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resumo 

 

 

Os tecidos humanos exibem diferentes padrões de expressão 

de tRNAs que se correlacionam com o codon usage de genes 

altamente expressos. Isto pode representar um controlo ao nível 

da tradução tendo em conta que os tRNAs são intervenientes 

importantes durante a síntese proteica. Nas células cancerígenas 

é observada a desregulação de componentes do processo de 

tradução, sendo que elevados níveis de tRNAs específicos estão 

correlacionados com a expressão preferencial de genes 

relacionados com o cancro. Assim, a desregulação da pool de 

tRNAs pode aumentar a eficiência de tradução desses genes, 

promovendo a transformação maligna. 

O processo tumorigénico é acompanhado por aumento do 

conteúdo proteico celular. A evasão à apoptose, a instabilidade do 

genoma e as mutações frequentes são também observadas em 

células cancerígenas. Isto pode promover a acumulação de 

proteínas mutantes que desencadeia o stress proteotóxico e a 

produção elevada de HSPs, de forma a contrariar a instabilidade 

proteica. Para além disso, elevados níveis de proteínas 

incorretamente enoveladas, derivadas da elevada taxa de síntese 

proteica, induzem outras vias de controlo de qualidade proteica 

que auxiliam a ação dos chaperones: a resposta das proteínas não 

enoveladas e o sistema de degradação associado ao retículo 

endoplasmático. 

Este estudo teve como objetivo avaliar a influência da 

desregulação da pool de tRNAs na aquisição do fenótipo maligno 

e a contribuição das vias de controlo de qualidade proteica na 

transformação celular. Globalmente, os resultados mostraram que 

a desregulação da pool de tRNAs induzida pela sobre expressão 

do tRNASer leva à aquisição de um fenótipo intermédio entre as 

células normais e as células cancerígenas. Assim, concluímos que 

esta desregulação pode representar um promotor da aquisição da 

malignidade celular. 
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abstract 

 

Human tissues display different tRNA expression patterns 

correlated with the codon usage of highly-expressed genes, which 

may represent a form of translational control since tRNAs are 

critical players during protein synthesis. In cancer cells, 

misregulation of the components of translational machinery is 

observed, namely elevated levels of tRNAs in a specific fashion, 

correlated with a preferential expression of cancer-related genes. 

Therefore, tRNA pool deregulation may enhance the translational 

efficiency of these genes, promoting the malignant transformation. 

The tumorigenic process is accompanied by increased cellular 

protein load. Evasion of apoptosis, genome instability and frequent 

mutations are also observed in cancer cells. This may promote 

accumulation of mutated proteins that leads to proteotoxic stress 

and high production of HSPs, in order to counteract protein 

instability. Furthermore, high levels of misfolded proteins derived 

from the high rate of protein synthesis induce other protein quality 

control pathways to support the action of chaperones: the unfolded 

protein response and the endoplasmic reticulum-associated 

degradation system.  

This study aimed to evaluate the influence of tRNA pool 

deregulation in the acquisition of a malignant phenotype and the 

contribution of protein quality control pathways in cell 

transformation. In general, the results showed that the deregulation 

of the tRNA pool prompted by tRNASer overexpression leads to the 

acquisition of an intermediary phenotype between normal cells and 

cancer cells. Therefore, we concluded that this deregulation may 

be a driven force for cellular malignancy.  
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V. Introduction 

1.1.The Genetic Code 

The central dogma of molecular biology states that the genetic information is coded in 

DNA molecules confined to the nucleus, which are transcribed in messenger RNA (mRNA) 

molecules that, in turn, will originate proteins in a process called translation. Translation is 

the last step of gene expression and it occurs according with the rules established by the 

genetic code, proposed by F. Crick in 1968.1,2  

The mRNA is composed by codons that are non-overlapping nucleotide triplets, among 

adenosine (A), guanosine (G), cytosine (C) and uridine (U). Despite the 64 possible 

combinations between the ribonucleotides only 20 amino acids are coded, demonstrating the 

degenerative character of the genetic code (Figure 1).
3 The number of possible codons for each 

amino acid is variable, known as synonymous codons, but only one exists to start the 

translation of all proteins, the start codon methionine (AUG) and 3 stop codons (UAA, UAG, 

UGA) in eukaryotes to ensure the translation termination.3–5 However, the universal genetic 

code is flexible since deviations to the canonical genetic code are described both in 

eukaryotes and prokaryotes, suggesting that it is still evolving.6  

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 1. The genetic code. Clancy, S. and Brown, W. 2008 
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Amino acids are transported by transfer RNAs (tRNAs) that recognize the corresponding 

codon through interactions with its anticodon. The interaction between the first and second 

position of mRNA with tRNA is based on the canonical Watson-Crick pairing rules, by 

which an A or a G (purines) pairs an U or a C (pyrimidines), respectively. Furthermore, in 

1996, F. Crick proposed that the third position, also known as the wobble position, could 

pair with the perfectly matched tRNA anticodon or adopt a non-canonical interaction to 

allow the same tRNA to recognize more than one codon, giving rise to the “Wobble 

Hypothesis”.7,8 

 

1.2.Codon Usage 

The genetic code degeneracy allows a choice between different codons for the same 

amino acid in the transcriptome, which will affect the efficiency and accuracy of translation. 

This is known as codon usage. The codon usage has a close relation with the cellular 

availability in tRNAs (tRNA pool), that is regulated at several levels such as transcription, 

posttranscriptional processing, amino acid loading and degradation. The balance between 

these two factors affects protein production levels and the cellular fitness in a global view.9–

11 Non-optimal codon usage derived from poor correlation between codon usage and the 

tRNA pool may result in incorrect allocation of resources, namely the increase of ribosomes 

sequestration due to translation speed decrease, reducing the global cellular fitness.12–14  

Highly expressed genes are often codon optimized to match the tRNA pool so they can 

be translated more efficiently. These genes are under a higher pressure for translational 

efficiency and accuracy, in particular the speed by which they are recognized by the 

ribosome and the corresponding tRNA selection. Thus, codon usage has a crucial role in 

modelling gene expression and can increase the expression of a gene more than 1000-fold. 

Moreover, alternative nucleotide sequences arising from synonymous codons may have a 

direct influence in protein folding and stability of secondary structures.9–12,15 

The transcriptome’s codon usage and the cellular tRNA pool are dynamic and adapted 

to biological conditions and tissue requirements, allowing different translation patterns 

accordingly with the cellular microenvironment.12,15 Recently, Gingold et al. suggested that 

cells’ content in tRNAs and the respective codons in the transcriptome have approximately 
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the same gene copy numbers and that changes in tRNA’s basal levels are required to restore 

the balance between codon usage and tRNA pool when the first is altered.15 

 

1.3.Eukaryotic Translation 

Translation is the process whereby information encoded in mRNAs is converted in 

polypeptide chains. This process is carried out in the core of ribosomes, where the interaction 

between mRNA codons and acylated-tRNA anticodons is allowed.16 Ribosomes are 

ribonucleoproteins, complexes with several proteins and ribosomal RNAs (rRNAs), 

comprising a large and a small subunit, known as the 60S and 40S in respect with its 

sedimentation rate. In their inactive state, ribosomal subunits are apart and they only form 

complexes in the presence of mRNA transcripts that need to be translated, acquiring distinct 

functions. The small subunit offers the suitable environment for interaction between tRNAs 

and mRNA codons, while in the large subunit occurs the formation of peptide bonds between 

the recently added amino acids.16  

The ribosome moves along the mRNA transcript by reading the nucleotide triplets from 

its 5’ end to 3’ end, giving rise to the polypeptide chain from the N-terminal to the C-

terminal. The ribosome has one binding site for mRNA chains and three binding sites for 

tRNAs, which are the A-site, the P-site and the E-site, allowing amino acid adding in three 

major steps: tRNA binding, peptide bond formation and large and small subunits 

translocation, in a processes fully described below.16,17 

 

a. Initiation 

The initiation of translation requires several eukaryotic initiation factors (eIFs) and their 

isoforms. Generally in eukaryotes and for most cellular mRNAs, initiation occurs in a CAP-

dependent manner, with the start codon AUG being recognized through scanning of the 

mRNA transcript.18,19 The ternary complex is the major player in the scanning process and 

is fundamental in CAP-dependent translation, comprising the eIF2-GTP (guanosine-5'-

triphosphate) and the initiator tRNAi
Met.20–23 The α-subunit of eIF2 (eIF2α) is crucial for 

translation regulation during initiation. Its phosphorylation at Ser51 prevents GDP 

(guanosine-5’-diphosphate) recycling triggered by eIF2B, hindering the interaction of eIF2 

with the additional ternary complex components and consequent inhibition of protein 
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synthesis. This inhibition usually occurs during stress conditions to reduce protein synthesis 

rate and to enhance the translation of mRNAs that allow the adaptation to stress and the 

recovery of translation.23   

Anyhow, translation initiation only occurs in the presence of the 43S preinitiation 

complex (PIC) that comprises the ternary complex, the 40S ribosomal subunit and the factors 

eIF3, eIF1, eIF1A and probably eIF5. The mRNA 5’ CAP is recognized by the multimeric 

eIF4F complex, composed by eIF4E, the CAP-binding protein stabilized by the ATP-

dependent RNA helicase eIF4A, and the eIF4G, a scaffold protein that links the mRNA and 

the ribosome using the eIF3. This complex unwinds the structures in the 5’ untranslated 

region (5’ UTR) and, together with eIF3 and poly(A) binding protein (PABP), attaches the 

3’-poly(A) tail allowing the PIC to scan mRNAs for the initiation codon.20–23 When the 

initiation codon, localized in a favorable context as Kozak sequence, is recognized in the P-

site by the anticodon of the Met-tRNAi
Met in the ternary complex, the scanning is arrested 

and GTP is irreversible hydrolyzed by the GTPase-activating protein (GAP) eIF5, 

consequentially releasing the eIF2-GDP and other eIFs. At this point, the eIF5B-GTP 

promotes the association between the 60S ribosomal subunit and the complex formed by the 

40S small subunit, the initiation aminoacyl-tRNA and the mRNA chain. When GTP is 

hydrolyzed, the eIF5B is released from the ribosome, dictating the final of the initiation.21–

23 

However, CAP-independent translation represents an alternative to CAP-dependent 

translation both under normal and stress conditions, such as endoplasmic reticulum (ER) 

stress, hypoxia, nutrient deprivation, mitosis and cell differentiation and it is used not only 

by eukaryotic cells but also by virus that infect them as a strategy to express their mRNAs. 

At stress conditions, CAP-dependent translation is compromised leading to a significant 

increase in cellular Internal Ribosome Entry Sites (IRES)-mediated translation that recruits 

both canonical and non-canonical initiation factors, IRES trans-acting factors (ITAFs) and 

40S ribosomal subunits.24,25 

 

b. Elongation 

Translation elongation is conserved among Eukarya, Bacteria and Archaea and it follows 

the initiation process.21 In the beginning of elongation the P-site is occupied by the Met-

tRNAi
Met and the A-site is empty. Then, the aminoacyl-tRNA whose anticodon complements 
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the second codon, or the cognate aminoacyl-tRNA, is added to the A-site due to the 

formation of another tertiary complex comprising the cognate aa-tRNA and the eEF1A-GTP. 

The interaction between this tRNA and the mRNA codon involves conformational changes 

in the decoding center of the 40S ribosomal subunit and the GTP hydrolysis ensures the 

presence of the cognate tRNA. If the complementarity is assured, the eEF1A-GTPase 

becomes activated. Then, eEF1A-GDP is released and the aminoacyl tRNA is 

accommodated in the A-site.17,21,26,27 

The next step is the peptide bond formation between Met and the recently added amino 

acid, in the peptidyl transferase center (PTC) located in the large ribosomal subunit. The Met 

accommodated in the P-site moves to the A-site of this center and a peptide bond can be 

made with the second amino acid still attached to its cognate tRNA, in a peptidyl transferase 

induced reaction. Then, the P-site is occupied with a deacylated tRNA connecting the mRNA 

in the small subunit and the 3’ CCA in the E-site of the large subunit. Also, the peptidyl 

tRNA is in a hybrid state as its acceptor arm is in the P-site and the anticodon arm forming 

a mRNA-tRNA duplex in the A-site of the small subunit.21,26,27 The eEF2-GTP is required 

to restore the canonical positions in the A and P-sites, in a process named translocation. GTP 

hydrolysis turns the ribosome free to move temporarily three codons towards the mRNA 3’ 

end. Posttraslocation state accounts for a deacylated tRNA in the E-site, a peptidyl-tRNA in 

the P-site and a new codon in the A-site to be decoded. At this point, a new codon can be 

read and this cyclic mechanism is repeated until a stop codon is detected.21,27 

 

c. Termination 

When the ribosome detects a stop codon in the A-site a signal to finish the translation 

and to release the polypeptide chain is recognized.  Stop codon recognition can be made by 

the ribosome, by external factors that interact with the ribosome and by the combined action 

of both.17,28  This signal activates the eukaryotic release factor 1 (eRF1), a class I release 

factor that binds the ribosome at the A-site. It is responsible for high-fidelity stop codon 

recognition and peptidyl-tRNA hydrolysis, promoting the addition of a water molecule to 

the peptide chain.27  eRF1 may also open a channel that triggers the incoming of water 

molecules into the ribosome; engender conformational changes in the ribosome so the water 

molecule can reach the active center; activate the water molecule and the ester bond so 

peptidyl-tRNA hydrolysis can occur.21 This step destroys the attachment of the carboxyl end 
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to the ribosome, and the recently synthetized polypeptide is finally released. eRF1 activity 

and connection with the ribosome is supported by a class II release factor, the eRF3-GTPase 

whose hydrolysis removes eRF1 from the ribosome.17,21,28 

 

d. Recycling 

The ribosomal subunits have to be recycled after the synthesis of a newly polypeptide 

chain, so another translational cycle could be performed. Therefore, the mRNA chain and 

the deacylated-tRNA have to be released as well as the ribosomal subunits have to be 

separated in a process called recycling, a mechanism that lacks fully explanation in the 

eukaryotic model.27 

Nevertheless, partial dissociation of ribosomes is also observed in a mechanism termed 

reinitiation. In these cases, the ribosome translates further Open-Reading Frames (ORFs) in 

the same mRNA without complete recycling of the ribosomal machinery. In this way, 

translation of the same ORF can be done, through incomplete recycling potentially taking 

place in the stop codon, allowing scanning along the 3’ UTR and triggering the 40S 

transference to the 5’ UTR. Although interactions involved in this process are not completely 

known, there is a potential hypothesis based on the role of PABP, eRF3, eIF4E and eIF4G 

in a mechanism that potentiate a close proximity between the mRNA 5’ and 3’ ends.21,27 

The eIF3 has an active role in the recycling process in higher eukaryotic translation, since 

it directly binds to and induces conformational changes in the 40S small subunit surface 

avoiding its reconnection with the 60S large subunit until a new mRNA emerge to be 

translated.20,21,27  

 

1.4.Transfer RNAs 

Transfer RNAs (tRNAs) are universally conserved small and ubiquitous RNA molecules 

that are the interface between the genetic information encoded in mRNA transcripts and the 

proteins. 29,30 The secondary structure of tRNAs (Figure 2) has a cloverleaf shape derived from 

a single nucleotide chain with 73 to 90 nucleotides in length and 4 domains organized in 

unpaired and paired regions: acceptor arm, D arm, anticodon arm and TΨC arm. The 

acceptor arm has a 3’ CCA tail that links covalently the cognate amino acid, and the 

anticodon arm has a three nucleotide sequence in the unpaired region, the anticodon loop, 
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that interacts with the mRNA codon. Unpaired regions also mold loops in the D and the TΨC 

arms and an unpaired region between the anticodon and the TΨC arms represents the 

variable arm, also known as extra arm. 16,29–31 The size of the variable arm can range from 3 

to 21 bases and dictates tRNA grouping in class I or II. The first includes the majority of 

tRNA molecules and is characterized by small extra arms, while class II tRNAs, comprising 

Leucine (Leu), Serine (Ser) and Tyrosine (Tyr), have larger variable arms and a R13-R22 base 

pair (bp) in the D-loop.16,32  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Functional and mature tRNAs acquire a L-shape tertiary structure through the stacking 

between acceptor stem and TΨC arm and between D-arm and anticodon arm, both stacks 

forming a continuous A-helix. Thus, functional tRNAs are characterized by an amino acid 

accepting branch where cognate amino acid covalently links an adenosine in 3’ CCA tail 

and an anticodon branch that connects with the codons in mRNAs. This highly stable 

structure is obtained from the interaction between conserved and semi conserved nucleotides 

in the tRNA chain and it is substantially altered according to its functional state.29–31,33 

Figure 2. tRNA secondary structure. Adapted from Zvelebil, M. and Baum, J. O. 2007 
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tRNAs are codified by 506 genes [Genomic tRNA Database] that are transcribed by the RNA 

polymerase III, whose activation is regulated by cellular nutrient availability and other 

environmental features. To become functional, tRNA transcripts should be processed to get 

the standard length and be posttranscriptionally modified (Figure 3). Still in the nucleus, the 

ribonucleoprotein RNase P performs endonucleolytic cleavage of the 5’ ladder sequence in 

precursor tRNA. Then, endonucleases (such as RNase E and RNase III) cleave the 3’ trailer 

extensional sequence and exonucleases (such as RNase T and RNase PH) cleave the residual 

trailer sequence. In some cases where CCA tail is absent, it is added by the CCA-adding 

enzyme following the discriminator base N73. Next, the splicing of remaining introns occurs, 

as well as modification of several nucleotide residues. 

 

 

 

 

 

 

 

 

 

 

These posttranscriptional modifications are divided in two types, according to its target: 

modifications in the loops of D and TΨC arms have the purpose to stabilize the tertiary L-

shape structure, while modifications in the anticodon loop promote precise codon pairing 

and accurate recognition by the cognate aminoacyl tRNA synthetase (aaRS).33,34 

In spite of tRNAs being mainly associated with its role during translation, these 

molecules also participate actively in other cellular functions, both in prokaryotic and 

eukaryotic cells. Uncharged tRNAs act as signaling molecules that activate cellular stress 

responses in the presence of nutritional stress, to stimulate the expression of genes related to 

amino acid synthesis and their uptake and to aminoacyl-tRNA synthetases, thus contributing 

to cell survival.29,31 Additionally, tRNAs are mediators in non-ribosomal processes, as the 

peptide bond formation between peptidoglycans in bacterial cell wall biosynthesis and in the 

modification of phospholipids that form the cell membrane.35 These molecules can also label 

Figure 3. tRNA processing. Nakanishi, K and Nureki, O. 2005 
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proteins for degradation, participate in the regulation of apoptosis and in antibiotic 

biosynthesis.31,36  

Recently, tRNA-derived fragments (tRFs), resulting from tRNA degradation, were also 

found to be functional forms that can actively participate in regulation of gene expression at 

translational level under stress conditions and in gene silencing.31,37,38 

Since tRNAs can have a variety of functions, it is not surprising that their biosynthesis 

occurs under several control pathways, which recognize and degrade misfolded or 

hypomodified forms. Also, tRNAs account for more than 15% of total RNA amount and 

comprise one of the most abundant transcripts in the cells.29 

 

1.5.Aminoacyl-tRNA Synthetases 

Aminoacyl-tRNA synthetases (aaRSs) are a highly conserved enzyme family that 

catalyzes tRNA aminoacylation with the cognate amino acid. The aminoacylation reaction 

occurs in two steps, illustrated in Figure 4. From the first step results a stable complex between 

the active site of aaRS and the cognate amino acid, in an ATP dependent reaction. In this 

way, a firmly bounded aminoacyl-adenylate is formed, releasing a pyrophosphate (PPi). In 

the second step, the tRNA binds the amino acid by the 3’ end adenosine in the acceptor stem, 

releasing AMP and esterifying the tRNA at 3’ end.39 

 

 

 

  

 

 

 

 

The recognition of tRNAs by its cognate aaRSs is based on the interaction with specific 

elements, as the discriminator base N73, the acceptor stem and the anticodon region. Less 

often, interactions with elements in the extra arm, the D stem, the core of the tRNA tertiary 

Figure 4. Schematic representation of aminoacylation reaction. AS, active site; aa, amino acid; 

PPi, pyrophosphate. Jiqiang Ling, J. et al. 2009 
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structure and the phosphate backbone or with modified nucleotides and the wobble base can 

occur.39 

To avoid inaccuracy derived from tRNA charging with the incorrect amino acid, aaRSs 

have an editing capacity encoded by a different active site. The double-sieve model suggests 

that the editing capacity allows aaRSs to discriminate amino acids with similar properties, 

and it can occur before or after amino acid transference to the tRNA, the pretransfer editing 

and posttransfer editing, respectively. Pretransfer editing is based on the hydrolysis of amino 

acids incorrectly activated before transference to the tRNA, while posttransfer editing 

requires the interaction between the tRNA 3’ CCA tail with the aaRS editing site. Trans 

editing was recently proposed and relies on the capacity of other proteins to recognize and 

hydrolyze incorrectly charged tRNAs.40–42 Moreover, the editing capacity is wider and it can 

act through discrimination between tRNAs by direct interaction, recognition of the acceptor 

stem nucleotide sequence and by contact with key nucleotides in the tRNA.17,41 This editing 

capacity is essential to avoid protein synthesis errors and its disturbance can be associated 

with various pathologies, which severity varies inversely with the editing capacity.40 

 

1.6.Protein Folding and Misfolding 

Proteins are the most structurally and functionally complex molecules, thus its activation 

requires more than its translation. After leaving the ribosome, the polypeptide chain has to 

be modified to get its unique three-dimensional conformation. Protein-modifying enzymes 

bind small-molecule cofactors essential for protein activity or assemble proteins with other 

protein subunits.17,43  

The information necessary for these modifications is encoded by the amino acid 

sequence itself and its biochemical properties. The interaction between amino acids from 

different regions of the polypeptide occurs by weak non-covalent bonds that taken together 

determine the protein folding stability. Also, folding is influenced by the hydrophobic 

character of the side chains, as the non-polar tend to cluster in the interior of the molecules 

forming a hydrophobic core, while polar amino acids are exposed and form hydrogen bonds 

with other molecules. These interactions result in a three dimensional structure that lacks the 

conformation of lowest free energy, without losing the flexibility to interact with other 

molecules that may influence protein function.16,17,43  
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Incorrect folding results in misfolded and nonfunctional proteins characterized by 

exposed hydrophobic amino acids. Alterations in cell homeostasis caused by stochastic 

fluctuations, destabilizing mutations, stress conditions or metabolic alterations resulting 

from processes such as cancer and aging, trigger wrong interactions, unfolding or denaturing 

of proteins and inhibit interactions between subunits of larger protein complexes. These 

alterations can be dangerous for the cell because misfolded/unfolded proteins can aggregate 

in toxic forms and give rise to several human diseases. Thereby, cells account with several 

mechanisms to maintain the stability of the proteome, ensuring misfolded proteins refolding, 

degradation or sequestration.17,44–46 

 

1.7.Proteotoxic Stress and Protein Quality Control Pathways 

The endoplasmic reticulum (ER) is the cellular compartment responsible for structural 

maturation of one-third of all eukaryotic proteins. Proteins remaining in the cytoplasm and 

mitochondria are under constant vigilance of chaperones responsible for its maturation. 

Proteins matured in the ER, when leaving this compartment, no longer need the assistance 

of chaperones, meaning that only correctly folded proteins leave the ER. In this way, highly 

sophisticated and robust quality control systems are required to avoid release of aberrant 

proteins to perform their functions.43,47 However, as a result of errors during transcription 

and translation, aberrant proteins are produced and its accumulation leads to homeostatic 

perturbations and proteotoxic stress.2,48,49 

To counteract the proteotoxic stress, several quality control responses are activated to 

promote the refolding of misfolded proteins or, if not possible, its degradation. The 

activation of these pathways aims to restore homeostasis and to avoid apoptosis induction. 

Homeostasis is achieved by upregulation of the ER folding capacity, increasing chaperones 

availability and foldases as well as ER size; through downregulation of biosynthetic load, 

inhibiting protein synthesis at transcriptional and translational levels; and increasing 

elimination of unfolded proteins through upregulation of Endoplasmic Reticulum 

Associated Degradation (ERAD) protein clearance mechanism.2,45–47,49 It is estimated that 

30% to 70% of proteins do not pass the quality control mechanisms and end up being 

degraded.50 
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If cells are unable to activate these control pathways or if these pathways become 

overloaded, waste of nutrients occurs and misfolded and nonfunctional proteins that can 

aggregate in toxic forms are produced, dictating cell death as the final fate.2 

 

a. Chaperones and Heat Shock Response 

Molecular chaperones are proteins that assist noncovalent folding of newly synthesized 

polypeptides, assembly of protein subunits, preventing or reversing incorrect folding. This 

large protein family, first discovered in 1978 by Laskey et al., recognizes and binds reactive 

surfaces exposed in the client protein, avoiding incorrect interactions. Still, chaperones assist 

oligomeric structures synthesis in the transport of proteins through membranes, by 

preventing the three-dimensional folding that can be a hitch in the membrane crossing, 

maintaining the protein in an unfolded and more flexible status. Chaperones can also signal 

the protein for degradation.16,46,51 

A significant number of chaperones are designated heat shock proteins (HSPs), term that 

derives from its overexpression in cells exposed to higher temperatures. While chaperones 

have the folding as their major role during normal metabolism, stress conditions induce 

higher levels of HSPs that assist the refolding and repair of damaged proteins, to prevent 

protein denaturation and aggregation. HSPs derive from the transcription of distinct gene 

families and they are classified according to their approximate relative molecular mass in 

five main HSP families: Hsp90, Hsp70, Hsp60, small HSPs and large HSPs. The genes 

encoding chaperones have three classes regulated differently: constitutively expressed 

chaperones, during growth and development; constitutively and induced chaperones and 

strictly induced chaperones.51–54 

Regarding their action, HSPs can be classified, not exclusively, in holding and folding 

proteins. The first group comprises HSP70 and HSP90 families and they recognize and bind 

exposed hydrophobic domains in unfolded polypeptides. They can act during mRNA 

translation to prevent premature self-association of nascent polypeptide chains; during heat 

shock response through interaction with totally or partially unfolded proteins and 

constitutively to bind unstable tertiary structures. In this process a large complex is formed, 

comprising five core proteins that accounts for Hsp90, the scaffold protein Hop, the p23 

protein as mediator of substrate selection and the complex HSP70/HSP40 to mediate the 

interaction between HSP90 and the client protein. These complexes interact with many 
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accessory proteins, also known as co-chaperones, to facilitate substrate selection and cycles 

of association and dissociation from the client protein.16,44,54 

Folding activity can be performed individually by Hsp70, Hsp40 or co-chaperone GrpE 

or in a chaperonin system comprising a large oligomeric assembly that lodges unfolded 

proteins and promotes a suitable environment for their folding. Also, Hsp90 together with 

Hsp70 acts directly with specific classes of proteins involved in signal transduction, thereby 

maintaining the target in an appropriate function until it is stabilized through the interaction 

with other components of the pathway.16,44,54 

The transcription of HSPs is dependent on heat shock factor 1 (HSF1) transcription factor 

that binds the promoters of HSP genes, inducing HSP mRNA transcription. Activation of 

HSF1 is still under investigation but some explanations were proposed. HSF1 is inhibited 

by its products, which in stress conditions may be sequestrated in protein aggregates, thus 

de-repressing HSF1. Another mechanism for HSF1 activation relies on the heat-induced 

binding to large non-coding RNAs, which are known to be involved in the regulation of a 

wide range of genes, complexed with eEF1A. Besides, during stress conditions, a rapid 

phosphorylation of serine 326 in the HSF1 occurs, correlated with the onset of HSF gene 

transcription, suggesting that this serine has a role in stress response regulation prompted by 

HSF1: the heat shock response (HSR).52,53 

The HSR is a cellular mechanism activated in the presence of a wide range of stress 

conditions that triggers protein inactivation. This response is based on a combination of 

events called thermotolerance, a condition directly related with the coordinated synthesis of 

HSPs. 44,52,53 

 

b. Unfolded Protein Response 

The UPR relies on the activation of different but complementary signal pathways 

triggered by three ER transmembrane proteins: the inositol requiring kinase 1 (IRE1α), the 

double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase 

(PERK) and the activating transcription factor 6 (ATF6), schematically represented in Figure 

5. During homeostatic conditions these proteins are inactivated by formation of stable 

complexes with the ER stress sensor GPR78, also known as binding immunoglobulin protein 

(BiP). However, presence of unfolded proteins leads to a competition for BiP, derepressing 

the signal pathways.45,55,56 
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When IRE1α is dissociated from BiP, it undergoes dimerization and 

autophosphorylation, activating its endonuclease activity for mRNA processing. IRE1α 

activates the X-box binding protein 1 (XBP1), through splicing of its mRNA transcript. 

When activated, XBP1 upregulates the expression of genes encoding proteins that have roles 

in protein folding, insurance of its quality and ERAD activation.45,55–57 

After being released from BiP, PERK becomes activated through dimerization and 

autophosphorylation, activating its kinase activity. PERK activation prompts global protein 

synthesis inhibition through inhibitory phosphorylation of eIF2α, to reduce the influx of 

newly synthetized proteins into the ER. The downregulation of translation upregulates the 

activating transcription factor 4 (ATF4) that promotes cell survival since it regulates genes 

involved in oxidative stress, amino acid synthesis, protein folding and cell differentiation. 

45,55–57 

Finally, ATF6 is released from BiP and translocated to the Golgi compartment. There, 

ATF6 is cleaved by the site-1 and site-2 proteases releasing its N-terminal fragment, the 

cytoplasmic domain, which acts as a transcription factor. In the nucleus, ATF6 fragment 

promotes upregulation of UPR target genes, such as XBP1, and ERAD associated 

proteins.45,55–57 

 

 

Figure 5. Schematic representation of the unfolded protein response. Adapted from Claudio Hetz et al. 2013 
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c. Endoplasmic Reticulum Associated Degradation Response 

ERAD is fundamental to eliminate misfolded proteins, maintaining the equilibrium 

between protein synthesis and degradation, in a demand to prevent proteotoxicity, ER stress 

and subsequent apoptosis.57 

The ERAD response promotes degradation of aberrant proteins by the Ubiquitin-

Proteasome System (UPS), the major eukaryotic proteolytic pathway. This process is 

initiated with the recognition of substrate and its translocation across the ER lipid bilayer to 

the cytoplasm. In the cytoplasm, proteins are polyubiquitinated, the signal for degradation 

by the 26S proteasome subunit.46,58  

 

d. Autophagy 

Autophagy is an evolutionarily conserved protein and organelle degradation mechanism 

with a complex molecular background, missing full explanation. Autophagy can be 

characterized into three different types: macroautophagy, microautophagy and chaperones-

mediated autophagy (CMA). All end up with the delivery of the target, the cargo, into the 

lysosome where it occurs protein unfolding and degradation by the action of proteases.59  

Regarding the protein quality control, the autophagic process represents an important 

mechanism to eliminate aggregation prone proteins. It functions as a backup of ERAD since 

its impairment leads to an upregulation of autophagy, as a strategy to recognize and degrade 

protein aggregates.46,60 Also, autophagy has a role during stress caused by nutrient and 

oxygen deprivation, and biosynthetic and homeostatic functions. Examples are the 

degradation of mitochondria, known as mitophagy, as an approach to control their reliability 

and to avoid the production of reactive oxygen species (ROS), or the degradation of 

peroxisomes that are no longer needed, the pexophagy. 59,61 
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1.8.Tumorigenesis 

The tumorigenic process starts with a normal cell that becomes transformed by 

acquisition of autonomous proliferation features driven by accumulation of genetic 

alterations, leading to its immortalization. Acquisition of malignancy is the result of tumour 

progression rather than transformation. During tumour progression, cancer cells lose their 

original shape and polarity. Finally, they acquire the capacity to invade nearby tissues and 

metastasize to distant locations through the blood or lymphatic system.62,63 

Variability is an intrinsic characteristic of tumors that promotes functional and 

phenotypic heterogeneity in tumors established in the same organ, known as intertumoral 

heterogeneity, and even within individual tumors, the intratumoral heterogeneity.62 The 

intertumoral heterogeneity is associated with different genetic and epigenetic mutations, 

distinct cells in the origin of tumor, different molecular profiling characterization, different 

expression of specific markers and different morphological features.62  

Intratumoral heterogeneity can be explained by the cancer stem cell (CSC) and the 

clonal-evolution models.62 The first proposes that the tumor has its origin in normal self-

renewing stem cell or downstream progenitor with limited or no self-renewal. Considering 

that the expansion of the progenitor cell may originate downstream cells which accumulate 

different mutations, CSCs can originate different clones within the same tumor, thus 

contributing to its heterogeneity.64,65 In turn, the clonal evolution model suggests that a single 

cell accumulates mutations that are hereditarily transmitted through successive generations 

and the most advantageous for the tumor are selected through natural selection.64 The genetic 

and epigenetic changes which provide the cell with the more aggressive, invasive and drug-

resistant phenotype are those prevailing. However, these models cannot be applied in a 

mutually exclusive characterization since all the events interact to define the tumor 

histopathology and behavior.62,64,65 

In a global view, cancer cells can be characterized based on traits that enable them with 

distinct but complementary capabilities. These features allow tumor growth and metastatic 

dissemination and they are known as the hallmarks of cancer (Figure 6). The acquisition and 

development of these hallmarks are possible due to genome instability, product of several 

random and particular genetic mutations and chromosomal rearrangements, and the 

inflammatory state of established or premalignant lesions that is supported by immunologic 

cells.66 
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Cancer cells present deregulation of growth-promoting signals, leading to sustained 

proliferative signaling. Moreover, cancer cells are also able to evade growth suppressors that 

could inhibit its proliferation.66,67  

The programmed cell death is essential to prevent cancer development. The most 

relevant player in responses to stress, damage and regulation of apoptosis is the p53. In 

cancer cells, mutations in TP53 gene or in its upstream or downstream effectors are frequent, 

allowing apoptosis evasion, invasion, metastasis, proliferation and cell survival.66,68,69  

Proliferation of normal cells is limited by a number of successive division cycles in a 

process controlled by the size of telomeres, which triggers cell death when they become too 

short to protect the chromosomes. In cancer cells, the DNA telomerase is highly expressed, 

opposing to what happens in normal cells, which is correlated with resistance to senescence 

and acquisition of replicative immortality.66 

Cancer cells are also associated with the capacity to induce angiogenesis, in a process 

triggered by deregulated proangiogenic signals that give rise to aberrant neovascularization. 

Considering that tumor microenvironment is characterized by hypoxia, nutrient deprivation 

and low pH, angiogenesis may be induced as an alternative to obtain nutrients and oxygen 

and to discard metabolic wastes.66  

Lastly, malignant cells have the capacity to invade, to avoid apoptosis and to disseminate, 

in a process called metastization, closely related to the regulatory program “epithelial-

Figure 6. The hallmarks of cancer and enabling characteristics. Adapted from Hanahan, D. and 

Weinberg, R, 2011. 
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mesenchymal transition” (EMT). The reprogramming of energy metabolism and the capacity 

of tumor cells to avoid immune surveillance are now emerging as new hallmarks of cancer, 

as major evidences are rising to prove its crucial role in cancer development.66,70 

 

1.9.Lung Cancer and Non-Small Cell Lung Cancer 

Cancer is the leading cause of death in the world with a continuous increase in the 

number of cases, particularly in developing countries, estimated at over 20 million per year 

at 2025.71 Lung cancer represents the main cancer related death and it is associated to 

cigarettes active smoking, followed by passive smoking and occupational exposure to 

chemical and physical carcinogenic agents as nickel, asbestos, arsenic, radiation and air 

pollution. Susceptibility to lung cancer is also allied with individual inherent susceptibility 

to these agents and familiar history of lung cancer, without overlooking lifestyle factors as 

diet and physical inactivity, established diagnosis of acquire lung diseases and HIV related 

infections.72 The stage and degree of tobacco epidemic have a close relationship with 

countries socioeconomic development. Countries that had its smoking peak in the middle of 

20th century are currently detecting a decrease in lung cancer rates; instead, countries where 

tobacco consumption epidemic was established recently are handling increasing rates. Yet, 

as the rate of smokers decreases it is observed a greater frequency of lung cancer among 

passive smokers. Another bequest of socioeconomic development is the increase in smoking 

habit among women, resulting in 50% of cancer related death in this gender and 80% in 

men.72–74 

Lung cancer is classified in two major subtypes based on histological features and 

response to conventional therapies: small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC), the last accounting for 85% of all lung cancers. SCLC type can be also 

divided in classical small cell carcinoma, large cell neuroendocrine and combined, while 

NSCLC comprises adenocarcinoma, squamous cell carcinoma and large cell carcinoma.74–

76 

Lung cancer has a 5-years survival rate of 15%, as result of late diagnosis of advanced 

tumors.74,75 Diagnosis of lung cancer is achieved by analysis of complete medical history 

and physical examination that can reveal suggestive signs and symptoms of lung disease, 

such as alterations in expectoration quantity, amount and presence of blood, shortness of 
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breathing, wheezing, chest pain and frequent respiratory infections. Then the physician 

should proceed with more conclusive and chest located tests as radiography and also 

computed tomography and magnetic resonance imaging, which can identify metastatic 

episodes and support a differential diagnosis. Adenocarcinoma and large cell carcinoma 

have preferential localization in the periphery of lung, lining the small airways while 

squamous cell carcinoma and SCLC have their origin in epithelial cells that line the larger 

airways in the central area of chest. At the cellular level, cytological analysis can be made 

after expectoration collection, being enough to diagnose 80% of lung tumors. To improve 

diagnostic capacity and precision, a bronchoscopy and fine-needle biopsy of lung and 

metastatic lesion or lymph node may be done.75,77   

NSCLC has a complex molecular character underlying his pathogenesis that is not fully 

understood. However, it is crucial to understand and characterize diagnostic and prognostic 

biomarkers and therapeutic targets so worry rates associated to lung cancer can be 

weakened.78 The epidermal growth factor receptor (EGFR) is responsible for the activation 

of phosphoinositide 3-kinase (PI3K)/AKT and RAS/RAF/MAPK pathways that ultimately 

lead to the active transcription of genes involved in cell survival, proliferation, angiogenesis, 

invasion and metastasis. Mutations in EGFR are presented in 10% of NSCLC cases and are 

closely related with tobacco consumption, being inversely proportional to the degree of 

smoking.76,79 Mutations on the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-

ras) gene are present in 20-30% of NSCLCs, with influence on cell proliferation and 

apoptosis via MAPK and on cell survival responses via PI3K. These represents 90% of all 

ras mutations in adenocarcinomas and they are common in smokers and patients that were 

exposed to asbestos, being more prevalent in women.76,79,80  

Despite those factors are markedly involved in the carcinogenic process of NSCLC, 

others have been identified. The vascular endothelial growth factor (VEGF) is highly 

expressed in NCSLC and it is critical in physiologic and pathologic angiogenesis, through 

promotion of survival and tumor growth. Its overexpression relates to poor prognosis.76 

Similarly, overexpression, amplification or gain-of-function of the mesenchymal-epithelial 

transition factor (c-MET) are evident in lung adenocarcinoma, participating in tumor growth, 

differentiation and metastasis and thus contributing to a poor prognosis.77,81,82  

The rearrangement of the anaplastic lymphoma kinase (ALK) gene derived from the 

fusion with the echinoderm microtubule-associated protein-like 4 (EML4) gene was 
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classified as a gain of fusion mutation. EML4-ALK fusion was identified in 2% to 7% of 

NCSLC, in the absence of KRAS and EGFR mutations, with a positive influence in 

neoplastic transformation and cell survival.76,83  
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1.10. tRNA Pool Deregulation in Cancer 

The deregulation of protein synthesis machinery and tRNA pool, in particular, are 

observed in a wide range of tumors, suggesting that misregulation of translation components 

are involved in malignant transformation.84  

Pavon-Eternod et al. observed a significant overexpression of tRNAs in breast cancer 

cell lines and tumor tissues when compared with non-cancer-derived breast epithelial cell 

lines and normal breast tissues.85 In particular, tRNASer, tRNATyr and tRNAThr were the most 

expressed and its overexpression seems to favor the codon usage of cancer-related genes, 

important in tumor initiation and progression, but not the house-keeping genes and cell-line 

specific genes. Also, the overexpressed tRNAs carry polar amino acids that are targets of 

protein kinases and phosphatases, demonstrating a possible mechanism for potentiating 

posttranslational regulation of proteins involved in signal transduction.85 Notably, the 

overexpression of tRNAs in cancer cells is accompanied by altered metabolic activity and 

unregulated growth.86 

Differential expression of tRNAs regulates the efficiency of translation through the 

codon usage of specific genes and it is possible that during active cell growth there is a 

correlation between the tRNA pool and the codon usage of highly translated genes.85 So, 

deregulation of the tRNA pool in cancer may be responsible for the quantitative and 

qualitative alterations in protein expression, since this deregulation leads to preferential 

expression of key proteins in tumor progression and development, such as growth factors, 

cell-cycle promoters and oncoproteins, particularly c-Myc and VEGF, the last known to be 

upregulated in NSCLC tumors.76,85,86 

The deregulation of RNA polymerase III is also observed in several tumors, explained 

by the releasing of pol III-specific transcription factor TFIIIB from the inhibitory effect 

provided by retinoblastoma protein (RB) and p53, which are often mutated in cancer 

cells.84,85 Also, TFIIIB is activated by the upregulation of c-Myc and mutations in KRAS, 

alterations observed in NSCLC cells.80,87  

Cellular stress leads to an alteration in the codon usage of demanded genes and so the 

request for tRNAs by certain codons increases and the availability in tRNAs for other codons 

decreases. It is also known that codons that became preferentially expressed under stress 

conditions corresponded to tRNAs that are represented by the lowest gene copy number.15  
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In another study, Pavon-Eternod et al. verified that induction of the elongator tRNAe
Met 

does not alter significantly its levels but punctual changes in levels of several other tRNAs 

not induced experimentally are observed. This can be explained by a regulatory feedback 

mechanism related with overexpression of tRNAi
Met.86  

Nonetheless, the knowledge available about effects derived from overexpression of 

tRNAs and the mechanisms of response from cells to these perturbations is very limited 

yet.86  

 

1.11. Proteotoxic Stress in Cancer 

The process of malignant transformation is accompanied by increased protein load. 

Likewise, evasion of apoptosis, genome instability and frequent mutations are observed in 

cancer cells, which may promote accumulation of mutated proteins and sustained activation 

of proliferation signals.88 Qualitative and quantitative alterations of the proteome induce 

cellular proteotoxic stress that is faced by the induction of HSPs as an attempt to repair and 

refold aberrant products. In cancer cells, an increase in HSF1 levels is observed through a 

process not yet understood but that may be related with increased transcription and 

translation as well as epigenetic regulation.53,88 

The relation between increased chaperoning capacity and tumorigenesis can be 

explained by the “addiction to chaperones” hypothesis. This assumption is based on the 

increased requirement for chaperoning the larger protein load due to rising in mRNA 

translation derived from highly metabolic and proliferative rates and the polyploidy observed 

in several cancer cells. The instability created in the proteome is supported by chaperones in 

an addictive process so high protein expression and gene mutations can support tumor 

growth and progression. Interestingly, in studies where the Hsp90 chaperone is inhibited 

downregulation of several oncogenes is observed, probably because the instability of mutant 

and aberrant proteins is not counteracted and they are eliminated by quality control 

pathways.53  

Moreover, HSPs activity in cancer cells supported by HSF1 seems to affect a wide range 

of pathways that are essential to sustain the malignant phenotype. Evidences exist to prove 

their role in the acquisition of cancer hallmarks, excluding the evasion of growth suppressors 

where the role of chaperones is still inconclusive.53 Hsp90 seems to be the main chaperone 
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in tumorigenesis, acting to maintain the active conformation of mutant and signal proteins 

as an approach for faster information flux in response to extracellular signals, essential to 

development and cell renewal.53,54 Hsp90 and Hsp70 overexpression in cancer allows to 

stabilize precancerous proteins, such as growth factor receptors, survival-signaling kinases, 

oncogenes and mutated proteins, supported by Hsp27 that is known to be upregulated in 

many cancers.53,89 In the NSCLC context, low levels of HSP90 are correlated with better 

prognosis and pharmaceutical inhibitors of Hsp90 also impair EGFR activity.90 

Cancer cells grow in an environmental context that differs from normal cells as it is 

hypoxic and with lower pH and nutrient availability, as a result of low vascularization. The 

higher tumor growth rate outdoes new blood supply, although in an inefficiently manner 

because the synthesis of new vessels is aberrant and the blood flow dynamics are altered.57,91 

The low nutritional availability directly influences protein glycosylation and ATP 

production, which triggers synthesis of misfolded proteins, an event also supported by the 

lack of oxygen that is crucial for disulfide bond formations in proper protein folding. These 

perturbations lead to ER stress with consequent activation of quality control pathways, at 

which cancer cells can adapt and so escape to apoptosis.57,92 

Cancer cells have high activation of the UPR and take advantage from activation of 

characteristic signal pathways, in a chronic manner. BiP is known to be increased in 

aggressive malignant forms, including lung cancer and it seems to promote cell survival, 

tumor progression, metastasis and resistance to therapeutics.57,93 This is possible since 

overexpression of BiP has a crucial role in pro-survival and cytoprotective responses in 

malignant cells, by diverse mechanisms such as inactivation of caspase-7.57,94 

Despite its role in tumorigenesis is not entirely explained, IRE1α inhibition appears to 

prompt reduction in tumor growth, in angiogenesis and in blood perfusion of tumor. It is 

known that IRE1α induces cellular proliferation through XBP1 splicing and the deletion of 

Xbp1 increases sensitivity to hypoxia-induced cell death and consequent decrease in tumor 

formation capacity, since it is a major factor in the adaptive response to ER stress, solid 

tumor growth and survival under hypoxic conditions. The activation of such related factors 

promotes induction of proangiogenic factors like VEGF, highlighting its role in angiogenesis 

and proposing it as possible therapeutic target.57,92 

PERK can have an active role in tumor growth and proliferation through limitation of 

oxidative stress derived from ATF4 activation, which also stimulates transcription of pro-
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survival genes and upregulation of adhesion proteins, VEGF and type 1 collagen inducible 

protein, important factors for angiogenesis.92,95 Furthermore, ATF4 expression triggers cell 

survival by negative regulation of genes related with cellular senescence.57 Moreover, the 

upregulation of the autophagosomal membrane LC3B by ATF4 allows lysosomal 

degradation of unnecessary cellular components and thereby cell survival. In a global view, 

inhibition of PERK remarkably reduces cells adaptation and survival under hypoxic 

conditions.57 Recently, Fan et al. detected an active form of ATF4 phosphorylated at Ser 245 

highly expressed in NSCLC tumors that may contribute to its progression, particularly in 

metastasis, since it promotes adaptive response to ER stress and triggers stress-induced 

angiogenesis. However, the mechanism involved in its upregulation is still unclear.57,95 

Although few studies have been conducted, it is know that ATF6 is required to malignant 

transformation. Its functionally active form improves tumor survival by activating the 

mammalian target of rapamycin (mTOR) signaling pathway, which has been associated with 

malignant transformation, taking into account its influence in cell growth and 

proliferation.59,97 Particularly in NSCLC, the mTOR activation, AKT-dependent or 

independent, has been correlated with the proliferative character of these cancer cells.82,100 

Regarding the ERAD system, its regulation is also visible in cancer cells as a way to 

evade apoptosis and to reduce the accumulation of misfolded proteins that may be toxic for 

the cell. The valosin containing protein (VCP) controls ubiquitin mediated degradation of 

misfolded proteins and it is involved in protein folding, cell cycle control and apoptosis and 

it is known to be upregulated in several tumors. 57 Valle et al. demonstrated that the inhibition 

of VCP in cells from a NSCLC suppresses tumor growth and induces apoptosis in vitro and 

in xenograft murine models.97  

Autophagy can act both as tumor suppressive and as oncogenic player. As tumor 

suppressive, autophagy intervenes in cell cycle arrestment, strives for maintenance of 

genome and organelle integrity and promotes inhibition of necrosis and inflammation. On 

the other hand, autophagy promotes cell survival under conditions of metabolic stress, 

through elimination of damaged mitochondria, ROS and protein aggregates, which cause 

DNA damage and activation of tumorigenesis.59,98  
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VI. Aim of Study 

The deregulation of tRNA pool has been reported in different tumors and correlated with 

the expression of cancer-related genes.85,86 However, a major question remains: is tRNA 

pool deregulation a cause or a consequence in the acquisition of a malignant phenotype?  

In order to contribute to the clarification of this issue, this study proposed to evaluate the 

influence of tRNA deregulation in the acquisition of a malignant phenotype and the 

contribution of protein quality control pathways in cell transformation. Therefore, the 

following cellular mechanisms were evaluated: 

 Phenotypic profiling; 

 Transformation ability in vitro; 

 Induction of proteotoxic stress; 

 Activation of protein quality control mechanisms; 

 Insoluble protein expression profile. 
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VII. Experimental Design  

To assess the effects of tRNA overexpression for the acquisition of a malignant 

phenotype, a comparative study was performed between a normal human cell line derived 

from the bronchial epithelium (BEAS-2B cell line) and a NSCLC cell line (NCI-H460 cell 

line) derived from a large cell lung carcinoma.  

Pavon-Eternod et al. observed a particular overexpression of tRNASer in breast cancer 

cell lines and breast tumor tissues.85 Therefore, BEAS-2B cells were stably transfected with 

a pIRES2-DsRED plasmid containing tRNASer to induce tRNASer overexpression and so 

promote deregulation of the cellular tRNA pool. This transfection created BEAS-2B tRNASer 

cell line. Also, BEAS-2B cells and NCI-H460 cells were stably transfected with the empty 

pIRES2-DsRED plasmid, given rise to the BEAS-2B Mock cell line and NCI-H460 Mock 

cell line, respectively. BEAS-2B Mock cell line is the control in the assays performed.  
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VIII. Material and Methods 

2.1.pIRES2-DsRED plasmid  

To induce overexpression of tRNASer in a stable cell line we used the pIRES2 DsRed-

Express2 vector, a bicistronic expression vector (Figure 7) that allows simultaneously the 

expression of the tRNASer coding sequence and the Ds-Red Express2 fluorescent protein, 

useful to identify cells expressing the tRNASer gene through fluorescence microscopy. Also, 

this vector contains a kanamycin/neomycin resistance gene, suitable for selection of 

Escherichia Coli (E. Coli) competent cells with the plasmid using kanamycin, and for the 

selection of stably transfected mammalian cells using geneticin (G418) (FormediumTm). 

Previously co-workers inserted the coding sequence for the tRNASer using EcoRI and XhoI 

restriction enzymes into the vector. A pIRES2 DsRed-Express2 vector without the tRNASer 

coding sequence was used to normalize the effect of plasmid insertion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. pIRES-DsRed containg the tRNASer(AGA) coding sequence. 
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2.2.Escherichia Coli Competent Cells 

E. Coli cells were grown to obtain enough amount of plasmids to create our cell lines. 

Previously, co-workers transformed these cells with the pIRES2-DsRED containing the 

tRNASer and the empty pIRES2-DsRED plasmid and stored at -20ºC. To cultivate the E. Coli 

cells, Lysogeny Broth (LB) medium was supplemented with kanamycin. After 

homogenization, 20µl of transformed E. Coli cells were added to the medium and maintained 

overnight in a shaking incubator at 37ºC.  

 

2.3.Extraction and Quantification of pDNA 

Plasmid DNA (pDNA) from transformed E. Coli was extracted with MiniPrep Nzytech 

Kit, according with the manufacturer's instructions. After extraction, the pDNA 

concentration was quantified with the NanoDrop spectrophotometry (ThermoScientific). 

The system was calibrated using 1.5µl of miliQ H2O and purity values were calculated 

through the ratios 260nm/280nm and 260nm/230nm.  

 

2.4.Polymerase Chain Reaction  

To verify if the E. Coli selected carried our plasmid without alterations, we amplified 

the tRNA region of our plasmid by PCR using 50ng of pDNA. The reagents were acquire to 

Invitrogen (Thermo Scientific) and primers’ sequences are represented in Table I. Note that 

primers are the same for the amplification of pIRES2-DsRED containing the tRNASer and 

the empty pIRES2-DsRED plasmid since the flaking regions are equivalent. The PCR 

reaction comprised 35 cycles and occurred in the MyCycler™ Thermal Cycler (Bio-Rad). 

 

Table I. Primers used and respective sequences 

 

 

 

 

 

 

Primer Sequence 

Primer Forward  CAATACGCCCGCGTTTCTT 

Primer Reverse TTATCCAAAAAGGATCTTCACCTAGA 
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2.5.Agarose Gel Electrophoresis 

PCR amplification products were analyzed by performing an agarose gel electrophoresis, 

a technique that allows the separation of DNA fragments, according to their molecular size, 

under an electric field.99 Five µl of PCR products were run in 1% agarose with 0.01% 

ethidium bromide (EtBr) at 80V and in an electrophoretic thank containing 1X Tris-Acetate-

EDTA (TAE) (GRiSP). After electrophoresis, gels were scanned in the UV-Transilluminator 

(Bio-Rad) and results were visualized with Quantity One 4.2.1 software. 

 

2.6.Purification of PCR products 

PCR purification was performed using the QIAquick PCR Purification Kit (Qiagen), 

following the manufacturer’s instructions. After the purification, DNA concentration was 

evaluated in the NanoDrop, as described in 2.3. 

 

2.7.DNA Sequencing 

To confirm the nucleotide sequences of the pIRES2-DsRED containing the tRNASer and 

the empty plasmid, purified PCR products were prepared to be sequenced by GATC Biotech. 

For that, microtubes with 5µl of 80ng/µl of amplified DNA were prepared for each sample 

as well as microtubes with the forward and reverse primers with 5µl of 5µM, according to 

the recommendations of the LIGHTRUN sequencing kit. Results were analyzed using the 

FinchTV v.04 software (Geospiza Inc). 

 

2.8.Cell Culture 

BEAS-2B cell line was kindly provided by Professor Maria Carmen Alpoim, from IBILI, 

University of Coimbra and NCI-H460 cell line was obtained from IPATIMUP’s Cell Bank. 

BEAS-2B cells were cultured in LHC-9 medium (Gibco, Life Technologies) supplemented 

with 1% of Penicillin-Streptomycin (Pen/Strep) (Gibco, Life Technologies). NCI-H460 cells 

were cultured in RPMI 1640 medium (Gibco, Life Technologies), supplemented with 10% 

Fetal Bovine Serum (FBS) (Sigma) and 1% Pen/Strep. Cells were maintained in an incubator 

at 37ºC with 5% CO2 and 95% relative humidity. 
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To execute the following procedures, cells were detached using trypsin (Sigma). Then, 

BEAS-2B cells were resuspended in trypsin neutralizer solution [0.5% FBS in 1X Phosphate 

Buffered Saline (PBS)] while NCI-H460 cells were resuspended in complete RPMI 1640 

medium. Cells were then centrifuged at room temperature (RT) and ressuspended in 

complete medium or 1X PBS, depending on the following procedures.  

 

2.9.Lipotransfection 

Lipotransfection is a procedure that uses cationic lipids formulations to deliver the 

foreign genetic material into eukaryotic cells. 100 

Transfection protocols using Lipofectamine® 3000 Transfection Kit (Invitrogen), for 

BEAS-2B and NCI-H460, were carefully optimized to reach close to 100% transfection 

efficiency. 1.0 x 105 BEAS-2B cells and 5.0 x 104 NCI-H460 cells were plated in MW24 

plates and after 48h cells were transfected with small alterations to manufacturer’s protocol. 

BEAS-2B were transfected using 1µg of plasmid DNA and 1µL of Lipofectamine® 3000, 

whereas NCI-H460 were transfected using 1.5µg of plasmid DNA and 0.75µL of 

Lipofectamine® 3000. In this transfection, while a set of BEAS-2B cells were transfected 

with the pIRES2-DsRED containing the tRNASer another set of BEAS-2B cells were 

transfected with the empty pIRES2-DsRED plasmid. NCI-H460 cells were transfected with 

the empty pIRES2-DsRED plasmid. 

Since the goal was the integration of the plasmid in the genome and the expansion of 

these cells, cell lines were on culture for three weeks and under the selection of G418 in a 

concentration of 200µg/ml in BEAS-2B cells culture and 800µg/ml in NCI-H460 cells 

culture (concentrations previously optimized through a death curve). 

Despite this methodology allowed the creation of a stable NCI-H460 Mock cell line, 

BEAS-2B Mock cell line or BEAS-2B tRNASer cell line were not successfully created since 

these cells lost the plasmid during selection and died. 

 

2.10. Electroporation 

As an alternative to create stable BEAS-2B derived cell lines, we used electroporation, 

which is a technique that relies in the use of electric pulses to transiently alter the cell 

membrane permeability, allowing the DNA to enter the cell.100  
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To perform the electroporation, BEAS-2B cells were seeded in 100mm dishes and 

cultured until 70-90% of confluence was reached. Cells were detached as described in 4.8 

and the pellet was resuspended in Hepes Buffered Saline (HBS) solution (Appendix) to 

improve the transfection efficiency. Then, 4mm electroporation cuvettes were prepared with 

10µg of plasmid and 0.5ml of cell suspension was added, mixing carefully. For each sample, 

two conditions were tested differing in the voltage applied, 230V and 260V, both with 

capacitance of 1500µF and resistance of 125Ω. This step was performed using ECM Electro 

Cell Manipulator (BTX, Harvard Apparatus). Immediately after the electroporation, 1ml of 

LHC-9 culture medium was added, homogenizing carefully, and the mixture was transferred 

to 60mm dishes, already prepared with 3ml of LHC-9 culture medium.  

The stable cell lines BEAS-2B Mock and BEAS-2B tRNASer were obtained by selection 

with G418 in a concentration of 200µg/ml for three weeks, as in the lipotransfection. 

 

2.11. Fluorescence Microscopy 

pIRES2-DsRED plasmid codifies for the red fluorescent protein DsRed-Express2, which 

allows to validate its integration in the cell genome through fluorescence microscopy. For 

that, a coated coverslip (Corning™) was placed in the well or culture dish of each culture 

cell line in the moment of transfection, so the cells could adhere and grown into it. 48h later, 

the culture medium was removed and the well/culture dish was washed ten times with 1X 

PBS. Then, enough volume of Hoechst dye (1µg/ml) was added to the coverslip and 

incubated during 15min at RT, protected from the light. The coverslip was washed five times 

with 1X PBS, the excess was removed and it was transferred to a microscope slide containing 

the Fluoroshield mounting medium (Sigma), leaving to dry for 15min. Fluorescence was 

detected in the Zeiss MC80 Axioplan 2 Light microscope with the filter set HE38. 

Photographs were taken using an AxionCam HRc camera. 

 

2.12. Extraction and Quantification of gDNA 

To ensure the plasmid did not acquire mutations when integrated in the genome, gDNA 

was extracted to be sequenced as described in 2.7. For that, it was used the NZY Tissue 

gDNA Isolation Kit, following the recommended instructions, and gDNA concentration was 

quantified in the NanoDrop, as described in 2.3. 
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2.13. Cellular Viability Assay 

To perform this assay 1.5 x 105 cells/well of BEAS-2B Mock cells, BEAS-2B tRNASer 

cells and NCI-H460 Mock cells were seeded in a 24-well plate. After two days in culture, 

cells were detached and equal volumes of cell suspension and trypan blue were mixed. 

Finally, cell viability (%) was obtained by counting the live and death cells using a TC10Tm 

Automated Cell Counter (Bio-Rad). This assay was performed with triplicates and repeated 

three times. 

 

2.14. Cellular Proliferation Assay 

To evaluate cellular proliferation, 5.0 x 104 cells/well of BEAS-2B Mock cells, BEAS-

2B tRNASer cells and NCI-H460 Mock cells were seeded into four 24-well treated culture 

plates, so cell counting could be performed before the first cellular division (0h) and over 

the next three days (24h, 48h, 72h). Cells were detached and equal volumes of cell 

suspensions and trypan blue were mixed and viable cells were counted in a Neubauer 

chamber at each time point. The procedure accounted with triplicates and it was repeated 

three times. 

 

2.15. Anchorage-Dependent Colony Formation Assay 

To assess the tumorigenic ability of our cell lines in vitro we performed an anchorage-

dependent colony formation assay. This assay requires well individualized cells, so 

suspensions of 300 cells of BEAS-2B Mock cells, BEAS-2B tRNASer cells and NCI-H460 

Mock cells were seeded in 60mm dishes and maintained on culture during two weeks. After, 

the colonies were fixed using ice cooled methanol and maintained at -30ºC during 30min. 

Methanol was removed and a solution of 0.1% crystal violet in methanol was added and the 

plates were laid on stirring at least for 30min. When colonies were stained, each well was 

washed with H2O milliQ to remove excess dye and the colonies were counted. This assay 

was performed with triplicates and repeated four times. 
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2.16. Total Protein Extraction 

To obtain total protein from the three cell lines, BEAS-2B Mock cells, BEAS-2B 

tRNASer cells and NCI-H460 Mock cells were seeded on 60mm dishes and maintained on 

culture until they reached about 90% confluence. At that time, the culture medium was 

removed and the plates were washed with 1X PBS. Cells were detached and pelleted as 

described in 2.8. 

The next step was to lyse cellular membranes to release their content, by resuspending 

the pellet in protein lysis buffer (Appendix) (volume was adjusted regarding the size of the 

cell pellet) and incubating during 30min. From this point, sample manipulation should be 

performed on ice to avoid proteases activity. During the incubation with protein lysis buffer, 

each sample was sonicated in a Branson Sonifier S-250A (Fisher Scientific) and centrifuged 

at 4ºC and 16000g for 30min in a Centrifuge 5415R (Eppendorf®). Finally, the supernatants 

were collected and the samples were concentrated in a DNA 120 SpeedVac System (Thermo 

Scientific) until a volume of 50µl was reached. 

Protein quantification was assessed through the Pierce BCA Protein Kit (Thermo 

Scientific), according to the recommendations of the manufacturer. Absorbance at the 

575nm wavelength was obtained using a microplate reader (iMark™ Microplate Reader, 

Bio-Rad) and results were analyzed in the Microplate Manager Software v6.3 (Bio-Rad 

Laboratories, Inc.). 

 

2.17. Western Blot 

Western blot is a technique that separates proteins based on its molecular weight under 

an electric field, which are then transferred to a solid supported and identified using specific 

and labeled antibodies.101 Proteins were separated by sodium dodecylsulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE), which allows proteins to migrate according to their 

molecular weight. Accordingly to the molecular weight of proteins in study, 8% and 10% 

polyacrylamide gels (Appendix) were prepared. 

Protein quantity was optimized for each protein studied (ranging from 30µg to 60µg of 

protein) and protein samples preparation required addition of 6X SDS Protein Loading 

Buffer (Appendix). Proteins were denatured at 95ºC for 5min in the Thermomixer Comfort 

(Eppendorf®). The denatured proteins were then loaded into gels in an electrophoretic thank 
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filled with 1X running buffer (Appendix), under a voltage of 80V when running in the stacking 

gel and 100V during migration in the running gel. After their separation, proteins were 

transferred from gels to 0.2µm nitrocellulose membranes (GE Healthcare Life Sciences) in 

a transference system filled with cold transfer buffer (Appendix) under the constant voltage of 

100V, for 1h30min at 4ºC. As a transference quality control, the membranes were stained 

with 0.1% (m/v) Ponceau S (Sigma-Aldrich) in 5% (m/v) acetic acid during 1min at RT and 

excess dye was removed with distilled H2O (dH2O). Staining was removed by washing the 

membranes with Tris-Buffered Saline – Tween (TBS-T) (Appendix). 

To avoid antibody unspecific hybridization, membranes were incubated with blocking 

solution [5% BSA in TBS-T] for 1h at RT and then washed three times with TBS-T for 5 

min each. At this point, the membranes were ready for hybridization with the primary 

antibodies: anti-Hsp27, anti-Hsp70, anti-Hsp90α, anti-BiP and anti-ubiquitin (StressMarq, 

Biosciences Inc.) prepared in blocking solution with 1:1000 dilution factor. Their 

hybridization occurred overnight at 4ºC. After the incubation, membranes were washed three 

times with TBS-T for 5 min each. 

The secondary antibodies goat anti-mouse IgG and goat anti-rabbit IgG (Odyssey, LI-

COR) diluted 1:10000 in blocking solution were incubated by 2h at RT, protected from the 

light. Anti-β tubulin (StressMarq, Biosciences Inc.) was used as internal control and its 

hybridization occurred for 2h at RT and also 2h with the secondary antibody goat anti-mouse 

IgG. Primary antibodies and the correspondent secondary antibodies are represented in Table 

II. 

After secondary antibody hybridization, membranes were washed two times with 

TBS-T for 5min each and 15min with TBS and scanned in the Odyssey Infrared Imaging 

System (LI-COR, Biosciences Inc.). Data was obtained with the software Odyssey v3.0.16 

(LI-COR, Biosciences Inc.). 

For multiple probing, membranes were incubated with stripping solution (Appendix) 

at RT, long enough to dissociate the antibodies from the membrane. 
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Table II. Primary antibodies and respective secondary antibodies 

Primary antibody Secondary antibody 

Anti-Hsp27 

Goat anti-mouse IgG 

Anti-Hsp70 

Anti-Hsp90α 

Anti-ubiquitin 

Anti-β tubulin 

Anti-BiP Goat anti-rabbit IgG 

 

2.18. Proteasome activity assay 

Proteasome activity can be determined by measuring the intensity of fluorescence 

derived from the cleavage of a labeled peptide (Suc-LLVY-AMC), a substrate for enzymes 

with chemotrypsin-like activity.102  

The three different cell lines were seeded in 60mm dishes and maintained in culture until 

90% of confluence was reached. At this point, culture medium was removed and cells were 

washed with PBS. Then, proteasome assay lysis buffer (Appendix) was added to the culture 

plates placed on ice and, after an incubation of 5min at RT, cells were scrapped and collected 

to 2ml microcentifuge tubes. Total protein extraction was performed as described in 2.16. 

Protein quantification was obtained through the Bradford method, Bradford reagent was 

obtained from Bio-Rad and absorbance was read in the absorbance microplate reader 

(iMark™ Microplate Reader, Bio-Rad). 

To assess proteasome activity, 20µg of protein were incubated with proteasome activity 

buffer (Appendix) in a black 96 multiwell plate (Costar™) to avoid light interferences, platting 

6 wells for each sample. To eliminate unspecific proteasome activity, the proteasome 

inhibitor MG132 (Sigma) was added to three wells per sample. The fluorescence emitted 

from the cleavage of Suc-LLVY-AMC (Sigma) was accessed in the fluorometer system of 

Synergy 2 (BioTek®), for one hour with reads every 5min, using 360nm wavelength for 

excitation and 460nm for emission. Results were analyzed in the Gen5™ v.1.11.5 software 

(BioTek). Each experiment was performed with triplicates and repeated seven times. 
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2.19. SUnSET Method 

As a strategy to obtain a similar number of cells to perform the assay, 5.0 x 105 cells of 

BEAS-2B Mock cells and BEAS-2B tRNASer cells and 1.0 x 105 cells of NCI-H460 Mock 

cells were seeded in 100mm dishes and maintained in culture for three days. 10µg/ml 

puromycin in 1X PBS was added to the culture medium of each culture dish, in a volume 

corresponding to 10% of culture medium. After 10 min incubation at 37ºC with 5% CO2, the 

culture medium was removed and replaced by fresh culture medium. Cells were once again 

placed in the incubator for 50 min, after which the culture medium was removed and 1X 

PBS was added to wash the culture plate. Cells were detached and pelleted as described in 

2.8.  

Total protein extraction was performed using proteasome assay lysis buffer and as 

described in 2.16 and protein quantification was achieved by the Bradford method, described 

in 2.18. 

Incorporation of puromycin was detected by immunoblotting, so samples were prepared 

to SDS-PAGE. 100µg of total protein was loaded into 10% polyacrylamide gels, separated 

and transferred to nitrocellulose membranes. For the detection of puromycin, membranes 

incubated with anti-puromycin clone 12D10 primary antibody (1:5000 in blocking solution) 

overnight at 4ºC and with goat anti-mouse IgG secondary antibody by 2h at RT, protected 

from the light. Anti-β tubulin was used as internal control and secondary antibody 

fluorescence detection occurred as described in 2.17. 

 

2.20. Insoluble Protein Fraction 

BEAS-2B Mock cells, BEAS-2B tRNASer cells and NCI-H460 Mock cells were seeded 

on 60mm dishes and maintained on culture until about 90% confluence was reached. Cells 

were detached and pelleted, as described before, and suspensions with 5.0 x 106 cells were 

aliquoted after total cell counting in a Neubauer chamber.  

To perform protein extraction, cellular pellets were resuspended in protein lysis buffer 

and maintained on ice for 30min. Meanwhile, samples were sonicated in a Branson Sonifier 

S-250A (Fisher Scientific). Then, samples were centrifuged for 15min at 2300g and at 4ºC 

in a Centrifuge 5415R (Eppendorf®). Supernatants were collected and five µl were kept 

apart to quantify total protein with the BCA method. The supernatant was centrifuged for 
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20min at 16000g, 4ºC. At this point, the supernatant (the soluble protein fraction) was 

separated from the pellet (the insoluble fraction). The pellet was ressuspended in protein 

lysis buffer and 10% Triton X-100. Another centrifugation was performed for 20min at 

16000g and at 4ºC. To finish, the supernatant was discarded and the pellet was resuspended 

in 50 µl of protein lysis buffer. 

Relative expression of insoluble protein fraction was obtained though SDS-PAGE, as 

described in 4.6. Samples were solubilized with 2% urea SDS loading buffer (Appendix), 

denatured at 95ºC in the Thermomixer Comfort (Eppendorf®) and loaded into 10% 

polyacrylamide gels. Then, gels were stained with Coomassie Brilliant Blue (Appendix) 

during 2h and the excess was removed with distaining solution (Appendix). Gels were scanned 

in the Odyssey Infrared Imaging System (LI-COR, Biosciences Inc.) and data was obtained 

with the software Odyssey v3.0.16 (LI-COR, Biosciences Inc.). This assay was performed 

with triplicates and repeated three times. 

 

2.21. Statistical analysis 

Statistical analysis was performed in the GraphPad Prim® v6.01 software, applying the 

one-way ANOVA test with Tukey post-test for all the experiments except for proliferation 

assay, which was analyzed with two-way ANOVA test with Tukey post-test.  
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IX. Results 

3.1.Stable cell lines construction 

To obtain the three stable cell lines two different approaches were applied. BEAS-2B 

Mock cell line and BEAS-2B tRNASer cell line were obtained through electroporation while 

NCI-H460 Mock cell line was obtained by lipotransfection. 

The pIRES2-DsRED plasmid contains the coding sequence for the DsRed Express2 

fluorescent protein, therefore 48h after transfection it was possible to detect the integration 

of plasmid in cells through fluorescent microscopy and images of non- and transfected 

BEAS-2B are shown in Figure 8 as well images of non- and transfected NCI-H460 cells are 

shown in Figure 9. 

 

               

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 8. A. BEAS-2B cells non-transfected and stained with Hoechst dye (20x). B. BEAS-2B cells 

transfected with plasmid pIRES2-DsRED and stained with Hoechst dye (20x). 

Figure 9. A. NCI-H460 cells non-transfected and stained with Hoechst dye (20x). B. NCI-H460 cells 

transfected with the empty pIRES2-DsRED plasmid and stained with Hoechst dye (20x). 
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 To ensure that stable cell lines retained the plasmid in their genomes a PCR was 

performed and its products were sequenced to check if no mutations occurred. Results from 

PCR (Figure 10) confirm the genome’s integration of pIRES2-DsRED plasmid containing the 

tRNASer in BEAS-2B tRNASer cell line and the empty pIRES2-DsRED plasmid in BEAS-

2B Mock cell line and NCI-H460 Mock cell line. Also, the results from sequencing (Figure 

11) ensure the absence of mutations.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. pIRES2-DsRED plasmid PCR amplification. Lane 1: ladder; Lane 2: negative control; Lane 3: 

BEAS-2B Mock cells; Lane 4: BEAS-tRNASer cells; Lane 5: NCI-H460 Mock cells. 

Figure 11. Sequencing of BEAS-2B tRNASer cells PCR products. In the highlighted zone is the tRNASer(AGA) 

anticodon. 



 

49 

 

3.2. Phenotypic Profilling 

a. Cellular Viability 

Cellular viability was assessed by determining the number of viable cells applying the 

Trypan Blue dye exclusion test. This test is based on the assumption that live cells have 

intact membranes that exclude particular dyes, such as trypan blue. So, nonviable cells 

present blue stained cytoplasm while viable cells have no staining.103 The percentage (%) of 

viability resulted from the ratio between the number of live cells and the total number of 

cells and it is represented in Figure 12.  

 

 

 

 

 

 

 

 

 

 

b. Cellular Proliferation 

Cellular proliferation was accessed to verify if deregulation of tRNA pool promotes 

alterations in the proliferative capacity of BEAS-2B tRNASer cells. To do so, cells from the 

three cell lines were counted in a Neubauer chamber excluding nonviable cells, according to 

the trypan blue exclusion principle. The first counting was done before their doubling, at 0h, 

and over the next three days: after 24h, 48h and 72h. Results are represented in Figure 13. 

 

 

Figure 12. Effect of pIRES2-DsRED plasmid on cell viability. No differences are observed. Graphic represents 

mean ± SD of three independent experiments. Statistical analysis was performed using the One-Way ANOVA 

with Tukey’s post-test (p > 0.05). 
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Figure 13. Proliferation capacity of the three cell lines. NCI-H460 Mock cell line has higher proliferation 

capacity than BEAS-2B tRNASer cell line and the control. No differences are observed between BEAS-2B Mock 

and BEAS-2B tRNASer cell lines. Graphic represents mean ± SEM of three independent experiments. Statistical 

analysis was performed using the Two-Way ANOVA with Tukey’s post-test (***p < 0.001). 
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3.3.Tranformation Ability 

The anchorage-dependent colony formation assay was done to access the transformation 

ability of each cell line through their capacity to form colonies consisting in 50 cells, at 

least104 (Figure 14). 

 

 

This assay was performed to characterize the unlimited reproductive capacity of 

BEAS-2B tRNASer cells and compare it to cancer cells colony formation capacity. Results 

are shown in Figure 15.  

 

 

 

 

  

 

 

 

 

 

Figure 14. Anchorage-dependent colony formation assay. Cells were seeded at low density to assure their 

individualization and were maintained in culture for two weeks. Then colonies were fixed, stained and 

counted. A. BEAS-2B Mock cells; B. BEAS-2B tRNASer cells; C. NCI-H460 Mock cells. 

Image represents results from one independent experiment. 

 

Figure 15. Evaluation of transformation ability in vitro, based on the number of colonies. Both BEAS-2B 

tRNASer and NCI-H460 Mock cells showed higher tumorigenic capacity when compared with the control. No 

statistical significant differences were observed between BEAS-2B tRNASer cell line and NCI-H460 Mock 

cell line. Graphic represents mean ± SEM of four independent experiments. Statistical analysis was performed 

using the One-Way ANOVA with Tukey’s post-test (*p < 0.05; ***p < 0.001). 
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3.4.Study of Proteotoxic Stress Induction and Activation of Protein Quality Control 

Pathways 

Despite the protein quality control systems, errors still occur during protein synthesis, 

which can prompt proteotoxic stress resulting from the toxic character of aberrant proteins 

that became nonfunctional and aggregate.49 Proteotoxic stress and quality control pathways 

activation were evaluated in this study by assessing chaperones availability, protein 

synthesis, activation of UPR and UPS systems and insoluble protein fraction evaluation. 

These mechanisms were chosen based on previous results by co-workers indicating their 

alteration when facing proteotoxic stress conditions. 

 

a. Expression of chaperones 

The western blot assay was performed to assess the expression of Hsp90α, Hsp70 and 

the small Hsp27 (Figure 16) and the results from their relative expression are shown in Figure 

17. 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 16. Expression of Hsp90α, Hsp70 and Hsp27. β-tubulin represents the internal control. Total protein 

was extracted from BEAS-2B Mock cells (lanes 1, 2 and 3), BEAS-2B tRNASer (lanes 4, 5 and 6) and NCI-

H460 Mock cells (lanes 7, 8 and 9). 10% polyacrylamide gels were loaded with 50µg of total protein. Image 

represents results from one independent experiment. 
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Figure 17. A. Relative expression of Hsp90α. Statistical analysis indicates decreased expression of Hsp90α in NCI-

H460 Mock cells comparing with control and BEAS-2B tRNASer cells. No differences in the expression of Hsp90α 

are observed between control and BEAS-2B tRNASer. Graphic represents mean ± SEM of eight independent 

experiments. Statistical analysis was performed using the One-Way ANOVA with Tukey’s post-test (*p < 0.05; ***p 

< 0.001). B. Relative expression of Hsp70. Statistical analysis indicates decreased expression of Hsp70 in NCI-H460 

Mock cells comparing with control and BEAS-2B tRNASer cells. No differences are observed between control and 

BEAS-2B tRNASer. Graphic represents mean ± SEM of three independent experiments. Statistical analysis was 

performed using the One-Way ANOVA with Tukey’s post-test (*p < 0.05). C. Relative expression of Hsp27 

Statistical analysis indicates decreased expression of Hsp27 in NCI-H460 Mock cells comparing with control and 

BEAS-2B tRNASer. No differences are observed between control and BEAS-2B tRNASer. Graphic represents mean ± 

SEM of four independent experiments. Statistical analysis was performed using the One-Way ANOVA with Tukey’s 

post-test (***p < 0.001). 

β-tubulin was used as internal control and data was normalized to the control in all experiments. 
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b. Protein Synthesis Rate 

Almost all types of stress prompt reduced translation at global levels as a strategy to 

decrease energy costs and production of proteins that could be prejudicial in the demand 

against cellular stress. At the same time, synthesis of proteins that support cell survival under 

stress is favored.23  

The Surface Sensing of Translation (SUnSET) method represents a strategy to evaluate 

the protein synthesis rate. It is based on the incorporation of puromycin, an analog of 

aminoacyl tRNAs, into nascent polypeptide chains, inhibiting its elongation. Thus, 

puromycin incorporation directly infers about in vitro translation rate.105 Detection of 

puromycin was done by western blot and results are represented in Figure 18. 

 

c. Unfolded Protein Response Activation 

The stress sensor BiP is the main player of the UPR since it recognizes and binds 

unfolded proteins during ER stress, aiming to restore its conformational structure. This leads 

to BiP dissociation from IRE1α, PERK and ATF6 which become activated and up-regulates 

genes that encode proteins involved in protein folding, insurance of its quality and ERAD 

activation.57  

Figure 18. A. Relative rate of protein synthesis. β-tubulin was used as internal control and data was 

normalized to the control. Statistical analysis indicates increased relative rate of protein synthesis in NCI-H460 

Mock cells compared with control and BEAS-2B tRNASer. No differences are observed between control and 

BEAS-tRNASer cells. Graphic represents mean ± SEM of four independent experiments. Statistical analysis 

was performed using the One-Way ANOVA with Tukey’s post-test (***p < 0.001). 

B. Expression of puromycin. β-tubulin represents the internal control. Total protein was extracted from 

BEAS-2B Mock cells (lane 1), BEAS-2B tRNASer cells (lane 2) and NCI-H460 Mock cells (lane 3). 10% 

polyacrylamide gels were loaded with 100µg of total protein. Image represents results from one independent 

experiment. 
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Relative expression of BiP in the three cell lines was assessed by western blot and results 

are observed in Figure 19. 

 

 

d. Ubiquitin-Proteasome System Activation 

The UPS is an important system to retain the equilibrium between protein synthesis and 

protein destruction, controlling proteins’ turn over and maintaining the homeostasis.57 The 

26S proteasome is an ATP-dependent proteolytic complex consisting in two subunits, the 

20S proteolytic core and the 19S ATP-dependent regulatory cap, which degrades 

polyubiquitinated polypeptide chains to ensure the elimination of damaged or no longer 

essential proteins.102  

Ubiquitin is involved in the regulation of proteolysis as well as other biological 

functions, namely DNA repair, autophagy and signal transduction. The polyubiquitination 

of proteins allows protein unfolding and degradation in the 26S proteasome.106,107 The 

relative protein ubiquitination was assessed by western blot and results are shown in Figure 

20. 

Figure 19. A. Relative expression of BiP. β-tubulin was used as internal control and data was normalized to 

the control. Statistical analysis indicates increased relative expression of BiP in BEAS-2B tRNASer cells and 

NCI-H460 Mock cells compared to the control. No differences are observed between BEAS-tRNASer cells and 

NCI-H460 Mock cells. Graphic represents mean ± SEM of five independent experiments. Statistical analysis 

was performed using the One-Way ANOVA with Tukey’s post-test (*p < 0.05); ***p < 0.001).  

B. Expression of BiP. β-tubulin represents the internal control. Total protein was extracted from BEAS-2B 

Mock cells (lane 1), BEAS-2B tRNASer cells (lane 2) and NCI-H460 Mock cells (lanes 3). 8% polyacrylamide 

gels were loaded with 60µg of total protein. Image represents results from one independent experiment. 
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Proteasome activity was determined by measuring the intensity of fluorescence derived 

from the cleavage of a labeled peptide (Suc-LLVY-AMC), a substrate for enzymes with 

chymotrypsin-like activity102 and results are represented in Figure 21.  

 

  

 

 

 

 

 

 

 

 

Figure 21. Relative proteasome activity. Statistical analysis indicate increase in the relative proteasome activity 

in BEAS-2B tRNASer cells compared with the control as well as in NCI-H460 Mock cells. No differences are 

observed between BEAS-2B tRNASer cells and NCI-H460 Mock cells. Graphic represents mean ± SEM of seven 

independent experiments. Statistical analysis was performed using the One-Way ANOVA with Tukey’s post-test 

(**p < 0.01; ***p < 0.001). 

Figure 20. A. Relative protein ubiquitination. β-tubulin was used as internal control and data was normalized 

to the control. No differences are observed between control, BEAS-2B tRNASer cells and NCI-H460 Mock cells. 

Graphic represents mean ± SEM of five independent experiments. Statistical analysis was performed using the 

One-Way ANOVA with Tukey’s post-test. B. Expression of ubiquitin. β-tubulin represents the internal control. 

Total protein was extracted from BEAS-2B Mock cells (lanes 1, 2 and 3), BEAS-2B tRNASer cells (lanes 4, 5 

and 6) and NCI-H460 Mock cells (lanes 7, 8 and 9). 10% polyacrylamide gels were loaded with 50µg of total 

protein. Image represents results from one independent experiment. 
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e. Insoluble protein fraction 

To verify if alterations exist in protein insoluble profiles, we analyzed insoluble protein 

fractions through SDS-PAGE and results are represented in Figure 22. 

 

 

 

Figure 22. A. Relative insoluble protein expression. Data was normalized with the total protein concentration 

and to the control. Statistical analysis indicates decrease of relative insoluble protein fraction in BEAS-2B tRNASer 

cells and in NCI-H460 Mock cells. Graphic represents mean ± SEM of three independent experiments. Statistical 

analysis was performed using the One-Way ANOVA with Tukey’s post-test (***p < 0.001). B. Expression of 

insoluble protein fraction. Insoluble protein fraction was extracted from BEAS-2B Mock cells (lanes 1 and 2), 

BEAS-2B tRNASer cells (lanes 3 and 4) and NCI-H460 Mock cells (lanes 5 and 6). 10% polyacrylamide gels were 

loaded with 20µl of insoluble protein fraction. Image represents results from one independent experiment. 
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X. Discussion 

Differential expression of tRNAs may represent a mechanism of translational control 

through the codon usage of specific genes.85,108 Between human tissues there are differences 

in individual tRNA expression correlated with the codon usage of highly-expressed tissue 

specific genes.85 The deregulation of tRNA pool and mutations in tRNA genes are associated 

with human diseases.109 Also, deregulation of the translational machinery is common in 

cancer cells and it has been proposed as a trigger for the acquisition of the malignant 

phenotype.84 Elevated levels of tRNAs have already been documented in breast cancer in a 

specific fashion since there is a preferential overexpression of tRNAs accordingly with the 

chemical properties of their cognate amino acids.85  

To date, data about the effects of tRNA overexpression and how cells respond to it are 

very limited. In this work, a model to study the effects of tRNASer overexpression in BEAS-

2B cells was successfully generated, since results from PCR and sequencing insure the 

plasmids’ integration and stability, and the absence of differences in cellular viability 

between the three cell lines excluded the possibility of plasmid toxicity. Therefore, a 

comparative analysis between the effects derived from tRNASer overexpression and the 

acquisition of a malignant phenotype in vitro was possible. BEAS-2B cell line and NCI-

H460 cell line were already used to infer about the acquisition of malignant features by other 

researchers.110 

Nevertheless, it should be noted that the profile of tRNA pool in cells with induced tRNA 

overexpression is dependent on different factors, such as tRNA identity, cells’ genetic 

background and the site of its integration in the genome.86 Also, it is still unknown the role 

of individual tRNAs in different cell types and their effect in the transcriptome and the 

cellular physiology and how they are affected by these two factors.11 

 

Cellular Proliferation 

In normal cells the production and release of growth-promoting signals is tightly 

controlled so cells can enter and progress through the cell cycle in conditions that favor 

homeostasis. However, deregulation of growth and proliferation promoting signals is 

obvious in cancer cells, which leads to unregulated cell cycle divisions and aberrant cell 

proliferation.66 Proliferation promoting signals are related with other biological properties 
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such as cell growth, firmly expressed by the bigger cell size, and the energy metabolism, 

which is typically altered in cancer cells.66 In this context, our study demonstrated higher 

proliferation capacity in NCI-H460 cells when compared with BEAS-2B derived cell lines, 

as early as 24h.  

When comparing BEAS-2B tRNASer cells to the control no differences are observed in 

their proliferative capacity. However, Pavon-Eternod et al. verified that induced 

overexpression of tRNAi
Met in normal breast cells was enough to prompt increase in 

proliferation capacity but overexpression of other tRNAs failed to do so.86 Withal, the same 

research group verified that the different range of doubling times between normal and cancer 

breast cells has no correlation with mitochondrial and nuclear global tRNA content.85 

 

Transformation Ability 

The transformation ability of cells with induced tRNA overexpression in BEAS-2B 

tRNASer cells is equivalent to that observed in NCI-H460 Mock cells suggesting that 

overexpressing tRNASer is enough to prompt the acquisition of transformation ability in vitro 

in a level comparable with cancer cells. This represents further evidence for the hypothesis 

that deregulation of translational machinery can be a driving force for cellular 

transformation.111 Similarly, De Marco et al. observed that BEAS-2B cells carrying a 

mutation on AKT1 do not show alterations in proliferation capacity in complete medium but 

increased tumorigenic capacity demonstrated by higher transformation ability in vitro and 

induction of tumor formation in vivo.112 

However, it should be noted that assessment of transformation ability was carried out in 

vitro conditions that do not mimic in situ microenvironment, like cell-to-cell interactions, 

oxygen and nutrient availability and pH levels. Thus, it is not possible to ensure the behavior 

of these cells in vivo and so in vivo assays should be performed to evaluate the influence of 

tRNA pool deregulation in the acquisition of tumorigenic capacity.  

 

Proteotoxic Stress Induction and Activation of Protein Quality Control Pathways 

A study performed by Stoletzki and Eyre-Walke, provided evidences that codon usage 

in E. Coli is adapted to highly expressed genes to reduce the energy costs derived from 

missense errors that can lead to non- or misfunctional proteins production.113 In multicellular 

eukaryotes the quantification of gene expression and tRNA abundance are difficult due to 
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their variation between tissues and developmental stages.114 However, it was observed a 

positive correlation for the adaptation of codon usage to higher expressed genes, supporting 

the hypothesis that the equilibrium between tRNA pool and codon usage may increase 

translation accuracy and efficiency in a demand to reduce mistranslation.114–116 Thus, we 

cannot exclude the possibility of misfolded protein synthesis derived from tRNA pool 

perturbation by overexpression of tRNASer.  

 

Expression of Chaperones 

Surprisingly, the results of HSPs relative expression do not agree with the “addiction to 

chaperones” hypothesis, which dictates that high levels of chaperones are required to 

stabilize the increased protein load containing aberrant proteins, characteristic of cancer 

cells.53 In our study, a downregulation of Hsp90α, Hsp70 and Hsp27 is clear in NCI-H460 

Mock cells but no differences were observed in their expression in BEAS-2B derived cell 

lines. 

Recently, Gallegos Ruiz et al. performed an integrated genome wide screening to 

analyze resected tumor samples from NSCLC patients and described a deletion on 

chromosome 14. This deletion was presented in 44% of samples and correlated with overall 

survival, comparing with NSCLC patients with normal gene dosage at the same locus.90 The 

study revealed that this deletion only affects the expression of HSPAA1 and the consequent 

lower levels of Hsp90α seems to have a crucial role to promote sensitivity to therapeutics, 

probably derived from the more unstable status of oncoproteins when Hsp90α is expressed 

at lower levels.90 A tendency for lower levels of Hsp90α in BEAS-2B tRNASer cells is also 

observed but further studies are required to unveil the regulation of HSPAA1 in BEAS-2B 

tRNASer. 

Despite the contribution of Hsp70 to achieve the malignant phenotype, a protective role 

in lung cancer development is also supported by high levels of this chaperone. 

Overexpression of Hsp70/Hsc70 can sequester mutant p53 and reduce the inhibition of wild-

type p53 due to association with mutant p53. In this way, wild-type p53 is free to perform 

its antiproliferative activity, suggesting that high levels of Hsp70 can be detrimental to 

maintenance of tumorigenesis and can be related with survival advantage.117,118 Note that 

mutations in TP53 are present in 50% of NSCLC cancers.119 



 

62 

 

Despite Hsp27 being normally overexpressed amongst different tumors89, Huang Qi et 

al. did not observe differences in its expression in tissue samples from patients with NSCLC, 

suggesting that the high levels of Hsp27 detected in other tumors are related with the 

different functions of Hsp27 in different cell types.120 Alain Michils et al. did not observed 

differences in Hsp27 expression NSCLC samples as well, instead, they detected low levels 

of Hsp27 in a small set of samples.89  

Nonetheless, even in cells from normal lung different HSP expression patterns are 

detected.118 In a study performed by Marcel Bonay et al. it was observed that only a set of 

normal human lung cells were positive for Hsp90α and Hsp70, meaning that only a subset 

of cells in lung expresses high levels of HSPs. Similarly, they suggest that high levels of 

inducible Hsp70 and Hsp90 reflect the differentiated states of bronchial epithelial cells, since 

they are required to specific functions according to the physiological state.121  

Considering the dynamic expression of HSPs in the different types of normal and cancer 

cells and even in different physiological and differentiation states, other cell lines from 

normal lung and cancer lung tissues should be tested to better understand the behavior of 

HSPs in normal and lung cancer cells and in the presence of an inducible tRNA 

overexpression. Regarding the cells in study, NCI-H460 cell line was obtained from pleural 

effusions of patients with large cell carcinoma, which is commonly located in the periphery 

of lung, while BEAS-2B cell line has its origin in bronchus’ epithelium. The different origins 

of cells can also have influence in the unexpected results and derail the normalization with 

the control. 

Still, it should be noted that in this study the total protein was obtained from cell cultures 

in vitro. The model in vitro abolishes the great influence of microenvironment of cancer 

cells, particularly the hypoxia, the low pH and nutrient availability, which are important 

sources of proteotoxic stress.57 

 

Protein Synthesis Rate 

The protein synthesis rate is closely related with the protein and DNA content and the 

cell size.122 Accordingly, the results from protein synthesis rate show that deregulation of 

tRNA pool does not promote alterations in protein synthesis rate in vitro, but a clear increase 

in protein synthesis rate is observed in NCI-H460 Mock cells The tumorigenic process is 

accompanied by increased protein load related with overexpression of oncogenes and 
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polyploidy.53 Particularly, higher levels of anti-apoptotic and pro-mitotic proteins are 

common in cancer cells that are accompanied by overexpression of eIF2α.123 Increased 

levels of this factor allows the cell to maintain the increased metabolism and to progress in 

the cell cycle. At the same time, higher rates of protein synthesis allows to outdo metabolic 

consequences of stress conditions intrinsic to cancer cells, namely environmental stressors 

and free radicals.123 Thus, it should be interesting to quantify the eIF2α expression and its 

phosphorylation status to explore the mechanisms underlying the protein synthesis 

deregulation in NCI-H460 Mock cells.  

 

Unfolded Protein Response Activation 

Cancer cells are known to be under ER stress, triggered by the particular features of the 

microenvironment, thus elevated BiP levels in cancer cells are required to activate pro-

survival and cytoprotective responses to counteract this chronic stress. BiP may interact 

directly with apoptotic pathway intermediates and block caspase activation, leading to 

apoptosis inhibition and cell survival, being overexpressed in malignant forms of cancer 

such as lung cancer.57,124 Qi Wang et al. detected an overexpression of BiP in cancer lung 

tissues comparing with normal lung tissues, without differences between types of lung 

cancer despite their intrinsic morphological and molecular heterogeneity.125 Similarly, in our 

study a clear increase in BiP expression is observed in NCI-H460 Mock cells and BEAS-2B 

tRNASer cells, which adopted an intermediate phenotype. Notably, there are evidences for 

an increase in BiP expression correlated with the tumor stage, suggesting that elevated 

expression of BiP can be a feature of lung cancer which is correlated with its origin and 

progression.125 

Therefore, it seems that tRNA pool deregulation by overexpression of a unique tRNA is 

enough to activate the UPR response. However, the activation of the different branches of 

UPR should be analyzed to understand if the activation of UPR in BEAS-2B tRNASer occurs 

similarly to UPR activation and modulation in cancer cells. 

 

Ubiquitin-Proteasome System Activation 

UPS is the major eukaryotic proteolytic pathway responsible for the elimination of most 

of the soluble misfolded proteins.46 Upregulation of UPS system is evident in cancer cells as 

a strategy to reduce the accumulation of proteins and so to evade apoptosis. Also, proteasome 
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is responsible for degradation of cell cycle regulatory proteins, allowing cells to bypass cell 

cycle checkpoints. Inhibition of 26S proteasome activity has been studied as a therapeutic in 

lung cancer.126,127  

Similarly to the comparative study between cell lysates from lung carcinomas and cell 

lysates from non-cancerous tissues performed by Alain Michils et al89, no differences were 

observed in protein ubiquitination between the different cell lines in our study but apparently 

proteins with higher molecular size are more ubiquitinated. Considering its involvement in 

basic cellular processes whose perturbation leads to malignant transformation, these results 

were not expected.89 Nonetheless, results from proteasome activity show that deregulation 

of tRNA pool is enough to boost the proteasome activity at similar levels observed in NCI-

H460 Mock cells, suggesting an increasing demand to eliminate aberrant proteins.  

 

Therefore, results suggest that UPR and UPS quality control pathways were activated in 

response to proteome instability in BEAS-2B tRNASer. Since no alteration in size, 

proliferation capacity and in protein synthesis rate are observed, contrarily to NCI-H460 

Mock cells, it seems that deregulation of tRNA pool derived from tRNASer overexpression 

does not trigger an increase in protein load, but it rather affects proteins that are being 

produced as well as translation speed and accuracy of those proteins. 

In cancer cells the activation of these pathways is chronic and cancer cells can adapt to 

it and use to their advantage the cytoprotective benefits of its activation to survive and 

progress.57 

 

Insoluble Protein Fraction 

The analysis of insoluble protein fractions indicates a progressive reduction of insoluble 

proteins from control cells to NCI-H460 Mock cells suggesting that induced tRNASer 

overexpression leads to alterations in protein expression profiles. Probably, these alterations 

are advantageous to the acquisition of the malignant phenotype, since it is visible that BEAS-

2B tRNASer cells adopted an intermediate phenotype.  

Cancer cells have quantitative and qualitative alterations in protein expression, with a 

preferential expression of key proteins in tumor progression and development, such as 

growth factors, cell-cycle promoters and oncoproteins, particularly c-Myc and VEGF, the 

last known to be upregulated in NSCLC tumors.76,111 This alterations in insoluble protein 
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expression in BEAS-2B tRNASer and in NCI-H460 Mock cells can be associated with those 

alterations in gene expression profiles due to tRNA pool deregulation. This reduction in the 

insoluble protein content can also be explained by a reduction in protein aggregates, whose 

toxic character is incompatible with the higher metabolism of cancer cells, which upregulate 

autophagy to their elemination.  
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XI. Conclusion and Future Work Suggestions 

In general, cells overexpressing the tRNASer seem to acquire an intermediate phenotype 

between control and cancer cells, thus we can conclude that tRNA pool deregulation by a 

unique tRNA overexpression is enough to the acquisition of an intermediated behavior 

suggestive of progressive acquisition of the malignant phenotype. The activation of protein 

quality control pathways show that tRNASer overexpression arouse interferences in the 

stability of the proteome but more studies should be performed to confirm and unveil its 

origin, namely through mass spectrometry analysis.  

To better understand the mechanism of UPR activation the IRE1α, PERK and ATF6 

branches should be assessed by western blot, allowing to unveil if the modulation of UPR in 

BEAS-2B tRNASer cells is equivalent to that observed in NCI-H460 Mock cells.  

Autophagy is essential to eliminate protein aggregates and so its study would allow to 

understand if the alterations in insoluble protein fractions are mainly a byproduct of gene 

expression patterns alterations or an increase in autophagy derived from accumulation of 

aberrant proteins. To do so, western blot could be applied. 

Considering the evidences that cancer cells express higher levels of tRNAs and that 

induction of an unique tRNA isoacceptor leads to other tRNAs overexpression86, through 

the tRNA microarray technology we could confirm the tRNASer overexpression in BEAS-

2B tRNASer cell line and assess other perturbations in the tRNA pool. Likewise, patters of 

tRNA pool in NCI-H460 Mock cell line would be obtained, allowing to perform a correlation 

with the tRNA patterns in BEAS-2B tRNASer cells. Besides, the application of cDNA 

microarray technology would be useful to confirm alterations in gene expression patterns in 

BEAS-2B tRNASer cells and to establish a correlation with gene expression profiles in NCI-

H460 Mock cells. Thereby, a correlation between tRNA patterns and the codon usage of 

specific genes in BEAS-2B tRNASer would be possible and we could understand if tRNA 

pool deregulation is a trigger to preferential expression of cancer-related genes. 

 

This study shows that deregulation of the translational machinery is involved in the 

acquisition of the malignant phenotype and it represents a step for the development of a 

screnning mechanism for the characterization of malignancy through a simple tRNA pattern 

analysis. 
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