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resumo 
 

 

A Deteção Remota tem sido utilizada durante décadas com 
novas aplicações a surgirem constantemente. Com este estudo 
pretende-se demonstrar o uso da Deteção Remota no campo 
da monotorização da recuperação de vegetação em áreas 
ardidas e o valor acrescentado da elevada resolução espacial 
dos dados utilizados. Para o efeito, foi feita a análise de áreas 
ardidas na freguesia de Calde, região central de Portugal, 
depois do incêndio florestal no verão de 2012, usando imagens 
Landsat 7 e 8 assim como uma ortofoto produzida com imagens 
adquiridas por um veículo aéreo não tripulado. 
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abstract 

 
Remote Sensing has been used for decades, and more and 
more applications are added to its repertoire. With this study we 
aim to show the use of Remote Sensing in the field of vegetation 
recovery monitoring in burned areas and the added value of 
data with a high spatial resolution. This was done by analysing 
both Landsat 7 and 8 scenes, after the forest fire of summer 
2012 in the parish of Calde, in the central region of Portugal, as 
well as an orthophoto produced with images acquired by an 
unmanned aerial vehicle. 
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1. INTRODUCTION 

This study was conducted within the framework of CASCADE (CAtastrophic Shifts in 

drylands: how CAn we prevent ecosystem DEgradation?) Project number: 283068 of the 

Seventh Framework Program. The project aims to understand sudden ecosystem shifts that 

can have a huge loss of biodiversity and ecosystem services as a consequence. One of the 

tools that has been proven its potential for retrieving vegetation properties at both global 

and local scale is Remote Sensing (MOUSIVAND, MENENTI, GORTE, & VERHOEF, 2015; 

VERSTRAETE, PINTY, & MYNENI, 1996). 

Wildfires are a major agent of land degradation in the Mediterranean (SHAKESBY, 

2011). The area that is burned yearly has been on average 100.000 ha in Portugal 

(MALVAR, PRATS, NUNES, & KEIZER, 2011). There has been a steady increase of wild 

fires in the past decades. One probable cause is the abandonment of agricultural land. The 

land is not cleared which leads to more fuel during the dry summer months (FAO, 2001). 

With the objective of CASCADE being the detection of tipping points in ecosystems it 

has become of interest to monitor vegetation with several means. The project contemplates 

extensive field work, which is an intensive but reliable way of collecting data. Remote 

sensing might be an adequate alternative or complementary data collection tool to the field 

work as Landsat data are continuous and freely available through the United States 

Geological Survey (USGS). This study will explore the possibilities of vegetation monitoring 

for the Portuguese CASCADE study area, Calde, situated in the central region of Portugal. 

This thesis addresses, in addition to the introduction, the state of the art of vegetation 

monitoring (section 2), the problem formulation, in section 3 that contains the statement of 

problem, the study area and data, the objectives and the resources in terms of software, 

the developed methodology to attain the objectives (section 4), with its implementation in 

section 5, the presentation and discussion of the results (section 6) and, in section 7, the 

conclusions. This thesis also contains 5 appendices with further information on data and 

methods and the bibliography. 



2 
 

2. STATE OF THE ART OF VEGETATION MONITORING. 

This section contains a resume on vegetation indices and analysis techniques used 

in relation to vegetation recovery monitoring and burned vegetation. The list is in no way 

complete but mentions the most commonly used indices and techniques for these purposes. 

2.1 VEGETATION INDICES 

Remote Sensing and temporal analysis of vegetation have not always been common 

practice. With the development of planes and photographic cameras the term aerial 

photography was introduced. It was not until the 1960´s that the term Remote Sensing was 

coined as new technologies became available and the field became more professional. The 

first Remote Sensing satellites where launched in 1959 by the USA (United States of 

America) to spy on the Russians. As with most emerging technologies the first applications 

where military. Between the 1960’s to 70’s Remote Sensing shifted from air planes to 

satellites (FOWLER, 2013; KEVIN C. RUFFNER, 1995). 

In 1972 Landsat 1 (ERTS-1) was launched and was described as the first step in 

merging space and Remote Sensing technologies for the monitoring and managing of 

earth’s resources (WILLIAMS JR. & CARTER, 1976). From this moment on, the 

applications for Remote Sensing increased and, for example, monitoring of air pollution was 

introduced (BRIMBLECOMBE & DAVIES, 1978) and detecting and characterizing changes 

in vegetation has become more common (DEFRIES, HANSEN, TOWNSHEND, JANETOS, 

& LOVELAND, 2000).  

On the moment of writing this thesis, the Landsat program has reached its 8th iteration 

and the applications vary from crop monitoring to disaster management. The most 

commonly stated advantage of Remote Sensing is the ability of collecting temporal 

measurements without the use of traditional field based methods. The application of 

Remote Sensing for forest and post-fire monitoring has been studied for some time and 

Remote Sensing is considered a useful tool to obtain temporal data for large extents of time 

and areas (CASADY & MARSH, 2010; RAVI, BADDOCK, ZOBECK, & HARTMAN, 2012; 

VAN LEEUWEN et al., 2010). Looking at the widespread use of Remote Sensing and the 

high temporal frequency with which measurements are taken it is clear its potential is great 

for monitoring. 

In the area of vegetation monitoring countless measures, named indices, have been 

developed for different types of vegetation, diseases, fungi, stresses and sensors. For the 
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scope of the study only indices that can be applied to the Landsat 7 and 8 imagery have 

been considered.  

One of the earliest developed indices is the simple ratio index. It was developed in 

1968 to assess the color of growing turf and is thus the first described index for vegetation 

monitoring (BIRTH & MCVEY, 1968). The index is based on the red (630 to 690 nanometer) 

and the near infrared (770 to 900 nanometer) wavelengths. Equation 1 shows how the index 

is calculated, the bigger the difference between the near infrared and the red the bigger the 

SR value and the healthier the vegetation. From its introduction in 1968 the index has been 

used for many applications including biomass, chlorophyll content, green ratio, leaf area 

index, leaf mass per area, nitrogen content and phytomass estimations as well as for 

disease mapping and general vegetation monitoring purposes (CALDERÓN, NAVAS-

CORTÉS, LUCENA, & ZARCO-TEJADA, 2013; EDIRIWEERA, PATHIRANA, DANAHER, 

& NICHOLS, 2014; LEMAIRE et al., 2008; O’CONNELL, BYRD, & KELLY, 2014; PINTY & 

VERSTRAETE, 1992; SIMS & GAMON, 2002; VESCOVO & GIANELLE, 2008; VINCINI, 

FRAZZI, & D’ALESSIO, 2006; XIAO, ZHAO, ZHOU, & GONG, 2014). 

Equation 1: Simple ratio (BIRTH & MCVEY, 1968) 

�� =
���

���
 

 

With the importance of the difference between the red and the near infrared, named 

the red edge, in vegetation monitoring recognized by scientists development started on new 

ways to use this information. In 1982 the difference vegetation index or DVI was introduced 

(WIEGAND & RICHARDSON, 1982). The DVI is solely based on the difference between 

the red and the near infrared wavelengths. The difference is calculated by deducting the 

red from the near infrared wavelength as shown in Equation 2. The range of DVI values for 

healthy vegetation falls between 2 to 8. The index has been used in cover estimation, leaf 

area index estimation and general vegetation monitoring (BAUGH & GROENEVELD, 2006; 

ELVIDGE & CHEN, 1995; WIEGAND & RICHARDSON, 1982). 

Equation 2: Difference vegetation index (WIEGAND & RICHARDSON, 1982) 

��� = ��� − ���  

 

Also based on the red edge is the most well-known index, the normalized difference 

vegetation index or NDVI. What makes the NDVI different from the SR and DVI is that it 

normalizes the difference between the red and the near infrared wavelength. This is 
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effectively done by combining the SR and DVI into Equation 3. The result gives NDVI values 

between -1 and 1. The greener the surface the higher the NDVI will be with healthy 

vegetation having values between 0.3 and 0.8 while bare soils have NDVI values between 

0.2 and 0.3.With its earliest mention in 1974 the NDVI has been in use for 40 years 

(ROUSE, HAAS, SCHEEL, & DEERING, 1974) and is popular to this day. It´s most common 

application is vegetation monitoring and cover estimations (BARRY, STONE, & 

MOHAMMED, 2008; BAUGH & GROENEVELD, 2006; ELVIDGE & CHEN, 1995; 

GITELSON, KAUFMAN, STARK, & RUNDQUIST, 2002; GITELSON, 2004). In addition it 

has been used for plant health indicators like biomass, leaf area index, carotenoid content, 

chlorophyll content, nitrogen content, leaf water potential and stomatal conductance 

(BERJÓN, CACHORRO, ZARCO-TEJADA, & FRUTOS, 2013; NUMATA et al., 2007; 

PIMSTEIN, KARNIELI, BANSAL, & BONFIL, 2011; RAMA RAO, GARG, GHOSH, & 

DADHWAL, 2007; ZARCO-TEJADA et al., 2013). Other physical parameters have also 

been measured with the NDVI including tree height and crown volume (NUMATA et al., 

2007; SCHLERF, ATZBERGER, & HILL, 2005). On top of all these vegetation properties 

the index has also been used for species distinction, disease mapping and burn severity 

estimations (CALDERÓN, MONTES-BORREGO, LANDA, NAVAS-CORTÉS, & ZARCO-

TEJADA, 2014; EPTING, VERBYLA, & SORBEL, 2005; GALVÃO, FORMAGGIO, & TISOT, 

2005). All these applications make it one of the most used and widely applied indices.  

Equation 3: Normalized difference vegetation index (ROUSE et al., 1974) 

���� =
��� − ���

��� + ���
 

 

Shortly after the NDVI was introduced the green NDVI was developed. This variant 

on the NDVI is based on the same normalization principle but uses a green wavelength 

(520 to 600 nanometer) instead of the red one. This was done because green is more 

closely associated with chlorophyll content (DATT, 1999). This gives a different insight in 

the state of the vegetation in question. Because of this green NDVI is better known for its 

use in biomass estimations (EDIRIWEERA et al., 2014). Other chemically  related uses are 

carotenoid, nitrogen, potassium and phosphorus content estimations (DATT, 1998; 

PIMSTEIN et al., 2011). On top of this the green NDVI is often used for cover and greenness 

estimations (GITELSON et al., 2002; VESCOVO & GIANELLE, 2008). Equation 4 shows 

how the green NDVI is calculated, just as the NDVI it has a range of -1 to 1 and the healthier 

the vegetation the higher the green NDVI value will be. 
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Equation 4: green normalized difference vegetation index (DATT, 1998) 

����(�����) =
��� − �����

��� + �����
 

 

 

Aside from the NDVI based indices researchers found that the influence of the soil on 

vegetation indices was quite disturbing and thus somehow soil characteristics needed to be 

incorporated. With lower fractions of vegetation the soil characteristics become more 

prevalent and can obscure the vegetation characteristics that one wants to measure. In 

1977 this led to the development of the perpendicular vegetation index (RICHARDSON & 

WEIGAND, 1977). The index is able to reduce the influence of bare soils by including a soil 

line. The soil line is a relationship between bare soil reflectance observed in two different 

bands (BARET, JACQUEMOUD, & HANOCQ, 1993) in this case between the red and near 

infrared. Equation 5 shows the calculations where a is the slope of the soil line and b is the 

offset of the soil line. After its introduction in 1977, the index has been used to estimate 

cover percentages and leaf area index (ELVIDGE & CHEN, 1995) as well as crown volume 

(SCHLERF et al., 2005) and nitrogen content estimations (CAMMARANO, FITZGERALD, 

CASA, & BASSO, 2014) and in general vegetation monitoring (BAUGH & GROENEVELD, 

2006). 

Equation 5: Perpendicular vegetation index (RICHARDSON & WEIGAND, 1977) 

��� =
��� − � ∗ ��� − �

√1 + ��
 

 

 

In 1988 another index was developed with the intention of reducing the bare soil 

influence in leaf area index estimations (CLEVERS, 1988, 1989, 1991). The weighted 

difference vegetation index or WDVI is based on the same principles as the PVI but does 

not use a soil line. By creating a factor based on the bare soil reflectance in the red and 

near infrared wavelengths (S), the bare soil properties of the Landsat scene are 

incorporated into the index as seen in Equation 6. In addition the WDVI has been 

successfully applied to estimate nitrogen content (CAMMARANO et al., 2014) and for 

vegetation monitoring purposes with low amounts of cover (BAUGH & GROENEVELD, 

2006). 
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Equation 6: Weighted difference vegetation index (CLEVERS, 1988) 

���� = ��� −
����

����

∗ ���  

 

In 1988 another index was introduced to take soil reflectance influence into account. 

This was the soil adjusted vegetation index or SAVI, shown in Equation 7 (A. R. HUETE, 

1988). Instead of adding a soil line or bare soil reflectance into the equation the correction 

factor L was introduced. The problem the author wished to tackle was the different reflection 

behavior of wet soils. The study showed that by introducing factor L to the NDVI the effect 

of wet soils was effectively reduced (A. R. HUETE, 1988). For most vegetation densities the 

L factor is 0.5 (BARET & GUYOT, 1991) but studies have shown that for different soil types 

adjusted L factors can give better results. The index has most commonly been used for 

vegetation monitoring and cover estimations (BAUGH & GROENEVELD, 2006; ELVIDGE 

& CHEN, 1995). In addition it has been used to estimate the leaf area index (EPIPHANIO 

& HUETE, 1992; PETTORELLI et al., 2005; RONDEAUX, STEVEN, & BARET, 1996) and 

burn severity (EPTING et al., 2005). 

Equation 7: Soil adjusted vegetation index (A. R. HUETE, 1988) 

���� =
��� − ���

��� + ��� + �
(1 + �) 

 

 

To reduce the somewhat considered arbitrariness of the L factor, the SAVI index was 

altered (BARET, GUYOT, & Major, 1989). By introducing a soil line into the index and 

describing a relationship between a soil and vegetation line the influence of bare soils in 

vegetation sparse areas was reduced (BARET & GUYOT, 1991). Equation 8 describes the 

TSAVI calculation where a and b are the slope and the offset of the soil line and X is the 

negative abscissa of point S. Point S is a point on the soil line that corresponds to the 

vegetation line and is described as the value 0.8. Equation 8 shows how the TSAVI is 

calculated and where the soil line and X factor come into play. Initially it was developed to 

increase the accuracy of leaf area index estimations (BARET & GUYOT, 1991) but it has 

been used in cover estimations, crown volume estimation and other vegetation monitoring 

purposes as well (BAUGH & GROENEVELD, 2006; ELVIDGE & CHEN, 1995; RONDEAUX 

et al., 1996; SCHLERF et al., 2005). 
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Equation 8: Transformed soil adjusted vegetation index (BARET et al., 1989) 

����� =
�(��� − ���� − �)

���� + ��� − �� + � ∗ (1 + ��)
 

 

With the lack modern processing power another index was designed in 1990 with the 

purpose of reducing processing time in NDVI calculations (CRIPPEN, 1990). This is the 

infrared percentage vegetation index or IPVI. The index behaves similar to the NDVI 

(CRIPPEN, 1990) but the range is from 0 to 1. The theory behind it is that the amount of 

calculations by pixel is reduced by one. Equation 9 shows the calculations needed to 

calculate the IPVI and the relationship it has with the NDVI. With a similar behavior as NDVI 

the index is applicable in the same areas (BAUGH & GROENEVELD, 2006), however with 

increased computing power available the NDVI is still the more prevalent vegetation index. 

Equation 9: Infrared percentage vegetation index (CRIPPEN, 1990) 

���� =
���

��� + ���
=

1

2
(���� + 1) 

 

In 1991 the normalized burn ratio was introduced as a tool to map burned areas 

(GARCÍA & CASELLES, 1991). From its inception many studies have been conducted and 

slight alterations have been adopted but the most common way to calculate the NBR can 

be seen in Equation 10. It is based on the difference between the difference between the 

near infrared and the short-wave infrared (2090 to 2350 nanometers) wavelengths, with a 

multiplication factor of a 1000 to enhance the range and make it easier to interpret. One of 

the most known adaptations is the dNBR (difference normalized burn ratio) that is described 

in Equation 11 where the difference between the pre-fire and post-fire situations is 

calculated (VAN WAGTENDONK, ROOT, & KEY, 2004). This method has mainly been 

used to delineate burned areas as the difference between the burned and the unburned is 

made visible but it has also been used to keep track of vegetation recovery after fire 

(IRELAND & PETROPOULOS, 2015; LENTILE et al., 2006). In addition to this the NBR has 

also been used to asses burn severity (COCKE, FULÉ, & CROUSE, 2005; EPTING et al., 

2005; ESCUIN, NAVARRO, & FERNÁNDEZ, 2008) and forest change after fire 

(WIMBERLY & REILLY, 1997). 

Equation 10: Normalized burn ratio (GARCÍA & CASELLES, 1991) 

��� = 1000 ∗
��� − ���� 2

��� + ���� 2
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Equation 11: Difference normalized burn ratio (VAN WAGTENDONK et al., 2004) 

���� = ������ − �������  

 

In 1992 a new variant of the NDVI was introduced. The index was designed to reduce 

the influences of the atmosphere on the NDVI (Y.J. KAUFMAN & TANRE, 1992) and 

introduces a blue wavelength (450 to 520 nanometers). This was the atmospherically 

resistant index or ARVI. Equation 12 shows the adapted NDVI calculations. The range of 

values are between -1 and 1 with green vegetation between 0.20 and 0.80, which is similar 

to the NDVI. The authors advise the use of the index in areas with high aerosol content for 

best results (YORAM J. KAUFMAN & TANRÉ, 1994). The most common applications are 

species detection (FAN, FU, ZHANG, & WU, 2015) and vegetation monitoring (BAUGH & 

GROENEVELD, 2006). 

Equation 12: Atmospherically resistant vegetation index (Y.J. KAUFMAN & TANRE, 1992) 

���� =
��� − (2 ∗ ��� − ����)

��� + (2 ∗ ��� − ����)
 

 

In the same year another index was developed with a reduced influence of 

atmospheric conditions, the global environment monitoring index or GEMI (PINTY & 

VERSTRAETE, 1992). The index is successful in negation of atmospheric effect and 

behaves similar to the NDVI but, as is seen in Equation 13, it is more intricate (RONDEAUX 

et al., 1996). The index as used to estimate soil moisture content and showed the same 

correlations with different sensors indicating it is good to use in multiple platforms 

(CUNDILL, VAN DER WERFF, & VAN DER MEIJDE, 2015). Other uses are the estimation 

of the leaf area index (RONDEAUX et al., 1996). 

Equation 13: Global environment monitoring index (PINTY & VERSTRAETE, 1992) 

���� =
2(���� − ����) + 1.5��� + 0.5���

��� + ��� + 0.5
∗  �1 − 0.25 ∗

2(���� − ����) + 1.5��� + 0.5���

��� + ��� + 0.5
�

−
��� − 0.125

1 − ���
 

 

In 1994 a second adjustment was made to the SAVI in another attempt to remove the 

arbitrary L factor (QI, CHEHBOUNI, HUETE, KERR, & SOROOSHIAN, 1994). The authors 

felt the L factor to be limiting the range of the SAVI index and aimed to replace the L factor 

with a self-adjusting one (QI et al., 1994). This resulted in the modified soil adjusted 

vegetation index or MSAVI. Equation 14 shows the resulting calculation for the index without 
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L factor. In the study the authors found that MSAVI had a greater dynamic range response 

than the SAVI as well as a lower soil influence. This led the index to be used in vegetation 

sparse areas and with its main purpose being leaf area index estimation (HABOUDANE, 

MILLER, PATTEY, ZARCO-TEJADA, & STRACHAN, 2004; RONDEAUX et al., 1996). In 

addition it has also been applied to burn severity estimations (EPTING et al., 2005), 

vegetation monitoring (BAUGH & GROENEVELD, 2006) and estimating nitrogen content 

(CAMMARANO et al., 2014). 

Equation 14: Modified soil adjusted vegetation index (QI et al., 1994) 

����� =
2��� + 1 − �(2��� + 1)� − 8(��� − ���)

2
 

 

After this another revision was made to the SAVI in 1996. This index expanded on the 

previous work done on TSAVI and MSAVI to further reduce the impact of bare soil in the 

index (RONDEAUX et al., 1996). This resulted into the optimized soil adjusted vegetation 

index or OSAVI. Equation 15 shows the value 1.5 as a correction factor in the index. In 

literature values have been used varying from absent to 1.5 (BARRY et al., 2008; 

HABOUDANE, MILLER, TREMBLAY, ZARCO-TEJADA, & DEXTRAZE, 2002; QI et al., 

1994; RONDEAUX et al., 1996; YANG, 2012). The index has been used in the estimation 

of leaf area index values (RONDEAUX et al., 1996), the estimation of chlorophyll content 

(HABOUDANE et al., 2002; XIAO et al., 2014) and the mapping of disease (CALDERÓN et 

al., 2013). 

Equation 15: Optimized soil adjusted vegetation index (RONDEAUX et al., 1996) 

����� =
1.5 ∗ (��� − ���)

(��� + ��� + 0.16)
 

 

In 1996 another variant of the NDVI was introduced. This index is however not based 

on the red edge as the NDVI is but on the difference between near infrared and the short-

wave infrared. The normalized difference water index or NDWI was developed to detect 

moisture in vegetation (GAO, 1996). The author explains that the index provides information 

that cannot be derived from the NDVI but it does not manage to negate the influence of 

bare soil on the index resulting in lower values in vegetation sparse areas. Equation 16 

shows the calculations necessary to get the NDWI. The range of heathy vegetation falls 

between -0.1 and 0.4. The NDWI has since successfully been used to estimate vegetation 

moisture content and water stress (GU, BROWN, VERDIN, & WARDLOW, 2007; MORENO 
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et al., 2014). Other documented uses are the estimation of leaf structure deterioration (LIU, 

HUANG, PU, & WANG, 2014), leaf area index and crown volume estimation (SCHLERF et 

al., 2005), burn severity estimation (EPTING et al., 2005) and species distinction (GALVÃO 

et al., 2005). 

Equation 16: Normalized difference water index (GAO, 1996) 

���� =
��� − ����

��� + ����
 

 

In the year 2000 an index was introduced to increase the detection of high leaf area 

index values that would be lost when the NDVI would be used. The index was added as a 

stock Landsat product and is called the enhanced vegetation index or EVI. The EVI is based 

on the same principles as the NDVI but adds the blue wavelength to reduce atmospheric 

effects as well as 2 factors, C1 and C2, a gain factor, that equals 1 (A. HUETE et al., 2002). 

Equation 17 shows where these factors are added. In the equation C1 equals 6, C2 equals 

7.5 and L equals 1. The range of the EVI is between -1 and 1 and healthy vegetation has a 

range between 0.20 and 0.80. The most common use for the EVI is the estimation of the 

leaf area index (A. HUETE et al., 2002; PETTORELLI et al., 2005; WANG, ADIKU, & 

TENHUNEN, 2005). The index has also successfully been used to estimate nitrogen 

content (CAMMARANO et al., 2014) and the monitoring of vegetation (ALEXANDRE, 2011; 

BAUGH & GROENEVELD, 2006). 

Equation 17: Enhanced vegetation index (A. HUETE et al., 2002) 

��� =
��� − ���

��� + (�1 ∗ ���) − (�2 ∗ ����) + �
∗ (1 + �) 

 

With the ARVI successfully incorporating the atmospheric effect into the index the 

visible atmospherically resistant vegetation index or VARI was developed in 2002 

(GITELSON et al., 2002). By replacing the near infrared with the green wavelength, as 

shown in Equation 18, estimations of cover (GITELSON et al., 2002) became more accurate 

even with varying atmospheric conditions. In addition the index has been used in biomass 

estimation, leaf area index estimations and nitrogen content estimations (CAMMARANO et 

al., 2014).   

Equation 18: Visible atmospherically resistant index (GITELSON et al., 2002) 

���� =
����� − ���

����� + ��� − ����
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2.2 ANALYSIS TECHNIQUES 

With the rise of global environmental awareness more attention has been given to 

temporal analysis during the past decade (TURNER et al., 2007). The data collected for this 

study contains both spatial and temporal elements, with the spatial element being the 

different burned areas and their physical location and the temporal element being the 

acquired Landsat and UAV scenes. Though quite some studies over the past decade use 

both spatial and temporal data, their advances in analysis have been separate (BIVAND, 

PEBESMA, & GÓMEZ-RUBIO, 2008). Spatial temporal data often appears conditionally 

(SCHABENBERGER & GOTWAY, 2004) meaning that in most cases the data can be 

analyzed either spatially or temporally. Looking at the acquired data from this perspective it 

is possible to simplify the analysis and decide which aspect is of more interest to the study. 

In this case the spatial aspect are the different treatments, control, one time burned and 

four times burned. Though these have a spatial aspect they can be considered an attribute 

or as a separate population during analysis.  

The analysis is therefore based solely on the temporal aspect of the data to assess 

the recovery and the comparison of the several vegetation indices applied. For these 

analysis three methods are considered. The vertex method, the multivariate method and 

the vegetation index condition method.  

2.2.1 Vertex method 

The vertex method is, as the name implies, based on the analysis of vertices. This is 

achieved by creating scatter plots of vegetation index values over time (ALATORRE, 

BEGUERÍA, & VICENTE-SERRANO, 2011; COHEN, YANG, & KENNEDY, 2010; YAN et 

al., 2014). The gained vertices can be used to see trends and to make estimations for the 

future. This is often done by creating regression lines where the angle and the offset of the 

regression line tells whether or not the vegetation index value is changing over time. One 

common problem with this is that data are not always comparable, for instance summer is 

not comparable to winter. Based on the goal different data are plotted. If seasonality is 

analysed data from all seasons are plotted while for the analysis of peak vegetation cover 

only July can be used to show temporal changes. This is because if all data are plotted it 

can mask seasonal changes. For example, 30 years of rainfall data in India show an 

increase in yearly rainfall in Odisha while there is a significant decrease for rainfall in the 

winter, potentially endangering agricultural activity (SAHU & KHARE, 2015). 
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2.2.2 Multivariate method 

Though a multivariate approach can be added to the vertex method the method 

described here is different in the sense that it needs more information than the vertex 

approach. It requires a time series of the used vegetation index and several types of field 

information. In this case one wants to know which of several field factors has more influence 

on the vegetation index. This approach is commonly used in vegetation and land use 

classification. The procedure compares plots and/or field data to spectral imagery of those 

plots taken at several times (BROOK & KENKEL, 2002). Multivariate techniques include 

cluster analysis, principle component analysis, correspondence analysis, multiple 

discriminant analysis and redundancy analysis. 

2.2.3 Vegetation condition index 

The vegetation condition index is a normalization procedure that facilitates the use of 

different vegetation indices. The procedure normalizes index values using the current index 

value and introducing an index minimum and maximum that have been found during the 

period of observation as seen in Equation 19 (QUIRING & GANESH, 2010; TSIROS, 

DOMENIKIOTIS, SPILIOTOPOULOS, & DALEZIOS, 2004). The analysis assumes that the 

index minimum and maximum indicate the worst and best state of the vegetation during the 

observed period thus the higher the value the healthier the vegetation state. 

Equation 19: Vegetation condition index (TSIROS et al., 2004) 

��� =
��� − �����

����� − �����
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3. PROBLEM FORMULATION 

This section addresses the statement of the problem, the objectives of this work, the 

description of the study area and the data, and the resources used in terms of software. 

3.1 PROBLEM STATEMENT 

The effects of fire on Mediterranean ecosystems have been studied for a 

considerable time. However, these effects have not been related in a clear manner with 

the occurrence of so-called tipping points, i.e. moments at which an abrupt and irreversible 

change in ecosystem state takes place. The CASCADE project is studying fire-induced 

tipping points in two of its case study sites, which includes the Calde site in central region 

of Portugal. More specifically, CASCADE is analyzing if recurrent fires lead to the 

occurrence of tipping points in pine stands. To this end, CASCADE is comparing soil 

nutrient and vegetation dynamics after single and multiple wildfires, including by means of 

a manipulative rainfall exclusion experiment simulating prolonged drought during the initial 

phases of post-fire soil and vegetation recovery. As an add-on to the CASCADE work, the 

present study is using satellite imagery to compare vegetation recovery following single 

and recurrent wildfires, under the hypothesis that the occurrence of or proximity to a tipping 

point is indicated by a slower or less complete recovery. 

The monitoring of vegetation after fire may use vegetation indices each designed for 

different vegetation, soils and atmospheric conditions. Therefore it is imperative to know 

which index works best to study vegetation recovery after fire. 

A second issue is the spatial resolution, in terms of the pixel size, of the imagery that 

needs to be used. Is the resolution sufficient to extract the required information? And if so, 

when the study areas have a small size, if compared to the image pixel size, are the 

number of pixels covering those study areas enough to derive the required information? 

For example, when using Landsat, the imagery has a spatial resolution of 900 m2 while 

the larger studied burned area is 20450 m2. This means that the studied areas are covered 

by a small number of satellite measurements. Therefore, it is reasonable to try to 

encounter other expedite ways of collecting images that may overcome that limitation. 

This implies that the images have to have a higher resolution. An alternative is thus the 

acquisition of images with an unmanned aerial vehicle (UAV). The information acquired 

from these images may also complement that of the satellite images. 
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3.2 STUDY AREA AND DATA 

The study area, Figure 1, is located in the district of Viseu, parish of Calde, in the 

central region of Portugal where wild fire is a major agent of land degradation 

(SHAKESBY, 2011). The central region of Portugal is characterized by ecosystems with 

dense vegetation covers which accumulate biomass during the summer dry period 

(FERREIRA, COELHO, BOULET, & LOPES, 2005). While wildfires are a natural occurring 

phenomenon in the Mediterranean (NAVEH, 1990) the last decades have not only shown 

an increase in the number of wildfires but also a significant increase of the areas burned 

in such instances (PEREIRA, CARREIRAS, SILVA, & VASCONCELOS, 2006). This might 

be attributed to agricultural abandonment and the accumulation of biomass prior to the dry 

period (FERREIRA et al., 2005). The area has a Mediterranean climate and is prone to 

summer droughts (FERREIRA et al., 2005).  

The vegetation in the study site consists of pine plantations. The fire of 2012 gave 

rise to a new opportunity for the measurement of tipping points in ecosystems and in order 

to choose the best study sites the fire history of the area was obtained from the Instituto 

Geográfico do Exército. This resulted in Figure 2 where the burn history of the area is 

mapped and shows the fire frequency. The areas chosen for monitoring, situated on 

slopes oriented to south and south-west (Figure 1), are the control, C1, C2 and C3, which 

are unburned (since 1978), the semi-degraded, SD1, SD2 and SD3, which were burned 

once (in 2012) and the degraded, D1, D2, D3 and D4 which were burned four times (1978, 

1985, 2005 and 2012). The areas were delineated in the field with the help of a handheld 

GPS (Global Positioning System). 
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Figure 1: Study area overview 

 

Figure 2: Burn history of Calde 

The data used in this work were acquired in three different ways. First by field 

observations that were conducted on regular basis within the framework of the project 

CASCADE. These are used as reference data and are shown in Table 1. The data were 
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collected for all areas except for D4, during the first, second and third year after the fire of 

2012 with a total of 7 sampling days and a total of 15 556 observations The observations 

of the control areas have been excluded as they represent the ground cover while the 

corresponding images show pine trees. The observations in Table 1 were made by placing 

a grid over a predefined square meter (3 per area, one in the lower, middle and upper 

part) and taking a photograph from the top. The grid divides the square in 100 sections 

that are then visually inspected for the presence of vegetation cover. 

Table 1: Field data vegetation cover % for degraded and semi-degraded areas 

DATE D1 D2 D3 SD1 SD2 SD3 

17/10/2012 0 0 0 0 0 0 

19/12/2012 0 - 0 0.333333 0 0 

20/02/2013 1 0 0 0.33557 0 0 

06/11/2013 27.42475 4.697987 17.30104 8.754209 - 5 

22/01/2014 37.33333 6.666667 31.66667 13 44.33333 4.333333 

09/04/2014 44.33333 12.70903 47 31 53.66667 10 

25/06/2014 62.58503 23.66667 56.90236 53.33333 71 22.97297 

 
 

Secondly by the use of Landsat 7 and 8 satellite imagery. In total 125 Landsat 7 

scenes and 99 Landsat 8 scenes, with a pixel size of 30 m, have been analysed. The 

images were acquired from the United States Geological Survey (USGS) earth explorer 

interface provided by the Landsat program. The Landsat 7 satellite imagery reports from 

January 2012 to July 2015 and the Landsat 8 reports from April 2013 to August 2015. This 

coincides with periods before (April 2012 to August 2012) and after the fire of 2012 

(September 2012 to August 2015). The Landsat imagery has the WGS 1984 UTM zone 

29 N coordinate system. In APPENDIX A, Table 10 and Table 11 give an overview of the 

Landsat scenes used. Figure 3 shows the wavelength ranges for Landsat 7 and Landsat 

8. The more important differences are that all bands are narrower for Landsat 8 with the 

biggest differences in the near infrared and mid infrared range, as seen in Figure 3. 
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Figure 3: USGS Landsat band designations (NASA, 2015) 

The third dataset is an orthophoto, Figure 4, of a part of the study area with a pixel 

size of 5 cm acquired, also within the framework of the project CASCADE, with images 

from a flight conducted with an ebee UAV (Unmanned Aerial Vehicle) of Sensefly 

(“SENSEFLY A PARROT COMPANY,” 2015) on the 17th of July 2014 and the software 

Photoscan Pro of Agisoft (section 3.3). The exposure locations of the acquired images 

used to produce the orthophoto are presented in Figure 5. 

 

Figure 4: Orthophoto with world map backdrop 
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The orthophoto covers only the areas D1, D2 and D3 as seen in Figure 4. For its 

production control points were needed, whose coordinates in the PT-TM06 ETRS89 

system were measured with the help of a geodetic GPS. Their coordinates are listed in 

Table 2 and their locations are presented in Figure 6. 

Table 2: Ground control points used in PT-06TM ETRS89 Coordinate System 

NAME X Y H 

PC1 122632.6 22774.64 593.057 

PC2 122810.2 23153.77 586.449 

PC3 122867.2 23272.72 580.427 

PC4 122562.4 23221.21 560.079 

PC5 122054.8 23144.22 521.537 

PC6 121955.2 22841.46 489.126 

PC7 121883.7 22763.12 479.026 

PC8 122010.6 22802.82 492.306 

PC9 122277.3 22876.15 519.717 

PC10 122296.6 23007.13 513.809 

PC11 122440.7 22684.08 564.539 

 

Figure 5: Camera position and image overlap  
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3.2 OBJECTIVES 

The 

main objective of the study is to verify if by using satellite images one can distinguish 

between recovery states of vegetation in areas burnt with different frequencies. 

Furthermore, one is interested to know if there is a slower recovery pattern for vegetation 

on areas with a higher burn frequency than with a lower one, with the expectation that a 

tipping point cloud have been reached in the higher frequency burnt area. 

Other objectives are to determine which indices perform best for monitoring of 

vegetation growth in burned areas and if the additional use of higher spatial resolution 

data, as those acquired with an UAV allow one to discriminate better differences in 

vegetation state among areas burnt with different frequencies. 

3.3 RESOURCES. 

The resources needed for this study concern mainly software, since the hardware 

relates to a common workstation. The software comprises of Photoscan Pro by Agisoft to 

produce the orthophoto, as well as Arcgis 10 for visual inspection, the open source GIS 

(Geographic Information System) package GRASS on a Linux operating system to 

    Figure 6: Ground control points used for creation of the orthophoto 
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compute the vegetation indices and Microsoft excel as well as Sigmaplot for statistical 

analysis. 

 

4. METHODOLOGY 

To attain the objectives mentioned in section 3.2 the following methodology was 

designed. Firstly, vegetation indices were selected and computed. As the study area does 

not contain any permanent patches of bare soil, indices that rely on soil lines or bare soil 

reflectance have been excluded. Therefore the selected vegetation indices were: SR, DVI, 

NDVI, NDVI green, IPVI, SAVI, OSAVI, MSAVI, NDWI, EVI, ARVI, VARI, NBR and GEMI. 

These vegetation indices have to be computed with reflectance values instead of the 

digital number (DN) that makes the images. Therefore the DN values have to be converted 

to reflectance values. The conversion of Landsat 7 data is based on the metadata that is 

provided with each scene (Landsat satellite image) and is done in two steps: from DN to 

spectral radiance and from spectral radiance to planetary reflection as indicated in 

Equation 20 and Equation 21. 

Equation 20: Landsat 7 spectral radiance (NASA, 2014) 

�� = �
(����� − �����)

������� − �������
� ∗ (���� − �������) + ����� 

 
Where: 
��  = Spectral Radiance at the sensor´s aperture in watts/(m2 * ster* µm). 
����  = the quantized calibrated pixel value in DN. 
�����  = the spectral radiance that is scaled to QCALMAX in watts/( m2 * ster * µm). 
�����  = the spectral radiance that is scaled to QCALMIN in watts/( m2 * ster * µm). 
������� = the maximum quantized calibrated pixel value (corresponding to �����). 
������� = the maximum quantized calibrated pixel value (corresponding to �����). 
 

Equation 21: Landsat 7 planetary reflectance (NASA, 2014) 

�� =
� ∗ �� ∗ ��

����� ∗ �����

 

 
Where: 
��  = Unitless planetary reflectance. 

��  = Spectral radiance at sensor´s aperture. 
�  = Earth-Sun distance in astronomical units. 
�����  = Mean solar exoatmospheric irradiances. 
��  = Solar zenith angle in degrees. 
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The procedure for Landsat 8 is quite similar but is simplified and only needs one 

conversion step to convert to reflectance, Equation 22. Though the result is named 

differently as top of atmosphere (TOA) planetary spectral reflectance. 

 
Equation 22: Landsat 8 TOA planetary reflectance  (NASA, 2015) 

�� =
�� ∗ ���� + ��

sin �
 

 
Where: 
��  = top of atmosphere planetary spectral reflectance, unitless.  
��  = reflectance multiplicative scaling factor for the band. 

����  = the quantized calibrated pixel value in DN. 
��  = reflectance additive scaling factor for the band. 

�  = solar elevation angle. 

 

After the conversion from DN to planetary reflectance the vegetation indices were 

calculated. This was done using an automated approach to calculate all vegetation indices 

for a scene in one go using GRASS. By using masks, made with the delineation lines 

produced in the field for the study areas (section 3.2), vegetation indices were computed 

for each pixel. This process is described in Appendix B. After this step all values were 

imported into excel. In this way each scene provides, per area, a set of vegetation index 

values associated to each pixel. These values are needed further in the seasonality study, 

to estimate vegetation index values per area (mean values) needed for the vegetation 

recovery analysis, for the vegetation indices performance assessment and to compare the 

vegetation index values computed with an orthophoto with those computed with the 

Landsat images. 

For the assessment of the performance of the vegetation indices a Pearson 

correlation test was applied by using the Landsat 7 and 8 scenes acquired closest to the 

field sampling dates. The Pearson product moment correlation coefficient will tell us if 

there is a positive, negative or no correlation between the field data and the vegetation 

index values. There is no rigid criterion but, in general, a positive correlation is a Pearsons 

value higher than 0.7 and a negative one is smaller than -0.7. The closer the value is to 1 

or -1 the stronger the correlation is. With this, the indices with the stronger correlations 

can be selected for the vegetation recovery analysis. 

The vegetation recovery analysis is usually done by comparing the obtained 

vegetation index values to a previous or healthy state (QUIRING & GANESH, 2010; 

TSIROS et al., 2004). This is however not possible in this case as the vegetation in the 



22 
 

healthy control sites is pine and the vegetation burned in the studied areas (SD and D) 

was also pine. Pine plantations have a growth cycle of about 25-30 years and thus it is 

impossible to see this recovery in such a short time. 

Instead we looked at the changing of the vegetation index values over time by taking 

an average value per month per area of interest (SD and D). These values, one per area 

per month, were plotted and a trend line computed. A linear trend line was chosen as it is 

unlikely that in this short period (almost three years) a new equilibrium would be reached. 

By comparing the slopes and offsets of the linear trend lines from the different areas one 

can say which area is recovering faster and whether burn frequency has an influence on 

recovery speed. 

The trend lines is influenced by seasonality and therefore that should be taken into 

account. This was done by recognizing seasonal patterns for which the vegetation indices 

of the pixels within the control areas were used. With these vegetation indices, average 

and maximum and minimum values were computed per set of images of control areas 

acquired in the same months. The patterns were then recognized by visually inspecting 

the plots made with the referred average and maximum and minimum values against the 

months of all the years. 

To compare vegetation index values computed with an orthophoto with those 

computed with the Landsat images first it was computed the mean, the first and third 

quartiles, and the maximum and minimum values of the vegetation indices within an area 

(D because it is the only area of interest present in the orthophoto). Second, by using 

those data, plotted in the form of boxplots, we recognized, by visual inspection the 

similarities and dissimilarities of those vegetation indices. Care should be taken to use 

only those vegetation index that are not much affected by using digital numbers instead 

of reflectance. This is because there was no way to convert the digital numbers of the 

orthophoto to reflectance values. Furthermore, not all the indices can be computed for the 

orthophoto only contains the red, green and near infrared wavelengths. Therefore only the 

vegetation indices IPVI, NDVI, NDVI green, OSAVI, SAVI and SR were computed.  
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5. IMPLEMENTATION. 

This section addresses the creation of scripts used to process the satellite images 

and calculate the vegetation indices, as well as the production of the orthophoto. 

5.1 PRE-PROCESSING OF THE SATELLITE IMAGES 

The pre-processing of the data was done in GRASS (Geographical Resources 

Analysis Support System) due to its compatibility with bash programming and easy 

adaptation of tools provided by the open source GRASS community. As both Landsat 7 

and 8 have a different number of bands and data structure two scripts have been written 

with slightly different steps for cloud detection and the conversion of the DN value (digital 

number) to reflectance (Section 4). 

The above mentioned process is simplified by the use of some tools in GRASS that 

are specially designed for Landsat imagery. These are i.landsat.toar and i.landsat.acca. 

i.landsat.toar can handle multiple satellite sensors (from Landsat 1 to 8) and is 

designed to calculate top of atmosphere radiance or reflectance. By loading the metadata 

file the tool knows which calibration values to apply in the conversion formula. 

i.landsat.acca is designed to apply the automatic cloud cover assessment algorithm 

(IRISH, BARKER, GOWARD, & ARVIDSON, 2006). When applying the ACCA the 

assumption is made that there are no ice-sheets in the image. This because the algorithm 

assumes the landmass to have a higher temperature than the clouds when detecting cloud 

cover. As the study area is located in the central region of Portugal we can assume the 

ACCA will deliver reasonable results.   

For the Landsat 8 images the ACCA does not have to be applied since the USGS 

provides a quality assurance value for each pixel from which cloud cover can be derived. 

These quality assurance values are described in Table 3. 
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Table 3: Landsat 8 Quality Assurance bits table (NASA, 2015) 

16-bit Landsat 8 QA Band – Read bits from RIGHT to LEFT <- starting with bit 0 

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
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The application of the quality assurance band is not as straigth forward as the 

i.landsat.toar or i.landsat.acca tools. Instead a mask is created using the converted 16bit 

value of 1100000000000000 which is based on bit number 14 and 15 from Table 3. This 

results in the value 49152 which can then be looked up in the quality assurance band 

image.  

For the calculation of the vegetation indices the GRASS tool r.mapcalc is used. The 

tool a spatial calculator and is one of the main features in GRASS 

For further information please refer to APPENDIX B. It contains a step by step guide 

of the processing of the Landsat scenes in GRASS and a short explanation on other tools 

used within the GRASS opensource GIS package. 

 

5.2 PRODUCTION OF THE ORTHOPHOTO 

For the creation of the orthophoto the software Agisoft Photoscan Pro was used to 

process the images taken with the Sensefly ebee UAV. By using the images and ground 

control points, Table 2, Photoscan Pro applies image matching and bundle adjustment 

algorithms to produce a point cloud. From the point cloud it produces a Digital Surface 

Model (DSM) in TIN format, Figure 7.With this DSM, the images and parameters estimated 

from the bundle adjustment the orthophoto is produced with a pixel size of 5 cm covering 

an area of 1 km2. 

The camera on the Ebee UAV was an adapted Canon PowerShot ELPH 110 HS 

that record the green, red and infrared wavelengths. Because of the adaptation, the red 

and green bands of the image are tainted with near infrared radiation. Therefore, for the 

vegetation index calculations the near infrared values have to be removed from the red 
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and green bands before any indices are calculated. Due to constraints when acquiring the 

images, no white calibration surface was placed in the field. This means that the vegetation 

indices obtained from the orthophoto are not computed using reflectance values but with 

digital numbers which are affected by several factors, like the sun azimuth and height as 

well as atmospheric conditions. Therefore, the comparison between the vegetation indices 

values computed with the help of the orthophoto and those of the satellite images has to 

be done with great care. 

  

Figure 7: Digital Surface Model (DSM) in TIN format 
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6. PRESENTATION AND DISCUSSION OF RESULTS 

6.1 VEGETATION INDEX PERFORMANCE 

The assessment of the performance of the vegetation indices (chapter 4) shows that 

correlations can be found between those indices and the percentage of vegetation cover. 

Table 4 shows that the best correlations are encountered for DVI, EVI, NBR, OSAVI and 

SAVI while the worst correlations are found for ARVI, GEMI, MSAVI and VARI. DVI has 

the best correlation with an average Pearson´s R of 0.86 and second best is SAVI with an 

average of 0.77. These average values are computed with the 4 Pearson values (Table 

4) associated with each vegetation index of an area of interest (SD and D).  

Table 4: Pearson´s R between vegetation cover and indices where D is degraded and SD is semi-degraded 

VEGETATION L7 D L7 SD L8 D L8 SD AVERAGE OF ALL  
PEARSON´S R´S 

ARVI 0.09 0.03 -0.19 0.22 0.0375 
DVI 0.79 0.85 0.92 0.89 0.8625 

EVI -0.69 -0.71 1 0.83 0.1075 

GEMI -0.32 -0.5 0.31 0.27 -0.06 

IPVI 0.79 0.4 0.36 0.56 0.5275 

MSAVI -0.46 -0.26 0.3 0.15 -0.0675 

NBR 0.66 0.74 0.56 0.82 0.695 

NDVI 0.65 0.63 0.36 0.56 0.55 

NDVIG 0.52 0.6 0.61 -0.24 0.3725 

NDWI 0.59 0.66 0.42 0.78 0.6125 

OSAVI 0.73 0.75 0.58 0.71 0.6925 

SAVI 0.76 0.8 0.72 0.79 0.7675 

SR 0.72 0.72 0.42 0.64 0.625 

VARI -0.16 -0.08 -0.81 0.4 -0.1625 

 

The analysis of performance of the vegetation indices also shows some noteworthy 

observations. The ARVI, EVI, MSAVI and VARI have scattered and hard to interpret 

values after the fire event, while EVI, IPVI, NBR, NDVI, NDVI green, NDWI, OSAVI, SAVI 

and SR have less scattered values after the fire event, as illustrated in the figures in 

appendix C. In all of these, the fire event is clearly visible and a recovery trend can be 

discerned in both the degraded and semi-degraded data, as demonstrated in Figure 8. 

Surprising is the fact that the GEMI (appendix C) shows a strong decline before the fire 

event, even though, the event itself and the recovery after is still visible.  
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Figure 8: SR Landsat 7 plot with fire event and recovery line 

 

The behaviour of each vegetation index is quite different when using Landsat 7 or 

Landsat 8 images. For demonstration purposes we will look solely at the results obtained 

with the NDVI. The results for the other indices can be found in APPENDIX D. Figure 9 

shows the time-series of NDVI based on Landsat 7 imagery. The first drop in NDVI values 

indicates the fire event in summer 2012 while the third, fourth and fifth are anomalies 

caused by the lack of reliable data. In fact because of the size of the study areas versus 

the pixel size of the satellite images, as referred to in section 3.1, each area is covered by 

a small amount of pixels. In case of anomalies in the images, the combination of a small 

number of pixels with pixels partly covered with clouds may explain the sudden drop of 

NDVI values.  
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Landsat 7 NDVI
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Figure 9: Landsat 7 NDVI time series where C is control, D is degraded and SD is semi-degraded (other indices are 
shown in APPENDIX C) 

Figure 10 also shows a time-series of NDVI values but for the Landsat 8 imagery, 

unfortunately the Landsat 8 satellite was only launched after the summer fire of 2012 

occurred and so misses the first values that would show the drop of NDVI values of semi-

degraded and degraded areas. However we do see that over time the difference between 

the control and the semi-degraded and degraded sites decrease in both Landsat 7 and 8 

time-series.  

As can be seen in Figure 10 the data are hard to interpret, contrary to those of Figure 

9. Throughout the years the NDVI values go up and down as an influence of the seasons. 

Figure 11 and Figure 12 show this seasonal variability for the NDVI. The figures show the 

average values of the vegetation indices for the control areas per month as well as 

maximum and minimum values (see seasonality study in chapter 4). Using the obtained 

seasonality for all indices seasonal trends may be identified and not mistaken for actual 

recovery. This is however done by visual inspection as described in chapter 4. 
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Landsat 8 NDVI
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Figure 10: Landsat 8 NDVI time-series where C is control, D is degraded and SD is semi-degraded (other indices are 
shown in APPENDIX C) 
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Figure 11: Landsat 7 NDVI seasonality plot of mean vegetation indices for control areas with positive and negative 
errors 
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Landsat 8 NDVI seasonality
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Figure 12: Landsat 8 NDVI seasonality plot of mean vegetation indices for control areas with positive and negative 
errors 

 

 

6.2 VEGETATION RECOVERY ANALYSIS 

For the recovery analysis we look solely at the DVI and SAVI indices, as they were 

the ones that performed best (6.1). The vegetation cover of the different areas (SD and D) 

are compared by comparing trend lines, as described in chapter 4. As an example, Figure 

13 shows the trend lines obtained with the DVI vegetation index computed with Landsat 8 

images, for the SD1 and D1 areas. As seen in that figure, the trend line for SD1 has a 

higher inclination than that for D1, as expected. This happens for all the other areas (Table 

5). Nonetheless, when using Landsat 7 images, this does not happen, although the 

encountered differences do not appear significant (Table 6). This behavior was also 

obtained when using the SAVI index (Appendix D, where the trend lines for all the SD and 

D areas are also given). When comparing the regression lines, remembering that the SD 

areas where burned once, and D where burned four times, it can be seen that, even 

though there is a detectable recovery, there is no clear difference between the vegetation 

recovery speeds between the areas.   
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Figure 13: Trend lines for SD1 and D1 areas using DVI vegetation index computed with Landsat 8 images (the trend line 
parameters for SD1 are in the upper left and those of D1 are in the lower right)  

Table 5: Slope and R-squares of the trend lines for SD and D areas using DVI vegetation index computed with Landsat 8 
images 

 
LANDSAT 8 SLOPE R2 

D1 0.00006 0.42 

D2 0.00006 0.46 

D3 0.00005 0.45 

D4  0.00005 0.33 

SD1 0.00006 0.52 

SD2 0.00007 0.52 

SD3 0.00006 0.48 

 

 

Table 6: : Slope and R-squares of the trend lines  for SD and D areas using DVI vegetation index computed with Landsat 
7 images 

LANDSAT 7 SLOPE R2 

D1 0.00010 0.73 

D2 0.00009 0.81 

D3 0.00009 0.83 

D4  0.00006 0.45 

SD1 0.00008 0.54 

SD2 0.00009 0.71 

SD3 0.00009 0.77 
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6.3 COMPARISON FROM VEGETATION INDICES FROM ORTHOPHOTO AND LANDSAT 

IMAGES  

The comparison of the degraded areas (D) in the orthophoto with those in the 

Landsat 7 and 8 imagery acquired closest to the 17th of July 2014 led to Table 7, Table 8 

and Table 9 where are listed the mean, the first and third quartiles, and the maximum and 

minimum values of the selected vegetation indices (chapter 4) within areas D1, D2 and 

D3 for the orthophoto, Landsat 7 and Landsat 8, respectively. These statistics are 

illustrated, for example for the NDVI index, in Figure 14 where it can be seen that the 

spread of data is smaller for the UAV data than that of the Landsat 7 data. The Landsat 8 

data is however more difficult to interpret as there is a smaller number of pixels available 

per area and thus a smaller spread. This difference in the amount of pixels per area for 

the images of Landsat 7 versus Landsat 8 resulted from an inadequate usage of the 

GRASS software tools that due to time constraints could not be resolved. In fact, the 

images of Landsat 7 were resampled to a pixel size of 15 m, unintentionally. As an 

overview it can be said that, except for NDVI and SR the spread of the values is higher for 

UAV data than that of the Landsat images. The other plots for the other vegetation indices 

can be consulted in APPENDIX E. 

Table 7: Orthophoto vegetation index statistics 

ORTHOPHOTO 

NAME Min Max Q1 Q3 median average Count 

IPVI D1 0.4671 0.8085 0.5505 0.5657 0.5580 0.5585 3905984 

IPVI D2 0.5000 0.7075 0.5457 0.5582 0.5514 0.5526 2136658 

IPVI D3 0.4787 0.7703 0.5488 0.5610 0.5545 0.5557 3440122 

NDVI D1 -0.0659 0.6170 0.1010 0.1313 0.1159 0.1170 3905640 

NDVI D2 -0.0078 0.5789 0.1013 0.1269 0.1137 0.1155 2136653 

NDVI D3 -0.0426 0.5405 0.0976 0.1220 0.1091 0.1114 3440045 

NDVIG D1 -0.5302 0.5385 -0.0552 0.0435 -0.0036 -0.0084 3831689 

NDVIG D2 -0.3112 0.6667 -0.0263 0.0636 0.0244 0.0174 1320953 

NDVIG D3 -0.3532 0.6164 0.0078 0.0726 0.0442 0.0371 3391029 

OSAVI D1 -0.0987 0.9240 0.1515 0.1969 0.1738 0.1755 3905640 

OSAVI D2 -0.0116 0.8660 0.1519 0.1902 0.1705 0.1732 2136653 

OSAVI D3 -0.0638 0.8091 0.1463 0.1828 0.1636 0.1670 3440045 

SAVI D1 -0.0985 0.9206 0.1513 0.1966 0.1736 0.1752 3905640 

SAVI D2 -0.0116 0.8609 0.1518 0.1900 0.1703 0.1729 2136653 

SAVI D3 -0.0637 0.8054 0.1461 0.1826 0.1634 0.1668 3440045 

SR D1 0.8764 4.2222 1.2248 1.3023 1.2623 1.2675 3905984 

SR D2 0.9846 3.7500 1.2255 1.2907 1.2566 1.2631 2136658 

SR D3 0.9184 3.3529 1.2162 1.2778 1.2449 1.2526 3440122 
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Table 8: Landsat 7 vegetation index statistics 

LANDSAT 7 

NAME Min Max Q1 Q3 median average Count 

IPVI D1 0.6453 0.7450 0.6747 0.6987 0.6906 0.6888 62 

IPVI D2 0.6435 0.6697 0.6520 0.6625 0.6572 0.6568 33 

IPVI D3 0.6396 0.7058 0.6453 0.6744 0.6552 0.6603 67 

NDVI D1 0.2907 0.4899 0.3494 0.3973 0.3812 0.3776 62 

NDVI D2 0.2870 0.3395 0.3041 0.3250 0.3145 0.3137 33 

NDVI D3 0.2793 0.4116 0.2907 0.3488 0.3103 0.3205 67 

NDVIG D1 0.3158 0.4338 0.3609 0.3941 0.3682 0.3734 62 

NDVIG D2 0.2919 0.3395 0.3003 0.3310 0.3045 0.3154 33 

NDVIG D3 0.3103 0.3685 0.3166 0.3412 0.3250 0.3312 67 

OSAVI D1 0.2808 0.4677 0.3444 0.3876 0.3662 0.3661 62 

OSAVI D2 0.2747 0.3299 0.2868 0.3118 0.2991 0.3008 33 

OSAVI D3 0.2780 0.3818 0.2827 0.3361 0.3002 0.3096 67 

SAVI D1 0.1599 0.2645 0.1992 0.2200 0.2092 0.2090 62 

SAVI D2 0.1540 0.1887 0.1603 0.1788 0.1667 0.1703 33 

SAVI D3 0.1591 0.2110 0.1618 0.1900 0.1727 0.1763 67 

SR D1 1.8196 2.9212 2.0739 2.3192 2.2321 2.2292 62 

SR D2 1.8052 2.0278 1.8739 1.9629 1.9175 1.9157 33 

SR D3 1.7751 2.3990 1.8196 2.0715 1.8999 1.9534 67 
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Table 9: Landsat 8 vegetation index statistics 

LANDSAT 8 

NAME Min Max Q1 Q3 median average Count 

IPVI D1 0.5493 0.5509 0.5500 0.5505 0.5504 0.5503 15 

IPVI D2 0.5489 0.5499 0.5490 0.5493 0.5491 0.5492 8 

IPVI D3 0.5489 0.5514 0.5497 0.5505 0.5502 0.5501 16 

NDVI D1 0.0985 0.1019 0.1000 0.1009 0.1007 0.1005 15 

NDVI D2 0.0977 0.0997 0.0980 0.0986 0.0982 0.0984 8 

NDVI D3 0.0977 0.1029 0.0994 0.1011 0.1004 0.1003 16 

NDVIG D1 0.0001 0.0031 0.0016 0.0021 0.0018 0.0018 15 

NDVIG D2 0.0000 0.0018 0.0003 0.0014 0.0007 0.0008 8 

NDVIG D3 -0.0013 0.0041 0.0003 0.0020 0.0015 0.0013 16 

OSAVI D1 0.1239 0.1281 0.1258 0.1269 0.1266 0.1264 15 

OSAVI D2 0.1230 0.1253 0.1233 0.1240 0.1236 0.1238 8 

OSAVI D3 0.1228 0.1292 0.1250 0.1270 0.1262 0.1260 16 

SAVI D1 0.0921 0.0954 0.0936 0.0944 0.0941 0.0940 15 

SAVI D2 0.0916 0.0932 0.0918 0.0924 0.0921 0.0922 8 

SAVI D3 0.0913 0.0960 0.0931 0.0944 0.0939 0.0937 16 

SR D1 1.2186 1.2269 1.2223 1.2245 1.2240 1.2235 15 

SR D2 1.2167 1.2216 1.2172 1.2187 1.2178 1.2183 8 

SR D3 1.2166 1.2293 1.2208 1.2249 1.2232 1.2229 16 

 

 

Figure 14: NDVI boxplot orthophoto and Landsat 7 and 8 comparison 
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7. CONCLUSIONS 

The difference in Landsat 7 and 8 vegetation index values shown in Figure 9 and 

Figure 10 is surprising. The launch of Landsat 8 indicated the next step in remote sensing 

and is welcomed to ensure the Landsat Data continuity Mission and one of the main aims 

is to keep data comparable. One possible cause of this difference in this behaviour might 

be attributed to the slightly different band wavelength width used by the Landsat 8 satellite, 

Figure 3. 

The Pearson´s R´s listed in Table 4 give a very useful indication of the applicability 

of the vegetation indices for the estimation of vegetation recovery. Though this is to be 

expected there are some that can potentially reduce the intensity of field work or be used 

to add information between sampling dates. For this purpose especially DVI and SAVI are 

recommended as they show the highest correlations with vegetation cover and show in 

the time-series a clear recovery trend. 

The trend line analysis shows that the vegetation recovery of the higher frequently 

burned areas and of the lower frequently burned areas is similar. We expected that the 

lower frequently burned areas would recover faster but, perhaps the time span is too short 

to take such a conclusion. 

For the comparison of the orthophoto to the Landsat imagery the following can be 

said. There is a clear increase in the measurement range for most vegetation indices as 

expected. This means more differences can be seen with the higher spatial resolution. 

However with only one orthophoto it is difficult to make any assumptions on vegetation 

recovery as it is not directly comparable to the Landsat imagery, due to the lack of 

radiometric calibration and thus of surface reflectance. It is however clear that some 

events not perceived by using Landsat images, due to its low resolution, may be recovered 

by using UAV images due to its higher spatial resolution.  

As more scenes become available, every 16 days, the seasonality calculations can 

be improved and, with the CASCADE project still collecting field data also the Pearson´s 

R´s found for vegetation cover can be improved as more scenes and field samples are 

collected and analysed and, in the future a possible levelling-off of the recovering 

vegetation might be witnessed. When this happens we can determine whether or not a 

tipping point has been reached. 
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8. APPENDIX A: LANDSAT SCENES OVERVIEW 

This appendix contains an overview of the Landsat 7 and 8 scenes used and how 

many pixel values have been obtained from each scene for each area. 

Table 10: Landsat 7 overview with obtained pixel count per area 

Landsat 7 

Date C1 C2 C3 D1 D2 D3 D4 SD1 SD2 SD3 

02/02/2012 53 43 52 53 33 53 41 53 18 36 

11/02/2012 53 43 52 53 27 53 41 53 18 36 

18/02/2012 53 43 52 53 33 53 41 53 18 36 

27/02/2012 53 43 52 53 11 53 41 36 18 36 

05/03/2012 53 43 52 53 33 53 41 53 18 36 

14/03/2012 53 23 11 53 - - 41 - - - 

21/03/2012 53 43 52 53 33 53 36 53 18 36 

06/04/2012 53 8 14 53 33 53 2 - - - 

15/04/2012 - - - - 33 37 - 53 2 - 

24/05/2012 8 11 30 12 33 53 18 53 18 10 

25/06/2012 53 43 52 53 - 17 41 - 12 36 

11/07/2012 53 39 52 53 - - - 53 18 - 

21/08/2012 53 43 52 53 4 46 41 22 18 36 

06/09/2012 53 43 52 53 - - 41 - 4 36 

13/09/2012 53 43 52 53 33 53 41 53 18 36 

29/09/2012 53 43 52 53 - 31 41 8 16 36 

08/10/2012 53 43 52 53 33 53 41 53 18 36 

15/10/2012 53 10 8 53 33 47 41 53 2 - 

31/10/2012 9 20 41 16 33 53 20 53 18 30 

09/11/2012 53 43 52 53 33 53 41 53 18 36 

02/12/2012 53 36 28 53 22 10 41 44 - 30 

03/01/2013 53 43 52 53 4 46 41 22 18 36 

01/03/2013 53 43 52 53 33 53 41 53 18 36 

02/04/2013 - 43 52 - 33 53 - - - - 

18/04/2013 39 - - 40 6 - 31 10 - - 

25/04/2013 9 24 31 12 33 53 18 53 18 30 

04/05/2013 - - - - - - - - - - 

11/05/2013 53 43 52 53 33 53 41 53 18 36 

20/05/2013 - - - - 33 53 - - 4 - 

27/05/2013 7 3 45 - 33 53 - 3 12 36 

05/06/2013 53 43 52 53 10 53 41 30 18 36 

12/06/2013 53 43 52 53 6 - - - - - 

28/06/2013 8 10 13 - 8 16 1 20 4 9 

14/07/2013 - 10 13 - 8 16 1 20 4 9 
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30/07/2013 24 10 13 13 8 16 10 20 4 9 

24/08/2013 49 - - 48 - - 32 1 - - 

31/08/2013 16 10 13 8 8 16 4 20 4 9 

09/09/2013 53 27 11 53 - - 41 - - - 

16/09/2013 - 10 13 - 8 16 1 20 4 9 

11/10/2013 53 43 52 53 21 53 41 52 18 36 

27/10/2013 - 43 52 - 33 53 - 53 18 36 

03/11/2013 24 10 13 15 8 16 11 20 4 9 

12/11/2013 - - - - 33 37 - 53 2 - 

19/11/2013 22 10 13 12 8 16 2 20 4 - 

28/11/2013 53 43 52 53 33 53 41 53 18 36 

05/12/2013 16 10 13 8 8 16 4 20 4 9 

14/12/2013 53 6 - 53 - - 41 - - - 

21/12/2013 24 10 13 15 8 16 10 20 4 9 

30/12/2013 - - - - - 12 - - 4 - 

06/01/2014 - - - - - - - - - - 

15/01/2014 - - - - - - - - - - 

22/01/2014 - 8 13 - 8 16 - 20 4 9 

31/01/2014 - - - - - - - - - - 

07/02/2014 - - - - - - - - - - 

16/02/2014 53 43 52 53 - 5 41 - 8 36 

23/02/2014 24 10 13 15 8 16 11 20 4 9 

04/03/2014 - - - - - 7 - - 4 - 

11/03/2014 24 10 13 15 8 16 11 20 4 9 

20/03/2014 53 43 52 53 33 53 41 53 18 36 

27/03/2014 - - - - 1 - - 2 - - 

05/04/2014 - - - - - - - - - - 

12/04/2014 24 10 13 13 8 16 10 20 4 9 

21/04/2014 4 - - - - - 38 - - 36 

28/04/2014 - - - - 6 7 - 3 - - 

07/05/2014 28 17 6 50 33 53 36 53 18 36 

14/05/2014 24 10 13 15 8 16 11 20 4 9 

23/05/2014 53 - 4 53 - - 1 - - 18 

30/05/2014 24 6 4 - 7 4 1 14 - 3 

08/06/2014 - - - - - - - - - - 

15/06/2014 24 10 13 15 8 16 11 20 4 9 

24/06/2014 - 9 11 - - - - - - 16 

01/07/2014 - - - - - - - - - - 

10/07/2014 53 27 11 53 - - 41 - - - 

17/07/2014 23 9 13 15 - 12 11 5 4 9 

26/07/2014 - - - - 33 53 - 53 10 - 

02/08/2014 - - - - - - - - - - 

11/08/2014 - - - - 33 33 - 53 2 - 
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18/08/2014 - 9 13 1 8 16 1 20 4 - 

27/08/2014 53 14 8 53 - - 41 - - - 

03/09/2014 1 - - - 1 - - - - - 

12/09/2014 - 6 2 22 17 53 41 44 6 28 

19/09/2014 2 - - 2 - - 1 20 3 7 

05/10/2014 24 8 8 - 2 - 11 10 - 1 

14/10/2014 15 - - 7 10 - 3 - - - 

21/10/2014 24 8 9 15 2 - 11 7 1 9 

30/10/2014 53 43 52 53 - 39 41 16 16 36 

06/11/2014 - 1 2 - - - - - - - 

15/11/2014 2 - - 5 - - 9 - - - 

22/11/2014 - 2 - - - - - - - 2 

01/12/2014 35 - - 31 6 - 25 14 - - 

08/12/2014 24 10 13 15 8 16 11 20 4 9 

17/12/2014 - - - - 33 37 - 53 2 - 

24/12/2014 - - - - - - - - - - 

02/01/2015 17 - - 8 - - 3 - - - 

09/01/2015 24 10 13 15 8 16 11 20 4 9 

18/01/2015 32 - - 8 6 - - 10 - - 

25/01/2015 - 1 1 - - - - 4 1 2 

03/02/2015 - 7 18 - - - - - - 20 

10/02/2015 19 10 13 10 8 16 6 20 4 9 

19/02/2015 21 43 52 8 33 53 9 53 18 36 

26/02/2015 2 - - 2 - - - - - - 

07/03/2015 53 43 52 53 33 53 41 53 18 36 

14/03/2015 24 10 13 15 - 3 11 - 2 9 

23/03/2015 - 9 11 - - - - - - 16 

30/03/2015 24 1 - 15 8 13 11 20 1 - 

08/04/2015 - - - - - 18 - 18 4 - 

15/04/2015 24 - 8 15 8 16 11 - - 9 

01/05/2015 - - - - - 2 - - - - 

10/05/2015 27 7 12 53 33 53 37 53 18 34 

17/05/2015 24 6 5 15 7 3 11 13 - 4 

26/05/2015 2 - - 5 25 22 5 53 - - 

02/06/2015 13 2 6 11 8 16 8 20 4 1 

11/06/2015 - 14 4 - - - 2 - - - 

18/06/2015 18 - 3 15 8 16 10 20 3 - 

27/06/2015 - - - - 33 53 - 53 10 - 

04/07/2015 7 10 13 - 8 16 1 20 4 9 

13/07/2015 53 36 22 53 - - 41 - - 10 

20/07/2015 24 10 13 15 8 16 10 20 4 9 
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Table 11: Landsat 8 overview with obtained pixel count per area 

Landsat 8 

Date C1 C2 C3 D1 D2 D3 D4 SD1 SD2 SD3 

17/04/2013 24 10 13 15 8 16 11 20 4 9 

12/05/2013 24 20 13 15 8 16 11 20 4 9 

19/05/2013 24 10 13 15 8 16 11 20 4 9 

28/05/2013 24 10 13 15 8 16 11 20 4 9 

04/06/2013 24 10 13 15 8 16 11 20 4 9 

13/06/2013 24 10 13 15 8 16 11 20 4 9 

20/06/2013 24 10 13 15 8 16 11 20 4 9 

29/06/2013 24 10 13 15 8 16 11 20 4 9 

06/07/2013 24 10 13 15 8 16 11 20 4 9 

15/07/2013 24 10 13 15 8 16 11 20 4 9 

22/07/2013 24 10 13 15 8 16 11 20 4 9 

31/07/2013 24 10 13 15 8 16 11 20 4 9 

07/08/2013 24 10 13 15 8 16 11 20 4 9 

16/08/2013 24 10 13 15 8 16 11 20 4 9 

23/08/2013 24 10 13 15 8 16 11 20 4 9 

01/09/2013 24 10 13 15 8 16 11 20 4 9 

08/09/2013 24 10 13 15 8 16 11 20 4 9 

17/09/2013 24 10 13 15 8 16 11 20 4 9 

24/09/2013 24 10 13 15 8 16 11 20 4 9 

03/10/2013 24 10 13 15 8 16 11 20 4 9 

10/10/2013 24 10 13 15 8 16 11 20 4 9 

26/10/2013 24 10 13 15 8 16 11 20 4 9 

11/11/2013 24 10 13 15 8 16 11 20 4 9 

20/11/2013 24 10 13 15 8 16 11 20 4 9 

27/11/2013 24 10 13 15 8 16 11 20 4 9 

06/12/2013 24 10 13 15 8 16 11 20 4 9 

13/12/2013 24 10 13 15 8 16 11 20 4 9 

22/12/2013 24 10 13 15 8 16 11 20 4 9 

29/12/2013 24 10 13 15 8 16 11 20 4 9 

23/01/2014 24 10 13 15 8 16 11 20 4 9 

30/01/2014 24 10 13 15 8 16 11 20 4 9 

08/02/2014 24 10 13 15 8 16 11 20 4 9 

24/02/2014 24 10 13 15 8 16 11 20 4 9 

12/03/2014 24 10 13 15 8 16 11 20 4 9 

19/03/2014 24 10 13 15 8 16 11 20 4 9 

28/03/2014 24 10 13 15 8 16 11 20 4 9 

13/04/2014 24 10 13 15 8 16 11 20 4 9 

20/04/2014 24 10 13 15 8 16 11 20 4 9 

06/05/2014 24 10 13 15 8 16 11 20 4 9 
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15/05/2014 24 10 13 15 8 16 11 20 4 9 

22/05/2014 24 10 13 15 8 16 11 20 4 9 

31/05/2014 24 10 13 15 8 16 11 20 4 9 

07/06/2014 24 10 13 15 8 16 11 20 4 9 

16/06/2014 24 10 13 15 8 16 11 20 4 9 

23/06/2014 24 10 13 15 8 16 11 20 4 9 

02/07/2014 24 10 13 15 8 16 11 20 4 9 

09/07/2014 24 10 13 15 8 16 11 20 4 9 

18/07/2014 24 10 13 15 8 16 11 20 4 9 

25/07/2014 24 10 13 15 8 16 11 20 4 9 

03/08/2014 24 10 13 15 8 16 11 20 4 9 

10/08/2014 24 10 13 15 8 16 11 20 4 9 

19/08/2014 24 10 13 15 8 16 11 20 4 9 

26/08/2014 24 10 13 15 8 16 11 20 4 9 

04/09/2014 24 10 13 15 8 16 11 20 4 9 

11/09/2014 24 10 13 15 8 16 11 20 4 9 

20/09/2014 24 10 13 15 8 16 11 20 4 9 

27/09/2014 24 10 13 15 8 16 11 20 4 9 

06/10/2014 24 10 13 15 8 16 11 20 4 9 

13/10/2014 24 10 13 15 8 16 11 20 4 9 

22/10/2014 24 10 13 15 8 16 11 20 4 9 

29/10/2014 24 10 13 15 8 16 11 20 4 9 

07/11/2014 24 10 13 15 8 16 11 20 4 9 

14/11/2014 24 10 13 15 8 16 11 20 4 9 

23/11/2014 24 10 13 15 8 16 11 20 4 9 

30/11/2014 24 10 13 15 8 16 11 20 4 9 

09/12/2014 24 10 13 15 8 16 11 20 4 9 

16/12/2014 24 10 13 15 8 16 11 20 4 9 

25/12/2014 24 10 13 15 8 16 11 20 4 9 

01/01/2015 24 10 13 15 8 16 11 20 4 9 

10/01/2015 24 10 13 15 8 16 11 20 4 9 

17/01/2015 24 10 13 15 8 16 11 20 4 9 

26/01/2015 24 10 13 15 8 16 11 20 4 9 

02/02/2015 24 10 13 15 8 16 11 20 4 9 

11/02/2015 24 10 13 15 8 16 11 20 4 9 

18/02/2015 24 10 13 15 8 16 11 20 4 9 

27/02/2015 24 10 13 15 8 16 11 20 4 9 

06/03/2015 24 10 13 15 8 16 11 20 4 9 

15/03/2015 24 10 13 15 8 16 11 20 4 9 

22/03/2015 24 10 13 15 8 16 11 20 4 9 

31/03/2015 24 10 13 15 8 16 11 20 4 9 

07/04/2015 24 10 13 15 8 16 11 20 4 9 

16/04/2015 24 10 13 15 8 16 11 20 4 9 
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23/04/2015 24 10 13 15 8 16 11 20 4 9 

02/05/2015 24 10 13 15 8 16 11 20 4 9 

09/05/2015 24 10 13 15 8 16 11 20 4 9 

18/05/2015 24 10 13 15 8 16 11 20 4 9 

25/05/2015 24 10 13 15 8 16 11 20 4 9 

03/06/2015 24 10 13 15 8 16 11 20 4 9 

10/06/2015 24 10 13 15 8 16 11 20 4 9 

19/06/2015 24 10 13 15 8 16 11 20 4 9 

26/06/2015 24 10 13 15 8 16 11 20 4 9 

05/07/2015 24 10 13 15 8 16 11 20 4 9 

12/07/2015 24 10 13 15 8 16 11 20 4 9 

21/07/2015 24 10 13 15 8 16 11 20 4 9 

28/07/2015 24 10 13 15 8 16 11 20 4 9 

06/08/2015 24 10 13 15 8 16 11 20 4 9 

13/08/2015 24 10 13 15 8 16 11 20 4 9 

22/08/2015 24 10 13 15 8 16 11 20 4 9 

29/08/2015 24 10 13 15 8 16 11 20 4 9 
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9. APPENDIX B: GRASS STEP BY STEP PROCESSING 

The processing of the data is separated into three scripts: 

 Runbatch 

 L7 

 L8 

This was done for managing purposes and reusability of the scripts. 

9.1 RUNBATCH 

This script is telling GRASS where the folders are with the satellite images and run either L7 or L8 for each 
of the satellite scenes in the folder. 
###Parameters### 

#location on Script files 

loc_s=/home/username/scripts/ 

#Landsat scene location 

loc_scene=/home/username/scenes/ 

#GRASS workspace location 

loc_m=/home/username/GRASS_loc/ 

#Location of shape and raster files of study area 

input=/home/username/input/ 

#Output location for extracted number files 

OP=/home/username/output/ 

###user input### 

#Give the name of the script to be used (L7 or L8) 

echo “Give script name to be run in GRASS:” 

read script 

#Give name of the mapset to be used in GRASS 

echo “State mapset for GRASS:” 

read mapset 

###Export variables### 

export loc_s 

export loc_scene 

export input 

export OP 

###Run BATCH### 

Do 

 export file 
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 #run GRASS with script 

 chmod u+x $loc_s$script 

 grass70 $loc_m$mapset 

done 

The script is separated into three sections to keep it clear. The first section, 

Parameters, is used to define parameters that are static throughout the running of the 

script and contains location information. The second section, user input, is to enable some 

input to the user of the script. In this case which script has to be used and in which GRASS 

mapset do the calculations take place. The read command enables the user to give a 

value to the parameter. Using this it is easy to switch some parameters between the 

sections user input and parameters. The third section, export variables, exports the 

parameters that are now defined so that they can be accessed and called upon when 

GRASS is running the script. The fourth section, run BATCH, is used to run the chosen 

script for each Landsat scene in the designated folder. 

9.2 L7 

This script is designed for the use with Landsat 7 imagery. By using the parameters 

set by runbatch GRASS is able to apply all commands to the imagery. 

###import boundaries### 

v.in.ogr –o --overwrite --quiet $input/Boundary.shp output=Varzea_R 

v.in.ogr –o --overwrite --quiet $input/C1.shp output=C1 

v.in.ogr –o --overwrite --quiet $input/C2.shp output=C2 

v.in.ogr –o --overwrite --quiet $input/C3.shp output=C3 

v.in.ogr –o --overwrite --quiet $input/SD1.shp output=SD1 

v.in.ogr –o --overwrite --quiet $input/SD2.shp output=SD2 

v.in.ogr –o --overwrite --quiet $input/SD3.shp output=SD3 

v.in.ogr –o --overwrite --quiet $input/D1.shp output=D1 

v.in.ogr –o --overwrite --quiet $input/D2.shp output=D2 

v.in.ogr –o --overwrite --quiet $input/D3.shp output=D3 

v.in.ogr –o --overwrite --quiet $input/D4.shp output=D4 

The first section of the script, import boundaries, imports the study site boundary of 

Calde and the separate slopes. 

 

###set boundary mask### 

r.mask --overwrite --quiet vector=Calde_R 
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The second section, set boundary mask, is used to limit the processing of the 

satellite imagery to only the study area. This is done to save on processing power and 

time.  

###import data### 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B1.TIF´ output=S_B1 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B2.TIF´ output=S_B2 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B3.TIF´ output=S_B3 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B4.TIF´ output=S_B4 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B5.TIF´ output=S_B5 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B61.TIF´ output=S_B61 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B62.TIF´ output=S_B62 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B7.TIF´ output=S_B7 

r.in.gdal --overwrite --quiet input=$loc_scene$(basename “$file” .tif/$(basename 

“$file” .tif)´_B8.TIF´ output=S_B8 

The third section is used to import all bands of the designated scene into GRASS. 

Note that there are 9 bands in total. 

###toar convertion### 

i.landsat.toar --quiet --overwrite input=S_B output=S_B.Toar 

metfile=$loc_scene$(basename “$file” .tif)/$(basename “$file” .tif)´_MTL.TXT` 

The fourth section is used to perform the conversion of DN to top of atmosphere 

reflection. This is done by taking the correction values that are provided by USGS with the 

Landsat metadata file, MTL.txt, and applying them in the conversion formulas. 

###ACCA### 

i.landsat.acca --overwrite input=S_B.Toar output=acca 

r.mapcalc –o --quiet “ACCA2 = if(`acca´ > 0 , 0 , 0 )” 

r.null --quiet map=ACCA2 null=1 

r.mapcalc --o --quiet “ACCA_B1 = ´ACCA2´ * ´S_B.Toar1´” 

r.mapcalc --o --quiet “ACCA_B2 = ´ACCA2´ * ´S_B.Toar2´” 

r.mapcalc --o --quiet “ACCA_B3 = ´ACCA2´ * ´S_B.Toar3´” 

r.mapcalc --o --quiet “ACCA_B4 = ´ACCA2´ * ´S_B.Toar4´” 

r.mapcalc --o --quiet “ACCA_B5 = ´ACCA2´ * ´S_B.Toar5´” 
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r.mapcalc --o --quiet “ACCA_B61 = ´ACCA2´ * ´S_B.Toar61´” 

r.mapcalc --o --quiet “ACCA_B62 = ´ACCA2´ * ´S_B.Toar62´” 

r.mapcalc --o --quiet “ACCA_B7 = ´ACCA2´ * ´S_B.Toar7´” 

r.mapcalc --o --quiet “ACCA_B8 = ´ACCA2´ * ´S_B.Toar8´” 

The fifth section applies the automatic cloud detection or ACCA (IRISH et al., 2006) 

to the Landsat scene using the top of atmosphere reflection calculated in section four. The 

r.mapcalc command creates a map where cloud cover has the value 0 and the rest is 

considered empty. To rectify this r.null is used to change all empty cells to value one 

creating a cloud mask. The last r.mapcalc commands applies the calculated cloud mask 

to the top of atmosphere reflection bands so that only the pixels without clouds remain and 

the other pixels have value 0 resulting in uncalculatable indices later on. 

###Apply VGI### 

r.mapcalc --o --quiet “SR = (´ACCA_B4` / ´ACCA_B3´)” 

r.mapcalc --o --quiet “DVI = (´ACCA_B4` - ´ACCA_B3`)” 

r.mapcalc --o --quiet “NDVI = (´ACCA_B4` - ´ACCA_B3`) / (´ACCA_B4` + ´ACCA_B3`)” 

r.mapcalc --o --quiet “NDVIG = (´ACCA_B4` - ´ACCA_B2`) / (´ACCA_B4` + 

´ACCA_B2`)” 

r.mapcalc --o --quiet “IPVI = ´ACCA_B4` / (´ACCA_B4` + ´ACCA_B3`)” 

r.mapcalc --o --quiet “SAVI = ((´ACCA_B4` - ´ACCA_B3`) / (´ACCA_B4` + ´ACCA_B3` 

+ 0.5)) * 1.5” 

r.mapcalc --o --quiet “MSAVI = (2 * ´ACCA_B4` + 1 – sqrt(2 * ´ACCA_B4` + 1, 2) – 

8 * (´ACCA_B4` - ´ACCA_B3`)) / 2)” 

r.mapcalc --o --quiet “OSAVI = (1.5 * (´ACCA_B4` - ´ACCA_B3`)) / (´ACCA_B4` + 

´ACCA_B3` + 0.16)” 

r.mapcalc --o --quiet “NDWI = (´ACCA_B4` - ´ACCA_B5`) / (´ACCA_B4` + ´ACCA_B5`)” 

r.mapcalc --o --quiet “EVI = ((´ACCA_B4` - ´ACCA_B3`) / (´ACCA_B4` + (6 * 

´ACCA_B3`) – (7.5 * ´ACCA_B1`) + 1)) +2” 

r.mapcalc --o --quiet “ARVI = (´ACCA_B4` - (2 * ´ACCA_B3` - ´ACCA_B1`)) / 

(´ACCA_B4` + (2 * ´ACCA_B3` - ´ACCA_B1`))” 

r.mapcalc --o --quiet “VARI = (´ACCA_B2` - ´ACCA_B3`) / (´ACCA_B2` + ´ACCA_B3` - 

´ACCA_B1`)” 

r.mapcalc --o --quiet “NBR = 1000 * ((´ACCA_B4` - ´ACCA_B7`) / (´ACCA_B4` + 

´ACCA_B7`)” 

r.mapcalc --o --quiet “GEMI = ((2 * (pow(´ACCA_B4` , 2) – pow(´ACCA_B3` , 2)) + 

1.5 * ´ACCA_B4` + 0.5 * ´ACCA_B3`) / (´ACCA_B4` + ´ACCA_B3´ + 0.5)) * (1 – 0.25 

* ((2 * (pow(´ACCA_B4` , 2) – pow(´ACCA_B3` , 2)) + 1.5 * ´ACCA_B4` + 0.5 * 

´ACCA_B3`) / (´ACCA_B4` + ´ACCA_B3` + 0.5))) – ((´ACCA_B3` - 0.125) / (1 - 

´ACCA_B3`))” 

The sixth section applies all chosen vegetation indices. The formulas have been 

adapted to GRASS syntax. This step creates maps of the entire study area for all indices. 
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###Extract values### 

r.mask --overwrite --quiet vector=C1 

r.stats –n -1 –c --overwrite --quiet input=SR separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_SR´ 

r.stats –n -1 –c --overwrite --quiet input=DVI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_DVI´ 

r.stats –n -1 –c --overwrite --quiet input=NDVI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_NDVI´ 

r.stats –n -1 –c --overwrite --quiet input=NDVIG separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_NDVIG´ 

r.stats –n -1 –c --overwrite --quiet input=IPVI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_IPVI´ 

r.stats –n -1 –c --overwrite --quiet input=SAVI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_SAVI´ 

r.stats –n -1 –c --overwrite --quiet input=MSAVI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_MSAVI´ 

r.stats –n -1 –c --overwrite --quiet input=OSAVI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_OSAVI´ 

r.stats –n -1 –c --overwrite --quiet input=NDWI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_NDWI´ 

r.stats –n -1 –c --overwrite --quiet input=EVI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_EVI´ 

r.stats –n -1 –c --overwrite --quiet input=ARVI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_ARVI´ 

r.stats –n -1 –c --overwrite --quiet input=VARI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_VARI´ 

r.stats –n -1 –c --overwrite --quiet input=NBR separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_NBR´ 

r.stats –n -1 –c --overwrite --quiet input=GEMI separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_GEMI´ 

 

r.stats –n -1 –c --overwrite --quiet input=S_B.Toar1 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B1´ 

r.stats –n -1 –c --overwrite --quiet input= S_B.Toar2 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B2´ 

r.stats –n -1 –c --overwrite --quiet input= S_B.Toar3 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B3´ 

r.stats –n -1 –c --overwrite --quiet input= S_B.Toar4 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B4´ 

r.stats –n -1 –c --overwrite --quiet input= S_B.Toar5 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B5´ 

r.stats –n -1 –c --overwrite --quiet input= S_B.Toar61 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B61´ 
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r.stats –n -1 –c --overwrite --quiet input= S_B.Toar62 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B62´ 

r.stats –n -1 –c --overwrite --quiet input= S_B.Toar7 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B7´ 

r.stats –n -1 –c --overwrite --quiet input= S_B.Toar8 separator=pipe 

output=$OP$(basename “$file” .tif)´_C1_B8´ 

 

The seventh section extracts all values, in this case for slope C1, and saves them in 

an ascii file format in the output folder. This section is repeated for each slope and C1 is 

replaced by the slope in question. To clarify all values of the vegetation indices as well as 

the reflectance band values are extracted. 

###remove temporary files### 

g.remove –f --quiet type=raster name=S_B1 

g.remove –f --quiet type=raster name=S_B2 

g.remove –f --quiet type=raster name=S_B3 

g.remove –f --quiet type=raster name=S_B4 

g.remove –f --quiet type=raster name=S_B5 

g.remove –f --quiet type=raster name=S_B61 

g.remove –f --quiet type=raster name=S_B62 

g.remove –f --quiet type=raster name=S_B7 

g.remove –f --quiet type=raster name=S_B8 

g.remove –f --quiet type=raster name=S_B.Toar1 

g.remove –f --quiet type=raster name=S_B.Toar2 

g.remove –f --quiet type=raster name=S_B.Toar3 

g.remove –f --quiet type=raster name=S_B.Toar4 

g.remove –f --quiet type=raster name=S_B.Toar5 

g.remove –f --quiet type=raster name=S_B.Toar61 

g.remove –f --quiet type=raster name=S_B.Toar62 

g.remove –f --quiet type=raster name=S_B.Toar7 

g.remove –f --quiet type=raster name=S_B.Toar8 

g.remove –f --quiet type=raster name=S_B_Toar1 

g.remove –f --quiet type=raster name=S_B_Toar2 

g.remove –f --quiet type=raster name=S_B_Toar3 

g.remove –f --quiet type=raster name=S_B_Toar4 

g.remove –f --quiet type=raster name=S_B_Toar5 

g.remove –f --quiet type=raster name=S_B_Toar61 

g.remove –f --quiet type=raster name=S_B_Toar62 

g.remove –f --quiet type=raster name=S_B_Toar7 

g.remove –f --quiet type=raster name=S_B_Toar8 
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g.remove –f --quiet type=raster name=ACCA_B1 

g.remove –f --quiet type=raster name=ACCA_B2 

g.remove –f --quiet type=raster name=ACCA_B3 

g.remove –f --quiet type=raster name=ACCA_B4 

g.remove –f --quiet type=raster name=ACCA_B5 

g.remove –f --quiet type=raster name=ACCA_B61 

g.remove –f --quiet type=raster name=ACCA_B62 

g.remove –f --quiet type=raster name=ACCA_B7 

g.remove –f --quiet type=raster name=ACCA_B8 

g.remove –f --quiet type=raster name=SR 

g.remove –f --quiet type=raster name=DVI 

g.remove –f --quiet type=raster name=NDVI 

g.remove –f --quiet type=raster name=NDVIG 

g.remove –f --quiet type=raster name=IPVI 

g.remove –f --quiet type=raster name=SAVI 

g.remove –f --quiet type=raster name=MSAVI 

g.remove –f --quiet type=raster name=OSAVI 

g.remove –f --quiet type=raster name=NDWI 

g.remove –f --quiet type=raster name=EVI 

g.remove –f --quiet type=raster name=ARVI 

g.remove –f --quiet type=raster name=VARI 

g.remove –f --quiet type=raster name=NBR 

g.remove –f --quiet type=raster name=GEMI 

 

g.remove –f --quiet type=raster name=acca 

g.remove –f --quiet type=raster name=ACCA2 

g.remove –f --quiet type=raster name=MASK 

g.remove –f --quiet type=vector name=C1 

g.remove –f --quiet type=vector name=C2 

g.remove –f --quiet type=vector name=C3 

g.remove –f --quiet type=vector name=SD1 

g.remove –f --quiet type=vector name=SD2 

g.remove –f --quiet type=vector name=SD3 

g.remove –f --quiet type=vector name=D1 

g.remove –f --quiet type=vector name=D2 

g.remove –f --quiet type=vector name=D3 

g.remove –f --quiet type=vector name=D4 

g.remove –f --quiet type=vector name=Calde_R 

The eighth and final section removes all redundant data that has been created. 



49 
 

9.3 L8 

The Landsat 8 script has a similar structure but differs from the Landsat 7 script in a 

few areas. First difference is that there are more bands in a Landsat 8 image than in 

Landsat 7.  Therefore in the script a few adjustments had to be made. In the sections 

where bands are referred to have to be adapted to include all bands and when loading the 

data also include the BQA band. In section six the band number have to be converted. 

This was done by using Table 12. 

Table 12: Landsat 7 and 8 band comparison 

Landsat 7 Band name Landsat 8 

- Coastal aerosol Band 1 

Band 1 Blue Band 2 

Band 2 Green Band 3 

Band 3 Red Band 4 

Band 4 NIR Band 5 

Band 5 SWIR1 Band 6 

Band 7 SWIR2 Band 7 

Band 8 Panchromatic Band 8 

- Cirrus Band 9 

Band 61 TIRS1 Band 10 

Band 62 TIRS2 Band 11 

 

Another adaption is the ACCA calculation, as the USGS already provides this 

information in the band quality assessment file provided with each Landsat 8 scene. 

Section five, ACCA, is therefore replaced with the following. 

###Apply BQA### 

r.mapcalc --o --quiet “ACCA2 = if(´BQA´ == 49152, null(), 1 )” 

r.mapcalc --o --quiet “ACCA_B1 = ´ACCA2´ * ´S_B.Toar1´” 

r.mapcalc --o --quiet “ACCA_B2 = ´ACCA2´ * ´S_B.Toar2´” 

r.mapcalc --o --quiet “ACCA_B3 = ´ACCA2´ * ´S_B.Toar3´” 

r.mapcalc --o --quiet “ACCA_B4 = ´ACCA2´ * ´S_B.Toar4´” 

r.mapcalc --o --quiet “ACCA_B5 = ´ACCA2´ * ´S_B.Toar5´” 

r.mapcalc --o --quiet “ACCA_B6 = ´ACCA2´ * ´S_B.Toar6´” 

r.mapcalc --o --quiet “ACCA_B7 = ´ACCA2´ * ´S_B.Toar7´” 

r.mapcalc --o --quiet “ACCA_B8 = ´ACCA2´ * ´S_B.Toar8´” 

r.mapcalc --o --quiet “ACCA_B9 = ´ACCA2´ * ´S_B.Toar9´” 

r.mapcalc --o --quiet “ACCA_B10 = ´ACCA2´ * ´S_B.Toar10´” 
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r.mapcalc --o --quiet “ACCA_B11 = ´ACCA2´ * ´S_B.Toar11´” 

 

The value 49152 is the value for any type of cloud in the BQA band and the 

r.mapcalc command replaces the pixels covered with clouds with a no data value and the 

rest with one. So that only pixels without clouds have values. 
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10. APPENDIX C: GRAPHS OF THE VEGETATION INDEX VALUES 

COMPUTED FOR LANDSAT 7 AND 8 

Appendix C contains the graphs of the vegetation index values obtained per burned 

area per time period, computed by using Landsat 7 images (10.1) and Landsat 8 images 

(10.2) 

10.1 LANDSAT 7 

 

Figure 15: Landsat 7 ARVI 
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Figure 16: Landsat 7 DVI 

 

Figure 17: Landsat 7 EVI 

 

Figure 18: Landsat 7 GEMI 



53 
 

 

Figure 19: Landsat 7 IPVI 

 

Figure 20: Landsat 7 MSAVI 
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Figure 21: Landsat 7 NBR 

 

Figure 22: Landsat 7 NDVI 
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Figure 23: Landsat 7 NDVI green 

 

Figure 24: Landsat 7 NDWI 
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Figure 25: Landsat 7 OSAVI 

 

Figure 26: Landsat 7 SAVI 
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Figure 27: Landsat 7 SR 

 

Figure 28: Landsat 7 VARI 
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10.2 LANDSAT 8 

 

Figure 29: Landsat 8 ARVI 

 

Figure 30: Landsat 8 DVI 
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Figure 31: Landsat 8 EVI 

 

Figure 32: Landsat 8 GEMI 
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Figure 33: Landsat 8 IPVI 

 

Figure 34: Landsat 8 MSAVI 
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Figure 35: Landsat 8 NBR 

 

Figure 36: Landsat 8 NDVI 
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Figure 37: Landsat 8 NDVIG 

 

Figure 38: Landsat 8 NDWI 
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Figure 39: Landsat 8 OSAVI 

 

Figure 40: Landsat 8 SAVI 
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Figure 41: Landsat 8 SR 

 

Figure 42: Landsat 8 VARI 
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11. APPENDIX D: VEGETATION RECOVERY GRAPHS 

This section contain all DVI and SAVI recovery graphs with accompanying trends.  

11.1 DVI 

 

Figure 43: DVI regression slope D1 

 

   

Figure 44: DVI regression slope D2 
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Figure 45: DVI regression slope D3 

  

Figure 46: DVI regression slope D4 
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Figure 47: DVI regression slope SD1 

  

Figure 48: DVI regression slope SD2 
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Figure 49: DVI regression slope SD3 

11.2 SAVI 

  

Figure 50: SAVI regression slope D1 
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Figure 51: SAVI regression slope D2 

   

Figure 52: SAVI regression slope D3 

y = 8E-05x - 3.2956
R² = 0.2983

y = 0.0002x - 7.1631
R² = 0.8412

0

0.05

0.1

0.15

0.2

0.25

0.3

07/2012 01/2013 08/2013 03/2014 09/2014 04/2015

D2

L8 L7 Linear (L8) Linear (L7)

y = 7E-05x - 2.9458
R² = 0.27

y = 0.0002x - 7.9474
R² = 0.8204

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

07/2012 01/2013 08/2013 03/2014 09/2014 04/2015

D3

L8 L7 Linear (L8) Linear (L7)



70 
 

  

Figure 53: SAVI regression slope D4 

  

Figure 54: SAVI regression slope SD1 
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Figure 55: SAVI regression slope SD2 

  

Figure 56: SAVI regression slope SD3 
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12. APPENDIX E: ORTHOPHOTO STATISTICS 

Appendix D contains tables with statistics from the areas obtained with the 

orthophoto and Landsat 7 and 8 images for the comparison of the orthophoto and the 

satellite images. 

 

 
Figure 57: NDVIG boxplot comparison 

 
Figure 58: SAVI boxplot comparison 
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Figure 59: OSAVI boxplot comparison 

 
Figure 60: IPVI boxplot comparison 

 

Figure 61: SR boxplot comparison 
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