn plane. Two coloured 

triangles are overlaid with two Mn trimers right at both side of the Mn plane, revealing 

180° rotation of the structure below the Mn plane respect to the one above the Mn plane. 

The schematic representation in Figure 6-8.b of the atomic structure with the twins and 

the Mn mirror plane in between two Mn trimers shows up better the 180° rotation which 

is permitted by the symmetry of the structure about (001) axis. The distance between 

two adjacent Lu ions in a hexagon is typically 5.6 Å, whereas this distance between two 

Lu ions at both side of the Mn mirror plane is just 3.9 Å. Shrinkage of the distance 

between two Lu ions can be explained as the Mn plane is probably formed in direction of 

the basal plane which has stronger columbic repulsion interaction with other Mn ions 

forces them to go further away. Moving of Mn ions away in opposite directions will tilt 

the pyramids in such a way that the top Lu ions in tilted bipyramids get closed together. 

Although the composition under study is Lu-rich sample, the magnetic measurement 

showed a magnetic peak between 40 and 45 K in temperature dependent magnetic 

measurements both in zero-field–cooled and field-cooled measurements under 100 Oe 

applied external field. This extraneous peak at the position of Mn3O4 magnetic ordering 

transition was the only indication of having extra magnetic interaction beside of 

conventional basal plane AFM interaction among Mn3+ ions.  
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Figure 6-8. (a) (001) zone axis HRTEM image of the sample LuMn0.92O3±δ showing one plane of the Mn in-

between the two planes of the Lu ions. The inset shows the simulation matched with the undistorted part 

of the image. (b) Modelling of the disordered in the lattice resulted in losing one Mn plane out of two Mn 

planes between planes of Lu ions. (c) Anti-phase boundary of Lu planes indicating shift of half spacing in 

planes of the Lu ions with the angle of 30⁰ in respect to a-axis. 
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The EELS study did not show any clear deviation from 3+ oxidation state in the Mn L3,2 

edges using white line ratio method to be discussed later in this paper. Planar defects as 

these found in Figure 6-8.a are likely sources for magnetic interactions in basal plane 

other than the essential AFM interaction of Mn ions in trimers with Neel magnetic 

ordering temperature around 90 K, that characterises h-LuMnO3±δ materials. TEM 

images of (001) zone axis showed the basal plane arrangements of Mn trimers together 

of Lu ions forming hexagons. Further observation confirmed the density of interfaces of 

structural domains in basal plane of the crystalline lattices for x>1 samples. Still one 

could not find out changes in chemical composition of the interfaces. The same analysis 

also indicated wide interfaces in order of 2 or 3 unit cells which promotes higher density 

of disordering occurring there. The detailed study of the chemical shifts at interfaces 

requires resolution of EELS analysis which is beyond the resolution of TEM instrument 

being used. 

In Figure 6-8.c, the APB of Lu planes appears along the plane 30° inclined in respect to a-

axis, where the TEM image shows little out of registry (APB´s are marked by lines in the 

Figure 6-8.c). The same situation happens for the Lu planes, 60° turned counter-

clockwise with respect to the APB´s planes (not shown here), still in a region out of 

registry. As it was discussed in relation to previous images, a region out of registry where 

disordering in the lattice appears seemingly has its origin in fluctuations of chemical 

composition of the lattice. According to XRD analysis in chapter 4, fluctuation in Mn/Lu 

ratio inside the lattice and the subsequent change of unit cell volume can create states of 

strain energy in the lattice, the formation of planar defects being a way to balance and 

release the energy accumulated in the lattice. The analogous picture appeared in a recent 

study on Y0.67Lu0.33MnO3 single crystals [58], where partial edge dislocation as an extra 

plane (030) divides two polarized domains. Although in that case, the authors could not 

find any evidence of chemical in-homogeneity, the present studies with self-doped 

samples reveals that change in the volume of the unit cell from x=0.96 to x=1.04 is 

approximately the same as value change of cell volume determined by the change of 

composition from z=0.30 to z=0.35 in ceramic samples of Y1-zLuzMnO3, around 0.16% 
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[34]. The microstructure and atomic arrangements of the ions in 0.08% vacancy doped 

or less LuMnxO3 lattices would dictate sensitivity of the lattice to any oscillation of 

chemical composition across the fields being examined by TEM.  

The level of chemical in-homogeneity detected across a crystalline particle of LuMnxO3± 

phase in sample with x=1.08 (one day annealing time) is further characterized in 

Figure 6-9. Figure 6-9 exhibits two parts of one BF-STEM image very close together of 

one same particle. The values of the Mn/Lu ratio determined from EDS results in 

Figure 6-9.a and b show local fluctuations in composition of the analysed spots with 

different ranges of fluctuation. 

The STEM image in Figure 6-9.a presents uniform contrast. The average composition 

determined by EDS yields x=1.035 close to the upper stability limit xH1.05 of LuMnxO3± 

solid solution established in section 4-2-1. As also seen in Figure 6-9.a, there is almost no 

change in x along the line of analysis, x being constant within the experimental error of 

the EDS analysis. On the contrary, the contrast of the image in Figure 6-9.b shows larger 

variability, some regions darker than others. Such contrast change is matched by 

variation of Mn/Lu ratio along the line of EDS analysis. The average value of the x ratio is 

1.051, higher than the average x above. Local chemical composition changes from values 

of x below 1.00 with Mn-deficiency in the upper left corner of the image, to values of x in 

the range of the average composition at the middle and to Mn-rich side at lower right 

corner. The values of x of these last points are well above the upper stability limit 

xH1.05 of LuMnxO3± solid solution determined from XRD in the present study and 

approach the maximum value of x=1.20 in polycrystalline LuMnO3 materials at 1300 C  

reported in bibliography [109], given in Table 4-4. The ratio of distances of atomic planes 

along the line of analysis from lower right to upper left is 1.018. The behaviour of a-axis 

and b-axis lattice constants are related to the basal plane and cannot be assessed in the 

images in Figure 6-9 taken along (110) zone axis perpendicular to basal plane, but 

changes in atomic distances along c-axis can be evaluated.  
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Figure 6-9. BF-STEM images of two adjacent parts  of one same crystalline grain of LuMnxO3± phase of 

sample x=1.08 taken along (110) zone axis.  For each image, EDS analysis was made of the all area and at 

the given points and the corresponding results of the Mn/Lu ratio for point analysis (yellow) and average 

ratio (dashed white line) are given in overlaid plots. (a) Area of nearly uniform contrast and average 

Mn/Lu=1.035. (b) Area with regions of dark contrast and average Mn/Lu = 1.051. 
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The relative change of distances between atomic planes above is much higher than the 

total change in dimensions of c-axis in Table 4-1 to Table 4-3 and suggests the formation 

of intergrowths with atomic planes of large Mn excess in the lower right zone of the 

image in Figure 6-9.b. The investigation of local fluctuation of chemical composition of 

crystalline particles and the observed misfit between the actual values of Mn/Lu ratio 

and the expected ones based on average composition of polycrystalline samples or single 

crystals will have important consequences on the interpretation of properties like 

ferroelectricity, magnetic behaviour and transport of the h-RMnO3 materials [18,57,99].   

Our investigations on the local fluctuation of the chemistry of the particles and observed 

shift in the chemistry of the expected composition would have important consequences 

on the interpretation of physical and chemical properties like ferroelectricity and 

magnetic behaviour [18,57,99].  

Considering the secondary phase formation in vacancy doped samples in the x<0 side of 

the solid solution from XRD Rietveld refinement and clear peaks in XRD patterns, 

segregation of Lu2O3 secondary phase is a way to remove extra Lu ions from the lattice of 

main phase. High temperature oxygen annealed epitaxial grown YMnO3 thin films also 

showed indication of Y2O3 precipitates [111,163–165]. This was explained as the 

oxidizing potential of Y and Mn being different, causing the Y/Mn ratio to become larger 

than unity in some regions like the interface of film/substrate. The secondary phase 

Lu2O3 forms residual particles in the present study. One finds only very few particles of 

LuMnO3 with precipitation of Lu2O3 nano-regions in sample x=0.92. On the contrary, the 

same clear evidence of the Mn3O4 secondary phase was not found in XRD patterns of 

samples with x>1, only as faint peaks, Figure 4.4, but with pronounced effects in 

magnetic measurements, Figure 5-6. Above the lower limit of solid solubility in this 

region lattice images are evidencing better defined atomic arrangements in the particles 

of main phase. Going down from x=0.96 to x=0.92, lattice distortion appears in many 

particles of the main phase. Excess in Lu2O3 brings in some degree of metastability of the 

nanostructure and strain and planar defects are seen in sample x = 0.92 more often than 
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in x = 0.96 and x = 1.00 samples. XRD Rietveld refinement as well as TEM images confirm 

that atoms within the unit cells of the main phase in sample x=0.92 could not properly 

stabilize their positions during the short time of the sintering process according to the 

expected P63cm space group and allowed Wyckoff positions.  

 

 

a) 

 

b) 

Figure 6-10.(a) STEM image of the crystalline structure of x=1.04 LuMnxO3±δ solid solution for zone axis 

close to the [�̅� 𝟏 𝟔] direction and (b) corresponding view of the crystal structure evidencing the columnar 

alignments of Lu3+-O2- ions in hexagonal symmetry centred in the origin of the crystalline cell were an 

identical columnar alignment of the Lu3+-O2- ions is also found. O2- ion (green), Lu3+ ion (red), Mn3+ ion 

(blue), crystalline lattice simulation done with CaRIne Crystallography 3.1 software.  

 

The STEM image of atomic resolution in Figure 6-10.a of a crystalline domain of the main 

phase in sample LuMn1.04O3± displays a sub-grain boundary with the low misfit angle θ  

5. The corresponding view of the crystal structure simulated by using CaRIne 

a
b

c

x
y

z
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Crystallography software in Figure 6-10.b evidences the columnar alignments of purely 

Lu3+-O2- ions in hexagonal symmetry centred in the origin of the crystalline cell. The 

composition of the solid solution has Mn in excess and lacks Lu ions in comparison to the 

perfect LuMnO3± lattice. Close observation of the sub-grain region (highlighted in 

Figure 6-10.a) shows that the positions of the columnar alignments of the Lu3+-O2- ions 

maintain the hexagonal coordination in the sub-grain boundary structure but hexagons 

become slightly irregular thus allowing for the small misfit of 5 in plane orientation. The 

corresponding minute shrinkage of the sides of the hexagons in the sub-grain boundary 

creating the directional shift may be caused either by segregation to the subgrain 

boundary of Lu vacancies (𝑉𝐿𝑢
´´´) or of Mn ions (eventually with decrease of valence to 

Mn2+) in antistructure configuration (MnLu´), the (MnLu´) defects representing a species of 

smaller ionic radius than the Lu3+ ions. 

 

6-4 Density functional theory and EELS spectroscopy 

 

6-4-1 Oxygen K-edge and crystal field environment of Mn 

 

The microstructure of the off-stoichiometric lattices and the respective distortions and 

defects in the lattices imply changes in the electronic structure of the ideal h-RMnO3 

[18]–[20]. Thus, the TEM study is followed by EELS analysis of the oxygen K-edge of the 

selected samples with the objective of disclosing the effect of cation vacancy on the 

electronic structure of h-LuMnxO3±δ ceramics. The oxygen K-edge around 532 eV 

contains hybridization of the O-2p orbitals to unoccupied states of the conduction band 

of the Lu-5d and Mn-3d orbitals [142,166–170]. Figure 6-11 shows EELS spectra of 

samples of 3 compositions, exhibiting corresponding peaks of the Mn-3d/4sp or Lu-

5d/6sp bonds to the oxygen ions. The spectra are background subtracted using power 

law approach embedded in Digital Micrograph Suit 1.8.4. Data acquisition of the EELS 
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spectra in HRTEM was intentionally not too long to avoid excessive exposition of 

samples to the electron beam, with probable change in the oxidation state of the Mn or 

oxygen content [167]. Previous reports on the XANES O-K edge of YMnO3/HoMnO3 

polycrystals [142,166,168] and XAS of O-Kedge of single crystal YMnO3 [131] and 

TbMnO3 [170] provide the guidelines to interpret the features appeared in EELS spectra 

of the O K-edge of h-LuMnxO3 oxides in Figure 6-11. The oxygen pre-peak below 532 eV 

appearing in EELS spectra of Figure 6-11 was also reported on EELS spectra of some 

rare-earth manganites [99,167].  Accordingly, the peaks “a” and “b” correspond to 

bonding of Mn 3d orbitals to apical and planar oxygen ions, therefore their intensity 

gives a scale of the population of the unoccupied states for each peak. The following two 

peaks, labelled as “c” and “d” are related to the Lu(5d)-O(2p) with the last peak marked 

as “e” linked to Mn(4sp)-O(2p) hybridized orbitals, respectively. Although the statistics 

of the acquired EELS data is changing in different measurements mostly because of 

thickness variation, EELS spectra demonstrate all these features within the energy 

resolution of the measurement in all samples (x=0.96 and 1.04 are not shown here). 

EELS spectra were always calibrated with reference to ZLS spectrum. The energy of the 

analysed features in EELS spectra does not change with Mn/Lu ratio x.  

To clarify the contribution of the unoccupied orbitals of ions involved in EELS spectra, 

DFT calculations were performed using GGA+U approximation (with U, on site Coulomb 

interaction energy 6eV) implemented in the Wien2K package, with A-type 

antiferromagnetic configuration of the Mn3+ ions and -6.5 Ry energy to separate core and 

valence states. Calculation was done for the three compositions of Figure 6-11.a, with the 

crystal structure of the corresponding Rietveld Refinement of XRD patterns. 
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Figure 6-11. (a) EELS spectra of the O K-edge of the three selected compositions, indicating slight change in 

intensity as the type of vacancy is changed. Density of unoccupied States calculated for sample x=1.00 (b), 

and 1.08 (c) (the x=0.92 is not shown here) for the orbitals of the involved ions which have contribution in 

EELS spectra. 

 

Figure 6-11.b and c shows density of states for 3d, 5d and 2p orbitals of the Mn, Lu and 

oxygen respectively. In the conduction band close to the Fermi level, large contribution 

comes from hybridization of Mn(3d) orbitals with O(2p) orbitals, mostly planar oxygen 

as expected [127]. On the contrary to the reported O K-edge measured by XAS in some h-

RMnO3 materials [131,142,171], the energy resolution and statistics in present 

spectroscopic method in the pre-edge region of O K-edge does not allow to distinguish 

different unoccupied states of the Mn(3d) orbitals separately. DOS of Mn (3d) in 

Figure 6-11.b implies that the first peak below 530 eV corresponds to the mixture of the 

unoccupied states of the Mn-3d(3z2-r2)↑, (xz↓-yz↓) and (xy↓-x2-y2↓), and the second peak 

above 530 eV shows Mn-3d(3z2-r2)↑ unoccupied states with strong hybridization to the 

O(2p) unoccupied states. The region after 533 eV in Figure 6-11.a shows the Lu(5d)-

O(2p) hybridized states, with two successive peaks with higher intensity than those 
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peaks in the pre-edge region, revealing the strong nature of the bonding of Lu(5d)- O(2p) 

unoccupied states[172,173], claimed as the probable driving force of the ferroelectricity 

[130,131,172].  

 

6-4-2 White line ratio and oxidation state of Mn 

 

The EELS spectra of the Mn L3,2 edges of the same samples of Figure 6-11.a are shown in 

Figure 6-12.a. The L3,2 edges of the transition metal ions have been extensively studied as 

they provide information of the oxidation states of the transition metals and 

coordination of the transition metal environment [174,175]. The L3 and L2 edges of the 

Mn3+ ions in Figure 6-12.a are the result of electron transition from 2p3/2 and 2p1/2 states 

to Mn 3d unoccupied states, respectively. They have almost similar shape and energy 

onset within the resolution of EELS spectroscopy. The ratio of L3/L2 edges of Mn ion 

gives the Mn oxidation states, which can be quantified by the method so-called “white 

line” ratio described elsewhere [176–179]. To apply white line ratio method on the Mn 

L3,2 edges of the EELS spectra in Figure 6-12.a, the multiple scattering contribution was 

subtracted using Digital Micrograph Suit, then a 10 eV window was chosen as scaling 

window in the region immediately after L2 peak to be used as Hartree-Slater cross 

section step function. The so subtracted L3,2 peaks from the extracted step function were 

both integrated in the same energy window. The average of L3/L2 ratio of the EELS 

spectra of two different particles of each composition for 5 different compositions is 

plotted as a function of Mn/Lu ratio in Figure 6-12.b. Based on the relation between the 

L3/L2 ratio and the corresponding Mn valence in the literature [174–177,179], the 

present analysis in Figure 6-12.b confirms a rather constant value of valence of three for 

the Mn oxidation state for most measurements, or very close to it, as the nature of 

covalent bonding may result in slight change of the valence state. Besides of Mn valence 

state, L3,2 edges were used to determine the crystal field environment of the Mn ions 
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because of their sensitivity to the coordination number of Mn and therefore to the 

bonding of Mn to its surrounding oxygen ions [170,174,180]. Compared to EELS of          

h-YMnO3 [174] where the Mn environment is very close to the one in h-LuMnO3, the L3,2 

edges of the off-stoichiometric samples in Figure 6-12.a are in good agreement with the 

ones of the stoichiometric the x=1.00 sample and the one for h-YMnO3 stoichiometric 

sample of S. Nishida [174], confirming the stability of valence state for Mn ions in the 

analysed regions. 

Two visible changes can be observed by comparing EELS spectrum of x=1.00 sample 

with EELS spectra of the off-stoichiometric ones in Figure 6-11.a. First in the Mn(3d)-

O(2p) hybridized region below 533eV for x=1.08, the shape of the second peak is almost 

step-like instead of being a distinct peak as it is for the two other samples. The second 

change is observed in the relative intensities of the peaks correspond to the Lu(5d)-

O(2p) hybridized states for x=1.00 which is rather lower than the one for off-

stoichiometric samples. In the first case, the O pre-edge, either in the spectra of XAS 

[131,142,166,168,173,181] or EELS [99,167,176,182–187] were interpreted as the 

hybridization of transition metals to the O(2p) orbitals. The change of the intensity or 

shape of the peaks was attributed to the oxygen off-stoichiometric or structural 

distortions and defects. It was argued that presence of oxygen off-stoichiometric is 

followed by change of the Mn3+ valance state to keep total electrical charge neutral in the 

case of e.g. TbMnO3 [99] or SrMnO3 [186]. However, very rare studies on the effect of the 

oxygen off-stoichiometric on the properties of h-RMnO3 materials indicate at least that 

oxygen deficient YMnO3- may undergo change of the valence state of the Mn3+ [96,188] 

or keep it as 3+ [97,167]. In both cases the bond length of the Mn-O is modified, which in 

turn, changes the Mn(3d)-O(2p) hybridization as it is distinguished in oxygen pre-edge of 

the EELS spectra (peaks a and b in Figure 6-11.a). Since in Figure 6-12.b. there was no 

clear evidence for any deviation from the expected Mn3+ valence in the analysed regions, 

it would be rational to assign the change in the shape of the oxygen pre-edge of the 

sample x=1.08 compared to x=0, to the crystal field environment of the Mn3+ ions, either 



TEMstudyandDFTcalculationofelectronicstructureofLuMnxO3±δ  

181 
 

due to oxygen vacancies (case of h-YMnO3 [167]) or Lu vacancies (like Tb deficient in 

TbMnO3 domain walls [99]) in order to keep charge neutrality.  

 

Figure 6-12. EELS spectra of the Mn L3,2 edges of the three samples in the Figure 6-11.(a) (all compositions 

of the one day annealing samples). constant energy onset, also the apex of L3 peaks have almost the same 

energy (dashed line in the figure). (b) Average “white line” ratio of two different particles for each of the 

given sample compositions of samples of one day and 5 days annealing time. Points between the limits of 

2.4 and 2.8 are considered representative of 3+ oxidation state of Mn ions.   

 

The DOS of Mn(3d) and O(2p) for x=1.08 sample in Figure 6-11.c shows spreading of the 

Mn(3d)↓ unoccupied states in a wider energy region towards higher energies in 

conduction band rather than more localized DOS of Mn(3d) for samples x=1.00 

(Figure 6-11.b) and x=0.92 (not shown here). The higher population of unoccupied states 

in the energy window of 4 eV to 5.5 eV is mostly due to the bonds of 3d(xz-yz)↓ and 

3d(xy-(x2-y2))↓ orbitals of Mn to O(2p) orbitals of planar and apical oxygen ions in the 
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unit cell. It would be expected to have these bonds present as separated peaks in pre-

peak of O K-edge, however, energy resolution better than 0.8 eV is needed to distinguish 

them with higher statistics. Therefore, what appears as a step-like region below 532 eV 

in Figure 6-11.a ( peak b) is in fact overlapping of Mn(3d)↓-O(2p) unoccupied states for 

x=1.08, different from that in x=0.92 and x=1.00 as a result of change in the unit cell of 

off-stoichiometric h-LuMnxO3±δ ceramics.  

The second feature is the slight difference due to sample composition in the intensity 

ratio of the peaks c and d in O-edge, Figure 6-11.a, in the energy region corresponding to 

Lu(5d)-O(2p) hybridization. Samples out of stoichiometry show more pronounced c and 

d peaks than the x=1.00 one. Previous EELS studies on the same peak ratio in Y2O3 

materials have shown that the ratio of the peaks of Y(3d)-O(2p) hybridized orbitals 

varies if the octahedral environment of the Y ions changes either because of oxygen 

vacancy or other defects [189–191]. In either case, the intensity of the peak c is higher or 

at least the same as the intensity for peak d, and the defective region or oxygen vacant 

region both indicate the reversal of the c to d intensities, higher for c than the one for d. 

This trend may help us to understand the variation of the relative intensities of the peak 

c to d for x=1.00 and x≠1.00 samples in Figure 6-11.a. As shown by the XRD results, the 

lattice parameters change with x, which in turn affects the crystal field environment of 

the Lu ions in respect to 8 surrounding oxygen ions in the unit cell. Since in 

Figure 6-11.b, the DOS of unoccupied states of the Lu(5d) and O(2p) are main 

constituents of the peaks c and d in O K-edge with strong bonding, the change of the 

bond lengths of the Lu to oxygen ions directly results in slightly different situation of the 

Lu(5d)-O(2p) hybridization, which in turn appears as variation of the relative intensities 

of the unoccupied states in this region. Stronger bonding of Lu(5d)-O(2p) for both planar 

and apical oxygen ions in Figure 6-11.c for sample x=1.08 in comparison to one in 

Figure 6-11.b for x=1.00 leads to the effect of chemically driven unit cell distortion on the 

Lu(5d)-O(2p) bonds, that results in peak ratio variation of corresponding peaks in O K-

edge in EELS spectra of Figure 6-11.a. 
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Figure 6-13. Comparisons of EELS spectra in two regions of the crystalline grain of the main phase of 

LuMn1.04O3± sample, damaged area at the edge of the particle (dashed-line) and slightly to the inside the 

particle (solid line). (a) oxygen K-edge and (b) L3,2 edges of Mn3+. 
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It is instructive to analyse and give the dimension of the effects of beam damage coming 

from ion milling in TEM sample preparation or high energy electron irradiation of the 

sample in TEM. Figure 6-13.a and b compare the EELS spectra of Oxygen K-edge and L3,2 

edges of Mn for two different regions of one same grain of the main phase of x=1.04. The 

spectra were taken from the damaged region on the edge of thin section and from a 

second area little to the inside of the grain where no damage was observed. Beam 

damage (most probably Ar ions in ion thinning process) changed the pre-peak of oxygen, 

which would be explained by a completely different crystal field for Mn and reducing the 

hybridization of Mn to its surrounding oxygen ions. Damage effects are not so clear in the 

Mn L3,2 edges [167]. The “white line” ratio analysis gave 2.68 which is visibly above the 

values that were obtained in Figure 6-12.b. The same analysis was done on the damaged 

region of sample x=0.92 which gave 2.27 from white line ratio, below the boundary line 

defined for Mn3+ oxidation state in Figure 6-12.b.   

 

6-4-3 Hausmannite and Mn ion oxidation state  

 

Since hausmannite secondary phase was observed on some h-RMnO3 oxides [18,65,90] 

as well as in samples of the present study and being still not clear if there are 

intergrowths of planes of hausmannite or of other phase of Mn-O compounds, the 

analysis of the EELS spectra of Mn3O4 secondary phase was added to the matters of the 

present research. Sample x=1.08 one day annealing with some lean particles of 

hausmannite thin enough for EELS spectroscopy was selected for the study. 

Figure 6-14.a gives the lattice image of hausmannite secondary phase composed of many 

nano-structural domains. The elemental composition was checked with EDS. The particle 

gives roughly the stoichiometric of Mn3O4 within the error of EDS. The scale of the 

nanodomains that constitute the Mn3O4 particle is far below the large sizes of some of 

hausmannite inclusions found in SEM analysis of samples with Mn-excess, section 4-3-2.  
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Figure 6-14. Sample LuMn1.08O3±, one day annealing time. (a) Particle of hausmannite showing different 

domains inside the lattice and (b) EELS spectrum of a region less than 10 nm in size inside the same 

particle. 
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The fine nano-texture of the hausmannite particle divided into nanodomains will cause 

XRD line broadening and may explain the difficulty on detecting the total fraction 

hausmannite by XRD described in section 4-1. Figure 6-14.b displays the EELS spectrum 

with both oxygen K-edge and L3,2 edges of Mn of the same particle taken from narrow 

area of less than 20 nm diameter. In a first glance, it is absent the pre-edge of oxygen 

related to Mn-O hybridization in LuMnO3, Figure 6-11.a and Figure 6-13.a. The 5 peaks in 

the O-K edge of hausmannite in  Figure 6-14.b have relative intensity in close 

correspondence with the sequences of a1, a2, b, c and d peaks or the oa1, oa2, oa3, ob* 

and ob peaks of two other EELS studies of Mn3O4 [192,193]. 

The analysis of the intensity of EELS peaks is difficult as there are two sub-lattices for 

Mn2+ and Mn3+ in the inverse spinel structure of hausmannite which result in different 

environment of the Mn ions and their surrounding oxygen ions and may be seen in fine 

structure of the oxygen edge and split of L3 line of the Mn edge [177,192–194]. Values of 

the white line ratio of L-edges of Mn in Mn3O4 were reported in the literature as 

signature of the average oxidation state of Mn ions in the hausmannite [177]. The values 

of “white line” ratio evaluated by using Double Arctan method [195] implemented in 

Digital Micrograph suit in some other points inside the same particle  to stay between 

2.47 and 2.8 and the energy difference between L3 and L2 edges between 11.1 eV to 11.2 

eV. In the literature [175,177], the values white line ratio of 2.8 (0.2) were assigned to 

average oxidation state Mn ion of 2.67 for hausmannite the corresponding energy 

difference being 11.2(0.1) eV. Although data on white line ratio and energy difference 

determined from EELS spectra collected from the particle in Figure 6-14.a are close to 

values of the same parameters reported for Mn2O3 compound (2.4 (0.1) for white line 

ratio and 10.8(0.1) eV energy difference, respectively [177], the fine structure of oxygen 

edge excludes the Mn2O3 phase and can only be assigned to the hausmannite phase 

[192,193]. The explanation for the differences of the white-line ratio of this study and 

values reported for hausmannite in the bibliography have to sought hidden on the 
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microstructure of the phase as in TEM image of the particle of Figure 6-14.a with a fine 

texture which may affect the shape of Mn L-edges [174].  

 

6-3 Regularity of the atomic structure after extended annealing time 

 

6-3-1 Defects of the crystalline lattices after long time annealing 

 

In the XRD analysis in section 4-2-1 the dimensions of unit cell of the LuMnxO3± ceramics 

changed in a more regular way with x and present lesser dispersion of values after 5 

days and 10 days of annealing time. In parallel, the parameters of fitting of Curie-Weiss 

equation to the paramagnetic behaviour, the anomalous remnant magnetization between 

TC of hausmannite and TN of the main phase also presented improved repeatability and 

lesser scatter after extending the time of annealing of the samples. The aim of this last 

section of the chapter on TEM and STEM microscopy of the off-stoichiometric LuMnxO3± 

samples is to present indications of improvement of regularity of the crystalline lattices 

at the atomic and nanoscale in the samples with longer annealing time that may 

elucidate the observed improvement in properties. 

Figure 6-15 shows defects present in sample x=1.04 after 5 days annealing. They appear 

as lines of dislocations in a part of the image whereas the remaining area of particle 

looks defect free with a rather regular structure. This kind of line defect which has been 

observed in different samples under study occurs in localized areas, leaving the 

remaining of a large particle undisturbed. The dark field image of Figure 6-15.a was 

taken to detect dislocations along (001) zone axis. The image shows strain due to the 

presence of line dislocation blocking the expansion of FE domains. As image indicates the 

dislocations promote the bright (marked as 1) and dark (marked as 2) contrast around 

them which implies up and down polarization. Considering the contrast around line 
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dislocations of the DF image in Figure 6-15.a it can be concluded that even in a small 

scale uniform contrast exists in areas far apart from dislocations. However, right on the 

regions close to dislocations, contrast of DF image changes quickly in correspondence to 

the stress field around the dislocation core. It may even promote appearance of smaller 

FE domains in comparison to domain sizes in the remaining the image. 

The reaction of the lattice of the h-ErMnO3 to shear strain promoting the appearing of 

different patterns of APB/FE domains was already observed [56]. Single crystal YMnO3 

also shows different patterns of vortices like four state vortex patterns created in the 

lattice because of the presence of partial edge dislocations [59]. Such kind of domain 

pattern needs in atomic structure imaging to be observed and it is not visible in DF 

images.  

 The low magnification BF image in Figure 6-15.b shows that the dislocation line is a few 

hundred nanometers long. Figure 6-15.d is the enlargement from a small area around 

defects in dark field image of Figure 6-15.a. IFFT image in Figure 6-15.c of the image in 

Figure 6-15.d displays in a clear way the distortions of the atomic planes from the main 

spots of the FFT (and the only spots in the FFT). The planes of the Lu ions are clearer in 

right part of the IFFT image. This displacement definitely is accompanied by equal 

displacement in the Mn planes, which from this view are the positions of bipyramids. The 

IFFT and HRTEM images of the images shown in Figure 6-15.c and d give enlarged views 

at the 5 nm scale of the straining and inclination of the atomic planes in the distorted 

zone of the defect (Figure 6-15.e and f). Distortions in bipyramids can also be represent 

by tilting of bipyramids where the two atomic planes of Mn in this zone axis (between 

each pair of Lu atomic planes) are coming closer together or moving apart from each 

other, see model in Figure 6-8.b. Hence, it would be expected that the magnetic or 

dielectric properties of these materials are being affected by any distortion in the 

bipyramids caused by the strain around the dislocation lines. 
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Figure 6-15. (a) Dark field image of a particle of sample x=1.04 after 5 days annealing taken along (001) 

zone axis and (b)  dislocations in the same particle in BF image. (c) IFFT of the HRTEM image in (d) 

showing disordering of the lattice sapcing across the image. (d) HRTEM image of a defect in images (a) and 

(b). (e) IFFT and (f) lattice images of the defect presenting distortions in the bipyramids. 
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TEM images in Figure 6-16 are of two compositions, x=1.04 and x=0.92, after five days 

annealing and show the presence of line defects with different orientations. It is 

important to investigate the images of the (110) zone axis where ferroelectric domains 

coupled to topological defects can be distinguished. First image, Figure 6-16.a, displays 

one alignment of dislocation which were also observed in TEM images of the samples of 

only one day annealing. The lattice image of the dislocation in Figure 6-16.b exhibits the 

organized lattices at top of the image, whereas when entering the distorted region 

displays disordering on the atomic planes. 

This feature was already observed in this family of materials, pointing towards the effect 

of stress/strain or chemical inhomogeneity on forming stripes instead of vortex/anti-

vortex FE domains [58,59,157]. For sample x=0.92, which is in the opposite side of the 

solid stability limit of the LuMnxO3± solid solution, the stripe-like distortion along the 

linear defect is more pronounced.  The lattice image of a part of the stripe is shown in in 

Figure 6-16.d. The lattice image of the distorted region in in Figure 6-16.d reveals the 

existence of different structural domains, being separated by diffuse domain walls. Such 

diffuse domain wall in APB/FE domains were observed in Y0.67Lu0.33MnO3 single crystals 

[58]. In the present study this type of defect is not limited only to Mn-site vacancy 

samples, as it also appeared and more often on R-site vacant samples. In addition, doping 

YMnO3 with Ti indicates that after a certain concentration of doping, the displacements of 

the Y ions in APB/FE domains can be reduced to values that switch the polar mode to 

non-polar mode, again highlighting the role of chemistry on atomic structure and 

properties of the h-RMnO3 materials [160]. 
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Figure 6-16. TEM images taken along (110) zone axis of sample x=1.04, 5 days annealing: (a) Low 

resolution image with one alignment of dislocations forming a low angle boundary. (b) Dark field image of 

the lattice in the region of image (a) where the aligned dislocations are observed. TEM images from sample 

x= 0.92, 5 days annealing: (c) DF image of a long linear defect like a dislocation.  (d) In HRTEM image there 

are regions out of registry due to distortion. DF images were taken by slightly tilting the sample away from 

the (110) zone axis to enhance the contrast of the defects.  
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6-3-2 Ferroelectricity from STEM observations 

 

To overcome the limitation of resolution of the available in-house electron microscope 

access was granted under collaborative research to the Cs-corrected STEM in Fritz Haber 

Institute, Berlin, to observe the displacements of Lu ions in one off-stoichiometric 

sample. The sample with composition x=1.04, 5 days annealing, at the upper stability 

limit of the LuMnxO3± solid solution was selected. The image in Figure 6-17.a was taken 

in STEM mode using HAADF detector with the electron beam parallel to the (110) zone 

axis. The observed displacements of the Lu ions correspond to electrical polarization 

pointing downward. The image in Figure 6-17.b is the enlarged view of part of the image 

in Figure 6-17.a. The downward polarization of the FE is general no just in Figure 6-17.b 

and c but also in the total area in Figure 6-17.a. with no indication of APB/FE domain 

walls or switching of the polarization. It is concluded from this observation that the FE 

domains must be above 20 nm in size.  

Figure 6-17.c taken from another part of the same particle close to the area in previous 

image exhibiting again the same downward polarization of the Lu ions of Figure 6-17.c. 

The corresponding IFFT image in Figure 6-17.d reconstructed from FFT spots of the 

whole image, after noise subtraction, gives a better resolved view of the displacement of 

Lu ions. It can further be deduced that the fundamental mechanism of FE polarization of 

the h-LuMnO3 phase remains active in samples with Mn-excess up to the solid stability 

limit and was not diminished by the change in chemical composition. 
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Figure 6-17. HAADF-STEM image of sample LuMn1.04O3±δ of 5 days annealing time, [110] zone axis.  (a) 

Large area with single direction of FE polarization as determined from displacement of Lu ions. (b) 

Enlarged image taken from lower left corner of a).  (c) Enlarged image of a second area of the same particle 

close to a.  (d)  IFFT of the image of (c). 
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6-3-3 Lattice distortion, oxidation state of Mn after long time annealing 

 

The TEM observation of some particles in this study showed high density of dislocations 

which causes strain with local disordering in the atomic arrangement of the Mn ions in 

basal plane. In the investigation of the magnetic behaviour of these samples, spin-glass 

like dynamics was observed as a function of Mn/Lu ratio, extended from TN to 5 K the 

lowest measured temperature, section 5-3-1. Field dependent magnetization, 

complementary to the measured temperature dependent magnetization also indicates 

irreversibility below TN, with maximum of magnetic remanence and coercive field 

around 30 K, section 5-3-4. The same holds for the dielectric response of the samples 

measured for x≥1, below TN, with a maximum around 30 K showing polaron like thermal 

behaviour, to be discussed in last Chapter 7. The enigmatic weak magnetization in the 

AFM matrixes of h-RMnO3 oxides, as recently calculated, was assigned to the magnetic 

interaction occurring in the domain walls of APB/FE domains [9,10,16,43,48,79,99]. It is 

argued that symmetry breaking on APB/FE domain walls allows net magnetization along 

c-axis, also known as asymmetric Dzyaloshinskii – Moriya interaction, commonly found 

in geometrically frustrated magnetic systems [196,197]. In addition, atomic scale images 

and theoretical calculations of topological defects (APB/FE domain walls) progresses in 

explaining the findings in properties like net magnetization besides of AFM of basal plane 

interaction in h/o-RMnO3 stoichiometric or off-stoichiometric materials 

[63,66,76,98,198]. The relevant point here of these studies to the current study is the 

mutual relation of the structural distortions on internal interfaces of particles or inside 

single crystals and ferroelectric and magnetic properties.  

Following the methodology of the Mn L3,2-edge “white-line” ratio to determine Mn 

oxidation state from EELS spectra applied in sections 6.2.2 and 6.2.3 above, given 

samples form 5 days annealing times were selected for characterization by EELS.  The 

corresponding results of calculation of the L3/L2 ratio using atan fitting for both peaks of 

L3 and L2 [195] are given in Figure 6-12.b above. In comparison to the first set of samples 
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with one day annealing time, longer annealing time gives rise to less diversity on the 

extracted values of the Mn oxidation state inside the crystalline grains of the main phase.  

As in the first set of samples, no clear deviation of Mn oxidation state from 3+ was found 

for the five day annealed samples. It is important to analyse some points about the 

method being followed. The white line ratio shows slight deviation from right value of 3+ 

which may be due to inaccuracy in fitting of the profiles of the L2,3 lines in the present 

calculations [179]. Two other factors must also be considered. In the present study EELS 

analysis was done in TEM mode using high magnification, usually in an area of 5 nm side, 

which does not allow site-sensitive analysis. Atom site sensitive EELS can only be done in 

STEM. Assuming 4% Mn-vacancies in sample composition is equivalent to one Mn3+ ion 

out of 24 Mn3+ ions be missing in a supercell of 2x2x1. This supercell is the analogous of a 

unit cell with 1.2 nm a-constant in basal plane. Therefore, if Mn or Lu vacancies have 

been uniformly distributed as point defects at such levels of concentration or below, 

sensitivity of the EELS technique to vacancies would be too low and will not be enough to 

detect it. Second, the crystal field environment of Mn will affect L3 and L2 edges and may 

bring some change to white line ratio [174,175,182]. Our TEM images have revealed the 

presence of dislocations on the walls of the structural domains where we do not expect 

ideal unit cell and atomic arrangements of the ions in LuMnO3 structure. As was shown 

in case of TbMnO3 [99], the matter also needs better resolution in EELS spectroscopy 

than that the one can be provided, 0.9±0.1 eV resolution, of the -filter of the TEM 

microscope. 

Dark field images of this study in relevant zone axes to display the ferroelectric domains 

showed that there are vortex/anti-vortex states at the nano-scale which may result in 

net magnetization on the domain walls of internal interfaces or in the core of dislocations 

observed in the particles. The density of structural nanodomains and APB/FE domain 

wall patterns in polycrystalline materials is of difficult assessment in semi-quantitative 

way by electron microscopy methods. It may be supposedly assumed as the parameter 

which controls the magnetization strength either via variation by expansion/retraction 
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of the unit cells on the defective regions or through modification in arrangements of 

spins if symmetry changed there. The values of L3,2 Mn-edge “white line” ratio did not 

provide evidence of the presence of Mn2+ or Mn4+ ions in the lattice of LuMnxO3± solid 

solution which would modify the nature of magnetic interactions between Mn ions in the 

structure of  crystalline grains. Also, low fraction of Mn3O4 secondary phase detected in 

samples inside the range of solid solubility in this study can explain the weak 

magnetization measured below its Curie temperature of TC43 K but cannot produce the 

remnant magnetization observed well above 43 K in M-H measurements, as it is 

observed until 80 K. This general assumption is not free of questioning in view of results 

that showed residual magnetization and exchange bias fields above TC of the FiM phase 

in AFM/FiM binary pairs in the form of core-shell nanoparticles and mechanical mixture 

of powders where Mn3O4 is the FiM phase [90,199]. The crystal field environment of 

Mn3+ however would show dependency on the value of x in off-stoichiometric samples, 

given by DOS calculations and the pre-edge profile in O K-edge of EELS spectra, 

generated by defects in the crystalline lattice from different processes of vacancy doping.  

However, not all nanodomains in the samples under study are necessarily APB/FE 

coupled domains, particularly when dealing with off-stoichiometric structures, A-site or 

B-site vacancy doped [18,23,89]. That can be the case of the image of sample x=0.92 in 

Figure 6-18. The particle shows net contrast fluctuation across the image. The similar 

picture was taken for La0.66MnO3 particles [110]. In either LuMn0.92O3 or La0.66O3 cases, 

defects like anti-phase boundaries and secondary phases of Lu2O3 in former case and of 

Mn3O4 in later exist inside the particles. Thin films of the DyMn0.94O3 and ErMn0.96O3 also 

show inclusions of Y2O3 and Er2O3 respectively; whereas Mn3O4 secondary phase was 

observed only for DyMn1.56O3. Thin films with composition in the remaining range of Mn-

rich compositions did not show up Mn3O4 secondary phase [18]. Not only in off-

stoichiometric films, but also in stoichiometric thin films of YMnO3 the presence of Y2O3 

nano-precipitates was noticed [163,165], which can serve the argument that effective 

Mn/Y ratio would be lower than unity in the starting composition of the amorphous 

layers.  
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Figure 6-18. (a) Dark field image of a region of sample LuMn0.92O3±δ, one day annealing, with contrast 

fluctuation across the particle, defects like APB and nano-clusters of defects are thought to be responsible 

for the contrast change. (b) High magnification of the same area with fine inclusions inside the crystalline 

lattice of the LuMn0.92O3±δ particle.  
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Microscopy studies in the current work indicate the existence of the nano-structures and 

dislocations, planar defects like APB or twinning planes with slight changes from R-site 

vacant to Mn-site vacant samples. Generally Lu-vacant samples show smaller structural 

domains and more interfaces. For x=0.92 composition wider nanodomains are observed, 

but the distortion on the domain walls cover more unit cells, mostly partial edge 

dislocations which are extended. It is known that microstructure and defects modify the 

regular magnetic behaviour of the materials like the exchange bias, section 5-4 [65,200]. 

The objective of identifying the magnetic signature of each type of defect and the role 

they may have on magnetoelectric coupling and dielectric polarization has large 

complexity and remains mostly inaccessible [201]. The objective is even further away 

when dealing with complex nanostructure bulk polycrystalline h-RMnO3 materials and 

the several types of extended defects revealed by detailed studies with HRTEM and the 

best HAADF-STEM instruments. To this point, the microscopic study helped to assess the 

role of hausmannite as an impurity and in identifying its signature in the magnetization 

of the LuMnxO3± solid solution. Other features of this solid solution present magnet 

signatures that were tentatively decoded here as well in other studies before this one. 

Finding the causal links between those magnetic signatures and the features of 

microstructure being analysed with atomic detail is outside the present state of 

knowledge and can only be attempted as exploratory exercises. 

In the HAADF-STEM image in [110] zone axis in Figure 6-19.a from sample LuMn0.96O3±δ 

annealed for 5 days (taken using the FEI Titan Cs/probe corrected microscope with 200 

kV, by courtesy of the International Iberian Nanotechnology Laboratory- INL, Braga, 

Portugal) the displacements of Lu ions are well resolved and show upward polarization. 

The EDS map of Mn from the same part of image is shown Figure 6-19.b. The Mn ions fill 

in the crystalline rows of weaker contrast between the rows of Lu ions, in accordance in 

the crystalline structure of LuMnO3 phase. All parts of the particle where polarization 

was analysed exhibit the same upwards FE polarization. Looking through different parts 

of the same image, Figure 6-19.c, evidence was found of a boundary separating the 

regular hexagonal phase with P63cm symmetry (on the left) from a modification or 
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distortion of this phase (on the right) with an inclination of the c-axis of approximate 2 

in relation to its regular direction orthogonal to the a-b plane. The yellow lines in 

Figure 6-19.c indicate one FE period of the Lu-displacement and are perpendicular to the 

a-b planes. The white line on the right gives the direction of the origin of the same FE 

phase period as one goes to the right. It meets one of the yellow lines in the middle of the 

image at a point where a boundary plane parallel to the a-b planes separates the regular 

hexagonal LuMnO3 lattice (left) from the distorted hexagonal-like crystalline lattice 

(right) with 90, =87.7 , and =120.  

The end of the lines on the right indicates the position of the vertical plane where the 

crystalline lattice returns to the regular hexagonal alignment, the distorted hexagonal 

phase presenting a width of 4c0. The total displacement of the regular lattice on the right 

in relation to the regular lattice on the left is given by the partial ribbon dislocation of 

Burger vector, 𝑏𝑝
⃗⃗⃗⃗ ≅ 1 6⁄ [11̅0], the total width of the partial ribbon dislocation being 4c0 

[202]. The low angle of the inclination of c-axis in the distorted area of Figure 6-19.c has 

analogy with the low angle tilt in the atomic planes described above in Figure 6-10.a. 

By continuing the examination of the same sample a defective area including stacking 

faults was found which deserved additional attention. The analysis of images taken from 

defective region reveals that FE polarization direction given by the displacement of Lu 

ions switches from upward to downward at several places. In region 1 in Figure 6-20.a 

middle right of this figure, there are a-b planes of Lu ions with two opposite directions of 

polarization, the planes being facing each other (marked by arrows). The distance 

between these Lu planes of different polarization does not give room for any Mn plane 

between them.  Also the image in that specific region does not produce the same contrast 

of Mn planes as in non-defective regions. The modification of the atom arrangements in 

this region is associated to the stacking fault which roughly removed one Mn-O layer. 

The loss of Mn plane with the connected planar oxygen ions may be the driving force for 

the new atomic structure which is tentatively explained in detail below. The loss of the 

Mn plane corresponds to elimination of Mn-vacancies in excess dissolved in the lattice, 
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and some of the Lu in excess is fixed in the new atomic structure. The topology breaking 

role of oxygen vacancies on introducing new patterns of APB/FE domains besides of the 

6-fold vortices was recently demonstrated in h-RMnO3 single crystals and resulted in the 

presence of 4 vortex/anti-vortex patterns, or of core fragmentation and stripe patterning 

[60,162,203,204]. 

 

Figure 6-19. (a) HAADF-STEM image of lattice of LuMn0.96O3±δ taken along (110) zone axis. (b) EDS 

mapping of the Mn ions overlaid on the image. (c) One (001) boundary plane separates the regular 

hexagonal LuMnO3 lattice (left) from distorted hexagonal crystalline lattice (right) with 90, =87.7 

and =120 (partial ribbon dislocation, [202]). 
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In region 2 of Figure 6-20.b there is another FE domain with downward polarization 

with the size of few unit cells. The auxiliary scale in this image gives a way to determine 

the phase shift of the two FE domains [58]. Switching of polarization occurs on number 

46 on the scale from up (right) to down (left) and corresponds to a type I APB/FE 

domain wall [161]. Scale on the image indicates α+ FE domain in left and γ- FE domain 

on right of the domain wall. Switching of polarization is also observed on the edge of the 

sample (not shown here, located on left side of region in Figure 6-20.c). Therefore from 

left to right of the defective region the phase shift of FE domains are: β-  α+ γ-.  

The defect was also analysed by EDS line mapping in order to get any evidence on shifts 

in the concentration of Mn, Lu or O ions, as shown in Figure 6-20.d and e. The line EDS 

taken along line marked in Figure 6-20.c gives fast change of the net Mn/Lu ratio of the 

elements in the defective region. Although the EDS analysis here may not transfer the 

accurate change of the Mn and Lu concentrations along each atomic plane, using probe 

corrected electron beam we can look at the change of the Mn and Lu in a wider range. As 

shown in Figure 6-20.d and e, after smoothing the EDS data using Adjacent-averaging 

method (15 points per window) in Origin Pro 9 the irregular change appears on the 

defective region (marked as hatched area), the average drop comes for Mn rather than 

Lu more visibly.  

Figure 6-20.f presents the enlarged view of window marked with yellow line on left of 

Figure 6-20.a. The observed structure of modified sequence of atomic planes in 

Figure 6-20.a and b represents a stacking fault with displacement of atomic planes 

parallel to c-axis corresponding to the partial dislocation with Burger vector, 

𝑏𝑝
⃗⃗⃗⃗ = 1 6⁄ [001]. The atomic structure of this planar defect is different from the main 

phase but retains elements of the LuMnO3 crystalline lattice. The new stacking of planes 

is formed along c-axis by a triple-layer of pairs of Lu planes with mutual cancelation of 

their FE polarization. The yellow dashed vertical lines in this figure are eye guides 

indicating preservation of FE phase at the bottom (negative) and /3 phase shift with 

reversal of FE polarization at the top (positive). The limits of triple layer of the planar 
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defect are marked by the dashed red line. The triple layer creates a new 2D phase just 

1.91 nm tick inside the crystal of the h-LuMnO3 phase [99]. The simulated crystalline 

structure of this new 2D phase overlaid on the HAADF-STEM image in Figure 6-20.f 

results from two operations, the reflection on the (001) of the mother structure of 

LuMnO3 with P63cm symmetry is followed by translation of the reflected structure 

parallel to c-axis with translation vector given by the partial dislocation 𝑏𝑝
⃗⃗⃗⃗ = 1 6⁄ [001] 

of the stacking fault. The new crystalline structure is the reunion of the parent structure 

with the reflected-and-translated structure. It would retain the hexagonal P63cm 

symmetry group of the LuMnO3 parent phase. But, the real structure of the 2D layered 

phase as seen from the [110] zone axis much have a much more complex crystalline cell 

than suggested by this only view.  Inspection of distances between atomic positions from 

other views of the modelled cell indicates that contact and overlapping of ions in the 

structure of the new cell is unavoidable when they are represented with full values of 

their ionic radii. At first sight that would be solved if the two blocks of the crystalline cell 

with relative orientation as described build a regular stacking of alternate layers forming 

a superlattice with the given width or if that part of the image as seen results from 

overlapping of two blocks of the original P63cm structure, with relative orientation and 

displacement as described above.  

A partial dislocation with Burger vector parallel to c-axis of the same modulus as 

𝑏𝑝
⃗⃗⃗⃗ = 1 6⁄ [001] and total width ≈ 2|[11̅0]| was reported as the displacement at the 

antiphase boundary in h-DyMnO3 thin films deposited by MOCVD on ZrO2(Y2O3) created 

at the film/substrate by a monolayer atomic step of the substrate surface [116]. The 

antiphase boundary becomes the sub-grain boundary separating two crystalline 

domains. Away from the film/substrate interface the antiphase boundary is extinguished 

by the creation of the stacking fault relaxing the strain in the lattice. 

The idealized model there presented to describe the stacking sequence at the anti-phase 

boundary and in the same way at the corresponding stacking fault shows that the plane 

of apical oxygen moves to the position of the next basal plane, the displacement along c-
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axis being given by 𝑏𝑝
⃗⃗⃗⃗  above. This idealized model inspired the interpretation of the new 

2-D phase in Figure 6-20.f and of the associated partial dislocation and served it with 

accuracy. The planar defect in in Figure 6-20.f is associated to the change of polarity and 

/3 phase of the FE domains contacting with it. Hence it plays the role of a single APB/FE 

wall although it extends over 6 Lu-layers and not just the one Lu-Lu distance or the two 

Lu-Lu-Lu distance of type A and type B of the APB/FE walls, respectively, described for 

the 6-fold topology of FE domains of the h-RMnO3 lattices. 

Although the present study does not have the tools to disclose the chemical shifts in 

vacancies of oxygen in defective regions, there are several causes which affect the FE 

domain walls like the already mentioned oxygen vacancies, shifts in chemical 

composition like in Y0.67Lu0.33MnO3 [58] single crystals and InMnxGa1-xO3 poly-crystals 

[57] which showed different pictures of APB/FE domain walls, or even stress/strain in 

the lattice which converts vortex/anti-vortex patterns to stripes [56]. The present study 

reveals that the interaction of topological defects not just with vacancies but also with 

extended defects forming atom clusters, nano-inclusions, stacking faults and extended 

partial dislocations may result in new features of vortex/anti-vortex patterns which still 

have not been explored. 
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Figure 6-20. (a) and (b) show two different regions of a defective lattice of sample x=0.96 containing 

stacking faults in image (c ). In (a) at the right, up part of defect in (c) there are 3 visible planes of Lu ions 

with downward polarization (shown by arrow). In (b) at the left, down part of defect in (c) there are two 

opposite polarizations indicating two ferroelectric domains. The scale in image (b) is used to identify the 

phase shift of two FE domains. (c) Line drawn across defective region to take EDS, (d) Lu line EDS profile 

(green) and e) line profiles of Mn (red) across the line in (c) after their data being smoothed. (f) Enlarged 

view of the window marked on left of (a) with a stacking fault 𝑏𝑝
⃗⃗⃗⃗ = 1 6⁄ [001] formed by the triple-layer 

structure of pairs of Lu planes with mutual cancelation of FE polarization, dashed vertical lines in yellow 

are eye guides indicating preservation of FE phase at the bottom (negative) and phase shift of /3 with 

reversal of FE polarization at the top (positive), Lu3+ ion (yellow), Mn3+ ion (purple), O2- ion hidden; the 

new 2D-phase is delimited by the box of the dashed-red line 

f
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The promising magneto-electric coupling of the multiferroic h-RMnO3 oxides were first 

noticed to hide interesting physics and chemistry behind of coupling of the spin ordering 

and dipole polarization when the sample goes to the AFM region [35]. During years it 

was matter of extensive studies to understand the underlying physics of this kind of 

coupling which happens exactly at Neel ordering transition. Further research 

immediately explored that the coupling also extended to ferroelectric domains existing 

below paraelectric-to-ferroelectric PE/FE transition at high temperatures [9,48].  As it 

was discussed in Chapter 2, the existence of both ferroelectric and AFM domains were 

experimentally and theoretically proven. Since then there has been large research 

around this kind of coupling and ways to tune or modify it. In this chapter, one looks for 

both dipole polarization coupled to magnetic behaviour by measuring the dielectric 

constant at low temperature. In addition, Piezo Force Microscopy (PFM) was proven as a 

powerful tool of research on the area of ferroelectric domains by disclosing the variation 

of the ferroelectric domains from one composition to another one and the effect of 

sample preparation methods. Due to lack of access to temperature dependant PFM 

facilities, the present study is restricted to room temperature measurements. 

 

7-1 Study of dielectric behaviour of off-stoichiometric ceramics  

 

The dielectric constant  which represents the electric dipole moment for a given 

intensity of the applied electric field, usually determined in a wide range of frequencies, 

is an important tool of research to study the magneto-electric coupling phenomena in 
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multiferroic oxides [27]. Measurements of the dielectric constant have been done from 

very low temperatures up to PE transition temperature of h-RMnO3 oxides, each realm of 

temperature had helped on understanding of some properties of these materials. In this 

PhD work the focus has been on low temperature part of the behaviour of off-

stoichiometric LuMnxO3±δ, due either to ease of access to available equipment or strong 

emphasis of the work on magnetic behaviour around Neel ordering transition and below 

TN. 

 

7-1-1 Dielectric constant of Mn-rich samples 

 

Magnetic studies of off-stoichiometric samples in Chapter 5, section 5-3 after one day 

annealing have shown that there is enhancement of the magnetic susceptibility signals 

by increasing Mn content above the x=1 stoichiometric composition. Although the 

impurity phase hausmannite presents a transition at 43 K, comparing the results of short 

time and long-time annealing in temperature dependent measurements of coercivity and 

remnant magnetization showed a transition at 30 K likely due to spin reorientation also 

observed for some other h-RMnO3 materials [27].These experimental observations and 

searching for magneto-electric coupling mostly on x≥1 side, are the driving force for 

performing the dielectric measurements reported in this section. It should be mentioned 

that since hausmannite does not show dielectric transitions like those of LuMnO3, this 

experiment can also clarify some of ambiguities of the magnetic measurement results if 

they originate from hausmannite secondary phase or the LuMnO3 matrix.  

 The dependence of the complex dielectric constant ɛ* on temperature from 10 K to room 

temperature is assessed here both to clarify if the magnetic transitions already described 

also resulted in changes of dielectric polarization [2,30] and in searching for changes of 

spin-phonon coupling and domain wall switching in off-stoichiometry LuMnxO3±δ 

samples [67,205,206]. Figure 7-1.a shows the temperature dependence of the dielectric 
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constant, ɛ´(T), of samples with x = 1.00, 1.04 and 1.08 measured at 1 MHz. The T 

derivative of ɛ´(T) of sample with x = 1.04 in the range 100 kHz to 1 MHz, is given in 

Figure 7-1.b. The main drop of ɛ´(T) of three LuMnxO3±δ samples at TN coupled to the 

AFM ordering of the magnetic moments is clearly apparent in Figure 7-1. The derivative 

of the dielectric constant indicates that the transition at TN is athermal, not dependent on 

the frequency. Although called TN in this context, transition in dielectric constant is 

commonly denoted as T*N, which may have slight change from TN value extracted from 

magnetic measurements [77].  

 

 

Figure 7-1. Temperature dependence of dielectric constant, ε´(T), of selected LuMnxO3± samples with x = 

1.00, 1.04 and 1.08 at 1 MHz evidencing the drop of the dielectric constant ε´ at T*
N. The right side of image 

is the first derivative of the dielectric constant (´(T)) at some frequencies, showing independency of the 

transition to the frequency. 
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Figure 7-2.a and b compare the transition points with temperature of two different 

physical properties, inverse of the magnetic susceptibility measured by SQUID under 100 

Oe external field and the dielectric constant as given in Figure 7-1 for sample x=1.08. 

Although, the value of Neel ordering transition from measurements of the magnetic 

susceptibility and dielectric constant is not always equal [117], within the experiment 

error of techniques they match within 1 K or 2 K difference. Besides the clear Neel 

ordering transition around 90 K, a second transition below 90 K is obvious in Figure 7-2, 

which may be caused by spin reorientation also proved to induce change in dielectric 

polarization [205]. These two observed transitions of two different physical properties 

points to the magneto-electric effect not only at Neel ordering transition, but also below 

this temperature in LuMnO3. 

The same behaviour of sample x=1.04 can be also observed for sample x=1.08. Besides 

the transition of ɛ´(T) with maximum of the derivative at T1max = 89 K  TN, Figure 7-3.a, 

the derivative of ɛ´(T) of sample LuMn1.08O3±δ also indicates two other transitions: the 

one starting at 80 K which is broad and has the maximum of the derivative ɛ´(T) at T2max 

= 69 K and another at lower temperature with the maximum of the derivative ɛ´(T) at 

T3max = 31 K. Analogous anomaly of the dielectric constant coupled to a transition of the 

magnetic susceptibility was early observed in YMnO3 polycrystalline samples also 

prepared by the solid state route of this study at a relative temperature similar to the 

T2max/TN ratio above [35,47]. The transition of ɛ´(T) at T1max  TN closely coincides with 

the observed transitions in the magnetic susceptibility of the same sample. The two 

other transition temperatures T2max = 69 K and T3max = 31 K are seen on the second 

derivative of the magnetic susceptibility (not shown) of the same sample in Chapter 5, 

section 5-3, respectively. 
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Figure 7-2.Inverse of magnetic susceptibility for sample with Mn excess (x=1.08) (a) and dielectric 

constant at high frequency (b) both indicate transitions around 90 K and 70-80 K, also a knee in dielectric 

and rarely in magnetic measurements above Neel transition temperature but at different temperatures.  
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The temperature dependence of the imaginary part of permittivity, ɛ´´(T), of sample 

LuMn1.08O3±δ determined in 11.2 kHz to 1 MHz frequency range is shown in Figure 7-3.b. 

The derivative of ɛ´(T) of sample LuMn1.08O3±δ in the transitions at T1max  TN and T2max 

for the different frequencies of the given range in Figure 7-3.a exhibit inverse S-shape 

anomaly, not just when the sample entered AFM magnetic ordering region but also 

below TN like sample x=1.04 or x=1.00, which is seen as indication of coupling of the 

magnetic order and dielectric constant [47]. At all frequencies of the dielectric 

measurements the derivative of ɛ′(T) does not show any frequency dependency for the 

main peaks of two transitions at TN and 69 K; hence these transitions are linked to 

athermal mechanisms of polarization. However the transition observed in ɛ´(T) at 

temperature T3max is neatly dependent on frequency, Figure 7-3.a.  

The imaginary part of permittivity ɛ´´ of all measured samples shows a near Debye 

relation with a maximum of ɛ´´. The dependency of T3max on frequency, shown in 

Figure 7-3.b for sample LuMn1.08O3±δ, signals the thermally activated nature of the 

dielectric relaxation mechanism of this low temperature anomaly of the dielectric 

behaviour. The shift of temperature of the peak with frequency in Figure 7-3.b can be 

traced from 18 K to 31 K corresponding to the frequencies of 50 kHz and 1 MHz, 

respectively. At frequencies below 50 kHz this peak becomes too faint to be 

distinguished from the noise of the measurements. For sample with x = 1.00, it was 

observed only for frequencies above 100 kHz. The temperature range (18-31 K) of this 

anomaly of the complex dielectric constant, ε*(T), of LuMnxO3±δ overlaps with the 

temperature of an analogous anomaly of both the real and imaginary components of 

ε*(T) centred at 23 K reported for the p-Eu1-ξLuξMnO3 solid solution in the range 0  ξ 

0.20, this phase retaining the RMnO3 perovskite crystalline structure until ξ reaches the 

limit ξ = 0.30 and converting to the hexagonal symmetry above this threshold [206,207]. 

 



Dielectric constant, magneto-electric coupling and ferroelectricity  

215 
 

 

Figure 7-3. (a) Temperature derivative of the dielectric constant ε´(T) at different frequencies for the 

sample LuMn1.08O3± indicating frequency independent peaks at 89 K and 69 K and a frequency dependent 

transition around 31 K. (b) Imaginary part of the permittivity ε´´(T) of same sample LuMn1.08O3± exhibiting 

the frequency dependence of the transition temperature of the transition observed around 31 K, inset with 

the Arrhenius plot of the relaxation time τ of the same anomaly of the imaginary part of the permittivity 

[91]. 
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The inset in Figure 7-3.b gives the Arrhenius plot of the relaxation time τ of this anomaly 

of the dielectric constant of sample LuMn1.08O3±δ, a thermally activated mechanism 

where τ relaxation time is given by τ(T) = τ0 exp[U/kBT], U is the hopping energy, kB the 

Boltzmann constant, τ = 1/f, f being frequency of the dielectric measurement and               

T = T3max is the temperature at the maximum of ɛ´´. The increasing of the temperature of 

this maximum of ɛ´´ as the frequency rises to 1 MHz implies that faster switching of the 

dielectric dipoles demands higher thermal energy, the time dependent response of the 

dielectric dipoles existing inside the ferroelectric domains delaying the response to the 

applied a.c. electric field.  The line in Figure 7-3.b represents the fit to Arrhenius law and 

yields the following values of the parameters of the dielectric relaxation: U = 12 meV and 

τ0 = 12.5 ns. The present values reasonably match the corresponding values of the 

parameters of the polaron hopping mechanism of dielectric relaxation observed in the 

temperature range 75 – 150 K for Sr0.97(Ti0.80Fe0.20)O3- sintered samples, with U = 60 

meV and τ0 = 30 ns [208] , as well as in the p-Eu1-ξLuξMnO3 solid solution with 0.10  ξ 

0.20 in the temperature range 50 – 90 K, where U = 24 meV and 25  τ0  55 ns [207] . 

The low temperature behaviour of the LuMnxO3±δ samples (x ≥ 1) and the values of τ0 and 

U calculated accordingly to the equation of thermally activation of dielectric relaxation 

by polaron hoping [208,209], point to the presence of the polaron hopping as causes the 

frequency dependant anomaly in dielectric measurements, the effect becoming stronger 

as x increases. 

 

7-1-2 Effect of annealing time on dielectric constant 

 

The effect of increasing annealing time on properties such as elimination of porosity by 

sintering, grain growth or magnetic behaviour of off-stoichiometric samples confirmed 

that these as well other properties coupled to them could also be modified by extending 

the time of the high temperature processing step. The dielectric constant of h-RMnO3 

materials is coupled to the magnetic transitions [27]. The effect of sintering time on the 
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dielectric properties of the off-stoichiometric samples and magneto-dielectric coupling is 

investigated in this section. Figure 7-4.a gives the real part of the dielectric constant, ´, 

as a function of T in the range 10-200 K, for selected samples of three compositions in 

the composition range under study, x=0.92, x=1.00 and x=1.04. All three samples were 

sintered for 5 days. The x=0.92 composition was included in this set of 5 days annealed 

samples because the lattice parameters of this sample of the XRD refinement yield the 

lowest value of 2, the sum of residuals, in Table 4-2 and hence it would be more reliable 

to say that the disordering inside lattice would play a smaller role here in comparison 

with the sample of same composition annealed only for 1 day.  As the samples of 1 day 

annealing in Figure 7-1.a, all three samples in Figure 7-4.a clearly show the transition of 

the dielectric constant coupled to AFM ordering at temperatures very close to 90 K.  

The first T derivative of ´of x=1.00 and x=0.92 samples in Figure 7-4.b and c, 

respectively, retrieves values of T at the maximum of 88 K and 89 K, these values being 

very close to 90 K, almost coincident with the Neel ordering transition in magnetic 

measurements,  Figure 5-9. As in Figure 7-4.a, a second transition below 90 K is also 

recorded here, being more prominent for the x=0.92 sample with the maximum of 

d´/dT at 75 K, Figure 7-4.c, but still noticed in the x=1.04 sample as an ill-defined broad 

transition in the temperature range 70-78 K in Figure 7-4.a. Neither in the T derivative of 

´ nor in the imaginary part of permittivity, ´´, could evidence of this second transition 

or anomaly below TN be found in the x=1.00 sample. This second transition has no 

correspondence with any transition that could be detected in magnetic susceptibility 

measurements of the same samples in Chapter 5,  Figure 5-9. A transition of spin 

ordering symmetry detected by optical second harmonic spectroscopy from P63cm to the 

P63 magnetic symmetry was early reported to occur at T60 K in LuMnO3 [145]. The 

effect of spin reorientation in the antiferromagnetic structure below TN was claimed to 

induce strong dielectric polarization variation under applied magnetic field in HoMnO3, 

ErMnO3 and YMnO3 field [27]. This same reference confirmed that there are two 

transitions visible in dielectric constant below TN, the corresponding transition 

temperatures changing with the magnitude of the applied magnetic field. One may expect 
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that transitions or anomalies of the dielectric constant below TN in the present 

measurements have the same origin as in those h-RMnO3 materials and are not 

necessarily seen in measurements of the magnetic susceptibility, although some of them 

appeared in the measurements of the magnetic moment once the applied magnetic field 

reached few thousand Oe [27]. The symmetrical presence of this second transition below 

TN in the x=0.92 and x=1.04 samples could be interpreted as the effect of vacancy doping 

on the dielectric behavior of the crystalline lattice which may provoke distortion or 

perhaps provide regions (nanodomains or interfaces) of inhomogeneity in the structure 

and chemical composition which force the spin configurations of Mn3+ ions to change 

with temperature. 

As in samples of one day annealing time in Figure 7-1 and Figure 7-3, the determination 

of  with different frequencies confirmed that the anomaly of ´associated to TN and the 

second transition of the same property observed below TN in the samples of longer 

annealing time, 5 days, in Figure 7-4. are athermal. In the same way as in samples of 1 

day annealing, the anomaly ´ observed at temperatures below 35 K in the x=0.92 sample 

of 5 day annealing in Figure 7-4.c is frequency dependent and thermally activated. The 

corresponding Arrhenius plot of the frequency as function of inverse of temperature at 

the local maximum of ´´ in Figure 7-4.d reveals ranges with slightly different values of 

activation energy. The range of frequencies where the linear fitting on the data can be 

applied is limited to frequencies above 10 kHz. The same analysis of data from the 

x=1.00 and x=1.04 samples did not show any visible peak in this range of temperature 

below 35 K, neither in real part nor in the imaginary part of the permittivity. The fitting 

of the Arrhenius equation to the data in the high frequency range, in Figure 7-4.d, yields 

18.6 meV for the activation energy, close to the corresponding value of 12 meV obtained 

for the relaxation time of ´´ for Mn-rich samples of one day annealed in inset of 

Figure 7-3.b.  
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Figure 7-4. (a) The dielectric constant as a function of temperature for two compositions, x=0.92 and 

x=1.00 after 5 days annealing time, measured at 1 MHz frequency. (b) and (c) The first derivative of the 

dielectric constant for two compositions showing the Neel ordering transitions, another transition below 

90 K and low temperature anomaly for x=0.92. (d) The thermal evolution of the dynamics of the anomaly 

at temperature range of 18 K to 30 K observed for x=0.92. 

 

The lacking of the second transition below TN in x=1.00 sample and of the low 

temperature peak in x=1.00 and x=1.04 samples of 5 day annealing may carry relevant 

information. From Rietveld refinement of XRD data in Table 4-1, Table 4-2 and Table 4-3 
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Chapter 4, it can be seen that the evolution of lattice parameters of samples with 1 day 

and 5 days annealing show large differences. Not just is the scatter in data of the longer 

annealing time lesser, but also the lattice parameters a-axis and cell volume come to a 

sort of stability (linear plateau) for x≥1.04. This value can be set as the stability limit of 

the LuMnxO3± solid solution [91]. The same could not be found for x<1 side with 5 days 

of annealing time. Only by duplicating the annealing time to 10 days, the equivalent 

plateau appeared for x<0.96. An analogous behaviour can be set from difference in the 

evolution of the residual 2 of the Rietveld refinement with annealing time in one side 

and another of the stoichiometry shift in the composition of the samples. As disorder 

inside the lattice cell affects the convergence of XRD Rietveld refinement such disorder is 

reduced when the annealing time is extended to five days, but more on the x>1 side. On 

the contrary, the Mn vacancy doped branch of the solid solution required even longer 

annealing times to get stability and properly ordered crystalline lattices. Within the 

limits of such inference the analysis of the dielectric constant would suggest that in Lu 

vacancy doped samples, a less disturbed crystalline lattice is shown up in the dielectric 

measurements with vanishing of the thermally activated peak of ´´ below 35 K and 

fading away of the second transition below TN for x=1.04. These two peaks would be 

essentially extrinsic. Ordering of ions in the crystalline structure of x=1 samples would 

be facilitated by the equal ratio of the Lu and Mn ions, the two extra transitions of ´´ 

being absent in the corresponding results in Figure 7-1.a and Figure 7-4.a.  

 

7-2 Piezoelectric response of off-stoichiometric ceramics 

 

As state in Chapter 2, section 2-5, h-RMnO3 oxides put interesting challenges in science 

as they show coupling of both AFM domains and FE domains [26, 27]. The AFM ordering 

transition dictates that such coupling only exists at low temperature below 90 K for 

LuMnO3. But, potential application of these oxides could also be find above TN, even at 

room temperature, because of the specific ferroelectric behaviour and intriguing 
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ferroelectric domain patterns they show. The nature of coupling of FE domains to 

structural defects was discussed in Chapter 2 and investigated in Chapter 6 by using 

TEM/STEM analysis and orienting the sample to specific zone axis, topological defects 

(APB/FE domain walls) having been observed. The advantage of TEM in looking at the 

atomic structure and structural distortions occurring on the domain walls and or other 

kinds of structural features becomes a constraint when looking for arrangement of the 

FE domains of large sizes, in the order of few microns, since at such scale it is hard to 

prepare from a bulk sample and later find such wide thin region of a particle transparent 

for electrons to be able to look at FE domains. The characterization of large size FE 

domains is possible via AFM/PFM techniques, but it needs very elaborated surface 

finishing being usually done only on single crystals after chemical etching of the surface 

[108]. The SEM study of grain growth as a function of composition and sintering time in 

section 4-3 of Chapter 4 confirms that the density of grain boundaries seen on sample 

surfaces is decreasing with annealing time to different extents dependent on x. Since XRD 

refinement shows change in lattice parameters, the same will happen in ferroelectric 

behaviour of the off-stoichiometric ceramics, because the displacement of the Lu ions in 

the unit cell is the main source of ferroelectric polarization [30,106,127]. The 

observation of ferroelectric domains on off-stoichiometric ceramics samples of the 

present study is reviewed in this section. 

 

7-2-1 Preparing surfaces for AFM/PFM analysis  

 

The viability of revealing the ferroelectric domains by the PFM technique depends 

strongly on both the quality of surface and the orientation of the particles. The particles 

with surfaces oriented to (110), (100) and (001) crystal directions may show 

vortex/anti-vortex clover leaf patterns under the PFM tip [49,79,108]. In the random 

distribution of crystal directions of bulk samples, Figure 4-20 and Figure 4-23, it will be 

rare to find grains on polished sections with due orientation and adequate quality of 
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surface finishing as needed for the PFM study. Due to porosity in samples of short 

annealing time and microcracking in samples of wider grain sizes, section 4-3 of Chapter 

4, the mechanical polishing process produces coarse debris which fills in voids of the 

surface and once released repeatedly makes scratches across the surface being polished. 

Such scratches become easily seen in AFM images and affect the process of data 

acquisition in PFM mode. During the experiments one tried to land the PFM tip on flat, 

scratch free regions of the polished surface to eliminate ambiguity on interpreting the 

images. Polishing was done on diamond lapping papers with no use of polishing pastes 

because the loose abrasives will easy penetrate into pores or cracks of the surface. 

Quality of surface finishing was monitored during polishing with the optical microscope 

using polarized light illumination, the process being terminated when scratch free 

regions properly polished and containing a few particles of different polarization 

contrast were seen on the surface.  

 

7-2-2 Off-stoichiometric effect on the ferroelectric domains 

 

Figure 7-5 presents PFM images taken from flat regions of three selected samples, 

x=0.92, x=1.00 and x=1.04, 1 day annealing, to allow study of the ferroelectric domains 

with changes of x. The three images have different scales mainly because the 

composition with x≤1 has finer particle sizes and low relative density, section 4-3, 

Chapter 4. Therefore the mechanical polishing did not work so well to provide large area 

with low roughness in sample x=0.92 for the analysis. The opposite holds for samples 

with x=1.04 with larger grain size, less residual porosity and better finished surfaces. In 

Figure 7-5 the same grain size as in SEM images of Chapter 4, section 4-3 is observed for 

the ferroelectric domains. Changes in contrast across of the PFM image correspond to 

domains of different polarization, being better defined for the sample of Mn-rich side. 

The color is inverted in Figure 7-5.b for better clarity. Since in the crystalline structure of 

LuMnO3 the electrical polarization is stronger along c-axis and restricted to this 
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orientation [33,131] where the displacement of the Lu ions could be seen more visible, 

this orientation must yield the maximum intensity of PFM contrast. Due to the prevailing 

orientation FE domain walls in the crystal, a sharp transition between FE domains of 

opposite polarization occurs in surfaces are oriented perpendicular to c-axis (a-c or b-c 

plane). Other orientations of the particle surfaces will produce different scales of the 

piezo response in a ceramic sample. For samples x=0.92 and x=1.04 the contrast in the 

colors from dark brown to bright does show the difference in orientations, including 

domains with Lu ions with upwards polarization, others with downwards polarization or 

inclined vectors of polarization. 

 

 

Figure 7-5. PFM images of different compositions, (a) x=0.92, (b) x=1.00 and (c) x=1.04 showing the 

ferroelectric domain in different sizes as the grain size of the compositions also changes by x. 

 

Comparing the stoichiometric sample with x=1 to vacancy doped samples in Figure 7-5 

shows a completely different pattern of polarization which may indicate that distortion 

of unit cells by vacancy doping in off-stoichiometric samples induced more intense 

electrical polarization. However, one should take into account that polarization strength 

can change just because of orientation of the crystalline grains in the region of the 

surface being analysed. Another important fact on the driving force of ferroelectricity in 

h-RMnO3 is the re-hybridization of the Lu-Oplanar bonds after lowering symmetry from 



Dielectric constant, magneto-electric coupling and ferroelectricity  

224 
 

high symmetry PE phase to lower symmetry FE ferroelectric phase, which is being 

investigated for more than a decade [125,127,130,131,172,210], the evaluation of re-

hybridization being left for later section 7-2-3.  

Due to interference of disturbing interactions between PFM tip and sample surface from 

several sources the effective resolution of PFM amplitude mode in air is limited to 10 to 

30 nm in most cases [211,212], the resolution limit for the PFM phase mode being one 

order of magnitude below this threshold. The contrast and resolution of the out-of-plane 

PFM phase image of the multiferroic hexagonal YFeO3 thin films with 100 nm average 

grain size are superior to these features in corresponding out-of-plane PFM amplitude 

image. In such fine scale of grain sizes most nanograins hold just a single FE nanodomain 

[213]. With elimination of noise from electrostatic interferences near the tip or in 

circuitry, by avoiding large tip-surface forces in the contact and the appearance of 

condensate meniscus at the tip from humid environmental air the best of 10 nm 

resolution limit of PFM amplitude images can be attained in air with improved tip 

sensitivity and the use of tips of non-worn apex and small (20-50 nm) tip-radius of 

curvature [212,214]. FE nanodomains with irregular wavy contours and 100 nm average 

domain size of a single crystal of the PZN-PT (0.9 PbMg1/3Nb2/3O3 - 0.1 PbTiO3) relaxor 

became visible in the PFM image of the crystal surface [215]. Zooming by 15-20 times the 

image in Figure 7-5.b amidst the prevalent noise of the image reveals a pattern of maybe 

positive and negatively polarized areas of sizes ranging from 60 nm to 90 nm 

comparable to the nanodomain sizes of the PZN-PF relaxor. The liquid neck at surface-tip 

contact being one of the most disturbing causes of resolution loss in PFM, a further 

advance in resolution limit of out-of-plane PFM amplitude mode to 3 nm was achieved by 

immersion of sample-tip contact in suitable liquid media including distilled water [214]. 
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7-2-4 Vortex patterns and domain switching 

 

Figure 7-6 indicates different regions of LuMn1.08O3±δ, 5 days annealed sample where 

PFM images were taken in the search for the right orientation of the ferroelectric axis for 

the observation of FE domains. In Figure 7-6.a and c the vortex patterns of the APB 

coupled to FE domains with up and down polarization is clearly seen, as it was discussed 

in section 2-5, Chapter 2.  

The vortex/anti-vortex pattern does not show fully six-fold symmetrized domains, 

eventually due to slightly misorientation of the particles. As shown by the EBSD images 

in section 4-3, Chapter 4, neighbouring grains in a polycrystal may display almost the 

same orientation in two of the three Euler’s angles, but not on the third one. Orientation 

change on neighbouring grains results in inhomogeneous contrast of piezoresponse of 

the ferroelectric domains. In Figure 7-6.b, the line profile drawn in Figure 7-6.a, shows 3 

V difference between the bright regions (upward polarization) and the darker regions 

(downward polarization), with some fluctuations in order of hundred nanometers which 

could be from ferroelectric nanoscale FE domains, or noise. The images in Figure 7-6.c 

and the enlarged view in Figure 7-6.e taken from c are from other part of the same 

sample and show different ferroelectric patterns but not organized as 6-fold vortices 

with the corresponding topography. Figure 7-6.d gives the relief contrast image of the 

surface corresponding to PFM image aside in Figure 7-6.c. The importance of the low 

angle grain boundaries and grain boundaries in general can be understood as hindering 

the formation of stable or complete topological 6 fold vortices in ceramics with fine grain 

sizes. 
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Figure 7-6. PFM images of sample with x= 1.08, 1 day annealed, of two different regions showing vortex 

pattern of 6 APB/FE domains or 4 APB/FE domains. (a) Image of 6 areas radiating of a common point in 

two alternating subsets of 3 upward polarized areas and 3 of downward polarization. (b) PFM signal 

intensity of line profile in (a). (c) PFM image of another part of the sample. (d) AFM image of surface of (c). 

(e) Enlarged view of the up, right part of (c) with 4-fold APB/FE vortex like pattern. (f) PFM signal 

intensity of line profile in e). 
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The effect of grain boundaries in distorting the lattice of two particles with very close 

zone axes is addressed in Figure 7-7.a and c showing the one on upper right oriented to 

(110) zone axis and  the second low left with an orientation close to the given zone axis. 

 

Figure 7-7. HRTEM images of  x=1.04 orientated along (110) zone axis for right side particle across the 

boundary (a) and (c) and high magnification STEM image of the distorted lattices at boundary of two 

particles. (d) AFM image of the chemically etched surface of the same sample showing the effect of the 

grain boundaries. 
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Both HRTEM images and the BF-STEM image show in a clear way the distorted region 

along the grain boundary with a projection in image plane around 10 nm wide, which is 

small in scale of PFM images in Figure 7-5 and Figure 7-6 above. However, it contains 

inhomogeneity in composition, presents local lattice distortion (upper particle) and may 

affect the process of acquiring PFM images. Deeper understanding of the role of grain 

boundaries can be unravelled by chemical etching of the surfaces of the ceramics [216]. 

Figure 7-7.d shows the AFM image of chemically etched surface of the same sample 

where boundaries appear as dark (deep etched) or bright lines (light etched). The 

differences among these boundaries may correspond to different polarizations, however, 

it seems that etching process make the boundaries wider than the boundaries before 

etching.  

 

7-2-5 Effect of sintering on ferroelectric domains 

 

Figure 7-8 exhibits the effect of additional time of sintering on the ferroelectric domains 

of two selected compositions x=1.00 and x=1.04 for 5 days annealing time. Figure 7-8.b is 

the PFM response of the same area of the AFM image aside in Figure 7-8.a of sample 

LuMnO3. The topology of FE domains in Figure 7-8.b displays 4-fold arrangements of 

APB/FE domains with larger sizes than the FE domains in the sample with identical 

composition of one day annealing time, Figure 7-5. Although the sample in Figure 7-5.b 

did not show contrasted and well defined FE domain patterns, after annealing for longer 

time the FE domains become clearly discriminated in Figure 7-8.b. However, topological 

6-fold vortices are absent in this image. The PFM images in Figure 7-8.c and d display the 

FE domains of sample x=1.04, 5 day annealing time and include FE domains a few m 

wide. The line profile of the PFM response of image d) also shown as Figure 7-8.e gives a 

large range for the PFM signal above 15 V in total, much more intense than the PFM 

response in samples of short annealing time, Figure 7-6.b and f. The topological 6-fold 

APB/FE domains were not found, too. The triple point where grain boundaries between 
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three particles met is seen in Figure 7-8.c with the characteristic local curvature of grain 

boundaries imposed by equilibrium of grain boundary surface tension forces along 

joining lines of three grain boundaries. 

The large grain on the upper left of same image is split into 3 FE domains seeming to 

radiate from a point close to, or on the grain boundary. An analogous geometry of FE 

domains with one FE domain of near triangular shape between two other domains of 

opposite polarization, the three meeting together at point of a planar defect of YMnO3- 

single crystal grown in Ar atmosphere is given in Figure 7-8.f, inset cut from original 

figure in ref.[162]. The planar defect eventually resulted from oxygen vacancy ordering 

and generated a set of flat FE domain walls quasi-straight aligned along it. Interaction of 

oxygen vacancies with FE domain walls of YMnO3- created a domain structure of 

random shapes where round-closed ends coexist with straight FE domain walls [97,162]. 

The concentration of oxygen vacancies, aliovalent cation doping and cooling rate all 

contribute for changes of FE domain sizes of hexagonal RMnO3 multiferroics 

[15,55,60,61,157,160]. FE domains with sizes close to the resolution limits of the PFM 

microscopy would be hard to characterize.  Electrical poled by the applied fields the FE 

domains of YMnO3- of random shapes also turn into parallel stripes as FE domain walls 

of topological vortices of stoichiometric hexagonal RMnO3 crystals [157,162,203]. The 

better defined ferroelectric domains in Figure 7-8.b, c and d might result from improved 

homogeneity of the crystalline lattice in a wider scale than in the previous samples in 

Figure 7-5 and Figure 7-6. Longer annealing time resulted in larger grains which may 

support wider FE domains. One must underline that capturing the topological vortex 

pattern in PFM analysis of bulk ceramic RMnO3 samples created unsolved difficulties.  
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Figure 7-8. AFM topography and PFM images of x=1.00 and x=1.04, 5 day annealed samples. (a) AFM 

topography image of  x=1.00 sample. (b) FEM image area in a. (c) PFM image of x=1.04 sample. d) Enlarged 

view of same area of a, with reversed polarization contrast. (e) Line profile of the FE domain transition as 

indicated in PFM image (d). (f) FE domains of YMnO3- single crystal grown in Ar atmosphere [162]. 
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Figure 7-9.a and b show respectively the PFM amplitude and phase images of sample 

x=1.04 annealed for 10 days. In the phase map of Figure 7-9.b the changing in phase 

contrast of successive FE domains in a total of six around the vortex alternating with 

upward polarization (brighter region in amplitude) and downward polarization (brown 

regions in the phase map) is more visible than in the corresponding amplitude map in 

Figure 7-9.a. The amplitude of the piezoresponse in Figure 7-9.a is faint for some of the 

areas however the phase shifts of the FE domains indicate that the six lines of clear 

contrast radiating from the vortex in the amplitude map correspond to antiphase FE 

domain walls separating each FE domain from the next one. The size of the clover leaf 

pattern captured in Figure 7-9.a and b is comparable to the one from single crystals of 

LuMnO3 measured with PFM [60]. Inside each FE domain of the vortex/anti-vortex 

pattern in the amplitude map there are regions seemingly with different polarization 

orientation which may represent inhomogeneity inside the grains, or contamination of 

the surface. The investigation FE domains in other areas in the scale of few microns 

showed FE domains of different polarization amplitude and phase shift but not 

necessarily the full vortex/anti-vortex topology. Single polarization and phase of a FE 

domain was observed when going to smaller scale below 2 microns for similar sample of 

x=1.04 and there are FE domains with opposite polarizations (not shown here). The PFM 

amplitude and phase images in Figure 7-9.c and d of sample x=1.00 (after 5 days 

annealing) present similar patterns of FE domains as Figure 7-9.a and b. The size of 

vortex/anti-vortex pattern is 10 microns being smaller than the one observed for x=1.04 

after 10 days annealing. As shown in Figure 4-16.a the grain size of sample x=1.04 of 

longer annealing time, 8 microns, is larger than the grain size of x=1.00 of shorter 

annealing time, 4 microns. In Figure 7-9.c, bright FE domains show upward polarization. 

Both amplitude and phase maps produce almost uniform distribution of the colors, 

accordingly to the polarization inside each FE domain. This may happen because the 

stoichiometric x=1.00 sample is less inhomogeneous in the region of analysis or because 

the area of analysis is small enough and clean from contamination or the topography of 

the surface does not interfere with the PFM analysis. 
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Figure 7-9. (a) Amplitude and (b) phase maps of a vortex/anti-vortex FE domains with the total size of 

around 16 microns of sample x=1.04 (10 days annealing), darker regions in (a) shows higher voltage than 

brighter regions. (c) and (d) present 10 micron size vortex/anti-vortex images of sample x=1.00 (annealed 

for 5 days) in amplitude and phase, respectively. In amplitude, the bright regions correspond to upward 

polarization.  

 

Dark field (DF) images of three different areas of sample x=1.04, 1 day annealing time, in 

Figure 7-10 were taken along (110) zone axis with the objective of comparing the 

boundaries of the FE domain walls with other type of distortions also visible in TEM. The 
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topological 6-fold vortices are recognizable in the TEM images but only when scales of 

100 nm to 200 nm are in use. The DF-STEM image in Figure 7-10.d gives the enlarged 

view of one of the topological defects seen in the TEM images.  These topological vortices 

in DF-TEM images in Figure 7-10 are obviously of much smaller dimensions than the FE 

domains and APB/FE vortex patterns revealed by the contrast of the PFM images, 

Figure 7-5 and Figure 7-6 and Figure 7-8. Although the resolution of PFM equipment we 

use for analysis is not as high as to capture easily the 100 nm vortex patterns, in small 

scale the RMS of the surface plays important role. Also in nano-scale analysis of the TEM 

images, the effect of the dislocations on annihilation of the FE domains can be seen.  

Discussed and shown in previous Chapter 6, FE domain with either up or down 

polarization in our TEM analysis could not be seen in large sizes even in the order of 0.5 

micron. We assign this size limitation to the presence of defects and dislocations inside 

particles. In our PFM analysis, there is not such sensitivity to the nano-scale defects 

which prohibit extension of the FE domains. Each large FE domain with either up or 

down polarization may contain few small scale FE domains that cannot be observed in 

PFM images. At the nanoscale, partial edge dislocations alone, or associated in pairs and 

nanoinclusions become local topology breaking defects of FE domain structures in 

RMnO3 lattices by decreasing or increasing in even numbers the ferroelectric domains 

with opposite polarization that can be seen radiating from a common point, the vortex-

like center of broken topology [58,59]. Point defects such as oxygen vacancies and 

substitution of Mn by cations of different valence, namely the Ti4+, generally break in a 

random way the topology of 6-fold vortices of FE domains of the hexagonal RMnO3 

lattices [97,160,162]. 
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Figure 7-10.  TEM-Dark Field images of sample LuMn1.04O3 after one day annealing by tilting sample 

slightly out of (110) zone axis. (a), (b) and (c) are showing topological domains by deferent excitation and 

different places of the particle. (d) STEM image of one of the defects. 

 

 



Dielectric constant, magneto-electric coupling and ferroelectricity  

235 
 

 7-2-3 Re-hybridization and DFT calculations 

 

Since the beginning of the extensive research on ferroelectricity of the h-RMnO3 

materials when it was found out that the distortions in the unit cell promote the Lu ions 

to displace and induce electrical polarization in the unit cell, people paid attention to the 

asymmetric bonding of the Lu-O and Mn-O as the driving force of the changes of 

ferroelectric behaviour. Studying the atomic displacements of all ions inside the unit cell 

of LuMnO3 could unravel that lowering symmetry from PE to FE phases would be 

accompanied by large off-centre movement of the Lu-Opl ions which result in 

transferring of centrosymmetric positions to non-centrosymmetric positions in the final 

phase [33,128,130,172,217]. It was further understood that the main orbitals involved in 

asymmetric bonding of Lu3+-Opl are the 5dz2 (Lu)-2pz(Opl) [130].  The model of the so-

called d-ness claims that re-hybridization of the Mn(3d)-O(2p) and Y(4d)-O(2p) bonds 

for examples in YMnO3 [131] occurs because of off-centre movements of the ions during 

PE/FE phase transition with the corresponding contributions to the large anomalies in 

Born effective charges (BEC).  

Although, the re-hybridization of the Lu and O ions as the driving force of ferroelectricity 

has theoretical and experimental support, in opposite directions there are other authors 

which do not emphasize the importance of this kind of re-hybridization for the 

ferroelectricity of hexagonal RMnO3 materials [127,218]. In fact, as the definition of BEC 

implies, the derivative of the polarization along direction the displacements of the Lu 

ions happens, along that same direction produces real BEC effective charges [218]. 

Therefore, what is usually discussed in favour of d-ness model and PDOS of the relevant 

orbitals of R3+ and Opl is the static charge occupancy, not real displacements. As already 

highlighted the covalent bonding and re-hybridization (chemical activity) may have 

minor roles on ferroelectricity of h-RMnO3 oxides. Instead, the main contribution comes 

from the large off-centre displacements of the R3+ ions (R3+- Opl bonds), coupled to the 

rotation of the bipyramids during phase transformation [127,218]. Mn-Oap tilting and R-
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Opl displacements cooperate together to create a stable energy structure with 

ferroelectricity driven from such distortion of the unit cell. 

The partial Density of States (PDOS) of the orbitals of ions in the unit cell of LuMnO3 is 

calculated via first-principles DFT approach using Full Potential Linearized Augment 

Plane Wave (FPLAPW) method implemented in Wien2K code [124]. A-type AFM 

arrangements of the Mn ions (z=0 spins up and z=0.5 spins down, or reverse) are 

assumed in the spin-polarized calculations in the FE phase [127]. The number of plane 

waves in the interstitial atomic spheres was limited to Kmax = 7.0/RMT and 5×5×3 K-

points were chosen. After getting convergence in the calculations by setting the 

convergence criteria to 0.0001 Ry and 0.0005 e for energy and charge respectively, the 

LDA+U approach was initialized which turns to be more appropriate in producing real 

band gap of the oxides, the same parameters and 0.44 Ry energy (6 eV) having been 

chosen [125]. 

Figure 7-11 presents the results of PDOS calculated with the DFT approach for the 

concerned orbitals of Lu ions (5d), oxygen planar and apical (both 2p) and Mn ions (3d) 

of LuMnO3 for three selected compositions, one on each side of stoichiometric 

composition and x=1 composition. Back to the concept of re-hybridization of Lu(5d) – 

O(2p) orbitals, it is seen that overlapping of 5dz2(Lu) – 2pz(Opl) is stronger for x=1.08 

and x=0.92 compositions in close vicinity to the Fermi level (-0.5 eV), whereas in the 

partial PDOS of x=1.00 composition in Figure 7-11.b it  is spreader towards lower 

energies ( -1 eV).  

In section 7-3 of this Chapter the DFT approach will be used to compare the polarization 

of the stoichiometric and off-stoichiometric compositions together and to investigate if 

the distortion of the LuMnO3 lattice via vacancy doping may change electrical 

polarization, or not.  
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Figure 7-11. PDOS of three compsotions, (a) x=0.92, (b) x=1.00 and (c) x=1.08 for samples after 5 days 

annealing, calculated using LDA+U.  

 

7-3 Mode analysis of LuMnxO3± lattices 

 

7-3-1 Mode decomposition in h-LuMnO3 materials 

 

The results of PFM in previous section 7-2 show changes of PFM response of the 

ferroelectric domains with the shift in composition (x) of all samples of this study. 

Although ferroelectric domains are observed in stable phase P63cm of LuMnO3, 

ferroelectricity in this family of oxides is of improper type [219]. Symmetry group 

analysis of phase transition from the high symmetry, high temperature PE phase to the 

low symmetry, low temperature FE phase may bring further understanding to this 

matter. The Isotropy Suite software or Amplimode software available from Bilbao 

crystallographic server [220] were used here to perform the symmetry group analysis. 
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The later one is more suitable as it deals with both lattice parameters and atomic 

positions of centrosymmetric and distorted crystalline structures. The analysis of the 

mode decomposition of PE transition to FE of the present study is accompanied by unit 

cell tripling using Isotropy Suite software, as given in the following: 

185 P6_3cm 1 GM1+ P1(1), 1 GM2- P1(1), 1 K1 P1(1), 1 K3 P1(1) 

This operation shows all possible paths from the given PE (space group no. 194, 

P6_3/mmc) to the primary K3 order parameter. The secondary order parameters are 

Γ1+, Γ2- (also shown as GM2-) and K1. Detailed analysis of each decomposed mode is of 

great importance to trace the displacement of each orbit of the PE phase to the 

decomposed mode and their amplitudes.  To do it, the PE unit cell of YMnO3 was used as 

it is the only one available in the database  [221].  Therefore, we first calculate all 

interested parameters for PE phase transition to FE phase of YMnO3, and then the same 

methodology will be applied on LuMnxO3±δ samples. Annex E will provide details of the 

methodology and results of the mode decompositions for YMnO3 unit cell.  

The presence of ferroelectricity in an unstable K3 mode was shown to exist because of 

the stable 2- mode and coupling of these two modes together [10,106,130,219]. The K3 

distortion forces the stable 2- mode to have its minimum energy shifted to a nonzero 

value of distortion of the unit cell (drawn from Landau Free energy expanded until 4th 

order) [219]. That is why in this family of materials so-called improper ferroelectrics the 

antiferrodistortive structure coexists with ferroelectricity at room temperature.  

The growing interest on interlocking of the ferroelectric behaviour and structural anti-

phase domain walls have pushed researches to look for consequences of such 

interlocking on the properties of h-RMnO3 materials as discussed in Chapter 2, section 2-

5 [10,16,51,156]. It was calculated and later demonstrated that the degree of distortion 

of the unit cell in K3 mode has direct effect on electrical polarization and net 

magnetization of Mn3+ and Fe3+ ions of h-LuMnO3 and LuFeO3 materials, respectively 

[10,219].  The importance of the mode analysis drove the present study to apply the 
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same analysis to the off-stoichiometric and nominally stoichiometric LuMnxO3±δ ceramics 

of 5 days and 10 days annealing. Program PSEUDO from Bilbao Crystallographic Server 

was used to retrieve the crystalline structure of the corresponding high temperature PE 

phase from conversion of the Rietveld refined FE crystal structure of the ceramics 

determined at room temperature [222]: only for the z-coordinate of Lu in PE phase the 

value of z=0 must be filled in instead of 0.5. Figure 7-12.a and b give the plots of mode 

amplitude 2- (P63mc) and K3 (P63cm), respectively, versus composition x of the 

LuMnxO3± samples.  

For all compositions, the mode amplitude of K3 is always higher than that for the 2- 

mode. The K3 mode amplitudes for 5 days and 10 days annealed samples show different 

trends. With increasing of annealing time and consequently more homogenous 

crystalline lattices according to XRD Rietveld refinement, Table 4-1, Table 4-2 and 

Table 4-3 in Chapter 4, a smoother trend would be expected for the mode amplitudes of 

samples annealed for longer times. In fact, in the 0.96≤x≤1.04 composition range both 

sintering times show changes of the amplitude mode when x passes the stoichiometric 

composition. Longer annealing time results in trendy behaviour of distortion of the 

lattice related to the K3 mode upon the transition from PE to FE phases. This mode is 

mostly linked to tilting of MnO5 bipyramids and buckling of the Lu planes, the 

corresponding calculated results being found in Figure 7-12.c and d, respectively. 

Figure 7-12.e and f display the change of tilt angles of planar and apical oxygen with 

respect to a-b plane and c-axis, respectively [35,106], and magnitude of tilting (angle of  

Mn-Oap. bond and c-axis, denoted as order parameter of the K3 mode) [51], the first two 

angles representing polyhedral tilting angle following the change in K3 mode with x for 

both annealing time. The buckling of the Lu ions has a smooth increase as x rises from 

0.92 to 1.12. Such rising trend is much less pronounced on the amplitudes of either 

modes in Figure 7-12.a or b. Change of amplitudes may stress the stronger effect of the 

MnO5 polyhedral tilting on the crystal structure more than displacement of the Lu ions. 

Some correlation on the change of buckling of Lu ions and tilting of the MnO5 polyhedral 

can be found in the Figure 7-12.d and e, from the angle of Opl with basal plane reminding 
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the concept of orbital re-hybridization of the Lu(5dz2) and (2pz)Opl orbitals discussed 

earlier in section 7-2-5 of this chapter. Hence, such correlation may have some effects 

even if minor on the electrical polarization. 

 

Figure 7-12. Results of mode analysis of LuMnxO3±δ ceramics, 5 days and 10 days annealing time: (a) and 

(b) mode amplitude of the distortion of 2- and K3 modes. (c) magnitude of the tile of the Mn-Oap bond to z-

axis [51], (d) displacement of the Lu ions in the unit cell, (e) and (f) are calculated tilt angles of the MnO5 

bipyramids [35,223]. 
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To figure out better the reason behind the sudden jump of the K3 mode amplitude for 

x=1.12 in Figure 7-12.b, if not just due to limit of error of the method,  the change of O1 

and O3 orbits for the 2-and K3 modes of both sets of samples are shown in Figure 7-13. 

As given by the values in Table E-3, the O1 orbit in K3 mode undergoes displacement in x, 

y coordinates whereas the displacement for O3 orbit is along c-axis. Oxygen atomic 

position refinement may be accompanied by some inaccuracy in XRD Rietveld 

refinement. Orbits of O1 and O3 of K3 mode in Figure 7-13.a and b indicate almost 

identical trends for both sets of samples. Linked to Lu displacement in Figure 7-12.d, 

Figure 7-13.b shows that both O3 (planar oxygen) and Lu ions have the same shifts 

independent of the time of annealing. At limits of the range of x values the O3 exhibits 

more accentuated change for both sets of samples; it is also the case for O1 orbit (apical 

oxygen). The jump in K3 mode amplitude for x=1.12 in Figure 7-12.b could be originated 

from oxygen displacements. 

The 2- mode of 5 days annealed samples in Figure 7-12.a shows a straight line for x in 

the range of 0.96 to 1.04, with deviation from straight line for x out of this range. 

Increased annealing time shows lesser fluctuation of the 2- mode amplitude, with a 

minimum at stoichiometric composition. The evaluation of the mode amplitude for the 

O1 and O3 orbits of 2- mode in Figure 7-13.c and d which undergo displacement along c-

axis presents the almost identical trends for both annealing conditions. It is coherent 

with the fact that these two orbits of oxygen are not so significant for the amplitude of 

the ferroelectric mode.  
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Figure 7-13. Behaviour of apical (O1) and planar (O3) oxygen of  2- and K3 modes versus selected 

compositions. 

 

7-3-2 Ionic polarization of the off-stoichiometric unit cells 

 

The results of the XRD Rietveld refinement are used to assess here the change of ionic 

polarization of LuMnxO3± with composition x and time of annealing. The ionic 

polarization, Pionic, is calculated from the lattice parameters and atomic positions of all 

ions according to following equation of simple ionic model [106]: 

 
𝑃𝑖𝑜𝑛𝑖𝑐 = ∑

∆𝑐𝑖𝑄𝑖𝑚𝑖

𝑉
𝑖

 
 

(7-1) 
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where V is the unit cell volume, Δc is the atomic displacement of each ion in relation to 

the PE phase, Q is charge in Coulomb (C, point charge model), and m is the multiplicity of 

the Wyckoff position of each ion, the index i running over all seven inequivalent ions of 

the unit cell as given in Table 2-2. Figure 7-14 compares the calculated ionic polarization 

P(μC/cm2) for samples of both annealing conditions, 5 days and 10 days annealed. 

 

Figure 7-14.Ionic polarization of two sets of annealed samples, 5 days and 10 days, showing the effect of 

vacancy doping out of stoichiometric. 

 

There is an apparent similarity in the dependence of P on x in Figure 7-14 and reported 

trends of the Lu displacement and of Oap tilt angle in Figure 7-12.d and f, respectively. 

Vacancy doped samples in Figure 7-14 display a nearly flat plateau around the 

stoichiometric composition that evolves to a gentle slope towards high x values. But, 
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there is a remarkable deviation from such flat on the Lu-rich side for x0.96, perhaps 

revealing pronounced effect on ionic polarization, P, of the presence of high 

concentration of Mn vacancies at the low stability limit of the LuMnxO3± solid solution 

balanced by the creation of oxygen vacancies according to the simplified equation of 

effective charge neutrality, 2[𝑉𝑂
∙∙] = 3[𝑉𝑀𝑛

´´´ ]. The ionic polarization of YMnO3 at room 

temperature calculated with the equation (7-1) given above is 4.2 μC/cm2 [106]. The 

range of values of ionic polarization P of LuMnxO3± in Figure 7-14 are slightly lower but 

still close to the corresponding value of ionic polarization reported for YMnO3. The value 

of total polarization YMnO3 including both ionic and electronic components from DFT 

calculations is 5.5 μC/cm2 [127].  The DFT result of polarization for LuMnO3 when K3 

mode is in its maximum distortion (in fractional units, 1) was calculated to be around 8 

μC/cm2 [130], a slight higher value (P  10 μC/cm2) for ErMnO3 having been determined 

by H. Das [10] in DFT calculations of the K3 mode when it is in its maximum of distortion 

and the energy of the non-collinear magnetic state is at its minimum value.  

 

7-3-3 Polarization from first principles calculations 

 

The Berry Phase approach implemented in Wien2K code is used here to calculate both 

the ionic and electronic polarization of the ions in the unit cell and the total electrical 

polarization for three different values of composition, x [224]. Following the calculation 

of orbital re-hybridization, and in EELS spectroscopy done to evaluate the partial density 

of states of the ions in the unit cell in stoichiometric and off-stoichiometric samples, 

sections 6-4-1 and 7-2-5, the same calculated results were used to proceed with the 

Berry Phase approach in Wien2K code. In these calculations, the A-type AFM model 

[127] is used for Mn ions in the unit cell, and LDA+U with 6 eV for U potential was used 

to introduce the band gap. The result of the calculations for z-direction for selected 10 

days annealed samples are given in Table 7-1, the values of mode amplitude K3 in this 

table being the same as the ones plotted in Figure 7-12.b. The components of 
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polarization in other two directions in the basal plane are ignored in the present study as 

they are few orders of magnitude smaller than the polarization along c-axis [130]. 

Table 7-1. Berry Phase calculations of the three samples in stoichiometric and x=0.92 and x=1.08 

x K3 Electronic polarization (μC/cm2) Ionic polarization (μC/cm2) Tot. Polarization(μC/cm2) 

0.92 1.065 5.692 2.270 7.963 

1.00 1.12 2.270 -5.071 -2.801 

1.08 1.074 -3.662 -4.230 -7.892 

 

The calculated results of Table 7-1 plotted and Figure 7-15 clearly show that the 

electronic polarization and hence the total electrical polarization too become larger in 

modulus when composition of the samples deviates from the stoichiometric x=1 value. 

On the contrary, the component of the ionic polarization at x=1.00 has larger modulus 

than for the composition on the two extremes of the studied range. The trend lines best-

fitted to results in Figure 7-15 also suggest that the component of the ionic polarization 

Pi changed signal in the Lu-rich side and might have become very low at an intermediate 

nominal composition close to x0.95 while the component of the electronic polarization 

Pe which has a large positive value at x=0.92 remains positive at the stoichiometric 

composition x=1.00 and might have reversed its signal well inside the Mn-rich side of the 

solid solution at point of nominal composition close to x1.04. Since values of 

polarization with negative or positive signs denote measurable polarization in the 

direction along c-axis the change of signal of the total polarization Pt and crossing a null 

value at a composition slightly below stoichiometry (x0.99) may turn pertinent when 

comparing experimental studies of electrical polarization of the hexagonal RMnO3 

materials of nominal stoichiometric composition from different sources. At a first glance, 

these calculations in Table 7-1 would imply that the distortion on the lattice due to self-

doping creating large concentration of vacancies can change ferroelectricity in the unit 

cell on both sides of the stoichiometric composition of the LuMnxO3± solid solution. 
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Results of calculated polarizations for off-stoichiometric sides of Lu or Mn vacancy doped 

samples in Table 7-1 and Figure 7-15 give values of total polarization of the order of 

magnitude of the values reported for the LuMnO3 and YMnO3 from DFT calculations 

[10,130].  Amplitude of 2- mode of samples after 10 days annealing in Figure 7-12.a 

revealed a small decrease of mode amplitude at stoichiometric composition from x=1. 

The same scenario is present here in Figure 7-15 for the absolute values, or modulus of 

the component of electronic polarization and the modulus of total polarization, |𝑃𝑡|, also 

seen in figure 3 of reference [10]. One may conclude that off-stoichiometry works on 

increasing the degree of distortion of the LuMnxO3± lattice in comparison to 

stoichiometric composition. Therefore, distortion in the unit cell driven by Lu or Mn 

vacancy doping would be a way to tune the polarization of the crystalline lattices of h-

RMnO3 materials. 

 

Figure 7-15. Berry phase polarization calculations for three selected samples x=0.92, 1.00 and 1.08 from 

sets of sample being annealed for 10 days vs. both K3 mode amplitude (x-axis) and x-value for Mn/Lu ratio 

(right vertical axis). 
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The change of ionic polarization in Figure 7-15 with the maximum value at x=1.00, is in 

good agreement with ionic polarization in Figure 7-14 calculated with the simple ionic 

model from XRD Rietveld refinement. Both methods of calculation of Pi converge to the 

same trend and present maximum values of |𝑃𝑖| at stoichiometry of similar values:         

5.1 μC/cm2 for DFT calculations in Table 7-1 and 3.8 μC/cm2 from simple ionic model of 

Pi in Figure 7-14. One should mention that in the calculations of the ionic polarization 

with the simple ionic model in Figure 7-14, the charge of each ion is considered as if the 

ion is in an isolated environment, meaning that the effective charge of each ion is 3+ for 

Mn and Lu ions and 2- for the O ions, regardless the lattice distortions or change in bond 

lengths.  

 

7-3-4 Total changes of modes from DFT approach 

 

In previous section 7-3-1 the amplitude of distortions for 2- and K3 modes were 

characterized. The atomic positions of the displaced atoms from their PE Wyckoff 

positons in the unit cell determined with the Amplitude software and the corresponding 

unit cell of each of the modes are used calculate total energy of each mode for the given 

sample compositions. One aims he to gain some insight into the stability of samples of 

different composition.  

The total energy per chemical formula calculated for each mode is shown in 

Figure 7-16.a for 10 day annealed samples. The same conditions as used in previous 

spin-polarized calculations in section 7-2-5 were adopted:  A-type AFM configuration of 

Mn3+ moments, 6 eV energy for the U potential and LDA+U approach for 3d orbitals of 

Mn3+ ions, criteria for energy and charge convergence set as 0.00005 Ry and 0.0001 e, 

respectively. The PBE-GGA potential was used in calculations. The ranges of total energy 

calculated for K3 and 2- modes have rather different magnitude, the values of total 

energy of the 2- being around 1/3 of the total energy of the K3 mode.  The energy values 
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for compositions on both sides of stoichiometry exhibits quite different trends, the Mn-

rich side generally presenting more fluctuation in their energy values. The two sets of 

total energy on the Mn-rich side have the lower negative values close to x=1.08. The total 

energy does not show relevant difference of trends for both modes although 2- mode 

includes the Mn displacement along c-axis and the K3 mode does not. It conveys the idea 

that Mn ion positions and apical oxygen positions do not play significant role on the total 

energy. Compared to the calculated energy of the unit cells of 10 days annealed samples 

at room temperature in Figure 4-11.a, it implies that the general trend of Lu and Mn 

vacancy doped samples closely follows the trend of K3 mode in Figure 7-16.a. Although 

the change in energy of both sides of stoichiometric composition is not the same, it may 

emphasize again that atomic displacement in 2- mode along c-axis play significant role 

on stable structure of h-RMnO3 lattices at room temperature. It is because the 2- mode 

establishes before K3 mode [106,219] that the results of the energy calculation both 

follow the same direction of change.  

The corresponding results for the calculated magnetic moments of Mn3+ ions for the two 

modes are plotted in Figure 7-16.b. They follow almost the same trend for both 

calculated modes and sides of sample composition. In addition, calculated magnetic 

moments of room temperature unit cells of 10 days annealed samples in Figure 5-18 

showed almost the same trend as seen in Figure 7-16.b. The values of magnetic moments 

in Figure 7-16.b would imply that K3 would yield slightly higher magnetic moment than 

the 2- mode, but seems that the displacements of the Mn ions in two modes cannot be 

critical to the calculated magnetic moments. However, off-stoichiometry in h-LuMnO3 

ceramics would result in change of AFM interactions in basal plane compared to the 

stoichiometric composition, first principle calculations in Figure 7-16.b showing the 

effect of off-stoichiometric on tuning the magnetic interactions of the magnetic ions in 

hexagonal LuMnO3 material.  
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Figure 7-16. (a) Total energy of 2- and K3 modes calculated via DFT approach showing different behaviour 

on Lu-rich side whereas the Mn-rich side gives more fluctuation on the values. (b) Calculated magnetic 

moments of the Mn3+ ions in A-type AFM configuration for two different modes off-stoichiometric 

compositions. 
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It is also implicit in the calculated results in Figure 7-16.b that distortion of the unit cell 

as a whole like the bucking of MnO5 bipyramids and displacement of Lu ions along c-axis 

played a more crucial role on final magnetic interactions of the Mn3+ ions in basal plane 

than the positioning of these ions in two different modes with different Wyckoff 

positions and displacements. Although 2- mode is present well-above TN, the present 

calculations may point towards the role of distortion in unit cell again in altering the 

magnetic moments with vacancy doping, rather than of simply modifying crystalline cell 

dimensions as determined by change lattice parameters. However, in all DFT calculations 

one just dealt with crystalline unit cells of the materials and assumed no internal 

interfaces or domain walls. Yet, both types of 2-dimensional crystal defects can result in 

significant changes of the multiferroic properties of the hexagonal RMnO3 materials 

[10,16,48,79]. 
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The research completed during the PhD work combined both experimental and 

theoretical approaches to achieve the first comprehensive study on solid stability limit 

and non-stoichiometric effect on crystalline structure and multiferroic properties of the 

h-LuMnxO3±δ manganite ceramics.  

XRD analysis with Rietveld refinement of lattice parameters of LuMnxO3±δ solid solution 

revealed shrinkage of both a-axis constant and of c-axis, this axis in lesser degree, and 

hence of the unit cell volume as the value of Mn/Lu ratio x increases. Lattice parameters 

still exhibit changes when the time of annealing increases from one day to five days and 

latter to ten days of isothermal annealing at 1300 C. Having fluctuation of results in one 

day annealed samples, lattice constants and unit cell volume of five days annealing time 

already mark an upper limit of solid stability on the Mn-excess side at xH1.04. Extending 

annealing time to 10 days sets the lower side of solid stability limit to xL0.94. Values of 

c-axis constant always present more fluctuations in comparison to the a-axis constant.  

The observed trend for faster grain growth in the microstructure of sintered samples 

with increasing values of x leads to grain sizes in samples with Mn excess that can even 

exceed 10 micron or even larger sizes after longer annealing time. Increasing the time of 

annealing from 24 hours to 240 hours at 1300 C results in a monotonic increase of grain 

size of the h-LuMnxO3±δ ceramics given by an approximately parabolic dependence on 

time. The observed changes of the corresponding grain growth constant with x are 

consistent with the limits of stability of the h-LuMnxO3±δ solid solution established in 

XRD study. The anisotropy of the coefficient of thermal expansion of the hexagonal 

LuMnxO3±δ phase coupled to grain growth induces the appearance of micro-cracks in the 
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microstructure more frequently seen in the grain boundaries than as cleavage flaws 

inside the grains.  

The secondary phase Lu2O3 can be detected in x<1.00 side in minor amounts which 

depend on sample composition x and annealing time. This secondary phase remains 

detectable in x=0.92 samples after 5 days and 10 days annealing in an amount 

approximately constant of 1.3% in weight fraction. For samples of Mn excess, x>1.00, 

traces of unreacted Mn3O4 are detected as a faint (103) peak in XRD spectra, particles of 

this impurity being clearly visible in SEM and TEM images. After 5 days or 10 days of 

annealing time, the presence of this secondary phase can be clearly seen in 

measurements of magnetization below 43 K and the change in magnetization being 

assigned to very small particles or planes of hausmannite left as atomic clusters or 

intergrowths in the particles of the main phase.  

Once sample composition reached the extremes of the stability range of the h-LuMnxO3±δ 

phase in this study, the atomic structure of the lattices indicated disordering across the 

crystalline grains in a nano-scale, most probably driven by chemical gradients. The 

presence of nanodomains inside the crystalline particles produces internal interfaces, a 

characteristic of all samples. Basal plane images in [001] zone axis of the Mn trimers and 

Lu hexagons present distortions of the bipyramids inside nanodomains across the 

particles. Lattice images of h-LuMnxO3±δ ceramics along [110] zone axis show the 

displacement of the Lu ions which gives rise to ferroelectric domains. Image simulation 

done in this study and developed methods of interpretation of the lattice images taken 

along (110) or (100) orientations help in resolving the type of FE domains and type of 

domain walls found inside the crystalline grains of h-LuMnxO3±δ. Probe corrected STEM 

microscopy clarified that presence of defects like stacking faults would result in locally 

distorted lattices, where missing of some atomic planes of a cation, and switching of the 

ferroelectric polarization direction can occur. Our extensive dark field studies of the 

nominal and off-stoichiometric compositions confirm presence of the extended line 

defects to few hundreds of nano-meters in most particles. Lattice images around defects 
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particularly seen along [110] zone axis confirm the interplay of the defects and Lu ions 

displacement resulting in phase shift of the FE domains or even switching the 

polarization direction upon entering the perturbed field around defects. 

Confirming the geometrically magnetic frustrated structure of these materials, magnetic 

properties of self-doped h-LuMnxO3±δ manganite display the antiferromagnetic ordering 

AFM transition in all studied samples with Néel temperature TN in the range 89-93 K, 

decreasing as x increases. Magnetic irreversible behaviour (ZFC-FC difference) appears 

in measurements of magnetization for all samples below TN, being correlated with 

Mn/Lu ratio x of h-LuMnxO3±δ solid solution in the temperature range between Curie 

temperature of Mn3O4 TC43 K and TN of LuMnO3 and to the residual fraction of Mn3O4 

for T below 43 K. After subtraction of the magnetic signal of secondary phase from 

temperature dependant magnetization, calculated Curie-Weiss temperature of all 

samples present correlation to sample composition and annealing time. From the 

extreme of high x to the extreme of low x in all samples, Curie-Weiss temperature  (TCW) 

becomes larger, -300 K average change of high x to low x sides was obtained. The 

frustration factor (|TCW|/TN) was calculated, and stays within the reported range of 6 

(high x) and 9 (low x) for h-RMnO3 materials of 5 and 10 days annealing. 

Field dependent magnetization loops display magnetic hysteresis below Neel ordering 

transition which become wider along the magnetic field and magnetization axes at lower 

temperatures when the magnetic moment of the secondary phase Mn3O4 also 

contributes to total magnetic signal. Above 43 K the limit of temperature for 

ferrimagnetic ordering transition of Mn3O4, the observed coercive field and magnetic 

remanence both increase in their values with increasing of the x ratio. The magnetic 

exchange bias has been observed in the magnetic hysteresis loops of the h-LuMnxO3±δ 

ceramics even for samples with x≤1.00. Supported by the microscopy images of the 

secondary phase and internal interfaces, one can hypothetically admit that the additional 

magnetic component right below TN may have the origin in magnetic distortion at 

internal interfaces of the nano-structural domains. Also, shifts in chemical composition 
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across a crystalline grain would provoke changes in the magnetic features just in parts of 

its volume when one would expect the magnetic behaviour of either the R-site or Mn-site 

vacancy doped composition. Using local electron probe of EELS in TEM to look for 

different oxidation states of Mn ions, no clear deviation from 3+ valence of the Mn ions 

could be found inside the crystalline grains on both sides of the stoichiometry range of 

sample composition.  

Magneto-electric coupling was characterized in selected samples of self-doped h-

LuMnxO3±δ ceramics by measuring the frequency and temperature dependent complex 

dielectric constant. The clear change in the complex dielectric constant was observed for 

all tested samples at TN. Combined with measurements of magnetization, these 

measurements confirm the presence of athermal magneto-electric coupling in off-

stoichiometric ceramics as well as in stoichiometric h-LuMnO3 at TN. A second athermal 

transition in the dielectric constant was observed at temperatures around 69 K. At low 

temperatures below 35 K an additional thermally activated transition in the dielectric 

constant was observed which closely matches the anomalies of transitions displayed in 

parallel by magnetization. The activation energy of this transition was calculated in the 

range of 10 meV to 20 meV in the range of values of activation energy of the polaron 

hopping mechanism reported in the bibliography for several dielectrics in the this 

temperature range. The presence of nano-structural domains and their interfaces 

frequently observed in TEM images might be associated with the observed anomalies in 

magnetic and dielectric susceptibility below TN.  

Images of piezo-force microscopy (PFM) of ferroelectric domains display enlargement of 

their dimensional scales linked to grain size which increases with time of annealing and 

the value of Mn/Lu cation ratio x. The vortex/anti-vortex patterns captured in PFM 

images of samples of long annealing time reveal the total size of cloverleaf pattern up to 

20 microns, comparable to the size of the same patterns in single crystals of h-RMnO3 

materials. Observable in PFM images, the effect of the grain boundaries and internal 

interfaces on FE domain formation was explored in these ceramics samples, giving rise 
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to sub-micron FE domain inside large scale, few microns FE domains. Linked to our TEM 

observation Lu displacement in the lattices in sub-micron ranges, both TEM and PFM 

images unravel the role of interfaces or chemical inhomogeneities inside a particle on 

growing FE domains. The large sizes of the FE domains and vortex/anti-vortex patterns 

in sintered ceramics of current study confirms further understanding of the dependency 

of FE domain size and density on heating process and cooling rate. 

In the DFT modelling study of the present thesis the hypothesis of orbital re-

hybridization of Lu (5dz2)-(2pz) Opl bonds did not exactly explain the experimental 

results either in PFM images or of the calculated polarization based on crystal structure 

data. The EELS spectra of oxygen K-edge in stoichiometric and off-stoichiometric 

samples showed the appearance of the oxygen pre-peak besides of peaks assignable to 

oxygen K-edge. Although the EELS resolution in absence of an energy monochromator in 

TEM is lower  than in EXAFS or in Cs-corrected TEM/STEM, using available EXAFS data 

and preforming density functional calculations in this study one did find out that the pre-

peak of oxygen edge effectively corresponds to Mn (3d)-(2p)O  bonding. More patent in 

the pre-edge of oxygen, the EELS study suggests that the orbital arrangements of the Mn-

O and Lu-O bonds are sensitive to local change in the lattice as seen in the intensity of the 

corresponding peaks of EELS spectra. Local sensitivity of the atomic bindings restrain 

the hypothesis of the orbital hybridization driven ferroelectricity to nano-scale regions, 

explain its weakness on giving a thorough picture of ferroelectricity from DFT 

calculations of the unit cells without counting the lattice defects. The calculated 

polarization from DFT shows the effect of non-stoichiometry on the change of electrical 

polarization and suggests that vacancy doping will enhance electrical polarization of the 

h-RMnO3 ceramics for both sites of cation vacancies. 

Using data of unit cells of self-doped h-LuMnxO3±δ ceramics extracted from XRD Rietveld 

refinement the total energy, band gap and magnetic moments of Mn3+ ions were 

calculated via DFT implemented in Wien2K code. Symmetry mode analysis also guided 

this study in getting detailed information of K3 and 2- modes upon PE phase transition 
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and gave the possibility to conduct DFT calculations for the unit cells of each mode. Both 

sets of calculations assume only unit cell changes induced by vacancy doping and leaded 

to the conclusion that tilting of MnO5 polyhedron and buckling of Lu planes would be of 

greater importance on the calculated properties than displacement of the specific ions 

like Mn or changes in dimensions of lattice parameters.  

 

Unsolved issues and future work: 

The role of oxygen vacancies in the lattices of the off-stoichiometric h-RMnO3 

multiferroics could not be appropriately ascertained within the limits of this research. 

The indication of experimental results that Mn ion retains the valence state of Mn3+ in 

self-doped h-LuMnxO3±δ when x1.00 points to the presence of positively charged 𝑉𝑂
 

oxygen vacancies compensating the effectively negative charge of either 𝑉𝑀𝑛
´´´  or 𝑉𝐿𝑢

´´´  

vacancies in the electric charge neutrality condition of point defects in the defect 

chemistry of the crystals. Applying diffraction techniques did not show indication of 

oxygen vacancies in large, discernible scale. However, due to the low amount of vacancy 

doping allowed by narrow stability limits of the LuMnxO3±δ solid solution in equilibrium 

with the point defects, one might expect that oxygen vacancies if not exactly randomly 

distributed at room temperature must be organized very local and in low concentration 

which demands precise local probes of electrons which are not yet available in the 

electron microscopy laboratory that supported this research.  

Observation of new vortex/anti-vortex patterns in YxLu1-xMnO3 is a strong motivation for 

the study of co-doped R-site materials and self-doped hexagonal manganites to disclose 

the effect of shifts in chemical composition on topological defects. Literature reviewing of 

doped lattices of h-RMnO3 family has shown that doping of R-site via two or three 

different rare-earth ions as already done for YxLu1-xMnO3 may offer new insights into the 

changes of lattice constants and magnetic or ferroelectric properties. It would be worthy 

if research around vacancy-doped lattices can be extended to other systems of the same 
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family especially YMnO3 and ScMnO3 oxides, to have a more complete set of vacancy 

modified lattice parameters. The change in ionic radii of Lu, Y and Sc and also the 

different TN values would be interesting matter of further research to get deeper insight 

on the role of ionic radii of rare-earth ions in changing multiferroic properties when 

associated to vacancies in the lattice.  

Although it is viable to study temperature dependant lattices of off-stoichiometric 

crystals of the h-RMnxO3±δ solid solutions using XRD as done here, the lacking of 

sensitivity of the XRD technique to oxygen occupancy and positions would demand 

refining the analysis with neutron diffraction. In such continuation of this research 

neutron diffraction must include scanning the range of temperature from near zero 

Kelvin to TN and then to room temperature, in order to investigate the magneto-elastic 

coupling at TN, effective magnetic moment of Mn3+ ions and probable spin reorientation 

below TN. High temperature phase transition is another matter to be investigate by 

diffraction techniques because any effort to enhance ferroelectricity of these materials is 

entangled to higher temperature phases.  

It is our project to perform further studies with self-doped LuMnxO3±δ ceramics in order 

to investigate with the means of probe corrected STEM microscopy the local shifts in 

electronic structure and Mn oxidation states on the domain walls where symmetry 

breaking induces new physical relationships and modified chemical environments for 

the elements. Combined to First-principles modelling of such interfaces, the objective of 

the extension of the work would be the effect of non-negligible concentrations of Mn or 

Lu vacancies on these interfaces, crystal field and oxidation state of the Mn ions within 

the scale of few unit cells the width of interfaces.  

Extending this research on self-doping of h-RMnO3 multiferroics to other families of 

hexagonal rare-earth oxides like RFeO3 will be useful for their potential applications as 

they have magnetic ordering transitions at higher temperatures than h-RMnO3 family. 

The research on RFeO3 oxides is progressing fast. Our methodology on studying 
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concerned multiferroic properties in current PhD thesis would be of use in similar 

studies. 
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A. Low temperature XRD of sample LuMn0.98O3± 

  

 

Magneto-electric coupling and magneto-elastic coupling both entail changes in magnetic, 

dielectric and lattice properties once the h-RMnO3 oxide crosses TN [30,37]. Investigation 

of the lattice parameters upon cooling the sample under study to TN and below would 

provide information on the possible different degrees of change of the unit cell when 

vacancies are introduced by self-doping. Results in this annex are from the only sample 

tested in a trial test as by the time this only experiment was done the intended more 

systematic experiments of low temperature XRD had to be stopped due to damage on the 

X-Ray tube of the diffractometer. 

Figure A-1 shows the unit cell parameters from Rietveld refinement of the XRD patterns of 

x=0.98 sample measured at 89 K, 95 K, 200 K and 300 K, the first temperature coinciding 

with TN. Although the number of points is sparse, the a-axis, c-axis and cell volume 

display the general trend of change of lattice parameters with temperature as found in 

results of e.g. Lee et al [37]. The a-axis and cell volume expand as temperature rises, 

whereas the c-axis presents shrinkage in the low temperature range from TN to 

approximately 200 K and expands at higher temperatures. 
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Figure A-1. Lattice parameters of the LuMn0.98O3±δ after one day annealing as a function of temperature.  
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B. EBSD analysis of an inclusion of hausmannite 

 

 

Main results of EBSD analysis of the samples of this study were presented in chapter 4. In 

this annex a feature of the microstructure of sample of x=1.08 after one day annealing in 

a thin section prepared for TEM analysis is characterized by EBSD. Particles of the 

secondary phases Lu2O3 and Mn3O4 were found close together separated by a few grains 

of the main phase. The Lu2O3 inclusions are single crystalline grains of small size, around 

1 to 2 m. The hausmannite inclusion is of much wider size, roughly 7 m and consists of 

several crystalline grains. In some areas of the EBSD phase and orientation maps the 

quality of phase matching is poor (larger density of zero-solutions associated mostly to 

roughness and damage of the surface). At the border of the hausmannite inclusion near 

the contact with the surrounding matrix of the main phase in Figure B-1 there is one of 

these areas with the dark contrast of zero-solutions. Besides the effect of relief which can 

hardly be seen there in Figure B-1.a, the local density of zero-solution might be an 

indication of the thick interface with the matrix or intermediary phase originated by 

changes in concentrations of Lu and Mn as was shown in Figure 4-18, and it cannot be 

identified with known phases in the phase diagram of Lu2O3-MnaOb oxide system [109]. 
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Figure B-1. EBSD analysis of the sample LuMn1.08O3±δ, (a) pattern quality map, (b) phase map (red: Lu2O3, 

blue: Mn3O4 and green:LuMnO3), (c) to e show different componenet of the Euler´s angles and (f) the color 

code of the orientaions.  
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C. Parameters of the magnetic susceptibility in the paramagnetic 

region 

 

C-1 Background magnetization in temperature dependent magnetic 

measurements 

 

Figure C-1 represents the zero field cooled (ZFC) magnetic moments as a function of 

temperature measured under 100 Oe applied field of all samples with one day annealing 

time. The enlarged scale of the magnetization axis allows better observation of the 

intensity of paramagnetic moment with the background of the different samples. For 

measuring magnetic properties of the powders, they were encapsulated in plastic vials, 

wrapped in Kapton foil and put inside a plastic straw. Figure C-1 gives in (a) the raw data 

of magnetic moments as measured and the same magnetization, after background 

subtraction using equation (C-1) in (b). The insverse of the magnetic susceptibility in the 

paramagnetic region above TN would be expected to follow the Curie-Weiss law equation 

(C-1), and be linearly correlated to temperature. A shown later, this is not the case for 

most samples.   In this section of Annex C one tries to evaluate the contribute of different 

sources for the deviation of 1/  from the linear Curie-Weiss law. 

Since background can affect the offset of the linear Curie-Weiss law, as a first approach, 

background subtraction is tested and the effect of magnetic background will be given in 

tables C-1 to C-3 below. 
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Figure C-1. ZFC magnetization under 100 Oe applied magnetic field of the samples of one day annealing 

time (a) magnetization (raw data) as measured for samples with different masses. (b) Magnetization of the 

same measurements and samples of (a) after subtracting background as is described in the text. 

 

In this starting approach, a three parameters fitting function is used as given by equation 

(C-1) which is Curie-Weiss law with the additional term 0 which represents the 

background magnetization: 

 𝜒 (
𝑒𝑚𝑢

𝑔𝑟. 𝑂𝑒
) = 𝜒0 +

𝑐

𝑇 − 𝑇𝐶𝑊
 (C-1) 

here, χ0, C the Curie constant and TCW the Curie-Weiss temperature are three adjustable 

parameters. Fitting is done with the least-square algorithm embedded in Origin Pro 9.0 

package. Table C-1 and Figure C-2 summarize the results of the fitting taking this 

approach. It was found that the results of the fitting are very dependent on the range of 

temperature considered for the fitting. Accounting for extension to temperatures above 

TN of any magnetic contribution which may change the linear behaviour of the Curie-

Weiss law in paramagnetic region [34], the temperature range for the fittings was 

restricted to temperatures from 150 K to the upper end of temperature of the 

magnetization measurements, which means that the fitting is launched more than 50 K 

above the AFM transition temperature. 
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Table C-1. Fitting of three parameters Curie-Weiss like approach equation C-1 to the magnetic susceptibility of samples 

of one day annealing time. The subscript of zero (columns 3 to 5) denotes the initial values of the variables for starting 

of the least-square fitting, 0 in column 9 represents the magnetic background determined by the fitting 

x range TCW,0 χ0,initial C0 TCW(K) χ0(emu/g.Oe) C(emu.K/g.Oe) 
R 

square 

0.92 150-300 K 1.5 4.41E-05 0.0020 -563.5 2.1E-05 0.0243 0.99995 

0.96 150-350 K 2.0 1.48E-05 0.0008 -336.5 1.0E-05 0.0048 0.99947 

0.98 150-350 K 1.5 1.11E-05 0.0007 -445.9 4.5E-06 0.0067 0.99961 

1 150-300 K 1.6 1.19E-05 0.0008 -442.5 4.0E-06 0.0077 0.99994 

1.02 150-300 K 1.5 1.18E-05 0.0000 -489.9 4.0E-06 0.0080 0.99993 

1.04 150-350 K 1.7 1.03E-05 0.0008 -202.7 6.8E-06 0.0031 0.99633 

1.08 150-310 K 2.0 1.23E-05 0.0009 -334.4 5.5E-06 0.0063 0.99403 

1.12 150-300 K 0.9 1.32E-05 0.0009 -60.1 1.2E-05 0.0015 0.99952 

 

Figure C-2. Dependence of results of the Tcw and 0 ( background) on sample composition after fitting using 

the equation C-1 in the temperature range from 150 K up to at least 300 K or above. 
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C-2 Background correction with fixed value for all samples 

 

In this approach the value of χ0 calculated for sample x=0.96, which does not show 

secondary phase of Mn3O4 in XRD pattern and has a low amount of the diamagnetic 

Lu2O3 secondary phase is used to fix the value of χ0 constant 𝜒0 = 4.67947 ×

10−5𝑒𝑚𝑢 for all samples (we do this exercise on raw data of magnetic measurements). 

The fitting with two free parameters, C and TCW, is refined (equation C-2), data are 

calculated and plotted in Figure C-3. The constant value for χ0 is calculated from 

magnetic signal of x=0.96 as it shows linear behaviour of inverse susceptibility in the 

temperature range above 175 K. Therefore, to apply this constant value for other 

samples, we shifted the starting range of temperature for fitting to 175 K, the 

corresponding values of the calculated parameters being given on Table C-1 (note that 

here fitting was done on raw data with unit of emu). 

  𝜒(𝑒𝑚𝑢) = 𝜒0(4.67947 × 10−5) +
𝐶

𝑇−𝑇𝐶𝑊
 (C-2) 

 

Table C-2.Results of the 2 parameters fitting, considering constant background from sample x=0.96. 

Mn/Lu Range of Fitting TCW (K) χ0(emu) C(emu.K) 

0.92 175-300 K -847.2 4.68E-05 0.220 

0.96 175-350 K -325.3 4.68E-05 0.020 

0.98 175-350 K -561.3 4.68E-05 0.164 

1 175-300 K -257.7 4.68E-05 0.027 

1.02 175-300 K -416.6 4.68E-05 0.073 

1.04 175-350 K -251.8 4.68E-05 0.033 

1.08 175-310 K -164.4 4.68E-05 0.018 

1.12 175-300 K -397.5 4.68E-05 0.103 
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Figure C-3. Comparing the Curie-Weiss temperature TCW obtained from fitting for two different approaches 

were used on Table C-1 and Table C-2. The linear fitting of the data in figure is shown for both sets of the 

data. 

 

C-3 Estimation of the contribution of hausmannite secondary phase  

 

Since the behaviour of ferrimagnetic hausmannite even above the its Curie temperature 

(around 43 K) in the paramagnetic region results in a non-linear term for the reverse of 

the magnetic susceptibility, the Curie-Weiss law of the magnetic susceptibility of samples 

with residuals of hausmannite is no longer valid, at least in range of temperature below 

200 K [143]. To assess the trends of calculated values of Curie-Weiss temperature and 

effective magnetic moments of samples with hausmannite as a secondary phase, in a first 

trial simulated values of magnetic susceptibility in the paramagnetic region are 

generated with Curie-Weiss law of the magnetic susceptibility of a pure LuMnO3 sample 
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(-880 K for TCW) and combined with Lotgering function of the magnetic susceptibility of 

hausmanite (different values, Table 5-1), given in equation (5-3) of main text with zero 

background. Table C-3 gives three series of results for different approaches tested to 

retrieve back the parameters of equation. 0 is the magnetic signal from background. 

Since in equation (5-5) there are more than three parameters for fitting, the choice of 

initial values and parameters which should be relaxed or not in the fitting affects the 

output results. The analysis showed that if the background susceptibility 0 is left relaxed 

(as a variable of the fitting), there will be important divergence of the values of 

calculated parameters from those used in equation (5-3). Therefore, the results of data 

fitting in Table C-3 are reported with background susceptibility 0 values fixed and 

constant. Values of background magnetization 0 when different from zero were 

estimated by the initial guess of values from fitting. Then to continue the iteration, we 

chose the background variable to be fixed. The values of (1-fm) shown as 0.90 are due to 

the bound applied to restrict the amount of secondary phase between 0.00 < fm < 0.10, 

and when fitting diverges to values beyond this limit, it creates 0.90. Overall assessment 

of the results in Table C-3 may draw the conclusion that relaxing (1-fm) in these fittings 

can generate values which may not be realistic. As XRD would clearly show less than 5% 

in weight fraction of magnetic secondary phase, if such large amounts did not show up in 

XRD pattern, then the large amounts of secondary phase obtained in the sample would 

represent overestimation of the real value and divergence of the fitting algorithm.  

Finally in the fitting method we came up with a solution where values of (1-fm) should be 

extracted from XRD analysis, as often done, and background susceptibility set at a 

constant value, normally 1% of the raw data of total susceptibility in the paramagnetic 

region. Without these of assumptions the fitting would give unrealistic values of the 

parameters of equation (5-5) definitively for samples with no indication of hausmannite 

in the XRD spectra. Table C-4 gives the results of fitting using equation (5-5) assuming 

1% magnetic background (χ0) and the amount of Mn3O4 secondary phase determined 

from XRD Rietveld refinement. 
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Table C-3. Lotgering function combined with Curie-Weiss law and constant magnetic background were used to 

calculate the Curie constant C and Curie-Weiss temperature TCW as adjustable parameters in the fitting. 

Mn/Lu χ0(emu/gr.oe) TCW(K) C(emu.K/g.Oe) 

Constant 

1-fm Adj. R-Square comment 

sample name Fixed Relaxed Relaxed Fixed   

1.12 4.00E-06 -455.3 0.01095 0.95 0.99707 constant 

background, 

and fixed 

values 

for secondary 

phase. 

 

1.08 0.00 -168.5 0.00375 0.97 0.99974 

1.04 6.09E-06 -254.7 0.00436 0.97 0.99985 

1.02 4.70E-06 -421.4 0.00739 0.99 0.99995 

1 7.24E-06 -252.6 0.00419 0.999 0.99951 

0.98 2.68E-06 -571.7 0.00953 0.998 0.99929 

0.96 1.05E-05 -312.2 0.00435 0.995 0.99953 

0.92 9.70E-06 -862.5 0.04644 0.999 0.9999 

 Fixed Relaxed Relaxed Relaxed   

1.12 4.00E-06 -457.9 0.01142 0.9 0.99714 

 

1.08 9.00E-06 -170.2 0.00372 1 0.99975 

1.04 6.09E-06 -251.9 0.00449 0.9 0.99986 

1.02 4.70E-06 -420.9 0.00734 1 0.99995 

1 7.24E-06 -253.0 0.00417 1 0.99463 

0.98 2.68E-06 -585.6 0.01032 0.9 0.99933 

0.96 1.05E-05 -312.4 0.00435 1 0.99953 

0.92 9.70E-06 -861.7 0.04636 1 0.9999 

 Fixed Relaxed Relaxed Relaxed   

1.12 0 -645.2 0.01842 0.9 0.9961 

 

1.08 0 -578.2 0.01604 0.9 0.9982 

1.04 0 -640.5 0.01408 0.9 0.9915 

1.02 0 -716.4 0.0163 0.9 0.99977 

1 0 -678.3 0.0156 0.9 0.99981 

0.98 0 -790.5 0.01596 0.9 0.9991 

0.96 0 -1067.3 0.02407 1 0.99591 

0.92 0 -1132.5 0.07825 0.9 0.99982 
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Table C-5 and Table C-6 summarizes the calculated parameters of the fitting for selected 

samples with longer sintering time to be compared to the results of Table C-4 of one day 

annealing time. In this section of Annex C we have just shown the method taken to 

calculate parameters of the magnetic properties in the paramagnetic region. Discussion 

of the results of calculated Curie-Weiss temperature and corresponding calculated 

frustration factor were included in the main text of Chapter 5, section 5-3-3.  

 

Table C-4. Parameters of the Curie-Weiss law with 1% constant background (χ0) which is subtracted from the 

experimental data of  of samples from 1 day annealing time to be used in fitting model of the equation (5-5). 

Relaxing the weight fraction of hausmannite phase in the least-square fitting results in unrealistic values for secondary 

phase, which is detectable easily in XRD pattern. Fixing the weight fraction of secondary phase to the values extracted 

from Rietveld refinement of the XRD patterns can be more stable approach among all approaches have been tested. 

Mn/Lu χ0(emu/g.oe) TCW(K) 

Curie Constant 

(emu.K/g.Oe) 

1-fm Adj. R-Square 

Fitting Fixed Relaxed Relaxed Relaxed  

1.12 1% raw data -928.9 0.0169 0.9 0.99822 

1.08 1% raw data -805.9 0.01385 0.9 0.99995 

1.04 1% raw data -1065.9 0.01254 0.9 0.99976 

1.02 1% raw data -804.3 0.01471 0.96585 0.99997 

1 1% raw data -747.9 0.01396 0.96776 0.99996 

0.98 1% raw data -957.4 0.01462 0.95681 0.99934 

0.96 1% raw data -1879.8 0.03201 0.93084 0.99982 

0.92 1% raw data -1085.2 0.06795 1 0.99929 
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Table C-5. Results of applying developed methodology (Table C-4 ) to calculate magnetic parameters after subtracting 

secondary phase contribution for samples of 5 days and 10 days annealing time. Notice that for x=1.12 compositions 

the amount of secondary phase was considered higher than in other compositions. 

samples with one day annealing time at 1300C 

 χ0(emu/gr.oe) TCW(K) C(emu.K/g.Oe) 1-fm  chi square range of fitting 

Fitting Fixed Relaxed Relaxed Fixed after fitting  

1.12 1.96256E-5 -605 0.01515 0.974 0.99334 150 K-350 K 

1.08 1.83208E-5 -588.4 0.01413 0.98 0.9994 150 K-350 K 

1.04 1.46916E-5 -651.7 0.01233 0.977 0.99845 175 K-350 K 

1.02 1.6113E-5 -721.5 0.01427 0.982 0.99976 150 K-350 K 

1 1.60747E-5 -661.5 0.01366 0.99 0.99974 150 K-350 K 

0.98 1.43228E-5 -770 0.01396 0.99 0.99898 150 K-350 K 

0.96 1.79633E-5 -1078 0.02395 0.998 0.99776 150 K-350 K 

0.92 5.24922E-5 -1082 0.06894 0.998 0.99952 150 K-350 K 

samples with 5 days annealing time at 1300C 

Fitting Fixed Relaxed Relaxed Fixed after fitting  

1.12 1.9E-05 -628.5 0.01579 0.99 0.99493 150 K-350 K 

1.08 1.6E-05 -537.7 0.01262 0.99 0.99662 150 K-350 K 

1.04 1.6E-05 -611.8 0.01338 0.99 0.99789 150 K-350 K 

1 1.2E-05 -661.7 0.00997 0.995 0.9984 150 K-350 K 

0.96 1.9E-5 -819.4 0.01996 0.998 0.99855 125 K-350 K 

0.92 1.3E-05 -827.3 0.01413 0.995 0.99991 150 K-350 K 

samples with 10 days annealing time at 1300C 

Fitting Fixed Relaxed Relaxed Fixed after fitting  

1.12 1.9E-05 -543.6 0.01416 0.99 0.99685 175 K-350 K 

1.08 1.7E-05 -528.4 0.01248 0.99 0.99879 150 K-350 K 

1.04 1.8E-05 -559.7 0.01434 0.99 0.99606 150 K-350 K 

1 1.6E-05 -616.1 0.01369 0.995 0.99853 150 K-350 K 

0.98 1.3E-05 -683.3 0.01167 0.995 0.99902 150 K-350 K 

0.96 1.6E-05 -825.2 0.01705 0.995 0.99915 150 K-350 K 

0.92 1.2E-05 -720.8 0.01169 0.995 0.99976 150 K-350 K 
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Table C-6. Values of frustration factor f and magnetic moments calculated from the data of TCW and C of previous table. 

TN values are calculated from the first derivative of the transitions in FC magnetic susceptibility data observed at 

values of temperature around 90 K. 

 samples with 1 day annealing time  

 
TN 

TCW(K) f (|TCW|/TN) 

Magnetic 

Moment(μB) 

range of fitting 

1.12 89.5 -605 6.8 1.8 150 K-350 K 

1.08 89.98 -588.4 6.5 3.6 150 K-350 K 

1.04 89.7 -651.7 7.3 2.5 175 K-350 K 

1.02 91.69 -721.5 7.9 4.1 150 K-350 K 

1 90.9 -661.5 7.3 4.0 150 K-350 K 

0.98 91.7 -770 8.4 3.7 150 K-350 K 

0.96 91.1 -1078 11.8 3.5 150 K-350 K 

0.92 94.5 -1082 11.4 7.3 150 K-350 K 

 samples with 5 days annealing time 

1.12 88.9 -628.5 7.0 5.9 150 K-350 K 

1.08 90.22 -537.7 6.0 5.2 150 K-350 K 

1.04 90.44 -611.8 6.8 5.4 150 K-350 K 

1 90.94 -661.7 7.3 4.6 150 K-350 K 

0.96 90.5 -819.4 9.1 6.5 125 K-350 K 

0.92 92.351 -827.3 9.0 5.4 150 K-350 K 

 samples with 10 days annealing time 

1.12 88.97 -543.6 6.1 5.6 150 K-350 K 

1.08 88.72 -528.4 6.0 5.2 150 K-350 K 

1.04 88.84 -559.7 6.3 5.5 150 K-350 K 

1 89.45 -616.1 6.9 5.4 150 K-350 K 

0.98 90.5 -683.3 7.6 5.0 150 K-350 K 

0.96 90.47 -825.2 9.1 6.0 150 K-350 K 

0.92 90.6 -720.8 8.0 4.9 150 K-350 K 
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D. Analysis of field dependant M(T) 

 

 

As for the analysis of M/H of the LuMn1.04O3±δ sample in Figure 5-16, section 5-3-5, three 

temperatures were chosen for the analysis of the effect of magnetic field: 80 K, where 

anomaly of ZFC magnetization below TN appears (81 K in the analysis of ZFC 

magnetization in Figure 5-17.b), 55 K where the values of ZFC field normalized 

magnetization, M/H, for a large span of different magnetic fields are constant, and 40 K 

below the Curie temperature of hausmannite. The analysis was done for three selected 

samples of 5 days annealing time with composition x=0.96, x=1.00 and x=1.04. The 

calculated values of the constant, exponent and correlation coefficient of the empirical 

equation given by the power relation on MH are given in Table D-1.  

 Figure D-1 shows that M has a non-linear dependence of magnetic field at 80 K given by 

values of the exponent 0.8<<0.96 definitively below one. The decrease of this exponent 

 with sample composition is nearly linear on x, the non-linearity of the dependence of M 

on H being accentuated in Mn-rich side of the LuMnxO3± solid solution. As displayed in 

Figure D-1, the exponent  for ZFC magnetization at 55 K is very close to the unity for the 

all three samples of different composition, and as already shown for LuMn1.04O3± sample 

in the corresponding power law plot in Figure 5-17.b, ZFC magnetization in the 

intermediate temperature range 45-65 K is directly proportional to the magnetic field. 

The values of exponent  for FC magnetization at the same temperature of 55 K show 

linearity on composition ratio x and a larger deviation from linearity of the dependence 

of M on H which becomes more prominent in the Mn-rich side towards the x=1.04 

composition. Below the Curie temperature of hausmannite, the dependence of 

magnetization M on H at 40 K has values of the exponent  around ½ in the x=1.04 

sample, for both FC and ZFC conditions. On the Lu-rich side of LuMnxO3± solid solution 

values of  for x=0.96 at 40 K still stay close to one, indicating simple proportionality 



Analysis of field dependant M(T)  

278 
 

between M and H while for x=1.00 sample values of  remain above 0.7, both samples 

showing the presence of much lower amounts of residual hausmannite in comparison to 

x=1.04 sample, last line of Table 4-2. 

 

Table D-1. Values of exponent,  and a constant of power law (Constant.H, where H holds for magnetic field) from 

fitting with their respective R2 (quality of fitting) for 3 samples of 5 days annealing.  

  
ZFC measurement FC measurement 

  
Constant  R2 Constant  R2 

40 K 1.04 0.0078 0.526 0.933 0.2821 0.371 0.9685 

40 K 1 12.458 0.836 0.9977 355.88 0.714 0.9977 

40 K 0.96 3.062 0.954 1 4.8513 0.905 0.9996 

55 K 1.04 4.00E-05 0.968 0.9995 0.0024 0.776 0.9984 

55 K 1 4.1791 0.94 0.9998 93.499 0.846 0.9985 

55 K 0.96 2.513 0.967 1 3.7071 0.930 0.9997 

80 K 1.04 8.00E-05 0.868 0.9998 0.001 0.846 0.9986 

80 K 1 3.7585 0.936 0.9993 51.628 0.868 0.9993 

80 K 0.96 2.6761 0.964 1 2.9772 0.949 0.9999 
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Figure D-1. Exponent of power law obtained by fitting a power law curve on the data of field dependent  

magnetization measured at different magnetic fields at 40 K, 55 K and 80 K for x=1.04, x=1.00 and x=0.96, 

both FC and ZFC conditions.  



Mode decomposition of YMnO3  

280 
 

E. Mode decomposition of YMnO3  

 

To perform mode decomposition, we need to have the structural file of the high 

temperature, high symmetry PE phase of the YMnO3 compound. Given below is the 

available data  for YMnO3 from the literature [225]. Amplimode program available from 

Bilbao Crystallographic Server was used [220,225]. 

194 

3.61 3.61 11.39 90.00 90.00 120.00 

4 

Y 1 2a 0.000000 0.000000 0.000000 

Mn 1 2c 0.333333 0.666670 0.250000 

O 1 4f 0.333333 0.666670 0.087000 

O 3 2b 0.000000 0.000000 0.250000 

 

The transformation matrix which connects the PE phase to decomposed modes is: 

(
2 1 0

−1 1 0
0 0 1

)(
𝑎
𝑎
𝑐
) = (

𝑎´
𝑏´
𝑐´

) 

with the origin shifted of (0,0, 0.24700) as suggested by the Amplimode program. 

Table E-1.a gives the four expected modes after phase transition allowed by the rules of 

group symmetry analysis. The second table, Table E-1.b lists the atoms which are 

displaced during phase transition and the result of the corresponding destination mode. 

Amplitude of the modes confirms that K3 mode is the primary mode as it has higher 

amplitude, giving also rise to tripling of the unit cell after phase transition.  
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Table E-1. Amplitude of the different decomposed modes (a) and the orbits (atoms) (b) involved in displacement 

during phase transition for each mode in hexagonal LuMnO3 lattices 

a b 

K-vector Irrep Direction 
Isotropy 

Subgroup 
Dimension Amplitude (Å) Atoms WP Modes 

(0,0,0) GM1+ (a) P6_3/mmc (194) 1 0.0057 O1 4f 
GM1+(1) GM2-(1) 

K1(1) K3(1) 

(0,0,0) GM2- (a) P6_3mc (186) 4 0.1539 Mn1 2c GM2-(1) K1(1) 

(1/3,1/3,0) K1 (a,0) P6_3/mcm (193) 2 0.0166 O3 2b GM2-(1) K3(1) 

(1/3,1/3,0) K3 (a,0) P6_3cm (185) 3 0.5380 Y1 2a GM2-(1) K3(1) 

 

Table E-2. Atomic displacement of the 4 ions in PE phase to 7 different Wyckoff positions.  ux, uy and uz are given in 

relative units. |u| is the absolute distance given in Å. 

WP Atom 

Atomic Displacements 

ux uy uz |u| 

2a (0,0,z) Y1 0.0000 0.0000 -0.0195 0.2221 

4b (1/3,2/3,z) Y1_2 0.0000 0.0000 0.0213 0.2426 

6c (x,0,z) Mn1 0.0000 0.0019 -0.0030 0.0361 

6c (x,0,z) O1 0.0000 0.0254 -0.0028 0.1618 

6c (x,0,z) O1_2 -0.0250 -0.0250 -0.0033 0.1610 

2a (0,0,z) O3 0.0000 0.0000 -0.0248 0.2825 

4b (1/3,2/3,z) O3_2 0.0000 0.0000 0.0156 0.1777 

 

Details of the displacement of the ions after phase transition are given in Table E-2. The 

GM1+ (1+) mode has the smallest amplitude. This mode involves the change in z 

coordinate of apical oxygen (strain of lattice). GM2-(2-) is accompanied by displacement 

of z-coordinates of all ions resulting in a polar phase. K1 and K3 modes give rise to 

expansion of the PE unit cell by √3 a  √3 b  1 (a=b, so tripling the unit cell) with the 

same K vector (1/3,1/3,0) as can be found in equilibrium structure of h-RMnO3 oxides at 

room temperature. K1 allows Oap-Mn-Oap axis to be displaced in the basal plane where O 
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is assigned to the apical oxygen. K3 mode is in fact the stable P63cm mode 

(antiferrodistortive) leading to tilt of the MnO5 bipyramids and antiparallel 

displacements of the Y ions [106,219].  

K-vector:  = (0,0,0)  

Irrep: 1+  Direction: (a) Isotropy Subgroup: 194 P6_3/mmc D6h-4 

Irrep: 2- Direction: (a) Isotropy Subgroup: 186 P6_3mc C6v-4 

K = (1/3,1/3,0) Irrep: K1  Direction: (a,0) Isotropy Subgroup: 193 P6_3/mcm D6h-3 

Irrep: K3  Direction: (a,0) Isotropy Subgroup: 185 P6_3cm C6v-3 

Table E-3. Atomic displacement of the PE Wyckoff positions of the ions in the unit cell and their splitting in respective 

irreducible representations. 

Irrep. 1+ 2- K1 K3 

Atom δx δy δz δx δy δz δx δy δz δx δy δz 

Y1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0283 0.0000 0.0000 0.0000 0.0000 0.0000 
-

0.0292 

Y1_2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0283 0.0000 0.0000 0.0000 0.0000 0.0000 0.0146 

Mn1 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0118 0.0000 0.0648 0.0000 0.0000 0.0000 0.0000 

O1 0.0000 0.0000 0.0253 0.0000 0.0000 -0.0120 0.0000 0.0058 0.0000 0.0000 0.0270 0.0000 

O1_2 0.0000 0.0000 -0.0253 0.0000 0.0000 -0.0120 0.0058 0.0058 0.0000 
-

0.0270 

-

0.0270 
0.0000 

O3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.0000 0.0000 0.0000 0.0000 0.0000 
-

0.0289 

O3_2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.0000 0.0000 0.0000 0.0000 0.0000 0.0145 

 

The orbit splitting of the modes with larger amplitude of distortion for 2- and K3 from 

the table  above show the change of unit cell when the mode is either K3 or 2- mode. In 
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2- mode,  Table E-3 indicates that the atomic displacements from PE to 2- occur only 

along c-axis, the polarization direction, confirming that polarization of the lattice comes 

from this mode. On the contrary, the undergoing atomic displacements when K3 mode is 

the primary mode includes the z-direction shifts for the rare-earth ion and planar 

oxygen, the shift in apical oxygen occurring in the basal plane. Mn ions do not show any 

displacement in this mode. The calculated energy of all modes, particularly K3 and 2-, 

confirmed that with exception of the K3 mode, the other modes are stable when their 

energies are plotted versus the corresponding degree of distortion from zero amplitude 

[219].  
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Interfaces, 2015 

2- A. Baghizadeh, J. M. Vieira, J. S. Amara, M.P. Graça, M. R. Soares, D. A. Mota, V. S. Amaral, “Crystal 
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