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resumo 
 
 
 

A lesão medular é uma desordem neurológica devastadora que afeta milhares 
de pessoas a cada ano. E apesar de nas últimas décadas ter sido feito um 
enorme progresso relativamente à compreensão dos eventos moleculares e 
celulares que este dano desencadeia, a lesão medular ainda é uma condição 
altamente incapacitante e mortal para a qual ainda não há cura. Os indivíduos 
que apresentam lesões medulares, manifestam disfunção ou perda, temporária 
ou permanente, das funções motoras, sensoriais e/ou autonómicas. 
Atualmente a taxa de incidência desta tipologia de lesões é de 
aproximadamente, 15-40 casos por milhão de pessoas em todo o mundo. Na 
origem destas lesões estão: acidentes rodoviários, quedas, violência 
interpessoal e a prática de desportos. 
Neste trabalho foi colocada a hipótese de que o ácido hialurónico (HA) seja um 
dos componentes do tecido cicatricial formado após a compressão medular e 
que provavelmente seja sintetizado pelas células gliais situadas à volta da 
lesão, podendo ajudar na penetração da cicatriz glial, por parte das células 
nervosas, durante uma fase mais tardia da lesão da espinal medula. 
Atualmente tem sido dada muita atenção ao restabelecimento da função do 
SNC, impossibilitado pelo elevado teor de proteoglicanos sulfatados na matriz 
extracelular. O contrabalanço do rácio entre o teor de proteoglicanos e de HA 
pode ser uma terapia experimental para a re-permeabilização do tecido da 
cicatriz glial formada após a lesão medular, possibilitando o crescimento 
axonal e a recuperação funcional. 
Por isso, estabeleceu-se um modelo de compressão da espinal medula em 
ratinhos e estudou-se o tecido da cicatriz glial, em particular, a caracterização 
da expressão de enzimas relacionadas com o metabolismo do HA e a sua 
posterior concentração a diferentes distâncias do epicentro da lesão. 
Os nossos resultados mostram que a lesão induzida em ratinhos produziu 
resultados semelhantes às lesões encontradas em humanos, tanto do ponto 
de vista histológico como funcional. No entanto, após traumatismo, estes 
animais demonstraram um mecanismo de recuperação espontânea 
impressionante na espinal medula resultando numa recuperação parcial da 
função do SNC. 
Quanto ao estudo da cicatriz glial, as alterações foram detetadas na expressão 
do mRNA das enzimas metabolizadoras de HA, isto é, após a lesão houve 
uma diminuição na expressão das HAS1-2 e um aumento na expressão de 
mRNA da sintase HAS3 assim como das enzimas ligadas à degradação do 
HA, HYAL 1-2. Porém, duas semanas após LM a concentração de HA medida 
através do teste ELISA encontrou-se inalterada. É impossível explicar este 
facto apenas com a mudança na expressão das enzimas ligadas ao HA. A 
duas semanas pós-trauma, em resposta à LM, encontrámos HA sintetizado por 
astrócitos reativos e, provavelmente, por outras células, como a microglia tal 
como foi avançado pela co-localização de HA/IBA1

+
 e HA/GFAP

+
. 
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abstract 

 
Spinal cord injury (SCI) is a devastating neurological disorder that affects 
thousands of people each year. Although in recent decades significant 
progress has been made in relation to understanding the molecular and cellular 
events underlying the nervous damage, spinal cord injury is still a highly 
disabling condition for which there is no curative therapy. People affected by 
spinal cord injuries manifested dysfunction or loss, temporary or permanent, of 
motor, sensory and / or autonomic functions depending on the spinal lesion 
damaged. Currently, the incidence rate of this type of injury is approximately 
15-40 cases per million people worldwide. At the origin of these lesions are: 
road accidents, falls, interpersonal violence and the practice of sports. 
In this work we placed the hypothesis that HA is one of the component of the 
scar tissue formed after a compressive SCI, that it is likely synthetised by the 
perilesional glial cells and that it might support the permeation of the glial scar 
during the late phase of SCI. Nowadays, much focus is drawn on the recovery 
of CNS function, made impossible after SCI due to the high content of sulfated 
proteoglycans in the extracellular matrix. Counterbalancing the ratio between 
these proteoglycans and hyaluronic acid could be one of the experimental 
therapy to re-permeate the glial scar tissue formed after SCI, making possible 
axonal regrowth and functional recovery. 
Therefore, we established a model of spinal cord compression in mice and 
studied the glial scar tissue, particularly through the characterization of the 
expression of enzymes related to the metabolism of HA and the subsequent 
concentration thereof at different distances of the lesion epicenter.  
Our results show that the lesion induced in mice shows results similar to those 
produced in human lesions, in terms of histologic similarities and behavioral 
results. but these animals demonstrate an impressive spontaneous 
reorganization mechanism of the spinal cord tissue that occurs after injury and 
allows for partial recovery of the functions of the CNS. 
As regards the study of the glial scar, changes were recorded at the level of 
mRNA expression of enzymes metabolizing HA i.e., after injury there was a 
decreased expression of HA synthases 1-2  (HAS 1-2) and an increase of the 
expression HAS3 synthase mRNA, as well as the enzymes responsible for the 
HA catabolism, HYAL 1-2. 
But the amount of HA measured through the ELISA test was found unchanged 
after injury, it is not possible to explain this fact only with the change of 
expression of enzymes. At two weeks and in response to SCI, we found 
synthesized HA by reactive astrocytes and probably by others like microglial 
cells as it was advanced by the HA/GFAP

+
 and HA/IBA1

+
 cells co-location. 
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résumé 
 
 

Le traumatisme médullaire est une affection neurologique dévastatrice qui 
affecte des milliers de personnes chaque année. Bien que ces dernières 
décennies  d'énormes progrès ont été fait par rapport à la compréhension des 
événements moléculaires et cellulaires qui déclenchent les dommages au sein 
du tissu nerveux, les dommages de la moelle épinière sont encore irréversibles 
et rendent les personnes atteintes très invalidées. Aucun traitement visant à 
remédier aux pertes fonctionnelles n’est disponible. Les gens atteints de 
traumatismes de la moelle épinière, manifestent un dysfonctionnement ou une 
perte, temporaire ou permanente, des fonctions motrice, sensorielle et / ou 
autonome. Actuellement, l’incidence de ce type de blessure est d'environ 15-40 
cas par million de personnes dans le monde. L'origine de ces lésions sont: 
accidents de la route, chutes, violence interpersonnelle et pratique de sports. 
Dans ce travail, nous avons placé l'hypothèse que l'acide hyaluronique (HA) 
est l'un des composants du tissu cicatriciel formé après une compression de la 
moelle épinière, qu'il est probablement synthétisé par les cellules gliales péri 
lésionnelles et qu'il pourrait soutenir la pénétration de la cicatrice gliale pendant 
la phase tardive de la LM. Actuellement beaucoup d'attention est attirée sur le 
rétablissement de la fonction du système SNC, rendue impossible après la LM 
en raison de la contenu élevé en protéoglycanes sulfatés dans la matrice 
extracellulaire. Contrebalançant le rapport entre ces protéoglycanes et l'HA 
peut être une thérapie expérimentale de la re-pénétration dans le tissu de 
cicatrice gliale formé après la LM, ce qui rend possible le repousse axonale et 
la récupération fonctionnelle. 
Par conséquent, nous avons établi un modèle de compression de la moelle 
épinière chez des souris et étudié le tissu de la cicatrice gliale, en particulier 
par la caractérisation de l'expression des enzymes liées au métabolisme de 
l'HA et la concentration ultérieure de celui-ci à des distances différentes de 
l'épicentre de la lésion. 
Les résultats montrent que la lésion induite chez la souris produit des résultats 
similaires à ceux trouvés dans les lésions humaines, d'un point de vue 
fonctionnel et histologique. Toutefois, après un traumatisme, ces animaux ont 
démontré un mécanisme de récupération spontanée impressionnante dans la 
moelle épinière entraînant une reprise partielle de la fonction du système 
nerveux central.  
De manière surprenante, la quantité d'HA vérifiée par le test ELISA s’est trouvé 
inchangée deux semaines après traumatisme médullaire. Il est impossible 
d'expliquer ce fait uniquement avec le changement de l'expression d'enzymes 
liées à l'HA. Nous avons constaté que deux semaines après traumatisme, il ya 
l' HA synthétisé par les astrocytes réactifs et probablement par d'autres comme 
les cellules microgliales comme il a été avancé par les résultats de co-
localisation de l' HA et cellules GFAP

+
 ainsi que l'HA et cellules IBA1

+
. 
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b-TGS6 - beta TNF-stimulated gene 6 protein 
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INTRODUCTION 

 

Briefly anatomy of Spinal Cord 

 

In human being, spinal cord length is about 42-45 cm and subdivided in 5 regions: 

cervical, thoracic, lumbar, sacral and coccygeal which are associated with different 

functions (Figure 1). 

There are differences in length between the bony spinal column and the spinal cord, so 

neurological levels of the spinal cord do not necessarily correspond to the vertebral 

segments, neurological segmental levels correspond to the nerve roots that exit the spinal 

column between vertebrae's (WHO, 2011). There are 31 pairs of spinal nerve roots: 8 

cervical, 12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal. 

When spinal cord is damaged, the physical effect vary according to the impact site and 

the severity of the injury. Higher is the injury, more important is the functional loss due to 

the interruption of downstream spinal pathways. According to the National Spinal Cord 

Injury Statistical Center, the region of the spinal cord most affected in SCI is the cervical 

spine, occurring in 56% of all SCI cases (NSCISC, 2015). 

 

 

Figure 1: Organization of the spinal cord with segmental division (cervical, thoracic, lumbar and 
sacral) and the main functions associated (WHO, 2011). 
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Numbers in spinal cord injury 

 

Spinal cord injury (SCI) remains a major public health problem worldwide (Taghva et al., 

2012). 

SCI is defined by the National Spinal Cord Injury Statistical Center (NSCISC) as any injury 

to the structures contained in the spinal canal, resulting in temporary or permanent loss of 

motor, sensory and/or autonomic function. 

The Annual incidence rate of SCI, in developing countries, is 25.5/million/year cases, 

males with mean age of 32 years are the most affected group, accounting for 

approximately 82% of new SCI cases (Movaghar et al., 2013). 

Portugal appears higher in the list of annual crude incidence rate about traumatic SCI 

registering 57.8 cases per million of people (Berg et al., 2010). 

Injuries to the central nervous system can be of two types: traumatic or non-traumatic 

injuries. 

Traumatic spinal cord injuries (TSCI) generally result from a rapid displacement or fracture 

of the vertebrae that impacts the soft CNS tissue, (Jakeman et al., 2014). 

The main causes identified for TSCI are vehicle crashes (38%), falls (30%), interpersonal 

violence (15%) and sports (9%) (NSCISC, 2015). 

Non traumatic injuries usually involves an underlying pathology, such as infectious 

disease, tumour, congenital problems such as spina bifida that is abnormality linked to 

defective neural tube closure during embryonic development, and stroke, a non-

haemorrhaging stroke, caused by a sudden arterial occlusion that disrupts blood flow to 

tissue, leading to tissue necrosis in the territory of occluded artery (Moshayedi and 

Carmichael, 2013)  

The incidence of NTSCI varies by both age and sex. As with TSCI, incidence rates of 

NTSCI are higher among males than females. NTSCI incidence increases consistently 

with age with risk influenced by the increase of ill health with increasing age (WHO, 2011). 

The number of NTSCI is difficult to know because there are many different causes, and 

there is no unique big registry where all the information is gathered. But according to an 

australian study the incidence rate of NTSCI is almost double, estimated in 26/million 

compared to 15.3/million adults/year reported to TSCI (New, 2006). 
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Current treatments 

 

Currently the treatment given to patients with acute SCI vary according to the 

local/regional protocol available due to the lack of medical consensus. 

Previous clinical trials have shown benefits of steroids administration and administration of 

high doses of Methylprednisolone (MP) within the first 8 hours after traumatic injury, 

reducing the pain and the inflammatory response. This last treatment is recommended by 

National Acute Spinal Cord Injury Study (NASCIS) to use MP as standard procedure in 

the clinical practise. On the contrary, there are also evidences showing that high-dose 

steroids are associated with harmful adverse effects (Bracken, 2012). For instance, high 

dose of MP have been associated with side effects such as anxiety, dizziness, mental 

depression and an increased risk of infectious and metabolic complications (Suberviola et 

al., 2008).  Surgical decompression prior to 24 hours after SCI, also can help in vascular 

circulation being mentioned as safety procedure and is also being associated with some 

improved neurologic outcome (Fehlings et al., 2012). 

 

Regeneration of peripheral nervous system and central nervous system 

 

CNS regeneration after damage is not simple because it does not own the same repair 

capacity as the peripheral nervous system (PNS). When damage to CNS or PNS occurs, 

the axon is cut, separate from neuron's cell body undergoing wallerian degeneration distal 

to the injury. In the CNS, many factors synthetized after trauma inhibit axonal regrowth 

and do not promote the re-shaping of the normal spinal tissue architecture. Among these 

inhibitory factors, the components of the glial scar, i.e. oligodendrocyte precursors, 

reactive astrocytes, microglial cells, inflammatory cytokines, extracellular matrix proteins 

such as CSPGs have been clearly pointed out as the main inhibitors of axonal regrowth. 

Wallerian degeneration in the PNS initiates removal of myelin debris and axons through 

the recruitment of macrophages into the injured area. 

Axonal skeleton thus disintegrates as the axonal membrane of the axon, although the 

outer layer of Schwann cells that surround the axons does not disintegrate giving rise to a 

hollow tube that allows these cells to attract the axon sprouts from the proximal end to the 

distal end of the damaged axons, through growth factors synthesis. The efficient innate-

immune response helps turning the PNS tissue into an environment that supports axon 

regeneration (Alovskaya et al., 2007). 
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Primary and secondary damage to spinal cord 

 

The lack of capability to CNS regeneration is mainly hampered by the second event that 

occur after the primary injury to the spinal cord, because SCI follows a biphasic process 

where the secondary biological events sets in minutes after injury and lasts for weeks or 

months (Table 1) (Oyinbo, 2011). 

The primary injury is the mechanical insult itself that occurs during the accident due to 

compression, stretching and involves immediate rupture or crushing of neural tissue and 

vascular elements (Rowland et al, 2008). 

This fact initiates a cascade of secondary events leading to hemorrhage, hypoxia, strong 

inflammatory response, astrogliosis, apoptosis, electrolyte deregulation and reactive 

oxygen species generation gathered in the term “secondary injury” characterized by 

progressive rostro-caudal extension of the primary lesion, causing further damage to 

spinal tissue (Marques et al., 2009). 

 
Table 1: Phases of SCI and molecular/cellular events developed in each phase (Rowland et al., 
2008). 

 

 

Despite cellular and molecular mechanisms underlying secondary spinal cord injury are 

still not completely understood (Zhou et al., 2014), it is known the importance to reduce 

the neuronal loss induced by the secondary damage, mainly because the degree of 
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neurologic disability after spinal cord trauma depends of the extent of neural element loss 

and the remaining function of the residual neural tissue (Oyinbo, 2011). 

 

ECM in the CNS 

 

A tissue, whatever it is, is constituted by a certain kind of cells which have specialized in 

certain functions, constituting organisms. On unicellular creatures, their cellular wall is the 

barrier between them and the exterior environment whereas in our organism, cells are 

integrated and surrounded by an environment called extracellular matrix (ECM). The ECM 

is formed by components synthetized by cells, being each ECM specific for certain group 

of cells in a certain condition. 

ECM occupies 20% of the volume of the adult CNS and is produced and assembled by 

neurons and glial cells (Sherman and Back, 2007). 

Extracellular matrix in CNS is a meshwork of hyaluronan, sulfated proteoglycans and 

tenascin R. (Wakao et al., 2011). HA works as a backbone to sulfated proteoglycans 

linkage, which are linked to one or more sulfated GAG chains. Tenascin-R binds to 

sulfated proteoglycans domains, forming homodimers or trimers. The complexes are 

secured to the linear HA sugar by link proteins, allowing a stable substrate for cells 

(Gaudet and Popovich, 2014). 

 

 

Figure 2: Different ECM composition in the CNS. In basement membranes, ECM surrounds 
endothelial cell-vessels, in a condensed way as perineuronal nets (PNN) around the cell bodies 
and proximal dendrites of neurons. In neural interstitial matrix ECM are diffusely distributed 
between the neuronal or glial cells of the CNS parenchyma (Lau et al., 2013). 

 

Initially thought that ECM had simply functions as contributing to structural stabilization of 
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neural processes and synaptic contacts in central nervous system and in tissue elasticity. 

Actually ECM is known to regulate processes in cell development, neuronal activity and 

axonal growth (Soleman et al., 2013). 

Functions and organization of ECM differs depending of the CNS sub-region: perineuronal 

nets (PNN), neural interstitial matrix and ECM from basal lamina (Figure 2). 

Perineuronal net (Figure 3) is a layer of condensed pericellular matrix composed of ECM 

molecules strongly expressed around cellular bodies and proximal dendrites of some 

neurons in CNS (Kwok et al., 2011). In PNNs, ECM is attached to hyaluronan synthases 

molecules presents in the cell membrane. 

This PNN is necessary to protection of highly active neurons in response to high neuronal 

electrical activity. It helps also in inhibiting the structural rearrangements at synapses, 

contributing to the maintenance of neuronal networks, controlling neuronal plasticity 

(Schreiber et al., 2013).The disruption of the PNN components through the enzymatic 

digestion of HA  or chondroitin sulfate GAG chains resulted in destabilization of this 

structure and enhanced plasticity (Soleman  et al., 2013). 

Quite similar dense ECM structures are formed at perinodal regions along axons in the 

white matter tracts, where they also enhances axonal conduction efficiency (Burnside and 

Bradbury, 2014). 

In basal lamina a distinct ECM is found with more components like collagen type 4, 

fibronectin, perlecan, dystroglycan, and laminin-nidogen complexes, whose functions are 

related to blood-brain barrier maintenance (Lau et al., 2013). 

 

 

Figure 3: synthesis and secretion to the perineuronal space by HAS enzymes present in the inner 
membrane of neurons. In the extracellular space, HA function as the backbone where are the link 
proteins that stabilize the binding of proteoglicans to HA (Kwok et al., 2011). 
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Hyaluronan and his receptors (CD44, RHAMM, TLR-2,4) 

 

Hyaluronan or hyaluronic acid (HA) is a linear non-sulfated glycosaminoglycan of long 

chain composed by repeated disaccharide unites of N-acetyl glucosamine and glucuronic 

acid (Figure 4), representing one of the major constituents of the extracellular matrix in the 

CNS (Khaing et al., 2011). 

HA is found ubiquitously in the body, skin is the organ with the greatest amount, 

accounting for 50% of the total body HA (Papakonstantinou et al., 2012). It is also widely 

distributed throughout the developing and adult CNS being produced predominantly by 

astrocytes and to a lesser extent by oligodendrocytes, neurons and microglia (Jakeman et 

al., 2014). 

It acts as a structural component of the extracellular matrix as well as a mediator of 

various cellular functions due to its capacity to induce cell signalling through multiple 

transmembrane receptors involved in nervous system responses to injury, influencing cell 

proliferation, differentiation, migration and survival (Yang C. et al., 2012). 

However physiological functions of HA change depending on its size (“high molecular 

weight” - HMW HA versus “low molecular weight” - LMW HA), sometimes demonstrating 

opposing actions. It can have pro- or anti-inflammatory properties, promote or inhibit cell 

migration, activate or stop cell division and differentiation (Cyphert et al., 2015). 

HMW beyond the structural role, silences inflammation, angiogenesis and neural 

differentiation (Moshayedi  and Carmichael, 2013). 

It has been shown that injury to the spinal cord can result in degradation of native HMW -

HA into LMW forms (Struve et al., 2005). Struve and co-workers demonstrated that the 

consequence of native HA degradation was the proliferation and activation of astrocytes 

through CD44 receptor activation. 

The opposite response were seen in the presence of HMW-HA in a culture of astrocytes 

demonstrating reduction in cell proliferation and in the amount of astrocyte-derived CSPG 

production (Khaing et al., 2011). 

In rat model of spinal cord hemisection injury, Khaing et al., 2011 showed significant 

reduction in the number of immune cells detected at the lesion site, significant lower 

CSPG expression and a decrease in astrocytic response after implantation of HMW-HA 

hydrogels. 

This experiment suggests that HMW-HA limits astrocytic activation by keeping them in a 

quiescent state through HMW hyaluronan-CD44 interaction. When damage occurs, HA is 

degraded and the astrocytes becomes reactive, proliferates and origins scar formation. 
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Slevin and co-workers (2007) also reported the conflicting functions of HA. The native 

high molecular weight HA is anti-angiogenic whereas low molecular weight demonstrated 

to be angiogenic, stimulating endothelial cell proliferation and migration following 

activation of CD44 and RHAMM. 

Sloane and co-workers (2010) have reported that HA products generated by 

hyaluronidase activity, are able to bind TLR2 on the surface of OPCs, inhibit their 

maturation, prevent their differentiation and block axons remyelination. 

One hypothesis to explain this contradictory functions of HA come from the study of Yang 

C et al., 2012, where they explain that native hyaluronan induce CD44 clustering that is 

attenuated when HA is replaced by low molecular forms. 

Properties of HA have been used in several ways, also as a medium of inclusion 

(“scaffold”) for cell therapy, in a study where neural stem progenitor cells (NSPC) were 

injected within a combination of HA and modified methyl cellulose hydrogel, in a subacute 

model of rat SCI. Results demonstrated improvement of graft survival, increased 

oligodendrocyte differentiation, reduction in lesion cavity and improved behavioural 

recovery (Mothe et al., 2013). 

Together, all studies support the idea that HA and multiple HA receptors are involved in 

responses of CNS to injury and in different cellular behaviours. 

The major surface hyaluronan receptor implicated in intercellular and cell-matrix adhesion, 

cell migration and signalling is CD44. CD44 is a transmembrane glycoprotein mediating 

cell responses to the extracellular microenvironment. These functions are linked to the 

cytoplasmatic tail, influencing cell migration through his cleavage by metalloproteinases, 

which results in release of cells bound to HA (Dzwonek and Wilczynski, 2015). CD44 is 

expressed by astrocytes, neurons, oligodendrocytes, neural stem cells and endothelial 

cells. In endothelial cells, the role of CD44 is to promote the crossing of lymphocytes 

across CNS vascular endothelium (Winkler et al., 2013). 

RHAMM, receptor for hyaluronan-mediated motility, is another HA binding receptor, 

expressed by subsets of neurons and glial cells, especially oligodendrocytes. RHAMM is 

located on the cell surface as a GPI-anchored protein and in the cytoplasm (Sherman et 

al., 2015).  

HA binds to RHAMM and influence cell growth and glial cell migration due to the complex 

network of signal transduction events with the cytoskeleton structures (Papakonstantinou 

et al., 2012). 

Both TLR-2 and TLR-4 bind HA. TLR are expressed by microglia and astrocytes and it is 

being demonstrated the binding of LMW-HA to TRL-2 leads to inhibition of OPC 



 

 
Characterization of the glial scar tissue in a murine model of spinal cord compression, with focus on 

hyaluronan 
_______________________________________________________________________________________ 

 
Maria José Cardoso Lopes 17 

 

 

maturation and consequent failure in axon remyelinization (Sloane et al., 2010). 

  

Figure 4: Chemical simple structure of HA composed by repeating disaccharides of N-acetyl 
glucosamine and glucuronic acid (Onken, 2011). 

 

HA Synthesis and degradation 

 

Mammalian hyaluronan synthesis is accomplished by three membrane-bound 

glycosyltransferases isozymes, hyaluronan synthases (HAS) 1, 2 and 3 located at the 

inner face of the plasma membrane. HA is secreted to the extracellular space as a linear 

molecule. Despite their similarities, the three hyaluronan synthases produce HA of varying 

molecular mass. HAS 1 and HAS 2 produce the larger polymers > 2x106 Da with a 

reduced synthesis rate while HAS 3 produce shortest HA polymer size with a molecular 

mass lighter than 2x105 Da and greater synthesis rate (Sherman and Back, 2007). 

The HAS genes have a different temporal pattern of expression during the 

morphogenesis. Expression of HAS2 at all stages of embryogenesis is explained by 

lethality of HAS2 knockout mice linked to vascular defects whereas in double knockouts 

HAS1 and HAS3, mice are viable (Dicker et al., 2014). 

In mammals, hyaluronidases consist of six HYAL family members: HYAL 1-4, PH20, and 

HYALP1 that differ in their cellular localization. The general mechanism, in somatic 

tissues, accepted for HA degradation is that HMW-HA bind to his transmembrane receptor 

CD44 and GPI anchored-Hyal 2 reduces the HA molecule in size to products with 50 

disaccharide units that will be internalized and transported to lysosomes for further 

degradation carried out by intracellular Hyal-1(Sherman and Back, 2007). 

Nowadays, we still do not know how HA degradation is regulated in the normal CNS and 

after CNS injury. We only know that HA degradation happens soon after SCI, leading to 

the degradation of HMW-HA to LMW-HA. This last one seems to amplify the inflammatory 

response by initiating inflammatory signalling in macrophages or microglia and increasing 

expression of inflammatory cytokines (like TNF alpha and IL-12). It also recruits activated 

lymphocytes T into sites of inflammation from the blood vessels by up-regulating their 

CD44 (Popovich and Gaudet, 2014). In figure 5 we can see the feed-forward cycle that is 
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induced by SCI. 

 

Figure 5: Spinal cord injury induces changes in ECM composition, like the fragmentation of HMW-
HA and modification of tenascin-R, molecules that bind to ECM receptors or cytokines, chemokines 
causing the activation of this receptors and migration of the cells. The accumulation of 
inflammatory cells leads to the secretion of pro inflammatory mediators as TNF-alpha and 
metalloproteinase (MMP) that further degrade ECM molecules (Popovich and Gaudet, 2014). 

 

Besides the ECM modification, cells intrinsic to the spinal cord contribute to inflammation, 

through the activation of astrocytes and microglia near the lesion that starts to proliferate 

and release inflammatory cytokines. 

Astrocytes undergo morphological and biochemical changes, they become reactive and 

increase their expression of GFAP and CD44 at their surface (Silver and Miller, 2004). 

They become hypertrophic and accumulate within the lesions where they are part of the 

glial scar tissue. Although being detrimental during the scarring, reactive astrocytes are 

required in the early phases post-SCI by protecting unaffected surrounding tissues from 

damaged tissues, limiting extension of the lesion; they notably accumulate at the margins 

of the lesion epicenter to help in the reestablishment of the blood spinal barrier (Yuan and 

He, 2013). 

Recently the involvement of HA in CNS injuries has aroused interest and there are many 

studies that investigate the therapeutic effect of HA oligosaccharides action. 

Wakao and co-workers (2011) demonstrated for the first time that HA4 improved motor 

function recovery after SCI, after investigation of several HA oligosaccharides (HA2-

HA12). After HA4 treatment, they observed a decreased accumulation of IBA1 positive 

cells in a lesion 2 weeks after SCI, and the enhanced axonal regeneration/sprouting 

accessed by corticospinal tract tracer fiber counts. 
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Wang and co-workers found that HA tetrasaccharides (HA4), when added to astrocytic 

cultures were able to induce astrocytes to express more neurotrophic factors as BDNF 

and VEGF, promoting repair of damaged neurons and oligodendrocytes. They also found 

that HA4 induce NF-kB and c-IAP2 to suppress H202 induced apoptosis in neuronal 

cultures. When the HA4 polymer sheets implantation was done, after compression of the 

spinal cord, results demonstrated that HA4 level was increased in the cerebrospinal fluid 

and associated with behavioural recovery of rats. 

Also Wang and co-workers (2015) in the continuation of their study, they found that high 

expression of VEGF and BDNF in astrocytes induced by HA4 were inhibited by blocking 

the receptors CD44 and TRL-4, suggesting that is through interaction with these 

receptors, HA4 exerts its therapeutic effect. 

 

Glial Scar formation 

 

Classified as one of the main physical and molecular barriers to regenerating axons, the 

glial scar forms, following injury, as neural wound healing response (Figure 6). 

It is formed by a dense meshwork of reactive glial cells, mostly by reactive astrocytes that 

up regulate high levels of the main axonal inhibitory molecules, CSPGs that persist for 

several weeks after CNS injury, preventing axon remyelination and restricting axon 

plasticity, essentials for regeneration (Sharma et al., 2012).  

However, reactive astrocytes also provide essential activities in protecting tissue and 

preserving function after SCI, demonstrated by Faulkner and co-workers (2004).  These 

authors used a transgenic mouse model where proliferating astrocytes can be ablated, 

absence of reactive astrocytes early post-SCI considerably worsens morphological and 

functional outcomes than in wild type mice: failure of BSB repair, increased leukocyte 

infiltration, extended spinal tissue disruption, severe demyelination, more neuronal and 

oligodendrocyte death, and more pronounced motor deficits, even in small injuries. 

Infiltration of immune cells, such as microglia and macrophages, meningeal cells, and 

fibroblasts not usually found within CNS, are activated during different times in the 

inflammatory process and involved in the process of glial scar formation (Soleman et al., 

2013) that along with inhibitory molecules, like CSPSs, prevent the access to the site of 

injury through the establishment of the inhibitory microenvironment that prevents the 

regeneration of damaged axons and inhibits synaptic plasticity, essential for neurological 

repair. 

Efforts to rend the microenvironment more permissive had discovered that removal of the 
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GAG side chains of CSPGs using the bacterial enzyme chondroitinase ABC increase 

plasticity and enables a certain degree of axonal regeneration (Cafferty et al., 2007). 

Subsequently increased axonal sprouting lead to a promotion of functional recovery in 

animal models of SCI treated with local infusion of ChABC (Wang et al, 2011). 

The classical method of administration of ChABC is through intrathecal injection but is 

difficult to execute due to the limitations such as the enzyme ChABC thermal sensitivity, 

reducing the activity after 5 days maximum at 37ºC, and the constant needed of delivery 

due to the fact that CSPG are chronically upregulated during weeks. So, with the need to 

have a more stable enzyme or an efficient method for the ChABC delivery, the translation 

of chondroitinase therapy to clinic is not possible. 

Last works in this area investigated the use of a thermostabilized enzyme ChABC 

administered through a lipid microtube-hydrogel scaffold system of delivery (Lee et al., 

2010). The study results showed low levels of CSPG for 6 weeks, after SCI in vivo, and 

the improved locomotor behaviour, correlated with axonal sprouting at the lesion site. 

Recently, another type of work was reported study to promote axonal sprouting beyond 

the glial scar through the administration of a DNA enzyme to XT-1 mRNA, enzyme that 

initiates GAG-chain formation, reducing XT-1 mRNA level after a dorsal hemisection of 

the spinal cord, promoting corticospinal tract regeneration and improving behavioural 

outcome after spinal cord injury (Koenig et al., 2015). 

 

Figure 6: Scheme representing a fluid-filled cavity surrounded by glial scar composed by reactive 
astrocytes that produce CSPG (inhibitors of axonal growth), accumulating at the injury site being 
the main cause for failure of axon regeneration 
(http://www.shannonassociates.com/artist/edmondalexander/category/21#url=3184). 
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Mice compression model at T9 vertebrae 

 

In our study we used animal model because it allows us to mimic the anatomical and 

biological consequences of SCI, where it is practically or ethically difficult to use humans. 

Despite being not the most widely animal model used in SCI research, mouse models 

have been implemented in SCI research allowing the use of knock-out animals for genes-

of-interest. 

Thoracic region was chosen as the region of injury. It is more commonly used in 

experimental models because it does not threaten vital functions such as in cervical 

lesions, however humans usually present SCI at the cervical region and therefore the site 

of injury can greatly affect the pathology and the severity of the injury in a clinical setting. 

 

Objective of the study 

 

With this study we intended a better understanding of the glial scar tissue composition, 

with focus on hyaluronan, one of the main component in extracellular matrix, after 

compression-induced to the spinal cord of mice. 

Firstly the mouse compression model at T9 region of the spinal cord was set up, followed 

by morphological characterization of the created lesion, comparing to animals submitted 

to laminectomy, working as the control group. Next our attentions were focused on 

hyaluronan, observing the mRNA expression of the HA related enzymes post-injury 

relating these results with hyaluronan quantification in lesion epicenter and adjacent 

regions of the spinal cord. 
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MATERIALS AND METHODS 

 

Ethics statement 

 

All experiments were performed in accordance with the approved animal protocols and 

guidelines established by University of Namur Animal ethics committee (Belgium). 

 

Animals 

 

Young adult male C57Bl6J mice with 10-16 weeks old, with body weight range 20-30 g, 

used in this study, were obtained from Janvier Company and from the university breeding. 

 

Surgical procedures 

 

All surgery was done under sterile conditions and the surgical procedures were performed 

under general anaesthesia with ketamine 100 mg/ml (Ketamine 1000 Ceva®) xylazin 

20mg/ml (XYL-M® 2% VMD) in 0.9% physiological serum. 

The dose was injected by intraperitoneal injection about 150 µL/20g. Once mice were 

anesthetized, the dorsal region (over the first two thirds to the spinal cord) was shaved 

and the area cleaned with an antiseptic solution, betadine ®, and a sterile compress to 

ensure antisepsis of the skin for the chirurgic act. Instruments used in the surgery were 

placed in a bead sterilizer (Steri 250 Simon Keller AG) at 250°C. 

The animal was placed under a stereoscopic microscope (Olympus SZX9) for the surgery 

and core body temperature was maintained at 37ºC by the use of a plastic heating plate. 

Once anaesthetic depth was reached, a longitudinal section was made from the elevation 

of the curvature of the back to the neck with a scalpel. 

Next, it was crucial localize two anatomical points of reference: First the blood vessel 

vascularizing the hibernating gland and second, the tendons of the paravertebral muscles. 

Our vertebra T9 was localized between this two reference points. 

After cutting the connective tissue carefully, to avoid the damaged of the blood vessel of 

the hibernating gland, we cut the paravertebral muscles longitudinally using a scalpel and 

we dissected out the muscles between them to access the spine. 

Once we reached the spine the vertebra T9 was identified using a ladder of 5.6 mm length 

to access the right place to perform a laminectomy, in other words, to removing the dorsal 

aspect of the T9 vertebrae. The distance chosen for the ladder was the distance between 



 

 
Characterization of the glial scar tissue in a murine model of spinal cord compression, with focus on 

hyaluronan 
_______________________________________________________________________________________ 

 
Maria José Cardoso Lopes 23 

 

 

the blood vessel of the hibernating gland (perforate thorax between T5 and T6) and the T9 

vertebra found in the literature (Harrison  et al., 2013).  

After localizing the T9 vertebrae, we needed a rodent-clip to cut out the bone and let the 

spinal cord accessible to induce compression injury. 

Compression was produced by inserting the forceps between the lateral sides of the cord 

and vertebral walls, they were held closed for different times of 5, 15, 30 or 60 seconds 

and then removed.  In some cases, it was visible bruising of the spinal cord, but in a few 

animals bleeding into the space above the spinal cord obscured direct visibility of the cord. 

The control animals, or group laminectomy, received the same surgery and a laminectomy 

was executed but no compression was made to the spinal cord. 

The wound was closed by suturing the vertebral muscles with absorbable line followed by 

closing the skin with wound clips for both groups. 

 

Animal care 

 

Pain associated with the surgery was managed with buprenorphine 0,05mg/kg 

(Vetergesic® 0.3 mg/ml Ecuphar) administered subcutaneously immediately after 

operation, 12h and 24 h. After surgery animals also received a subcutaneous antibiotic 

injection, firstly Cefazolin (SANDOZ® 1g Cefazolin sodium) that was substituted later by 

enrofloxacin 5%, dose 5mg/Kg (Baytril® Bayer) daily during five days and repeated if 

signs of infection were detected. Ringer's solution, 1 ml (lactate and physiological serum 

solution) was injected subcutaneously on the day of the surgery and at later days if 

animals showed signs of dehydration.  

Mice were placed on a warming pad for assure the optimal body temperature until they 

were awake. Once fully conscious, they were examined to confirm bilateral paralysis of 

the hindlimbs. They returned to their home cages with free access to food and water.  

All the animal's bladder were manually expressed twice a day until them become self-

expressing. 

Mice were also weighed and checked daily for any signs of distress, through the filling of 

the welfare data sheets with a score in the end between 0-6 (0 corresponding to better 

state of health and 6 to the worst state that obliges to the sacrifice of the animal) until the 

sacrifice day. 
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Behavioural analysis 

 

Mice were evaluated using four behavioural tasks selected to asses hindlimb function: 

Rotarod, grip strength, hanging wire and Basso Mouse Scale open field score. 

 

Grip strength 

 

This test was designed to assess forelimb motor function based on the ability of the 

animal to exert a pulling force on a metal grid attached to an electronic grip strength 

meter. However, our aim was assess the hind limb motor function and we had to readjust 

the test to our needs. 

For the assessment of the remain muscular force in hind limbs after spinal injury, we 

tested once a week, during 6 weeks. Each trial consisted of 3 trials for measure the force 

of the 4 limbs and 3 trials for measure the force of the forelimbs. Next we made the 

average of measurements and we subtracted the two values to obtain the force of the 

hind limbs. 

 

Hanging wire 

 

In this exercise, animals were introduced inside a cylinder with a grid placed in one of the 

extremity. Cylinder was placed at 30 centimetres of height. When returned, mice had to 

remain attached to the grid, until one minute maximum. 

The time was recorded and the average of three trials was calculated for each animal.  

This test was realized once a week during 6 weeks post-injury. 

 

Rotarod test 

 

Rotarod test was performed to assess balance and ability to coordinate stepping. In this 

test animals were placed in a multiple lane rotarod device in a constant acceleration from 

4 to 40 rpm in a maximum time of 5 minutes. Animals were scored on seconds to fall. 

This exercise required training once a day, during 5 days - two weeks before the surgery. 

In this first period we didn't recorded data. But after the habituation period, we submit mice 

twice a week, starting 1 week before surgery and we made the average of three trials per 

mice, to determinate the value correspondent to the best performance of mice before 

surgical intervention. After the surgery, mice were tested once a week until 6 weeks. 
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Three trials were scored individually and averaged for a final score per session. 

Basso Mouse Scale open field score (BMS) 

 

We used this scale because it is a broadly-recognized locomotor rating scale for mice and 

because basically our objective were to evaluate gross voluntary use of the hind limbs in 

the locomotion of the animals. This nine point scale provided the phases of locomotor 

recovery and features of locomotion with focus in gross aspects of the hind limb function. 

Mice were evaluated by two blinded observers and received a score for the movements of 

the hind limbs in our thoracic compression model in which the points mean: (0) no ankle 

movement, (1) Slight ankle movement, (2) larger ankle movement, (3) dorsal walking or 

plantar paw placing, (4) occasional plantar walking, (5) frequent plantar walking without 

coordination or a little bit coordinated, (6) walking  frequent and a little bit coordinated with 

the paws parallels to the body or generally coordinated  but with the paws in rotation , (7)  

walking  frequent and coordinated with the paws parallels to the body in the initial contact 

with the ground but in rotation after paws off the ground  or  if the paws are always 

parallels to the body but the trunk are seriously  instable, (8) walking  frequent and 

coordinated with the paws always parallels to the body but the trunk are  average instable 

or the trunk is normal but the tail is lowered or up and down, (9) this final score indicates 

the normal locomotor mobility with stability of the trunk and perfect performance. 

Animals were evaluated after surgery, daily up to 6 weeks post-injury. 

The score of the hindlimbs were recorded as general per animal (left and right hindlimb), 

obtaining a BMS score. Then, the mean of the group was calculated. 

 
 

 

Figure 7: Behavioural tests representation, from left to right, rotarod, Hanging wire and grip 
strength. 
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Experimental design 

 

Our working time line was performed as above: 

 

 

Figure 8: Time line of our work, beginning with the mice surgery followed by 5 days of post-
operative cares. At 2 weeks sacrifice were executed with consequent sample processing and 
analysis. However we had a second group of mice that were submitted to compression of the 
spinal cord but it group has a different sacrifice time, performing behavioural testes from 1 week till 
6 weeks after injury. 

 

After having set up the compression injury, we splitted our pool of animals into 

laminectomy group (n=15) and compression group (n=15). In each group we made 

various samples treatments according to the intended analyses: morphologic analysis 

(n=5), HA concentration, ELISA (n=5) and mRNA expression of HA metabolizing 

enzymes, qPCR (n=5). 

 

Tissue preparation 

 

For the lesion characterization, two weeks after surgery, mice were anesthetized and 

submitted to transcardial perfusion using physiological serum until the liver changed 

colour to yellowish, then we perfuse with 4% paraformaldehyde in 0.1M phosphate buffer 

(PB) at PH 7.4, to fix the tissues.  

After dissection to the spinal cord using a rodent-clip to destroy the bone and avoid the 

damage of the spinal cord tissue, the lesion epicenter was marked with ink.  

Next the sample was post-fixed overnight at 4ºC, in 4% paraformaldehyde, followed by 

one hour in distilled water and then stored at 4ºC in a 30% sucrose in PB solution until the 

samples sank. After that, pieces of 6 mm long with 3 mm of each side of the epicentre 

were cut, included in OCT (Tissue-Tekr SAKURA) and refrigerated at -25°C. 

Spinal cords were frozen and then cross-sectioned in a refrigerated ambiance, using a 

cryostat at -25ºC and 30µm thickness.  

Serial sections were done and slides were stored at -25°C until staining and analysis. 
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For the samples embedded in paraffin, we used the same fixation with the spinal cord 

harvested and soaked in 4% PFA at 4ºC, overnight but next we did an immersion in 

absolute methanol followed by an automatic device (automatic system Sakura-Tissue 

Tek-Vip) that works under pressure with standard temperatures and agitation for a 

complete dehydration of the samples followed by coating in paraffin at 60ºC. 

Samples were sectioned in a microtome (Leica) and attached to the blades with a drop of 

water heated on a hotplate. 

For quantitative real time PCR (q-PCR) and ELISA assay, spinal cord tissues were 

collected also two weeks after injury with perfusion with cold physiologic serum. After the 

harvest of the samples we cut them in 5 pieces (rostral+1, rostral, epicenter, caudal, 

caudal +1) with 4 mm each one and we introduced the pieces within tubes dipped in liquid 

nitrogen for snap-freezing (Figure 9). Samples were stored at -80ºC until q-PCR and 

ELISA-like assays. 

 

Figure 9: Scheme of the spinal cord portions used in this study. It is represented the several 
segments and the respective length intended for each analysis. For morphological analysis, OCT 
inclusion or paraffin coating, we cut a fragment of 6 mm (3 mm each side of epicenter). For gene 
expression analysis, qPCR, or ELISA assay we cut 5 different fragments: epicenter (E), rostral (R), 
caudal (C), more rostral (R+1) and more caudal (C+1) with 4 mm length each one. For epicenter 
segment we cut 2 mm each side. 

 

Histological staining 

 

Histological staining Eriochrome C with counter-staining Cresyl violet was performed to 

respectively visualize white matter and gray matter structures and therefore to quantify 

and the lesion extension. 

Before staining, cryostat sections at -25ºC needed to dry at room temperature during 

some hours and then heated in the oven, during 30 minutes at 48°C. Sections were left to 

room temperature a couple of minutes and next immersed in different baths (toluol, 

methanol 100%, 95%, 70% and tap water) for rehydratation. Next, they were dipped for 1 

minute and 45 seconds in Eriochrome C (Sigma) (10% ferric chloride – sulfuric acid 0.6% 

- 0.8g EC) followed by tap water and next the differentiation in ammonium hydroxyde 
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during 5 minutes with a rapid passage in distilled water. 

For the counter-staining, we used Cresyl violet 0.4% during 1 minute and a differentiation 

with an increasing concentration of ethanol baths 70%, 95% and 100%. 

Finally, slides were immersed in toluol and coverslipped using DPX mounting medium. 

During the histological staining we lost a lot of cuts in the several baths realized, despite 

our careful in previously well drying and heating the blades.  

The tissue thickness revealed not appropriate to the blades manipulation and we did 

another group of samples coated in paraffin, giving us the option to cut with smaller 

thickness-6 µm, increasing the adherence of the cut to the blade. 

For the new group we used paraffin in sample inclusion medium; as consequence we 

augmented the time of Eriochrome C staining to 30 minutes and cresyl violet to 1 hour. 

The other steps remain the same. 

 

Lesion histology and Motor neuron counting 

 

With Eriochrome C/Cresyl violet staining, total and lesion area of each section were 

delimited and measured using Image J Software. In sections with injury, the anatomical 

structure of the spinal cord was not conserved and we could see damaged tissue. To the 

section with the highest percentage of damaged tissue we identified it as the epicentre. 

We also calculated the lesion volume using Cavalieri estimator of volume, as shown 

above and as indicated in Nicaise et al., 2012. 

 

V=[∑(A1+A2+ . . .An) x D] - [Amax x Y] 

 

For counting total number of thoracic motor neurons, we used the sections stained with 

Eriochrome C/Cresyl violet. In this exercise, the microscope objective of 10x magnification 

was used. First we draw an imaginary line that separated the dorsal and ventral horns of 

spinal cord and we counted the motor neurons with an identifiable nucleus presented in 

grey matter of the ventral horn below the central canal. 
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Staining of HA 

 

With the aim to confirm and better understand the distribution of HA in injured and healthy 

spinal cord tissue we used an hyaluronan binding protein (HABP), b-TGS6 (cordially given 

by Halozyme Therapeutics, San Diego, California, USA) coupled with biotin and a fusion 

molecule streptavidin-FITC (dilution 1/500, Vector laboratories, Inc., Burlingame), for the 

revelation. 

As positive controls human and mouse skin were chosen, and for negative controls we 

incubate spinal cord tissue sections with PBS – 0.2% BSA – 0.1% Triton rather than the 

primary antibody.  

Initially we realized one washing step of the blades in PBS followed by the immersion in 

glycine, for 3 times during 2 minutes and a saturation step in PBS-0.2% BSA- 0.02% 

Triton per 1 hour at room temperature. Then, we incubated sections with the HABP b-

TGS6 (dilution 1/500) in a humidified chamber, overnight at 4°C. 

Samples were rinsed next day in PBS-0.2% BSA- 0.02% Triton and incubated with the 

streptavidin-FITC (1/500 dilution) at room temperature for 1 hour and rinsed one more 

time. Next we did the nuclei staining with Hoechst (1/100 dilution) followed by mowiol 

mounting medium. 

To solve the problems in tissue thickness in the Eriochrome C/Cresyl violet staining, in HA 

staining the problems also appear related to antibodies penetration in slices with 30 µm 

thickness. We did not achieve conclusive results and we changed the revelation step for 

HA staining using streptavidine-peroxydase and diaminobenzidine (Dako North America, 

Inc., Carpinteria, USA) rather than streptavidin-FITC.  In the new protocol we add one 

step of immersion in hydrogen peroxyde 3% diluted in PBS, for 10 minutes, to block 

endogen peroxidase, next to 3 glycin baths. After that all the steps were maintained, 

adding the incubation for 1h at room temperature of streptavidin-peroxydase (dilution 

1/200) after the overnight b-TGS6 (dilution 1/500) incubation, at 4ºC in a wet chamber, 

with a step of PBS rinsing between the two incubations. Finished the time of incubation of 

streptavidine-peroxydase, we made 3 washings in PBS and we add DAB to observe the 

colour change by timing time followed by blades immersion in distilled water to stop the 

reaction. Finally we counterstained nuclei with hemalun and we used DPX mounting 

medium. 
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Hyaluronan concentration (ELISA) 

 

To quantify the hyaluronan present in sections of injured and uninjured spinal cords we 

used an HA-assay, very similar to an enzyme-linked immunosorbent assay (ELISA) but 

lacking capture and detection antibodies. The capture and detection system is based on 

the ability of HA to bind different HA binding proteins.  

The first step was the lyophilisation procedure, frozen spinal cord segments of epicenter 

(E) and caudally (C+1) with 4 mm length, were weighted and underwent lyophilisation for 

24 hours. Then dry samples were also weighted and then subjected to overnight digestion 

with 500 μL pronase 0.1 M per tube, with the aim to access hyaluronan. Next step was the 

pronase inactivation with tubes immersion for 15 minutes in boiling water, 100ºC. Next to 

cooling down the tubes to -80ºC, we did one second lyophilisation for 24h and we stored 

samples at -80ºC. 

Measurement of HA concentration is most commonly determined by the use of a labelled 

specific HA binding protein, so we coated a 96-well microplate with 50 μL/well of capture 

reagent (composed by human recombinant aggrecan, CSPG), we incubated overnight at 

room temperature. Next day, we washed wells to remove the excess of capture proteins. 

We made the block buffer incubation step at room temperature for 1 hour. 

Samples were resuspended in 100 µl distilled water per tube and standards were 

prepared using 90 ng/mL as the higher standard concentration, and doing a 3-fold serial 

dilutions we prepared standards concentrations of 30, 10, 3.33, 1.11 and 0.37 ng/mL, 

used to draw the six point standard curve. 

We made a dilution of 1:1000 because HA was still highly concentrated in the lower tested 

dilutions of 1:10 and 1:100. 

We added 100 µL to each well of samples and standards and we incubated 2 h at room 

temperature, allowing the fixation of HA to the HA-binding protein, aggrecan (a 

proteoglycan that combines with HA in the ECM, originating complexes).  

We repeated the washing step previously done and we added the biotinylated HABP 

aggrecan, and we incubated 2 h at room temperature. Another wash step and the addition 

of streptavidine-horseradish-peroxidase (HRT), incubating at room temperature, avoiding 

direct light. A new wash step and next, peroxidase activity was assayed using sodium 

acetate buffer PH=6, as a substrate solution for the enzyme. After that we stopped the 

reaction and the colour appearance indicates the presence of HA, being the colour 

intensity proportional to the amount of enzyme present and thus to the HA concentration. 

Optical density was determined at 405 nm and 570 nm on a microplate reader. We 
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subtracted readings at 450 nm and 570 nm, for correct the optical imperfections in the 

plate. 

 

 

Figure 10: Elisa sandwich. Detection method used in HA dosage. 

 

Quantitative real-time PCR 

 

With the goal to access the alterations in expression of metabolizing HA enzymes 

(synthases and hyaluronidases) in the injured and uninjured spinal cords samples, mRNA 

expression was analysed using qPCR technique. Total RNA was extracted from the 

laminectomy and SCI groups using MagNA Lyser Green Beads (Roche), TRIzol® reagent 

(Invitrogen) and High Pure RNA tissue Kit (Roche), in which frozen (-80ºC) 29 samples 

were selected, between them the control organs: liver, skin and eye. Fourteen samples 

from laminectomy group and 12 samples from compression group. Epicenter (E) and 

more caudal (C+1) were the segments chosen for the RNA extraction. 

 

Total RNA extraction 

 

We began adding 1000 µL TRIzol® to each segment contained in the MagNA Lyser 

Green Beads tube, for the cells disruption and endogenous nucleases denaturing, 

preventing nucleic acid degradation. We homogenized samples in the MagNA Lyser 

Instrument. Next we recovered the supernatant and we added 200 µL of chloroform to 

each tube, incubating for 2-3 minutes at room temperature, resulting in the formation of 3 

different phases: RNA (upper phase), proteins (interphase) and DNA (lower phase). 

Next step was the transfer of 300 µL supernatant, without perturbing the interphase and 

the addition of 300 µL of ethanol 70% followed by centrifugation. 
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DNase was added to the tubes followed by 15 minutes of incubation at room temperature. 

This step prevented genomic DNA contamination. 

Finally we added 500 µL of washing buffers and 100 µL of elution buffer included in High 

Pure RNA tissue Kit (Roche). 

The quality and concentration, in ng/mL, were determined placing 2 µL of extracted RNA 

in the spectrophotometer reading (NanoDrop Technologies), at a wavelength of 260/280 

nm. The ratio varied between 1.6 and 2.0. It was considered satisfactory for RNA purity. 

 

Reverse transcription 

 

Total RNA was reverse-transcribed into first-strand cDNA in a total volume of 20 µL using 

the SuperScript® III Reverse Transcriptase kit. RNA was diluted to a final 

concentration of the less concentrated sample, 14.56 ng/mL, with RNase free water, 

because all reactions must have the same amount of RNA. Then we added 2uL/sample 

from prepared MIX 1 (1 µL of dNTP mix, 0.1 µL poly-dT and 0.9 µL RNase free water) per 

sample. Reverse transcription included a first incubation stepat 65ºC, during 5 minutes. 

Next we added 7 µL from the prepared mix 2 (4 µL first strand buffer 5x, 2 µL DDT 0.1M 

10x, 0.1 µL Reverse Transcriptase III and 0.9 µL RNase free water) and we submitted the 

tube to 42ºC incubation during 50 minutes and 15 minutes cooling. Finally we diluted 20X 

cDNA samples, preparing new tubes with 10 µL cDNA in 190 µL RNase water free. 

 

qPCR reaction 

 

For  quantitative real-time PCR reaction volume of 20 µL, 5 µL of cDNA (concentration 

14.56 ng/µL) from the RT-reaction was used as template, with 10 µL of SYBR™ Green 

master mix and 2.5 µL of 5' and 3' gene-specific primer at concentration of 300 nM/L 

each.  Sequences of primers used for RT-PCR are shown in Table 2. 

After the initial denaturation at 95ºC for 3 minutes, 40 cycles of primer annealing and 

elongation were conducted at 60ºC for 45 seconds, followed by denaturation at 95ºC for 

10 seconds. Each cDNA sample was analysed in duplicate for mRNA of all genes. Thus, 

cDNA was amplified with Light Cycler ® 96 (Roche) RT-PCR system and quantified by the 

corresponding program (RT-PCR software Light Cycler ® 96 version 1.1.0.1320). 

The RT-PCR was accompanied by the analysis of the dissociation curves. 

Fluorescent emission data were captured and mRNA levels were quantified using the 

threshold cycle value (Ct).  
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For the analysis of gene expression, the 2-ΔΔCt value was calculated where  

 

Quantitative PCR data for mRNA of each sample were normalized by reference to the 

data obtained of the housekeeping genes HPRT and b-actine determined from the same 

sample. 

Real-time PCR primers of HAS3 and Hyal2 genes, were synthesized by Eurogentec S.A. 

enterprise and designed by us using the Pubmed nucleotide database and Primer3 

program version 0.4.0, according to the coding sequences of each gene and following 

quality criteria. 

 
Table 2: Mouse primers pairs of HA related enzymes and housekeeping genes used in qPCR. 

 

  

Genes of interest Sequence 5'-3' 

mHAS1 F  GCATGGGCTATGCTACCAAGTAT 

mHAS1 R  AGGAGGGCGTCTCCGAGTA 

mHAS2 F  GACCCTATGGTTGGAGGTGTTG 

mHAS2 R  ACGCTGCTGAGGAAGGAGATC 

mHAS3 F  CAGTGGACTACATCCAGGTGTG 

mHAS3 R  CATCTCCTCCAACACCTCCTAC 

mHyal1 F  CAGCATGCTCAGAAAGTTTGG 

mHyal1 R  TGAGCAAGGTGGGTAACCAG 

mHyal2 F  CGAGGACTCACGGGACTGA 

mHyal2 R  GGCACTCTCACCGATGGTAGA 

mHPRT F  GGCCTCTCGAAGTGTTGGAT 

mHPRT R  CCAACAACAAACTTGTCTGGAA 

mBeta-actin F  TCCTGAGCGCAAGTACTCTGT 

mBeta-actin R  CTGATCCACATCTGCTGGAAG 

ΔΔCt = ΔCt - average of ΔCt, where 

 

ΔCt = target gene Ct - average of housekeeping genes Ct (HPRT and beta actin) 
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Double-labelling immunofluorescence 

 

Staining of tissues with 6 µm thickness of spinal cord waxed sections were dewaxed in 

toluene twice for 5 minutes followed by rinsing in alcohol, 3X for 1 minute and 10 minutes 

in tap water. Sections were then immersed in PBS for seconds followed by 3X during 2 

minutes in Glycine 0.1M pH 7.2. Next, for sections permeabilization, saturation using 

PBS-0.2% BSA-0.02 %-Triton at room temperature for 1 hour was done. 

Concerning primary antibody incubation, a monoclonal mouse anti-GFAP (dilution1:100) 

or a polyclonal rabbit anti-IBA1 (dilution 1:100) antibodies were used in combination with 

HA binding protein b-TGS6 (1:500). 

Mixes of GFAP/HA and IBA1/HA were applied to the sections and slides were kept in a 

humidified chamber at 4ºC, overnight. Next day, the washing step in PBS-0.2%BSA-

0.02%Triton was done and the incubation with the conjugated secondary antibody, goat α-

mouse-Alexa 594 (dilution 1:100) or α-rabbit-Alexa 594 (dilution 1:100) or streptavidine-

FITC, for 1 h at 4°C was performed. Another washing step PBS-0.2%BSA-0.02%-Triton 

were executed followed by counterstaining of all nuclei with Hoechst (dilution 1:100) in 

PBS-0.2%BSA-0.02%-Triton, during 15 minutes. All sections were coverslipped with 

mowiol mounting medium. Slides were imaged using a microscope Olympus BX-60®. 
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RESULTS 

 

Setup of spinal cord compression model 

 

Results showed that important visual lesions were done with injury percentages of 68% 

and 67% (Figure 11-C, D) in animals submitted to the longest compression time, 30 and 

60 seconds. The differences between these two groups were reduced as the differences 

found between the other groups of 5 and 15 seconds of compression, which registered 

lower percentages of damaged tissue of 45% and 37%, respectively (Figure 11-A, B). 

The lesions resulted from major compressing times achieved bigger lesion volumes, with 

an average volume of 3.03 mm3 and 1.85 mm3 for 30 seconds and 60 seconds of 

compression, respectively. The smaller lesion volumes of 1.27 and 1.23 mm3 were 

reached by lower compression times of 5 and 15 seconds (Figure 12). 

 

 

Figure 11: Lesion area measurements in Eriochrome C/Cresyl violet stained serial sections (30 µm 
thickness) from 2 mm rostral to 2 mm caudal from the injury site, spanning the entire injury site 
from animals subjected to four different compression times: 5 (A), 15 (B), 30 (C) and 60 seconds 
(D) at T9 vertebrae location. Y axis represent the percentage of damaged tissue measured by 
ImageJ software. The spinal cords were collected 2 weeks after injury and each graph represents 2 
animals. Graph plot mean and error SD. 

A B 

C D 
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The lesion size results were expected, lesions were more extended with higher times of 

compression, registering values of 2.8 mm and 3.0 mm of extension of damage along the 

spinal cord while 5 and 15 seconds achieved little extensions of 1.7 mm and 2.0 mm, 

respectively (Figure 13). 

For all next experiments, we chose 30 seconds of spinal cord compression as the suited 

compression time was chosen because this duration was sufficient to cause moderate 

damage, with the suited match for the results of damaged area, volume and extend of 

injury, resulting in the expected phenotype of bilateral paraplegia. 

 

 

Figure 12: Lesion volumes (mm3) generated by different times of compression. Quantitative lesion 
analyses show differences for the lesion volume created in 4 different groups. Graph plot mean and 
error SD, n= 2 animals per group. 

 

 

Figure 13: Rostro-caudal extension of the lesion along the spinal cord, in micrometers (µm), 
caused by the different compression times tested in this study. Results show differences among 
the groups with lower and higher compression times. Graph plot mean and error SD, n= 2 animals 
per group. 
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Epicenter as the more injured area 

 

Observing the stained Eriochrome C/Cresyl Violet sections, we saw samples from 

laminectomy (control group) presenting a normal tissue architecture with clear delimitation 

between gray and white matter (Figure14-A).  

In SCI group, there was histological alterations, like the disruption of tissue architecture at 

the site of damage and around them and the boundary between the white and grey matter 

was not evident (Figure 15-A). 

Beyond that, the cell population present in laminectomy group was unchanged, with 

normal cellularity in both grey and white matter (Figure 14-B). 

At two weeks after injury, high cell density (Figure 15-B) and cavitations were evident in 

injured spinal cords. These alterations were present in both white and grey mater areas, 

mainly in the grey matter of the ventral part of the spinal cord.  

The epicenter was the region where the greatest damage has been observed showing 

structural disorganization with an extent of tissue damaged that tapered with increasing 

distance rostral and caudal to the lesion epicenter. 

 

 

Figure 14: Cross-sections stained with Eriochrome C/Cresyl violet with white matter in blue and in 
violet all the nuclei and Nissl's bloc present in both grey and white matter. A- Control group, 
Laminectomy showed normal cytoarchitecture with clear delimitation between WM and GM (white 
dotted lines). B- Magnification 40 times of GM region showed in A, showing normal cellularity and 
an intact central canal surrounded by ependymal cells, in the center. Scale bars represent 100 µm 
(A) and 20 µm (B). 
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Figure 15: Sections of the lesion epicenter in animals subjected to compression of the spinal cord, 
showing the disorganisation post-SCI between WM and GM regions. A - Presence of degraded 
tissue more evident in white matter but also present in grey matter represented by arrow heads, in 
black and white, respectively. Dotted black square denotes the gliosis region magnified in B. 
B - High glial cell density in grey matter corresponding to the process of astrogliosis and formation 
of the glial scar represented between dotted lines. Scale bars represent 200 µm and 20 µm. 

 

Progression of grey and white matter damage 

 

After trauma, grey and white matter injuries advance differently along the spinal cord. 

Observing GM we see visibly uninjured GM tissue from 0.5 mm, to both sides of the 

centre of the lesion, in animals subjected to 30 seconds of compression.  

In WM the important part of the injury was situated along 1 mm from lesion epicenter, to 

both sides of the spinal cord (Figure 16-D). However, beyond 1 mm of lesion extension, 

we still verified some sporadic morphological abnormalities (Figure 16-B). 

Results show that injury caused to GM is localized around epicenter, along short 

distances (Figure 16-C), evidencing complete tissue disorganisation, cellular proliferation 

and cavitations (Figure 16-A).  

Injuries to white matter tissue were generally characterized by the appearance of multiple 

cavities in the tissue, both epicentre sides, resulting from macrophages action in cleaning 

the damaged tissue and cellular debris. 
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Figure 16: Quantitative and histological findings show the lesion extention in GM and WM A- At 
300µm in caudal (C) direction, both grey (black arrow head) and white matter (white arrow heads) 
were damaged. More important damages were located near the epicenter. B- WM damage extends 
for longer distances, and at 780µm more caudal (C+1), grey matter is unaffected, contrary to white 
matter that keeps the vacuolisation despite it being less significant. Graphs show results of 
damaged tissue measurement from Eriochrome C/Cresyl violet stained sections along 4 mm fom 
lesion epicenter to both sides. The amount of injured WM was observed from a bigger extension 
(D) than GM injured tissue (C). Scale bars represent 200 µm. Graphs plot mean and error SD, n=3 

 

Motor neuron counts 

 

Eriochrome C/Cresyl violet stained sections were analysed for total counts of large ventral 

horn motor neurons at 2 weeks post-injury. Mice receiving thoracic compression showed 

loss of ventral horn motor neurons at multiple distances around the lesion epicenter.  

Knowing that uninjured mice has got between 20-30 motor neurons, our results showed a 

decrease in the number of motor neurons in ventral horn, reaching the lowest value at the 

epicenter, with no motor neuron counted. More important loss happened during more than 

1 mm for each side of the site of injury (Figure 17). 

 

A B 
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Figure 17: Quantification of total thoracic motor neuron loss. Motor neurons were identified on 
Eriochrome C/Cresyl violet sections and were manually counted in both ventral horns following T9 
injury. There is an important loss of motor neurons along more than 1 mm from lesion epicenter. 
Graph plot mean and error SEM, n=3. 

 

Behavioural assessment in injured mice 

 

Animals were scored in the different tests before the surgery and the BMS score of 9 was 

registered for all animals of the two groups involved in this study.  

After the operation all animals were graded over again and the laminectomy group 

showed no obvious deficits after recovery from anaesthesia, exhibiting normal locomotion. 

However in the group submitted to compression of the spinal cord, mice showed loss of 

motor function with decreased physical ability in the hind limb movement. They had flaccid 

paralysis and maintained this pattern at 3 days post-surgery (BMS=0). But mice did not 

respond by the same manner to injury and there were animals with this phenotype until 9-

10 days post-injury. 

During the first week post-injury, half part of the animals recovered the extensive ankle 

movement (with a group average BMS=2) and afterwards showed improvement until 

stepping. During the first two weeks, the group demonstrated frequent dorsal stepping 

(BMS score=3) or occasional plantar stepping (BMS=4) but without coordination, contrary 

to  some animals in the same group that at this time course reached stepping with hind 

limb-forelimb coordination (BMS=5-6).  

Despite the rapid and progressive recovery, animals never recovered totally their motor 

function after 6 weeks. At this time, most of them improved to the late phase of recovering 

(BMS score 5-8) but only one mouse achieved the maximal score of 9 that corresponds to 

normal locomotor mobility, with trunk stability and refined performance. Similar to Basso et 

al., 2006 along the observations distinct behaviours that indicate trunk instability, such 
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extensor spasm with the full extension of knee and ankle joints, flexor spasm, in which the 

hindlimb is sustained in a flexed position and does not step, or lateral displacement of the 

trunk were found. 

 

Figure 18: Line graph representing Basso Mouse Scale score (BMS score) of SCI group. Results 
measured daily represent an average of the animal group (n=16). Before injury to spinal cord (x=-
1), all animals had the higher BMS score of 9, but after the SCI, the score dropped to 0, which 
maintains until day 3 for all animals. During the recovery time they were not able to obtain the 
same performance before surgery. Error bars represent SD. 

 

Grip strength and hanging wire tests showed that injury to the spinal cord is associated 

with reduction in muscles strength. In grip strength, results show that mice improved the 

strength exert on the grid to the maximum average group of 49.5 g but they didn't recover 

the initial performance of the group achieved before the surgery, 75.3g, even 6 weeks 

post-injury. Grip strength test results represent the specific force of mice hindlimbs 

exerted on the grid (Figure 19). 

In hanging wire test the decrease of ability to execute the test was not so felt due to the 

fact that in this test animals may also use the forelegs to remain attached to the grid when 

the cylinder was returned (Figure 20-A). However we can see that also in hanging wire 

test, their physical abilities were reduced, with the decreased muscle strength confirmed 

by grip strength results. 

In Rotarod test, mice registered the worst performances post-injury of all behavioural 

testes, giving us important informations about loss of motor coordination and cerebellar 

dysfunction probably resulting from the spinocerebellar tracts disruption. 
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Figure 19: Time course of grip strength test showing an alteration in hindlimbs animal strength 
after traumatic spinal cord injury. Each point represent the group average. Error bars represent SD, 
n=13. 

 

 

Figure 20: Time course of hanging wire (A) and rotarod (B) tests performance after SCI of mice. 
Each point represent the group average (n=13 and n=16, respectively), error bars represent SD. 

 

Hyaluronic Acid localization in spinal cord 

 

Observing the images for HA staining, we see presence of HA in the spinal cord sections 

of control animals (laminectomy group), mostly in grey matter area, forming the 

condensed perineuronal nets around neuron cell bodies (Figure 22-A), and radial 

striations of HA (Figure 22-B) are present also in white matter, along neuritis (dendrites 

and axons).   

But at two weeks post injury, injured animals (compression group) show empty areas in 

lesion epicenter, suggesting the absence of HA at this location, mainly in the center of the 

spinal cord sections (grey matter). 

 

B 
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Figure 21: HA staining with streptavidine-peroxydase and revelation with DAB, in laminectomy 
epicenter (A), laminectomy caudal (B) compression epicenter (C) and compression caudal (D). In 
both groups, the epicenter T9 sections seems to be more intense stained than sections localized 
caudally to the lesion. Although, after injury, HA localization was disturbed at the epicenter, 
revealing areas completely devoided of HA, delineated with strong HA immunoreactivity at the 
boundaries, between intact and injured tissue. Scale bars represent 200 µm. 

 

It seems that epicenter region, in both, laminectomy and compression groups have high 

density of HA binding sites for bTGS-6 than regions situated more caudal or rostral from 

epicenter. 
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Figure 22: HA is present in a condensed way around neuron cell bodies (PNN) (A) and along 
proximal dendrites (B). Scale bars represent 10 and 20µm. 

 

To execute and obtain these results human skin (A) as positive control was used and as 

negative controls mouse skin (not shown), human skin (B) and spinal cord incubated with 

PBS-0.2% BSA- 0.02% rather than the primary antibody b-TGS6 (C) were used. 

 

 

Figure 23: Images represent positive control, human skin included in paraffin (A) and negative 
controls, human skin (B) and spinal cord section (C) used in the HA staining experiment. Scale 
bars represent 100 µm. 

 

Double-labelling Immunofluorescence 

 

To determine which cellular population is responsible for HA production, or at least co-

localize with HA-expressing spinal regions, we determined whether HA/GFAP or HA/IBA 1 

were co-expressed in laminectomy and compressed spinal cord using a double 

immunofluorescence experiment. 

Completely different results were obtained to controls and injured mice, at two weeks 

post-injury. 

In control animals, in green, the presence of HA in grey and white matter was seen. In 

A B 

A B C 
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GM, HA immunofluorescence was more condensed, like in HA staining experiments, 

being visible the perineuronal nets (PNNs) around neurons cell bodies, once again (Figure 

24-A). These animals didn't show signs of co-localization for HA/GFAP+ and HA/IBA 1+ 

cells in both white and grey matter areas (Figure 24-C, D).  

In fact, quiescent astrocytes are GFAP- and no microglia could be observed in uninjured 

animals. 

 

 

Figure 24: Distribution of HA is altered after mouse spinal cord compression injury. 
Photomicrographs of cross sections of spinal cord after laminectomy (A) and compression (B) to 
the T9 vertebrae labelled for HA. Sections (6 µm) were labelled with biotinylated HABP (b-TGS6 
and detected with a fusion molecule streptavidin-FITC (green) combined with antibodies against 
GFAP (to label astrocytes) or IBA 1 (for microglia cells). B- HA expression is decreased 
dramatically in lesion epicenter, at 15 days after mouse spinal cord compression injury. C,D- In 
uninjured spinal cord  (laminectomy)  expression of IBA 1 (red staining-C)  and GFAP (red staining-
D) is very low. Cells were counterstained with Hoechst (blue staining) to detect nuclei. Asterix in B 
depicts the lesion core. Scale bar = 100 µm. 

 

In injured animals, two weeks post SCI, we saw the up regulation of GFAP and IBA 1 co-

localized with HA. Co-localization of HA/GFAP+ was seen in white and grey matters, being 

more relevant in grey matter (Figure 25-D) of the sections adjacent to the lesion core.  

Co-localization of HA/IBA1+, were less evident and also mostly present in grey matter 

A B 

C D 
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tissue (Figure 25-A).  

Contrary to the control group, after two weeks of trauma, we confirm the absence of HA in 

the lesion center, as we observed with HA staining, being only located in a more 

concentrated manner at the boundaries between intact and injured tissue (Figure 24-B). 

High cell density stained in blue by Hoechst and any green fluorescence were recorded at 

the centre of the lesion (Figure 24-B). However, around the empty epicenter we also had 

the opportunity to see the appearance of some positive GFAP cells in the beginning of the 

process of the glial scar formation (Figure 25-C). 

 

 

Figure 25: immunofluorescence double-labelling for HA/IBA1
+ 

(A) and HA/GFAP
+
 (C). Results of 

HA/IBA1
+
 reveal up-regulation of IBA1 after spinal cord compression injury. A- Photomicrograph of 

ventral horn of injured spinal cord sections showing high presence of IBA 1 positive cells in grey 
matter. B- Magnification 40X of the up regulated microglia cells. HA/GFAP expression is also up 
regulated after spinal cord mouse compression, high expression of GFAP in ventral horn of an 
injured spinal cord  is visible in red (C). Lesion epicenter is surrounded by GFAP positive cells 
represented in higher magnification in D. Scale bars = 50 µm (A, C) 20 µm (B) and 100 µm (D). 
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Figure 26: Controls used in double-immunofluorescent technique. A- Mouse skin as positive 
control, 10X magnification. B- Mouse skin as negative control, 4X magnification. Scale bars 
represent 100 and 200 µm. 

 

Differential expression of HA metabolizing enzymes 

 

Fold change in mRNA expression between the control animals (laminectomy) and animals 

subject to spinal cord compression was calculated using the qPCR equation: 

Fold change = 2-∆∆Ct 

T student test didn't showed significant effect of compression injury to the spinal cord on 

mRNA expression of synthases (HAS1, 2 and 3) and hyaluronidases (HYAL1 and 

HYAL2), two weeks after injury. Mann-Whitney test (two tailed) showed that compared to 

control animals (laminectomy), HAS1, HAS2 and HAS3 mRNA expression did not change 

in injured animals, 2 weeks after SCI, (p=0.057, p=0.2 and p=0.742), although there is a 

trend for decreased of HAS1 expression.  

In this first expression analysis only the epicenter segment was included for both groups 

(Figure 27-A, B). 

 

Figure 27: Quantitative real-time PCR determination of HAS 1 (A), HAS 2 (B) mRNA expression in 
the epicenter of laminectomy and mice submitted to spinal cord compression, at 2 weeks post-
injury (n=4 and n=3) p=0.057, p=0.7429. 
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About HAS3 expression we see the increased expression in all tested regions of the 

injured spinal cord, with the epicenter achieving 3.7 fold more HAS3 expression than 

laminectomy epicenter. 

 

 

Figure 28: In injury, there are an increase in HAS3 mRNA expression compared with laminectomy 
group. A- In compressed spinal cord, mRNA of HAS3 is expressed more than two fold when 
compared with laminectomy group. B- mRNA HAS3 expression is up regulated in all regions, post 
injury, being the higher expression at the epicenter region. 

 

Differences between injured and uninjured animals was more relevant for hyaluronidases 

(HYAL 1,2). In a general way, both hyaluronidases show higher expression before injury, 

but HYAL1 seems to increase his expression along the spinal cord while HYAL2 is higher 

beyond the epicenter, in regions more caudally (Figure 29). 

No significant effect of compression in injured animals for HYAL 1,2 mRNA expression 

level was found (p=0.4 and p=0.7, respectively). 
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Figure 29: Quantitative real-time PCR determination for HYAL1 (A), HYAL2 (C) mRNA expression. 
B, D- is shown the relative Hyal1 and Hyal2 mRNA expression specifically in segments of the 
epicentre (E), caudally (C) and more caudally (C+1) of mice spinal cord compression (Comp.) and 
laminectomy (Lam.) at 2 weeks post-injury. Results are presented as the fold change relative to the 
control group (=1). (n=5 and n=4). 

 

For the quantification of fold changes, we used always the arithmetic average of the two 

housekeepings genes, b-actin and HPRT, but first we saw the correlation between these 

two genes to know if we had a pattern of expression. 

Results show a strong correlation between both housekeeping genes (HPRT and b-actin). 

So was decided to use the arithmetic average of these genes for the q-PCR 

normalization, because sometimes it requires the use of multiple reference genes to 

ensure accurate results, however, these genes has been appointed as the housekeeping 

genes commonly used that despite being expressed in all tissues, their expression level is 

not constant across tissues, varying considerably under different experimental conditions 

and therefore their use for normalization is limited (De Jonge et al., 2007). 
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Figure 30: Correlation (Pearson) between the housekeeping genes used in qPCR normalization: 
b-actin and HPRT for several independent samples. Results are expressed as Ct, as the cycle 
number at which the fluorescence generated by the housekeeping genes in the reaction crosses 
the fluorescence threshold, the fluorescent signal significantly above the background fluorescence. 
The threshold cycle is inversely proportional to the original relative expression level of the gene of 
interest. In the graph we see that the housekeeping genes are expressed at a similar level. Results 
showed a positive correlation with a correlation coefficient of r=0,821 

 

Hyaluronan concentration (ELISA) 

 

Estimation of the HA concentration depends upon the construction of a standard curve.  

The standard curve (Figure 31) was traced after collecting the absorbance results 

achieved for each standard. The concentration of the unknown samples was determined 

by interpolation which relies in the equation generated: y=10.031x2+0.5795x+0.2742. 

 

 

Figure 31: Standard curve of HA absorbance, constructed from the absorbance reading from 
standards of 30, 10, 3.3, 1.1 and 0.37 ng/mL concentration used in the experiment. Absorbance 
values were obtained for 3-fold serial dilutions in reagent diluent (5% Tween 20 in PBS, pH 7.2-7.4, 
0.2 um filtered). The equation generated was y=10.031x2+0.5795x+0.2742. 
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Comparing the two groups of mice (uninjured versus injured), HA concentration in the 

spinal cord didn't change dramatically with injury or laminectomy. The epicenter region 

has the higher hyaluronan concentration in both groups, compression group had the same 

level in laminectomy group, with 2767.7 and 2732.8 ng/mL of HA, respectively. 

However caudally to lesion epicenter the HA concentration was lower, and difference 

between two groups of mice were more pronounced, laminectomy group obtained 1324.3 

ng/mL of HA and a decreased quantity in compressed spinal cord, registering 1034.8 

ng/mL. 

 

Figure 32: Analysis of HA concentration (ng/mL) in two different locations of the spinal cord, 
epicenter (E) and more caudal (C+1), of control animals (Laminectomy) and SCI animals 
(compression) by ELISA assay. Error bars represent SD, n=5 and n=4. 
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Discussion of results 

 

Reversing paralysis that occur following SCI, is one of the big challenges in neuroscience 

research. Despite the significant improvements in understanding the SCI pathophysiology 

and in rehabilitation management, there are no treatment to improve neurological 

outcomes after SCI. 

Several experimental models have been developed to simulate spinal cord injury and 

reproduce it in homogeneous form, in order to analyse the locomotor function response 

(Marques et al., 2009 and Kundi et al., 2013). 

Our spinal cord injury model reproduced histological and functional changes very similar 

to human SCI.  

In our model the primary injury is caused by the forceps impacting on spinal cord tissue, 

disrupting the structure and causing haemorrhage, often visible bruising of the spinal cord,  

followed by compression causing temporary tissue displacement and ischemia.  

For this experiment we choose 30 seconds of compression as the suited time to obtain 

bilateral hind limb paralysis with flaccid limbs and no response to removal the paws when 

pinching. Bladder function was also compromised. Such aspects are related to the type of 

injury-induced characteristic in the model produced in this study. 

Through the performed behavioural tests we could assess and evaluate the changes in 

motor function, such as locomotion, balance/coordination of forelimbs-hindlimbs and 

muscle strength, caused by injury. 

The animals had their best personal score in all behavioural tests before surgery, then this 

score falls to 0 at the time of injury with progressive recovery along the 6 weeks follow-up 

but without reaching pre-injury score. Immediately after injury we observed decrease 

motor ability performing the same tests, however over time, spontaneous mechanism of 

recovery present in mice gradually improved the reminiscent motor function in locomotion 

and muscle strength along 6 weeks, despite the period of time not being enough to obtain 

complete recovery with same scores measured before. 

Our behavioural results at two weeks are related with the neuronal damage observed in 

histological sections at this time course, because we had an important disruption of the 

gray matter with increased proliferation of glial cells, astrogliosis, mainly in lesion 

epicenter and in white matter, we had tissue vacuolization that extends rostrally and 

caudally from the lesion epicenter. Loss of motor neurons also correlates with decrease 

ability to mice hind limb locomotion. 

The establishment of the injury model allowed us to verify HA presence in normal and 
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damaged spinal cord through HA staining.  HA was present, although in a different way, in 

laminectomy group and in injured group. In normal spinal cord, hyaluronan was distributed 

homogenously in the grey mater, more concentrated at the PNNs and along the radial 

tracts in the white matter. 

After SCI, the HA deposits were absent in lesion core and present at the boundaries 

suggesting the downregulation of HA matrix from the impact site, and an upregulation 

around the lesion core most likely synthesized by reactive astrocytes   

The absence of HA in the lesion core were saw also in double immunohistochemistry, with 

the presence of infiltrating cells at the impact site and higher number of GFAP+ cells that 

begin to appear around the empty central lesion. 

With the aim to know more about HA synthesis and degradation, we analysed the 

expression level of HA metabolizing enzymes.  

The balance between HA accumulation and degradation lead us to a better understanding 

of HA metabolism that is crucial in influencing cell behaviours, such as proliferation of 

astrocytes (Struve et al., 2005) or differentiation of NSPC cells (Sherman et al., 2015) 

Results of gene expression for HA-related enzymes were not significant in any of the 

cases, highlighting only the trend of HAS1 to decrease after insult to the spinal cord in a 

way almost significance, but results must be confirmed using a higher number of animals.   

However there are a differential expression pattern for the HA metabolizing enzymes after 

SCI that seems to be altered in respond to damage and can work as a regulation 

mechanism of healing.  

 We were interested in checking the amount of HA present after damage, relating to the 

amount of HA in the control group. However, at two weeks after injury, similar HA 

concentration were measured in the epicenter of both groups and a slight decrease in HA 

concentration, caudally to the lesion core of damaged animals. Generally, after insult to 

the spinal cord HA concentration in epicenter doesn't change and more caudally the 

change was not dramatic. 

But result becomes understandable when we know that from a published rat spinal cord 

injury, dramatic HA degradation occurred at the site of injury and in adjacent tissues, as 

early as 3 days post injury, but in following days HA amount is subsequently elevated 

being accumulated between 5 days and one month after injury (Struve et al., 2005). In 

fact, accumulation of hyaluronan is a hallmark in damaged CNS from ischemic injuries, 

seizures, traumatic brain injury, demyelinating diseases and normal aging, persisting for 

long periods of time after the initial insult (Sherman et al., 2015). 

Given that we were not able to evidence any significant changes in HA amount and in 
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gene expression for HA-related enzymes between uninjured and injured animals, we 

performed immunohistochemistry against HA and double immunofluorescence to visualize 

HA location in the spinal cord and its potential re-localization after SCI. Results confirmed 

the presence of HA likely by astrocytes, visualized by co-localization of GFAP+ cells and 

biotinylated-HABP, mostly in grey matter. 

Post-injury, microglia and macrophages are also present in lesion, to a lesser extent than 

GFAP+ astrocytes but once again mostly in grey matter, proven by presence of IBA 1+ 

cells. We suspect about HA production from microglia although the co-localization of 

IBA1+ cells and biotinylated HA not being so obvious. 

Macrophages and microglia, in grey matter of damaged animals exhibited an activated 

phenotype with cellular hypertrophy and retraction of cytoplasmic processes. 

Our study provides preliminary molecular evidence of altered gene expression for HA-

metabolizing enzymes in mouse spinal cord compression model.  

Further study of HA metabolism, and understanding how expression changes along the 

time course could help us to better understand the role of HA in the healing process after 

SCI. 
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Limitations of the study 

 

Deciding how large an experiment needs to be is a critical point of interest because the 

importance of the ethical implications that press and restrict increasingly the animal use in 

research.  

The experiment can't be too small risking to lose biologically important effects, but also 

cannot be too large to protect animals from the unnecessary or inappropriate use. 

In our study, concerning morphological analysis the population is too small to analyse 

statistically, being a limitation of our study. 

Relating to mRNA expression level for HAS 1-3 and Hyal 1-2 HA metabolizing enzymes, 

we didn't validate our results, protein level were not determined due to the lack of suitable 

specific antibodies for HA needed to performed western blot analysis. 

Further study is necessary to determine whether HA metabolism (synthesis and 

degradation) is associated with recovery of mice from SCI. 

It would be interesting to characterize the molecular weight of HA synthesized post-injury, 

through the size-exclusion chromatography. This is a point of importance due to the 

different biological activities of different HA lengths described in the literature.  

Mice models give us the advantage to produce mice with specific deletion of targeted 

genes (knockouts), so it would be interesting to check the HA concentration at the lesion 

epicenter and consequent behavioural results for hyal1 knockout mice.   

Through the cell cultures with astrocytes, microglial cells and neurons will be interesting to 

confirm which cells produce HA after injury of the spinal cord and if the HA presence 

confer benefits on re-permeabilization of the glial scar, it would be interesting to promote 

HA secretion from the appropriate cell group modulating the synthesis rate or degradation 

rate of HA. 
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Limitations in reaching more results 

 

Animal models are irreplaceable to understand the pathophysiological knowledge on cell 

injury, the evolution of damage and repair process of spinal cord needed for the 

development and evaluation of therapies for SCI. 

But investigations with animal models require beyond the knowledge of the ethical 

standards and animal care, requires time. Time to reproduce the experimental SCI that 

require training, it is necessary time to breed and to care animals, inspect regularly wound 

healing, weight loss, dehydration, infection and any discomfort. 

In the first experiments,  we had some infected mice,  sometimes at the middle of the 

recovery time, resulted  from the surgery or from damage caused by battles between them 

resulting sometimes in necessary euthanizes.  

 It was necessary the antibiotic change for another one with larger spectrum.  

During the experience it was also necessary made some protocol adjustments like the 

replacement of the OCT to paraffin for sample inclusion due to poor adhesion of sections 

of cryopreserved samples to slides. Bringing difficulties both during the handling of the 

sections in Eriochrome C/Cresyl violet staining, and then in the performance of the 

antibodies in immunofluorescence technique caused by the thickness of the OCT sections 

(30 µm). After change the inclusion medium and consequent slice thickness (6 µm), 

various protocols had to be adjusted, time consuming. 
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Conclusion 

 

In our study at 2 weeks post trauma of the spinal cord, we observed a re-localization of 

HA expression in injured spinal cord. Despite HA degradation at the injury epicenter, 

where the bigger astrogliosis is present, any differences in overall HA amount were 

measured, suggesting that some regions within the cord down regulated HA expression 

while others up regulated HA synthesis. Corollary, we were not able to measure any 

statistical difference in the mRNA expression of HA metabolizing enzymes between 

uninjured and injured animals. In uninjured spinal tissue, we did not see any GFAP+ cells 

nor IBA1+ cells, what was expected given that these cells are quiescent in physiological 

conditions. However HA was detected by immunohistochemistry and 

immunofluorescence, suggesting that HA is present in the normal spinal cord and its turn-

over very low. Using double immunohistochemistry, we observed a co-localization 

between HA and GFAP+ or IBA1+ cells in injured spinal cord, especially where HA is up 

regulated at the boundaries of the lesion core. Supplemental in vitro experiments should 

be carried out to confirm HA release by astrocytes or microglial cells after activation. If HA 

has the role to regulate astrocyte proliferation, we could, through the HA metabolizing 

enzymes regulation, activate and deactivate astrocytes proliferation, in the right time, and 

so promote or inhibiting HA synthesis, regulating the HA size and amount in lesion 

epicenter needed to promote axonal regeneration. 

Finally the hypothesis formulated is that the HA accumulation in injury is located around 

lesion, as a shell, preventing the access of neural stem cells and consequent 

differentiation, to the injury site. Intriguingly, at two weeks after injury, we did not see any 

HA in the lesion core (only around). This finding deserves further investigations to help 

deciphering if this lack of HA does not contribute to the poor ability of the lesion core to re-

permeate. 
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