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Resumo

Anticorpos hiperimunes, Anticorpos de aves, IgY, Líquidos iónicos, 

Sistemas aquosos bifásicos, Tags de fusão. 

 

Os anticorpos pertencem à família das Imunoglobulinas (Ig), e que 

se encontram no plasma e no fluído extracelular dos vertebrados, 

sendo produzidos pelas células B de modo a identificar e neutralizar 

as moléculas estranhas e patogénicas (antigénios) ao nosso 

organismo. A produção de anticorpos monoclonais e policlonais e a 

sua capacidade para se ligarem a antigénios específicos possibilitou 

a sua aplicação em análises quantitativas e/ou qualitativas, em 

métodos de purificação de antigénios e na modulação de efeitos 

fisiológicos em investigação, de diagnóstico ou terapêutica. Os 

anticorpos das aves (IgY) têm sido muito estudados neste tipo de 

aplicações por serem uma fonte mais económica e existirem em 

maior quantidade. A produção de IgY para aplicação em imunização 

passiva tem vindo a ser estudada nos últimos anos, e isto deve-se ao 

fato de existirem muitos microrganismos resistentes a antibióticos, 

doenças que não reagem aos fármacos aplicados e de indivíduos que 

são incapazes de responder ao método de vacinação tradicional. Para 

a produção de anticorpos específicos, expõem-se a ave a um 

determinado antigénio, através de injeção, levando posteriormente a 

uma resposta imunitária humoral e assim à produção de ovos 

hiperimunes. O grande objetivo deste trabalho consistiu na produção 

de ovos hiperimunes, na qual se acompanhou o perfil dos mesmos 

ao longo do tempo, seguido da avaliação da estabilidade de IgY em 

soluções aquosas de sais e polímeros utilizados em sistemas aquosos 

bifásicos que poderão ser estratégias promissoras para a sua 

purificação. 
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Abstract

Hyperimmune antibodies, Hen antibodies, IgY, Ionic liquids, 

Aqueous biphasic systems, Fusion tags 

 

Antibodies are glycoproteins that belong to the family of 

immunoglobulins (Ig). They are found in plasma and extracellular 

fluids of vertebrates and are produced by B cells to identify and to 

neutralize pathogens and foreign molecules (antigens) in our body. 

The production of monoclonal and polyclonal antibodies and their 

ability to bind to a specific antigen, allows their use in quantitative 

and/or qualitative analyses of specific antigens, in purification 

methods and in modulating physiological effects in research, 

diagnosis or therapy. Hen antibodies (IgY) have been studied for 

such type of applications because they can be produced at a lower 

cost and in larger amounts. The production of IgY for use in passive 

immunization has been suggested because there are many antibiotic-

resistant microorganisms, diseases that do not respond to the applied 

drugs and individuals who are unable to respond to vaccination. The 

major objective of this work consists on the injection of hens with 

specific antigens (produced with the aid of fusion tags) which leads 

to a humoral immune response and to the production of 

hyperimmune eggs, which were followed a long time. Finally, the 

stability of IgY was evaluated in aqueous solutions of salts and 

polymers that could be used in the creation of aqueous biphasic 

systems for purification purposes. 
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1.1 Scopes and objectives 

The administration of preformed antibodies in humans or animals has become very 

attractive as a protective strategy against pathogenic viruses and bacteria, being also 

applicable in the control of drug-resistant microorganisms, diseases that does not respond to 

drug therapy and when the immune system is unable to respond to conventional vaccines 

(1,2).  

Immunoglobulins (Ig), also known as antibodies, are produced by B cells and provide a 

versatile and specific response against antigens (3). In the past few years, mammals are being 

use for the production of monoclonal and polyclonal antibodies because they have the ability 

to specifically bind to an antigen and are thus used in numerous applications such as: in 

qualitative and/or quantitative analysis in solution, cells and tissues; in antigen purification 

methods; and in modulation of physiological effects in research, diagnostic or therapeutics 

(4).  

In this work, we attempted the production of specific antibodies in Japanese Quails 

(Coturnix japonica), a model bird recently introduced in our research lines. Quails are small 

and less expensive than chickens, have a short generation interval and show genetic variation 

for growth traits in most populations (5). The implementation of an avian facility was also 

required and, for that, the European guidelines on the protection of animals used for 

scientific purposes were followed (Directive/2010/63/EU) (6). Standard immunization 

protocols in quails were implemented in order to produce hyperimmune eggs while 

presenting specific immune responses against model protein antigens, which were followed 

by ELISA assays. 

This work is divide in two principal objectives: the establishing of immunization 

procedures in Coturnix japonica and the study of the IgY stability in aqueous solutions of 

phase-forming components used in the creation of aqueous biphasic systems (ABS), which 

have been studied for the purification of IgY by liquid-liquid separations. To attain the first 

objective, we prepared model immunogens and monitored their specific reactivity; whereas 

in the second objective we characterized the stability of IgY by thermostability assays in 

aqueous solutions of ABS components, such as polymers and salts, in order to obtain a priori 

information on which type of ABS can be used for the purification of IgY. 
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1.2. Antibodies 

Antibodies are glycoproteins constituted by four polypeptides that belong to the family 

of immunoglobulins (Ig). They exist in the plasma and extracellular fluids of vertebrates and 

are produced by B cells in order to identify and neutralize pathogens and foreign molecules 

(antigens) to our body (3,4,7–9). Therefore, antibodies provide a versatile and specific 

response against antigens (3). The antibody/antigen binding triggers a biological activity 

that, depending on the antigen, can be a cell lysis, augmented phagocytosis or even allergic 

reactions (3).   

 

1.2.1. Structure and function of antibodies 

Structurally, immunoglobulins have a common global organization and consist of four 

separate polypeptide chains that interact with each other through S-S bonds, arranging 

themselves in a functional molecule in a Y-shaped form (4,9,10). Each Ig molecule contains 

two light chains and two heavy chains with approximate molecular weights of 25 kDa and 

55 kDa, respectively (Figure 1) (4,9,10). The heavy chain is composed of one variable 

domain (VH), followed by three constant domains (CH1, CH2 and CH3) and a flexible hinge 

region positioned between CH1 and CH2 (Figure 1) (1,2,9).  In mammals there are five main 

heavy chain, namely gamma (γ), alpha (α), mu (μ), delta (δ) and epsilon (ε), resulting in 

different heavy chain classes that determine various Ig functions: IgG the main Ig of the 

immune system responding pathogenic invasions; IgA functioning at the level of the urinary, 

respiratory and intestinal tracts; IgM and IgD promoting an initial immune response to 

pathogens; IgD in the initial response to the immune system; and IgE in response to allergens 

(7–10).  

 

Figure 1: Molecular structure of immunoglobulins: L, light chain; H, heavy chain; Fab, 

antigen-binding domain; Fc, crystallisable fragment [adapted from (10,11)]. 
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The light chain is composed of a variable domain (VL) followed by a single constant 

domain (CL). Two classes are present in mammals, namely kappa (κ) and lambda (λ) (9,10). 

In terms of relevant structural domains of immunoglobulins, one can distinguish between 

Fab and Fc domains or fragments. Fab (antigen-binding domain) is a monovalent fragment 

of the antibody that contains the antigen binding site. The Fc (crystallisable fragment) 

determines the antibody biological activity by mediating the binding to cell-receptors and 

downstream responses  (4). The two domains are linked by a hinge region consisting of 

proline, serine and threonine, which allows a rotational movement in Fab for an improve 

antibody/antigen bind (4). This region is easily cleaved by two proteolytic enzymes: papain 

and pepsin (4,9,12). Papain cleaves the antibody in the links located above the S-S bonds 

generating two fragments: Fab (antigen-binding domain monovalent) and a Fc fragment, 

while pepsin cleaves the links below the S-S bonds forming a single F(ab’)2 (bivalent binding 

domain antigen) and a Fc fragment partially digested (Figure 2) (4,9,12). 

 

Figure 2: Structural domains after proteolytic processing of Immunoglobulin G [adapted 

from (4,9)]. 

 



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 
 

16 
 

1.2.2. Monoclonal and polyclonal antibodies 

By immunizing animals such as rabbits, goats, sheep or apes, polyclonal and monoclonal 

antibodies are generated. These can be used in therapy, diagnosis and research (4,8,9). 

Polyclonal antibodies are a heterogeneous mixture that recognize a multiplicity of 

epitopes of the same antigen being produced by different B cell clones, so they have different 

specificities and affinities (Figure 3) (9,10). Therefore, multiple clones of polyclonal 

antibodies show high levels of labelling to only one antigen, since many antibodies are 

produced for different epitopes of the same protein (8,9). However, with different epitopes, 

the antibody may ultimately connect to multiple protein and not to the protein-antigen of 

interest (8).  

 

Figure 3: Production scheme of polyclonal antibodies by immunization of rabbits followed 

by antigen-binding to multiple epitopes [adapted from (10)]. 

 

Monoclonal antibodies are a homogeneous population of Ig, resulting from the expansion 

of a single B cell (4,8–10). These antibodies were initially found during the analysis of serum 

from patients with multiple myeloma, since clonal expansion of plasma cells leads to an 

increase of the same antibody (8). With this discovery, Köhler and Milstein in the mid-1970s 

[cited in (4,8)], have developed a technique for the production of monoclonal antibodies with 

the fusion of B lymphocytes with immortal myeloma cells, generating hybridomas (4,8).  

With the specificity of the monoclonal antibodies it is possible to  evaluate the changes 

in molecular conformation, interactions in protein/protein, phosphorylation state and 

identification of a protein family; yet, small changes in the epitope affects the function of 
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the monoclonal antibody (4,8). For the production of these antibodies it is necessary to take 

into account the process of selection, cloning and the low levels of labelling (due to the fact 

that connection has weak affinity) (4,8).  

 

1.3. Hen IgY 

Nowadays, the production of antibodies is dependent on model animals. In this work, we 

used the Japanese quail (Coturnix japonica). Currently, the most used antibodies are from 

mammalian sources. However,  in 1893, Klemperer (2) demonstrated that with the 

immunization of chickens, specific antibodies are transferred to eggs and could be used to 

treat tetanus infections (2).  

Immunoglobulins are found in chicken serum and transferred to the egg to confer 

protection to the offspring (1,13). Three classes of immunoglobulins are found in the hen 

eggs: IgA, IgM and IgY (1,2). During the egg formation, IgY is transferred to the yolk 

through a specific receptor present on the surface of the yolk sac membrane, while IgA and 

IgM will be deposited in egg white (1,2).Avian IgA and IgM are very similar to their 

mammalian counterparts in terms of molecular weight, structure and electrophoretic 

mobility, while IgY is functionally equivalent to mammalian IgG and thus represents the 

main Ig class in birds (1,2). The antibodies present in the yolk (IgY) have been extensively 

studied in passive immunization, diagnostic and therapy (1,14).  

 

1.3.1. Molecular structure of IgY 

IgY is functionally homologous to IgG, however, in terms of molecular weight, IgY is 

heavier (about 180 kDa) than IgG (150 kDa) (1,2,15). In IgY, two identical heavy chains (H) 

and two identical light chains (L) connected by S-S bonds exist, and where in the L chain a 

variable domain (VL) and a constant domain (CL) are found (1,2). Unlike IgG, between these 

two areas there is not an intra-chain S-S connection making these molecule less stable and, 

additionally, the structure also has less extension on β sheet which also compromises its 

overall stability (1,2). The H chain is constituted by a variable domain (VH) and four constant 

domains (CH1, CH2, CH3 e CH4). Between CH1 and CH2 domains does not exist in the hinge 

region (HR) that confers flexibility to the Fab fragment; instead proline and glycine residues 

that give some flexibility to the molecule are found (1,2). Therefore, it is possible to say that, 
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in terms of constant domains, CH2 and CH3 of IgG are equivalent to CH3 and CH4 domains of 

IgY (Figure 4) (1,2).   

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Contrast between the molecular structure of IgG and IgY (16). 

 

1.3.2. Physicochemical properties of IgY 

 For the two immunoglobulins, the isoelectric point (pI) of IgY is lower (5.7 to 7.6) than 

that of IgG (6.1 to 8.5) (2,16). IgY also presents a larger Fc fragment (CH2, CH3 and CH4) 

than IgG (CH2 and CH3) and therefore IgY is more hydrophobic (2,16). 

 Different studies demonstrated that pH affects the stability of IgY. At pH 3.5 there was 

a loss of activity of the IgY and, at pH 3, no activity was observed due to changes in the 

protein conformation (1,2,16,17). On the other hand, at pH 11, IgY is relatively stable, but 

with increasing pH to 12 a loss of activity was verified. Thus, IgY is stable between pH 4 

and pH 11 (1,2,16,17). For the improvement of the stability of the protein stabilizers may be 

added, such as simple and complex carbohydrates, as well as polyols (1).  

In terms of the enzymatic activity, IgY is resistant to digestion of trypsin and 

chymotrypsin, but it is very sensitive to pepsin digestion (2,16). The sensitivity of IgY to 

pepsin depends on the pH and enzyme/substrate ratio used; with a pH value ≥ 5 IgY is 

resistant, been able to maintain their activity on the antigen-binding site and cell 

agglutination (1,2). However, at a pH ≤ 4.5, there is total loss of activity occurring complete 

hydrolysis of the protein (1,2). With trypsin, there is the loss of polypeptides, maintaining 
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antigen binding activity and cell agglutination, but with chymotrypsin digestion their high 

activity is preserved (2).  

The heat resistance of IgY is influenced by the presence of carbohydrates and several 

studies revealed that with the increase of temperature and heating time, the binding activity 

of the antibody/antigen decreased. So, IgY is stable at temperatures between 60°C and 70°C, 

while at temperatures above 70°C a decrease of the protein activity is observed and at 

temperatures above 75°C proteins suffer full denaturation (1,2). High pressure, on the other 

hand, seems not to influence the stability and activity of IgY, at least up to 4,000 kg per cm2 

(2).  

In l998, Chansarkar (2) observed loss of antigen binding activity of IgY as well a decrease 

of solubility in processes of freezing and pulverizing (2). However, a study conducted in 

2006 by Fu (2), reported no changes in the activity of IgY (2). The processes of freezing and 

spray-drying are considered less destructive processes since they use low temperatures (2).  

 

1.3.3. Immunization of laying hens for production of specific IgY 

A hyperimmune egg contains a large amount of specific antibodies (IgY) produced in the 

bird's blood after the exposure to an antigen (1,18). For the production of specific IgY it is 

necessary to inject a combination of antigen-adjuvant at regular intervals, to take into 

account factors such as the antigen (the dose and molecular weight), the type of adjuvant 

used, the route of administration and frequency of immunization for an efficient 

immunization (2,16,18). Figure 5 shows how this process occurs.  

 

 

 

Figure 5: Immunization process of a bird [adapted from (18)]. 

 

The immune response begins when the organism is in the presence of a foreign body 

designated antigen (2). Hence, the amount of antigen used will influence the immune 

response, specifically, high or low amounts can lead to suppression, sensitization and 
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tolerance (2,16,18). According to the studies conducted by Schwarzkopf in 2001 (2,18), and 

by Cook in 2010 (18), it was shown that the recommended dose of injected antigen for the 

immunization of chickens is between 0.01 mg to 1 mg (2,18). 

The selected antigen may be proteins, peptides and polysaccharides or may be a multi-

antigen, like bacteria, fungi or viruses (2,18). In the case of small antigens, like peptides (<10 

kDa), it is required  the conjugation of a carrier protein such as γ-globulin bovine (2,18). Due 

to its low immunogenicity, nucleic acids and lipids need to be conjugated to a carrier protein 

(2,18). It is necessary to take into account the purity of the sample injected to decrease the 

possibility of cross-reactivity or negative responses by the animal (18).  

For an effective immune response it is necessary to add an adjuvant to form an emulsion 

in order to allow a controlled interaction of the antigen for producing an adequate humoral 

response (18). The adjuvant, typically, consists of oil, detergent and bacterial extract 

(mycobacteria). The most commonly used is Freund's adjuvant (FA) that showed good 

results in the production of antibodies (1,2,18). Two types of FA are known: the complete 

Freund adjuvant (CFA) and the incomplete Freund adjuvant (IFA);  the differences between 

them is that CFA is a bacterial extract while IFA is not (2,18). Several studies demonstrated 

that CFA leads to better results in the production of antibodies (2,18). However, in studies 

with rabbits it was found an inflammation at the injection site being necessary TO substitute 

CFA by IFA although this last one did not reveal to be efficient. Thus it is necessary to use 

a combination of these two types of adjuvants in hen immunization where in the first and 

second injections the authors used CFA; and in the third and fourth injections the authors 

used IFA (2,18). 

 

1.3.3.1. Immunization frequency  

The most usual route of application for the production of IgY is intramuscular and 

subcutaneous injection. The last one is less used because it is most painful for animal and 

the results are less effective (1,2,16,18,19). During the injections, for example in chickens, 

it is necessary to not exceed the maximum volume of 1 mL and it should be administered in 

four different locations to not cause distress to the animal (18).  

In order to have a good adaptation of the immune system, the frequency of the injections 

must be from 1 to 8 weeks and the most usual is between 3 and 4 weeks, although it is 

essential to known the immunogenicity of antigen and the type of adjuvant used (2,18). Then, 
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it is advisable to make a new injection when the IgY production reaches a plateau or 

decreases (18). 

 

1.4. Purification of IgY from egg yolk 

For the extraction/purification of IgY from egg yolk there are several methods and 

commercial kits (20,21); however, it is difficult to isolate and purify IgY from the complex 

egg yolk matrix.    

Egg yolk is composed mainly of lipids (triglycerides, phospholipids and cholesterol) and 

proteins present in about 15-17% (2). The proteins are composed of high density lipoproteins 

(HDL: α- and β-lipovitellins),  phosvitin (glicophospoprotein), livetins (globular 

glycoproteins free of lipids and water soluble) and low density lipoproteins (LDL) (2). 

Livetins are divided into three classes: α, β and γ-livetins, where the IgY is the most 

predominant form of γ-livetin (2).  

Several methods have been implemented for the extraction and purification of egg yolk 

antibodies and the most used involve protein precipitation with ammonium sulphate, dextran 

sulphate or polyethylene glycol (PEG) and separation by ion exchange chromatography (21). 

So, for the separation of IgY it is necessary to remove lipoproteins and to recover the water-

soluble fraction (WSF) (2). Many methods have been used for the purification of IgY as the 

dilution of egg yolk in water, where the aggregation of the egg yolk lipoproteins with low 

ionic strength occurs, followed by centrifugation (1). However, to obtain a more effective 

purification of these antibodies it is necessary to take into account the pH and the extension 

of dilution, and in studies made in 1994 by Nakai (1), the best results were obtained with 

dilutions of about six times with water at pH 5.0 (1). Organic solvents and coagulants of 

lipoproteins (PEG or dextran sulphate) have also been widely used for IgY purification (1). 

Additionally, natural polysaccharides, such as sodium alginate, xanthan gum, λ-carrageenan 

and pectin, are also potential alternatives for IgY extraction, as they can efficiently 

precipitate about 90% of the lipoproteins of yolks (1). 

The choice of the IgY extraction method is influenced by the quality of extraction 

(preservation of antibody activity, purity and recovery yield), if it is for an industrial or 

laboratory scale, and the cost-effectiveness of the technology (2).  

In the recovery of the WSF an additional step to separate the γ-livetin (IgY) from α and 

β-livetins (water-soluble proteins) and from the remaining LDL based on precipitation, 
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chromatography and filtration could be used (2). After this first step the use of 

chromatography (gel-filtration, ion-exchange, thiophilic, affinity chromatography) or a 

repeated precipitation of IgY is used (22).  With these combined steps, the IgY purified can 

be used for passive immunization and other human related applications. Nevertheless,  the 

development of an economic and easily scaled up method for IgY purification is the major 

goal (22).  

 

1.5. Advantages of the use of IgY relative to IgG  

The production of antibodies in birds are of a more economic nature, they produce a large 

amount of antibodies, do not compromise the animal welfare and is in accordance with the 

principles of the 3Rs (reduction, refinement and replacement) defined by Russell (18) in 

1959 (1,18). So, the production of IgY is less invasive because it requires only the eggs 

collection, the number of injections is reduced and the yield of antibodies in egg yolk is 

higher compared to the amount in rabbits serum, for instance (1,18). 

The phylogenetic distance between birds and mammals allows the IgY to be recognized 

by more epitopes when the immunogen used is a highly conserved protein from mammals, 

being thus possible to obtain a better immune response with less amount of antigen (1,17). 

In immunodiagnostic applications, the use of IgY is also very advantageous since the 

mammalian IgG interferes with immunoassays. For instance,  the rheumatoid factor reacts 

with IgG from different mammals (17).  

Table 1 shows the main differences between the antibodies from rabbits (IgG) and 

antibodies from chickens (IgY). Finally, and in addition to the advantages described above, 

the hen immunization and the subsequent egg collection, is a process that can occurs at the 

industrial level making the IgY large-scale production possible (1). 
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Table 1: Comparison between IgG and IgY (16,17,21). 

 Rabbits (IgG) Chickens (IgY) Quails (IgY) 

Antibody source Blood Serum Yolk egg Yolk egg 

Isolation Expensive Simple, cost-effective Simple, cost-effective 

Type of antibody Polyclonal Polyclonal Polyclonal 

Antibody sampling Invasive Non-invasive Non-invasive 

Antibody amount 
200 mg/40 mL 

blood 
100-150 mg/egg 12-30 mg/egg 

Collection 

frequency 

Every 15 days: 

40 ml / bleed 

Every day: 

300 eggs / year 

Every day: 

360 eggs / year 

Ab amount/year 5200 mg 27000 mg 6480 mg 

Specific Ab ≈5% 2-10% 2-10% 

Avidity Moderate High High 

Cross reactivity High Low Low 

 

1.6. Coturnix japonica (Quail) 

Over the years, Coturnix japonica has been used as a model laboratory animal in scientific 

research in genetics, nutrition, toxicology and pathology fields (23,24).  

In this work, we used Coturnix japonica, because they have several advantages 

comparing with chickens. Their small size permits an ease housing and reduced feed costs. 

They have a short life cycle since the females began to lay eggs at an average of six weeks 

of age and generally lay 5 to 7 eggs per week, while being able to produce eggs for at least 

for one year. They are more disease resistant, respond positively to laboratory manipulation 

and respond quickly to changes in the environment (24,25). On the other hand, they aged 

more quickly (laying birds should be replaced each year), shell damage occurs frequently in 

the eggs, the chicks are very small and tender  and they are sensitive to noise (24,25). So, a 

facility was set up with an appropriate environment, with all the conditions to proceed with 

the immunization experiment. Figure 6 depicts some pictures from the facility. 
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Figure 6: Pictures from the facility used for the immunization and control of Coturnix 

japonica as an experimental laboratory animal. 

 

1.7.  IgY in biomedicine and biotechnology 

Nowadays, the specific IgY for a specified antigen can be produced in large scale by 

producing hyperimmune eggs (2). The use of IgY for passive immunization showed to be 

efficient in the treatment of infectious diseases caused by various pathogens, such as 

intestinal diseases (2). 

 Passive immunization comprises the transfer of preformed antibodies from an individual 

to another protecting against infection (Figure 7). In the active immunization the individual 

generates its own antibodies when exposed to a particular antigen (1,18). With passive 

immunization we obtain immediate protection but for a limited period and can last from a 

few weeks to three or four months (1,2). 

 

 

 

 

 

 

Figure 7: Passive immunization process (1). 
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The administration of preformed antibodies in humans or animals has become very 

attractive as a protective strategy against pathogenic viruses and bacteria being also 

applicable in the control of resistant organisms (2). Therefore, the immunotherapy has been 

applied as a cancer diagnostic agent and therapy, in the inactivation of toxic substances such 

as drugs, and in neoplastic and infectious diseases (17).  

In medicine, IgY can be administered systematically or by intravenous route, being the 

oral administration of IgY a useful treatment against microorganisms in humans and animals 

(17). IgY shown to be effective in the treatment of diseases caused by pathogenic organisms 

in vitro and in clinical trials, and show successful results in preventing colonies of 

pseudomonas aeruginosa in patients with cystic fibrosis (17). In patients infected by 

Helicobacter pylori (H. pylori), responsible for causing gastritis and gastric ulcers, and with 

the increase of bacteria resistance to antibiotics, studies with IgY have been very important, 

verifying, in animal models, a reduction in bacterial adhesion (17).   

IgY may also be used in veterinary medicine because with the increasing use of antibiotics 

during the animal growth also increases the resistance of antibiotic-resistant bacteria (17). 

Consequently, IgY have been used as a food additive in order to combat specific pathogens 

and improve growth and feed efficiency (1). Additionally, these feed additives have the 

advantage of being more easily accessible because they did not present high costs and have 

large amounts of polyclonal antibodies (17). The administration of these inhibit the enzyme 

uricase, reduce emissions of nitrogen in poultry, reduce Escherichia coli (E. coli) that causes 

diarrhoea in pigs, Salmonella in mice and calves and Campylobacter, Clostridium, and 

Salmonella in poultry (17). 

IgY can be used in immunoaffinity chromatography that involves the isolation and 

purification of target molecules using immobilized antibodies. So, this chromatography can 

be used to purify specific molecules from complex starting materials. However, this 

technique has a high cost to be used in large scale due to the production of antibodies and 

immobilization efficiency (17).  

   

1.8. Production of recombinant proteins 

Living cells are mostly constituted by proteins and they have an important role in cell 

processes like cell signalling, immune responses, cell adhesion and cell cycle (26). To 

produce specific antibodies it is necessary to have pure model immunogens (antigen) and in 
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reasonable amounts. In the last 30 years, the use of recombinant DNA technology has 

allowed the study of structure and function of numerous proteins of interest and contributed 

to significant advances in the areas of biomedicine and biotechnology (27–29). The principle 

of this technology consists in the introduction of genes from one organism (e.g. human) into 

the genome of another organism, said host (e.g. Escherichia coli), allowing thr subsequent 

expression of the encoded protein by the host cell machinery (27–29). The most widely used 

system in the production of recombinant proteins include bacteria (e.g. Escherichia coli), 

yeast (e.g. Saccharomyces cerevisiae, Pichia pastoris), insect cell lines (e.g. Spodoptera 

frugiperda), mammalian cell lines (Chinese hamster ovary, CHO, Human Embryonic 

Kidney 293, HEK) and even plants (Solanaceae family) (27–29). Due to the versatility of E. 

coli, this system is the most explored in this technology because it allows the production of 

proteins with different origins  and in significant amounts (26,28). 

Fusion tags are molecular tools used for protein study to overcome some inherent 

limitations associated with the production of recombinant proteins (28,29). Tags are 

typically proteins, protein domains or peptide sequences that are genetically inserted in 

amine (N) or carboxylic acid (C) terminals of the target protein (28,29). The different types 

of tags determine different properties and behaviour of the target-tag fusion protein (28,29). 

In general, the use of fusion tags improve the expression level, enhance solubility and 

stability in solution (soluble fraction increases), while further allowing the monitoring, 

purification and  detection by cell expression assays (e.g. Western blot) (26,28,30,31).  

For the application of these tags, the choice of the tag should be considered since this may 

compromise the structure and topology of the target protein (26,30,31). Therefore, the size 

should be chosen critically, because larger tags tend to improve solubility, as well as the 

sequence and amino acid composition, because longer sequences have more flexibility 

which is not desirable in all situations (26,30,31).As a final point, these tags are very versatile 

because they enable the use of several fusion tags in tandem for purification in subsequent 

steps (30).  

In the sections below the parameters of solubility, model immunogens produced during 

this work, and affinity purification are presented and discussed.  
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1.8.1. Fusion tags that promote solubility 

As mentioned earlier, there are various fusion tags that can be used to promote the 

solubility of target proteins. These include: glutathione S-transferase (GST), maltose-

binding protein (MBP), thioredoxin A (TrxA), small ubiquitin related modifier (SUMO), 

ketosteroid isomerase (KSI), N-utilization substance A (NusA) and TrpΔLE (26,27). In this 

work we used GST, NusA, TrxA and a fluorescent tag, the VenusYFP as a model 

immunogen for antibody production and their subsequent characterization.  

The tag GST has 26 kDa from Schistosoma japonicum that is being used to promote the 

solubility and the purification of fusion proteins produced in various prokaryotic and 

eukaryotic systems (26,27).  

NusA is a hydrophilic protein with 55 kDa that acts in the regulation of cellular 

transcription termination essentially having a role in anti-termination (26,27). This protein 

makes the translation slower, allows more time for the folding process and promotes the 

solubility of all hydrophobic proteins (27). Moreover, NusA presents different structural, 

physico-chemical and biological properties, making of this protein an ideal tag for the 

production of soluble proteins (26,27).  

Thioredoxins are oxido-reductases that reduce disulfide bonds through the exchange of 

thio-disulfide (27). TrxA is a highly soluble cytoplasmic protein of 12 kDa, found in E. coli 

(26,27). It is used as a N- or C-terminal fusion tag increasing the solubility of the 

recombinant protein (26,27). These fusion protein does not have intrinsic affinity properties 

and alone it does not facilitate the purification, being necessary the use of small affinity tags 

to facilitate the protein crystallization (26,27). 

Through fusion, a protein with fluorescent proteins is possible to visualize by biological 

processes, such as protein expression, localization, degradation and interaction with in vivo 

imaging and in vitro fluorescence labelling (32). Green fluorescent protein (GFP) came from 

the jellyfish Aequorea victoria and demonstrated a high stability of mature over various 

environmental conditions, spontaneous autocatalytical generation of the fluorophore and the 

possibility of spectral manipulation by mutagenesis (33). GFP as three types of variants, and 

the variant used in this work was the yellow fluorescent protein (YFP) with 26.4 kDa, that 

is relatively acid-sensitive and exceptionally reduced by Cl- (30,34). In this context, 

mutations are necessary to decrease the sensitivity to pH and Cl- (34). One of the mutations 
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is named by VenusYFP that greatly accelerates oxidation of the chromophore, the rate-

limiting step of maturation at 37°C (34).  

Affinity tags are efficient tools for purification of recombinant proteins (26,27). They can 

be divided into peptides or proteins that bind to small ligands immobilized on a solid support 

(e.g. His6 tag which allows selective binding to resins with immobilized Ni or Co) and tags 

that bind to immobilized molecules (e.g. MBP tag for binding to an amylose resin) (26). 

Elution of the fusion tag-protein of different solid supports is typically accomplished through 

a competitive ligand (26). Then, it is necessary to consider the cost implications as well as 

the interference from the elution agent with the eluted protein sample (26). The size of the 

affinity tag may also compromises the manipulation and subsequent characterization of the 

protein and, so, this is another factor to consider (26).  

In conclusion, the selection of these protein tags as model immunogens was based on the 

increased protein solubility, which further helps on protein purification, and on their 

stability, easy-to-produce and increase on the protein´s immunogenicity (26). 

 

1.8.2. Tag removal 

The presence of fusion tags may compromise the structure and function of the 

recombinant protein of interest and, often, its removal is desirable (26,27). For this end, 

specific amino acid sequences are inserted between the tag and the native protein that enable 

an enzymatic or chemical cleavage (26,27).  

Enzymatic cleavage is more efficient than chemical cleavage because the last one requires 

conditions that compromise the stability of the protein of interest (26). In the enzymatic 

cleavage two groups of proteases can be used: endoproteases and exoproteases (26). The 

must use endoproteases are the serine proteases (factor X activated from blood coagulation 

(factor Xa), enterokinase and thrombin-α) and viral proteases (tobacco etch virus - TEV - 

and the human rhinovirus 3C protease) and the exoproteases more used are the 

metallocarboxypeptidases and aminopeptidases (26).  

 
 
 
 
 
 
 



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 
 

29 
 

1.9. Aqueous biphasic systems (ABS) 

1.9.1. Extraction of biomolecules using ABS 

In 1958, Albertsson (35,36) demonstrated the existence of Aqueous Biphasic Systems 

(ABS) as liquid-liquid extraction techniques (35,36). The author showed that a concentrated 

solution of an organic polymer, like polyethylene glycol (PEG), and an inorganic salt such 

as sodium or potassium phosphate could form two immiscible liquid phases, with the organic 

polymer in the upper phase and the inorganic salt in the bottom one (37). These systems 

formed when two incompatible hydrophilic solutes are dissolved in water above certain 

concentrations (37). In general, ABS can consist of two immiscible aqueous phases like 

polymer-polymer, polymer-salt and salt-salt combinations (35,36,38). They are mostly 

constituted by water having an environment more appropriate and biocompatible for the 

extraction and purification of biologically active molecules, such as proteins, antibodies and 

enzymes (36,38). Additionally, ABS are a simple technique, easily operated, could lead to 

high extraction efficiencies and a high degree of purity, and with low cost components (36–

38). 

ABS consisting of two-polymers display two phases very similar in terms of polarity 

(depends on the amount of water in each phase) (36,39). On the other hand, polymer-salt 

ABS have a hydrophobic phase enriched in polymer and a more hydrophilic phase, mainly 

composed of a high charge density salt (36,39). The hydrophilic polymer most commonly 

used in these systems is polyethylene glycol (PEG) since it is highly biodegradable, has low 

toxicity, low volatility, low melting point, is soluble in water and has low cost (40,41). 

Although PEG presents these characteristics, its nature is very hydrophilic, that limits its 

applicability in the extraction/purification of various biomolecules (41). Therefore, various 

studies have been made in order to tune the physical and chemical properties of PEG, such 

as variation of polymer chain length and its functionalization (41,42).  

 

1.9.2 ABS phase diagrams 

The ABSs are ternary systems consisting of water and combinations of two solutes. The 

representation of these ternary systems, under a particular set of conditions (e.g. pH, 

temperature) can be made on an orthogonal phase diagram (Figure 8) (36). In such diagram, 

the binodal curve (that passes by D-C-B-A) separates the monophasic from the biphasic 

regime  (36,37). For a given mixture (M) at the biphasic region, the points D and B denote 
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the composition of each phase. These diagrams allow to identify ideal phase compositions 

in order to prepare ABS for extraction/separation processes (36).  

 

 

 

 

  

 

 

 

 

 

 

Figure 8: Representation of an ABS ternary phase diagram (36). M is the total mixture 

composition that falls into the biphasic region and the binodal curve is the curve that passes 

by D-C-B-A. The compositions of each phase are represented by the points D and B, the 

end-points of the tie-lines represented by the parallel lines (36). 

 

In 2003, Rogers and his research group (36,38) proposed the use of ionic liquids (ILs) to 

form ABS as an alternative to the polymers commonly used. This strategy enabled the 

generation of ABS with a broader range of polarities and reduced viscosity (35,36,38). In 

the following years, ILs have been largely investigated as substitutes for hydrophilic 

polymers in ABS (43). With the replacement of an inorganic salt with high charge density 

and/or by substitution of the polymer by an IL, it has been possible to cover a wide range of 

phase polarities allowing therefore the tuning of the extraction performance and selectivity 

(36,39).  

 

1.9.3 Ionic liquids 

Ionic liquids (ILs), discovered in 1914, are organic melted salts at temperatures below 

100°C constituted by large organic cations and anions that may be organic or inorganic (44–

48). These salts are designated as “green solvents” and they present unique properties, such 

as a low vapour pressure (non-volatile at atmospheric conditions) high electrical 

conductivity, high thermal stability and high solvation capacity for organic and inorganic 

compounds (43,48,49). In this perspective, ILs are considered as good substitutes for volatile 
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organic solvents currently used in large-scale applications (50). ILs have been studied in 

several areas of research, such as in catalysis, electrochemistry, in analytical chemistry and 

in separation processes (50). 

IL properties can be modified according to their chemical structure, or in other words, 

they can be synthesized with various combinations of anions and cations for a specific task 

or application – “designer solvents” (43,45). The ILs more used are represented in Figure 9. 

 

 

 

Figure 9: Chemical structures of anions and cations of ILs (45). 

 

 

 

 

 
 

 

 
 
 
 
 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Experimental section
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2.1. Immunogen expression and purification 

2.1.1. Preparation of BL21 (DE3) star and DH5α competent cells 

To obtain competent cells, each strain was inoculated from a glycerol stock in 5 mL of 

LB medium and incubated overnight (ON) at 37°C with agitation. In the next day, 2.5 mL 

of this culture were inoculated on 250 mL R-LB medium (1% (w/v) tryptone; 0.5% (w/v) 

NaCl; 0.04% (w/v) NaOH and 0.24% (w/v) MgSO4) and allowed to grow under the same 

conditions until an Optical Density (OD) of 0.4-0.6 at 600 nm. The cells were collected by 

centrifugation at 3000 rpm for 5 minutes and the supernatant discarded. The pellet was 

resuspended in 100 mL of TFB I (30 mM C2H3KO2; 100 mM RbCl; 10 mM CaCl2; 50 mM 

MnCl2; 15% (v/v) glycerol; pH 5.8 adjusted with acetic acid) and incubated on ice for 5 

minutes. The cell suspension was centrifuged again at 3000 rpm for 5 minutes and the cell 

pellet resuspended in 10 mL TFB II (10 mM MOPS; 75 mM CaCl2; 10 mM RbCl; 15% (v/v) 

glycerol; pH 6.5 with KOH or NaOH) and further incubated for 30 minutes on ice. Final cell 

suspension was divided in 130 µL aliquots that were flash-frozen in liquid nitrogen and 

stored at -80°C.       

 

2.1.2. Transformation of BL21 (DE3) star and DH5α competent cells 

Transformation of competent cells was performed using the heating shock method. One 

microliter of plasmid encoding the gene of interest was added to 130 µL of competent cells 

(pGEx4T2-GST; pCoofy18-VenusYFP; pCoofy15-NusA; pCoofy23-Trx); the mixture was 

incubated on ice for 30 min. Next, a heat-shock was induced by transferring the cells rapidly 

to 42°C for 45 seconds and then again to ice. To allow recovery of the cells and consequent 

expression of the genes of interest, 1 ml of LB medium was added and tubes were placed at 

37°C with orbital shaking at 170 rpm for one hour. Finally, the cells were spread on LB-

Agar supplemented with the appropriate antibiotic (50 µg/mL kanamycin) and incubated ON 

at 37°C. 

 

2.1.3. Expression and purification of model immunogens 

Transformed BL21 (DE3) star cells were resuspended from agar plates with 5 mL of LB 

medium. The OD600 was measured for reference and a sample of the cell suspension used 

to inoculate 1 L of LB medium. The culture was grown at 37°C with orbital shaking at 170 

rpm for two/three hours (depending on the protein) until an OD600 of 0.4 – 0.6.  Protein 
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expression was induced with 0.5 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) and in 

some cases 2% ethanol was additionally used; cultures were incubated at 30°C with orbital 

shaking at 170 rpm for three hours. Cells were then pelleted at 3000 rpm for 15 minutes at 

4°C (Avanti™ J-26 XPI centrifuge, Beckman Coulter™) and stored at -20°C until use. Cell 

pellets were processed after resuspension in binding buffer (respectively VenusYFP: 50 

mM TrisHCl pH 7.5, 150 mM KCl, 5 mM β- ME (β- mercaptoethanol); NusA: 50 mM 

TrisHCl pH 7.5, 150 mM NaCl; TrxA: 50 mM TrisHCl pH 8.0, 150 mM NaCl) 

supplemented with protease inhibitors (1 µg/mL leupeptin, 1 µg/mL pepstatin A, 0.1 mM 

PMSF, phenylmethylsulfonyl fluoride). Cells were disrupted using an Emulsiflex-C3 

homogenizer. The lysate was centrifuged at 17500 rpm for 30 minutes at 4°C (Avanti™ J-

26 XPI centrifuge, Beckman Coulter™) and cleared lysate supplemented with 10 mM 

Imidazol. The lysate was then loaded onto a HisTrap™ HP 5 mL column (GE Healthcare 

Life Sciences) with flow rate of 0.5 mL/min using a peristaltic pump (Bio-Rad). The column 

was previously pre-loaded with 0.5 M NiSO4 at 2.5 mL/min and pre-equilibrated with 

binding buffer supplemented with 10 mM Imidazol. Protein elution was performed by a 

multi-step gradient of imidazole (VenusYFP: 10 mM, 20 mM and 150 mM; NusA: 10 mM, 

20 mM, 150 mM and 500 mM; TrxA: 25 mM, 100 mM, 150 mM and 500 mM) and fractions 

containing the protein of interest were pooled and quantified on NanoDrop® ND-1000 

Spectrophotometer. The protein was further purified by size exclusion chromatography 

using a Superdex™ 200 10/300 GL column (GE Healthcare Life Sciences) equilibrated in 

running buffer (VenusYFP: 50 mM TrisHCl pH 7.5, 150 mM KCl; NusA: 50 mM TrisHCl 

pH 7.5, 150 mM NaCl; TrxA: 50 mM TrisHCl pH 8.0, 150 mM NaCl); eluted fractions 

were pooled and quantified using a NanoDrop® ND-1000 Spectrophotometer.  

 

2.1.4. Denaturing Gel Electrophoresis 

The analysis of protein expression was made by electrophoresis on polyacrylamide gel 

under denaturing conditions using sodium dodecyl sulphate (SDS). A 12% running gel was 

prepared (1.65 mL distilled deionized water; 1.25 mL1,5M Tris pH 8.8; 2.0 mL 30% 

acrylamide/bisacrylamide solution – Grisp; 50 µL 10% (w/v) SDS; 50 µL 10% (w/v) 

ammonium persulfate and 2.5 µL TEMED (N, N, N’, N’ – Tetramethylethylenediamine – 

Sigma-Aldrich)). The gel was added into the compartment between the glass and the plate, 

avoiding bubble formation. Isopropanol was added on top of the running gel to allow 
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polymerisation and the levelling of the gel surface. After polymerization, the isopropanol 

was removed. During polymerization, the 5% stacking gel was prepared (1.05 mL distilled 

deionized water; 190 µL 1,5M Tris pH 6.8; 250 µL 30% acrylamide/bisacrylamide solution 

– Grisp; 15 µL 10% (w/v) SDS; 15 µL 10% (w/v) ammonium persulfate and 2.5 µL TEMED 

(N, N, N’, N’ – Tetramethylethylenediamine – Sigma-Aldrich)) and added over the running 

gel and the 10-well comb put in place. Finally, the comb was removed and the wells washed 

with water. The protein samples were diluted in Loading Buffer 6x (350 mM Tris-HCL pH 

6.8; 30% (v/v) glycerol; 10% (w/v) SDS; 0.6 mM DTT; 0.012% (w/v) bromophenol blue) 

and boiled for 10 minutes. Protein samples were ran at 120-180 V in electrophoresis buffer 

(0.2 M Tris Base; 0.2 M Bicine and 0.1% (w/v) SDS) for 60 minutes. The proteins were 

stained using PageBlue Protein Staining Solution – Thermo Scientific. Precision Plus 

Proteins™ Unstained – Bio-Rad were used as protein standards. 

 

2.2. Producing polyspecific antibodies in Coturnix japonica 

2.2.1. Bird immunization procedure 

Immunization procedures for antibody production were performed in Japanese quails 

(Coturnix japonica). Two adult female quails (housed in pairs) were used per experiment 

and immunized in four moments with two-week intervals (Day-0, -15, -30 and -45).  

Injectable samples were prepared by standard emulsification procedures and 100 µg of 

purified immunogen were used per bird. Briefly, immunogen samples were mixed in equal 

volumes of the adjuvant to obtain injectable emulsions; the first immunization (Day-0) and 

first boost (Day-15) used complete Freund’s adjuvant (CFA) and for the second (Day-30) 

and fourth boost (Day-45) incomplete Freund’s adjuvant (IFA) was used. 

Intramuscular injections were performed in two sites of bird’s pectoral muscles, with no 

more than 150 µL per injection site. Bird body weight and behaviour was monitored along 

the full immunization protocol (typically 80-90 days). 

 

2.2.2. Processing hyperimmune eggs  

During the immunization protocol, quail eggs were collected daily and yolk samples 

corresponding a two days of posture were prepared (1 sample = yolk pool of two days). Yolk 

samples were subsequently processed by precipitation with 3.5% polyethylene glycol, MW 

6000 (PEG 6000) (VWR Chemicals) in PBS to remove major lipid content. Briefly, samples 
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were incubated with 3.5% PEG 6000 for 10 minutes with agitation and centrifuged at 13000 

g at 4°C for 20 minutes; the supernatants were collected and an additional spin was 

performed to remove pellet contaminants. Finally, the total protein concentration of each 

yolk sample supernatant was measured using NanoDrop® ND-1000 Spectrophotometer and 

normalized with PBS for downstream ELISA assay.   

 

2.2.3. ELISA assays  

Yolk samples collected along the immunization protocol (80-90 days) and processed as 

described above were used to monitor specific antibody response against each model 

immunogen. ELISA plates (F96 MaxiSorp Nunc - Immuno Plate) were coated ON at 4ºC 

with 0.2 µg of purified immunogen per well. Unbound proteins were washed with Tris-

buffered saline, 0.1% Tween® 20 (TBS-t) and plate wells were blocked at room temperature 

(RT), for 2h, with TBS-t supplemented with 1% bovine serum albumin (BSA) (Capricorn 

Scientific GmbH). After blocking, the plate was washed 3 times with TBS-t and 100 µL of 

yolk processed samples (IgY, primary antibody) were added to each well and incubated at 

RT, for 2h with agitation. Blocking buffer was then washed off with TBS-t and 100 µL of 

secondary antibody diluted 1:50000 (α-chicken IgY horseradish peroxidase (HRP) 

conjugated, Rabbit – Sigma-Aldrich) were added to each well and incubated at RT for 1h 

with agitation. Finally, ELISA development was performed with ABTS substrate (ABTS 

Tablets from Roche Diagnostics GmbH) prepared in ABTS Buffer. The secondary antibody 

was washed off with TBS-t and 100 µL of ABTS substrate were added in each well and 

incubated at 37°C, for 30 minutes with agitation for colour development. The colorimetric 

signal was analysed by measuring the absorbance at 405 nm using a microplate reader and 

respective software (BIO-TEK® PowerWave XS with software KC Junior™). 

 

2.3.  IgY Thermostability Assays 

2.3.1. Isolation of IgY from chicken and quail eggs by means of PEG 

precipitation followed by Hitrap™ Q HP 

15 mL of yolk were added to 15 mL of PBS plus sodium azide at 0.04%. In the next day, 

the sample was thawed and 15 mL of PBS and PEG 6000 was added to a final concentration 

of 3.5%, mixed on a vortex and incubated at RT for 20 minutes with agitation. Then, the 

samples were centrifuged at 14000 g at RT for 20 minutes, the supernatant collected and 
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filtered through a filter unit assembled with filter paper (Membrane Filters (Cellulose 

acetate) 1.2 µm Whatman™ GE Healthcare Life Sciences) and a 0.2 µm filter (Membrane 

Filters (Cellulose acetate) 0.2 µm Whatman™ GE Healthcare Life Sciences). After the 

filtration, PEG 6000 35% was added to a final concentration of 12%, vortex and incubated 

at RT for 20 minutes with agitation. The filtrated solution was centrifuged again in the same 

conditions as before and the pellet was resuspended in 10 mL of 50 mM TrisHCl pH 8.0. At 

the solution was added PEG 6000 to a final concentration of 12%, vortex and incubated at 

RT for 20 minutes with agitation. The sample was centrifuged again and the pellet was 

resuspended in 5 mL of 50 mM TrisHCl pH 8.0 and incubated at 4°C ON with agitation. 

Next day, the solution was centrifuged at 14000 g at 4°C for 20 minutes and loaded onto 

HiTrap™ Q HP 5 mL (GE Healthcare Life Sciences) at 1 mL/min pre-equilibrated with 50 

mM TrisHCl pH 8.0 and, then, applied a linear gradient of salt (0-1 M NaCl) at 1 mL/min in 

50 mM TrisHCl pH 8.0. The fractions containing the protein of interest were pooled and 

quantified by a NanoDrop® ND-1000 Spectrophotometer. The protein was further purified 

by size exclusion chromatography using a Superdex™ 200 10/300 GL column (GE 

Healthcare Life Sciences) equilibrated in buffer (50 mM TrisHCl pH 8.0; 150 mM NaCl); 

eluted fractions were pooled and quantified by a NanoDrop® ND-1000 Spectrophotometer.  

 

2.3.2. IgY Thermostatility assays 

In a Multiplate™ PCR Plates 96-weel (Bio-rad Laboratories, Inc), for a final volume of 

40 µL were added 30 µL of aqeuous solutions of phase-forming components of  ABS, 

reagent X (X = PEG 400 at 0%, 5%, 10%, 20%, 40%, 50% and 60%; PEG 600 at 0%, 5%, 

10%, 20%, 50%, 69%; PEG 1000, 1500 and 8000 at 0%, 5%, 10%, 20%, 30%; PEG 6000 

at 0%, 5%, 20%, 40%, 50% and 60%;  C6H5K3O7 at 0%, 5%, 10%, 15%, 20% and 25%; 

K2HPO4 + acid citric at 0%, 5%, 10%, 15%, 20%, 22,5% and 25%; Na2SO4 at 0%, 5%, 10%, 

15%, 20%, 25%), 8 µL of protein (IgY from chicken and/or quail) and 2 µL of Sypro® 

Orange Protein (Sigma Life Science). The plate was sealed with iCycler iQ® optical tape 

(Bio-Rad Laboratories, Inc) and analysed on CFX384 real-time PCR detection system with 

CFX Manager software (Bio-Rad Laboratories, Inc). The conditions used on CFX384 real-

time PCR detection system were temperatures between 35°C - 95°C at a rate of 1°C/min.  
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3. Results and discussion 

The use of hen antibodies has a huge potential on biomedical and biotechnology 

applications because they have become very attractive as a protective strategy against 

pathogenic viruses and bacteria (1). Extensive literature reports on the purification of 

antibodies can be found (20,51). However, for these applications, high-purity level 

antibodies are required. In this context, the use of Aqueous Biphasic Systems (ABS) has 

been studied as an alternative purification method (36). ABS consist of two immiscible 

aqueous phases, mostly constituted by water, providing thus a more appropriate and 

biocompatible environment for the extraction and purification of biologically active 

molecules such as proteins, antibodies and enzymes (36,38).  

In this work we foreseen the use of ABS for the purification of antibodies from egg yolk. 

For this, we initially designed an experimental set up to produce hyperimmune eggs and 

characterized the stability of IgY in aqueous solutions typically used for ABS formation. 

Japanese quails (Coturnix japonica) were chosen instead of chicken because they are of 

a smaller size meaning reduced feed costs, they have a short life cycle, they  produce eggs 

for at least for one year, they are more disease resistant and respond positively to laboratory 

manipulation (24,25). In order to produce hyperimmune eggs, we have chosen different well 

characterized and well behaved model proteins to be used as immunogens.  

 

3.1. Immunogen Expression and Purification 

For quails immunization we purified well known protein affinity or reporter tags, namely 

NusA, GST, VenusYFP and TrxA.His-tag immunogen versions previously obtained in the 

lab were used for expression and were purified by a first step of Immobilized-Metal Affinity 

Chromatography (IMAC). The His-tag was not cut from the proteins of interest since the 

respective molecular weight was assumed to not interfere significantly with the antibody 

production. After that, the specific antibodies were finally purified by Size Exclusion 

Chromatography (SEC) (52).  

 

3.1.1. N-utilization substance A (NusA) 

In Figure 10 it is shown the SDS-PAGE results from NusA on IMAC.   
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Figure 10: SDS-PAGE of Affinity Chromatography (HisTrap Ni-NTA) fractions; W, 

washing steps; EL, elution steps using imidazol-containing buffer; Pool, final sample ready 

for SEC step. The elution steps were obtained with a multi-step gradient of imidazole:  

W1/F1 with 10 mM; W1/F2 with 20 mM; EL/F1 and EL/F2 with 150 mM and EL/F3 and 

EL/F4 with 500 mM.  

 

From Figure 10, it can be see that when the sample was loaded onto the column it was 

highly impure; after the column washing step the sample was eluted and in the end a pool 

was made, with the protein of interest (NusA), for the SEC step. In general, the NusA is 

identified as the protein with the molecular weight (MW) of 55 kDa (27).  

Figure 11 depicts the obtaining results from SEC chromatography for NusA and Figure 

12 shows the respective SDS-PAGE results.   

 

Figure 11: Size Exclusion Chromatography (SEC) profile of NusA model protein. Fractions 

7-8 correspond to samples with highest purity. 
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Figure 12: SDS-PAGE of the elution fractions from SEC. 

 

After comparing the results from SDS-PAGE and the profile from SEC, a pool with the 

samples 7 and 8 was made since they present the highest purity level as shown by SDS-

PAGE. The pool was then quantified obtaining 2.01 mg/mL of protein concentration. This 

pool was stored at -20°C for subsequent use.  

 

3.1.2 Thioredoxin A (TrxA) 

In Figure 13 it is shown the SDS-PAGE results from TrxA on IMAC. 

 

 

Figure 13: SDS-PAGE of Affinity Chromatography (HisTrap Ni-NTA) fractions; W, 

washing steps; EL, elution steps using imidazol-containing buffer. We made a pool with the 

sample EL25/F2 and EL100 for SEC step. The elution steps were obtained with a multi-step 

gradient of imidazole:  W10 with 10 mM; EL25/F1 and EL25/F2 with 25 mM; EL100 with 

150 mM and EL500 with 500 mM. 
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When the sample was loaded onto the column it was highly impure; after a column 

washing step, the sample was eluted and in the end a pool was made with the samples 

EL25/F2 and EL100 because they contain the protein of interest (TrxA). This pool was then 

purified by SEC where TrxA can be identified as the protein with 12 kDa of MW (27).   

In the SEC step 3 runs were performed although only the first is shown, since all the runs 

led to the same profile. Figure 14 shows the obtained results from SEC chromatography for 

TrxA and Figure 15 depicts the respective SDS-PAGE results. 

 

 
  

Figure 14: Size Exclusion Chromatography (SEC) profile of Trx model protein. Fractions 

23-26 correspond to samples with highest purity. 

 
 

 

 

Figure 15: SDS-PAGE of the elution fractions from SEC. 
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After comparing the results from SDS-PAGE and the profile from SEC, pools with the 

samples 23-26 for Run 1, 6 and 7 for Run 2, and 6 and 7 for Run 3 was chosen because they 

present the highest purity as shown in the SDS-PAGE results. The protein concentration 

found was 2.00 mg/mL. The pool was stored at -20°C for subsequent use. 

 

3.1.3. Glutathione-S-transferase (GST) 

For the expression and purification of GST, the obtained results after SEC are shown in 

Figure 16.  

 

 

Figure 16: Size Exclusion Chromatography (SEC) profile of GST model protein. Fractions 

13-15 correspond to samples with highest purity. 

 

After the SEC chromatography a pool with samples 13-15 was made. GST has 26 kDa of 

MW (27). The pool has 0.54 mg/mL of protein. Finally, the sample was stored at -20°C for 

subsequent use.   

 

3.1.4 Yellow Fluorescent Protein (YFP) 

Figure 17 shows the SDS-PAGE results for VenusYFP from IMAC. 
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Figure 17: SDS-PAGE of Affinity Chromatography (HisTrap Ni-NTA) fractions; W, 

washing steps; EL, elution steps using imidazol-containing buffer. We used the sample Cut 

3C 05.02 for SEC step. The elution steps were obtained with a multi-step gradient of 

imidazole:  W1 with 10 mM; W20 with 25 mM; EL with 150 mM. 

 

After washing the column the sample was eluted and in the end the protein was cut with 

3C (1:100) to remove the His-tag. The cutted VenusYFP was then loaded onto the SEC 

column, where it is seen shown in Figure 18 and identified in Figure 19 with a MW of 26.4 

kDa (30).    

 

 
 

Figure 18: Size Exclusion Chromatography (SEC) profile of YFP model protein. Fractions 

17-21 correspond to samples with highest purity. 
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Figure 19: SDS-PAGE of the elution fractions from SEC. 

 

After comparing the results from SDS-PAGE and the profile from SEC chromatography 

a pool with the samples that present the highest purity level was performed: for run 1, 

samples 1.17-1.21; for run 2, samples 2.3-2.7; for run 3, samples 3.1-3.4; for run 4, samples 

4.5-4.9 and for run 5, samples 5.5-5.8. For this pool 2.82 mg/mL of protein were quantified. 

The pool was stored at -20°C for subsequent use. 

For immunogen expression and purification results, all immunogens were obtained with 

high purity level (purity above 90%) as estimated by Size Exclusion Chromatography (SEC) 

and SDS-PAGE. The high level of purity from the model immunogens will guarantee that 

immunized birds will produce antibodies against the protein of interest (model immunogens) 

and reduce reactivity against other residual protein contaminants. Finally, this high purity 

level and knowledge on the protein content allows to test the anti-protein reactivity 

monitored by ELISA assays. 

 

3.2. Monitoring Japanese Quail Immunizations 

3.2.1 Birds immunization and reactivity 

In Figure 20 it is shown a time-line that includes the main stages of Japanese quail 

development.   
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Figure 20: Time-line for Japanese quail development. Three main stages are depicted: egg 

incubation, bird brooding and egg-laying. The duration of the immunization protocol used 

in the work is represented by the green bar. Each square in the time-line bar (orange, blue, 

white and grey) represents a period of one week. 

 

After 6 weeks of development, quails reach full maturity and the immunization process 

can be initiated. During the following 10 weeks, the immunization protocol continues. In 

this process we used two birds per experiment (2-bird system), meaning that each different 

immunogen was used to immunize two animals. The general welfare of the animals during 

the immunization procedure was regularly monitored, namely through the   analysis of body 

weight evolution and egg-laying capacity.  

As shown in Figure 21, during the immunization process using the three immunogens, 

the egg-laying capacity and the body weight of each experimental animal was relatively 

stable. Interestingly, towards the end of these three procedures, a decrease in the egg-laying 

capacity was observed. The reason is that, in GST and NusA, one of the experimental birds 

died (Q0314-01 for GST and Q0314-10 for NusA) thus reducing the total number of eggs. 

Indeed, the weight loss observed in the compromised bird reflects the importance of such 

monitoring in the control of the animal welfare. For Trx (Figure 21, B3), on the other hand, 

the drop in egg laying capacity cannot be explained by the body weight evaluation, since 

both birds immunized with Trx seem to keep a typical body weight evolution (an S-shaped 

curve profile). 
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Figure 21: Plots A1, A2 and A3 show the number of eggs layed per day by the 2-bird system 

immunized respectively with the immunogens GST, NusA and Trx. Each injection event is 

labelled Dn, with n being days post immunization start. Plots B1, B2 and B3 show individual 

bird body weight evolution (animal IDs are shown); the red star indicates the injection 

events. 

 

As described above, a 2-bird system was used for immunization procedures with 

immunogens GST, NusA and Trx. However, the loss of one of the experimental animals can 

also dictate the loss of reactivity against the immunogen. This is showed in Figure 22, where 

the anti-GST specific signal is abruptly reduced upon the loss of a single animal.  
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Figure 22: Anti-protein reactivity monitor by ELISA assay performed with egg yolk 

samples collected along the immunization procedure for each model protein used in this 

project. Each egg yolk sample analysed corresponded to a pool of four eggs (average of two 

days). 

 

Comparing the reactivity plot (Figure 22) with the body weight plot and the egg-laying 

capacity plot (Figure 21 A1 and A2) for GST, a decrease on the egg-laying capacity and 

body weight for the bird Q0314-01 was observed. Indeed, the absence of anti-GST reactivity 

after D46 post-immunization can either be explained by a technical error or because in the 
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2-bird system the remaining bird did not developed reactivity against GST. This is likely the 

case for GST procedure, since the lack of signal continuous until the accomplishment of the 

procedure. 

Due to the problems described before, for VenusYFP, a 3-bird system was used. Figure 

23 depicts the obtained results.  

 

Figure 23: Plot A1 show the number of eggs layed per day by the 3-bird system immunized. 

Each injection event is labelled Dn, with n being days post immunization start. Plot A2 show 

individual bird body weight evolution (animal IDs are shown); the red star indicates the 

injection events. Plot A3 show anti-protein reactivity monitor by ELISA assay performed 

with egg yolk samples collected along the immunization procedure for each model protein 

used in this project. Each egg yolk sample analysed corresponded to a pool of four eggs 

(average of two days). 

 

Using the 3-bird system we verified that, when one bird ceased laying eggs, the other 

ones also tend to cease egg laying. Because of that it was necessary to separate the birds in 

order to re-establish the egg laying behaviour. This is actually a natural tendency of grouped 

experimental animals and still requires additional optimizations for our particular systems 

with quails. 
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The evaluation of immunogen specific reactivity was performed by ELISA assay; this is 

a standardized quantitative method, common in antibody-antigen characterization. The 

antigen is typically coated on the bottom of multiwell plate and antibody-containing samples 

are screened for reactivity (53). The ELISA plots showed two reactivity peaks: one after the 

second immunization event and another one after the third immunization event, namely in 

NusA and GST procedures. Indeed, this is the expected reactivity profile of an immune 

response; nevertheless, in NusA and Trx procedures, the two reactivity peaks are less 

evident. The reactivity profiles demonstrate a clear immunogen specific response; each 

model protein used in this work is a different antigen, thus dictating unique reactivity 

behaviour. Even though the birds were immunized with the same quantity of proteins we 

observed different behaviours in reactivity. Therefore, the samples of the different proteins 

were diluted in order to avoid ELISA signal saturation. For this, some samples were chosen 

to test different dilutions in order to obtain a less saturated signal. The saturated signal is 

related with the fluorogenic substrates because they have a higher sensitivity and allow the 

measurements of the levels of antigen concentrations in the sample with more accuracy and 

precision (53). In order to determine the optimal egg yolk sample dilution for the ELISA 

assay and avoid signal saturation, different sample dilutions were tested (see Annex 1).  

Figure 24 shows the normalized anti-protein reactivity monitoring by ELISA. 

 

 

Figure 24: Normalized anti-protein reactivity monitor by ELISA assay performed with egg 

yolk samples collected along the immunization procedure for each model protein used in 

this project. Each egg yolk sample analysed corresponded to a pool of four eggs (average of 

two days). 

 

Corresponding to results where no dilutions were applied so that a more direct comparison 

between reactivity signals of egg yolk samples can be attained. However, the anti-NusA 
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signal is already higher in the pre-immune samples indicating a previous contact of the 

experimental birds with this immunogen. This is not surprising since NusA is found in E.coli 

(54), and thus it is likely that our experimental birds have been previously exposed to the 

NusA antigen.   

To conclude, for the particular immunization procedure using 2-birds systems and taking 

four immunization examples, between days 20 and 40, higher titers of specific antibodies 

are obtained. This time is highly important for future procedures involving the collection of 

hyperimmunized eggs.  

 

3.3. Isolating of IgY from chicken and quail eggs by means of PEG 

precipitation followed by HiTrapQ affinity purification 

Although the production of IgY display several advantages, in what concerns IgY 

purification one problem arises: the separation of IgY from the other components of egg 

yolk is not easy to achieve (20). Over the years, a number of methods have been described 

for the isolation and purification of IgY, but, in this project, for first step the method 

described for Polson et al (55) was used, where polyethylene glycol (PEG) is used for the 

precipitation of lipoproteins.  PEG is a mild precipitation agent that concentrates the proteins 

until they exceed their solubility limit (20,51). With this method, all the contaminants are 

not precipitated and an additional separation technique is still required to obtain IgY of high 

purity (20). Therefore, for IgY purification to the following protocol with three purification 

steps was used: 1) PEG precipitation; 2) Anionic exchange chromatography; and 3) Size 

exclusion chromatography (20,56).  

Figure 25 shows the SDS-PAGE analysis of different samples along the purification steps 

of ionic exchange chromatography and size exclusion chromatography. The sample Pellet 

PEG 12_2, corresponds to the IgY-enriched pellet that was ressuspended in 50 mM Tris-

HCL pH 8.0 and subsequently loaded on the column for ionic exchange chromatography;  

even though the sample was highly impure, both the IgY heavy chain (65-68 kDa) and IgY 

light chain (25 kDa) are clearly enriched. 
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Figure 25: SDS-PAGE from PEG precipitation samples and elution fractions from HiTraQ 

for chicken IgY. Soluble PEG 12_1 and Soluble PEG 12_2 consists of yolk solids and fatty 

substances; Pellet 12_1 and Pellet 12_2 correspond to the IgY-enriched pellet. 

 

Elution from HitrapQ column was performed by a salt gradient and monitored by OD280. 

Figure 26 shows the chromatographic profile for this purification step. 

 

 

Figure 26: Ionic Exchange Chromatography profile (HiTraQ) from chicken IgY. Fractions 

35-41 correspond to samples with highest purity. 
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With the obtained profile we collect the samples that belong to the peak and analysed 

them by SDS-PAGE (Figure 27) in order to select the ones with a lower level of 

contaminants.   

 

 

Figure 27: SDS-PAGE from Ionic Exchange Chromatography from chicken IgY. Looking 

for this gel and to the curve from chromatography, a pool with the samples with higher purity 

levels (35 to 41) to proceed with Size Exclusion Chromatography (SEC) was chosen. 

 

The samples marked by a red rectangle in Figure 27 display a large content of IgY and a 

reduced level of other protein contaminants. Therefore, a pool was made with these samples 

(9.99 mg/mL of final concentration) and was submitted to the third purification step to 

further purify the IgY. A size exclusion column was used for this last step; due to the high 

amount of protein at this stage and given the loading limitation of the size exclusion column, 

seven individual runs were performed, each using 500 µL of sample.  

Figure 28 and in Figure 29 show, respectively, the obtained chromatographic profiles 

from SEC and the SDS-PAGE analysis of the eluted fractions. 
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Figure 28: SEC profile from chicken IgY Run1. Fraction 7 correspond to samples with 

highest purity. 

 

 
 

Figure 29: SDS-PAGE from SEC from chicken IgY Run1. Looking for this gel and to the 

curve from chromatography a pool with the sample of higher purity was made (sample 7).  

 

McCannel and Nakai in 1990 (56), after the PEG precipitation step, observed that the 

sample contained a large number of contaminants; this is indeed the case demonstrated in 

Figure 25. The authors concluded that with the used of another method of purification the 

contaminants were removed (20). By further purifying IgY by size exclusion 

chromatography, the level of protein purity was remarkably improved and ended up with a 

IgY sample at 4.12mg/mL (Figure 29). Even though minor contaminants are still observed 

by SDS-PAGE, one can estimate the protein purity to be above 95%. 
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For the extraction/purification of IgY from the quail eggs, a similar procedure was 

applied. Figure 30 shows the different fractions obtained during the PEG precipitation. The 

sample Pellet PEG 12_2, corresponds to the IgY-enriched pellet that was ressuspended in 50 

mM Tris-HCL pH 8.0 and subsequently loaded on the column for ionic exchange 

chromatography;  even though the sample was highly impure, both the IgY heavy chain (65-

68 kDa) and IgY light chain (25 kDa) are clearly identified.  

 

 

Figure 30: SDS-PAGE from PEG precipitation samples and elution fractions from HiTraQ 

for quail IgY. Soluble PEG 12_1 and Soluble PEG 12_2 consists of yolk solids and fatty 

substances; Pellet 12_1 and Pellet 12_2 correspond to the IgY-enriched pellet. 

 

Elution from HitrapQ column was performed by a salt gradient and monitored by OD280. 

Figure 31 shows the chromatographic profile for this purification step. 

 

 

 

HC 

LC 



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 
 

60 
 

 

Figure 31: Ionic Exchange Chromatography profile (HiTraqQ) from quail IgY. Fractions 

38-41 correspond to samples with highest purity.  

 

From the obtained profile, samples corresponding to the protein peak were collected and 

then analysed by SDS-PAGE (Figure 32).   

  

 

Figure 32: SDS-PAGE from Ionic Exchange Chromatography from quail IgY. Looking for 

this gel and to the curve from chromatography, a pool with the samples with higher purity 

levels (38 to 41) to proceed with Size Exclusion Chromatography (SEC) was chosen. 

 

The samples marked by a red rectangle in Figure 32 are rich in IgY and with a reduced 

level of other contaminant proteins. Therefore, a pool was made with these samples (4.07 
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mg/mL of final concentration) and was submitted to a third purification step to purify IgY.  

Three individual runs were performed, each using 500 µL of sample.  

Figure 33 and in Figure 34 depict, respectively, the obtained chromatographic profile from 

SEC and the SDS-PAGE results of the eluted fractions. 

 

 

Figure 33: SEC profile from Run1 from quail IgY. Fractions 11-12 correspond to samples 

with highest purity.  

 

 

Figure 34: SDS-PAGE from SEC from quail IgY Run1. Looking for this gel and to the 

curve from chromatography a pool with the sample of higher purity was made (sample 11 

and 12). 
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The samples from quail eggs, after the chromatographic step, contain some contaminants 

(Figure 34); yet, 1.58 mg/mL of IgY was obtained when making a pool with the samples 

presenting the higher level of purity, and as verified with IgY from chickens. When 

comparing the results from chicken and quail IgY purification (Figure 29 and Figure 34, 

respectively), it can be concluded that the protocol implemented seems to be more efficient 

for quail IgY purification. Indeed, the final quail IgY sample presents less residual 

contaminants as observed by SDS-PAGE (Figure 34). 

Aqueous Biphasic Systems (ABS) have been largely used to purify biomolecules, and 

can be applied to purify IgY (36–38). In order to better characterize the stability of chicken 

and quail IgY in ABS, the IgY purified samples obtained were used to perform 

thermostability assays as described in the next section.  

 

3.4. IgY Thermostability Assays 

The thermostability assay is an efficient screening tool to identify suitable buffer 

conditions and to analyse protein-ligand interactions (57). The protein thermal stability can 

be evaluated by using a fluorescent protein-binding dye: the protein thermal unfolding can 

be followed by the increase of fluorescent signal, as the dye interacts with the exposed 

hydrophobic core regions of the protein (58). In this work, the dye used was SYPRO Orange 

(SO) because this dye has excitation and emission properties compatible with real-time 

polymerase chain reaction (RT-PCR) instrumentation (58). 

In this section, we studied the stability of chicken and quail IgY (samples obtained in 

section above) by thermalshift assays. The rationale behind these experiments was to identify 

and individually evaluate the IgY stability in well-known ABS components, such as 

polymers and salts, in order to extrapolate further conclusions for ABS that could be used in 

the purification of IgY from egg yolk. 

The following components and concentrations were chosen: PEG 400, 600, 1000, 1500, 

6000 and 8000 at concentrations of 5, 10, 20, 50 and 70 wt%; Na2SO4 at concentrations of 

0, 5, 10, 15, 20 and 25 wt%; aqueous solution buffered at pH 4.5 of K2HPO4 + citric acid at 

concentrations of 5, 10, 15, 20 and 25 wt%; and C6H5K3O7 at concentrations of 5, 10, 15, 20 

and 25 wt%.  

Figure 35 shows the stability results for IgY in PEG 600 aqueous solutions. For both 

chicken and quail IgY, the protein maintains its stability up to 20% of PEG 600. For 
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concentrations above that, in this work 50%, only the signal from PEG 600 was read because 

polymer binds to the probe. Even so, in general, IgY from chicken and quail is stable up to 

20% of PEG 600. However, we also figured out that the quail IgY has a higher stability 

temperature (70ºC) than chicken IgY (66ºC). 

 

 

Figure 35: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability of chicken and quail IgY in different PEG 600 concentrations. A) Experimental 

thermal melting curves plot for chicken and quail IgY using SO dye and HEX probe from 

RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO dye and HEX 

probe from RT-PCR; and C) IgY melting temperature (Tm) variations in the tested 

conditions. 
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Figure 36 depicts the melting temperature of IgY in presence of aqueous solutions of 

PEG 1500.At 30% of PEG 1500, the binding of the polymer to the probe was found. 

However, it is safe to state that both types of IgY are stable up to 20% of PEG 1500.   It is 

thus possible to conclude that this ABS phase-forming component does not interfere 

significantly with the stability of the protein and can be used in further purification steps. 

 

 

Figure 36: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability from chicken and quail IgY in different PEG 1500 concentrations. A) 

Experimental thermal melting curves plot for chicken and quail IgY using SO dye and HEX 

probe from RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO 

dye and HEX probe from RT-PCR and C) IgY melting temperature (Tm) variations in the 

tested conditions. 
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Other PEGs were tested but the results were not viable because they bonded to the probe 

masking the signal derived from IgY. These results can be seen in Annex 3, Annex 4 and 

Annex 5. 

We also tested some salts and the obtained results for Na2SO4 are shown in Figure 37. 

Interestingly, IgY from both birds are more stable as the concentration of the salt increases, 

and more evident for quail IgY.   

 

 

Figure 37: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability from chicken and quail IgY in different Na2SO4 concentrations. A) Experimental 

thermal melting curves plot for chicken and quail IgY using SO dye and HEX probe from 

RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO dye and HEX 

C 
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probe from RT-PCR and C) IgY melting temperature (Tm) variations in the tested 

conditions. 

 

Similar results were obtained with C6H5K3O7, results shown in Figure 38. Therefore, this 

salt is also suitable for IgY stabilization.  

 

 

Figure 38: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability from chicken and quail IgY in different C6H5K3O7 concentrations. A) 

Experimental thermal melting curves plot for chicken and quail IgY using SO dye and HEX 

probe from RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO 
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dye and HEX probe from RT-PCR and C) IgY melting temperature (Tm) variations in the 

tested conditions. 

 

Table 2 shows the obtained results for the different phase-forming components of ABS. 

Annex 6 shows the obtained results for the buffered K2HPO4 + citric acid mixture  

 

Table 2: Feasibility on using phase-forming components of ABS for the purification of IgY 

evaluated by ThermalShift Assays.  correspond to the stability from IgY from both birds; 

 correspond to not the stability from IgY from both birds;  ≈ the stability from IgY from 

both birds maintain the same and; - don’t obtained results for IgY from both birds. 

Phase-forming 

components 
Chicken IgY Quail IgY  

C6H5K3O7    

K2HPO4 + acid 

citric 
   

Na2SO4    

PEG 400   Up to 20% 

PEG 600 ≈ ≈ Up to 20% 

PEG 1000 - -  

PEG 1500 ≈ ≈ Up to 20% 

PEG 6000 - ≈ Up to 20% 

PEG 8000 ≈ ≈ Up to 10% - 20% 

 

The thermalstability assay allowed to identify the components C6H5K3O7 and Na2SO4 as 

the most effective ones out of the group of compounds evaluated in this work. We also 

identify some technical limitations for the study of PEGs, concluding that other equipment, 

such as Circular Dichroism (CD) (59,60) and Differential Scanning Calorimetry (DSC) (61), 

need to be used for the characterization of such compounds through the stability of IgY.  
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4. Final Conclusions 

This work is divided into two principal objectives: establishment of immunization 

procedures in Coturnix japonica and study of the IgY stability in phase-forming components 

of ABS envisaging the antibodies fractionation.  

In order to achieve to the first objective, the model immunogens were prepared and the 

specific reactivity was monitored. An in-house facility was implemented in order to exploit 

the production of antibodies in Japanese quails (Coturnix japonica). In order to produce the 

antibodies it was necessary to implement a standard immunization protocol and for that 

model proteins were used, namely NusA, Trx, GST and VenusYFP. A 2-bird system was 

used for immunization procedures with immunogens GST, NusA and Trx, and for Venus-

YFP, a 3-bird system was used. For GST and NusA a decrease in the egg-laying capacity of 

the system was observed because one of the experimental birds died (reducing the total 

number of eggs and the weight loss). For Trx, the drop in egg laying capacity cannot be 

explained by the body weight evaluation, since both birds immunized with Trx seem to keep 

a typical body weight evolution. For Venus-YFP, it was used a 3-bird system and it was 

verified that when one bird ceased laying eggs, the other ones also tend to cease egg laying. 

Therefore, in future experiments, it is necessary to separate the birds in order to re-establish 

the egg laying behaviour. 

In order to test the reactivity against anti-immunogens, ELISA assays were used and, for 

all prepared immunogens, the reactivity profiles demonstrate a clear immunogen specific 

response. Since each model protein used in this work is a different antigen, the results dictate 

unique reactivity behaviour. 

In summary, and for the particular immunization procedure using two birds systems and 

taking four immunization examples, between day 20 and day 40 high titers of specific IgY 

are obtained.  This time should thus be considered as the optimum window time for eggs 

collection.   

To achieve the second objective, it was necessary to purify IgY using well-known 

protocols. Then, the stability of IgY in aqueous solutions of polymers and sals used as phase-

forming components of ABS was addressed using Thermostability assays. This assay 

allowed to identify C6H5K3O7 and Na2SO4 as the most effective ones out of the group of 

compounds evaluated since they increase the stability of both chicken and quail IgY. Some 

experimental limitations were found with high concentrations of polymers,   being thus 
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required the use of  other assays to evaluate the protein stability, like Circular Dichroism 

(CD) and Differential Scanning Calorimetry (DSC)(61). 

In conclusion, all the proposed goals were achieved and, for future work, other model 

proteins using the implemented standard immunization protocol can be investigated while 

foreseeing their biomedical and biotechnological applications.   

 

 

  

  



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Bibliography 
 

 

 

 

 



 
 

 
 

 

 

 

 

 

 



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

75 
 

5. Bibliography 

1.  Kovacs-Nolan J. MY. Egg Yolk Antibodies for Passive Immunity. Annu Rev Food 

Sci Technol. 2012;3:163–82.  

2.  Chalghoumi, R., Beckers, Y., Portetelle, D., Théwis A. Hen egg yolk antibodies 

(IgY), production and use for passive immunization against bacterial enteric 

infections in chicken: a review. Biotechnol Agron Société Environ. 2009;13(2):295–

308.  

3.  Searle, S.J., Pedersen, J.T., Henry AH. Antibody structure and function. Antib Eng. 

1995;58–78.  

4.  Lipman, N.S., Jackson, L.R., Trudel, L.J., Weis-Garcia F. Monoclonal Versus 

Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information 

Resources. ILAR J. 2005 Jan 1;46(3):258–68.  

5.  Balcioglu, M.S., Kizilkaya, K., Yolcu, H.I., Karabag K. Analysis of growth 

characteristics in short-term divergently selected Japanese quail. S Afr J Anim Sci. 

2005;35(2):83–9.  

6.  Directiva 2010/63/UE do Parlamento Europeu e do Conselho de 22 de Setembro de 

2010 relativa à protecção dos animais utilizados para fins científicos. J Of da União 

Eur. 2010;2010:1–47.  

7.  Zauner, G., Selman, M.H.J., Bondt, A., Rombouts, Y., Blank, D., Deelder, A.M., 

Wuhrer M. Glycoproteomic analysis of antibodies. Mol Cell Proteomics. 2013 

Apr;12(4):856–65.  

8.  Burry RW. Chapter 2: Antibodies. Springer Sci Media. New York, NY: Springer New 

York; 2010;7–17.  

9.  Chemicon. Introduction to antibodies. Chemicon International. 2nd editio:36.  

10.  Boenisch T. Chapter 1 | Antibodies. IHC Stain Methods. fifth edit:1–9.  



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

76 
 

11.  Malpiedi, L. P., Díaz, C. A., Nerli, B. B., Pessoa A. Single-chain antibody fragments: 

Purification methodologies. Process Biochem. Elsevier Ltd; 2013 Aug;48(8):1242–

51.  

12.  Schroeder, H.W., Cavacini L. Structure and function of immunoglobulins. J Allergy 

Clin Immunol. Elsevier Ltd; 2010 Feb;125(2 Suppl 2):S41–52.  

13.  Ulrichs, T., Drotleff, A.M., Ternes W. Determination of heat-induced changes in the 

protein secondary structure of reconstituted livetins (water-soluble proteins from 

hen’s egg yolk) by FTIR. Food Chem. Elsevier Ltd; 2015 Apr 1;172:909–20.  

14.  Sun, H., Chen, S., Cai, X., Xu, G., Qu L. Correlation analysis of the total IgY level in 

hen serum, egg yolk and offspring serum. J Anim Sci Biotechnol. 2013 Jan;4(1):10.  

15.  Buragohain, M., Dhale, G.S., Ghalsasi, G.R., Chitambar S. Evaluation of 

Hyperimmune Hen Egg Yolk Derived Anti-Human Rotavirus Antibodies (Anti-

HRVIgY) against Rotavirus Infection. World J Vaccines. 2012;2:73–84.  

16.  Schade, R., Calzado, E.G., Sarmiento, R., Chacana, P.A., Porankiewicz-Asplund, J., 

Terzolo HR. Chicken egg yolk antibodies (IgY-technology): a review of progress in 

production and use in research and human and veterinary medicine. Altern to Lab 

Anim. 2005;33:1–26.  

17.  Dubie, T., Yimer, S., Adugna, M., Sisay T. The potential application of avian egg 

antibodies with emphasis on immunotherapeutic and immunodiagnostic purpose. Adv 

Res J Biochem Biotechnol. 2014;1(3):18–30.  

18.  Marcq, C., Théwis, A., Portetelle, D., Beckers Y. Refinement of the production of 

antigen-specific hen egg yolk antibodies (IgY) intended for passive dietary 

immunization in animals: A review. Biotechnol Agron Société Environ. 

2013;17(3):483–93.  

19.  Munhoz, L.S., Vargas, G.D’Á., Fischer, G., Lima, M., Esteves, P.A., Hubner SO. 

Avian IgY antibodies: characteristics and applications in immunodiagnostic. Ciência 

Rural. 2014;44(1):153–60.  



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

77 
 

20.  Meulenaer, B.D.; Huyghebaert A. Isolation and purification of chicken egg yolk 

immunoglobulins: A review. Food Agric Immunol. 2001;13(January 2014):275–88.  

21.  Schade, R., Staak, C., Hendriksen, C., Erhard, M., Hugl, H., Larsson, A., Pollmann, 

W., van Regenmortel, M., Rijke, E., spielmann, H., Steinbusch, H., Straughan D. The 

Production of Avian (Egg Yolk) Antibodies: IgY. ATLA. 1996;24:925–34.  

22.  Hodek, P., Trefil, P., Simunek, J., Stiborova M. Optimized protocol of chicken 

antibody (IgY) purification providing electrophoretically homogenous preparations. 

Int J Electrochem Sci. 2013;8:113–24.  

23.  Huss D, Poynter G, Lansford R. Japanese quail (Coturnix japonica) as a laboratory 

animal model. Lab Anim (NY). 2008 Nov;37(11):513–9.  

24.  Cain, J.R., Cawley WO. Japanese Quail (Coturnix). 1914. p. 6–79.  

25.  Martin, F. W., Martin-Davis AG. Quail: An Egg & Meat production System. 

1998;(239):1–15.  

26.  Costa, S., Almeida, A., Castro, A., Domingues L. Fusion tags for protein solubility, 

purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front 

Microbiol. 2014 Jan;5(February):63.  

27.  Young, C. L., Britton, Z. T., Robinson AS. Recombinant protein expression and 

purification: a comprehensive review of affinity tags and microbial applications. 

Biotechnol J. 2012 May;7(5):620–34.  

28.  Pina, A. S., Lowe, C. R., Roque ACA. Challenges and opportunities in the purification 

of recombinant tagged proteins. Biotechnol Adv. 2014;32(2):366–81.  

29.  Bell, M. R., Engleka, M. J., Malik, A., Strickler JE. To fuse or not to fuse: what is 

your purpose? Protein Soc. 2013 Nov;22(11):1466–77.  

30.  Xie, H., Guo, X.M., Chen H. Making the most of fusion tags technology in structural 

characterization of membrane proteins. Mol Biotechnol. 2009 Jun;42(2):135–45.  



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

78 
 

31.  Wood DW. New trends and affinity tag designs for recombinant protein purification. 

Struct Biol. Elsevier Ltd; 2014 Jun;26:54–61.  

32.  Auldridge, M. E., Cao, H., Sen, S., Franz, L. P., Bingman, C. A., Yennamalli, R. M., 

Phillips, G. N., Mead, D., Steinmetz EJ. LucY: A Versatile New Fluorescent Reporter 

Protein. Michnick SW, editor. PLoS One. 2015 Apr 23;10(4).  

33.  Rekas, A., Alattia, J.R., Nagai, T., Miyawaki, A., Ikura M. Crystal Structure of Venus, 

a Yellow Fluorescent Protein with Improved Maturation and Reduced Environmental 

Sensitivity. J Biol Chem. 2002 Oct 4;277(52):50573–8.  

34.  Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., Miyawaki A. A variant 

of yellow fluorescent protein with fast and efficient maturation for cell-biological 

applications. Nat Biotechnol. 2002;20:1585–8.  

35.  Souza, R.L., Campos, V.C., Ventura, S.P.M., Soares, C.M.F., Coutinho, J.A.P, Lima 

ÁS. Effect of ionic liquids as adjuvants on PEG-based ABS formation and the 

extraction of two probe dyes. Fluid Phase Equilib. Elsevier B.V.; 2014 Aug;375:30–

6.  

36.  Freire, M.G., Cláudio, A.F.M., Araújo, J.M.M., Coutinho, J.A.P., Marrucho, I.M., 

Lopes, J.N.C., Rebelo LP. Aqueous biphasic systems: a boost brought about by using 

ionic liquids. Chem Soc Rev. 2012 Jul 21;41(14):4966–95.  

37.  Almeida AM. Purificação de anticorpos utilizando sistemas aquosos bifásicos. 

University of Aveiro; 2013.  

38.  Sintra, T.E., Cruz, R., Ventura, S.P.M., Coutinho JAP. Phase diagrams of ionic 

liquids-based aqueous biphasic systems as a platform for extraction processes. J Chem 

Thermodyn. 2014 Oct;77:206–13.  

39.  Pereira, J.F.B., Ventura, S.P.M., Silva, F.A., Shahriari, S., Freire, M.G., Coutinho 

JAP. Aqueous biphasic systems composed of ionic liquids and polymers: A platform 

for the purification of biomolecules. Sep Purif Technol. Elsevier B.V.; 2013 

Jul;113:83–9.  



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

79 
 

40.  Pereira, J.F.B., Kurnia, K.A., Cojocaru, O.A., Gurau, G., Rebelo, L.P.N., Rogers, 

R.D., Freire, M.G., Coutinho JAP. Molecular interactions in aqueous biphasic 

systems composed of polyethylene glycol and crystalline vs. liquid cholinium-based 

salts. Phys Chem Chem Phys. 2014 Mar 28;16(12):5723–31.  

41.  Pereira, J.F.B., Lima, Á.S., Freire, M.G., Coutinho JAP. Ionic liquids as adjuvants for 

the tailored extraction of biomolecules in aqueous biphasic systems. Green Chem. 

2010;12(9):1661.  

42.  Zafarani-Moattar, M.T., Hamzehzadeh, S., Nasiri S. A new aqueous biphasic system 

containing polypropylene glycol and a water-miscible ionic liquid. Biotechnol Prog. 

2011;28(1):146–56.  

43.  Kurnia, K.A., Freire, M.G., Coutinho AP. Effect of Polyvalent Ions in the Formation 

of Ionic-Liquid-Based Aqueous Biphasic Systems. J Phys Chem B. 2013;297–308.  

44.  Munoz, M., Domínguez, C.M., Pedro, Z.M., Quintanilla, A., Casas, J.A., Rodriguez 

JJ. Ionic liquids breakdown by Fenton oxidation. Catal Today. Elsevier B.V.; 2015 

Feb;240:16–21.  

45.  Díaz, M., Ortiz, A., Ortiz I. Progress in the use of ionic liquids as electrolyte 

membranes in fuel cells. J Memb Sci. Elsevier; 2014 Nov;469:379–96.  

46.  Fan, L.L., Li, H.J., Chen QH. Applications and mechanisms of ionic liquids in whole-

cell biotransformation. Int J Mol Sci. 2014 Jan;15(7):12196–216.  

47.  Warner, I.M., El-Zahab, B., Siraj N. Perspectives on moving ionic liquid chemistry 

into the solid phase. Anal Chem. 2014 Aug 5;86(15):7184–91.  

48.  Mandai, T., Yoshida, K., Ueno, K., Dokko, K., Watanabe M. Criteria for solvate ionic 

liquids. Phys Chem Chem Phys. 2014 May 21;16(19):8761–72.  

49.  Schmeisser, M., van Eldik R. Elucidation of inorganic reaction mechanisms in ionic 

liquids: the important role of solvent donor and acceptor properties. Dalt Trans - An 

Int J Inorg Chem. Royal Society of Chemistry; 2014 Nov 14;43(42):15675–92.  



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

80 
 

50.  Smiglak, M., Pringle, J.M., Lu, X., Han, L., Zhang, S., Gao, H., MacFarlane, D.R., 

Rogers RD. Ionic liquids for energy, materials, and medicine. Chem Commun. 2014 

Aug 25;50(66):9228–50.  

51.  Goldring, J.P.D.; Coetzer THT. Isolation of chicken immunoglobulins (IgY) from egg 

yolk. Biochem Mol Biol Educ. 2003 May;31(3):185–7.  

52.  Kostanski, L.K.; Keller, D.M.; Hamielec AE. Size-exclusion chromatography-a 

review of calibration methodologies. J Biochem Biophys Methods. 2004 Feb 

27;58(2):159–86.  

53.  Gan, S.D.; Patel KR. Enzyme immunoassay and enzyme-linked immunosorbent 

assay. J Invest Dermatol. Nature Publishing Group; 2013 Sep;133(9):e12.  

54.  Burmann, B.M.; Rösch P. The role of E. coli Nus-Factors in transcription regulation 

and transcription: translation coupling. Transcription. 2014 Oct 18;2(3):130–4.  

55.  Polson, A.; von Wechmar B. Isolation of viral IgY antibodies from yolks of 

immunized hens. Immunol Commun. 1980;9:475–93.  

56.  McCannel, A.A.; Nakai S. Separation of Egg Yolk Immunoglobulins Into 

Subpopulations Using DEAE–Ion Exchange Chromatography. Can Inst Food Sci 

Technol J. Elsevier; 1990 Feb;23(1):42–6.  

57.  Protein Thermal Shift TM technology Optimizing buffer conditions and high-

throughput screening of ligand – protein binding. Appl Biosyst by life Technol. 1–6.  

58.  Layton, C.J.; Hellinga HW. Quantitation of protein-protein interactions by thermal 

stability shift analysis. Protein Sci. 2011 Aug;20(8):1439–50.  

59.  Gopal, R.; Park, J.S.; Seo, C.H.; Park Y. Applications of circular dichroism for 

structural analysis of gelatin and antimicrobial peptides. Int J Mol Sci. 2012 

Jan;13(3):3229–44.  

60.  Kelly, S.; Price N. The Use of Circular Dichroism in the Investigation of Protein 

Structure and Function. Curr Protein Pept Sci. 2000 Dec 1;1(4):349–84.  



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

81 
 

61.  Chiu MH, Prenner EJ. Differential scanning calorimetry: An invaluable tool for a 

detailed thermodynamic characterization of macromolecules and their interactions. J 

Pharm bioallied Sci. 2011;3:39–59.  



 

 
 

 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Appendix 
 

 

  



 

 
 



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

85 
 

 

 

Annex 1: Diluted anti-protein reactivity monitored by ELISA from egg yolk samples 

collected along the immunization procedure. 
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Annex 2: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability from chicken and quail IgY in different PEG 400 concentrations. A) 

Experimental thermal melting curves plot for chicken and quail IgY using SO dye and HEX 

probe from RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO 

dye and HEX probe from RT-PCR and C) IgY melting temperature (Tm) variations in the 

tested conditions. 
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Annex 3: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability from chicken and quail IgY in different PEG 1000 concentrations. A) 

Experimental thermal melting curves plot for chicken and quail IgY using SO dye and HEX 

probe from RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO 

dye and HEX probe from RT-PCR and C) IgY melting temperature (Tm) variations in the 

tested conditions. 
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Annex 4: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability from chicken and quail IgY in different PEG 6000 concentrations. A) 

Experimental thermal melting curves plot for chicken and quail IgY using SO dye and HEX 

probe from RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO 

dye and HEX probe from RT-PCR and C) IgY melting temperature (Tm) variations in the 

tested conditions. 

 
 
 
 
 
 
 
 
 
 
 
 

A 

B 

C 



Production of hyperimmune egg samples followed by Aqueous Biphasic Systems 

fractionation 

89 
 

 
 

Annex 5: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability from chicken and quail IgY in different PEG 8000 concentrations. A) 

Experimental thermal melting curves plot for chicken and quail IgY using SO dye and HEX 

probe from RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO 

dye and HEX probe from RT-PCR and C) IgY melting temperature (Tm) variations in the 

tested conditions. 
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Annex 6: Results obtained from ThermoFluor Assays (with Sypro Orange probe) to study 

the stability from chicken and quail IgY in different K2HPO4 + citric acid concentrations. A) 

Experimental thermal melting curves plot for chicken and quail IgY using SO dye and HEX 

probe from RT-PCR; B) Inversed first derivative plot for chicken and quail IgY using SO 

dye and HEX probe from RT-PCR and C) IgY melting temperature (Tm) variations in the 

tested conditions. 
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