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Resumo 
Resumo 

 

Diplodia corticola é considerado o fungo mais virulento associado ao declínio 
do sobreiro, infectando não só espécies de Quercus (na maioria Q. suber e 
Q. ilex), como também videiras (Vitis vinifera) e eucaliptos (Eucalyptus sp.). 
Este fungo endofítico é também um patógeno, cuja virulência se manifesta 
reiteradamente com o aparecimento de stress na planta. Considerando que a 
infeção culmina frequentemente na morte do hospedeiro, a sua propagação 
gera uma crescente preocupação a nível ecológico e socio-económico. Os 
mecanismos moleculares da infeção permanecem até agora largamente 
desconhecidos. 
Por conseguinte, o objectivo deste estudo é revelar potenciais fatores de 
virulência implicados na infeção de D. corticola. Este conhecimento é 
essencial para delinear a estrutura molecular que lhe permite invadir e 
proliferar nos seus hospedeiros, causando doença. Como os efetores 
utilizados são na sua maioria proteínas, adoptou-se uma abordagem 
proteómica.  
Foram realizados testes de patogenicidade in planta para seleccionar duas 
estirpes de D. corticola com graus de virulência distintos, para os estudos 
que se subseguiram.  
À semelhança de outros fungos filamentosos, D. corticola secreta 
concentrações diminutas de proteínas in vitro, assim como elevados níveis 
de polissacáridos, duas características que dificultam a análise do 
secretoma. Assim, compararam-se vários métodos de extracção de 
proteínas extracelulares para averiguar o seu desempenho e compatibilidade 
com a separação electroforética por 1D e 2D. A precipitação de proteínas 
com TCA-acetona e TCA-fenol foram os métodos mais eficientes, tendo-se 
seleccionado o primeiro para os estudos ulteriores.  
As proteínas foram extraídas, separadas por 2D-PAGE, digeridas com 
tripsina e os péptidos resultantes analisados por MS/MS. A sua identificação 
foi efetuada por sequenciação de novo e/ou por pesquisa no MASCOT. 
Deste modo, identificaram-se 80 proteínas extracelulares e 162 
intracelulares, um marco para a família Botryosphaeriaceae que contém 
apenas um membro com o proteoma caracterizado. Realizou-se também 
uma extensa análise comparativa dos géis 2D para evidenciar as proteínas 
expressas de forma diferenciada durante a mimetização de infeção. Foram 
ainda comparados os perfis proteicos de duas estirpes com diferentes graus 
de virulência. 
Em suma, caracterizou-se pela primeira vez o secretoma e proteoma de D. 
corticola. Os resultados obtidos contribuiram ainda para a elucidação de 
alguns aspetos da biologia do fungo. A estirpe avirulenta contém um leque 
variado de proteínas que facilitam a adaptação a vários substratos, e as 
proteínas identificadas sugerem que este fungo degrada os tecidos dos 
hospedeiros recorrendo a reações de Fenton. Além disso, constatou-se que 
esta estirpe metaboliza ácido aminobutírico, uma molécula que poderá ser o 
factor desencadeante da transição do estado latente para patogénico. Por 
fim, o secretoma inclui potenciais factores de patogenicidade como a 
deuterolisina (peptidase M35) e a cerato-platanina, proteínas que poderão 
desempenhar um papel activo no modo de vida fitopatogénico do fungo. De 
forma geral, os resultados sugerem que D. corticola tem um estilo de vida 
hemibiotrófico, transitando de uma interacção biotrófica para necrotrófica 
após a ocorrência de distúrbios fisiológicos da planta. Esta percepção é 
essencial para o futuro desenvolvimento de medidas efectivas de protecção 
das plantas. 
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Abstract 
Abstract 

 

Diplodia corticola is regarded as the most virulent fungus involved in cork oak 
decline, being able to infect not only Quercus species (mainly Q. suber and 
Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). 
This endophytic fungus is also a pathogen whose virulence usually manifests 
with the onset of plant stress. Considering that the infection normally 
culminates in host death, there is a growing ecologic and socio-economic 
concern about D. corticola propagation. The molecular mechanisms of 
infection are hitherto largely unknown.  
Accordingly, the aim of this study was to unveil potential virulence effectors 
implicated in D. corticola infection. This knowledge is fundamental to outline 
the molecular framework that permits the fungal invasion and proliferation in 
plant hosts, causing disease. Since the effectors deployed are mostly 
proteins, we adopted a proteomic approach.  
We performed in planta pathogenicity tests to select two D. corticola strains 
with distinct virulence degrees for our studies.  
Like other filamentous fungi D. corticola secretes protein at low 
concentrations in vitro in the presence of high levels of polysaccharides, two 
characteristics that hamper the fungal secretome analysis. Therefore, we first 
compared several methods of extracellular protein extraction to assess their 
performance and compatibility with 1D and 2D electrophoretic separation. 
TCA-Acetone and TCA-phenol protein precipitation were the most efficient 
methods and the former was adopted for further studies. 
The proteins were extracted and separated by 2D-PAGE, proteins were 
digested with trypsin and the resulting peptides were further analysed by 
MS/MS. Their identification was performed by de novo sequencing and/or 
MASCOT search. We were able to identify 80 extracellular and 162 
intracellular proteins, a milestone for the Botryosphaeriaceae family that 
contains only one member with the proteome characterized. We also 
performed an extensive comparative 2D gel analysis to highlight the 
differentially expressed proteins during the host mimicry. Moreover, we 
compared the protein profiles of the two strains with different degrees of 
virulence. 
In short, we characterized for the first time the secretome and proteome of D. 
corticola. The obtained results contribute to the elucidation of some aspects 
of the biology of the fungus. The avirulent strain contains an assortment of 
proteins that facilitate the adaptation to diverse substrates and the identified 
proteins suggest that the fungus degrades the host tissues through Fenton 
reactions. On the other hand, the virulent strain seems to have adapted its 
secretome to the host characteristics. Furthermore, the results indicate that 
this strain metabolizes aminobutyric acid, a molecule that might be the 
triggering factor of the transition from a latent to a pathogenic state. Lastly, 
the secretome includes potential pathogenicity effectors, such as deuterolysin 
(peptidase M35) and cerato-platanin, proteins that might play an active role in 
the phytopathogenic lifestyle of the fungus. Overall, our results suggest that 
D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a 
necrotrophic interaction after plant physiologic disturbances.This 
understanding is essential for further development of effective plant 
protection measures. 
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Samenvatting 
Samenvatting 

 

Diplodia corticola behoort tot de meest virulente plantenpathogene 
schimmels en wordt verantwoordelijk geacht voor de achteruitgang van de 
kurkeik populatie. Ze infecteert niet alleen Quercus soorten (voornamelijk Q. 
suber en Q. ilex), maar ook wijnstokken (Vitis vinifera) en eucalyptus 
(Eucalyptus sp.). Deze endofytische schimmel is een pathogeen waarvan de 
virulentie zich meestal manifesteert wanneer de plant een stress ervaart, 
bijvoorbeeld bij droogte. Gelet op het feit dat de infectie meestal fataal is voor 
de gastheerplant, is er een groeiende ecologische en sociaal-economische 
bezorgdheid over D. corticola. De moleculaire mechanismen vande infectie 
zijn tot nu toe echter grotendeels onbekend. 
Het doel van deze studie was dan ook om potentiële virulentie effectoren 
betrokken bij D. corticola infectie te ontdekken, wat ons een fundamentele 
kennis moet opleveren over het moleculaire arsenaal waarmee de schimmel 
invasie en proliferatie kan uitvoeren in plantgastheren. Aangezien dergelijke 
effectoren meestal eiwitten zijn, kozen we voor proteoomanalyse als 
benadering van de problematiek. 
Wij zijn gestart met het testen van in planta pathogeniciteit testen van 
verschillende stammen op basis waarvan twee D. corticola stammen met 
verschillende virulentiegraadwerden geselecteerd voor verdere studies.  
Zoals andere filamenteuze schimmelssecreteert D. corticola in vitro relatief 
lage gehalten van eiwittenin aanwezigheid van grote hoeveelheden  
polysacchariden, wat de analyse van het secretoom bemoeilijkt. Daarom, 
vergeleken we eerst verschillende methoden voor de extractie van 
extracellulaire eiwitten op basis van hun performantie en compatibiliteit met 
1D en 2D elektroforetische scheiding. Eiwitprecipitatie met TCA-aceton en 
TCA-fenol bleken de meest efficiënte methoden, de eerste methode werd 
uitgekozen voor de verdere analysen. 
Eiwitten werden vervolgens geëxtraheerd en gescheiden via 2D-PAGE, en 
de peptiden werden verder geanalyseerd met MS/MS. De eiwitten werden 
geïdentificeerd door de novo sequentiebepaling en/of MASCOT als 
zoekroutine. Wij konden op deze manier 80 extracellulaire eiwitten en 162 
intracellulaire identificeren, een mijlpaal voor de studies binnen de 
Botryosphaeriaceae familie waarvan tot nu toe van slechts drie leden het 
proteoom werd gekarakteriseerd. Dit werd gekoppeld aan een vergelijkende 
2D-PAGE analyse om differentieel geproduceerde proteïnen betrokken bij 
host-pathogeen interactie te identificeren. Bovendien werden de 
eiwitprofielen van de twee stammen met verschillende virulentievergeleken. 
Kortom, voor het eerst werd het secretoom en proteoom van D. corticolain 
kaart gebracht. De verkregen resultaten kunnen bijdragen tot de opheldering 
van de biologie van de schimmel. De avirulente stam bevat een assortiment 
van proteïnen toe dat het organisme toelaat om zich gemakkelijk aan te 
passen aan diverse omstandigheden en de geïdentificeerde eiwitten 
suggereren dat de schimmel weefsels van de aangetaste plantdoor Fenton 
reacties degradeert. Aan de andere kant, lijkt de virulente stam zijn 
secretoom veel beter aan de gastheerkenmerken te hebben aangepast. 
Bovendien blijkt uit de resultaten dat deze stam aminoboterzuur kan 
metaboliseren, een molecule die misschien wel de activerende factor van de 
overgang van een latente naar een pathogene toestand is.Tenslotte werden 
eiwitten geïdentificeerd, zoals deuterolysin (dipeptidylpeptidase M35) en 
cerato-platanin, die een actieve rol in de plantpathogene levensstijl van de 
schimmel kunnen hebben.Onze resultaten suggereren dat D. corticola een 
hemibiotrophic levensstijl onderhoudt, waarbij het overschakelt van een 
biotrofe naar een necrotrofe interactie ten gevolge van plantenfysiologische 
verstoringen. Deze kennis is van essentieel belang voor de verdere 
ontwikkeling van effectieve bestrijdingsmiddelen. 
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CORK OAK DECLINE 

Cork oak (Quercus suber L.) is an evergreen tree that naturally occurs in the Western 

Mediterranean region, namely in the Iberian Peninsula,  which occupies around 61% of the total 

worldwide cork oak forests (APCOR, 2014d; Pereira et al., 2008). Due to its high longevity (250-

300 years), cork oak forests are a biodiversity hotspot of fauna and flora, that coexist with an 

agro-silvo-pastoral system (APCOR, 2014b; Camilo-Alves, 2014; Pereira et al., 2008). 

Notwithstanding their ecological and social value, cork oak forests' relevance becomes even more 

prominent from an economic perspective due to its renewable bark, the cork. This natural 

product, distinguished by its thickness and high levels of suberin, is periodically harvested (every 

9-12 years), without significant health consequences for the trees (Costa et al., 2015; Oliveira & 

Costa, 2012; Pereira et al., 2008). The traditional transformation of cork in stoppers is the major 

economic use of the tree, absorbing 68% of the cork production (APCOR, 2014d), but its 

properties such as acoustical and thermal insulation, water impermeability and energy 

absorbance are guiding to new applications in industries as diverse as aeronautic, construction 

and footwear (APCOR, 2014a, 2014c; Duarte & Bordado, 2015; Gil, 2015; Silva, 2005). In this 

context, Portugal stands as the worldwide leading country of cork production (49.6%), 

transformation and exportation (64.7%), representing about 2% of the total Portuguese exports 

(713.3 million euros in 2012) (APCOR, 2014d), being therefore an added-value to the Portuguese 

economy. 

However, early in the XXth century the first reports appeared of an abnormal cork oak 

mortality in the Mediterranean basin, and since 1980s severe outbreaks triggered a growing 

ecologic and economic concern around the tree's health (Moreira & Martins, 2005; Sousa et al., 

2007). The disease, called cork oak decline due to a general loss of vigour, is characterized by 

symptoms like branch dieback, foliar chlorosis, wilting and vascular necrosis. Still, the 

symptomatology may vary according to the pattern of disease development between a chronic or 

sudden decline. The first syndrome, most common, develops slowly during several years, 

presenting a gradual loss of foliage that starts on the top of the tree and progressively affects the 

whole crown or, instead, only some peripheric branches (Figure 1 B) (Camilo-Alves et al., 2013; 

Sousa et al., 2007). On the other hand, the sudden decline is characterized by a quick foliar drying 

of the crown (2 to 4 weeks), with the particularity that the leaves remain attached to the 

branches (Figure 1 A). This syndrome is notoriously more aggressive than the chronic decline and 

the only symptom visible is the generalized drying that culminates in cork oak death in one or two 
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seasons (Camilo-Alves et al., 2013; Sousa et al., 2007).  

Considered a complex multifactorial disease, cork oak decline results from the conjugation of 

adverse environmental and anthropogenic factors, such as drought and temperature stress, 

wildfires, soil erosion and alteration of traditional agricultural practices (Acácio, 2009; Bréda et al., 

2006; Catry et al., 2012; Sousa et al., 2007). The recurrence of stressing episodes disturbs the tree 

physiologic status and consequently its resilience, becoming more vulnerable to opportunistic 

pathogens (Correia et al., 2014; Linaldeddu et al., 2011; Marçais & Bréda, 2006; Sousa et al., 2007; 

Wargo, 1996).  

Among the biotic factors already associated to cork oak decline, the root pathogen 

Phytophthora cinnamomi Rands was regarded for a long time as the main fungal pathogen 

associated to the disease (Moreira & Martins, 2005; Sánchez et al., 2002; Scanu et al., 2013; Sousa 

et al., 2007). Extensively studied, it is currently known that P. cinnamomi pathogenicity induces 

root necrosis, decreases the net photosynthetic rate and reduces the physiologic water status of 

the trees (Robin et al., 2001; Sánchez et al., 2002; Sghaier-Hammami et al., 2013). Still, it was 

equally demonstrated that holm oaks (Quercus ilex subsp. rotundifolia L.) are more susceptible to 

Figure 1 | Development pattern of cork oak decline symptomatology: A - sudden decline; B - chronic decline 
(Camilo-Alves, 2014). 
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P. cinnamomi infection than cork oak seedlings, presenting symptoms more severe and a superior 

mortality rate (Camilo-Alves, 2014; Robin et al., 2001). These results reinforce the idea that P. 

cinnamomi contributes to cork oak decline, but might not be the most relevant biotic agent 

involved as previously believed. Besides, other fungi have consistently been recovered from 

declining sites, namely Discula quercina (Cooke) Sacc., Biscogniauxia mediterranea (De Not.) O. 

Kuntze and Diplodia corticola A.J.L. Philips, A. Alves et J. Luque (Alves et al., 2004; Linaldeddu et 

al., 2014, 2011; Luque et al., 2000; Moricca & Ragazzi, 2008; Sánchez et al., 2003), that together 

with P. cinnamomi are regarded as the main fungal pathogens provoking Mediterranean oak 

decline.  

Discula quercina, for instance, occurs on the leaves and twigs of declining oaks, being the 

causal agent of oak anthracnose, a disease characterized by leaves displaying dark-brown spots 

with purplish margins (Linaldeddu et al., 2011; Moricca & Ragazzi, 2008). Nonetheless, its 

frequency is less reported on Q. suber (0.8-4.8%) than on Quercus cerris L. ( 18.6%) (Franceschini 

et al., 2005; Ragazzi et al., 1999), the most vulnerable oak to D. quercina infection (Moricca & 

Ragazzi, 2011). Conversely, B. mediterranea is a predominant fungus of the Q. suber endophytic 

community (16.5-63.7%), mainly in the aerial organs (Franceschini et al., 2005; Linaldeddu et al., 

2011). Despite the infection of these fungi occurs throughout the year, their infective ability 

increases during the rainfall season (Franceschini et al., 2005), being equally responsive to host 

drought stress (Capretti & Battisti, 2007; Linaldeddu et al., 2011; Luque et al., 2000), switching 

from a latent to pathogenic form after a plant stress episode. Well known as the causal agent of 

charcoal canker, B. mediterranea locally colonizes the host xylem and bark tissues, inducing 

necrosis, which eventually accelerates the tree decline (Vannini & Valentini, 1994). Neverthless, 

this fungus continues to be regarded as a secondary weak invader that attacks only vulnerable 

cork oaks.  

Although poorly studied, some pathogenicity assays identified D. corticola (family 

Botryosphaeriaceae) as the most virulent pathogen involved in cork oak decline (Linaldeddu et al., 

2009; Luque et al., 2000), surpassing even the widely studied P. cinnamomi. After stem 

inoculation, Luque et al. (2000) demonstrated that the fungus virulence is equally high in healthy 

and water-stressed cork oak seedlings, causing extensive vascular necrosis that culminated mostly 

on host death. From the plant physiologic point of view, D. corticola spread on vascular tissues 

has a negative impact on gas exchange, unbalancing the host metabolic processes (Linaldeddu et 

al., 2009). Nevertheless, despite this fungus has been considered the dominant pathogen on oak 

declining cankers (Linaldeddu et al., 2014; Sánchez et al., 2003), not always requiring a stress 

event to become pathogenic (Luque et al., 2000), the knowledge about its infection strategy is still 
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limited. 

DIPLODIA CORTICOLA  AS A PHYTOPATHOGENIC FUNGI 

Diplodia corticola infections have been successively reported worldwide not only in Q. suber, 

but also on different oak ecosystems (Q. ilex, Q. agrifolia Née, Q. coccifera L., Q. chrysolepis 

Liebm. or Q. virginiana Mill.), in grapevines (Vitis vinifera L.) or even in eucalypts (Eucalyptus 

globulus Labill.) (Alves et al., 2004; Barradas et al., 2015; Carlucci & Frisullo, 2009; Dreaden et al., 

2011; Linaldeddu et al., 2014; Lynch et al., 2013; Tsopelas et al., 2010; Úrbez-Torres et al., 2010b; 

Varela et al., 2011). The pathogenicity tests carried out on different hosts demonstrated that the 

symptoms induced by the fungus are transversal, causing necrotic lesions around the infection 

point, bleedings, discoloration of the vascular tissues and dieback as well as the formation of 

pycnidia around the inoculation points (Linaldeddu et al., 2009; Lynch et al., 2013; Tsopelas et al., 

2010; Varela et al., 2011). Another observation during infection assays is the fast decline of the 

seedlings, which usually die after 4-6 weeks of inoculation, a pattern already described on cork 

oak forests as sudden decline (Figure 1 A). Moreover, when compared with other species, D. 

corticola is consistently the most aggressive pathogen for the host (Linaldeddu et al., 2014; Lynch 

et al., 2013), which suggests the relevance of this fungus as a key player on oak decline.  

Remarkably, the available information regarding its infection strategy is still scarce. Luque & 

Girbal (1989), for instance, noticed an increase of D. corticola pathogenicity after cork oak 

debarking. This correlation might be associated to a direct entry of the pathogen through 

accidental wounds made during cork stripping. On the other hand, cork removal represents a 

plant stress episode that may trigger the infection (Costa et al., 2004). Likewise, in grapevines the 

Botryosphaeriaceae infections occur primarily in recent pruning wounds made during the rainfall 

season, contemporaneous to the conidia release, that with rain splash dispersion may result in 

infection of the exposed xylem (Úrbez-Torres et al., 2010a; Úrbez-Torres & Gubler, 2011).  

Conversely, a transition from latent to pathogenic lifestyle after debarking is equally plausible. 

Cork harvesting implies a direct water loss on the stripped surface through stem evaporation, 

which implies an additional effort of the trees to avoid trunk dehydration and to maintain the 

water homeostasis, usually scarce on soil during the harvesting season (Oliveira & Costa, 2012). 

Thus, debarking represents a stressing event for cork oaks, favoring the onset of D. corticola 

pathogenicity after cork removal. This is in agreement with the disease triangle postulated in 

plant pathology that justifies the onset of a plant disease with the conjugation of three factors: a 

susceptible plant, a virulent pathogen and a favorable environment (Herman & Williams, 2012). 
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Besides colonizing the stem, there are evidences of D. corticola root colonization of Q. agrifolia 

(Lynch et al., 2013), as well as leaf penetration in Q. suber and Q. cerris (Paoletti et al., 2007), 

although the consequent epidemiologic implications in the field oak decline requires further 

investigations. 

Irrespective of how the fungus gains access to the plant or what triggers the onset of the 

disease, the pathogenicity of D. corticola is deeply associated with phytotoxins. Among the 

phytotoxic metabolites already purified from D. corticola culture filtrates are the diplofuranones A 

and B, diplopyrone, sapinofuranone B, sphaeropsidins A-C and the diplobifuranylones A and B 

(Evidente et al., 2007, 2006, 2003). These secondary metabolites allow the extension of the fungal 

action in distant places from the production site, where they reproduce the disease 

symptomatology (Andolfi et al., 2011; Mӧbius & Hertweck, 2009). This explains the fast disease 

spread observed in D. corticola pathogenicity tests performed in planta, in which it was not 

possible to re-isolate the fungus from affected tissues far from the inoculation point (Mullerin, 

2013). Indeed, it is consensual that the foliar symptoms induced by Botryosphaeriaceae 

pathogens are caused by phytotoxic compounds produced by the fungi in the stem tissues (Abou-

Mansour et al., 2015).  

Considering the D. corticola negative impact on cork oak forests some attempts have already 

been made to control the fungus proliferation. Luque et al. (2008), for instance, selected a range 

of commercial fungicides to be used after cork debarking. Among them, carbendazim was the 

most effective in the field, decreasing about 75% of debarked surface affected by cankers, if 

applied in a time range of 4 hours after debarking. Similar results were obtained in the control of 

Botryosphaeriaceae infection in grapevines, even though the carbendazim field control 

effectiveness was lower in Pitt et al. (2012) (27-41%) than in Amponsah et al. (2012) (93%). 

Despite the protection efficiency observed, the fungicides tested are unspecific for D. corticola, 

which might produce downstream effects on the beneficial endophytic population of cork oak, or 

even in the surrounding soil microbial community. Carbendazim is a systemic fungicide that 

interferes in the fungal β-tubulin subunit assembly, affecting subsequently the fungal 

cytoskeleton and mitosis (Leroux et al., 2002; Yang et al., 2011). Therefore, it is reasonable that 

the growth of other fungi besides D. corticola might be compromised. Furthermore, the trees' 

treatment 4 hours after the cork removal, the time required to improve the permeation of the 

fungicide, is not feasible in the field as Luque et al. (2008) could notice. 

From a biocontrol point of view, Linaldeddu et al. (2005) presented the first evidences of D. 

corticola antagonism by the endophytic community of Quercus spp., namely Trichoderma 

asperellum Samuels, Lieckf. et Nirenberg, T. fertile Bissett and T. harzianum Rifai. Later, Campanile 
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et al. (2007) demonstrated that T. viride Pers. also antagonize D. corticola micelium growth in in 

vitro dual cultures (reduction of 28.5% over control). However, in the antagonistic tests 

performed in planta, T. viride had moderate effects on D. corticola proliferation in Q. cerris and no 

effects at all in Q. pubescens Willdenow. Conversely, Fusarium tricinctum (Corda) Sacc., which 

presented the lowest inhibitory effect in vitro (4.2%), was the most competitive fungus tested in 

both seedlings, reducing significantly the D. corticola infection. Thus, the outcome of antagonistic 

fungal interactions should be regarded as a three-way-interaction, involving not only the 

pathogenic and antagonist fungi, but also the plant (Vinale et al., 2008), which obviously increases 

the complexity of such studies. 

 Notwithstanding the efforts already made to understand the D. corticola proliferation through 

their hosts, the molecular aspects of its pathogenicity still needs to be clarified, in order to 

understand how it suppresses the plant defense mechanism and establishes its parasitism. 

Moreover, this knowledge is fundamental to develop effective disease management strategies. 

PLANT-FUNGAL INTERACTIONS  

Although plants possess several chemical and physical barriers to shield them against biotic 

threats, phytopathogens can overcome them (Egan & Talbot, 2008; Łazniewska et al., 2012). As 

soon as the fungal spores land the plant surface they secrete adhesive molecules, such as 

polysaccharides or glycoproteins, to consolidate the adhesion to the host and to prevent their 

detachment by wind or rainfall (Ikeda et al., 2012; Newey et al., 2007; Tucker & Talbot, 2001; 

Zelinger et al., 2006). After germination, some fungi penetrate into the plants through natural 

openings or wounds, while others have the ability to mechanically pierce the plant cell wall, using 

a specialized germ tube called appressorium (Herman & Williams, 2012; Łazniewska et al., 2012; 

Mendgen et al., 1996; Ryder & Talbot, 2015). This structure employs high turgor pressure to 

breach the plant cell wall physical barrier, acting often in combination with secreted cell-wall 

degrading enzymes (CWDE) that simultaneously potentiate the wall disruption and suppress the 

plant defences (Horbach et al., 2011; Kleemann et al., 2012; Pryce-Jones et al., 1999; Tucker & 

Talbot, 2001). Botryosphaeriaceae entry through wounds was already demonstrated in grapevines 

(Úrbez-Torres & Gubler, 2011), and it is thus plausible that this also happens in D. corticola 

infection of Q. suber. Nevertheless, in a study that aimed to proof that O3 exposure of leaves 

predisposes them to fungal attacks, Paoletti et al. (2007) reported for the first time that D. 

corticola is able to colonize Q. suber and Q. cerris leaves. Scanning microscopy observations 

clearly demonstrated the presence of D. corticola hyphae on symptomatic oak leaves after spore 

germination. Another remarkable finding is that hyphae were never observed entering into 
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stomata, neither growing toward these natural openings. Instead, D. corticola hyphae embedded 

into the epicuticular waxes or eroded a hollow, forming in the latter case a right-angle bend at the 

cuticle entrance point. In both forms of entry, it is reasonable to hypothesize that the fungus 

develops an appressorium. Concurrently, it should secrete a plethora of hydrolytic and oxidative 

enzymes to penetrate the plant cell wall and its protective cuticle, as it seems to happen in 

Macrophomina phaseolina (Tassi) Goid., a Botryosphaeriaceae fungus phylogenetically close to D. 

corticola (Crous et al., 2006; Islam et al., 2012). However, the proteins implicated in this process 

still need to be identified.  

Once within the plant, the colonization is accomplished by invasive hyphae or by haustoria, a 

hypha morphologically specialized towards nutrient uptake. It is noteworthy that filamentous 

fungi such as D. corticola remain always extracellular to their hosts, even when they invade 

intracellular spaces (separated by host-derived membranes) (Faulkner & Robatzek, 2012). 

Although the primary function of these hyphae is to fulfil the fungal nutrient requirements, these 

structures also deliver virulence effectors, like appressoria do, to restrain or evade the host 

defence system (Catanzariti et al., 2006; Giraldo & Valent, 2013; Horbach et al., 2011; Irieda et al., 

2014; Kleemann et al., 2012). In fact, the successful colonization of a phytopathogen greatly 

depends on its ability to circumvent the plant immune system. 

Tipically, the complex plant defence mechanism relies in the autonomous response of each cell 

to the pathogen and on systemic signals emitted from the infection point (Gómez-Gómez, 2004). 

Accordingly, some conceptual models have been developed to synthesise the framework of 

molecular interactions involved. The so-called zig-zag model is currently the most accepted 

(Figure 2) (Jones & Dangl, 2006). The first of four phases of this paradigm occurs in the apoplast 

Figure 2 | Conceptual ziz-zag model of plant immune system (Jones & Dangl, 2006). 
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and is mediated by transmembrane pattern recognition receptors (PRRs) that in the presence of 

microbial- or pathogen-associated molecular patterns (MAMPS or PAMPs) elicit the PAMP-

triggered immunity (PTI). Besides the microbial conserved structural molecules (PAMPS), it is 

currently accepted that transmembrane pattern recognition receptors may equally recognize 

endogenous molecules released during pathogen-induced cell damage (damage-associated 

molecular patterns, DAMPs) (Boller & Felix, 2009). This first line of defence is fast and usually 

quite efficient against non-adapted pathogen infections, comprising the concerted production of 

reactive oxygen species (ROS) and secretion of antimicrobial compounds, phytohormones, 

hydrolytic enzymes and inhibitors of microbial hydrolytic enzymes (Ahuja et al., 2012; Clérivet et 

al., 2000; El-Bebany et al., 2013; Herman & Williams, 2012; Luna et al., 2011; Pieterse et al., 2009; 

Torres, 2010). Still, successful pathogens evolved mechanisms to counterattack PAMP-triggered 

immunity response, both strengthening their effector production and subverting the host's 

immune response and surveillance (Herman & Williams, 2012; Jones & Dangl, 2006). The outcome 

is denominated by effector-triggered susceptibility (ETS), the second phase of zig-zag model. As a 

consequence, the plant activates its second line of defence, an exacerbated, faster and longer 

version of PAMP-triggered immunity called effector-triggered immunity (ETI, phase 3) (Tao et al., 

2003). This response relies on both direct and indirect intracellular recognition of pathogen 

effectors by plant resistance proteins (most often nucleotide-binding site leucine-rich repeat class 

of proteins, NB-LRR) (Dangl & Jones, 2001; Gómez-Gómez, 2004; Jones & Dangl, 2006). In the case 

of indirect recognition, resistance proteins surveil the integrity of the endogenous effectors 

targets (not the pathogen effectors itself), triggering the downstream physiologic responses when 

signals of effector-induced cellular perturbation are detected (Gómez-Gómez, 2004). Generally, 

ETI culminates in a hypersensitive cell death response (HR), a programmed cell death of the 

proximal infection tissues induced by a localized ROS burst (Torres, 2010). The main purpose of 

this controlled plant death is to block the pathogen advance, preventing its spread through the 

plant. The fourth and final phase of the zig-zag model is justified by natural selection: pathogens 

resistant to ETI response survive and proliferate, eliciting a second outburst of plant immunity 

defences. However, PTI and ETI are pliable responses that frequently overlap to restrict the 

pathogens' propagation, not being possible to distinguish them. The plant resistance or 

susceptibility outcome is thus balanced by the formula (PTI + ETI) - ETS (Jones & Dangl, 2006). 

While the zig-zag model is widely accepted, it still presents limitations. Recently an alternative 

paradigm called invasion model was proposed (Figure 3) (Cook et al., 2015). Briefly, this new 

model proposes that in an attempted plant-invader symbiosis the invasion patterns (IP, externally 

encoded or modified-self ligands) are recognized by plant IP receptors (IPR), prompting the 
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subsequent IP-triggered response (IPTR). A remarkable improvement of the invasion model is 

that, conversely to zig-zag model, the invasion patterns-triggered response not always culminates 

in plant immune response. Instead, the invasion patterns recognition might result in the end of 

symbiosis or in continued symbiosis, depending of the plant-invader interaction outcome. This 

interaction is commonly controlled by invader effectors, whereby in case of IPTR effector 

manipulation failure, the symbiosis cease. On the other hand, if the invader effectors successfully 

manipulate the plant IPTR, this response may be suppressed (biotrophic interactions) or used in 

benefit of invaders colonization (necrotrophic interactions), preserving in both cases the 

symbiosis. The continuity of symbiosis and effector deployment may then provoke host-

perceivable IPs, sustaining the IPTR. Accordingly, the invasion model bridges some shortcomings 

of zig-zag model, namely the absence of a strict distinction between PTI and ETI and the omission 

of DAMPs as plant immunity elicitors (Cook et al., 2015). 

Notwithstanding this background of plant-pathogen interactions, the molecular understanding 

of Q. suber immune response against biotic factors is substantially scarce. Coelho et al. (2011), for 

instance, demonstrated that the defence strategies deployed during the cork oak interaction with 

P. cinnamomi resemble the system used by other plants, such as the cowpea (Vigna unguiculata 

(L.) Walp.) against Rhizoctonia solani J.G. Kühn or the wheat (Triticum aestivum L.) against 

Mycosphaerella graminicola (Fuckel) J. Schröt. (Chandra et al., 2007; Ray et al., 2003). This study 

identified 7 genes, 4 of which were overexpressed in root cells during the first 24 h of infection. 

The authors suggested that the assigned proteins might play a role in the counterattack of P. 

cinnamomi invasion. According to the recently developed inducible plant immunity model, these 

proteins are probably IPRs able to perceive P. cinnamomi effectors, and proteins involved in the 

Figure 3 | Conceptual invasion model of an attempted plant-invader symbiosis (Cook et al., 2015). 
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activation of downstream IPTR responses like oxidative burst or plant cell wall reinforcement 

(lignin and suberin biosynthesis). Notwithstanding the authors have outlined a molecular 

mechanism of Q. suber defence against invaders, this model still requires further investigations to 

be consolidated. 

From the invader perspective, the knowledge of D. corticola effectors remains almost 

nonexistent, even though research of Botryosphaeriaceae effectors is steadily growing (Abou-

Mansour et al., 2015; Andolfi et al., 2011; Cobos et al., 2010; Evidente et al., 2003, 2012; Islam et 

al., 2012; Martos et al., 2008). Hence, it is demanding to study D. corticola effectors to highlight 

the molecular framework involved during its hosts' infections.  

PROTEOMICS OF PHYTOPATHOGENIC FUNGI 

Proteomic tools have proved essential for the analysis of the molecular biology of filamentous 

fungi. The recent growth of fungal proteomics' publications is intrinsically related with the 

technological developments of protein analysis and the concomitant release of genome 

sequences, although the difficulties around samples generation and mass spectrometry (MS) 

interpretation continues hampering such studies (Kim et al., 2007; Passel et al., 2013). This 

discipline has extensively been used to exploit the potential of fungi in biotechnological and 

medical applications (Kniemeyer, 2011; Oda et al., 2006; Oliveira & Graaff, 2011), having equally 

been employed to study the molecular biology of plant-fungal interactions (Bhadauria et al., 2010; 

González-Fernández & Jorrín-Novo, 2012). Proteomics of phytopathogenic fungi offer the 

possibility to study the total set of proteins present in a biological condition, highlighting at the 

same time functionally relevant proteins by comparative analysis. Accordingly, recurring to these 

technologies allows understanding how fungi respond to their environment and, as a 

consequence, to elucidate the molecular mechanisms subjacent to the infection establishment. 

Unfortunately, protein identification has been lagged by the reduced availability of genome 

sequences. Today this constraint has gradually been overcome with the introduction of 

computational algorithms to improve the de novo sequencing (Ma & Johnson, 2012; Muth et al., 

2014; Zhang et al., 2012). This methodology derives the partial or complete amino acid peptide 

sequence directly from tandem mass spectra (MS/MS), using the mass differences of two 

adjacent fragment ions. Then, the obtained sequences are compared against protein sequence 

databases using homology searching algorithms such as BLAST or FASTA (Issac & Raghava, 2005; 

Ma & Johnson, 2012; Mackey et al., 2002; McGinnis & Madden, 2004; Paizs & Suhai, 2005). On 

the contrary, conventional peptide database searching, used for genome sequenced organisms, 
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relies on direct database queries to find the best theoretical peptide match for the experimental 

MS or MS/MS peptide (Liska & Shevchenko, 2003). Indeed, this methodology is known as peptide 

mass fingerprint (PMF), since it is based on the principle that every protein derives a unique set of 

peptide masses after enzymatic cleavage (Sickmann et al., 2003). Considered simpler and faster 

than de novo sequencing protein identification, this approach presents some accuracy and 

sensitivity weaknesses (Kapp et al., 2005). Nevertheless, these limitations are progressively 

diminishing in both methodologies due, in part, to the sensitivity improvement of mass 

spectrometers (Van Oudenhove & Devreese, 2013). 

Nevertheless, successful protein identification is highly dependent on good sample 

preparation. Like plants, fungi are regarded as troublesome organisms for protein extraction 

purposes due to the robustness of their cell wall and, when extracellular proteins are targeted, to 

the presence of complex extracellular polysaccharide content in addition to a notorious low 

extracellular protein concentration (González-Fernández & Jorrín-Novo, 2013; Medina & 

Francisco, 2008; Pérez & Ribas, 2013). Therefore, the first step of a proteomic workflow, protein 

extraction, should be regarded carefully to avoid technical constraints. The subsequent protein 

separation step is primarily performed by two-dimensional electrophoresis (2D-PAGE), even 

though one-dimensional electrophoresis (1D-PAGE) is often used to assess preliminary results. 

Briefly, this powerful technique separates the proteins through two electrophoretic runs, 

isoelectric focusing (IEF) and SDS-PAGE that when combined are able to resolve thousands of 

proteins simultaneously (Görg et al., 2004). Isoelectric focusing, the first-dimension separation, 

resolves proteins according to their isoelectric point (pI). The proteins are then separated 

orthogonally by molecular weight (MW) in a SDS-PAGE. After separation, the distinct protein 

spots are detected with a suitable staining method, being then excised and enzymatically digested 

to produce peptide fragments for downstream MS analysis. 

In short, 2D coupled with MS and followed by protein de novo sequencing is extensively used 

to study fungal phytopathogens, particularly the ones with unsequenced genomes (Cobos et al., 

2010; González-Fernández et al., 2010; Meijer et al., 2014; Rogowska-Wrzesinska et al., 2013). 

These methodologies allow a comprehensive insight of the proteins expressed in a specific 

biologic state, greatly due to the high resolution, accuracy and separating capacity of 2D gels 

(Rogowska-Wrzesinska et al., 2013). 2D-PAGE enable thus to discriminate proteins that are 

differentially expressed between two biological conditions, to resolve isoforms and proteins with 

close pIs or MW, disclosing even hypothetical protein post-translational modifications (PTMs) 

(Jensen, 2006). Proteomics is therefore a vital discipline for plant-fungal interactions research, 

providing useful information about fungal pathogenicity and virulence effectors, an essential 
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knowledge to comprehend the intricate biology of infection. 

AIMS OF THE WORK  

The best approach to decide on strategies to successfully reduce the negative impact of a 

phytopathogen is trying to understand how it infects its hosts. Accordingly, the disclosure of the 

proteins involved in D. corticola pathogenesis may contribute to elucidate how this fungus 

colonizes cork oak trees, among other hosts, highlighting as well possible key protein targets for 

the development of effective disease management strategies. 

Hence, the overall objective of this work is to contribute to the insight of the molecular 

mechanism of D. corticola infection. To achieve this purpose the following aims were drawn: 

 Develop an efficient protocol for D. corticola extracellular proteins extraction; 

 Evaluate the D. corticola strains virulence in planta; 

 Characterize the basal and infection-like D. corticola secretome and cellular proteome; 

 Compare the secretome and cellular proteomes of two strains with distinct virulence 

degrees.  
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This chapter is based on the article "Secretome analysis identifies potential virulence factors of Diplodia 

corticola, a fungal pathogen involved in cork oak (Quercus suber) decline" published in the Canadian Journal 

of Microbiology (See Appendix II). 

INTRODUCTION 

The family Botryosphaeriaceae includes a diversity of fungi with a mostly endophytic lifestyle, 

commonly related to woody plant diseases (Alves et al., 2004; Damm et al., 2007; Marincowitz et 

al., 2008; Mehl et al., 2011; Úrbez-Torres & Gubler, 2009). Their virulence usually manifests with 

the onset of plant stress, accelerating the development of disease symptoms that eventually 

culminate in host dead (Slippers & Wingfield, 2007). Accordingly, their ecological and economic 

impact is considerable, particularly in profitable trees such as the cork oak. The involvement of a 

specific member of this family, the phytopathogen Diplodia corticola A.J.L. Phillips, A. Alves et J. 

Luque (Botryosphaeriaceae), in the decline of cork oak forests was already described (Alves et al., 

2004; Linaldeddu et al., 2009). It causes symptoms like dieback, canker and vascular necrosis in 

oak trees. However, the exact mechanism of pathogenesis used by this fungus remains unknown. 

 In the last decade, proteomics of phytopathogenic fungi has been growingly used in an 

attempt to understand the molecular mechanisms behind plant-pathogen interactions (González-

Fernández & Jorrín-Novo, 2012). More specifically, secretome characterization of such fungi may 

contribute to elucidate its pathogenesis mechanism, supplying information for the further 

development of disease management strategies. Indeed, fungi secrete proteins with relevant 

roles for nutrition and infection (Faulkner & Robatzek, 2012; Jonge et al., 2011). Remarkably, until 

now only one proteomic study was performed regarding organisms belonging to this family 

(Cobos et al., 2010), in which the sparse amount of sequenced genomes (Blanco-Ulate et al., 

2013; Islam et al., 2012; Morales-Cruz et al., 2015; Nest et al., 2014) represents a limiting factor 

for protein identification. Nevertheless, 2D gel-based proteomics followed by de novo sequencing 

approach is particularly useful and reliable for protein identification of organisms with 

unsequenced genomes such as D. corticola (Rogowska-Wrzesinska et al., 2013; Tannu & Hemby, 

2007). Still, the analysis of the secretome is hampered by difficulties related to the very low 

concentration of extracellular proteins, the high amount of polysaccharides, and the presence of 

low-molecular-weight metabolites also secreted by these organisms (Chevallet et al., 2007; 

Erjavec et al., 2012). These molecules interfere with protein extraction and protein separation 

methods, especially 2D-electrophoresis. The choice of an adequate extraction method is, 

therefore, a crucial step to obtain a good protein profile that can be subsequent and successfully 

analysed. 
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Hence, we aimed to optimize a protocol compatible with protein analysis by 1D and 2D 

electrophoresis, which allows collecting the secretome of D. corticola as well as other filamentous 

fungi and, concurrently, removing interfering substances from the medium. Moreover, we 

successfully identified the major extracellular proteins of D. corticola that may eventually be 

related to its pathogenicity. 

MATERIAL AND METHODS  

MICROORGANISMS AND CULTURE CONDITIONS 

The strain used in this study was D. corticola CBS112548. Cultures were maintained on Potato 

Dextrose Agar (PDA) medium (Merck, Germany). For secretome extraction, a mycelium plug with 

0.5 cm diameter from a 6-day-old PDA plate was inoculated into a 250 mL flask containing 50 mL 

of Potato Dextrose Broth (PDB), and incubated for 12 days at room temperature (± 25ºC). All 

assays were performed in triplicate. Culture supernatants were individually collected by filtration 

and stored at -20ºC until use. The dry-weight of mycelia was determined to evaluate the fungal 

biomass. For this, filtered mycelia were dried at 50ºC for 4 days before weighting. The 

extracellular protein fraction was then concentrated as described below. 

EXTRACELLULAR PROTEIN EXTRACTION METHODS 

Protocol 1 (Trichloroacetic acid (TCA)-acetone) was based on a previously described method 

(Cobos et al., 2010). After thawing, the culture supernatant (35mL) was centrifuged (48400×g, 1h 

at 4ºC) to discard precipitated polysaccharides. One volume of ice-cold TCA/acetone [20%/80% 

(w/v)] with 0.14% (w/v) DTT was added to the supernatant and incubated at -20ºC (1h). 

Precipitated proteins were recovered by centrifugation (15000×g, 20 min, 4ºC) and excess TCA 

was removed from the precipitate by washing with 10 mL of ice-cold acetone (2), and 10 mL of 

ice-cold 80% acetone (v/v). Residual acetone was air-dried and the protein pellet was 

resuspended in 500 µL of lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris-base) and 

stored at -20ºC. 

Protocol 2 (TCA-phenol) was adapted from a previously described method (Fernández-Acero et 

al., 2009). After thawing, the culture supernatant (35 mL) was centrifuged (48400×g, 1h at 4ºC) to 

discard precipitated polysaccharides. Proteins were precipitated by the addition of one volume of 

ice-cold TCA/acetone [20%/80% (w/v), 1h, -20ºC], and collected by centrifugation at 15000×g (20 

min, 4ºC). The precipitate was successively washed with 10 mL of ice-cold TCA/acetone [20%/80% 

(w/v), twice], 10 mL of 20% TCA (w/v), and twice with 10 mL of ice-cold 80% acetone (v/v). 
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Residual acetone was air-dried and the protein pellet was resuspended in 5 mL of dense SDS 

buffer [30% (w/v) sucrose, 2% (w/v) SDS, 0.1 M Tris-HCl pH 8.0, 5% (v/v) 2-mercaptoethanol] 

adding then 5 mL of phenol equilibrated with 10 mM Tris-HCl, pH 8.0, 1 mM EDTA (Sigma-Aldrich, 

USA). The resulting solution was vigorously mixed and centrifuged at 15000×g (10 min, 4ºC). The 

phenol phase was transferred to a tube to which 5 volumes of cold 0.1 M ammonium acetate in 

methanol were added and incubated at -20ºC overnight to promote protein precipitation. 

Afterwards, proteins were recovered by centrifugation and washed twice with 10 mL of cold 0.1 

M ammonium acetate in methanol, followed by two washes with 10 mL of ice-cold 80% acetone 

(v/v). The air-dried pellet was finally resuspended in 500 µL lysis buffer and stored at -20ºC.  

Protocol 3 (ultrafiltration with protein cleaning): polysaccharides were separated as described 

for protocol 1 and the resultant supernatant was concentrated by ultrafiltration with Vivaspin 

concentrator (MWCO 3 kDa, Sartorious), at 4000 rpm (4 ºC). Retained proteins were purified with 

2-D Clean-Up kit (GE Healthcare, USA; from now on mentioned as protein cleaning), according to 

the manufacturer’s instructions. The proteins were solubilized in 500 µL of lysis buffer and stored 

at -20ºC. 

Protocol 4 (ultrafiltration without protein cleaning): this method is identical to method 3 with 

the exception of the final cleaning step. Therefore, the proteins were immediately resuspended in 

500 µL of lysis buffer and stored at -20ºC after their concentration. 

Protocol 5 (ultrafiltration without polysaccharide precipitation): this method is similar to 

method 3 with the exception of the initial polysaccharide removal step. After protein cleaning, the 

resultant pellet was solubilized in 500 µL of lysis buffer and stored at -20ºC. 

Protocol 6 (lyophilisation): culture supernatant (35mL) was concentrated by lyophilization 

(Snijders Scientific) for 24 h at -50ºC. Afterwards, proteins were cleaned as previously described, 

solubilized in 500 µL of lysis buffer and stored at -20ºC.  

PROTEIN CONCENTRATION DETERMINATION 

Protein concentration was determined with the 2-D Quant Kit (GE Healthcare, USA), according 

to the manufacturer’s instructions. 

1D- AND 2D-ELECTROPHORESIS 

Proteins were separated by SDS-PAGE or by 2D. For SDS-PAGE, 30 µg of protein extract were 

diluted (1:1) in 8 M urea, 100 mM Tris, 100 mM bicine, 2% SDS, 2% 2-mercaptoethanol, and 

heated for 5 min at 100ºC. Proteins were separated by 12.5% SDS-PAGE gel electrophoresis, 

according to Laemmli’s protocol (Laemmli, 1970), for 120 min at 120 V, in a Mini-PROTEAN 3 Cell 
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(Bio-Rad, USA). 

For 2D, 240 µg of protein extract were loaded onto IPG strips (pH 3-5.6 NL or pH 3-11 NL, 13 

cm, GE Healthcare) that were actively rehydrated (50 V, 10h) with 250 µL of rehydratation buffer 

(7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris-base, 2% DTT, 2% IPG buffer pH 3-5.6 NL and 

bromophenol blue). IEF was performed on a Ettan IPGphor 3 system (GE Healthcare, Sweden) at 

20ºC limited to 50 A/strip according to the following parameters: 1h at 150 V, 2h at 500 V, 6h 

500-1000 V, 3h 1000-8000 V and 8000 V until 20000 Vhr. Prior to second dimension, the IPG strips 

were reduced and alkylated for 15 min with 1% (w/v) DTT and afterwards with 2.5% (w/v) 

iodoacetamide in 5 mL equilibration buffer [50 mM Tris-HCl (pH 8.8), 6 M urea, 30% (w/v) 

glycerol, 2% SDS and traces of bromophenol blue], respectively. After equilibration, the strips 

were juxtaposed to 12.5% lab cast SDS-PAGE gels on a PROTEAN II xi Cell (Bio-Rad, USA) system. 

Proteins were separated initially at 2 W/gel (2h) and then at 6 W/gel (limited to 200 V) until the 

dye marker reached the end of the gel.  

Proteins were visualized by Coomassie Brilliant Blue G-250 (CBB) staining. Each gel image was 

acquired using the GS-800 calibrated imaging densitometer (Bio-Rad, USA). CBB stained 2-DE gels 

were analysed with PDQuest software (Bio-Rad, USA) to determine the number of protein spots 

per gel. 

MASS SPECTROMETRY 

Randomly selected 2D spots were excised and successively guanidinated, digested with trypsin 

and N-terminal sulfonated to enhance the de novo sequencing (Sergeant et al., 2005). The tryptic 

peptides were then analyzed by tandem mass spectrometry on a 4800 Plus MALDI TOF/TOF 

Analyser system (AB Sciex, USA). As the standard settings MASCOT search (Matrix Science, UK) 

was unsuccessful, due to the lack of information on the non-redundant NCBI fungal database 

(Cobos et al., 2010; Standing, 2003), it was proceeded to PEAKS de novo sequencing (PEAKS 

Studio 6.0, BSI, Canada) (Zhang et al., 2012). The PEAKS search parameters encompassed 

fragment mass error tolerance of 0.3 Da, carbamidomethylation (57.02) and guanidination (42.02) 

as fixed modifications, and acetylation (N-terminus) (42.01), 4-sulfophenyl isothiocyanate 

(214.97) and methionine, histidine and tryptophan oxidation (15.99) as variable modifications. In 

addition, manual interpretation of the spectra was performed to confirm the previous results and 

the similarity of the identified peptide sequences was searched with FASTS algorithm (Mackey et 

al., 2002) (standard settings search (matrix PAM 120) against UniProtKB Fungi subset; p<0.05 

scores were considered significant). The subcellular localization of identified proteins was 

predicted using BaCelLo predictor (Pierleoni et al., 2006) and the theoretical pI searched with 
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Compute pI/Mw tool available on ExPASy (Gasteiger et al., 2005). 

RESULTS AND DISCUSSION  

Secreted proteins from D. corticola grown on PDA were extracted by six different methods 

(Table 1). Comparison of SDS-PAGE performance of these extracts (Figure 4) showed that the 

protocols based on protein precipitation (protocols 1 and 2) were more efficient than the 

methods that excluded this step (Figure 4). In these protocols (1 and 2) the protein molecular 

weights ranged between 218 and 23 kDa, distributed over a mean of 12 bands after TCA-acetone 

extraction and 15 bands after TCA-phenol precipitation. Conversely, the maximum detected 

bands with methods 3-6 were 10 bands (protocol 5), distributed over a lower molecular weight 

range (113 – 25 kDa), which indicates loss of proteins and/or poor recovery after extraction. The 

resolution was also poorest in these methods, presenting faint bands (Figure 4). 

Table 1 | Summary of the protocols used to extract the secretome of D. corticola and respective protein 
concentration average [determined by the 2-D Quant Kit (GE Healthcare, USA)]. The inclusion of a 
polysaccharide removal step or a protein cleaning step are indicated by + (included) or - (not included). 

The results indicated thus a limited applicability of ultrafiltration to concentrate fungal 

secretomes, confirming previous noticed drawbacks such as rapid membrane clogging and the 

consequent adsorption (and loss) of proteins to the gelatinous material that was retained on the 

membrane (Chevallet et al., 2007; Fragner et al., 2009). In an attempt to avoid the rapid 

membrane clogging a polysaccharide removal step was added to protocols 3 and 4. However, this 

did not result in improved gel patterns (protocol 3 - 9 bands (MW – 103.4 - 31.7 kDa); protocol 4 - 

no bands). Still, the initial polysaccharide removal step can be considered as essential in protocols 

that involve protein precipitation such as protocols 1 and 2, since these sugars co-precipitate with 

proteins, not only distorting the protein quantification (Fragner et al., 2009), but also interfering 

in electrophoretic separation.  

Extraction method 
Polysaccharide 

removal 
Protein cleaning with 

2-D Clean-Up kit  
Average protein 

concentration (µg.ml-1) ± SD 

1. TCA-acetone + - 1580.8 ± 916.5 

2. TCA-phenol + - 3935.4 ± 930.8 

3. Ultrafiltration + + 4414.7 ± 568.5 

4. Ultrafiltration + - 1989.9 ± 105.7 

5. Ultrafiltration - + 5217.5 ± 711.3 

6. Lyophilization + + 456.7 ± 264.7 
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Despite the unsatisfactory performance, protocol 4 highlighted the importance of protein 

cleaning (2-D Clean-Up kit) after concentration in methods that do not involve protein 

precipitation. Considering that precipitation protocols efficiently remove most protein 

contaminants (salts, detergents or phenolic compounds) (Medina & Francisco, 2008), it is 

necessary to combine ultrafiltration with a cleaning step to discard such interfering compounds. 

Comparison of protocols 4 and 5 (without and with a cleaning step after ultrafiltration, 

respectively), clearly demonstrates the improvement introduced by the cleaning step on 

electrophoresis separation (Figure 4). However, conversely to what was predicted, SDS-PAGE of 

protocol 5 was slightly better than protocol 3 (with polysaccharide removal and cleaning steps) 

(Figure 4), which probably is related to the performance of ultrafiltration methods. As we could 

experience, membrane clogging precludes the forecast of ultrafiltration behaviour, compromising 

therefore the protocol reproducibility. Although cheaper than any of the other methods that were 

tested, lyophilisation was the less efficient concentration method, leading to low protein recovery 

and poor electrophoresis performance. These pitfalls are most likely due to the difficult protein 

solubilisation in the lysis buffer, even after the protein cleaning step. 

The most efficient methods were therefore TCA-acetone and TCA-phenol (Figure 4), 

overcoming the disadvantageous loss of proteins during precipitation and washing steps usually 

associated to these protocols (Carpentier et al., 2005). Indeed, like previously described, TCA-

phenol extracts presented a better band pattern definition than TCA-acetone extracts (Figure 4) 

(Carpentier et al., 2005; Saravanan & Rose, 2004). Nevertheless, this slight improvement may not 

be sufficient to compensate for the risks associated to phenol and methanol toxicity (Faurobert et 

Figure 4 | SDS-PAGE of secretome proteins from D. corticola extracted by several methods. Three biological 
replicates were used for each protocol. M – Precision Plus Protein Unstained Standard (kDa) (Bio-Rad, 
USA). 
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al., 2007), as well as for the increased time-consumption when compared with the TCA-acetone 

protocol. Hence, we regard protocol 1 as the best method for D.corticola secretome extraction, 

considering its efficiency, safety and cost. 

We additionally evaluated the methods by analysis of the extracted proteins using 2-D 

electrophoresis. The first approaches were performed with broad-range pH strips (pH 3-11 NL), 

but since D. corticola secretome is mainly located on the acidic region (Figure 5), as has been 

reported for other filamentous fungi (Callegari & Navarrete, 2012; Cobos et al., 2010; Fragner et 

al., 2009; Zorn et al., 2005), strips with a narrow acidic pH range were used to improve gel 

resolution. 

Figure 5 | 2-DE of proteins extracted with TCA-Acetone (A, protocol 1), TCA-Phenol (B, protocol 2) and 
ultrafiltration (C, protocol 3; D, protocol 5). M - Precision Plus Protein Standard (Bio-Rad, USA). 
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Curiously, in contrast to what we expected from the 1D profiles, where the band definition of 

protocols 3 and 5 were worse than in protocols 1 and 2, 2D gels presented a similar number of 

spots with comparable definitions (Figure 6). This may be explained by the presence of an 

interfering substance not removed during the protein cleaning step, which was not absorbed 

during the strip rehydration.  

Nonetheless, based on 1D profiles, only spots obtained from extraction protocols TCA-acetone 

and TCA-phenol were randomly selected for identification. The overall identification rate was 

similar in both methods, having been identified 69 % of the spots obtained with protocol 1 (11 out 

of 16) and 58% of the spots obtained with protocol 2 (11 out of 19). Some of the spots were 

identified twice (replicates), in order to confirm protein identification. The spots were identified 

based on de novo sequenced peptides, whose similarity was searched with FASTS algorithm 

(Mackey et al., 2002) against UniProtKB Fungi subset (Table 2). Some proteins where identified in 

different spots with the same molecular weight, but with slightly different isoelectric points [spots 

6, 7 (peptidase M35 deuterolysin) and spots 11, 12 (spherulation-specific family 4), Figure 5 A,B], 

indicative for possible post-translational modifications that need to be further investigated. In 

addition, BaCelLo fungi-specific predictor (Pierleoni et al., 2006) confirmed the extracellular 

localization of all identified proteins (Table 2). 

 

Figure 6 | Number of spots detected by 2-DE of proteins extracted with the various methods 
used. PP – polysaccharide precipitation, C – protein cleaning with 2-D Clean-Up Kit. 



SECRETOME ANALYSIS IDENTIFIES POTENTIAL VIRULENCE FACTORS OF Diplodia corticola CHAPTER 2 

 

 59 

 

 

 

Table 2 | Summary of proteins identified by de novo sequencing. Peptide similarity search was performed with FASTS algorithm (Mackey et al., 
2002) (p < 0.05 scores were considered significant). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Spot Protein 
Accession 
number 

Organism 
Theoretical 

pI1 
Subcellular 

localization2 

1 Glucoamylase K2S7L9 Macrophomina phaseolina (strain MS6) 5.37 Extracellular 

2 Glycoside hydrolase family 71 K2R498 Macrophomina phaseolina (strain MS6) 4.84 Extracellular 

3 Putative carboxypeptidase S1 R1GF60 Neofusicoccum parvum UCRNP2 4.45 Extracellular 

4 Neuraminidase K2SSW0 Macrophomina phaseolina (strain MS6) 4.27 Extracellular 

5 Putative serine protease R1GM11 Neofusicoccum parvum UCRNP2 6.07 Extracellular 

6,7 Peptidase M35 deuterolysin K2SDQ0 Macrophomina phaseolina (strain MS6) 5.34 Extracellular 

8 Uncharacterized protein K2RZ98 Macrophomina phaseolina (strain MS6) 5.59 Extracellular 

9 Putative ferulic acid esterase R1EDH3 Neofusicoccum parvum UCRNP2 4.79 Extracellular 

10 Putative glucan-β-glucosidase R1GIC9 Neofusicoccum parvum UCRNP2 4.73 Extracellular 

11, 12 Spherulation-specific family 4 K2RK67 Macrophomina phaseolina (strain MS6) 4.04 Extracellular 

1
 Compute pl/Mw, ExPASy (Gasteiger et al., 2005) 

2
 BaCelLo (Pierleoni et al., 2006) 
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Still, the limited genomic data available on family Botryophaeriaceae fungi constrained  protein 

identification, as reported before on a study of D. seriata proteome (Cobos et al., 2010). 

Nevertheless, most of the identified proteins display homology with the fungal pathogen 

Macrophomina phaseolina (Tassi) Goid., and in less extent with Neofusicoccum parvum 

(Pennycook & Samuels) Crous, Slippers et A.J.L. Phillips, both members of the Botryosphaeriaceae 

whose genomes were recently sequenced (Blanco-Ulate et al., 2013; Islam et al., 2012) and 

integrated into UniProtKB.  

Functional distribution of the extracellular proteins of D. corticola is consonant to what was 

previously described to other filamentous fungi (Girard et al., 2013; Islam et al., 2012). The 

identified proteins mainly belong to hydrolases (glucoamylase, glycoside hydrolase 71, 

neuraminidase and putative glucan-β-glucosidase), and in less extent to proteases (putative 

carboxypeptidase S1, putative serine protease and M35 deuterolysin) (Table 2).  

Although the basal function of the identified carbohydrate-degrading enzymes is to fulfil the 

nutritional needs of D. corticola, they possibly have an active involvement on its phytopathogenic 

lifestyle, degrading the lignocellulosic barrier of plant cell walls (Abbas et al., 2005; Jung et al., 

2012; Wang et al., 2011). During infection, fungi secrete a plethora of hydrolytic enzymes to 

degrade the plant polysaccharides aiming to compromise its integrity. Notably, the hydrolases 

identified belong to the 3 classes known to work synergistically to degrade cellulose [(exo-

glucanases, endo-glucanases and -glucosidases (Horn et al., 2012), having already been 

described on the secretome of wood degrading fungi (Abbas et al., 2005; Phalip et al., 2005; Sato 

et al., 2007), as well as in phytopathogenic fungi (Fernández-Acero et al., 2010; Jung et al., 2012; 

Wang et al., 2011). The carbohydrate metabolism enzymes play thus an active role on the 

establishment of fungal infection, while sustaining its nutritional and energetic requirements from 

infected plant biomass (Faulkner & Robatzek, 2012; Pietro et al., 2009). Moreover, cellulose 

degrading enzymes concurrently require the assistance of carbohydrate esterases (Aspeborg et 

al., 2012) to deacetylate the substituted saccharides (esters or amides) of plant celluloses (Biely, 

2012), such as the putative ferulic acid esterase identified in spot 9. Generally, these enzymes are 

known to release ferulic acid, one of the oligomeric building blocks of suberin (Graça & Santos, 

2007), the main bark constituent of oak trees (Jové et al., 2011). Ferulic acid esterase may 

therefore be relevant for D. corticola pathogenesis establishment, contributing to compromise 

the suberin integrity. Likewise, the molecules released after ester bond cleavage can have a 

signaling function on infection (Pietro et al., 2009). Furthermore, neuraminidase (spot 4) is an 

exo-glycosidase that cleaves glycoconjugates, releasing the terminal sialic acid residues (Warwas 

et al., 2010). Although its role on fungal phytopathogenicity is not yet clear, it is plausible that this 

http://www.ncbi.nlm.nih.gov/genome/16686
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enzyme can contribute to cell wall disruption, making the glycoproteins present on plant cell wall 

matrix (Lerouxel et al., 2006) more accessible to other fungal glycoside hydrolases. 

The successful colonization of a pathogen benefits as well from the existence of proteases and 

peptidases to impair the plant proteins and to evade from plant defense mechanism, profiting 

simultaneously from the amino acids released to support its growth demands (Espino et al., 2010; 

Faulkner & Robatzek, 2012; Jung et al., 2012). Previous studies already demonstrated that 

filamentous fungi secrete more proteases in the presence of plant extracts (Espino et al., 2010; 

Phalip et al., 2005; Zorn et al., 2005), emphasizing their importance on fungal pathogenicity 

strategies. Besides proteases’ function on basal metabolism, the peptidases found on D. corticola 

secretome (Table 2) can likewise be involved on host colonization. Their functional diversity (exo- 

and endo-proteases) reflects their synergistic interplay (Girard et al., 2013). Serine 

carboxypeptidase S1 (spot3) is an exoprotease that seems to efficiently work in an acidic 

environment (Figure 5 A), likewise the serine endopeptidade found in spot 5, a characteristic 

already described in other plant infection models (Billon-Grand et al., 2002; Li et al., 2012). 

Similarly, the Zn2+ metalloendopeptidase deuterolysin (spots 6 and 7) was described as a virulence 

factor not only in pathogenic fungi (Monod et al., 2002), but also in bacteria (Arnadottir et al., 

2009). 

In this study, we additionally identified a spherulation-specific family 4 protein (spots 11, 12) 

previously reported in Magnaporthe oryzae B.C. Couch secretome (Jung et al., 2012). Although its 

secretion may be a response to nutrient  starvation, this protein can likewise be involved in 

sporulation which usually follows  infection to spread the fungus through the host (Wilson & 

Talbot, 2009). More studies need to be performed to understand the function of this sporulation-

inducing protein, which has 2 isoforms on D. corticola secretome (Figure 5). 

To summarize, we presented a comparison of different secretome extraction protocols, 

concluding that methods involving protein precipitation are the most efficient to collect these low 

abundant proteins. Furthermore, TCA-acetone and TCA-phenol are similarly efficient, but 

considering the time-consumption and the associated toxicity of the last method, we opted for 

the former, with a previous polysaccharide removal step, to study the secretome of D. corticola. 

However, more efforts need to be done to increase the fungal annotated databases, particularly 

in Botryosphaeriaceae family to which D. corticola belongs, in an attempt to improve the 

homology search and protein identification rates. Nonetheless, we identified by de novo 

sequencing several fungal glycoside hydrolases and proteases that can be involved in D. corticola 

pathogenesis towards cork oak and other hosts. In addition, this work represents an advance on 

the characterization of the proteome of members of the family Botryosphaeriaceae. 
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INTRODUCTION 

Diplodia corticola A.J.L. Phillips, A. Alves et J. Luque (family Botryosphaeriaceae) is considered 

the most aggressive fungal pathogen involved in the Mediterranean cork oaks' decline (Alves et 

al., 2004; Linaldeddu et al., 2009; Luque et al., 2000). The decline is multifactorial and 

characterized by symptoms like branch dieback, foliar chlorosis and vascular necrosis. Besides 

Quercus species (mainly Q. suber L. and Q. ilex L.), D. corticola is also known to infect grapevines 

(Vitis vinifera L.) and eucalypts (Eucalyptus globulus Labill.) (Barradas et al., 2015; Carlucci & 

Frisullo, 2009; Varela et al., 2011), other economically profitable plants. This endophytic fungus is 

a pathogen, whose virulence usually manifests with the onset of plant stress, exacerbating the 

disease symptomatology (Slippers & Wingfield, 2007). Since D. corticola infection often 

culminates in plant death, its appearance increasingly entails considerable environmental and 

socio-economical negative repercussions. Nonetheless, the knowledge about its pathogenesis 

strategy is still scarce. Few attempts have already been made to understand how the fungus 

surpasses the natural barriers of their hosts to gain access to the vascular system or even how to 

control its proliferation (Campanile et al., 2007; Luque et al., 2008; Lynch et al., 2013; Paoletti et 

al., 2007). Therefore, the molecular network of fungal effectors involved in D. corticola infection 

remains largely unknown. This comprehension is fundamental to clarify how the fungus 

overcomes the plant immune defence and establishes the interaction with the plant. 

Understanding this is equally important to develop efficient disease management strategies to 

protect the cork oak forests. 

Proteomic methodologies, such as 2D electrophoresis and de novo sequencing, have proved to 

be essential to investigate the molecular biology of plant-fungal interactions, particularly in 

organisms whose genome is poorly characterized (Escobar-Tovar et al., 2015; Girard et al., 2013; 

González-Fernández & Jorrín-Novo, 2012; Rogowska-Wrzesinska et al., 2013). Comparative 

proteomics offers the possibility to identify the proteins involved in a specific biological condition, 

highlighting concomitantly proteins that may act as virulence factors, the key elements of an 

infection process. Proteomics is therefore a crucial discipline to elucidate the molecular 

mechanisms subjacent to fungal pathogenicity, providing a comprehensive insight into the biology 

of infection. 

Accordingly, the main objective of this study was to perform an extensive comparative analysis 

of both the secretome and the proteome of two D. corticola strains with distinct virulence 

degrees. Additionally, this work will also contribute for the characterization of a member of the 

family Botryophaeriaceae, a taxonomic group that comprises diverse wood fungal pathogens 
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(Slippers & Wingfield, 2007), which are poorly studied at both proteomic and genomic levels. 

MATERIAL AND METHODS  

QUALITATIVE PATHOGENICITY TESTS 

Fungal strains and plant seedlings 

The D. corticola strains used in this experiment were CAA 003 (CBS 112548), CAA 007-1 

(CBS112550), CAA 008, CAA 009-1, CAA 009-2, CAA 010, CAA 499 and CAA 500. All cultures were 

routinely maintained in PDA medium plates (Merck, Germany) at room temperature (± 25 ºC, RT).  

The 1-year-old Q. suber seedlings were weekly watered and kept at RT under natural light. For 

the infection assay, only seedlings without foliar symptoms were used. 

In planta inoculations 

The qualitative pathogenicity tests were conducted during 30 days (July 2012) to assess the 

major virulence differences of D. corticola strains. For this, groups of 4 cork oak seedlings were 

inoculated with one strain. The same number of plants was used as controls. The artificial stem 

wounds were made with a sterilized scalpel at ± 5-10 cm above the soil line and immediately 

inoculated with a 0.5 cm diameter mycelium plug from the leading edge of a 6-day-old PDA plate, 

mycelium facing the stem [adapted from (Linaldeddu et al., 2009)]. The controls were inoculated 

with a sterile PDA plug under the same experimental conditions and all inoculation points were 

covered with Parafilm M (Sigma-Aldrich) to avoid dissecation. The seedlings were weekly 

watered and visually monitored for crown disease symptoms according to the following disease 

severity (DS) scale:  

 0 - no foliar symptoms;  

 1 - weak infection ( 25% of foliar dehydration and/or necrotic leaves); 

 2 - medium infection (25-50% of foliar dehydration and/or necrotic leaves);  

 3 - severe infection (50-75% of foliar dehydration and/or necrotic leaves);  

 4 - extreme infection (> 75% of foliar dehydration and/or necrotic leaves, or plant 

death). 

SECRETOME AND PROTEOME ANALYSIS 

Culture conditions 

For the comparative secretome analysis 2 strains of D. corticola were used: the avirulent CAA 
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008 and the virulent CAA 499 (see results section). In both strains the control and infection-like 

secretomes were analysed. The cultures were routinely maintained in PDA medium plates (Merck, 

Germany) at room temperature (RT).  

Two conditions were tested: control [fungi grown in optimal conditions of nutrients and 

temperature, as described in Fernandes et al. (2014)] and infection-like conditions (described 

below).  

Briefly, a mycelium plug with 0.5 cm diameter from the leading edge of a 6-day-old PDA plate 

was inoculated into a 250 mL flask containing 50 mL of Potato Dextrose Broth (PDB), which was 

statically incubated for 12 days at RT.  

For the infection-like secretome the procedure was similar, but a sterilized piece of cork oak 

stem (± 2g) was added to the PDB. All assays were performed in triplicate.  

Culture supernatants were individually collected by filtration, the supernatant pH was 

measured (pH test strips) and stored at -20ºC until use. The dry-weight of mycelia was 

determined to evaluate the fungal biomass. For this, filtered mycelia were dried at 37ºC for 3 days 

before weighting.  

The same procedure was repeated, substituting the cork oak piece added to the PDB in the 

infection-like secretome by 1% (w/v) of carboxymethylcellulose (CMC, Sigma-Aldrich). Liquid 

cultures were statically maintained at RT for 16 days. 

The proteome of D. corticola strains CAA 008 and CAA 499 in control and infection-like 

conditions were analysed. For this, cultures were grown in PDA for 12 days at RT. To stimulate the 

infection-like proteome, the fungus grew in the presence of a sterilized piece of cork oak stem (± 

2g). All assays were performed in triplicate. Mycelia were collected scraping the PDA surface with 

a sterilized scalpel, placing them immediately at 4ºC. Before storage at -80ºC the wet-weight of 

mycelia was determined to evaluate the fungal biomass. 

Extracellular protein extraction 

The extracellular proteins were extracted according to the TCA-Acetone protocol previously 

optimized (Fernandes et al., 2014), with slight alterations. Thus, after thawing, the culture 

supernatants were centrifuged at 48400×g (1h at 4ºC) to discard the precipitated polysaccharides. 

One volume of ice-cold TCA/acetone [20%/80% (w/v)] with 0.14% (w/v) DTT was added to the 

supernatant and incubated at -20ºC (1h). Precipitated proteins were recovered by centrifugation 

(15000×g, 20 min, 4ºC) and excess TCA was removed from the precipitate through successive 

washes with 2 mL of ice-cold acetone (3) and 1 mL of ice-cold 80% acetone (v/v, 1). Afterwards, 

the protein pellets were cleaned with 2-D Clean-Up kit (GE Healthcare, USA) according to the 



CHAPTER 3 PROTEOMIC PROFILE OF Diplodia corticola STRAINS WITH DISTINCT VIRULENCE DEGREES 

 

72  

 

manufacturer’s instructions. The cleaned proteins were then resuspended in 500 µL of lysis buffer 

(7 M urea, 2 M thiourea, 4% CHAPS) and quantified before storage at -20ºC. 

Intracellular protein extraction 

Frozen mycelia were grinded in pre-cooled mortars in the presence of liquid nitrogen. The 

resulting powder was suspended in 10 mL of 10 mM potassium-phosphate buffer (K2HPO4-

KH2PO4, pH 7.4) containing 0.07% DTT and cOmplete™ protease inhibitor cocktail (Roche, 

Germany). Samples were then sonicated on an ice bath, in a total of 3 min (cycles of 1s sonication 

and 2s pause) at 30% intensity (Branson Digital Sonifier), to dissociate the proteins from the cell 

wall debris. The homogenates were subsequently agitated at 4ºC for 2h and centrifuged at 

15000g during 30 min (at 4ºC). The proteins present in the supernatant were precipitated 

overnight with one volume of ice-cold TCA-acetone [20%/80% (w/v)] with 0.14% (w/v) DTT at -

20ºC. The pellet collected by centrifugation (15000g, 20 min at 4ºC) was successively washed 

with 2 mL of ice-cold acetone (3) and 1 mL of ice-cold 80% acetone (v/v) (1). The proteins were 

purified with 2-D Clean-Up kit (GE Healthcare, USA) according to the manufacturer’s instructions, 

and solubilized in 500 µL of lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS). At last, protein 

concentration was quantified and samples stored at -20ºC. 

Protein quantification 

Protein concentration was determined with the Coomassie Plus (Bradford) Assay Kit (Thermo 

Scientific, USA), according to the manufacturer’s instructions (microplate protocol).  Bovine serum 

albumin (2 mg/mL) was used as standard and lysis buffer as diluent of the standard dilutions. All 

assays were performed in triplicate. 

1D and 2D electrophoresis 

Proteins extracted were separated by SDS-PAGE separation and by 2D-electrophoresis. 

For SDS-PAGE analysis, 30 µg of proteins were diluted (1:1) in Laemmli buffer [50 mM Tris-HCl 

(pH 6.8), 2% (w/v) SDS, 20% (v/v) glycerol, 8.7% β-mercaptoethanol and 0.005% bromophenol 

blue] and heated for 5 min at 100ºC. Proteins were separated by 12.5% SDS-PAGE gel 

electrophoresis, according to Laemmli’s protocol (Laemmli, 1970), first at 80 V (15 min) and then 

at 120 V (± 60 min), in a Mini-PROTEAN 3 Cell (Bio-Rad, USA). Precision Plus Protein Unstained 

Standard (Bio-Rad, USA) was used as protein marker. Staining of secretome samples was 

performed with Pierce Silver Stain for Mass Spectrometry (Thermo Scientific, USA) according to 

the manufacturer’s instructions. Cellular proteome samples were fixed *50% (v/v) C2H5OH and 2% 
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(w/v) H3PO4] and stained with CBB-250 [34% (v/v) CH3OH, 3% (w/v) H3PO4, 17% (w/v) (NH4)2SO4 

and 0.2% (w/v) CBB-G250]. The gels' background was removed with 30% (v/v) CH3OH. Each gel 

image was acquired with GS-800 calibrated imaging densitometer (Bio-Rad, USA). 

For 2D-PAGE, 17 cm IPG strips (pH 3-6 for secretome and pH 3-10 NL for cellular proteome 

samples, Biorad, USA) were passively rehydrated (16-18 h) with 300 µl of rehydration buffer [7 M 

urea, 2 M thiourea, 4% CHAPS, 2% DTT and 2% Bio-Lyte 3/10 Ampholyte (BioRad, USA)] 

containing 80 µg (secretome) or 400 µg (cellular proteome) of proteins. IEF was performed on 

BioRad Protean IEF System (USA) at 20ºC limited to 50 A/strip according to the following 

parameters: 1h at 150 V (R), 2h at 500 V (R), 6h 1000 V (L), 3h 10000 V (L) and 10000 V (L) until 

40000 Vhr (pH 3-6 strips) or 45000 Vhr (pH 3-10 NL strips). Prior to the second dimension, the IPG 

strips were reduced and alkylated for 15 min with 1% (w/v) DTT and afterwards with 2.5% (w/v) 

iodoacetamide in 2.5 mL equilibration buffer [50 mM Tris-HCl (pH 8.8), 6 M urea, 30% (w/v) 

glycerol and 2% SDS], respectively. After equilibration, the strips were applied to 12.5% lab cast 

SDS-PAGE gels [running buffer: 25 mM Tris, 192 mM glycine and 0.1% (w/v) SDS (BioRad, USA)] 

and sealed with 0.5% (w/v) agarose containing traces of bromophenol blue. Electrophoresis 

proceed on a PROTEAN II xi Cell system (Bio-Rad, USA), at 12 mA/gel (for 45 min) and then at 24 

mA/gel until the bromophenol blue reached the bottom of the gel (± 7 h).  

Proteins were stained with Pierce Silver Stain for Mass Spectrometry (Thermo Scientific, 

USA), according to the manufacturer’s instructions, or with CBB-G250. Each gel image was 

acquired with GS-800 calibrated imaging densitometer (Bio-Rad, USA). 

In-gel digestion and mass spectrometry 

Silver stained spots were manually excised and destained according to Pierce Silver Stain for 

Mass Spectrometry (Thermo Scientific, USA) manufacturer’s instructions. Conversely, CBB-G250 

stained spots were destained with successive washes of 200 mM NH4HCO3/ 50% (v/v) ACN (2) 

and 100% ACN (1). Further, the proteins were enzymatically digested overnight at 37ºC with 0.1 

µg/µL Sequencing Grade Modified Trypsin (stock solution, Promega, USA) diluted (1:50) in 50 mM 

NH4HCO3. The resultant tryptic peptides were extracted with 60% (v/v) ACN/ 0.1% (v/v) HCOOH, 

dried in SpeedVac and resolubilised in 0.1% (v/v) HCOOH. One µl of each peptide sample was 

applied on an Opti-TOF 384 MALDI plate and, once dried, covered with 0.5 mg/mL α-cyano-4-

hydroxycinnamic acid (CHCA, Sigma-Aldrich) in 70% (v/v) ACN/ 0.1% TFA (v/v).  

The MS spectra were acquired on a 4800 Plus MALDI TOF/TOF Analyser system (Darmstadt, 

Germany) operated with the 4000 Series Explorer software (version 3.5.3.) in reflector positive 

mode (laser=355 nm). Before MS analysis the instrument was calibrated with 4700 Proteomics 
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Analyzer Mass Standards kit (ABSciex) according to the following peak matching parameters: 

minimum S/N - 50, mass tolerance - ± 0.5 m/z, minimum peaks to match - 4 and maximum outlier 

error - 3 ppm. The MS/MS calibration was based on fragments of Glu-fibrinopeptide B.  

Protein identification 

The peptides were de novo sequenced with a combination of two algorithms, PEAKS 7.0 

(Zhang et al., 2012) and DeNovoGUI (Muth et al., 2014). The search parameters included a 

precursor and fragment mass error tolerance of 0.1 Da (PEAKS) or 0.5 Da (DeNovoGUI), 

carbamidomethylation (57.02) as fixed modification, and acetylation (N-terminus) (42.01) and 

methionine, histidine and tryptophan oxidation (15.99) as variable modifications. 

 Peptide homology search used the FASTM/S algorithm (Mackey et al., 2002) (standard 

settings, matrix PAM 120) against the UniProtKB Knowledgebase and/or UniProtKB Fungi subset 

(Evalue  0.05 was considered significant). As soon as the D. corticola genome was sequenced (data 

not shown) the MS/MS spectra were re-searched with MASCOT (Matrix Science, UK), through 

Global Protein Server Explorer (GPS, v3.6, Applied Biosystems), against the protein database 

derived from the predicted D. corticola genes. The search parameters of this analysis included 2 

trypsin missed cleavages, MS precursor mass error tolerance of 100 ppm, MS/MS fragment mass 

error tolerance of 0.25 Da, carbamidomethylation (57.02) as fixed modification, and acetylation 

(N-terminus) (42.01) and methionine, histidine and tryptophan oxidation (15.99) as variable 

modifications. The subcellular localization of the identified proteins was deduced using WoLF 

PSORT predictor (Horton et al., 2007) and the theoretical pI and MW determined with Compute 

pI/Mw tool available at ExPASy (Gasteiger et al., 2005). Proteins not predicted as extracellular in 

the secretome fraction were additionally analysed with SecretomeP 2.0 (Bendtsen et al., 2004) to 

assess their probability to be secreted through an unconventional pathway (proteins with NN 

score  0.5 were considered unconventionally secreted).  

Gel image analysis 

Silver and CBB-250 stained gels analysis was performed with Proteomweaver 2-D Analysis 

Software 4.0 (BioRad). First, the spots were detected using the detection parameter wizard, which 

adjusts the detection parameters to the intensity, contrast and radius of few selected spots of an 

average quality gel. Concurrently, the spots were automatically normalized using a pre-match 

normalization algorithm that sets the intensity of a reference spot to 1 and adjusts the remaining 

spots accordingly. After spot edition the gels were pair-matched (every gel image was matched to 

each other) and then multi-matched, extending the pair-match information to the whole 
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experiment in order to create the so-called superspots. Both matching steps were inspected and 

the mismatches manually edited. Finally, a precision pair-matched normalization algorithm was 

computed for further numerical analysis and the average gels were generated. To be included in 

these artificial representations the spots had to be present in 50% of the group gels. Protein spots 

that fulfilled the following requirements were considered differentially significant: minimal 

regulation factor of 2 (up-regulation) or 0.5 (down-regulation), minimal global frequency of 4 out 

of 6 gels, Student’s t-test p  0.05 and Mann-Whitney-Wilcoxon test p=0. To be considered absent 

or exclusive of one group condition, the group frequency of a spot should be 0% in one group and 

100% in the other. 

RESULTS AND DISCUSSION 

QUALITATIVE PATHOGENICITY TESTS 

Quercus suber disease symptoms induced by D. corticola strains were visually monitored for 30 

days (July 2012) to qualitatively assess their virulence degrees (Figure 7). Control seedlings 

remained asymptomatic throughout the experiment (Figure 8 A), as happened in the seedlings 

inoculated with the strains CAA 008 (Figure 8 B) and CAA 009-2, considered for this reason 

avirulent. All other strains induced declining symptoms like foliar dehydration, discoloration and 

necrosis (Figure 8 C-F), even though with distinct magnitudes. The first symptoms caused by these 

virulent strains appeared few days after fungal inoculation, particularly in the most aggressive 

strains, CAA 499 and CAA 500 (Figure 7). After 23 days of infection two of the four seedlings 

Figure 7 | Quercus suber disease severity induced by D. corticola throughout 30 days after inoculation. Four 
biological replicates were used per strain. DS scale: 0 - no foliar symptoms, 1 - weak infection, 2 - medium 
infection, 3 - severe infection and 4 - extreme infection. 
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inoculated with CAA 499 strain were dead. Moreover, in all symptomatologic seedlings the dried 

leaves stayed attached to the branches, even after plant death (Figure 8 G), a phenomenon 

characteristic of sudden cork oak decline described to occur in natural conditions (Camilo-Alves, 

2014). Likewise, Lynch et al. (2013) observed that in Q. agrifolia Née D. corticola promoted the 

formation of epicormic shoots below the inoculation point. We also noticed that same 

phenomena in some seedlings of Q. suber (Figure 8 H). Pycnidia reproductive structures were 

equally visible after 3 weeks of infection (Figure 8 J,K), as previously noticed in similar 

 

Figure 8 | Quercus suber declining symptoms caused by artificial D. corticola stem infection conducted 
during 30 days. A - Asymptomatic leaves of a negative control seedling (23 days), B - Asymptomatic leaves 
of a seedling inoculated with the avirulent strain CAA 008 (23 days), C - Foliar dehydration (CAA 007-1, 23 
days), D - Foliar dehydration (CAA 500, 23 days), E - Foliar necrosis (CAA 499, 16 days), F - Foliar necrosis 
(CAA 003, 23 days), G - Dead seedling inoculated with an aggressive D. corticola strain, CAA 499, with the 
dried leaves attached to the branches (23 days), H - Epicormic shoots sprouting below the inoculation 
wound (CAA 010, 23 days), I - Sap exudation (CAA 009-1, 16 days), J - Pycnidia formation (CAA 007-1, 23 
days), K - Pycnidia formation (CAA 009-1, 23 days). 
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pathogenicity tests (Linaldeddu et al., 2014, 2009; Luque et al., 2000; Lynch et al., 2013). In 

addition, one seedling inoculated with CAA 009-1, a mild-virulent strain (Figure 7), reacted to the 

fungal invasion secreting a sap exudation near the inoculation wound (Figure 8 I), a symptom 

already observed  in the stem bark of some declining oaks (Gallego et al., 1999). Although 

qualitative, these results are in accordance with other pathogenicity tests performed in oaks, 

which stated D. corticola as an extremely virulent fungus for Quercus species (Linaldeddu et al., 

2014, 2009; Luque et al., 1999; Lynch et al., 2013; Mullerin, 2013). Furthermore, it was 

demonstrated that virulence magnitude varies according to the D. corticola strain.  

This experiment enabled to select strains with different virulence levels that were used in 

comparative proteomic studies: strain CAA 008 was selected as avirulent and strain CAA 499 as 

virulent strain.   

SECRETOME ANALYSIS 

1D evaluation of protein extracts 

Proteins were separated by SDS-PAGE to assess the accuracy of protein quantification and to 

confirm the quality of the extraction (its suitability for 2D analysis). The protein profiles obtained 

show that the control secretome extraction was efficient (Figure 9 A, D), as happened in the 

secretome of D. corticola grown in the presence of cork oak stem (Figure 9 B, E). These results 

Figure 9 | SDS-PAGE of D. corticola extracellular proteins (30 µg). A - CAA 008 control, B - CAA 008 (cork 
oak stem), C - CAA 008 (CMC), D - CAA 499 control, E - CAA 499 (cork oak stem), F - CAA 499 (CMC), M - 

Precision Plus Protein Unstained Standard (Bio-Rad, USA). Gels were stained with Pierce Silver Stain for 
Mass Spectrometry (Thermo Scientific, USA). 
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also demonstrate that the 1D protein profile of D. corticola avirulent and virulent strains are 

distinct (Figure 9 A, D). In addition, the electrophoretic separations show that D. corticola secretes 

more proteins in the presence of cork oak stem than CMC (Figure 9 B/C and E/F). This is 

concordant with the literature. Phalip et al. (2005) showed that F. graminearum grown in the 

presence of glucose secreted significantly less proteins than grown in the presence of hop plant 

cell wall. Fernández-Acero et al. (2010) studied the Botrytis cinerea Pers. response to several 

carbon sources. These authors demonstrated that the level of protein secretion is directly 

proportional to the supplement complexity. Fungi seems to secrete more proteins in the presence 

of complex substrates, such as cork oak stem, a behaviour probably justified by the requirement 

of a synergistic action of cell wall-degrading enzymes (CWDEs) to degrade the plant cell wall 

cellulose, hemicellulose, lignin, pectin and, in the case of cork oak, suberin (Jové et al., 2011; 

Plomion et al., 2001). Since enzyme secretion is an energetically expensive process, when 

supplemented with simpler carbon sources fungi secretes only the strictly necessary enzymes, 

adapting the protein secretion to their environment (Girard et al., 2013). 

Moreover, CMC affects the viscosity of the protein extracts, which might have compromised 

the downstream steps of protein extraction, quantification and separation (Figure 9 C and F). 

Together, these results show that CMC is an ineffective plant mimicker to induce fungal protein 

secretion, which is in accordance with Cobos et al. (2010), who also evidenced the inefficiency of 

CMC to influence the Diplodia seriata De Not. proteome. Consequently, all comparative analysis 

performed in this work were based in the secretomes and cellular proteomes induced by cork oak 

stem. 

Control vs. infection-like secretomes of strains with different agressiveness 

Extracellular proteins are crucial for fungal plant infection. The identification of these proteins 

contribute to the discovery of plant-host interactions. In this study we used proteomic tools to 

characterize the secretome of D. corticola.  

After protein separation by 2D and visualization with silver staining it was possible to assess 

the major dissimilarities between the control protein profile and the extracellular response to the 

cork oak stem added to the culture medium in both D. corticola strains studied. In total, we 

detected an average (± SD) of 116 ± 20 spots in the control secretome of the avirulent strain 

(Figure 10 A) and 137 ± 13 spots in the virulent strain (Figure 11 A), of which 29 were differentially 

expressed between CAA 008 and CAA 499 (Table 9). The number of detected spots in the 

infection-like secretomes increased slightly in both strains, with CAA 008 presenting an average of 

145 ± 12 spots (Figure 10 B) and CAA 499 177 ± 13 spots (Figure 11 B). As expected, the 
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differences are more prominent in the virulent strain. These numbers are higher than the number 

of protein spots detected in the secretome of D. seriata (75 spots), the closest 

Botryosphaeriaceae whose proteome was studied (Cobos et al., 2010). In fact, low protein 

detection rates are usual among filamentous fungi secretomes (Abbas et al., 2005; Cao et al., 

2009; Espino et al., 2010), a characteristic inherent to their behavior in vitro, namely the reduced 

protein secretion and the concomitant production of mucilaginous extracellular polysaccharides 

that hampers the separation (Girard et al., 2013). The efficiency of the extraction protocol and the 

sensitivity of the silver staining used in this work certainly contributed to the high amount of 

detected spots.   

Despite all the constraints associated to protein identification in organisms with unsequenced 

genomes, we were able to identify the majority of extracellular proteins just with de novo 

sequencing (Table 4 and Table 5). This approach encompassed two algorithms, PEAKS 7.0 (Zhang 

et al., 2012) and DeNovoGUI (Muth et al., 2014), a combination that greatly improved the overall 

rate of peptide sequencing. Together, they can bridge the sequencing shortcomings of each other, 

particularly in the MS/MS spectra with poorer quality, a process that nevertheless requires 

substantial manual interpretation, being for this reason extremely laborious and time-consuming.  

Further, as D. corticola genome was recently sequenced (data not shown) it was possible to re-

search the MS/MS data against the protein database derived from the predicted fungus genes. 

The results obtained corroborated the identifications achieved before by de novo sequencing, 

contributing in some cases to the identification of spots undisclosed in the first approach (Table 4 

and Table 5, spots 7, 10, 48, 49 and 58). Accordingly, we confirmed that MS/MS analysis may take 

advantage of the conjugation of various de novo sequencing, as well as database search 

algorithms, to improve and validate the obtained results. Actually, some authors had previously 

stated that due to the distinct characteristics of de novo sequencing and database search 

approaches, their results consonance confers per se a definite validation (Ma & Johnson, 2012; 

Sadygov et al., 2004).  

Hence, considering the restricted genomic characterization of the Botryosphaeriaceae family, 

the extracellular protein identification rate was rather noteworthy (Table 3). We identified mainly 

hydrolases (56% in CAA 008 and 51% in CAA 499) and proteases (27% in CAA 008 and 31% in CAA 

499), a functional distribution previously observed in Fernandes et al. (2014). Most of the 

identified proteins displayed homology with the fungi Macrophomina phaseolina (Tassi) Goid. and 

Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers et A.J.L. Phillips (Table 4 and Table 

5), both taxonomically close to D. corticola (Liu et al., 2012), adding thus confidence to the 

identification results. Further, their theoretical pI ranged between 4.04 and 6.32, and the MW 
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betweeen 14.1 and 110.6 kDa (Table 4 and Table 5), which generally corresponded to the spot 

position on the gels (Figure 10 and Figure 11). Likewise in other fungi (Escobar-Tovar et al., 2015; 

Li et al., 2012), D. corticola has several spots identified as being the same protein, diverging in pI 

and/or MW. For instance, GH 31 was identified in 4 different spots (46, 47, 50 and 57), peptidase 

A1 in 8 spots (18, 19, 21, 22, 35, 59, 137 and 148), peptidase M35 in 7 spots (3, 99, 104, 111, 112, 

117, 126) and spherulation-specific family 4 in 3 spots (4, 6 and 71) (Figure 10 and Figure 11). This 

is usually an indicator of different protein isoforms or proteins altered by post-translational 

modifications (PTMs), such as glycosylation, acetylation, phosphorylation or even truncation 

(Rabilloud & Lelong, 2011; Rogers & Overall, 2013; Rogowska-Wrzesinska et al., 2013). The 

modified and unmodified proteins are predominantly distributed in juxtaposed horizontal series 

of spots along the 2D gels, as a consequence of the slight pI shifts induced by the modification 

addition or removal of electric charge (Rogowska-Wrzesinska et al., 2013). Conversely, vertical 

shifts like the existent between spots 18 and 59 (peptidase A1, Figure 10 and Figure 11) denote, 

for example, the existence of truncation, an irreversible proteolytic cleavage that produces 

shorter polypeptides with new or modified biological activities (Rogers & Overall, 2013). The 

vertical spot distribution might similarly demonstrate the ocurrence of protein degradation events 

in the secretome of D. corticola (Rogowska-Wrzesinska et al., 2013).  

The extracellular localization of the proteins was confirmed with WoLF PSORT subcellular 

predictor (Horton et al., 2007), with the exception of β-1,3-glucanase protein (GH 64, spot 24), 

predicted as nuclear, alcohol dehydrogenase (spot 7), fumarylacetoacetase (spot 31) and cell wall 

protein (spot 127), predicted as cytoplasmic (ca. 4.5%, Table 4 and Table 5). In fact, the 

identification of intracellular proteins in the secretome fraction is recurrent among filamentous 

fungi studies (Adav et al., 2015; Cobos et al., 2010; Lu et al., 2010; Wartenberg et al., 2011), a 

pattern commonly justified by the occurrence of cell lysis during fungal growth or even during 

protein sample extraction. Nonetheless, the absence of housekeeping intracellular proteins in D. 

corticola secretome reinforces the contrary, the hypothesis that proteins lacking conventional 

Table 3 | Number of extracellular proteins identified in D. corticola strains 
CAA 008 and CAA 499. 

 CAA 008 CAA 499 

Hydrolases 42 41 

Proteases 20 25 

Oxidoreductases 2 2 

Other funtions 10 11 

Unknown 1 1 

No. of proteins identified 75 80 

No. of spots identified 67 72 
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secretion signal motifs might also be secreted (Paper et al., 2007). A growing number of studies 

has actually confirmed the secretion of known intracellular fungal proteins without the classical 

N-terminal secretory signal peptides, though their extracellular functions or even their role in 

pathogenesis are not fully understood (Girard et al., 2013; Moore et al., 2002; Paper et al., 2007; 

Rolke et al., 2004; Wegener et al., 1999). Besides, several alternative secretion pathways were 

concurrently demonstrated in fungi (Shoji et al., 2014), namely the unconventional secretion of 

the Ustilago maydis (DC.) Corda endochitinase Cts1, a protein that does not contain a signal 

peptide and whose secretion is independent of both endoplasmic reticulum and Golgi apparatus, 

two organelles involved in the conventional secretory pathway (Shoji et al., 2014; Stock et al., 

2012). In order to verify if the predicted intracellular proteins above mentioned are secreted 

through an unconventional secretory pathway we analysed their sequence with SecretomeP 

predictor (Bendtsen et al., 2004). The results obtained substantiate the high probability of β-1,3-

glucanase protein (NN score=0.762), fumarylacetoacetase (NN score=0.519) and cell wall protein 

(NN score=0.561) contain a non-classical signal peptide that mediates their secretion through an 

alternative pathway. Conversely, Secretome P does not corroborate the secretion of the 

cytoplasmic alcohol dehydrogenase, although its NN score (0.473) is relatively close to the 0.5 

threshold. According to Agrawal et al. (2010) the score outputs of such prediction programs 

should be regarded just as guidelines due to their data set limitations, whereby the protein might 

still be secreted. Alcohol dehydrogenase was equally identified in the secretome of Aspergillus 

fumigatus Fresen., wherein it was postulated as being a lignin degrading enzyme (Adav et al., 

2015), a role also plausible in D. corticola since the protein is constitutively secreted in both 

strains (Table 9 and Table 10, Appendix I). Hence, these evidences support the presence of 

proteins hitherto known only by its intracellular functions in the D. corticola secretome. We can 

also suggest that their translocation to the extracellular space occurs presumably through 

unconventional secretory pathways.  

Subsequently, we compared the protein profiles of the control and infection-like conditions to 

assess their differentially expressed proteins, a fundamental step to highlight the proteins that 

may behave as virulence factors during fungal pathogenesis. According to this analysis the spot 

24, which includes the proteins neuraminidase and β-1,3-glucanase (GH 64, CAZy), is 

overexpressed in the avirulent infection-like secretome (4.9-fold up, p=0.0011) (Figure 10 and 

Table 4), while in the virulent strain the expression levels are not significantly different between 

control and infection-like profiles (Figure 11 and Table 5). Neuraminidase, found as well in spots 

12 and 53 (Figure 10 and Figure 11), is a widespread exo-glycosidase that cleaves the sialic acid 

residues of glycoconjugates, which are probably used afterwards as a carbon source for fungal 
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growth (Monti et al., 2002; Warwas et al., 2010). Adding to the nutritional fulfilment, 

neuraminidase was ascertained to play a substantial role in viral and bacteria virulence (Burnaugh 

et al., 2008; Roy et al., 2011; Yondola et al., 2011), although this function has not yet been 

clarified in fungi. Still, the protein was recently identified in the secretomes of two other plant-

pathogenic fungi, Verticillium albo-atrum Reinke et Berthold and Mycosphaerella graminicola 

(Fuckel) J. Schröt. (Amaral et al., 2012; Mandelc & Javornik, 2015), having also been sequenced in 

the genomes of the Botryosphaeriaceae fungi M. phaseolina, N. parvum and D. seriata (Blanco-

Ulate et al., 2013; Islam et al., 2012; Morales-Cruz et al., 2015). Neuraminidase certainly assists 

the glycoside hydrolases of these phytopathogens to disrupt the plant cell wall during host 

invasion. On the other hand, the pathogenic ability of the fungal β-1,3-glucanase is better studied 

than in neuraminidase (Cao et al., 2009; Fu et al., 2013; Huser et al., 2009). β-glucanases are 

primarily recognized by the glucose mobilization for carbon and energy metabolism during fungal 

cell wall growth (Martin et al., 2007). Thus, considering the active role of neuraminidase and of β-

1,3-glucanase (spot 24) in the lignocellulose hydrolysis, the gel analysis suggests that, conversely 

to the virulent strain, the avirulent strain increases its secretion levels to assimilate the nutrients 

from the supplemented cork oak stem. 

Further, it was identified another β-1,3-glucanase (GH 55, CAZy) in the spots 39, 40, 42 and 43 

(Figure 10 and Figure 11), which are more prevalent in the avirulent strain. The gels comparison 

demonstrated that in the control secretome 3 of the 4 spots were downregulated in the virulent 

strain (spot 39: 5.1-fold down, p=0.0102; spot 40: 5.2-fold down, p=0.0221; spot 43: 7.6-fold 

down, p=0.0213; Figure 16 and Table 9, Appendix I), occurring the same in the infection-like 

secretome (spot 39: 4.9-fold down, p=0.0348; spot 42: 5.2-fold down, p=0.0184; spot 43: 4.2-fold 

down, p=0.0202; Figure 17 and Table 10, Appendix I). Although the horizontal distribution 

indicates that the four GH 55 identified spots might be isoforms or post-translational modified 

proteins, the analysis confirmed that the overall expression of this hydrolase is lower in the 

virulent strain. Known by its exo- and endo-β-1,3-glucanase activity, this enzyme displays as well 

pectinolityc activity due to its pectin lyase domain, being therefore intrinsically associated to 

polysaccharide metabolism. However, since pectin is a minor compound of the cork cell wall (ca. 

1.5%) in comparison with lignin (ca. 25%) or suberin (ca. 40%) (Pinto et al., 2009; Rocha et al., 

2000), the virulent strain seems to have adapted the GH 55 enzyme expression to its host cell wall 

composition. On the contrary, the avirulent strain maintains a basal expression of the protein, 

probably increasing its levels if the pectin content of the substrate is higher than in cork oak. 

 Intriguingly, the pectate lyase detected (spot 113, Figure 11 and Table 5) follows a divergent 

trend. Although the differences between the average intensities (Avg) of the infection-like and 
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control secreted pectate lyase were not statistically significant, the virulent strain responds 

positively to the host mimicry (AvgControl=0.305 and AvgInfection-like=0.624), while the avirulent 

pectate lyase expression is, in general, lower than in the virulent strain (Figure 16 and Figure 17, 

Appendix I). Acting both on esterified polysaccharides, the dissimilarities of pectin and pectate 

lyase active sites have further implications in their substrate selection, with pectin lyases 

prefering highly methyl-esterified substrates and pectate lyases subtrates with lesser 

esterification degrees (Brink & Vries, 2011). Constituted by slightly branched polymers of 

arabinose residues (Rocha et al., 2000), the chemical composition of cork cell wall pectic 

polysaccharides might justify the presence of pectate lyase in the secretome of the virulent strain. 

In accordance, Biswal et al. (2014) demonstrated that even when pectin is a minor wood 

constituent, as happens in cork oak stem tissues, the aspen pectate lyase improves the 

lignocellulose saccharification yield, increasing then the solubility of the wood polysaccharides. 

Moreover, the upregulation of this enzyme in lethal isolates of V. albo-atrum compared to mild 

isolates was equally corroborated by Mandelc & Javornik (2015), having been implied its 

hypothetical contribution for the plant vascular system colonization. Therefore, these evidences 

suggest that the most agressive D. corticola strain has adjusted its set of extracellular proteins to 

the Q. suber cell wall characteristics, gaining advantage over the avirulent strain during the host 

colonization. Conversely, the latter seems to secrete a diverse set of proteins that allow the 

fungus to easily adapt to substrates with different chemical compositions.  

Accordingly, the virulent strain should secrete other enzymes that enhance its capacity to 

deconstruct the cork tissues and/or pierce the host leaves. For example, proteins such as lipases 

are widely recognized as fungal pathogenicity factors due to their ability to hydrolize the lipids 

present in the host tissues into glycerol and free fatty acids (Blümke et al., 2014; Gaillardin, 2010; 

Subramoni et al., 2010; Voigt et al., 2005). Remarkably, the 2 spots identified as lipases (25 and 

110) in D. corticola were found exclusively in the CAA 499 secretomes (Figure 16 and Figure 17, 

Appendix I). However, the relative steadiness of lipase spot intensities in response to cork oak 

stem (spot 110 AvgControl=0.168 and AvgInfection-like=0.192, Figure 11) suggests that the protein is 

constitutively secreted. Further, acting solely in water-insoluble esters bonds the lipases work in 

synergy with esterases, responsible for the cleavage of water-soluble ester bonds, being for this 

reason also regarded as fungal pathogenicity factors (Biely, 2012; Fojan et al., 2000). Together 

they contribute to the fulfilment of the fungal nutritional needs during host invasion, while they 

promote the adhesion and permeation of plant tissues (Pietro et al., 2009). Among the 

extracellular esterases identified in D. corticola are a carboxylesterase (spot 48), two ferulic acid 

esterases (spots 23 and 103) and three phosphoesterases (spots 28, 29 and 56) (Figure 10 and 
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Figure 11). In particular, ferulic acid esterases drew attention, since the suberized cork cell walls 

are structurally composed by ferulic acid, an hydroxycinnamic acid that represents ca. 9% of the 

total suberin monomers of Q. suber trees (Graça, 2010). However, contrary to what was expected, 

the CAA 499 ferulic acid esterase expression decreased in response to the host mimicry (spot 23: 

2-fold down, p=0.0406; spot 103: 5-fold down, p=0.0202; Figure 11), being nevertheless higher 

than the CAA 008 infection-like expression (spot 23: 21.8-fold up, p=0.0015; spot 103: 5-fold up, 

p=0.0423; Figure 17, Appendix I). Such result indicates that the enzyme is constitutively secreted, 

but for unknown reasons its expression is slightly repressed when the virulent strain is exposed to 

cork oak stem.  

Furthermore, fungal host colonization benefits of proteases' involvement, not only to protect 

the fungus against plant defenses, but also to mobilize nitrogen sources required for the hyphal 

growth (Faulkner & Robatzek, 2012; Fernandez et al., 2014; Girard et al., 2013; Pietro et al., 2009). 

Considering this, neutral protease 2 (peptidase M35, a Zn2+ metalloendopeptidase), also known as 

deuterolysin, was one of the proteases highlighted by the comparative gel analysis due to the 

substantial expression dissimilarities existent between the two strains. Among the spots identified 

in CAA 499 as being deuterolysin (3, 99, 104, 111, 112, 117, 126), only spot 3 was detected in CAA 

008 (Figure 16 and Figure 17, Appendix I). In addition, spots 111 and 112 were absent in the CAA 

499 infection-like secretome (Figure 11), which might then be proenzymes that become active in 

the presence of cork oak stem. Although previously detected in the secretome of other 

phytopathogenic fungi (Amaral et al., 2012; Collins, 2013; Espino et al., 2010; Li et al., 2012), this 

is the first time that an unbalanced distribution of peptidase M35 between two strains with 

distinct virulence degrees was demonstrated, highlighting it as a potential virulence factor of D. 

corticola. So far, only a bacterial member of the M35 family (AsaP1) was confirmed to be a 

virulence factor (Arnadottir et al., 2009), despite the numerous suggestions that proteins 

belonging to this metalloprotease family have an active role in fungal infections (Guyon et al., 

2014; Li & Zhang, 2014; Monod et al., 2002). Consequently, the implications of the peptidase M35 

prevalence in the D. corticola virulent strain should be further investigated to assess its effective 

contribution to fungal pathogenicity. In addition, the virulent strain secretes another Zn2+ 

metalloprotease (peptidase M43, spot 136) that is absent in the CAA 008 strain (Figure 17 and 

Table 10, Appendix I) and whose expression is up-regulated in the infection-like secretome (6.9-

fold up, p=0.0053, Figure 11). Although there are few reports correlating the proteolytic activity of 

peptidase M43 family proteins with fungal virulence (Lu et al., 2009), in bacteria such association 

was already established. For instance, Hesami et al. (2011) indicated that the M43 cytophagalysin 

may be implicated in the Flavobacterium psychrophilum (Bernardet and Grimont 1989) Bernardet 
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et al. pathogenesis, causing host tissue necrosis. The results obtained in this work suggest that the 

peptidase M43 might be also relevant for D. corticola virulence, due to its uniqueness in the 

virulent strain and to the upregulation induced by the host mimicry. 

Besides the lytic enzymes already mentioned, plant pathogenic fungi secrete other effectors 

that promote the host invasion, contributing for instance to fungal attachment, cell wall 

permeation or to the induction of disease symptoms. Cerato-platanin, found in spot 1 along with 

an extracellular guanyl-specific ribonuclease protein, raised especial attention because its 

expression in the virulent strain increased in response to the supplemented cork oak stem (2.2-

fold up, p=0.0013, Figure 11 and Table 5), and also because there is growing evidence about the 

participation of this protein family in the fungal infection of plants (Baccelli, 2014; Pazzagli et al., 

2014). Indeed, these small cysteine-rich non-proteolytic proteins have numerous roles in the 

infectious interface. For example, cerato-platanins are able to block the plant-fungus recognition, 

scavenging the chitin fragments or its N-acetylglucosamine monomers, which function as invasion 

patterns according to the recent  invasion model of plant-microbe interactions (Barsottini et al., 

2013; Cook et al., 2015; Frischmann et al., 2013; Pazzagli et al., 2014). On the other hand, there 

are indications that the cerato-platanins can be noticed as invasion patterns itself, eliciting plant 

defence events such as the generation of ROS and nitric oxide or the transcription of defense-

related genes early after the plant recognition (Baccelli et al., 2014a, 2013; Frías et al., 2013; 

Lombardi et al., 2013; Pazzagli et al., 2014). Accordingly, Frías et al. (2014) reported that the B. 

cinerea cerato-platanin BcSpl1 cause cellular morphological alterations after the association to 

the plant plasma membrane, inducing subsequent macroscopic tissue necrotic lesions. Further, 

when localized on the fungal cell wall the expansin-like activity of cerato-platanins contribute to 

its remodelling and enlargement, ensuring the hyphal growth necessary for a successful host 

colonization (Baccelli, 2014; Gaderer et al., 2014). Nonetheless, the expansin-like activity of 

cerato-platanins might be even more important for the fungal virulence due to the ability to 

loosen the plant cellulose barrier, which facilitates the hyphal mechanical perforation during host 

colonization and the later fungal spread on dead plant tissues (Baccelli et al., 2014b; Baccelli, 

2014; Barsottini et al., 2013). Therefore, the CAA 499 cerato-platanin upregulation registered in 

vitro in response to host exposition demonstrates that this protein may indeed act as a fungal 

effector during D. corticola infection, a role that should be validated in future in planta 

experiments. 

Further, D. corticola secretome still contains another necrotic elicitor, the necrosis inducing 

protein (spot 7, Figure 10 and Figure 11), but we did not find significant differences between the 

control and infection-like profiles. Nevertheless, the average spot intensities imply a clear 
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prevalence of this protein in the secretome of the virulent strain (Control: AvgCAA 008=0.107 and 

AvgCAA 499=0.611, infection-like: AvgCAA 008=0.127 and AvgCAA 499=1.537, Figure 16 and Figure 17, 

Appendix I). The absence of statistical differences might be related to the spot intensity variability 

existent between the replicates of each group. Thus, similarly to cerato-platanin, the necrotic 

activity of this hypothetical D. corticola effector should be studied to assess its relevance for the 

fungal infectious process. 

To summarize, we performed an extensive characterization of the secretome of two D. 

corticola strains with distinct virulence degrees and evaluated their response to the in vitro host 

mimicry. The resultant data suggests that the virulent strain has indeed adjusted its set of 

extracellular proteins to the host environment, making the fungus more competitive at the 

infectious interface than the avirulent strain. Nevertheless, the relevance of the proteins 

highlighted in this work should be further validated, in order to reveal their role in the molecular 

interactions of the D. corticola pathosystem. Moreover, we corroborated the usefulness of the 

comparative proteomic approach for the detection of potential virulence effectors, and 

demonstrated that the de novo sequencing still has a niche in the contemporary proteomics.  
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Figure 10 | 2D average gels of control (A) and infection-like (B) secretomes of the D. corticola avirulent strain CAA 008. 

Three biological replicates were used for each condition. Gels were stained with Pierce Silver Stain for Mass 
Spectrometry (Thermo Scientific, USA). Protein spots identified by de novo sequencing and/or MASCOT search are 
marked with filled arrow lines and the identifications are summarized in Table 4. 
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Table 4 | Summary of the extracellular proteins identified in CAA 008 EXT control and CAA 008 EXT infection-like by de novo sequencing (1) and/or MASCOT search (2). 
Theoretical pI and MW (3) were searched with Compute pI/Mw tool available at ExPASy (Gasteiger et al., 2005) and the subcellular localization (4) deduced with WoLF PSORT 

predictor (Horton et al., 2007). 

Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots exclusive of CAA 008 EXT control        

Hydrolases         

Phosphoesterase 28 K2RUW5 Macrophomina phaseolina 5.90E-29 485 4.64 43928.97 Extracellular 

 29 K2RUW5 Macrophomina phaseolina 8.80E-03 151 4.64 43928.97 Extracellular 

Proteases         

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

29 R1GF60 Neofusicoccum parvum  5.50E-16 80 4.45 52146.52 Extracellular 

         

Spots down-regulated in CAA 008 EXT infection-like       

Hydrolases         

Phosphoesterase 56 K2RUW5 Macrophomina phaseolina  3.00E-15  4.64 43928.97 Extracellular 

Oxidoreductases         

Putative ligninase lg6 protein 
(Peroxidase) 

11 R1GJT0 Neofusicoccum parvum  5.30E-32 512 5.20 32232.20 Extracellular 

         

Spots up-regulated in CAA 008 EXT infection-like       

Hydrolases         

GH 64 - Putative glucanase b 
protein (β-1,3-glucanase) 

24 R1GK17 Neofusicoccum parvum  0.00E+00 327 5.82 42116.55 Nuclear 

Neuraminidase (Sialidase) 24 K2RBR1 Macrophomina phaseolina  9.30E-11  4.32 40074.67 Extracellular 

Unknown         

Uncharacterized protein 61 K2RWL4 Macrophomina phaseolina 6.80E-28 209 4.34 52231.60 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots common to both control and infection-like       

Hydrolases         

Carboxylesterase family protein 48 DCO1_40s06646.t1 Diplodia corticola  76 4.68 61064.17 Extracellular 

GH 13 - Putative α-amylase a type-
1,2 protein  

62 R1GPA2 Neofusicoccum parvum  0.00E+00 373 4.53 56053.14 Extracellular 

101 K2QLM3 Macrophomina phaseolina 4.00E-31  4.73 54649.73 Extracellular 

GH 15 - Glucoamylase 63 C0NJV0 Ajellomyces capsulatus 0.00E+00 490 5.32 70492.86 Extracellular 

 129 R1GLG1 Neofusicoccum parvum   1.60E-14  4.83 68531.74 Extracellular 

 133 Q9C1V4 Talaromyces emersonii 3.00E-27  4.44 65429.22 Extracellular 

GH 17 - Glycoside hydrolase family 
17 

13 K2STT8 Macrophomina phaseolina 0.00E+00 363 4.55 32022.55 Extracellular 

51 K2STT8 Macrophomina phaseolina 2.30E-07 64 4.55 32022.55 Extracellular 

 53 K2STT8 Macrophomina phaseolina 2.30E-07 130 4.55 32022.55 Extracellular 

 93 K2STT8 Macrophomina phaseolina  2.30E-07  4.55 32022.55 Extracellular 

 114 K2STT8 Macrophomina phaseolina 5.20E-03  4.55 32022.55 Extracellular 

GH 31 - Putative α-glucosidase 
protein  

46 R1H1X1 Neofusicoccum parvum  0.00E+00 321 4.65 110578.06 Extracellular 

47 R1H1X1 Neofusicoccum parvum   0.00E+00 330 4.65 110578.06 Extracellular 

 50 R1H1X1 Neofusicoccum parvum   2.40E-07  4.65 110578.06 Extracellular 

 57 R1H1X1 Neofusicoccum parvum   0.00E+00 260 4.65 110578.06 Extracellular 

GH 43 - Putative glycoside 
hydrolase family 43 protein  

14 R1EDI8 Neofusicoccum parvum   5.70E-07 242 4.48 37269.32 Extracellular 

26 R1GE80 Neofusicoccum parvum  2.00E-09 169 5.73 48185.65 Extracellular 

 27 R1GE80 Neofusicoccum parvum   1.30E-18 315 5.73 48185.65 Extracellular 

 64 R1EDI8 Neofusicoccum parvum   3.60E-04 144 4.48 37269.32 Extracellular 

GH 55 - Putative glycoside 
hydrolase family 55 protein  

39 R1EP88 Neofusicoccum parvum   0.00E+00 529 4.52 84093.46 Extracellular 

40 R1EP88 Neofusicoccum parvum   0.00E+00 548 4.52 84093.46 Extracellular 

42 R1EP88 Neofusicoccum parvum   0.00E+00 529 4.52 84093.46 Extracellular 

 43 R1EP88 Neofusicoccum parvum  1.90E-21 195 4.52 84093.46 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

GH 71 - Glycoside hydrolase family 
71  

32 K2R498 Macrophomina phaseolina  5.50E-17 250 4.84 49264.81 Extracellular 

GH 93 - Putative glycoside 
hydrolase family 93 protein 
(Sialidase/ Neuraminidase) 

12 R1GGQ9 Neofusicoccum parvum   1.40E-07 180 4.41 38051.25 Extracellular 

53 K2RBR1 Macrophomina phaseolina  0.00E+00 126 4.32 40074.67 Extracellular 

Putative 5,3-nucleotidase protein 2 R1FUS1 Neofusicoccum parvum  3.70E-18  4.58 31154.86 Extracellular 

Putative ferulic acid esterase 
protein 

23 R1EDH3 Neofusicoccum parvum  1.50E-13 32 4.79 34891.92 Extracellular 

Putative glutaminase protein 36 R1EUG4 Neofusicoccum parvum  6.40E-32 263 4.29 74937.86 Extracellular 

 37 R1EUG4 Neofusicoccum parvum  0.00E+00 225 4.29 74937.86 Extracellular 

 38 R1EUG4 Neofusicoccum parvum   0.00E+00 263 4.29 74937.86 Extracellular 

 49 DCO1_62s08886.t1 Diplodia corticola  64 4.27 76639.88 Extracellular 

Uncharacterized protein 
(fumarylacetoacetase) 

31 A0A072PA62 Exophiala aquamarina 4.60E-26  5.84 46110.07 Cytoplasmic 

Proteases         

Peptidase A1 - Putative a chain 
endothiapepsin 

18 R1ESA5 Neofusicoccum parvum  0.00E+00 491 5.45 42563.05 Extracellular 

19 R1ESA5 Neofusicoccum parvum   4.20E-10 71 5.45 42563.05 Extracellular 

 21 R1ESA5 Neofusicoccum parvum   0.00E+00 228 5.45 42563.05 Extracellular 

 22 R1ESA5 Neofusicoccum parvum  1.90E-04 34 5.45 42563.05 Extracellular 

 35 R1ESA5 Neofusicoccum parvum  0.00E+00 491 5.45 42563.05 Extracellular 

 59 R1ESA5 Neofusicoccum parvum  4.30E-10 491 5.45 42563.05 Extracellular 

 137 R1GM42 Neofusicoccum parvum  1.60E-08  4.27 41788.15 Extracellular 

Peptidase M28 - Putative leucyl 
aminopeptidase protein 

5 R1GBR8 Neofusicoccum parvum  1.20E-23 222 5.17 40706.16 Extracellular 

Peptidase M35 - Neutral protease 2 3 K2SDQ0 Macrophomina phaseolina 1.20E-25 124 5.34 36981.99 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

30 R1GF60 Neofusicoccum parvum  0.00E+00 486 4.45 52146.52 Extracellular 

31 R1GF60 Neofusicoccum parvum  0.00E+00 668 4.45 52146.52 Extracellular 

 34 R1GF60 Neofusicoccum parvum  0.00E+00 485 4.45 52146.52 Extracellular 

 41 R1GF60 Neofusicoccum parvum  1.50E-14 112 4.45 52146.52 Extracellular 

 62 R1GF60 Neofusicoccum parvum  4.40E-28 345 4.45 52146.52 Extracellular 

 101 R1GF60 Neofusicoccum parvum   1.30E-32  4.45 52146.52 Extracellular 

Peptidase S8 - Putative peptidase 
s8 s53 subtilisin kexin sedolisin 
protein 

16 R1G6D0 Neofusicoccum parvum  0.00E+00 478 4.18 43069.94 Extracellular 

80 R1GM11 Neofusicoccum parvum  6.50E-11  6.07 39070.39 Extracellular 

116 R1EAW3 Neofusicoccum parvum  4.80E-02  4.73 40860.15 Extracellular 

Oxidoreductases         

Alcohol dehydrogenase 7 DCO1_41s07359.t1 Diplodia corticola  50 6.32 40875.57 Cytoplasmic 

Other functions         

Cell wall protein 10 DCO1_41s07341.t1 Diplodia corticola  173 4.48 21235.80 Extracellular 

Cerato-platanin 1 E3QKQ8 Colletotrichum graminicola 6.90E-11  4.53 14119.72 Extracellular 

Ferritin/ribonucleotide reductase-
like protein 

60 K2RIV9 Macrophomina phaseolina  0.00E+00 132 4.61 30766.62 Extracellular 

Gamma-glutamyltransferase 58 DCO1_18s05278.t1 Diplodia corticola  170 4.48 22115.78 Extracellular 

Necrosis inducing protein  7 T0JMK5 Colletotrichum gloeosporioides  2.20E-17  5.80 24934.67 Extracellular 

Putative extracellular guanyl-
specific ribonuclease protein  

1 R1H1L9 Neofusicoccum parvum   3.30E-12  5.11 14564.95 Extracellular 

Putative pectate lyase a protein 
(Lyase 1)  

113 R1ED02 Neofusicoccum parvum  6.50E-08  4.88 33291.57 Extracellular 

Spherulation-specific family 4 4 K2RK67 Macrophomina phaseolina 1.00E-25 502 4.04 30373.78 Extracellular 

 6 K2RK67 Macrophomina phaseolina 2.20E-20 502 4.04 30373.78 Extracellular 

 71 K2RK67 Macrophomina phaseolina  2.80E-10  4.04 30373.78 Extracellular 
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Figure 11 | 2D average gels of control (A) and infection-like (B) secretomes of the D. corticola virulent strain CAA 499. 

Three biological replicates were used for each condition. Gels were stained with Pierce Silver Stain for Mass 
Spectrometry (Thermo Scientific, USA). Protein spots identified by de novo sequencing and/or MASCOT search are 
marked with filled arrow lines and the identifications are described on Table 5. 
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Table 5 | Summary of the extracellular proteins identified in CAA 499 EXT control and CAA 499 EXT infection-like by de novo sequencing (1) and/or MASCOT search (2). 
Theoretical pI and MW (3) were searched with Compute pI/Mw tool available at ExPASy (Gasteiger et al., 2005) and the subcellular localization (4) deduced with WoLF 
PSORT predictor (Horton et al., 2007). 

Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots exclusive of CAA 499 EXT control        

Proteases         

Peptidase M35 - Neutral protease 2 111 K2SDQ0 Macrophomina phaseolina 4.20E-05  5.34 36981.99 Extracellular 

 112 K2SDQ0 Macrophomina phaseolina 2.60E-03  5.34 36981.99 Extracellular 

         

Spots down-regulated in CAA 499 EXT infection-like       

Hydrolases         

Glutaminase 49 DCO1_62s08886.t1 Diplodia corticola  64 4.27 76639.88 Extracellular 

Putative ferulic acid esterase 
protein 

23 R1EDH3 Neofusicoccum parvum  1.50E-13 32 4.79 34891.92 Extracellular 

103 R1EDH3 Neofusicoccum parvum  6.00E-14  4.79 34891.92 Extracellular 

         

Spots up-regulated in CAA 499 EXT infection-like       

Hydrolases         

GH 15 - Glucoamylase 133 Q9C1V4 Talaromyces emersonii 3.00E-27  4.44 65429.22 Extracellular 

GH 55 - Putative glycoside 
hydrolase family 55 protein  

42 R1EP88 Neofusicoccum parvum  0.00E+00 529 4.52 84093.46 Extracellular 

43 R1EP88 Neofusicoccum parvum  1.90E-21 195 4.52 84093.46 Extracellular 

Proteases         

Peptidase M43 - Putative 
metalloprotease 1 protein  

136 R1GAQ6 Neofusicoccum parvum   5.10E-07  4.80 30491.66 Extracellular 

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

41 R1GF60 Neofusicoccum parvum   1.50E-14 112 4.45 52146.52 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Oxidoreductases         

Putative ligninase lg6 protein 
(Peroxidase) 

11 R1GJT0 Neofusicoccum parvum  5.30E-32 512 5.20 32232.20 Extracellular 

Other functions         

Cerato-platanin 1 E3QKQ8 Colletotrichum graminicola 6.90E-11  4.53 14119.72 Extracellular 

Putative extracellular guanyl-
specific ribonuclease protein  

1 R1H1L9 Neofusicoccum parvum   3.30E-12 170 5.11 14564.95 Extracellular 

         

Spots common to both control and infection-like       

Hydrolases         

Carboxylesterase family protein 48 DCO1_40s06646.t1 Diplodia corticola  76 4.68 61064.17 Extracellular 

GH 13 - Putative α-amylase a type-
1,2 protein  

62 R1GPA2 Neofusicoccum parvum  0.00E+00 373 4.53 56053.14 Extracellular 

101 K2QLM3 Macrophomina phaseolina 4.00E-31  4.73 54649.73 Extracellular 

GH 15 - Glucoamylase 63 C0NJV0 Ajellomyces capsulatus 0.00E+00 490 5.32 70492.86 Extracellular 

 129 R1GLG1 Neofusicoccum parvum   1.60E-14  4.83 68531.74 Extracellular 

GH 17 - Glycoside hydrolase family 
17 

13 K2STT8 Macrophomina phaseolina 0.00E+00 363 4.55 32022.55 Extracellular 

17 K2STT8 Macrophomina phaseolina 2.20E-07 112 4.55 32022.55 Extracellular 

 53 K2STT8 Macrophomina phaseolina 2.30E-07 130 4.55 32022.55 Extracellular 

 93 K2STT8 Macrophomina phaseolina  2.30E-07  4.55 32022.55 Extracellular 

 114 K2STT8 Macrophomina phaseolina 5.20E-03  4.55 32022.55 Extracellular 

GH 31 - Putative α-glucosidase 
protein  

46 R1H1X1 Neofusicoccum parvum  0.00E+00 321 4.65 110578.06 Extracellular 

47 R1H1X1 Neofusicoccum parvum   0.00E+00 330 4.65 110578.06 Extracellular 

 57 R1H1X1 Neofusicoccum parvum   0.00E+00 260 4.65 110578.06 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

GH 43 - Putative glycoside 
hydrolase family 43 protein  

14 R1EDI8 Neofusicoccum parvum   5.70E-07 242 4.48 37269.32 Extracellular 

26 R1GE80 Neofusicoccum parvum  2.00E-09 169 5.73 48185.65 Extracellular 

 27 R1GE80 Neofusicoccum parvum   1.30E-18 315 5.73 48185.65 Extracellular 

GH 55 - Putative glycoside 
hydrolase family 55 protein  

39 R1EP88 Neofusicoccum parvum   0.00E+00 529 4.52 84093.46 Extracellular 

40 R1EP88 Neofusicoccum parvum   0.00E+00 548 4.52 84093.46 Extracellular 

GH 64 - Putative glucanase b 
protein (β-1,3-glucanase) 

24 R1GK17 Neofusicoccum parvum  0.00E+00 327 5.82 42116.55 Nuclear 

GH 71 - Glycoside hydrolase family 
71  

32 K2R498 Macrophomina phaseolina  5.50E-17 250 4.84 49264.81 Extracellular 

GH 93 - Putative glycoside 
hydrolase family 93 protein 
(Sialidase/ Neuraminidase) 

12 R1GGQ9 Neofusicoccum parvum   1.40E-07 180 4.41 38051.25 Extracellular 

24 K2RBR1 Macrophomina phaseolina  9.30E-11  4.32 40074.67 Extracellular 

53 K2RBR1 Macrophomina phaseolina  0.00E+00 126 4.32 40074.67 Extracellular 

Lipase B (Uncharacterized protein)  25 K2R678 Macrophomina phaseolina  9.70E-08 113 5.43 48043.55 Extracellular 

Lipase class 3 110 K2RK28 Macrophomina phaseolina 8.70E-20  5.09 30910.40 Extracellular 

Phosphoesterase 28 K2RUW5 Macrophomina phaseolina 5.90E-29 485 4.64 43928.97 Extracellular 

 29 K2RUW5 Macrophomina phaseolina 8.80E-03 151 4.64 43928.97 Extracellular 

 56 K2RUW5 Macrophomina phaseolina  3.00E-15  4.64 43928.97 Extracellular 

Putative 5,3-nucleotidase protein  2 R1FUS1 Neofusicoccum parvum  3.70E-18  4.58 31154.86 Extracellular 

Putative glutaminase protein 36 R1EUG4 Neofusicoccum parvum  6.40E-32 263 4.29 74937.86 Extracellular 

 37 R1EUG4 Neofusicoccum parvum  0.00E+00 225 4.29 74937.86 Extracellular 

 38 R1EUG4 Neofusicoccum parvum   0.00E+00 263 4.29 74937.86 Extracellular 

Uncharacterized protein 
(fumarylacetoacetase) 

31 A0A072PA62 Exophiala aquamarina 4.60E-26  5.84 46110.07 Cytoplasmic 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Proteases         

Peptidase A1 - Putative a chain 
endothiapepsin 

18 R1ESA5 Neofusicoccum parvum  0.00E+00 491 5.45 42563.05 Extracellular 

19 R1ESA5 Neofusicoccum parvum   4.20E-10 71 5.45 42563.05 Extracellular 

 21 R1ESA5 Neofusicoccum parvum   0.00E+00 228 5.45 42563.05 Extracellular 

 22 R1ESA5 Neofusicoccum parvum  1.90E-04 34 5.45 42563.05 Extracellular 

 59 R1ESA5 Neofusicoccum parvum  4.30E-10 491 5.45 42563.05 Extracellular 

 137 R1GM42 Neofusicoccum parvum  1.60E-08  4.27 41788.15 Extracellular 

 148 R1GM42 Neofusicoccum parvum  1.60E-08  4.27 41788.15 Extracellular 

Peptidase M28 - Putative leucyl 
aminopeptidase protein 

5 R1GBR8 Neofusicoccum parvum  1.20E-23 222 5.17 40706.16 Extracellular 

Peptidase M35 - Neutral protease 2 3 K2SDQ0 Macrophomina phaseolina 1.20E-25 124 5.34 36981.99 Extracellular 

 99 K2SDQ0 Macrophomina phaseolina 1.70E-19  5.34 36981.99 Extracellular 

 104 K2SDQ0 Macrophomina phaseolina 1.20E-13  5.34 36981.99 Extracellular 

 117 K2SDQ0 Macrophomina phaseolina 4.20E-05  5.34 36981.99 Extracellular 

 126 K2SDQ0 Macrophomina phaseolina 1.00E-18  5.34 36981.99 Extracellular 

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

29 R1GF60 Neofusicoccum parvum  5.50E-16 80 4.45 52146.52 Extracellular 

30 R1GF60 Neofusicoccum parvum  0.00E+00 486 4.45 52146.52 Extracellular 

 31 R1GF60 Neofusicoccum parvum  0.00E+00 668 4.45 52146.52 Extracellular 

 62 R1GF60 Neofusicoccum parvum  4.40E-28 345 4.45 52146.52 Extracellular 

 101 R1GF60 Neofusicoccum parvum   1.30E-32  4.45 52146.52 Extracellular 

Peptidase S8 - Putative peptidase s8 
s53 subtilisin kexin sedolisin protein 

16 R1G6D0 Neofusicoccum parvum  0.00E+00 478 4.18 43069.94 Extracellular 

80 R1GM11 Neofusicoccum parvum  6.50E-11  6.07 39070.39 Extracellular 

 116 R1EAW3 Neofusicoccum parvum  4.80E-02  4.73 40860.15 Extracellular 

Oxidoreductases         

Alcohol dehydrogenase 7 DCO1_41s07359.t1 Diplodia corticola  50 6.32 40875.57 Cytoplasmic 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Other functions         

Cell wall protein (Cell outer 
membrane) 

10 DCO1_41s07341.t1 Diplodia corticola  173 4.48 21235.80 Extracellular 

127 A0A017S003 Aspergillus ruber 1.40E-03  6.29 18838.42 Cytoplasmic 

Necrosis inducing protein  7 T0JMK5 Colletotrichum gloeosporioides  2.20E-17  5.80 24934.67 Extracellular 

Putative extracellular guanyl-
specific ribonuclease protein  

123 R1H1L9 Neofusicoccum parvum  2.70E-20  5.11 14564.95 Extracellular 

Putative pectate lyase a protein 
(Lyase 1)  

113 R1ED02 Neofusicoccum parvum  6.50E-08  4.88 33291.57 Extracellular 

Spherulation-specific family 4 4 K2RK67 Macrophomina phaseolina 1.00E-25 502 4.04 30373.78 Extracellular 

 6 K2RK67 Macrophomina phaseolina 2.20E-20 502 4.04 30373.78 Extracellular 

 71 K2RK67 Macrophomina phaseolina  2.80E-10  4.04 30373.78 Extracellular 

Unknown         

Uncharacterized protein 61 K2RWL4 Macrophomina phaseolina 6.80E-28 209 4.34 52231.60 Extracellular 
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PROTEOME ANALYSIS 

1D evaluation of protein extracts 

As performed for extracellular proteins, the intracellular proteins were first separated by 1D to 

evaluate the protein extract quality and the quantification accuracy. Figure 12 shows that the 

protocol employed was efficient to disrupt the recalcitrant fungal cell wall of D. corticola, 

producing extracts compatible with electrophoretic separation. Although the band patterns 

present less dissimilarities than the secretome between the avirulent and virulent strains, it is still 

possible distinguish the two protein profiles. 

Control vs. infection-like proteomes of strains with different agressiveness 

The intracellular proteomic map of D. corticola was generated for the first time in this study. 

After protein separation by 2D and visualization with CBB-G250 it was possible to assess the main 

differences existent between the control and infection-like protein profiles of the two strains 

presenting distinct virulence degrees. Altogether, we detected an average (± SD) of 230 ± 48 spots 

in the control proteome of the avirulent strain (Figure 14 A) and 234 ± 38 spots in the virulent 

strain (Figure 15 A), of which 43 were differentially expressed between CAA 008 and CAA 499 

(Table 11, Appendix I). In turn, we detected 264 ± 61 spots in the infection-like proteome of the 

Figure 12 | SDS-PAGE of D. corticola intracellular proteins (30 µg). A - CAA 008 control, B - CAA 008 
infection-like, C - CAA 499 control, D - CAA 499 infection-like, M - Precision Plus Protein Unstained 
Standard (Bio-Rad, USA). Gels were stained with CBB-G250. 
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avirulent strain (Figure 14 B) and 215 ± 68 spots in the virulent strain (Figure 15 B). Similar as in 

the secretome analysis, the protein identification rate was rather remarkable (ca. 56% of the 

spots identified, Table 6) in comparison with other fungi, such as D. seriata (9.6%) or Sclerotinia 

sclerotiorum (Lib.) de Bary (45.5%) (Cobos et al., 2010; Yajima & Kav, 2006). We identified mainly 

oxidoreductases (29% in CAA 008 and 31% in CAA 499), followed by hydrolases (19% in CAA 008 

and 16% in CAA 499), transferases (19% in CAA 008 and 17% in CAA 499) and proteases (17% in 

CAA 008 and 15% in CAA 499). The theoretical pI of these proteins ranged between 4.18 and 9.13, 

and the MW between 12.1 and 122.7 kDa (Table 7 and Table 8). Further, the subcellular 

localization was analyzed with WoLF PSORT predictor (Horton et al., 2007), with most of the 

control proteins containing cytoplasmic (67%) and mitochondrial (15%) localization signals (Figure 

13), which denotes experimental consistency. The extracellular proteins found in the cellular 

proteome (11%) are most probably proteins already targeted to be secreted at the time-point of 

mycelia harvesting. 

 CAA 008 CAA 499 

Hydrolases 31 26 

Proteases 27 24 

Oxidoreductases 47 51 

Transferases 30 28 

Phosphatases 2 3 

Lyases 5 5 

Hydratases 7 5 

Isomerases 3 3 

Other funtions 9 17 

No. of proteins identified 161 162 

No. of spots identified 138 128 

   

Table 6 | Number of intracellular proteins identified in both CAA 008 and 
CAA 499 D. corticola strains. 

Figure 13 | Subcellular localization distribution of the D. corticola intracellular proteins (Horton et al., 2007). 
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Unlike the secretome, the comparative analysis of the intracellular proteomes revealed striking 

similarities between the control and infection-like profiles in each strain (Table 7 and Table 8). 

Nonetheless, the minor divergences may still give some insights about the biology of D. corticola. 

For instance, the 2-fold up-regulation of the 4-aminobutyrate aminotransferase (p=0.0132, spot 

93, Table 8), registered in the infection-like proteome of the virulent strain, indicates that the 

fungus might actively metabolize γ-aminobutyric acid (GABA) during infection as happens with 

Cladosporium fulvum Cooke (Divon & Fluhr, 2007; Kumar & Punekar, 1997; Solomon & Oliver, 

2002). Indeed, C. fulvum seems to take advantage of the plant defence mechanisms, using the 

GABA accumulated in the apoplast interface to fulfil its nitrogen requirements during infection 

(Divon & Fluhr, 2007; Solomon & Oliver, 2002, 2001). Further, Solomon & Oliver (2002) observed 

that this pathogen could likely manipulate the plant metabolism to maintain or even increase the 

apoplastic GABA concentration, sustaining a biotrophic interaction. Besides, the accumulation of 

GABA has been successively reported as a plant protection response to adverse environmental 

factors (Bae et al., 2009; Bouché et al., 2003; Kinnersley & Turano, 2000; Mazzucotelli et al., 

2006), precisely one of the etiologic causes of cork oak decline (Acácio, 2009; Bréda et al., 2006; 

Sousa et al., 2007). In addition to these signaling/defence functions, Nabais et al. (2005) 

demonstrated that the GABA levels of Q. ilex xylem sap increase considerably during May, June 

and July as a consequence of the internal nitrogen remobilization required for the development of 

new shoots. Intriguingly, this GABA flux, that must occur as well in Q. suber, is contemporaneous 

of the cork debarking season, a period considered more susceptible to D. corticola infection 

(Costa et al., 2004; Luque & Girbal, 1989). Therefore, it is reasonable to hypothesize that there 

might exist a relationship between the host GABA pool and the D. corticola infection, a hypothesis 

that is reinforced by the up-regulation of the 4-aminobutyrate aminotransferase (spots 93) 

registered in this work. Moreover, the accumulation of GABA might be the triggering factor for 

the transition from a latent to a pathogenic lifestyle. Evidently, this line of reasoning should be 

studied afterwards. 

On the other hand, the glucose-methanol-choline oxidoreductase (alcohol oxidase) up-

regulation registered in the avirulent strain (spot 39: 18.9-fold up, p=0.0341; spot 41: 11.1-fold up, 

p=0.0103; spot 332: 11-fold up, p=0.0399; Figure 14 and Table 7) demonstrates that the exposure 

to cork oak stem stimulates the fungal methanol metabolism. A similar effect was previously 

described in the brown-rot fungus Postia placenta (Fr.) M.J. Larsen & Lombard when exposed to 

cellulose (Martinez et al., 2009). Still, the catabolism of methanol should have another reason for 

the fungus than its nutritional value. Most likely, the methanol derives from the lignin 

demethylation (Arantes et al., 2012; Filley et al., 2002; Yelle et al., 2008) and serves as a source of 
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hydrogen peroxide (H2O2) after its oxidation by the alcohol oxidase into formaldehyde and H2O2 

(Klei et al., 2006; Zutphen et al., 2010). According to the subcellular localization of the identified 

proteins this reaction should occur in the hyphal cytoplasm or mitochondria (Table 7), conversely 

to yeasts that enclose such reactions in peroxisomes to protect the cells from the resultant 

hazardous molecules (Klei et al., 2006). Similarly, the alcohol oxidase of the wood-degrading 

Gloeophyllum trabeum (Pers.) Murrill was ultrastructurally localized in the periplasmic and 

extracellular spaces, but not in the peroxisomes (Daniel et al., 2007).  

Further, if the fungus intended to detoxify the reactive H2O2 as happens in the methylotrophic 

yeasts (Klei et al., 2006; Zutphen et al., 2010), we would expect that the catalase expression 

increased in the same proportion as alcohol oxidase to respect the reaction stoichiometry. 

However, such pattern was not observed, despite the slight increment of catalase's spots intensity 

registered in the infection-like profile (spots, 53, 54, 55 and 115, Figure 14). This might be thus an 

indication that the fungus mobilizes the H2O2 for other purposes. The necrotrophic fungi, for 

instance, usually mobilize the intracellular produced ROS to the host interface, where it increases 

the oxidative burst (Heller & Tudzynski, 2011). Due to the lack of strain agressiveness and to the 

reaction to cork oak stem, we might hypothetize that the H2O2 is being mobilized to the 

extracellular space to assist the plant biomass degradation. Indeed, it is currently recognized that 

the brown-rotting fungi use highly reactive molecules to modify the plant cell wall in the initial 

stage of decay, enabling the subsequent infiltration of the large cell wall deconstructing enzymes 

(Arantes et al., 2012; Eastwood et al., 2011; Hammel et al., 2002). Accordingly, the H2O2 resultant 

of the methanol oxidation might be translocated to react with Fe2+ through the Fenton reaction 

(Fe2+ + H2O2 + H+  Fe3+ + •OH + H2O), generating hydroxyl radicals (•OH) that disrupt the 

proximal wood biomass (Arantes et al., 2012; Hammel et al., 2002). The Fe2+ required for the 

reaction derives most likely from the insoluble iron oxides of plant tissues, whereby it needs to be 

locally solubilized and reduced to ferrous iron before the involvement in Fenton chemistry 

(Arantes et al., 2012). Although the mechanism of iron reduction in wood biodegradation is not 

completely understood (Arantes et al., 2012), D. corticola secretome reveals a noteworthy data. 

The fungus expresses a ferritin-ribonucleotide reductase-like protein (spot 60) that is found 

exclusively in the avirulent strain (Figure 10 and Figure 16, Appendix I). This protein gathers the 

dual functions required for the solubilization of plant iron, chelation and reductase activity. Thus, 

after the dissolution of wood iron oxides, promoted perhaps by the secretome acidity that 

weakens the Fe-O bonds (Arantes et al., 2012; Lee et al., 2006), the ferritin must concentrate the 

iron in the bioavailable ferric state (Theil, 2007; Torti & Torti, 2002). Later, when required to 

generate hydroxyl radicals the stored iron should be reduced and released as close as possible to 



CHAPTER 3 PROTEOMIC PROFILE OF Diplodia corticola STRAINS WITH DISTINCT VIRULENCE DEGREES 

 

102  

 

the wood cell wall to protect the fungal hyphae (Hammel et al., 2002). Hence, the results 

presented in this work strongly suggest that the avirulent strain, but not the virulent, resorts to a 

non-enzymatic wood degradation mechanism to improve the assimilation of the supplemented 

cork oak stem, a process that resembles the brown-rot decay. Naturally, further experiments 

need to be performed to corroborate this hypothesis. 

In short, we accomplished for the first time a substantial characterization of the representative 

proteome of the phytopathogen D. corticola. Furthermore, the comparative analysis of the 2D gel 

image profiles indicated that the avirulent and virulent strains present minor intracellular 

proteomic dissimilarities, which nevertheless gave some insights about the biology of the fungus. 

First, the virulent strain ability to metabolize γ-aminobutyric acid coupled with the seasonal/stress 

variations of the host GABA pool suggest that this molecule might be somehow related with the 

onset of D. corticola infections. Indeed, this might explain or at least contribute to the 

understanding of why the fungus seems to change in some situations from a latent to a 

pathogenic lifestyle. On the other hand, the avirulent strain proteome evidenced the fungus 

aptitude to disrupt the recalcitrant wood cell walls through a non-enzymatic mechanism 

previously described in wood decay-related fungi. The findings reported in this work provide a 

useful basis for the design of further investigations to elucidate the molecular biology of its 

interaction with the plant hosts.  
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Figure 14 | 2D average gels of control (A) and infection-like (B) proteomes of the D. corticola avirulent strain CAA 008. 
Three biological replicates were used for each condition. Gels were stained with CBB-250. Protein spots identified by 
de novo sequencing and/or MASCOT search are marked with filled arrow lines and the identifications are summarized 
in Table 7. 
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Table 7 | Summary of the intracellular proteins identified in CAA 008 INT control and CAA 008 INT infection-like by de novo sequencing (1) and/or MASCOT search (2). 
Theoretical pI and MW (3) were searched with Compute pI/Mw tool available at ExPASy (Gasteiger et al., 2005) and the subcellular localization (4) deduced with WoLF 
PSORT predictor (Horton et al., 2007). 

Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots exclusive of CAA 008 INT control        

Transferases         

Dj-1 family protein 149 L2FW83 Colletotrichum gloeosporioides 5.00E-08 153 5.41 26577.56 Cytoplasmic 

        

Spots exclusive of CAA 008 INT infection-like       

Oxidoreductases         

Putative ligninase lg6 protein 99 R1GJT0 Neofusicoccum parvum   2.20E-31 512 5.20 32232.20 Extracellular 

         

Spots down-regulated in CAA 008 INT infection-like       

Proteases         

Proteasome subunit β type 
(component pre 3) 

141 R1GH44 Neofusicoccum parvum   0.00E+00 165 6.22 24813.98 Cytoplasmic 

Transferases         

Dj-1 family protein 15 L2FW83 Colletotrichum gloeosporioides 1.50E-21 331 5.41 26577.56 Cytoplasmic 

         

Spots up-regulated in CAA 008 INT infection-like       

Oxidoreductases         

Glucose-methanol-choline 
oxidoreductase (alcohol oxidase) 

39 R1EEN8 Neofusicoccum parvum   0.00E+00 1319 6.44 74359.05 Cytoplasmic 

41 R1EEN8 Neofusicoccum parvum   0.00E+00 1217 6.44 74359.05 Cytoplasmic 

 332 K2R576 Macrophomina phaseolina 7.80E-18 187 6.93 68179.13 Mitochondrial 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots common to both control and infection-like       

Hydrolases         

αβ hydrolase 46 DCO1_9s03329.t1 Diplodia corticola  65 5.51 32613.91 Mitochondrial 

 61 R1EXW5 Neofusicoccum parvum   4.50E-35 331 5.88 49829.51 Mitochondrial 

 71 R1EXW5 Neofusicoccum parvum   0.00E+00 429 5.88 49829.51 Mitochondrial 

 77 K2R5Z4 Macrophomina phaseolina 9.90E-32 223 5.34 47708.07 Cytoplasmic

 128 DCO1_87s10149.t1 Diplodia corticola  128 5.14 37876.66 Cytoplasmic 

αβ hydrolase - Putative dienelactone 
hydrolase family protein 

26 R1G7F4 Neofusicoccum parvum   0.00E+00 646 5.99 29496.62 Cytoplasmic 

Acetamidase/Formamidase 79 K2RFA7 Macrophomina phaseolina 0.00E+00 345 5.55 45023.14 Cytoplasmic 

Acetyl-CoA hydrolase/transferase 75 K2SBN2 Macrophomina phaseolina 0.00E+00 358 6.36 58269.36 Mitochondrial 

Adenosylhomocysteinase 60 K2R5D9 Macrophomina phaseolina 0.00E+00 300 5.75 48793.22 Cytoplasmic 

 95 R1G6V6 Neofusicoccum parvum   0.00E+00 209 5.84 48855.29 Cytoplasmic 

Fumarylacetoacetase 81 V9DKH3 Cladophialophora carrionii 7.00E-26 375 5.45 45889.97 Cytoplasmic 

GH 17 - Glycoside hydrolase family 
17  

133 K2STT8 Macrophomina phaseolina 3.80E-12 103 4.55 32022.55 Extracellular 

GH 31 - Putative α-glucosidase 
protein  

2 R1H1X1 Neofusicoccum parvum   0.00E+00 353 4.65 110578.06 Extracellular 

3 R1H1X1 Neofusicoccum parvum   0.00E+00 365 4.65 110578.06 Extracellular 

 151 R1H1X1 Neofusicoccum parvum   0.00E+00 373 4.65 110578.06 Extracellular 

 169 R1H1X1 Neofusicoccum parvum   1.60E-29 125 4.65 110578.06 Extracellular 

GH 38 - α-mannosidase 31 K2RHM5 Macrophomina phaseolina 2.20E-03 49 5.97 122716.44 Cytoplasmic 

 132 K2RHM5 Macrophomina phaseolina 6.30E-23 154 5.97 122716.44 Cytoplasmic 

Putative acetyl-hydrolase protein 160 R1E7A7 Neofusicoccum parvum   0.00E+00 528 6.17 58163.23 Mitochondrial 

Putative amidohydrolase family 
protein  

158 R1E8S2 Neofusicoccum parvum   0.00E+00 69 5.93 40377.03 Cytoplasmic 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Putative esterase (s-
formylglutathione hydrolase) 

96 K2S3K9 Macrophomina phaseolina 0.00E+00 318 6.07 31988.10 Mitochondrial 

Putative β-lactamase family protein 49 R1G5K7 Neofusicoccum parvum   0.00E+00 930 5.34 44700.99 Cytoplasmic 

50 R1G5K7 Neofusicoccum parvum   9.00E-31 729 5.34 44700.99 Cytoplasmic 

 59 R1GFI9 Neofusicoccum parvum   0.00E+00 691 5.52 39665.40 Cytoplasmic 

 83 DCO1_1s00126.t1 Diplodia corticola  318 5.50 44772.36 Peroxisomal 

 84 H1V6J2 Colletotrichum higginsianum  1.30E-04 242 5.10 41333.09 Cytoplasmic 

 155 R1G5K7 Neofusicoccum parvum   0.00E+00 934 5.34 44700.99 Cytoplasmic 

 161 DCO1_75s09589.t1 Diplodia corticola  80 5.27 40613.76 Cytoplasmic 

Proteases         

Peptidase A1 - Putative aspartic 
endopeptidase pep2 protein 

1 K2R7K4 Macrophomina phaseolina 3.80E-05 77 4.74 47347.32 Mitochondrial 

98 R1GUW7 Neofusicoccum parvum   0.00E+00 214 4.73 43261.72 Extracellular 

Peptidase M1 - Peptidase M1 
alanine aminopeptidase/leukotriene 
A4 hydrolase 

56 K2SDN2 Macrophomina phaseolina 0.00E+00 370 5.44 99068.10 Cytoplasmic 

92 R1EX72 Neofusicoccum parvum   9.70E-15 50 5.80 98026.88 Cytoplasmic 

157 K2SDN2 Macrophomina phaseolina 5.80E-09 135 5.44 99068.10 Cytoplasmic 

Peptidase M20 - Putative glutamate 
carboxypeptidase protein 

78 R1GM30 Neofusicoccum parvum   0.00E+00 245 5.53 52763.15 Cytoplasmic 

Peptidase M24 - Putative xaa-pro 
dipeptidase protein (Creatinase) 

80 R1EB48 Neofusicoccum parvum   8.70E-23 158 5.89 85915.06 Mitochondrial 

100 R1EG89 Neofusicoccum parvum   9.80E-06  5.34 64557.62 Cytoplasmic 

Peptidase M3 - Peptidase M3A/M3B 58 R1G7D2 Neofusicoccum parvum   9.10E-17 189 5.75 87524.39 Cytoplasmic 

Peptidase M49 - Peptidase M49 
dipeptidyl-peptidase III  

57 K2RA25 Macrophomina phaseolina 3.30E-26 274 5.53 79140.74 Cytoplasmic 

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

5 R1G0M1 Neofusicoccum parvum   0.00E+00 518 4.89 60702.13 Extracellular 

125 R1G0M1 Neofusicoccum parvum   0.00E+00 493 4.89 60702.13 Extracellular 

       Continued on next page 
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Peptidase S8 - Putative autophagic 
serine protease alp2 protein  

14 K2RXV9 Macrophomina phaseolina 0.00E+00 389 5.62 57279.71 Cytoplasmic 

45 K2RXV9 Macrophomina phaseolina 1.30E-34 147 5.62 57279.71 Cytoplasmic 

98 R1G6D0 Neofusicoccum parvum   1.40E-15 146 4.18 43069.94 Extracellular 

 124 R1GMY2 Neofusicoccum parvum   6.80E-14  4.50 62019.98 Cytoplasmic 

 138 R1GM11 Neofusicoccum parvum   1.60E-35 708 6.07 39070.39 Extracellular 

Peptidase S9 -Putative 
oligopeptidase family protein 

126 R1GWK1 Neofusicoccum parvum   1.80E-07 134 4.64 79701.64 Extracellular 

Peptidase T1A - Proteasome subunit 
α type 

46 R1GIL3 Neofusicoccum parvum   0.00E+00 352 5.59 27780.56 Cytoplasmic 

88 R1GFI6 Neofusicoccum parvum   6.00E-36 146 5.34 30083.11 Cytoplasmic 

 90 R1G2P7 Neofusicoccum parvum   3.40E-21 54 5.72 31950.79 Cytoplasmic 

 178 R1GT64 Neofusicoccum parvum   3.70E-34 196 5.80 28563.18 Mitochondrial 

Proteasome subunit β type-2 110 DCO1_38s06588.t1 Diplodia corticola  164 6.96 21059.17 Mitochondrial 

Putative proteasome component c5 

protein (type) 
21 R1ECI6 Neofusicoccum parvum   0.00E+00 390 6.45 28968.64 Mitochondrial 

34 DCO1_19s02494.t1 Diplodia corticola  48 6.71 28986.62 Mitochondrial 

Oxidoreductases         

6-phosphogluconate 
dehydrogenase, decarboxylating 

67 K2S8M9 Macrophomina phaseolina 0.00E+00 675 5.99 54283.81 Cytoplasmic 

77 K2S8M9 Macrophomina phaseolina 3.30E-21 106 5.99 54283.81 Cytoplasmic 

Catalase-peroxidase 53 K2QZ33 Macrophomina phaseolina 0.00E+00 667 5.82 80922.69 Cytoplasmic 

 54 K2QZ33 Macrophomina phaseolina 0.00E+00 677 5.82 80922.69 Cytoplasmic 

 55 K2QZ33 Macrophomina phaseolina 1.80E-16 229 5.82 80922.69 Cytoplasmic 

 115 K2QZ33 Macrophomina phaseolina 0.00E+00 639 5.82 80922.69 Cytoplasmic 

Dihydrolipoyl dehydrogenase  72 R1EKH2 Neofusicoccum parvum   0.00E+00 1237 6.94 54773.98 Mitochondrial 

 107 R1EKH2 Neofusicoccum parvum   6.30E-28 59 6.94 54773.98 Mitochondrial 

 162 K2RSR2 Macrophomina phaseolina 0.00E+00 472 7.22 54346.46 Mitochondrial 

FAD dependent oxidoreductase 84 K2QPD2 Macrophomina phaseolina 0.00E+00 241 5.67 47900.98 Cytoplasmic 

Glutamate dehydrogenase 64 K2SZ80 Macrophomina phaseolina 0.00E+00 360 6.43 48930.19 Cytoplasmic 

       Continued on next page 
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Glyceraldehyde-3-phosphate 
dehydrogenase  

24 K2SSH4 Macrophomina phaseolina 0.00E+00 761 6.92 36273.12 Cytoplasmic 

30 K2SSH4 Macrophomina phaseolina 0.00E+00  6.92 36273.12 Cytoplasmic 

Malate dehydrogenase 28 S8AYZ5 Penicillium oxalicum  9.80E-09 87 7.71 35885.01 Mitochondrial 

 29 K2SB76 Macrophomina phaseolina 0.00E+00 1005 8.86 35859.95 Mitochondrial 

NADH:flavin oxidoreductase/NADH 
oxidase family protein  

63 R1H0X2 Neofusicoccum parvum   0.00E+00 237 6.19 53783.33 Cytoplasmic 

161 R1EHB0 Neofusicoccum parvum   4.00E-19 369 5.82 43385.05 Cytoplasmic 

Putative alcohol dehydrogenase 
domain protein  

25 DCO1_11s03839.t1 Diplodia corticola  114 6.99 37098.88 Cytoplasmic 

84 R1EH70 Neofusicoccum parvum   0.00E+00 521 5.73 36414.20 Cytoplasmic 

Glucose-methanol-choline 
oxidoreductase (alcohol oxidase) 

33 R1EEN8 Neofusicoccum parvum   5.40E-03  6.44 74359.05 Cytoplasmic 

Putative aldehyde dehydrogenase 
protein 

63 R1H0X2 Neofusicoccum parvum   0.00E+00 237 6.19 53783.33 Cytoplasmic 

65 R1H0X2 Neofusicoccum parvum   0.00E+00 869 6.19 53783.33 Cytoplasmic 

 73 R1H0X2 Neofusicoccum parvum   0.00E+00 1099 6.19 53783.33 Cytoplasmic 

 164 R1H0X2 Neofusicoccum parvum   2.30E-06 66 6.19 53783.33 Cytoplasmic 

 169 R1H0X2 Neofusicoccum parvum   1.70E-06  6.19 53783.33 Cytoplasmic 

Putative choline oxidase protein 118 R1EJS8 Neofusicoccum parvum   0.00E+00 341 6.30 60138.57 Cytoplasmic 

Putative fad binding domain-
containing protein 

152 R1EYD9 Neofusicoccum parvum   8.50E-03 387 4.71 57220.33 Extracellular 

Putative formate dehydrogenase 
protein 

32 R1G468 Neofusicoccum parvum   0.00E+00 611 6.29 40298.87 Cytoplasmic 

33 R1G468 Neofusicoccum parvum   4.20E-05 56 6.29 40298.87 Cytoplasmic 

 103 R1G468 Neofusicoccum parvum   0.00E+00 690 6.29 40298.87 Cytoplasmic 

Putative homogentisate-
dioxygenase protein 

129 R1EVN8 Neofusicoccum parvum   1.30E-06  6.06 58733.01 Cytoplasmic 

Putative minor allergen alt a 7 
protein  

142 R1ENB8 Neofusicoccum parvum   1.30E-18 557 5.72 22135.00 Cytoplasmic 

Putative nadh-ubiquinone 
oxidoreductase 78 kDa subunit 
protein 

70 R1E5C6 Neofusicoccum parvum   8.00E-13 128 5.94 81566.38 Mitochondrial 

       Continued on next page 
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Saccharopine dehydrogenase / 
Homospermidine synthase 

162 K2RNB4 Macrophomina phaseolina 0.00E+00 663 5.86 50151.34 Cytoplasmic 

Short-chain dehydrogenase/ 
reductase sdr 

102 DCO1_1s00458.t1 Diplodia corticola  44 5.50 34373.20 Cytoplasmic 

Short-chain dehydrogenase/ 
reductase SDR (l-xylulose reductase) 

17 K2S1F3 Macrophomina phaseolina 0.00E+00 313 6.13 31597.72 Cytoplasmic 

Short-chain dehydrogenase/ 
reductase SDR (Versicolorin 
reductase)  

20 K2RCX3 Macrophomina phaseolina 1.20E-35 272 5.90 31170.57 Cytoplasmic 

Superoxide dismutase [Mn/Fe] 111 R1GPF7 Neofusicoccum parvum   0.00E+00 211 9.13 25360.53 Mitochondrial 

Superoxide dismutase [Cu-Zn]  13 R1GTN9 Neofusicoccum parvum   0.00E+00 589 6.03 15726.24 Cytoplasmic 

Thioredoxin reductase 8 DCO1_53s07515.t1 Diplodia corticola  32 6.37 33319.94 Cytoplasmic 

 27 M2QTA7 Cochliobolus sativus 5.60E-15 445 6.60 33646.58 Cytoplasmic 

 28 M2QTA7 Cochliobolus sativus 0.00E+00 793 6.60 33646.58 Cytoplasmic 

 30 M2QTA7 Cochliobolus sativus 0.00E+00 985 6.60 33646.58 Cytoplasmic 

 94 M2QTA7 Cochliobolus sativus 3.70E-10 405 6.60 33646.58 Cytoplasmic 

Transferases         

α-1,4 glucan phosphorylase 131 R1EPV1 Neofusicoccum parvum   0.00E+00 211 5.81 99659.87 Nuclear 

α-D-phosphohexomutase 
superfamily 

74 K2S027 Macrophomina phaseolina 5.60E-34 254 5.76 60123.07 Cytoplasmic 

106 DCO1_2s00877.t1 Diplodia corticola  71  60112.60 

 119 K2S027 Macrophomina phaseolina 2.50E-26 139 5.76 60123.07 Cytoplasmic 

4-aminobutyrate aminotransferase 
eukaryotic 

93 K2SB97 Macrophomina phaseolina 0.00E+00 481 7.75 56383.98 Mitochondrial 

Aminotransferase class V/Cysteine 
desulfurase  

32 K2SAF5 Macrophomina phaseolina 1.90E-05 129 7.15 41599.64 Cytoplasmic 

164 K2SAF5 Macrophomina phaseolina 0.00E+00 129 7.15 41599.64 Cytoplasmic 

Aspartate aminotransferase 36 K2R4A1 Macrophomina phaseolina 0.00E+00 387 7.19 46341.63 Peroxisomal 

       Continued on next page 
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Citrate synthase 34 K2REF5 Macrophomina phaseolina 0.00E+00 395 8.77 51667.15 Mitochondrial 

Galactokinase 69 K2RCE8 Macrophomina phaseolina 4.30E-28  5.55 57200.17 Cytoplasmic 

Methionine synthase vitamin-B12 
independent  

37 K2RD18 Macrophomina phaseolina 0.00E+00 871 6.43 86349.70 Cytoplasmic 

38 K2RD18 Macrophomina phaseolina 0.00E+00 921 6.43 86349.70 Cytoplasmic 

 125 K2RD18 Macrophomina phaseolina 3.80E-06 69 6.43 86349.70 Cytoplasmic 

Methylcitrate synthase precursor 35 DCO1_18s05215.t1 Diplodia corticola  32 8.84 52449.18 Mitochondrial 

Nucleoside diphosphate kinase  122 K2S9J1 Macrophomina phaseolina 0.00E+00 397 8.69 16744.19 Cytoplasmic 

 123 K2S9J1 Macrophomina phaseolina 1.80E-30 94 8.69 16744.19 Cytoplasmic 

Putative adenosine kinase protein 83 R1EV77 Neofusicoccum parvum   0.00E+00 367 5.37 38168.47 Cytoplasmic 

Putative fggy-family carbohydrate 
kinase protein 

69 R1GNA2 Neofusicoccum parvum   3.60E-34 476 5.18 65434.09 Cytoplasmic 

Putative glutathione s-transferase 
protein 

110 R1E9W5 Neofusicoccum parvum   6.80E-15 111 5.92 25351.88 Nuclear 

143 R1E9W5 Neofusicoccum parvum   1.20E-23 190 5.92 25351.88 Nuclear 

Putative l-ornithine 
aminotransferase protein 

61 R1EP24 Neofusicoccum parvum   1.80E-21 136 6,07 50244.43 Cytoplasmic 

Putative phosphoenolpyruvate 
carboxykinase protein 

66 R1EI04 Neofusicoccum parvum   0.00E+00 769 5.60 61566.52 Cytoplasmic 

105 R1EI04 Neofusicoccum parvum   0.00E+00 661 5.60 61566.52 Cytoplasmic 

Spermidine synthase 89 K2RG56 Macrophomina phaseolina 0.00E+00 404 5.26 33118.81 Cytoplasmic 

Transaldolase 42 R1GMD5 Neofusicoccum parvum   0.00E+00 634 5.19 35619.57 Cytoplasmic 

Transketolase 52 K2RZI6 Macrophomina phaseolina 0.00E+00 950 5.87 74975.89 Cytoplasmic 

 115 K2RZI6 Macrophomina phaseolina 1.40E-07  5.87 74975.89 Cytoplasmic 

 168 K2RZI6 Macrophomina phaseolina 8.70E-07 76 5.87 74975.89 Cytoplasmic 

Phosphatases         

Putative inorganic pyrophosphatase 
protein  

43 R1EI42 Neofusicoccum parvum   0.00E+00 744 5.32 33476.03 Cytoplasmic 

       Continued on next page 
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Putative-bisphosphoglycerate-
independent phosphoglycerate 
mutase protein 

91 R1EYX5 Neofusicoccum parvum   0.00E+00 420 5.40 57095.83 Cytoplasmic 

Lyases         

Isocitrate lyase 40 R1EDG7 Neofusicoccum parvum   0.00E+00 367 6.93 60923.22 Cytoplasmic 

Ketose-bisphosphate aldolase class-
2 

44 K2RZT2 Macrophomina phaseolina 0.00E+00 1111 5.72 39741.04 Cytoplasmic 

Putative oxalate protein (Bicupin 
oxalate deCO2ase/Oxase) 

124 R1E9V1 Neofusicoccum parvum   0.00E+00 391 4.57 48901.21 Extracellular 

Putative phosphoketolase protein 
(aldehyde-lyase) 

114 R1EPJ0 Neofusicoccum parvum   4.70E-05  5.88 90822.04 Cytoplasmic 

159 R1EPJ0 Neofusicoccum parvum   1.00E-03 125 5.88 90822.04 Cytoplasmic 

Hydratases         

Aconitase A/isopropylmalate 
dehydratase small subunit swivel 

76 K2QLG1 Macrophomina phaseolina 0.00E+00 372 6.21 84207.49 Mitochondrial 

114 K2QLG1 Macrophomina phaseolina 0.00E+00 898 6.21 84207.49 Mitochondrial 

Enolase 48 K2SCR2 Macrophomina phaseolina 0.00E+00 958 5.29 47075.26 Cytoplasmic 

 50 K2SCR2 Macrophomina phaseolina 4.40E-09  5.29 47075.26 Cytoplasmic 

 84 K2SCR2 Macrophomina phaseolina 0.00E+00 306 5.29 47075.26 Cytoplasmic 

 120 K2SCR2 Macrophomina phaseolina 2.00E-24 346 5.29 47075.26 Cytoplasmic 

Putative 2-methylcitrate 
dehydratase protein 

129 R1ED63 Neofusicoccum parvum   0.00E+00 387 6.15 55194.95 Cytoplasmic 

Isomerases         

Aldose 1-epimerase 124 K2RLW1 Macrophomina phaseolina 2.90E-18 153 4.66 43895.67 Extracellular 

Glucose-6-phosphate isomerase 107 R1GRZ3 Neofusicoccum parvum   0.00E+00 340 5.74 61861.97 Cytoplasmic 

NAD-dependent 
epimerase/dehydratase 

95 K2QUU1 Macrophomina phaseolina 6.50E-03 34 5.96 41017.65 Cytoplasmic 
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Other functions         

14-3-3 protein 97 K2SCW4 Macrophomina phaseolina 0.00E+00 239 4.92 30320.81 Nuclear 

ATP synthase subunit beta 4 K2R9P7 Macrophomina phaseolina 0.00E+00 1543 5.41 55499.44 Mitochondrial 

Cerato-platanin (Protein SnodProt1)  7 W3WKH2 Pestalotiopsis fici W106-1 1.20E-07  4.37 13993.65 Extracellular 

Cupin RmlC-type 16 K2RCC3 Macrophomina phaseolina 1.00E-31 354 5.18 19078.40 Cytoplasmic 

Heat shock protein 60 (Chaperonin 
Cpn60)  

51 R1GDI3 Neofusicoccum parvum   0.00E+00 1138 5.52 61593.33 Mitochondrial 

Heat shock protein Hsp70 68 K2RVT5 Macrophomina phaseolina 2.90E-03  5.12 79970.70 Cytoplasmic 

Outer membrane β-barrel 11 A0A017S003 Aspergillus ruber  2.40E-13 703 6.29 18838.42 Cytoplasmic 

 122 DCO1_53s07485.t1 Diplodia corticola  203 5.29 18733.37 Cytoplasmic 

 129 DCO1_53s07485.t1 Diplodia corticola  38 5.29 18733.37 Cytoplasmic 

 148 A0A017S003 Aspergillus ruber 6.70E-08 468 6.29 18838.42 Cytoplasmic 

Porin eukaryotic type (outer 
mitochondrial membrane protein 
porin) 

139 K2S952 Macrophomina phaseolina 1.60E-14  8.99 29738.39 Extracellular 

140 K2S952 Macrophomina phaseolina 2.40E-23 225 8.99 29738.39 Extracellular 

Putative cyanovirin-n family protein 6 R1GQI8 Neofusicoccum parvum   1.50E-19 83 4.73 12102.21 Cytoplasmic 

Putative g-protein complex beta 
subunit protein 

94 R1GU67 Neofusicoccum parvum   4.80E-11  6.75 35070.56 Nuclear 

Putative nmra-like family protein 
(pyridoxal-phosphate dependent 
enzyme) 

18 R1G4S7 Neofusicoccum parvum   4.70E-12 312 5.79 34755.99 Cytoplasmic 

86 R1G4S7 Neofusicoccum parvum   0.00E+00 1009 5.79 34755.99 Cytoplasmic 

134 R1G4S7 Neofusicoccum parvum   6.50E-18 230 5.79 34755.99 Cytoplasmic 
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Figure 15 | 2D average gels of control (A) and infection-like (B) proteomes of the D. corticola virulent strain CAA 499. 
Three biological replicates were used for each condition. Gels were stained with CBB-250. Protein spots identified by 
de novo sequencing and/or MASCOT search are marked with filled arrow lines and the identifications are summarized 
in Table 8. 
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Table 8 | Summary of the intracellular proteins identified in CAA 499 INT control and CAA 499 INT infection-like by de novo sequencing (1) and/or MASCOT search (2). 
Theoretical pI and MW were searched with Compute pI/Mw tool (3) available at ExPASy (Gasteiger et al., 2005) and the subcellular localization (4) deduced with WoLF 
PSORT predictor (Horton et al., 2007). 

Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots exclusive of CAA 499 INT control        

Proteases         

Peptidase M24 - Putative xaa-pro 
dipeptidase protein (Creatinase) 

100 R1EG89 Neofusicoccum parvum   9.80E-06  5.34 64557.62 Cytoplasmic 

Transferases         

Methylcitrate synthase precursor 35 DCO1_18s05215.t1 Diplodia corticola  32 8.84 52449.18 Mitochondrial 

S-methyl-5'-thioadenosine 
phosphorylase 

172 R1GFT7 Neofusicoccum parvum   3.30E-30 112 5.85 33729.16 Cytoplasmic 

        

Spots exclusive of CAA 499 INT infection-like       

Oxidoreductases         

Glucose-methanol-choline 
oxidoreductase (alcohol oxidase) 

332 K2R576 Macrophomina phaseolina 7.80E-18 187 6.93 68179.13 Mitochondrial 

         

Spots up-regulated in CAA 499 INT infection-like       

Oxidoreductases         

4-aminobutyrate aminotransferase 
eukaryotic 

93 K2SB97 Macrophomina phaseolina 0.00E+00 481 7.75 56383.98 Mitochondrial 

       Continued on next page 
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Spots common to both control and infection-like       

Hydrolases         

αβ hydrolase 46 DCO1_9s03329.t1 Diplodia corticola  65 5.51 32613.91 Mitochondrial 

 77 K2R5Z4 Macrophomina phaseolina 9.90E-32 223 5.34 47708.07 Cytoplasmic 

 128 DCO1_87s10149.t1 Diplodia corticola  128 5.14 37876.66 Cytoplasmic 

αβ hydrolase - Putative dienelactone 
hydrolase family protein 

26 R1G7F4 Neofusicoccum parvum   0.00E+00 646 5.99 29496.62 Cytoplasmic 

170 R1G7F4 Neofusicoccum parvum   0.00E+00 336 5.99 29496.62 Cytoplasmic 

Acetamidase/Formamidase 79 K2RFA7 Macrophomina phaseolina 0.00E+00 345 5.55 45023.14 Cytoplasmic 

Acetyl-CoA hydrolase/transferase 75 K2SBN2 Macrophomina phaseolina 0.00E+00 358 6.36 58269.36 Mitochondrial 

Adenosylhomocysteinase 60 K2R5D9 Macrophomina phaseolina 0.00E+00 300 5.75 48793.22 Cytoplasmic 

 95 R1G6V6 Neofusicoccum parvum   0.00E+00 209 5.84 48855.29 Cytoplasmic 

GH 17 - Glycoside hydrolase family 
17  

133 K2STT8 Macrophomina phaseolina 3.80E-12 103 4.55 32022.55 Extracellular 

GH 31 - Putative α-glucosidase 
protein  

2 R1H1X1 Neofusicoccum parvum   0.00E+00 353 4.65 110578.06 Extracellular 

3 R1H1X1 Neofusicoccum parvum   0.00E+00 365 4.65 110578.06 Extracellular 

 151 R1H1X1 Neofusicoccum parvum   0.00E+00 373 4.65 110578.06 Extracellular 

 169 R1H1X1 Neofusicoccum parvum   1.60E-29 125 4.65 110578.06 Extracellular 

GH 38 - α-mannosidase 132 K2RHM5 Macrophomina phaseolina 6.30E-23 154 5.97 122716.44 Cytoplasmic 

Putative acetyl-hydrolase protein 160 R1E7A7 Neofusicoccum parvum   0.00E+00 528 6.17 58163.23 Mitochondrial 

Putative amidohydrolase family 
protein  

158 R1E8S2 Neofusicoccum parvum   0.00E+00 69 5.93 40377.03 Cytoplasmic 

163 R1GCN6 Neofusicoccum parvum   7.80E-30 412 5.90 53044.60 Cytoplasmic 

Putative β-lactamase family protein 50 R1G5K7 Neofusicoccum parvum   9.00E-31 729 5.34 44700.99 Cytoplasmic 

59 R1GFI9 Neofusicoccum parvum   0.00E+00 691 5.52 39665.40 Cytoplasmic 

 83 DCO1_1s00126.t1 Diplodia corticola  318 5.50 44772.36 Peroxisomal 

 84 H1V6J2 Colletotrichum higginsianum  1.30E-04 242 5.10 41333.09 Cytoplasmic 

 155 R1G5K7 Neofusicoccum parvum   0.00E+00 934 5.34 44700.99 Cytoplasmic 

 161 DCO1_75s09589.t1 Diplodia corticola  80 5.27 40613.76 Cytoplasmic 

       Continued on next page 
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Proteases         

Peptidase A1 - Putative aspartic 
endopeptidase pep2 protein 

98 R1GUW7 Neofusicoccum parvum   0.00E+00 214 4.73 43261.72 Extracellular 

Peptidase M1 - Peptidase M1 
alanine aminopeptidase/leukotriene 
A4 hydrolase 

56 K2SDN2 Macrophomina phaseolina 0.00E+00 370 5.44 99068.10 Cytoplasmic 

157 K2SDN2 Macrophomina phaseolina 5.80E-09 135 5.44 99068.10 Cytoplasmic 

Peptidase M20 - Putative glutamate 
carboxypeptidase protein 

78 R1GM30 Neofusicoccum parvum   0.00E+00 245 5.53 52763.15 Cytoplasmic 

Peptidase M3 - Peptidase M3A/M3B 58 R1G7D2 Neofusicoccum parvum   9.10E-17 189 5.75 87524.39 Cytoplasmic 

Peptidase M35 - Neutral protease 2 47 K2SDQ0 Macrophomina phaseolina 1.30E-22 195 5.34 36981.99 Extracellular 

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

5 R1G0M1 Neofusicoccum parvum   0.00E+00 518 4.89 60702.13 Extracellular 

125 R1G0M1 Neofusicoccum parvum   0.00E+00 493 4.89 60702.13 Extracellular 

Peptidase S8 - Putative autophagic 
serine protease alp2 protein  

14 K2RXV9 Macrophomina phaseolina 0.00E+00 389 5.62 57279.71 Cytoplasmic 

45 K2RXV9 Macrophomina phaseolina 1.30E-34 147 5.62 57279.71 Cytoplasmic 

 98 R1G6D0 Neofusicoccum parvum   1.40E-15 146 4.18 43069.94 Extracellular 

 124 R1GMY2 Neofusicoccum parvum   6.80E-14  4.50 62019.98 Cytoplasmic 

 138 R1GM11 Neofusicoccum parvum   1.60E-35 708 6.07 39070.39 Extracellular 

Peptidase S9 -Putative 
oligopeptidase family protein 

126 R1GWK1 Neofusicoccum parvum   1.80E-07 134 4.64 79701.64 Extracellular 

Peptidase T1A - Proteasome subunit 
α type 

46 R1GIL3 Neofusicoccum parvum   0.00E+00 352 5.59 27780.56 Cytoplasmic 

88 R1GFI6 Neofusicoccum parvum   6.00E-36 146 5.34 30083.11 Cytoplasmic 

 178 R1GT64 Neofusicoccum parvum   3.70E-34 196 5.80 28563.18 Mitochondrial 

Proteasome subunit β type-2 110 DCO1_38s06588.t1 Diplodia corticola  164 6.96 21059.17 Mitochondrial 

 141 R1GH44 Neofusicoccum parvum   0.00E+00 165 6.22 24813.98 Cytoplasmic 

Putative proteasome component c5 

protein (type) 
21 R1ECI6 Neofusicoccum parvum   0.00E+00 390 6.45 28968.64 Mitochondrial 

34 DCO1_19s02494.t1 Diplodia corticola  48 6.71 28896.62 Mitochondrial 
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Oxidoreductases         

6-phosphogluconate 
dehydrogenase, decarboxylating 

67 K2S8M9 Macrophomina phaseolina 0.00E+00 675 5.99 54283.81 Cytoplasmic 

77 K2S8M9 Macrophomina phaseolina 3.30E-21 106 5.99 54283.81 Cytoplasmic 

Catalase-peroxidase 53 K2QZ33 Macrophomina phaseolina 0.00E+00 667 5.82 80922.69 Cytoplasmic 

 54 K2QZ33 Macrophomina phaseolina 0.00E+00 677 5.82 80922.69 Cytoplasmic 

 55 K2QZ33 Macrophomina phaseolina 1.80E-16 229 5.82 80922.69 Cytoplasmic 

Choline dehydrogenase  153 I8A444 Aspergillus oryzae 9.00E-08 637 4.91 67679.52 Extracellular 

 154 I8A444 Aspergillus oryzae 1.00E-09 540 4.91 67679.52 Extracellular 

 179 DCO1_53s07484.t1 Diplodia corticola  148 4.93 67662.73 Extracellular 

Dihydrolipoyl dehydrogenase  72 R1EKH2 Neofusicoccum parvum   0.00E+00 1237 6.94 54773.98 Mitochondrial 

 162 K2RSR2 Macrophomina phaseolina 0.00E+00 472 7.22 54346.46 Mitochondrial 

FAD dependent oxidoreductase 84 K2QPD2 Macrophomina phaseolina 0.00E+00 241 5.67 47900.98 Cytoplasmic 

Glutamate dehydrogenase 64 K2SZ80 Macrophomina phaseolina 0.00E+00 360 6.43 48930.19 Cytoplasmic 

Glyceraldehyde-3-phosphate 
dehydrogenase  

24 K2SSH4 Macrophomina phaseolina 0.00E+00 761 6.92 36273.12 Cytoplasmic 

30 K2SSH4 Macrophomina phaseolina 0.00E+00  6.92 36273.12 Cytoplasmic 

Malate dehydrogenase 28 S8AYZ5 Penicillium oxalicum  9.80E-09 87 7.71 35885.01 Mitochondrial 

NADH:flavin oxidoreductase/NADH 
oxidase family protein  

63 R1H0X2 Neofusicoccum parvum   0.00E+00 237 6.19 53783.33 Cytoplasmic 

161 R1EHB0 Neofusicoccum parvum   4.00E-19 369 5.82 43385.05 Cytoplasmic 

 167 R1EE14 Neofusicoccum parvum   0.00E+00 1477 5.97 41452.60 Mitochondrial 

Putative alcohol dehydrogenase 
domain protein  

84 R1EH70 Neofusicoccum parvum   0.00E+00 521 5.73 36414.20 Cytoplasmic 

Glucose-methanol-choline 
oxidoreductase (alcohol oxidase) 

39 R1EEN8 Neofusicoccum parvum   0.00E+00 1319 6.44 74359.05 Cytoplasmic 

41 R1EEN8 Neofusicoccum parvum   0.00E+00 1217 6.44 74359.05 Cytoplasmic 

Putative aldehyde dehydrogenase 
protein 

63 R1H0X2 Neofusicoccum parvum   0.00E+00 237 6.19 53783.33 Cytoplasmic 

65 R1H0X2 Neofusicoccum parvum   0.00E+00 869 6.19 53783.33 Cytoplasmic 

 73 R1H0X2 Neofusicoccum parvum   0.00E+00 1099 6.19 53783.33 Cytoplasmic 

 164 R1H0X2 Neofusicoccum parvum   2.30E-06 66 6.19 53783.33 Cytoplasmic 

 169 R1H0X2 Neofusicoccum parvum   1.70E-06  6.19 53783.33 Cytoplasmic 
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Putative fad binding domain-
containing protein 

152 R1EYD9 Neofusicoccum parvum   8.50E-03 387 4.71 57220.33 Extracellular 

156 R1EYD9 Neofusicoccum parvum   8.40E-03 749 4.71 57220.33 Extracellular 

Putative formate dehydrogenase 
protein 

32 R1G468 Neofusicoccum parvum   0.00E+00 611 6.29 40298.87 Cytoplasmic 

103 R1G468 Neofusicoccum parvum   0.00E+00 690 6.29 40298.87 Cytoplasmic 

 165 R1G468 Neofusicoccum parvum   0.00E+00 169 6.29 40298.87 Cytoplasmic 

Putative homogentisate-
dioxygenase protein 

129 R1EVN8 Neofusicoccum parvum   1.30E-06  6.06 58733.01 Cytoplasmic 

Putative minor allergen alt a 7 
protein  

142 R1ENB8 Neofusicoccum parvum   1.30E-18 557 5.72 22135.00 Cytoplasmic 

Putative s-glutathione 
dehydrogenase protein 

165 R1GWD9 Neofusicoccum parvum   1.30E-33 121 6.46 40901.83 Cytoplasmic 

Saccharopine dehydrogenase / 
Homospermidine synthase 

162 K2RNB4 Macrophomina phaseolina 0.00E+00 663 5.86 50151.34 Mitochondrial 

Short-chain dehydrogenase/ 
reductase sdr 

102 DCO1_1s00458.t1 Diplodia corticola  44 5.50 34373.20 Cytoplasmic 

Short-chain dehydrogenase/ 
reductase SDR (l-xylulose reductase) 

17 K2S1F3 Macrophomina phaseolina 0.00E+00 313 6.13 31597.72 Cytoplasmic 

Short-chain dehydrogenase/ 
reductase SDR (Versicolorin 
reductase)  

20 K2RCX3 Macrophomina phaseolina 1.20E-35 272 5.90 31170.57 Cytoplasmic 

Superoxide dismutase [Mn/Fe] 111 R1GPF7 Neofusicoccum parvum   0.00E+00 211 9.13 25360.53 Mitochondrial 

 144 K2RKY9 Macrophomina phaseolina 2.80E-04 120 8.89 33373.71 Membranar 

Superoxide dismutase [Cu-Zn]  13 R1GTN9 Neofusicoccum parvum   0.00E+00 589 6.03 15726.24 Cytoplasmic 

Thioredoxin reductase 8 DCO1_53s07515.t1 Diplodia corticola  32 6.37 33319.94 Cytoplasmic 

 27 M2QTA7 Cochliobolus sativus 5.60E-15 445 6.60 33646.58 Cytoplasmic 

 28 M2QTA7 Cochliobolus sativus 0.00E+00 793 6.60 33646.58 Cytoplasmic 

 30 M2QTA7 Cochliobolus sativus 0.00E+00 985 6.60 33646.58 Cytoplasmic 
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Transferases         

α-1,4 glucan phosphorylase 131 R1EPV1 Neofusicoccum parvum   0.00E+00 211 5.81 99659.87 Nuclear 

Aminotransferase class V/Cysteine 
desulfurase  

32 K2SAF5 Macrophomina phaseolina 1.90E-05 129 7.15 41599.64 Cytoplasmic 

164 K2SAF5 Macrophomina phaseolina 0.00E+00 129 7.15 41599.64 Cytoplasmic 

Citrate synthase 34 K2REF5 Macrophomina phaseolina 0.00E+00 395 8.77 51667.15 Mitochondrial 

Dj-1 family protein 149 L2FW83 Colletotrichum gloeosporioides 5.00E-08 153 5.41 26577.56 Cytoplasmic 

Methionine synthase vitamin-B12 
independent  

37 K2RD18 Macrophomina phaseolina 0.00E+00 871 6.43 86349.70 Cytoplasmic 

38 K2RD18 Macrophomina phaseolina 0.00E+00 921 6.43 86349.70 Cytoplasmic 

 125 K2RD18 Macrophomina phaseolina 3.80E-06 69 6.43 86349.70 Cytoplasmic 

Nucleoside diphosphate kinase  122 K2S9J1 Macrophomina phaseolina 0.00E+00 397 8.69 16744.19 Cytoplasmic 

 123 K2S9J1 Macrophomina phaseolina 1.80E-30 94 8.69 16744.19 Cytoplasmic 

Putative adenosine kinase protein 83 R1EV77 Neofusicoccum parvum   0.00E+00 367 5.37 38168.47 Cytoplasmic 

Putative glutathione s-transferase 
protein 

110 R1E9W5 Neofusicoccum parvum   6.80E-15 111 5.92 25351.88 Nuclear 

143 R1E9W5 Neofusicoccum parvum   1.20E-23 190 5.92 25351.88 Nuclear 

 144 R1E9W5 Neofusicoccum parvum   0.00E+00 111 5.92 25351.88 Nuclear 

 246 R1E9W5 Neofusicoccum parvum   9.70E-03 153 5.92 25351.88 Nuclear 

 247 M3B7C6 Sphaerulina musiva 7.90E-07 127 6.71 25966.87 Cytoplasmic 

Putative phosphoenolpyruvate 
carboxykinase protein 

66 R1EI04 Neofusicoccum parvum   0.00E+00 769 5.60 61566.52 Cytoplasmic 

105 R1EI04 Neofusicoccum parvum   0.00E+00 661 5.60 61566.52 Cytoplasmic 

Spermidine synthase 89 K2RG56 Macrophomina phaseolina 0.00E+00 404 5.26 33118.81 Cytoplasmic 

Transaldolase 42 R1GMD5 Neofusicoccum parvum   0.00E+00 634 5.19 35619.57 Cytoplasmic 

Transketolase 52 K2RZI6 Macrophomina phaseolina 0.00E+00 950 5.87 74975.89 Cytoplasmic 

Phosphatases         

Putative histidine acid phosphatase 
protein 

166 R1EVB6 Neofusicoccum parvum   0.00E+00 194 7.57 57788.33 Mitochondrial 

Putative inorganic pyrophosphatase 
protein  

43 R1EI42 Neofusicoccum parvum   0.00E+00 744 5.32 33476.03 Cytoplasmic 
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Lyases         

Ketose-bisphosphate aldolase class-
2 

44 K2RZT2 Macrophomina phaseolina 0.00E+00 1111 5.72 39741.04 Cytoplasmic 

Putative oxalate protein (Bicupin 
oxalate deCO2ase/Oxase) 

124 R1E9V1 Neofusicoccum parvum   0.00E+00 391 4.57 48901.21 Extracellular 

Putative phosphoketolase protein 
(aldehyde-lyase) 

114 R1EPJ0 Neofusicoccum parvum   4.70E-05  5.88 90822.04 Cytoplasmic 

159 R1EPJ0 Neofusicoccum parvum   1.00E-03 125 5.88 90822.04 Cytoplasmic 

Hydratases         

Aconitase A/isopropylmalate 
dehydratase small subunit swivel 

114 K2QLG1 Macrophomina phaseolina 0.00E+00 898 6.21 84207.49 Mitochondrial 

Enolase 48 K2SCR2 Macrophomina phaseolina 0.00E+00 958 5.29 47075.26 Cytoplasmic 

 50 K2SCR2 Macrophomina phaseolina 4.40E-09  5.29 47075.26 Cytoplasmic 

 84 K2SCR2 Macrophomina phaseolina 0.00E+00 306 5.29 47075.26 Cytoplasmic 

Putative 2-methylcitrate 
dehydratase protein 

129 R1ED63 Neofusicoccum parvum   0.00E+00 387 6.15 55194.95 Cytoplasmic 

Isomerases         

Aldose 1-epimerase 124 K2RLW1 Macrophomina phaseolina 2.90E-18 153 4.66 43895.67 Extracellular 

NAD-dependent 
epimerase/dehydratase 

95 K2QUU1 Macrophomina phaseolina 6.50E-03 34 5.96 41017.65 Cytoplasmic 

Other functions         

14-3-3 protein 97 K2SCW4 Macrophomina phaseolina 0.00E+00 239 4.92 30320.81 Nuclear 

ATP synthase subunit beta 4 K2R9P7 Macrophomina phaseolina 0.00E+00 1543 5.41 55499.44 Mitochondrial 

Cerato-platanin (Protein SnodProt1)  7 W3WKH2 Pestalotiopsis fici W106-1 1.20E-07  4.37 13993.65 Extracellular 

Cupin RmlC-type 16 K2RCC3 Macrophomina phaseolina 1.00E-31 354 5.18 19078.40 Cytoplasmic 

Heat shock protein 60 (Chaperonin 
Cpn60)  

51 R1GDI3 Neofusicoccum parvum   0.00E+00 1138 5.52 61593.33 Mitochondrial 
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Outer membrane β-barrel 11 A0A017S003 Aspergillus ruber  2.40E-13 703 6.29 18838.42 Cytoplasmic 

 122 DCO1_53s07485.t1 Diplodia corticola  203 5.29 18733.37 Cytoplasmic 

 129 DCO1_53s07485.t1 Diplodia corticola  38 5.29 18733.37 Cytoplasmic 

 145 A0A017S003 Aspergillus ruber 6.60E-08 752 6.29 18838.42 Cytoplasmic 

 148 A0A017S003 Aspergillus ruber 6.70E-08 468 6.29 18838.42 Cytoplasmic 

 153 DCO1_53s07485.t1 Diplodia corticola  98 5.29 18733.37 Cytoplasmic 

Porin eukaryotic type (outer 
mitochondrial membrane protein 
porin) 

139 K2S952 Macrophomina phaseolina 1.60E-14  8.99 29738.39 Cytoplasmic 

140 K2S952 Macrophomina phaseolina 2.40E-23 225 8.99 29738.39 Cytoplasmic 

429 A0A0C4FE13 Puccinia triticina 2.80E-09  4.55 25487.62 
Cytoplasmic 
and nuclear 

Putative nmra-like family protein 
(pyridoxal-phosphate dependent 
enzyme) 

86 R1G4S7 Neofusicoccum parvum   0.00E+00 1009 5.79 34755.99 Cytoplasmic 

173 R1G4S7 Neofusicoccum parvum   0.00E+00 604 5.79 34755.99 Cytoplasmic 
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MAJOR CONCLUSIONS  

Diplodia corticola has been associated with declining diseases, with particular incidence in 

Quercus species (Linaldeddu et al., 2009; Lynch et al., 2013; Úrbez-Torres et al., 2010). Since most 

of known affected hosts are agriculturally exploited, its frequent occurrence raises a natural 

ecological, social and economic concern. From a biologic point of view, the best approach to 

counteract this decline is to obtain a comprehensive understanding of the molecular biology of 

the plant-fungal interaction. Accordingly, we proposed to characterize the set of proteins 

expressed by this phytophatogen, comparing it with an infection-like profile to describe which 

changes were induced by the host mimicry. 

Due to the characteristics of D. corticola, we optimized protocols for extracellular and 

intracellular proteins' extraction compatible with 1D and 2D electrophoretic separations. As such, 

after 2D gel separation and MS/MS de novo sequencing, we identified for the first time the 

secretome and proteome of this phytopathogen. Subsequently, we compared the control and 

infection-like protein profiles of two strains with divergent virulence degrees, an analysis that 

gave important insights about the biology of the fungus.  

We concluded that the avirulent strain secretome contains an assortment of proteins that 

facilitates the adaptation to substrates with distinct chemical compositions. Further, proteome 

analysis brought some insights about the mechanism used by this fungus to disrupt the plant cell 

walls. Similarly to the brown-rot fungi, the avirulent strain of D. corticola seems to resort to highly 

reactive molecules to degrade non-enzimatically the plant tissues, a strategy that creates space 

for the pervasion of the cell wall deconstructing enzymes. On the other hand, the extracellular 

proteins of the virulent strain suggest that the fungus has adjusted its secretome to the host cell 

wall chemical properties, which represents an advantage during the infection.  

Besides, we unveiled some proteins that might be directly involved in the pathogenicity of D. 

corticola. Peptidase M35 (deuterolysin), for example, was previously disclosed in the secretomes 

of other phytopathogenic fungi (Collins, 2013; Espino et al., 2010; Li et al., 2012), but we 

demonstrated for the first time in this work that the enzyme is more prevalent in the virulent 

strain. Likewise, we noticed an up-regulation of cerato-platanin when the strain was exposed to 

cork oak, an observation that is in agreement with other fungal pathosystems. This is actually the 

first time that such result was described in Botryosphaeriaceae fungi. Prior studies confirmed that 

cerato-platanin is responsible for the induction of plant necrotic lesions (Frías et al., 2014). It 

facilitates as well the hyphae's mechanical perforation of the plant cellulose barrier due to its 
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expansin-like activity (Baccelli et al., 2014; Baccelli, 2014; Barsottini et al., 2013). Another 

remarkable finding involves the intracellular enzyme 4-aminobutyrate aminotransferase. Its up-

regulation in the virulent infection-like proteome indicates that the fungus increases the 

metabolism of γ-aminobutyric acid (GABA) during infection. One of the plant defences against 

biotic and environmental adverse factors is precisely the accumulation of GABA (Bae et al., 2009; 

Kinnersley & Turano, 2000; Solomon & Oliver, 2001). In addition, this molecule (most probably) 

accumulates during the debarking season due to the nitrogen remobilization required for the 

formation of new shoots (Nabais et al., 2005). Since the onset of D. corticola infections usually 

occurs after trees' exposition to adverse abiotic factors and/or cork removal (Costa et al., 2004; 

Linaldeddu et al., 2011; Luque & Girbal, 1989; Marçais & Bréda, 2006; Sousa et al., 2007), we 

hypothesized that the plant GABA pool might be a triggering factor for the transition from latent 

to pathogenic lifestyle.  

The data gathered suggest that D. corticola has a hemibiotrophic lifestyle, switching from a 

biotrophic to a necrotrophic interaction after plants' stressing episodes. This conclusion is 

corroborated by the fact that the fungus colonizes living plant tissues, secreting concomitantly 

proteins such as cerato-platanin and necrosis inducing factor, a strategy that characterizes the 

hemibiotrophic fungi (Dou & Zhou, 2012; Horbach et al., 2011). 

In short, this work contributed largely to the protein characterization of D. corticola and 

subsequently for the Botryosphaeriaceae family. Further, we could infer about the molecular 

biology of the fungus, highlighting concomitantly some proteins that might play a crucial role 

during infection. Such information will be particularly valuable for the development of subsequent 

studies.  

FUTURE PERSPECTIVES 

This investigation raised some interesting questions that must be answered to improve the 

knowledge of the D. corticola molecular biology during infection. We believe, for instance, that 

the lipases found solely in the virulent strain might be determinant for the perforation of the 

Quercus sp. aerial tissues, a point of entry described by Paoletti et al. (2007). The quantification of 

the fungal lipolytic activity exposed to different substrates, including Quercus leaves, would be of 

great interest to evaluate the involvement of such proteins in the fungal colonization strategy. 

Similarly, the implications of the peptidase M35 prevalence in the virulent strain should be 

investigated to substantiate its role in the fungal pathogenicity. The relevance of each individual 

spot identified as peptidase M35 must equally be studied to confirm if the spots are indeed 
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modified proteins. 

The up-regulation of cerato-platanin in response to the host mimicry indicates that this small-

cysteine-rich protein might play a role in the virulent strain host colonization. However, there are, 

to our knowledge, no studies concerning the function of this protein in fungi belonging to the 

Botryosphaeriaceae family. First, it is necessary to verify the extracellular location of the protein. 

Previous studies demonstrated that regardless of the constant identification of cerato-platanin in 

the extracellular medium, the protein is primarily bound to the fungal cell wall (Boddi et al., 2004; 

Frías et al., 2014). The weak nature of the bond that links the protein to the cell wall is responsible 

for the identification of the protein in the extracellular medium (Frías et al., 2014). Second, it is 

important to study the significance of the expansin-like activity in the plant-fungal interaction. 

Finally, it should be determined if cerato-platanin functions as a scanvenger of fungal molecules 

susceptible to be recognized by the plant surveillance mechanism, or instead if works as a plant 

defence elicitor to amplify the oxidative burst that culminates in necrotic lesions (Baccelli et al., 

2013; Barsottini et al., 2013; Frías et al., 2014; Frischmann et al., 2013; Lombardi et al., 2013).  

In addition, the ability to metabolize γ-aminobutyric acid, particularly during infection, must be 

validated, confirming as well the presumed relationship of plant's GABA accumulation and the 

onset/ intensification of D. corticola infection.  

On the other hand, the data gathered in this work strongly suggests that the avirulent strain 

resorts to a non-enzymatic mechanism widely used by brown-rot fungi to degrade the cork oak 

stem. The first approach to corroborate such hypothesis must comprise the quantification of the 

reactive molecules present in the extracellular medium during the degradation of diverse 

substrates. Further, the ocurrence of Fenton reactions to generate these radicals should be 

inferred and, if confirmed, establish the involvement of the ferritin-ribonucleotide reductase-like 

protein in the iron bioavailability. 

Briefly, the questions raised in this work require a multidisciplinary approach to be answered, 

but surely will benefit the current understanding of the molecular biology of D. corticola. 
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CAA 008 EXT  CONTROL VS. CAA  499 EXT  CONTROL 
 

Figure 16 | 2D average gels of D. corticola control secretomes of the avirulent (CAA 008, A) and virulent (CAA 

499, B) strains. Three biological replicates were used for each condition. Gels were stained with Pierce Silver 
Stain for Mass Spectrometry (Thermo Scientific, USA). Protein spots identified by de novo sequencing and/or 
MASCOT search are marked with filled arrow lines and the identifications are described on Table 9. 

. 

 



APPENDIX I CAA 008 EXT CONTROL VS. CAA 499 EXT CONTROL 

 

142  

 

 

Table 9 | Summary of the extracellular proteins identified in CAA 008 EXT control and CAA 499 EXT control by de novo sequencing (1) and/or MASCOT search (2). 
Theoretical pI and MW (3) were searched with Compute pI/Mw tool available at ExPASy (Gasteiger et al., 2005) and the subcellular localization (4) deduced with 
WoLF PSORT predictor (Horton et al., 2007). 

Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots exclusive of CAA 008 EXT control        

Hydrolases         

GH 17 - Glycoside hydrolase family 
17 

51 K2STT8 Macrophomina phaseolina  2.30E-07 64 4.55 32022.55 Extracellular 

Proteases         

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

34 R1GF60 Neofusicoccum parvum   0.00E+00 485 4.45 52146.52 Extracellular 

Other functions         

Ferritin/ribonucleotide reductase-
like protein 

60 K2RIV9 Macrophomina phaseolina 0.00E+00 132 4.61 30766.62 Extracellular 

Gamma-glutamyltransferase 58 DCO1_18s05278.t1 Diplodia corticola  170 4.48 22115.78 Extracellular 

        

Spots exclusive of CAA 499 EXT control       

Hydrolases         

Lipase B (Uncharacterized protein)  25 K2R678 Macrophomina phaseolina  9.70E-08 113 5.43 48043.55 Extracellular 

Lipase class 3 110 K2RK28 Macrophomina phaseolina 8.70E-20  5.09 30910.40 Extracellular 

Putative ferulic acid esterase 
protein 

103 R1EDH3 Neofusicoccum parvum  6.00E-14  4.79 34891.92 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Proteases         

Peptidase M35 - Neutral protease 2 99 K2SDQ0 Macrophomina phaseolina 1.70E-19  5.34 36981.99 Extracellular 

 104 K2SDQ0 Macrophomina phaseolina 1.20E-13  5.34 36981.99 Extracellular 

 111 K2SDQ0 Macrophomina phaseolina 4.20E-05  5.34 36981.99 Extracellular 

 112 K2SDQ0 Macrophomina phaseolina 2.60E-03  5.34 36981.99 Extracellular 

 117 K2SDQ0 Macrophomina phaseolina 4.20E-05  5.34 36981.99 Extracellular 

Other functions         

Putative extracellular guanyl-
specific ribonuclease protein  

123 R1H1L9 Neofusicoccum parvum  2.70E-20  5.11 14564.95 Extracellular 

         

Spots down-regulated in CAA 499 EXT control       

Hydrolases         

Carboxylesterase family protein 48 DCO1_40s06646.t1 Diplodia corticola  76 4.68 61064.17 Extracellular 

GH 31 - Putative α-glucosidase 
protein  

46 R1H1X1 Neofusicoccum parvum  0.00E+00 321 4.65 110578.06 Extracellular 

47 R1H1X1 Neofusicoccum parvum   0.00E+00 330 4.65 110578.06 Extracellular 

 57 R1H1X1 Neofusicoccum parvum   0.00E+00 260 4.65 110578.06 Extracellular 

GH 55 - Putative glycoside 
hydrolase family 55 protein  

39 R1EP88 Neofusicoccum parvum   0.00E+00 529 4.52 84093.46 Extracellular 

40 R1EP88 Neofusicoccum parvum   0.00E+00 548 4.52 84093.46 Extracellular 

43 R1EP88 Neofusicoccum parvum  1.90E-21 195 4.52 84093.46 Extracellular 

Putative glutaminase protein 36 R1EUG4 Neofusicoccum parvum  6.40E-32 263 4.29 74937.86 Extracellular 

 37 R1EUG4 Neofusicoccum parvum  0.00E+00 225 4.29 74937.86 Extracellular 

 38 R1EUG4 Neofusicoccum parvum   0.00E+00 263 4.29 74937.86 Extracellular 

 49 DCO1_62s08886.t1 Diplodia corticola  64 4.27 76639.88 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Oxidoreductases         

Putative ligninase lg6 protein 
(Peroxidase) 

11 R1GJT0 Neofusicoccum parvum  5.30E-32 512 5.20 32232.20 Extracellular 

         

Spots up-regulated in CAA 499 EXT control       

Hydrolases         

GH 13 - Putative α-amylase a type-
1,2 protein  

101 K2QLM3 Macrophomina phaseolina 4.00E-31  4.73 54649.73 Extracellular 

GH 17 - Glycoside hydrolase family 
17 

93 K2STT8 Macrophomina phaseolina  2.30E-07  4.55 32022.55 Extracellular 

GH 43 - Putative glycoside 
hydrolase family 43 protein  

27 R1GE80 Neofusicoccum parvum   1.30E-18 315 5.73 48185.65 Extracellular 

Putative 5,3-nucleotidase protein  2 R1FUS1 Neofusicoccum parvum  3.70E-18  4.58 31154.86 Extracellular 

Proteases         

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

101 R1GF60 Neofusicoccum parvum   1.30E-32  4.45 52146.52 Extracellular 

         

Spots common to both control and infection-like       

Hydrolases         

GH 13 - Putative α-amylase a type-
1,2 protein  

62 R1GPA2 Neofusicoccum parvum  0.00E+00 373 4.53 56053.14 Extracellular 

GH 15 - Glucoamylase 63 C0NJV0 Ajellomyces capsulatus 0.00E+00 490 5.32 70492.86 Extracellular 

 129 R1GLG1 Neofusicoccum parvum   1.60E-14  4.83 68531.74 Extracellular 

 133 Q9C1V4 Talaromyces emersonii 3.00E-27  4.44 65429.22 Extracellular 

       Continued on next page 



CAA 008 EXT CONTROL VS. CAA 499 EXT CONTROL APPENDIX I 

 

 145 

 

 
        

Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

GH 17 - Glycoside hydrolase family 
17 

13 K2STT8 Macrophomina phaseolina 0.00E+00 363 4.55 32022.55 Extracellular 

17 K2STT8 Macrophomina phaseolina 2.20E-07 112 4.55 32022.55 Extracellular 

 53 K2STT8 Macrophomina phaseolina 2.30E-07 130 4.55 32022.55 Extracellular 

 114 K2STT8 Macrophomina phaseolina 5.20E-03  4.55 32022.55 Extracellular 

GH 31 - Putative α-glucosidase 
protein  

50 R1H1X1 Neofusicoccum parvum   2.40E-07  4.65 110578.06 Extracellular 

GH 43 - Putative glycoside 
hydrolase family 43 protein  

14 R1EDI8 Neofusicoccum parvum   5.70E-07 242 4.48 37269.32 Extracellular 

26 R1GE80 Neofusicoccum parvum  2.00E-09 169 5.73 48185.65 Extracellular 

GH 55 - Putative glycoside 
hydrolase family 55 protein  

42 R1EP88 Neofusicoccum parvum   0.00E+00 529 4.52 84093.46 Extracellular 

GH 64 - Putative glucanase b 
protein (β-1,3-glucanase) 

24 R1GK17 Neofusicoccum parvum  0.00E+00 327 5.82 42116.55 Nuclear 

GH 71 - Glycoside hydrolase family 
71  

32 K2R498 Macrophomina phaseolina  5.50E-17 250 4.84 49264.81 Extracellular 

33 R1GD52 Neofusicoccum parvum   1.50E-09 134 4.21 43378.40 Extracellular 
GH 93 - Putative glycoside 
hydrolase family 93 protein 
(Sialidase/ Neuraminidase) 

12 R1GGQ9 Neofusicoccum parvum   1.40E-07 180 4.41 38051.25 Extracellular 

24 K2RBR1 Macrophomina phaseolina  9.30E-11  4.32 40074.67 Extracellular 

53 K2RBR1 Macrophomina phaseolina  0.00E+00 126 4.32 40074.67 Extracellular 

Phosphoesterase 28 K2RUW5 Macrophomina phaseolina 5.90E-29 485 4.64 43928.97 Extracellular 
 29 K2RUW5 Macrophomina phaseolina 8.80E-03 151 4.64 43928.97 Extracellular 
 56 K2RUW5 Macrophomina phaseolina  3.00E-15  4.64 43928.97 Extracellular 

Putative ferulic acid esterase 
protein 

23 R1EDH3 Neofusicoccum parvum  1.50E-13 32 4.79 34891.92 Extracellular 

Uncharacterized protein 
(fumarylacetoacetase) 

31 A0A072PA62 Exophiala aquamarina 4.60E-26  5.84 46110.07 Cytoplasmic 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Proteases         

Peptidase A1 - Putative a chain 
endothiapepsin 

18 R1ESA5 Neofusicoccum parvum  0.00E+00 491 5.45 42563.05 Extracellular 

19 R1ESA5 Neofusicoccum parvum   4.20E-10 71 5.45 42563.05 Extracellular 

 21 R1ESA5 Neofusicoccum parvum   0.00E+00 228 5.45 42563.05 Extracellular 

 22 R1ESA5 Neofusicoccum parvum  1.90E-04 34 5.45 42563.05 Extracellular 

 59 R1ESA5 Neofusicoccum parvum  4.30E-10 491 5.45 42563.05 Extracellular 

 137 R1GM42 Neofusicoccum parvum  1.60E-08  4.27 41788.15 Extracellular 

 148 R1GM42 Neofusicoccum parvum  1.60E-08  4.27 41788.15 Extracellular 

Peptidase M28 - Putative leucyl 
aminopeptidase protein 

5 R1GBR8 Neofusicoccum parvum  1.20E-23 222 5.17 40706.16 Extracellular 

Peptidase M35 - Neutral protease 2 3 K2SDQ0 Macrophomina phaseolina 1.20E-25 124 5.34 36981.99 Extracellular 

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

29 R1GF60 Neofusicoccum parvum  5.50E-16 80 4.45 52146.52 Extracellular 

30 R1GF60 Neofusicoccum parvum  0.00E+00 486 4.45 52146.52 Extracellular 

 31 R1GF60 Neofusicoccum parvum  0.00E+00 668 4.45 52146.52 Extracellular 

 41 R1GF60 Neofusicoccum parvum   1.50E-14 112 4.45 52146.52 Extracellular 

 62 R1GF60 Neofusicoccum parvum  4.40E-28 345 4.45 52146.52 Extracellular 

Peptidase S8 - Putative peptidase s8 
s53 subtilisin kexin sedolisin protein 

16 R1G6D0 Neofusicoccum parvum  0.00E+00 478 4.18 43069.94 Extracellular 

80 R1GM11 Neofusicoccum parvum  6.50E-11  6.07 39070.39 Extracellular 

 116 R1EAW3 Neofusicoccum parvum  4.80E-02  4.73 40860.15 Extracellular 

Oxidoreductases         

Alcohol dehydrogenase 7 DCO1_41s07359.t1 Diplodia corticola  50 6.32 40875.17 Cytoplasmic 

Other functions         

Cell wall protein 10 DCO1_41s07341.t1 Diplodia corticola  173 4.48 21235.80 Extracellular 

Cerato-platanin 1 E3QKQ8 Colletotrichum graminicola 6.90E-11  4.53 14119.72 Extracellular 

Necrosis inducing protein  7 T0JMK5 Colletotrichum gloeosporioides  2.20E-17  5.80 24934.67 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Putative extracellular guanyl-
specific ribonuclease protein  

1 R1H1L9 Neofusicoccum parvum   3.30E-12  5.11 14564.95 Extracellular 

Putative pectate lyase a protein 
(Lyase 1)  

113 R1ED02 Neofusicoccum parvum  6.50E-08  4.88 33291.57 Extracellular 

Spherulation-specific family 4 4 K2RK67 Macrophomina phaseolina 1.00E-25 502 4.04 30373.78 Extracellular 

 6 K2RK67 Macrophomina phaseolina 2.20E-20 502 4.04 30373.78 Extracellular 

 71 K2RK67 Macrophomina phaseolina  2.80E-10  4.04 30373.78 Extracellular 

Unknown         

Uncharacterized protein 61 K2RWL4 Macrophomina phaseolina 6.80E-28 209 4.34 52231.60 Extracellular 
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CAA 008 EXT  INFECTION-LIKE VS. CAA 499 EXT  INFECTION-LIKE 
 

Figure 17 | 2D average gels of D. corticola infection-like secretomes of the avirulent (CAA 008, A) and virulent 

(CAA 499, B) strains. Three biological replicates were used for each condition. Gels were stained with Pierce 
Silver Stain for Mass Spectrometry (Thermo Scientific, USA). Protein spots identified by de novo sequencing 
and/or MASCOT search are marked with filled arrow lines and the identifications are described on Table 10. 
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Table 10 | Summary of the extracellular proteins identified in CAA 008 EXT infection-like and CAA 499 EXT infection-like by de novo sequencing (1) and/or MASCOT 
search (2). Theoretical pI and MW (3) were searched with Compute pI/Mw tool available at ExPASy (Gasteiger et al., 2005) and the subcellular localization (4) 
deduced with WoLF PSORT predictor (Horton et al., 2007). 

Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots exclusive of CAA 008 EXT infection-like       

Hydrolases         

GH 31 - Putative α-glucosidase 
protein  

50 R1H1X1 Neofusicoccum parvum   2.40E-07  4.65 110578.06 Extracellular 

GH 43 - Putative glycoside 
hydrolase family 43 protein  

64 R1EDI8 Neofusicoccum parvum   3.60E-04 144 4.48 37269.32 Extracellular 

Proteases         

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

34 R1GF60 Neofusicoccum parvum  0.00E+00 485 4.45 52146.52 Extracellular 

Other functions         

Gamma-glutamyltransferase 58 DCO1_18s05278.t1 Diplodia corticola  170 4.48 22115.78 Extracellular 

        

Spots exclusive of CAA 499 EXT infection-like       

Hydrolases         

GH 17 - Glycoside hydrolase family 
17 

17 K2STT8 Macrophomina phaseolina 2.20E-07 112 4.55 32022.55 Extracellular 

Lipase class 3 110 K2RK28 Macrophomina phaseolina 8.70E-20  5.09 30910.40 Extracellular 

Phosphoesterase 28 K2RUW5 Macrophomina phaseolina 5.90E-29 485 4.64 43928.97 Extracellular 

 29 K2RUW5 Macrophomina phaseolina 8.80E-03 151 4.64 43928.97 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Proteases         

Peptidase M35 - Neutral protease 2 99 K2SDQ0 Macrophomina phaseolina 1.70E-19  5.34 36981.99 Extracellular 

 104 K2SDQ0 Macrophomina phaseolina 1.20E-13  5.34 36981.99 Extracellular 

 117 K2SDQ0 Macrophomina phaseolina 4.20E-05  5.34 36981.99 Extracellular 

 126 K2SDQ0 Macrophomina phaseolina 1.00E-18  5.34 36981.99 Extracellular 

Peptidase M43 - Putative 
metalloprotease 1 protein  

136 R1GAQ6 Neofusicoccum parvum   5.10E-07  4.80 30491.66 Extracellular 

Peptidase S10 - Putative 
carboxypeptidase s1 protein 

29 R1GF60 Neofusicoccum parvum  5.50E-16 80 4.45 52146.52 Extracellular 

Other functions         

Putative extracellular guanyl-
specific ribonuclease protein  

123 R1H1L9 Neofusicoccum parvum  2.70E-20  5.11 14564.95 Extracellular 

Uncharacterized protein (Cell outer 
membrane) 

127 A0A017S003 Aspergillus ruber 1.40E-03  6.29 18838.42 Extracellular 

         

Spots down-regulated in CAA 499 EXT infection-like       

Hydrolases         

Carboxylesterase family protein 48 DCO1_40s06646.t1 Diplodia corticola  76 4.68 61064.17 Extracellular 

GH 31 - Putative α-glucosidase 
protein  

46 R1H1X1 Neofusicoccum parvum  0.00E+00 321 4.65 110578.06 Extracellular 

57 R1H1X1 Neofusicoccum parvum   0.00E+00 260 4.65 110578.06 Extracellular 

GH 55 - Putative glycoside 
hydrolase family 55 protein  

39 R1EP88 Neofusicoccum parvum   0.00E+00 529 4.52 84093.46 Extracellular 

42 R1EP88 Neofusicoccum parvum   0.00E+00 529 4.52 84093.46 Extracellular 

43 R1EP88 Neofusicoccum parvum  1.90E-21 195 4.52 84093.46 Extracellular 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Putative glutaminase protein 36 R1EUG4 Neofusicoccum parvum  6.40E-32 263 4.29 74937.86 Extracellular 

 37 R1EUG4 Neofusicoccum parvum  0.00E+00 225 4.29 74937.86 Extracellular 

 38 R1EUG4 Neofusicoccum parvum   0.00E+00 263 4.29 74937.86 Extracellular 

 49 DCO1_62s08886.t1 Diplodia corticola  64 4.27 76639.88 Extracellular 

        

Spots up-regulated in CAA 499 EXT infection-like       

Hydrolases         

GH 17 - Glycoside hydrolase family 
17 

93 K2STT8 Macrophomina phaseolina  2.30E-07  4.55 32022.55 Extracellular 

Putative 5,3-nucleotidase protein  2 R1FUS1 Neofusicoccum parvum  3.70E-18  4.58 31154.86 Extracellular 

Putative ferulic acid esterase 
protein 

23 R1EDH3 Neofusicoccum parvum  1.50E-13 32 4.79 34891.92 Extracellular 

103 R1EDH3 Neofusicoccum parvum  6.00E-14  4.79 34891.92 Extracellular 

Proteases         

Peptidase A1 - Putative a chain 
endothiapepsin 

21 R1ESA5 Neofusicoccum parvum   0.00E+00 228 5.45 42563.05 Extracellular 

59 R1ESA5 Neofusicoccum parvum  4.30E-10 491 5.45 42563.05 Extracellular 

Peptidase M35 - Neutral protease 2 3 K2SDQ0 Macrophomina phaseolina 1.20E-25 124 5.34 36981.99 Extracellular 

         

Spots common to both control and infection-like       

Hydrolases         

GH 13 - Putative α-amylase a type-
1,2 protein  

62 R1GPA2 Neofusicoccum parvum  0.00E+00 373 4.53 56053.14 Extracellular 

101 K2QLM3 Macrophomina phaseolina 4.00E-31  4.73 54649.73 Extracellular 

GH 15 - Glucoamylase 63 C0NJV0 Ajellomyces capsulatus 0.00E+00 490 5.32 70492.86 Extracellular 

 129 R1GLG1 Neofusicoccum parvum   1.60E-14  4.83 68531.74 Extracellular 

 133 Q9C1V4 Talaromyces emersonii 3.00E-27  4.44 65429.22 Extracellular 

       Continued on next page 
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Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score
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Theoretical 
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Mw

3
 (Da) 
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localization

4
 

GH 17 - Glycoside hydrolase family 
17 

13 K2STT8 Macrophomina phaseolina 0.00E+00 363 4.55 32022.55 Extracellular 

53 K2STT8 Macrophomina phaseolina 2.30E-07 130 4.55 32022.55 Extracellular 

 114 K2STT8 Macrophomina phaseolina 5.20E-03  4.55 32022.55 Extracellular 

GH 31 - Putative α-glucosidase 
protein  

47 R1H1X1 Neofusicoccum parvum   0.00E+00 330 4.65 110578.06 Extracellular 

GH 43 - Putative glycoside 
hydrolase family 43 protein  

14 R1EDI8 Neofusicoccum parvum   5.70E-07 242 4.48 37269.32 Extracellular 

26 R1GE80 Neofusicoccum parvum  2.00E-09 169 5.73 48185.65 Extracellular 

 27 R1GE80 Neofusicoccum parvum   1.30E-18 315 5.73 48185.65 Extracellular 

GH 55 - Putative glycoside 
hydrolase family 55 protein  

40 R1EP88 Neofusicoccum parvum   0.00E+00 548 4.52 84093.46 Extracellular 

GH 64 - Putative glucanase b 
protein (β-1,3-glucanase) 

24 R1GK17 Neofusicoccum parvum  0.00E+00 327 5.82 42116.55 Nuclear 

GH 71 - Glycoside hydrolase family 
71  

32 K2R498 Macrophomina phaseolina  5.50E-17 250 4.84 49264.81 Extracellular 

33 R1GD52 Neofusicoccum parvum   1.50E-09 134 4.21 43378.40 Extracellular 

GH 93 - Putative glycoside 
hydrolase family 93 protein 
(Sialidase/ Neuraminidase) 

12 R1GGQ9 Neofusicoccum parvum   1.40E-07 180 4.41 38051.25 Extracellular 

24 K2RBR1 Macrophomina phaseolina  9.30E-11  4.32 40074.67 Extracellular 

53 K2RBR1 Macrophomina phaseolina  0.00E+00 126 4.32 40074.67 Extracellular 

Lipase B (Uncharacterized protein)  25 K2R678 Macrophomina phaseolina  9.70E-08 113 5.43 48043.55 Extracellular 

Phosphoesterase 56 K2RUW5 Macrophomina phaseolina  3.00E-15  4.64 43928.97 Extracellular 

Uncharacterized protein 
(fumarylacetoacetase) 

31 A0A072PA62 Exophiala aquamarina 4.60E-26  5.84 46110.07 Cytoplasmic 

Proteases         

Peptidase A1 - Putative a chain 
endothiapepsin 

18 R1ESA5 Neofusicoccum parvum  0.00E+00 491 5.45 42563.05 Extracellular 

19 R1ESA5 Neofusicoccum parvum   4.20E-10 71 5.45 42563.05 Extracellular 

 22 R1ESA5 Neofusicoccum parvum  1.90E-04 34 5.45 42563.05 Extracellular 

 137 R1GM42 Neofusicoccum parvum  1.60E-08  4.27 41788.15 Extracellular 

       Continued on next page 



CAA 008 EXT INFECTION-LIKE VS. CAA 499 EXT INFECTION-LIKE APPENDIX I 

 

 153 

 

        

Protein Spot Accession number Organism 
FASTM/S 
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1
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3
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4
 

Peptidase M28 - Putative leucyl 
aminopeptidase protein 

5 R1GBR8 Neofusicoccum parvum  1.20E-23 222 5.17 40706.16 Extracellular 

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

30 R1GF60 Neofusicoccum parvum  0.00E+00 486 4.45 52146.52 Extracellular 

31 R1GF60 Neofusicoccum parvum  0.00E+00 668 4.45 52146.52 Extracellular 

 41 R1GF60 Neofusicoccum parvum  1.50E-14 112 4.45 52146.52 Extracellular 

 62 R1GF60 Neofusicoccum parvum  4.40E-28 345 4.45 52146.52 Extracellular 

 101 R1GF60 Neofusicoccum parvum   1.30E-32  4.45 52146.52 Extracellular 

Peptidase S8 - Putative peptidase s8 
s53 subtilisin kexin sedolisin protein 

16 R1G6D0 Neofusicoccum parvum  0.00E+00 478 4.18 43069.94 Extracellular 

80 R1GM11 Neofusicoccum parvum  6.50E-11  6.07 39070.39 Extracellular 

 116 R1EAW3 Neofusicoccum parvum  4.80E-02  4.73 40860.15 Extracellular 

Oxidoreductases         

Alcohol dehydrogenase 7 DCO1_41s07359.t1 Diplodia corticola  50 6.32 40875.57 Cytoplasmic 

Putative ligninase lg6 protein 
(Peroxidase) 

11 R1GJT0 Neofusicoccum parvum  5.30E-32 512 5.20 32232.20 Extracellular 

Other functions         

Cell wall protein 10 DCO1_41s07341.t1 Diplodia corticola  173 4.48 21235.80 Extracellular 

Cerato-platanin 1 E3QKQ8 Colletotrichum graminicola 6.90E-11  4.53 14119.72 Extracellular 

Ferritin/ribonucleotide reductase-
like protein 

60 K2RIV9 Macrophomina phaseolina 0.00E+00 132 4.61 30766.62 Extracellular 

Necrosis inducing protein  7 T0JMK5 Colletotrichum gloeosporioides  2.20E-17  5.80 24934.67 Extracellular 

Putative extracellular guanyl-
specific ribonuclease protein  

1 R1H1L9 Neofusicoccum parvum   3.30E-12  5.11 14564.95 Extracellular 
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Putative pectate lyase a protein 
(Lyase 1)  

113 R1ED02 Neofusicoccum parvum  6.50E-08  4.88 33291.57 Extracellular 

Spherulation-specific family 4 4 K2RK67 Macrophomina phaseolina 1.00E-25 502 4.04 30373.78 Extracellular 

 71 K2RK67 Macrophomina phaseolina  2.80E-10  4.04 30373.78 Extracellular 

Unknown         

Uncharacterized protein 61 K2RWL4 Macrophomina phaseolina 6.80E-28 209 4.34 52231.60 Extracellular 
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CAA 008 INT  CONTROL VS. CAA  499 INT  CONTROL 
 

Figure 18 | 2D average gels of D. corticola control proteomes of the avirulent (CAA 008, A) and virulent (CAA 
499, B) strains. Three biological replicates were used for each condition. Gels were stained with CBB-250. 
Protein spots identified by de novo sequencing and/or MASCOT search are marked with filled arrow lines and 
the identifications are described on Table 11. 
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Table 11 | Summary of the intracellular proteins identified in CAA 008 INT control and CAA 499 INT control by de novo sequencing (1) and/or MASCOT search (2). 
Theoretical pI and MW (3) were searched with Compute pI/Mw tool available at ExPASy (Gasteiger et al., 2005) and the subcellular localization (4) deduced with 
WoLF PSORT predictor (Horton et al., 2007). 

Protein Spot Accession number Organism 
FASTM/S 

Evalue
1

 

MASCOT total 
Ion Score

2
 

Theoretical 
pI

3
 

Theoretical 
Mw

3
 (Da) 

Subcellular 
localization

4
 

Spots exclusive of CAA 008 INT control        

Hydrolases         

αβ hydrolase 71 R1EXW5 Neofusicoccum parvum   0.00E+00 429 5.88 49829.51 Mitochondrial 

Putative esterase (s-
formylglutathione hydrolase) 

96 K2S3K9 Macrophomina phaseolina 0.00E+00 318 6.07 31988.10 Mitochondrial 

Putative β-lactamase family protein 49 R1G5K7 Neofusicoccum parvum   0.00E+00 930 5.34 44700.99 Cytoplasmic 

Proteases         

Peptidase M1 - Peptidase M1 
alanine aminopeptidase/ leukotriene 
A4 hydrolase 

92 R1EX72 Neofusicoccum parvum   9.70E-15 50 5.80 98026.88 Cytoplasmic 

Peptidase M49 - Peptidase M49 
dipeptidyl-peptidase III  

57 K2RA25 Macrophomina phaseolina 3.30E-26 274 5.53 79140.74 Cytoplasmic 

Peptidase T1A - Proteasome subunit 
α type 

90 R1G2P7 Neofusicoccum parvum   3.40E-21 54 5.72 31950.79 Cytoplasmic 

Oxidoreductases         

Catalase-peroxidase 115 K2QZ33 Macrophomina phaseolina 0.00E+00 639 5.82 80922.69 Cytoplasmic 

Galactokinase 69 K2RCE8 Macrophomina phaseolina 4.30E-28  5.55 57200.17 Cytoplasmic 

Putative choline oxidase protein 118 R1EJS8 Neofusicoccum parvum   0.00E+00 341 6.30 60138.57 Cytoplasmic 

Putative fggy-family carbohydrate 
kinase protein 

69 R1GNA2 Neofusicoccum parvum   3.60E-34 476 5.18 65434.09 Cytoplasmic 
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1
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3
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3
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4
 

Putative nadh-ubiquinone 
oxidoreductase 78 kDa subunit 
protein 

70 R1E5C6 Neofusicoccum parvum   8.00E-13 128 5.94 81566.38 Mitochondrial 

Transferases         

α-D-phosphohexomutase 
superfamily 

74 K2S027 Macrophomina phaseolina 5.60E-34 254 5.76 60123.07 Cytoplasmic 

106 DCO1_2s00877.t1 Diplodia corticola  71 6.00 59921.85 Cytoplasmic 

Transketolase 115 K2RZI6 Macrophomina phaseolina 1.40E-07  5.87 74975.89 Cytoplasmic 

Other functions         

Heat shock protein Hsp70 68 K2RVT5 Macrophomina phaseolina 2.90E-03  5.12 79970.70 Cytoplasmic 

Putative cyanovirin-n family protein 6 R1GQI8 Neofusicoccum parvum   1.50E-19 83 4.73 12102.21 Cytoplasmic 

        

Spots exclusive of CAA 499 INT control       

Hydrolases         

αβ hydrolase - Putative dienelactone 
hydrolase family protein 

170 R1G7F4 Neofusicoccum parvum   0.00E+00 336 5.99 29496.62 Cytoplasmic 

β-lactamase family protein 146 DCO1_1s00126.t1 Diplodia corticola  43 5.50 44772.36 Peroxisomal 

Proteases        

Peptidase M35 - Neutral protease 2 47 K2SDQ0 Macrophomina phaseolina 1.30E-22 195 5.34 36981.99 Extracellular 

Oxidoreductases         

Choline dehydrogenase  153 I8A444 Aspergillus oryzae 9.00E-08 637 4.91 67679.52 Extracellular 

 154 I8A444 Aspergillus oryzae 1.00E-09 540 4.91 67679.52 Extracellular 

 179 DCO1_53s07484.t1 Diplodia corticola  148 4.93 67662.73 Extracellular 

Putative fad binding domain-
containing protein 

156 R1EYD9 Neofusicoccum parvum   8.40E-03 749 4.71 57220.33 Extracellular 

       Continued on next page 
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1
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3
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4
 

NADH:flavin oxidoreductase/NADH 
oxidase family protein  

167 R1EE14 Neofusicoccum parvum   0.00E+00 1477 5.97 41452.60 Mitochondrial 

Superoxide dismutase [Mn/Fe] 144 K2RKY9 Macrophomina phaseolina 2.80E-04 120 8.89 33373.71 Membranar 

Transferases         

Putative glutathione s-transferase 
protein 

144 R1E9W5 Neofusicoccum parvum   0.00E+00 111 5.92 25351.88 Nuclear 

S-methyl-5'-thioadenosine 
phosphorylase 

172 R1GFT7 Neofusicoccum parvum   3.30E-30 112 5.85 33729.16 Cytoplasmic 

Other functions         

Outer membrane β-barrel 145 A0A017S003 Aspergillus ruber 6.60E-08 752 6.29 18838.42 Cytoplasmic 

 148 A0A017S003 Aspergillus ruber 6.70E-08 468 6.29 18838.42 Cytoplasmic 

 153 DCO1_53s07485.t1 Diplodia corticola  98 5.29 18733.37 Cytoplasmic 

Putative nmra-like family protein 
(pyridoxal-phosphate dependent 
enzyme) 

173 R1G4S7 Neofusicoccum parvum   0.00E+00 604 5.79 34755.99 Cytoplasmic 

Unknown         

Uncharacterized protein 146 K2S8R4 Macrophomina phaseolina 1.80E-11  5.20 14512.76 Nuclear 

         

Spots down-regulated in CAA 499 INT control       

Proteases         

Peptidase A1 - Putative aspartic 
endopeptidase pep2 protein 

98 R1GUW7 Neofusicoccum parvum   0.00E+00 214 4.73 43261.72 Extracellular 

Peptidase S8 - Putative autophagic 
serine protease alp2 protein  

98 R1G6D0 Neofusicoccum parvum   1.40E-15 146 4.18 43069.94 Cytoplasmic 

124 R1GMY2 Neofusicoccum parvum   6.80E-14  4.50 62019.98 Extracellular 
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1
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3
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Subcellular 
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4
 

Oxidoreductases         

Catalase-peroxidase 53 K2QZ33 Macrophomina phaseolina 0.00E+00 667 5.82 80922.69 Cytoplasmic 

 54 K2QZ33 Macrophomina phaseolina 0.00E+00 677 5.82 80922.69 Cytoplasmic 

 55 K2QZ33 Macrophomina phaseolina 1.80E-16 229 5.82 80922.69 Cytoplasmic 

Transferases         

Dj-1 family protein 15 L2FW83 Colletotrichum gloeosporioides 1.50E-21 331 5.41 26577.56 Cytoplasmic 

Methionine synthase vitamin-B12 
independent  

38 K2RD18 Macrophomina phaseolina 0.00E+00 921 6.43 86349.70 Cytoplasmic 

Lyases         

Ketose-bisphosphate aldolase class-
2 

44 K2RZT2 Macrophomina phaseolina 0.00E+00 1111 5.72 39741.04 Cytoplasmic 

Putative oxalate protein (Bicupin 
oxalate deCO2ase/Oxase) 

124 R1E9V1 Neofusicoccum parvum   0.00E+00 391 4.57 48901.21 Extracellular 

Hydratases         

Enolase 48 K2SCR2 Macrophomina phaseolina 0.00E+00 958 5.29 47075.26 Cytoplasmic 

Isomerases         

Aldose 1-epimerase 124 K2RLW1 Macrophomina phaseolina 2.90E-18 153 4.66 43895.67 Extracellular 

         

Spots up-regulated in CAA 499 INT control       

Hydrolases         

Putative acetyl-hydrolase protein 160 R1E7A7 Neofusicoccum parvum   0.00E+00 528 6.17 58163.23 Mitochondrial 

Putative β-lactamase family protein 50 R1G5K7 Neofusicoccum parvum   9.00E-31 729 5.34 44700.99 Cytoplasmic 

Oxidoreductases         

Malate dehydrogenase 28 S8AYZ5 Penicillium oxalicum  9.80E-09 87 7.71 35885.01 Mitochondrial 

Dihydrolipoyl dehydrogenase  72 R1EKH2 Neofusicoccum parvum   0.00E+00 1237 6.94 54773.98 Mitochondrial 

 162 K2RSR2 Macrophomina phaseolina 0.00E+00 472 7.22 54346.46 Mitochondrial 

       Continued on next page 
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Saccharopine dehydrogenase / 
Homospermidine synthase 

162 K2RNB4 Macrophomina phaseolina 0.00E+00 663 5.86 50151.34 Cytoplasmic 

Superoxide dismutase [Mn/Fe] 111 R1GPF7 Neofusicoccum parvum   0.00E+00 211 9.13 25360.53 Mitochondrial 

Thioredoxin reductase 28 M2QTA7 Cochliobolus sativus 0.00E+00 793 6.60 33646.58 Cytoplasmic 

Hydratases         

Enolase 50 K2SCR2 Macrophomina phaseolina 4.40E-09  5.29 47075.26 Cytoplasmic 

Other functions         

Putative nmra-like family protein 
(pyridoxal-phosphate dependent 
enzyme) 

86 R1G4S7 Neofusicoccum parvum   0.00E+00 1009 5.79 34755.99 Cytoplasmic 

         

Spots common to both control and infection-like       

Hydrolases         

αβ hydrolase 46 DCO1_9s03329.t1 Diplodia corticola  65 5.51 32613.91 Mitochondrial 

 61 R1EXW5 Neofusicoccum parvum   4.50E-35 331 5.88 49829.51 Mitochondrial 

 77 K2R5Z4 Macrophomina phaseolina 9.90E-32 223 5.34 47708.07 Cytoplasmic 

 128 DCO1_87s10149.t1 Diplodia corticola  128 5.14 37876.66 Cytoplasmic 

αβ hydrolase - Putative dienelactone 
hydrolase family protein 

26 R1G7F4 Neofusicoccum parvum   0.00E+00 646 5.99 29496.62 Cytoplasmic 

Acetamidase/Formamidase 79 K2RFA7 Macrophomina phaseolina 0.00E+00 345 5.55 45023.14 Cytoplasmic 

Acetyl-CoA hydrolase/transferase 75 K2SBN2 Macrophomina phaseolina 0.00E+00 358 6.36 58269.36 Mitochondrial 

Adenosylhomocysteinase 60 K2R5D9 Macrophomina phaseolina 0.00E+00 300 5.75 48793.22 Cytoplasmic 

 95 R1G6V6 Neofusicoccum parvum   0.00E+00 209 5.84 48855.29 Cytoplasmic 

GH 17 - Glycoside hydrolase family 
17  

133 K2STT8 Macrophomina phaseolina 3.80E-12 103 4.55 32022.55 Extracellular 
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GH 31 - Putative α-glucosidase 
protein  

2 R1H1X1 Neofusicoccum parvum   0.00E+00 353 4.65 110578.06 Extracellular 

3 R1H1X1 Neofusicoccum parvum   0.00E+00 365 4.65 110578.06 Extracellular 

 151 R1H1X1 Neofusicoccum parvum   0.00E+00 373 4.65 110578.06 Extracellular 

 169 R1H1X1 Neofusicoccum parvum   1.60E-29 125 4.65 110578.06 Extracellular 

GH 38 - α-mannosidase 31 K2RHM5 Macrophomina phaseolina 2.20E-03 49 5.97 122716.44 Cytoplasmic 

 132 K2RHM5 Macrophomina phaseolina 6.30E-23 154 5.97 122716.44 Cytoplasmic 

Putative amidohydrolase family 
protein  

158 R1E8S2 Neofusicoccum parvum   0.00E+00 69 5.93 40377.03 Cytoplasmic 

163 R1GCN6 Neofusicoccum parvum   7.80E-30 412 5.90 53044.60 Cytoplasmic 

Putative β-lactamase family protein 59 R1GFI9 Neofusicoccum parvum   0.00E+00 691 5.52 39665.40 Cytoplasmic 

 83 DCO1_1s00126.t1 Diplodia corticola  318 5.50 44772.36 Peroxisomal 

 84 H1V6J2 Colletotrichum higginsianum  1.30E-04 242 5.10 41333.09 Cytoplasmic 

 155 R1G5K7 Neofusicoccum parvum   0.00E+00 934 5.34 44700.99 Cytoplasmic 

 161 DCO1_75s09589.t1 Diplodia corticola  80 5.27 40613.76 Cytoplasmic 

Proteases         

Peptidase M1 - Peptidase M1 
alanine aminopeptidase/ 
leukotriene A4 hydrolase 

56 K2SDN2 Macrophomina phaseolina 0.00E+00 370 5.44 99068.10 Cytoplasmic 

157 K2SDN2 Macrophomina phaseolina 5.80E-09 135 5.44 99068.10 Cytoplasmic 

Peptidase M20 - Putative glutamate 
carboxypeptidase protein 

78 R1GM30 Neofusicoccum parvum   0.00E+00 245 5.53 52763.15 Cytoplasmic 

Peptidase M24 - Putative xaa-pro 
dipeptidase protein (Creatinase) 

100 R1EG89 Neofusicoccum parvum   9.80E-06  5.34 64557.62 Cytoplasmic 

Peptidase M3 - Peptidase M3A/M3B 58 R1G7D2 Neofusicoccum parvum   9.10E-17 189 5.75 87524.39 Cytoplasmic 

Peptidase S10 - Putative 
carboxypeptidase s1 protein  

5 R1G0M1 Neofusicoccum parvum   0.00E+00 518 4.89 60702.13 Extracellular 

125 R1G0M1 Neofusicoccum parvum   0.00E+00 493 4.89 60702.13 Extracellular 
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Peptidase S8 - Putative autophagic 
serine protease alp2 protein  

14 K2RXV9 Macrophomina phaseolina 0.00E+00 389 5.62 57279.71 Extracellular 

45 K2RXV9 Macrophomina phaseolina 1.30E-34 147 5.62 57279.71 Extracellular 

 138 R1GM11 Neofusicoccum parvum   1.60E-35 708 6.07 39070.39 Extracellular 

Peptidase S9 -Putative 
oligopeptidase family protein 

126 R1GWK1 Neofusicoccum parvum   1.80E-07 134 4.64 79701.64 Extracellular 

Peptidase T1A - Proteasome subunit 
α type 

46 R1GIL3 Neofusicoccum parvum   0.00E+00 352 5.59 27780.56 Cytoplasmic 

88 R1GFI6 Neofusicoccum parvum   6.00E-36 146 5.34 30083.11 Cytoplasmic 

 178 R1GT64 Neofusicoccum parvum   3.70E-34 196 5.80 28563.18 Mitochondrial 

Proteasome subunit β type-2 110 DCO1_38s06588.t1 Diplodia corticola  164 6.96 21059.17 Mitochondrial 

 141 R1GH44 Neofusicoccum parvum   0.00E+00 165 6.22 24813.98 Cytoplasmic 

Putative proteasome component c5 

protein (type) 
21 R1ECI6 Neofusicoccum parvum   0.00E+00 390 6.45 28968.64 Mitochondrial 

34 DCO1_19s02494.t1 Diplodia corticola  48 6.71 28986.62 Mitochondrial 

Oxidoreductases         

6-phosphogluconate 
dehydrogenase, decarboxylating 

67 K2S8M9 Macrophomina phaseolina 0.00E+00 675 5.99 54283.81 Cytoplasmic 

77 K2S8M9 Macrophomina phaseolina 3.30E-21 106 5.99 54283.81 Cytoplasmic 

Dihydrolipoyl dehydrogenase  107 R1EKH2 Neofusicoccum parvum   6.30E-28 59 6.94 54773.98 Mitochondrial 

FAD dependent oxidoreductase 84 K2QPD2 Macrophomina phaseolina 0.00E+00 241 5.67 47900.98 Cytoplasmic 

Glutamate dehydrogenase 64 K2SZ80 Macrophomina phaseolina 0.00E+00 360 6.43 48930.19 Cytoplasmic 

Glyceraldehyde-3-phosphate 
dehydrogenase  

24 K2SSH4 Macrophomina phaseolina 0.00E+00 761 6.92 36273.12 Cytoplasmic 

30 K2SSH4 Macrophomina phaseolina 0.00E+00  6.92 36273.12 Cytoplasmic 

Malate dehydrogenase 29 K2SB76 Macrophomina phaseolina 0.00E+00 1005 8.86 35859.95 Mitochondrial 

NADH:flavin oxidoreductase/NADH 
oxidase family protein  

63 R1H0X2 Neofusicoccum parvum   0.00E+00 237 6.19 53783.33 Cytoplasmic 

161 R1EHB0 Neofusicoccum parvum   4.00E-19 369 5.82 43385.05 Cytoplasmic 

Putative alcohol dehydrogenase 
domain protein  

84 R1EH70 Neofusicoccum parvum   0.00E+00 521 5.73 36414.20 Cytoplasmic 

Glucose-methanol-choline 
oxidoreductase (alcohol oxidase) 

39 R1EEN8 Neofusicoccum parvum   0.00E+00 1319 6.44 74359.05 Cytoplasmic 

41 R1EEN8 Neofusicoccum parvum   0.00E+00 1217 6.44 74359.05 Cytoplasmic 
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Putative aldehyde dehydrogenase 
protein 

63 R1H0X2 Neofusicoccum parvum   0.00E+00 237 6.19 53783.33 Cytoplasmic 

65 R1H0X2 Neofusicoccum parvum   0.00E+00 869 6.19 53783.33 Cytoplasmic 

 73 R1H0X2 Neofusicoccum parvum   0.00E+00 1099 6.19 53783.33 Cytoplasmic 

 164 R1H0X2 Neofusicoccum parvum   2.30E-06 66 6.19 53783.33 Cytoplasmic 

 169 R1H0X2 Neofusicoccum parvum   1.70E-06  6.19 53783.33 Cytoplasmic 

Putative fad binding domain-
containing protein 

152 R1EYD9 Neofusicoccum parvum   8.50E-03 387 4.71 57220.33 Extracellular 

Putative formate dehydrogenase 
protein 

32 R1G468 Neofusicoccum parvum   0.00E+00 611 6.29 40298.87 Cytoplasmic 

103 R1G468 Neofusicoccum parvum   0.00E+00 690 6.29 40298.87 Cytoplasmic 

Putative homogentisate-
dioxygenase protein 

129 R1EVN8 Neofusicoccum parvum   1.30E-06  6.06 58733.01 Cytoplasmic 

Putative minor allergen alt a 7 
protein  

142 R1ENB8 Neofusicoccum parvum   1.30E-18 557 5.72 22135.00 Cytoplasmic 

Short-chain dehydrogenase/ 
reductase sdr 

102 DCO1_1s00458.t1 Diplodia corticola  44 5.50 34373.20 Cytoplasmic 

Short-chain dehydrogenase/ 
reductase SDR (l-xylulose reductase) 

17 K2S1F3 Macrophomina phaseolina 0.00E+00 313 6.13 31597.72 Cytoplasmic 

Short-chain dehydrogenase/ 
reductase SDR (Versicolorin 
reductase)  

20 K2RCX3 Macrophomina phaseolina 1.20E-35 272 5.90 31170.57 Cytoplasmic 

Superoxide dismutase [Cu-Zn]  13 R1GTN9 Neofusicoccum parvum   0.00E+00 589 6.03 15726.24 Cytoplasmic 

Thioredoxin reductase 8 DCO1_53s07515.t1 Diplodia corticola  32 6.37 33319.94 Cytoplasmic 

 27 M2QTA7 Cochliobolus sativus 5.60E-15 445 6.60 33646.58 Cytoplasmic 

 30 M2QTA7 Cochliobolus sativus 0.00E+00 985 6.60 33646.58 Cytoplasmic 

 94 M2QTA7 Cochliobolus sativus 3.70E-10 405 6.60 33646.58 Cytoplasmic 

Transferases         

α-1,4 glucan phosphorylase 131 R1EPV1 Neofusicoccum parvum   0.00E+00 211 5.81 99659.87 Nuclear 
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Aminotransferase class V/Cysteine 
desulfurase  

32 K2SAF5 Macrophomina phaseolina 1.90E-05 129 7.15 41599.64 Cytoplasmic 

164 K2SAF5 Macrophomina phaseolina 0.00E+00 129 7.15 41599.64 Cytoplasmic 

4-aminobutyrate aminotransferase 
eukaryotic 

93 K2SB97 Macrophomina phaseolina 0.00E+00 481 7.75 56383.98 Mitochondrial 

Citrate synthase 34 K2REF5 Macrophomina phaseolina 0.00E+00 395 8.77 51667.15 Mitochondrial 

Dj-1 family protein 149 L2FW83 Colletotrichum gloeosporioides 5.00E-08 153 5.41 26577.56 Cytoplasmic 

Methionine synthase vitamin-B12 
independent  

37 K2RD18 Macrophomina phaseolina 0.00E+00 871 6.43 86349.70 Cytoplasmic 

125 K2RD18 Macrophomina phaseolina 3.80E-06 69 6.43 86349.70 Cytoplasmic 

Methylcitrate synthase precursor 35 DCO1_18s05215.t1 Diplodia corticola  32 8.84 52449.18 Mitochondrial 

Nucleoside diphosphate kinase  122 K2S9J1 Macrophomina phaseolina 0.00E+00 397 8.69 16744.19 Cytoplasmic 

 123 K2S9J1 Macrophomina phaseolina 1.80E-30 94 8.69 16744.19 Cytoplasmic 

Putative adenosine kinase protein 83 R1EV77 Neofusicoccum parvum   0.00E+00 367 5.37 38168.47 Cytoplasmic 

Putative glutathione s-transferase 
protein 

110 R1E9W5 Neofusicoccum parvum   6.80E-15 111 5.92 25351.88 Nuclear 

143 R1E9W5 Neofusicoccum parvum   1.20E-23 190 5.92 25351.88 Nuclear 

Putative l-ornithine 
aminotransferase protein 

61 R1EP24 Neofusicoccum parvum   1.80E-21 136 6,07 50244.43 Cytoplasmic 

Putative phosphoenolpyruvate 
carboxykinase protein 

66 R1EI04 Neofusicoccum parvum   0.00E+00 769 5.60 61566.52 Cytoplasmic 

105 R1EI04 Neofusicoccum parvum   0.00E+00 661 5.60 61566.52 Cytoplasmic 

Spermidine synthase 89 K2RG56 Macrophomina phaseolina 0.00E+00 404 5.26 33118.81 Cytoplasmic 

Transaldolase 42 R1GMD5 Neofusicoccum parvum   0.00E+00 634 5.19 35619.57 Cytoplasmic 

Transketolase 52 K2RZI6 Macrophomina phaseolina 0.00E+00 950 5.87 74975.89 Cytoplasmic 

 168 K2RZI6 Macrophomina phaseolina 8.70E-07 76 5.87 74975.89 Cytoplasmic 

Phosphatases         

Putative inorganic pyrophosphatase 
protein  

43 R1EI42 Neofusicoccum parvum   0.00E+00 744 5.32 33476.03 Cytoplasmic 
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Putative-bisphosphoglycerate-
independent phosphoglycerate 
mutase protein 

91 R1EYX5 Neofusicoccum parvum   0.00E+00 420 5.40 57095.83 Extracellular 

Lyases         

Isocitrate lyase 40 R1EDG7 Neofusicoccum parvum   0.00E+00 367 6.93 60923.22 Cytoplasmic 

Putative phosphoketolase protein 
(aldehyde-lyase) 

114 R1EPJ0 Neofusicoccum parvum   4.70E-05  5.88 90822.04 Cytoplasmic 

159 R1EPJ0 Neofusicoccum parvum   1.00E-03 125 5.88 90822.04 Cytoplasmic 

Hydratases         

Aconitase A/isopropylmalate 
dehydratase small subunit swivel 

114 K2QLG1 Macrophomina phaseolina 0.00E+00 898 6.21 84207.49 Mitochondrial 

Enolase 84 K2SCR2 Macrophomina phaseolina 0.00E+00 306 5.29 47075.26 Cytoplasmic 

Putative 2-methylcitrate 
dehydratase protein 

129 R1ED63 Neofusicoccum parvum   0.00E+00 387 6.15 55194.95 Cytoplasmic 

Isomerases         

Glucose-6-phosphate isomerase 107 R1GRZ3 Neofusicoccum parvum   0.00E+00 340 5.74 61861.97 Cytoplasmic 

NAD-dependent 
epimerase/dehydratase 

95 K2QUU1 Macrophomina phaseolina 6.50E-03 34 5.96 41017.65 Cytoplasmic 

Other functions         

14-3-3 protein 97 K2SCW4 Macrophomina phaseolina 0.00E+00 239 4.92 30320.81 Nuclear 

ATP synthase subunit beta 4 K2R9P7 Macrophomina phaseolina 0.00E+00 1543 5.41 55499.44 Mitochondrial 

Cerato-platanin (Protein SnodProt1)  7 W3WKH2 Pestalotiopsis fici W106-1 1.20E-07  4.37 13993.65 Extracellular 

Cupin RmlC-type 16 K2RCC3 Macrophomina phaseolina 1.00E-31 354 5.18 19078.40 Cytoplasmic 

Heat shock protein 60 (Chaperonin 
Cpn60)  

51 R1GDI3 Neofusicoccum parvum   0.00E+00 1138 5.52 61593.33 Mitochondrial 
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Outer membrane β-barrel 11 A0A017S003 Aspergillus ruber  2.40E-13 703 6.29 18838.42 Cytoplasmic 

 122 DCO1_53s07485.t1 Diplodia corticola  203 5.29 18733.37 Cytoplasmic 

 129 DCO1_53s07485.t1 Diplodia corticola  38 5.29 18733.37 Cytoplasmic 

Porin eukaryotic type (outer 
mitochondrial membrane protein 
porin) 

139 K2S952 Macrophomina phaseolina 1.60E-14  8.99 29738.39 Cytoplasmic 

140 K2S952 Macrophomina phaseolina 2.40E-23 225 8.99 29738.39 Cytoplasmic 

Putative g-protein complex beta 
subunit protein 

94 R1GU67 Neofusicoccum parvum   4.80E-11  6.75 35070.56 Nuclear 
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