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resumo 
 

 

O estudo dos mecanismos responsáveis pela neuro-regeneração tem um 
marcado interesse para a compreensão dos princípios básicos que governam 
as interações celulares e moleculares no sistema nervoso, bem como um 
interesse clínico relevante. A limitada capacidade do sistema nervoso central 
para dar origem a novos neurónios é um obstáculo formidável para a 
recuperação do sistema após lesão neuronal ou doença neurodegenerativa. O 
sistema olfativo é um sistema ideal para o estudo do processo de recuperação 
após lesão neuronal, pois é conhecido no mundo científico pela sua 
capacidade contínua e vitalícia para repor células perdidas durante a 
renovação celular natural, bem como a sua notável capacidade para regenerar 
após uma lesão grave. O epitélio olfativo apresenta a capacidade para dar 
origem a novos neurónios ao longo de toda a vida. Neurónios sensoriais 
olfativos diferenciados são continuamente reintegrados num circuito já 
existente, mantendo assim o sentido do olfato. O objetivo desta tese é 
descrever as alterações morfológicas e funcionais que ocorrem ao longo do 
tempo no sistema olfativo de Xenopus laevis em estado larvar, após o corte do 
nervo olfativo. Os resultados obtidos através do uso de ensaios de imuno-
histoquímica, bem como técnicas de marcação neuronal sensorial e de 
imagiologia de cálcio, indicam que a morte celular na população de neurónios 
sensoriais olfativos atinge o seu máximo 48 horas após a lesão, e que células 
estaminais encontradas na camada basal do epitélio olfativo são positivamente 
reguladas após lesão e proliferam rapidamente. Células de suporte parecem 
manter tanto a integridade morfológica como funcional após o corte do nervo 
olfativo. O epitélio olfativo recupera a sua estrutura morfológica inicial 1 
semana após a lesão, momento em que os primeiros axónios atingem o bolbo 
olfativo e começam o processo de reintegração. Ocorre atividade espontânea 
das células mitrais/tufados do bolbo olfativo durante as primeiras semanas 
após a lesão, mas nenhuma atividade induzida por estímulo com odor foi 
observada. Depois de 3-4 semanas, atividade glomerular foi observada em 
alguns animais após a aplicação de estímulos, mas a resposta e morfologia 
glomerular foram claramente alteradas em relação ao controlo. Depois de 6-7 
semanas as respostas parecem ter recuperado totalmente, indicando que o 
sistema olfativo de X. laevis em estado larvar recupera morfológica e 
funcionalmente 6-7 semanas após o corte do nervo olfativo.  
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abstract 

 
Comprehending the mechanisms that make lifelong neurogenesis possible has 
a clear interest for the better understanding of the basic principles that govern 
cellular and molecular interactions in the nervous system, as well as a relevant 
clinical interest. The limited ability of the central nervous system to generate 
new neurons in order to replace those that have been lost is a formidable 
obstacle to recovery from neuronal damage caused by injury or 
neurodegenerative disease. The olfactory system (OS) is an ideal system to 
study the process of neuronal recovery after injury, as it is known for its lifelong 
capacity to replenish cells lost during natural turnover, as well as its remarkable 
ability to regenerate after severe lesion. The olfactory epithelium (OE) shows 
neurogenesis throughout life. Newly differentiated olfactory receptor neurons 
(ORNs) are continuously reintegrated into an existing circuitry to maintain the 
sense of smell. The aim of this thesis is to describe the morphological and 
functional alterations that occur over time in the OS of larval Xenopus laevis, 
after transection of the olfactory nerve (ON). Results obtained using 
immunohistochemistry essays, as well as sensory neuron labeling and calcium 
imaging techniques, indicate that ORN cell death reaches its peak 48 hours 
after transection, and that proliferating stem cells found in the basal cell layer of 
the OE are quickly upregulated after lesion. Supporting cells seem to maintain 
both morphological and functional integrity after transection of the ON. The OE 
recovers its original morphological structure 1 week after transection, at which 
time the first axons reach the olfactory bulb (OB) and begin the process of re-
innervation. Spontaneous activity of mitral/tufted cells occurs in the OB during 
the first weeks after transection but no odor-induced activity is observed. After 
3-4 weeks glomerular responses were observed in some animals upon 
application of stimulus, but the response and glomerular morphology are clearly 
altered as compared to control. After 6-7 weeks responses seem to have fully 
recovered, indicating that the OS of larval X. laevis recovers morphologically 
and functionally 6-7 weeks after ON transection. 
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1. INTRODUCTION 

Although many tissues are able to regenerate their characteristic cell types 

throughout life, this does not seem to be the case in the central nervous system (CNS). 

Once development is complete, most stem cells in the CNS undergo terminal 

differentiation and no longer divide (Kauffman, 1968; Caviness et al., 1995). However, 

neuronal stem cell populations have been found to persist after development is 

terminated in restricted niches of the CNS. These constitutively active neurogenic zones 

include the subventricular and subgranular zone (Altman and Das, 1965; Altman, 1969; 

Gage, 2000). Comprehending the mechanisms that make lifelong neurogenesis possible 

has a clear interest for the better understanding of the basic principles that govern 

cellular and molecular interactions in the nervous system, as well as a relevant clinical 

interest. The limited ability of the CNS to generate new neurons in order to replace 

those that have been lost is a formidable obstacle for recovery from neuronal damage 

caused by injury or neurodegenerative disease. The idea that a more profound insight 

might allow us to overcome this obstacle is obviously quite appealing. 

 The olfactory system (OS) is an ideal system to study the process of 

neurogenesis, as it is known for its lifelong capacity to replenish cells lost during the 

natural turnover process, as well as its remarkable ability to regenerate after severe 

lesion. This system includes the olfactory bulb (OB) in the brain, the olfactory nerve 

(ON) and the olfactory epithelium (OE). The OE is part of the peripheral nervous 

system and connects to the OB via the ON. In addition to the already mentioned areas of 

the CNS, the OE also retains a stem cell population that guarantees neurogenesis 

throughout life (Moulton et al., 1970; Graziadei and Graziadei, 1978, 1979; Schwob, 

2002; Huard et al., 1998). These stem cells continuously differentiate and give rise to 

new olfactory receptor neurons (ORNs), which are then reintegrated into an existing 

circuitry (Farbman, 1990; Roskams et al., 1996). For this to be possible, cell death must 

be highly regulated, and stem cells must pass through various stages of maturation 

before replacing cells as needed.  
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1.1. Basics of vertebrate olfaction 

As mentioned above, the vertebrate OS includes the OE, found lining the interior 

nasal cavity; the ON, which is made up of bundled axons of ORNs that populate the OE 

and are responsible for odor detection; and the OB, the synaptic target of ORNs in the 

CNS, generally located in the most rostral part of the brain. The OE is made up of three 

main cell types (see Fig. 1) – supporting cells (SCs), that share both glial and epithelial 

cell properties; ORNs, that transmit olfactory information from the nose to the OB 

located in the brain; and a population of basal cells (BCs), proliferative cells which 

include the stem cells, as well as the various progenitor cells of the OE (Graziadei and 

Metcalf, 1971; Graziadei, 1971, 1973; Hansen et al., 1998; Murdoch and Roskams, 

2007; Hassenklöver et al., 2009). Two morphologically distinct populations of basal 

cells have been identified in the murine OE - horizontal and globose BCs. The 

horizontal BCs have an elongated shape, are located atop the basal lamina, rarely 

divide, and therefore most likely represent the population of pluripotent stem cells of 

the OE (Beites et al., 2005; Murdoch and Roskams, 2007). Globose BCs on the other 

hand have been shown to constitute the major proliferating population of the OE. These 

have a round shape, reside immediately above the horizontal BCs, and include 

multipotent progenitors that give rise to ORNs and SCs (Beites et al., 2005; Murdoch 

and Roskams, 2007). 

 ORNs in vertebrates are bipolar neurons with an axon projecting into the OB 

and a dendrite that ends in a dendritic knob. This knob carries non-motile cilia or 

microvilli, which are specialized structures serving olfactory perception. This 

perception is initiated when odor molecules bind to specialized olfactory receptor 

proteins that belong to the G protein-coupled receptor superfamily. Five distinct 

olfactory receptor gene families have been described to date. In adult mammals, each 

individual ORN expresses only one type of olfactory receptor (Nef et al., 1992; 

Strotmann et al., 1992; Ressler et al., 1993; Vassar et al., 1993; Chess et al., 1994; 

Malnic et al., 1999; Mombaerts, 2004, 2006; see also Menini, 2010, Ch. 7), and all 

ORNs expressing the same olfactory receptor form a class and project an unbranched 

axon to one or more glomeruli within the OB (Ressler et al., 1994; Vassar et al., 1994; 

Mombaerts, 1996, 2006; see also Menini, 2010, Ch. 5). This common target structure, 

the glomerulus, contains the ORN synapses with the subsequent projection/second-

order neurons, mitral and tufted cells. Odor-evoked activity patterns are processed by 
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the network of interneurons and are conveyed to multiple higher brain areas. These 

features represent the morphological basis of chemosensory brain maps connecting 

receptor specificities to the neuronal network of the OB. 

 

Figure 1 - Location of the stem cell niche within the olfactory epithelium of larval Xenopus laevis.  

A. Slice of the olfactory epithelium (OE) with biocytin-streptavidin stained olfactory receptor neurons 

(ORNs). B. Supporting cell (SC) staining with an antibody against cytokeratin type II of the same slice. 

C. DAPI staining of all cell nuclei of the same slice. D. Overlay of ORNs (A, red fluorescence), SCs (B, 

green fluorescence), and all cell nuclei (C, blue fluorescence). Basal cells are biocytin-streptavidin- and 

cytokeratin II-negative and are located in the basal cell layer. The vast majority of BrdU-positive cells 

(E), and phospho-histone H3-positive cells (F) are confined to the basal cell layer of the OE. G. Higher 

magnification of a phospho-histone H3-positive basal cell in the late metaphase or the early anaphase of 

the mitotic cycle. Scale bars = 20 μm (A, E, F), 5 μm (G). Abbreviations: BCL, basal cell layer; BrdU, 

bromo-2′-deoxyuridine; DAPI, 4,6-diamidino-2-phenylindole; LP, lamina propria; ORNL, olfactory 

receptor neuron layer; PC, principal cavity; SCL, supporting cell layer. Reproduced from: Hassenklöver 

et al., 2009. 

 

Teleost fish have a single sensory surface that composes the OS, whereas several 

spatially segregated subsystems with different functional and molecular characteristics 

make up the mammalian OS. Although the steps involved in the evolutionary transition 

are largely unknown, the amphibian OS seems to represent an evolutionary intermediate 

and has been found to be well-suited for investigating the molecular forces that drive 

olfactory regionalization. Tetrapods possess at least two morphologically distinct nasal 

olfactory systems, the main and the accessory OS. The accessory OS, or vomeronasal 

system, is found only in tetrapods, having first appeared in amphibians, and is mainly 

involved in pheromone detection. The ORNs of these two systems possess differences 
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in olfactory receptor gene expression and in the transduction mechanisms responsible 

for olfactory signal transduction. In terrestrial vertebrates, most ORNs possess the 

canonical cyclic adenosine monophosphate (cAMP) -mediated transduction pathway 

(see also Menini, 2010, Ch. 8), but some ORN subgroups have been found to function 

via an alternate transduction cascade (Breer et al., 2006; Ma, 2007; see also Menini, 

2010, Ch. 9). cAMP-independent transduction mechanisms have been found to be more 

common in aquatic vertebrates (Ma and Michel, 1998; Delay and Dionne, 2002; 

Manzini et al., 2002b; Hansen et al,. 2003; Manzini and Schild, 2003), which can also 

be seen in the aquatic anuran amphibian, Xenopus laevis. 

 

1.2. Olfaction in larval Xenopus laevis 

For this project, the focus will be on the OS of larval Xenopus laevis as it is an 

ideal model organism for studying the basic mechanisms that govern olfaction and 

neurogenesis. The fertilized eggs of Xenopus develop into free swimming larvae and 

then metamorphose into juvenile frogs. The sorted cellular composition and the 

peripheral location make the OE readily accessible and easily manageable. Two 

separate olfactory organs, the vomeronasal organ and principal cavity (PC), are already 

distinguishable at around stage 40 larval X. laevis (stage classification according to 

Niewkoop and Faber, 1994). Around stage 51-52, a middle cavity starts to form and 

strongly expands during metamorphosis, while the PC is reorganized. The PC, the 

middle cavity and the vomeronasal organ form the peripheral olfactory organ found in 

the adult animal (Föske, 1934; Altner, 1962; Burd, 1991; Reiss and Burd, 1997a, 1997b; 

Hansen et al., 1998; Petti et al., 1999; Higgs and Burd, 2001). Axons of ORNs that 

reside in the PC project to the main OB. The main OE together with the main OB form 

the main OS. Larval X. laevis has a main OS, as well as a functional accessory OS, 

made up of the accessory OE, located in the vomeronasal organ, and the accessory OB, 

the synaptic target of vomeronasal receptor neurons, situated lateroventrally in relation 

to the main OB (see Fig. 2). 
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Figure 2 - Olfactory system of larval Xenopus laevis highlighting the organization of the glomerular 

clusters in the olfactory bulb. The olfactory organ (OO) of X. laevis contains the olfactory epithelium. 

Olfactory sensory neurons that populate the olfactory epithelium project their axons into the olfactory 

bulb (OB) via the olfactory nerve (ON). The OB found in the anterior telencephalon in the brain contains 

glomerular structures, where synapses between sensory neurons and second order neurons occur. These 

glomeruli can be separated into spatially distinct clusters – lateral (LC), intermediate (IC), medial (MC) 

and small (not included in schematic). Apart from the main olfactory system larval X. laevis also possess 

a functional accessory olfactory system made up of the accessory olfactory epithelium found in the 

vomeronasal organ and the accessory olfactory bulb (AOB), the synaptic target of vomeronasal receptor 

neurons.  To the left an image of one side of the olfactory bulb is visible, in which axons and glomeruli 

are stained. The dotted lines delineate the glomerular clusters visible in this image and the AOB, situated 

lateroventrally with respect to the main olfactory bulb. Abbreviations: AOB, accessory olfactory bulb; IC, 

intermediate cluster; LC, lateral cluster; MC, medial cluster; OB, olfactory bulb; ON, olfactory nerve; 

OO, olfactory organ. Adapted from: Gliem et al., 2013. 

  

As is the case in other amphibians, olfactory receptor genes of X. laevis, in 

certain aspects, represent an intermediate gene repertoire, having some similarities with 

terrestrial vertebrates and others with fish (Niimura and Nei, 2005; Saraiva and 

Korsching, 2007; Shi and Zhang, 2007). Olfactory receptors closely related to fish 

olfactory receptors, and those more closely related to mammals’, have both been found 

to be expressed in the PC during larval stages (Freitag et al., 1995; Mezler et al., 1999). 

After metamorphosis is complete, the PC is filled with air, and the middle cavity with 

water (Altner, 1962; Mezler et al., 1999), whereas the vomeronasal organ is filled with 

water throughout the animal’s life (Altner, 1962). Several findings suggest that some 

ORNs found in larval X. laevis express more than one type of olfactory receptor. For 

example, the number of different response profiles of individual ORNs to a variety of 

amino acids was found to be surprisingly high (Manzini and Schild, 2004). It was also 

shown that a narrowing of these response profiles takes place over ontogenic stages, 

suggesting that the elevated number of response profiles could be related to the animals’ 

ontogenetic stage. When compared, individual amino acid-sensitive glomeruli were 

found to be much more narrowly tuned than ORNs (Manzini et al., 2007a), and a 

narrowing of response profiles over ontogenetic stages was not observed (Manzini et 
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al., 2007a). Thus, it is possible that immature ORNs of X. laevis, that are still not fully 

connected to target glomeruli in the OB, express more than one amino-acid-sensitive 

olfactory receptor and lose all but one after having successfully reached their target 

glomerulus. 

In premetamorphic stages of X. laevis, the glomerular layer of the main OB can 

be divided into a ventral part, with clearly discernable glomeruli, and a dorsal part, 

which consists of a fiber meshwork with some aggregations but no apparent structure 

(Fritz et al., 1996; Nezlin and Schild, 2000). In the glomerular layer of mammals, 

periglomerular glia cell bodies surround every glomerulus (Pinching and Powell, 1971; 

Chao et al., 1997), whereas in larval X. laevis, in similarity to what is seen in zebrafish, 

periglomerular cells do not form a wall around each individual glomerulus (Byrd and 

Brunjes, 1995; Nezlin and Schild, 2000; Nezlin et al., 2003). Around 350 glomeruli are 

found in the main OB of larval X. laevis, with diameters ranging between 10 and 40 μm 

(Nezlin and Schild, 2000; Manzini et al., 2007b), which can be organized in at least 4 

spatially distinct clusters – medial, intermediate, lateral, and small (Manzini et al., 

2007b; see Fig. 2). The amount of mitral cells in the main OB of stage 54 larvae is not 

certain, but is in the range of 2000 (lower estimate - Nezlin and Schild, 2000) and 

20,000 cells (upper estimate - Byrd and Burd, 1991). Axons of mitral cells of the main 

OB and accessory OB project to higher olfactory brain centers, forming the lateral 

olfactory tract.  

Interestingly, a parallelization can be observed in the spatial propagation from 

olfactory sensory neurons to glomeruli, and from mitral cells to higher brain regions. 

Atypically, in larval X. laevis, ORN axons bifurcate various times before entering 2 or 3 

glomeruli. The action potential resulting from these bifurcations could be important in 

introducing correlated signals to glomeruli during development in the OS (Nezlin and 

Schild, 2005). Also mitral cell dendrites bifurcate in a similar way, and mitral cells 

innervating the same glomerulus have been found to show synchrony (Chen et al., 

2009). This may be important in odor recognition and for memory formation. The 

innervation of more than one glomerulus occurs in all ontogenetic stages of Xenopus, 

from larva to post-metamorphic frog. This atypical glomerular innervation pattern is not 

restricted to axons of immature ORNs, but is also found in mature neurons of the main 

and accessory OS (Hassenklöver and Manzini, 2013). So far, this wiring pattern has 

been found to be unique among all vertebrates investigated, and represents an olfactory 
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wiring strategy never before seen. These unique projection patterns could help increase 

the fidelity of transmission of a projection neuron to the dendrite, and/or alternately 

excite different receptor neurons. The slight temporal displacement of synaptic inputs 

could augment the synchronous activation of mitral cells within the target glomerulus.  

In higher vertebrates, this synchronous activation of mitral cells has been found to be 

related with glutamate spillover in glial-wrapped subcompartments of glomeruli 

(Schoppa and Westbrooke, 2001). Contrary to what is seen in higher vertebrates (Chao 

et al., 1997; Kasowski et al., 1999), larval X. laevis glomeruli are not surrounded by 

glial processes and do not include glial-wrapped subcompartments (Nezlin et al., 2003). 

Nevertheless, this does not exclude the presence of a few periglomerular cells. Axonal 

splitting could therefore be an alternate way of guaranteeing synchrony of the mitral 

cells of individual glomeruli. 

In the early diverging tetrapod Xenopus laevis, two odor-processing streams 

have been found to exist. These are well segregated in the main OB and only partially 

segregated in the OE of pre-metamorphic larvae. A laterally located odor-processing 

stream is made up of microvillus ORNs that respond to amino acids. Gαo/Gαi have been 

suggested as the most probable signal transducers involved in this odor-processing 

stream. A medial stream is also distinguishable, formed by ciliated ORNs that respond 

to aldehydes, alcohols, and ketones, with Gαolf/cAMP as the most likely signal 

transducers. Some class II and class I olfactory receptors mimic the genetic spatial 

distribution observed in the medial stream, whereas a trace amine-associated receptor 

resembles the spatial pattern of the lateral odor-processing stream. Other olfactory 

receptors and odor responses are not lateralized, even in the OB, suggesting there is an 

incomplete segregation. Therefore, the OS of X. laevis seems to exhibit a state of 

segregation that is intermediate, and thus appears to be ideal for use in research on the 

molecular forces that drive olfactory regionalization. The vomeronasal organ of X. 

laevis, present already in the larval stages, is anatomically separated from the main OE. 

In similarity with the mammalian vomeronasal organ, vomeronasal receptor neurons of 

larval X. laevis express type II vomeronasal receptors. On the contrary, in contrast to 

mammals, type I vomeronasal receptors are expressed in the main OE (Gliem et al., 

2013). This shows that olfactory receptor gene expression in Xenopus is also in a 

transitional state. 
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In more recent years, more focus has been put on the cellular interactions that 

take place in the OE. The impact of modulatory action in the OE on odorant 

transduction is becoming increasingly evident. Substances shown to be involved in 

signaling pathways in the OE and/or to influence peripheral odorant processing include 

neurotransmitters (Bouvet et al., 1988; Vargas and Lucero, 1999; Hegg and Lucero, 

2004; Mousley et al., 2006), endocannabinoids (Czesnik et al., 2007), hormones 

(Arechiga and Alcocer, 1969; Kawai et al., 1999; Eisthen et al., 2000), and nucleotides 

(Hegg et al., 2003; Hassenklöver et al., 2008). ORN modulation by these substances ties 

odorant sensitivity to a variety of physiological processes, including local 

neuroprotection and regeneration. Studies have shown that cells found in the vertebrate 

OE express purinergic receptors (mouse: Hegg et al., 2003, 2008; larval Xenopus laevis: 

Czesnik et al., 2006; Hassenklöver et al., 2008). Application of adenosine triphosphate 

(ATP) to the OE of larval X. laevis leads to poweful increases in the intracellular 

calcium concentration ([Ca
2+

]i) in SCs (Hassenklöver et al., 2008) that follow a 

characteristic spatial and temporal pattern. The initial [Ca
2+

]i increase always takes 

place in the most apical region of the SCs, and sequentially travels along their basal 

processes in the direction of the basal lamina, reliably suggesting that the purinergic 

receptors are located on the soma of SCs. The pharmacological characterization of 

purinergic responses indicates that extracellular nucleotides in the OE activate SCs via 

P2Y2/P2Y4-like receptors (Hassenklöver et al., 2008). Pharmacological studies done on 

the OE of larval X. laevis show that BCs express multiple P2Y receptors (Hassenklöver 

et al., 2009). Application of nucleotides to the main OE leads to strong wave-like [Ca
2+

]i 

increases in the SCs that propagate to the basal part of the main OE (Hassenklöver et 

al., 2008; Hegg et al., 2003). In other sensory systems, extracellular nucleotides have 

been shown to have neuromodulatory effects and to be involved in cellular signaling 

(Burnstock, 2007; Thorne and Housley, 1996). However, in contrast to what has been 

shown in mouse, larval X. laevis SCs, but not ORNs, respond to extracellular 

nucleotides (Hegg et al., 2003; Hassenklöver et al., 2008). Therefore the purinergic 

system in the OE of larval X. laevis seems to serve as an intraepithelial communication 

pathway from the most apical part of the OE to the basal lamina, via a nucleotide-

induced “calcium wave”. 
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1.3. Regenerative capacity of the olfactory system 

How do individual neurons go through the necessary stages of development and 

integrate functionally in a neuronal circuit? So far, knowledge on this topic has been 

derived predominantly from cell culture studies. Understanding how development of 

individual neurons occurs within an intact neuronal network in vivo is inherently 

difficult. During embryonic and early postnatal development most neurons are formed, 

and originate due to high neural stem cell activity. Once adulthood is reached, only two 

major neurogenic zones remain in the brain - the subventricular zone located in the 

lateral ventricles and the subgranular zone found in the dentate gyrus (Altman and Das, 

1965; Altman, 1969; Gage, 2000). Neural stem cells pass through various phases of 

maturation, including proliferation, migration, differentiation, and integration, before 

becoming fully embedded in a neuronal circuit. While subventricular zone-derived cells 

migrate to the OB where they differentiate into at least two types of GABAergic 

neurons (Luskin, 1993; Lois and Alvarez-Buylla, 1994; Betarbet et al., 1996; Carleton 

et al., 2003), subgranular zone-derived cells are integrated into the dentate gyrus of the 

hippocampus (Cameron et al., 1993; Eriksson et al., 1998; Hastings and Gould, 1999; 

Seri et al., 2001; Kempermann et al., 2004; Seri et al., 2004; Halbach, 2007). If the adult 

mammalian brain is somehow lesioned, neurogenesis is upregulated particularly in the 

subventricular zone, which shows that the adult brain tries to repair itself. Newly 

formed neural precursors then migrate to the site of damage and generate neurons, but 

these generally are unable to integrate into the existing neuronal circuitry at the site of 

injury and therefore eventually die (Christie et al., 2013). 

Evidence has shown that the level of neurogenesis in adult vertebrates is related 

to regenerative capacity post-injury (Doetsch and Scharff, 2001; Zupanc, 2001; Garcia-

Verdugo et al., 2002). Fish and amphibians for example, have been shown to possess 

the most widespread ability for adult neurogenesis (Kirsche, 1967; Richter and Kranz, 

1981; Chetverukhin and Polenov, 1993; Polenov and Chetverukhin, 1993; Bernocchi et 

al., 1990; Dawley et al., 2000; Raucci et al., 2006), and also the greatest ability to 

regenerate CNS injuries (Amphibians: Sibbing, 1953; Srebro, 1965; Filoni and 

Gibertini, 1969, 1971; Brockes and Kumar, 2002; Ferretti, 2004; Slack et al., 2004; 

Fish: Kirsche, 1950, 1960, 1965; Segaar, 1965; Richter, 1965, 1969; Zupanc, 2001). 

Comprehending the mechanisms that control endogenous proliferation and neurogenic 

permissiveness in the adult brain is extremely relevant to the development of 
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therapeutic approaches for treating brain damage, due to injury and disease. The 

widespread post-embryonic brain neurogenesis in non-mammalian vertebrates may be 

tied to brain growth due to growth of sensory systems (Evans, 1952; Brandstätter and 

Kotrschal, 1990; Marcus et al., 1999). Morphometric studies show that the cells in the 

brain of fish, amphibians and reptiles increase in number with age, body weight and 

length (Platel, 1974; López-García et al., 1984; Font et al., 2001; Martínez‐Guijarro et 

al., 1994). 

It has already been shown that X. laevis is able to regenerate after severe damage 

to the telencephalon, optic tectum and cerebellum, but only during larval stages (Srebro, 

1964; Filoni and Gibertini, 1969, 1971; Filoni et al., 1995). Regeneration after damage 

is quite fast in juvenile frogs, being that the telencephalon regenerates already one 

month after lesion, and although morphological changes are still seen, correct 

connections are formed (Yoshino and Tochinai, 2004). Recently it has been shown that 

juvenile stage froglets can regenerate after severe telencephalic lesion both 

morphologically and functionally (Yoshino and Tochinai, 2006). Differences in the 

regenerative capacity of various brain regions of larval and metamorphosed X. laevis 

can be related to differences in the presence of undifferentiated cell populations (Filoni 

et al., 1995). During early-larval life, populations of proliferating cells are widespread 

in the brain, while in late-larval stages and after metamorphosis the cells are restricted 

to limited proliferation zones. This restriction occurs at later stages in the telencephalon 

and is related to the ability of the respective brain region to regenerate (Filoni et al., 

1995). However, the main reason why post-metamorphic frogs are not able to 

regenerate severe telencephalic lesions seems to be due to a slow and imperfect sealing 

of the damaged area by ependymal cells (Yoshino and Tochinai, 2004). 
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Figure 3 - Schematic drawing of a section through the olfactory epithelium and the olfactory bulb in the 

normal olfactory system of larval Xenopus laevis. The three main cell types of the olfactory epithelium 

(OE) are olfactory receptor neurons (ORNs), non-neuronal supporting cells (SCs), and proliferative basal 

cells (BCs), the olfactory stem cells. Throughout life, the OE contains various immature ORNs, on their 

way to replace dying ORN. Basal cells may also give rise to SCs and olfactory ensheathing cells (OEC). 

Axons of ORNs penetrate the basal lamina of the OE, enter the olfactory bulb (OB), and terminate in 

olfactory glomeruli. There they form synapses with dendrites of mitral/ tufted cells, the second-order 

neurons of the olfactory system, and periglomerular cells (PGC). The axons of mitral/tufted cells merge 

together and convey the olfactory information to higher brain centers. The dendrites of granule cells, the 

most common type of interneurons of the OB, form modulatory synapses with dendrites of mitral/tufted 

cells. Abbreviations: BC, basal cell; PGC, periglomerular cell; SC, supporting cell; OEC, olfactory 

ensheathing cell; ORN, olfactory receptor neuron. Adapted from: Manzini, 2015 

 

The first connections in the olfactory pathway are formed between the axon 

terminals of ORNs and the dendrites of mostly mitral/tufted cells, found in the 

glomeruli of the OB. These glutamatergic synapses are some of the most plastic in the 

CNS, with substantial changes that take place not only during developmental stages, but 

also during adulthood (Mori and Sakano, 2011). Not only does lifelong neurogenesis 

take place in the OE (see Fig. 3), but the OS has the ability to reconstitute after 

considerable damage, and the olfactory map recovers extensively (Cheung et al., 2013). 

In order to preserve the sense of smell, newly formed ORNs are reintegrated into the 
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olfactory circuit as needed (see Fig. 3). This is necessary because of the uniquely 

exposed and vulnerable location of ORNs in the OE. Neural stem cells found in the BC 

layer of the OE (near the basal lamina) maintain the lifelong production of new ORNs 

(Schwob, 2002). The OE possesses not only this capacity for normal turnover of ORNs, 

but also the ability to recover after substantial damage (Schwob, 2002). This shows that 

the OS can provide significant advantages for the study of the basic mechanisms that 

modulate stem cell renewal, neuronal regeneration, neuron development, 

synaptogenesis, and integration of newly formed neurons into an existing circuitry.  

In X. laevis, during larval stages, the OS is already fully functional, and there is 

slow increase in the number of ORNs in the OE (Hansen et al., 1998; Byrd and Burd 

2004). During this time in particular many axons grow in the direction of the OB, where 

they form synapses with glomeruli (Byrd and Burd, 2004). During metamorphosis the 

fully aquatic larvae transform into secondarily aquatic adult frogs, and during this 

process the OS is sequentially reorganized without losing its ability to process olfactory 

information (Dittrich et al., 2015). Most ORNs are replaced and substantial rewiring 

takes place (Dittrich et al., 2015). Although  the  OE  has  long  been  known  as  a  site  

of  long-term neurogenesis (e.g., Graziadei and Graziadei, 1979; Farbman, 1990; Carr 

and Farbman, 1992; Roskams et al., 1996; Calof et al., 1998; Huard et al., 1998; 

Schwob, 2002; Bauer et al., 2003),  we still do not fully comprehend  how  the  lifelong  

turnover of  ORNs  is  regulated. Studies have  shown that  the  proliferation  and  

differentiation  of  OE  progenitors  is influenced  by  a balance  of  positive  and  

negative  regulatory factors  released  from  various  cells  types (Bauer et al., 2003; 

Shou et al., 2000; Wu et al., 2003), a number of  which have been identified, along with 

their receptors (reviewed in Murdoch and Roskams, 2007). Among proliferation-

promoting  factors  are  leukemia  inhibitory  factor (Bauer et al., 2003), basic  

fibroblast  growth  factors  (DeHamer et al., 1994),  epidermal  growth factor, and 

transforming growth factor-α (Carter et al., 2004; Farbman and Buchholz, 1996). 

Growth and differentiation   factor 11   and   transforming   growth   factor-β have   

been   shown   to   act   as   proliferation-inhibiting   factors (Wu et al., 2003).  The 

effect of bone morphogenetic proteins has been shown to be dependent on their 

concentration, inhibiting neurogenesis in the OE at high concentrations and stimulating 

neurogenesis at low concentrations (Shou et al., 1999; Shou et al., 2000). Other  

substances  such  as neurotrophins  (Simpson et al., 2003),  pituitary  adenylate  cyclase-
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activating  polypeptide  (Hegg et al., 2003),  dopamine  (Féron et al., 1999),  nitric oxide  

(Sulz et al., 2006),  insulin-like  growth  factor 1  (McCurdy et al., 2005),  brain-derived 

neurotrophic factor, glial cell line-derived neurotrophic factor, and  ciliary  neurotrophic  

factor (Buckland and Cunningham, 1998)  have  also  been  suggested to have influence 

on the differentiation of OE progenitors. Evidence was more recently found that BCs,  

the  OE  stem  cells,  express  purinergic  receptors  and  that  these  receptors  are  

involved  in  the  regulation  of the natural turnover of epithelial cells (Hassenklöver et 

al., 2009). Purinergic  receptor  subtypes  expressed  by  BCs were identified and 

characterized, and studies revealed that  blocking  these  receptors  with  a  purinergic  

receptor antagonist  reduced  the  proliferation  rate  of  BCs.  This finding strongly 

indicates that purinergic signaling may have an important role in the regulation of the 

natural cell turnover in the OE, and quite possibly the process of massive post-lesion 

reconstitution. 

The peripheral location and the organized cellular composition make the OE of 

X. laevis easily accessible and manageable. Particularly throughout the larval period, the 

OS is ideal for in vivo microscopy due to elevated tissue transparency. Another relevant 

advantage is that in larval X. laevis ORNs can be activated by odorants, their natural 

stimuli. Therefore, the successful reconnection of new ORNs into the olfactory circuit 

can be easily tested by measuring odorant responses of individual ORNs, axons or 

glomeruli in the OB. 
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2. AIM OF THE MASTER THESIS 

 

The Xenopus laevis OS, and in particular the larval system, is an important 

model for the study of the molecular and physiological mechanisms that control 

neuronal regeneration. This is because the mechanisms involved in cellular proliferation 

and differentiation are highly active. Also, the peripheral and exposed position, and the 

elevated tissue transparency facilitate the introduction of lesions in the OE, the ON 

and/or the OB (see Fig. 4 (iv)).  

 

Figure 4 - Schematic representation of the experimental approach used to study the process of 

regeneration in the olfactory system of Xenopus laevis. Olfactory receptor neurons (ORNs) in the 

olfactory epithelium (OE) of larval Xenopus can be labeled via spatially restricted electroporation of e.g., 

fluorescent dyes. Stained cells can be visualized in the OE (i), their axons can be followed through the 

olfactory nerve (ON, ii), and their axon terminals identified in the olfactory bulb (OB) (iii). ON 

transection induces cell death of the whole population of ORNs (iv). After ON transection newly formed 

ORNs can be monitored at different levels of the olfactory system (i, ii and iii). The vomeronasal organ 

(VNO) and the accessory OB are outlined by dotted lines. Abbreviations: OB, olfactory bulb; OE, 

olfactory epithelium; ON, olfactory nerve; ORN, olfactory receptor neuron; VNO, vomeronasal organ. 

Adapted from Manzini, 2015 

 

For this thesis project, the process of regeneration after transection of the ON 

was studied. This method of injury was chosen as it was hypothesized that this would be 

a good method to target only ORNs without extensively disturbing other cell 

populations that may be involved in the process of regeneration. The aim of this thesis 

was to study the various events that occur during the process of regeneration of the OS 

after ON transection. Severing the connection between the OE and the OB leads to cell 

death and subsequently will allow us to observe neural stem/progenitor cell proliferation 

in the OE (see Fig. 4 (i)), axon development in the ON (see Fig. 4 (ii)), and the 
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reestablishment of synapses in glomeruli of the OB (see Fig. 4 (iii)). Combining 

electroporation of dextran-coupled dyes with the introduction of calcium sensitive dyes 

into ORNs and mitral/tufted cells allows acquisition of morphological and functional 

information. It is therefore possible to observe events related to stem/progenitor cell 

proliferation in the OE, axonal pathfinding and wiring, and finally to the formation of 

functional connections in the OB. 

Sensory neuron labelling techniques were used to observe morphological 

changes in the ORN population; immunohistochemistry essays, to observe apoptotic 

events, cell proliferation in the BC layer, and SC structure in the OE; and functional 

calcium imaging techniques, to study changes in activity and evaluate loss of function 

and recovery in both the OE and OB. In this way, a reliable timeline for full recovery of 

function of the OS of larval Xenopus laevis was established, after ON transection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

20 
 

3. MATERIAL AND METHODS 

 

3.1. Animal selection and determination of ontogenetic stages 

All Xenopus laevis larvae used in this study were raised in our breeding colony 

at the University of Göttingen. They were kept in water tanks (50 liters) at a water 

temperature of 19–22°C, and fed with algae (Dose Aquaristik, Bonn, Germany). The 

animals were staged according to Nieuwkoop and Faber (1994). All procedures for 

animal handling and tissue dissections were carried out according to the guidelines of 

the Göttingen University Committee for Ethics in Animal Experimentation. 

 

3.2. Labeling of sensory neurons by olfactory nerve tracing and 

immunohistochemistry essays 

Larval Xenopus laevis (larval stages 48–51) were anesthetized in 0.02% MS-222 

(ethyl 3-aminobenzoate methanesulfonate; Sigma, Seelze, Germany), and unilateral 

olfactory nerve transection was performed with fine scissors. Biocytin (biotinyl-L-

lysine, Life Technologies, Darmstadt, Germany) crystals were placed into the lesioned 

nerve, and the wound was closed with tissue adhesive (Histoacryl L; Braun, Tuttingen, 

Germany). Biocytin is a classical neuroanatomical tracer, commonly used to map brain 

connectivity. It is efficiently taken up by neurons and transported in both antero and 

retrograde directions. To visualize the neurons Alexa Fluor 568 Streptavidin was used, 

which is a Biotin binding protein covalently attached to a fluorescent marker. At 

different time points after Biocytin backfill animals were killed, and a block of tissue 

containing the olfactory organ, the olfactory nerve, and the anterior telencephalon was 

cut out. For bromodeoxyuridine (BrdU) immunostaining animals were kept 24 hours in 

beakers, containing 400 mL tap water and 12 mg (97.688 μM) 5-bromo-2’-deoxyuridine 

(B5002, Sigma; ≥99% (HPLC)) before being killed. The tissue blocks were fixed in 4% 

formaldehyde, washed in phosphate buffered saline (PBS), embedded in 5% low-

melting-point agarose (Sigma) and cut horizontally into 75 µm slices with a vibratome 
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(VT 1200S; Leica, Bensheim, Germany). Slices were then washed in PBS containing 

0.2% Triton X-100 (PBST), and used in 1 of 3 different immunohistochemistry essays. 

Biocytin backfill coupled with Caspase-3 immunostaining: Alexa 568-

conjugated streptavidin (Life Technologies) was applied at a final concentration of 5 

µg/ml in PBST, and slices were incubated at room-temperature for 1 hour, so as to 

visualize the biocytin-back-filled sensory neurons in the olfactory organ. Slices were 

repeatedly washed in PBS and nonspecific binding was blocked with 2% normal goat 

serum (NGS; ICN, Aurora, OH) in PBST for 1 hour, before incubation in primary 

antibody polyclonal anti-active caspase-3 (ab13847, derived from rabbit using a 

synthetic peptide corresponding to human active procaspase 3 aa 150–250 conjugated to 

keyhole limpet hemocyanin (KLH), RRID:AB_443014; Abcam, Cambridge, United 

Kingdom; characterized by Thompson and Brenowitz (2010) and previously used in 

Xenopus laevis tissue by Tseng et al., (2007) and Faulkner et al. (2015)), diluted 1:600 

in 2% NGS/PBST. This allows visualization of apoptotic cells (somata and axons). 

Primary antibodies were washed off with PBS, and Alexa 488-conjugated goat anti-

rabbit secondary antibodies (Life Technologies) were applied at a dilution of 1:250 in 

1% NGS/PBS for 1 hour. 

Biocytin backfill coupled with BrdU immunostaining: Slices of BrdU treated 

animals were incubated in 1N HCl at 37°C for 45 minutes to denature DNA. 

Nonspecific binding was blocked with 2% NGS in PBST for 1 hour, before overnight 

incubation at 4°C with primary antibodies anti BrdU (monoclonal B2531, derived from 

mouse, Sigma), diluted 1:100 in 2% NGS/PBST. Primary antibodies were washed off 

with PBS, and Alexa 488-conjugated goat anti-mouse secondary antibodies (Life 

Technologies) were applied at a dilution of 1:250 in 1% NGS/PBS for 1 hour.  This will 

allow visualization of cells in S phase present in the olfactory epithelium (OE). 

Secondary antibodies were washed off with PBS, and Alexa 568-conjugated 

streptavidin (Life Technologies) was applied at a final concentration of 5 µg/ml in 

PBST, and slices were incubated at room-temperature for 1 hour, so as to visualize the 

biocytin-back-filled sensory neurons in the olfactory organ.  

Biocytin backfill coupled with Cytokeratin immunostaining: Nonspecific 

binding was blocked with 2% NGS in PBST for 1 hour, before overnight incubation at 

4°C with primary antibodies anti cytokeratin (1h5, monoclonal, derived from mouse), 
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diluted 1:1000 in 2% NGS/PBST. Primary antibodies were washed off with PBS, and 

Alexa 488-conjugated goat anti-mouse secondary antibodies (Life Technologies) were 

applied at a dilution of 1:250 in 1% NGS/PBS for 1 hour.  This will allow visualization 

of cytokeratin type II containing filaments present in the OE (namely SCs). Secondary 

antibodies were washed off with PBS, and Alexa 568-conjugated streptavidin (Life 

Technologies) was applied at a final concentration of 5 µg/ml in PBST, and slices were 

incubated at room-temperature for 1 hour, so as to visualize the biocytin-back-filled 

sensory neurons in the olfactory organ.  

Slices were then repeatedly rinsed in PBS, transferred to slides, and mounted in 

mounting medium (Dako, Hamburg, Germany) and image stacks of the OE were 

acquired with a laser scanning confocal microscope (LSM 510/Axiovert 100M; Zeiss, 

Jena, Germany). Image stacks of olfactory organ sections (75 µm thickness) were 

acquired at 1-2 µm intervals between the different planes. Multiple sections of each 

olfactory organ were acquired. The brightness and contrast of the images were adjusted. 

Immunohistochemistry essays were performed to visualize alterations in the 

epithelia of the olfactory organ of Xenopus at different time points after ON transection. 

Animals were sacrificed 1, 2 and 3 days after unilateral transection and sensory neuron 

labelling (see above), as well as 1 week after transection (sensory neuron labeling in this 

case was performed on transected side 1 hour before dissection).  

 

3.3. Calcium imaging in the olfactory epithelium 

Tissue slices were incubated with 125 µl of bath solution containing 50 μM 

Fluo-4/AM (Molecular Probes, Leiden, The Netherlands) and 50 μM MK571 (Alexis 

Biochemicals, Grünberg, Germany). Fluo-4/AM was dissolved in DMSO (Sigma, 

Deisenhofen, Germany) and Pluronic F-127 (Molecular Probes). The final 

concentrations of DMSO and Pluronic F-127 did not exceed 0.5% and 0.1%, 

respectively. To avoid multidrug resistance, transporter-mediated destaining of the 

slices, MK571, a specific inhibitor of the multidrug resistance-associated proteins, was 

added to the incubation solution (Manzini and Schild, 2003). After incubation at room 

temperature for 35 minutes, the dye solution was removed and replaced by bath 

solution. The slice was covered with a grid and placed on the stage of a confocal 
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microscope (LSM 780/Axio Examiner, Zeiss, Jena, Germany). Fluorescence images 

(excitation at 488 nm; emission > 495 nm) of the main OE were acquired at 1 Hz with 

60 images per recording. The thickness of the optical slices excluded fluorescence 

detection from more than one cell layer. 

The standard bath solution consisted of (in mM): 98 NaCl, 2 KCl, 1 CaCl2, 2 

MgCl2, 5 glucose, 5 sodium-pyruvate, 10 HEPES with an osmolarity of 230 mOsmol/l 

and a pH of 7.8, which is the physiological pH in poikilothermic species (Howell et al., 

1970). High K
+
 bath solution consisted of (in mM): 17 NaCl, 80 KCl, 2 MgCl2, 1 CaCl2, 

5 glucose, 5 sodium-pyruvate, 10 HEPES, 230 mOsmol/l, pH 7.8. The recording 

chamber was perfused with bath solution by gravity feed from a storage syringe through 

a funnel drug applicator (see Schild, 1985). The tip of the applicator was placed above 

the olfactory organ. The outflow of the bath solution was collected and discarded by a 

syringe needle which was also placed close to the olfactory organ. The advantage of this 

application system is that there is almost no mechanic stimulation of cells and an 

application of many nucleotides in succession is possible. Nucleotides were dissolved in 

bath solution and used at a final concentration of 100 µM in all conducted experiments. 

Nucleotide solutions were prepared immediately before the experiment and pipetted in 

the funnel without stopping the flow of the standard bath solution. 

Image analysis was performed using custom programs written in MATLAB 

(MathWorks, Natick, USA). To facilitate selection of regions of interest, a “pixel 

correlation map” was obtained (see Junek et al., 2009). The fluorescence changes for 

individual cells are given as ΔF/F = (F1-F2)/F2, where F1 was the fluorescent averaged 

over the pixels of a cell, while F2 was the average fluorescence of the same pixels 

before stimulus application averaged over 10 images. 

 

3.4. Survey of olfactory sensory neuron re-innervation and olfactory 

bulb morphology 

Fluorophore-coupled dextran (Alexa 594 10 kD dextran; Life Technologies) was 

introduced into sensory neurons of the olfactory organ via electroporation (for details 

see Haas et al., 2002; Hassenklöver and Manzini, 2014). At the beginning of the 

experiment, larval albino Xenopus (stages 48–54), on which ON transection was 
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previously performed, were anesthetized in 0.02% MS-222, and Alexa 594 dextran 

crystals were introduced into both nasal cavities and dissolved in the residual moisture. 

Two thin, platinum electrodes were carefully placed in the nasal cavities. The electrodes 

were connected to a voltage pulse generator (ELP-01D; npi Electronics, Tamm, 

Germany), and 12 pulses (20–25 V, 25 msec duration at 2 Hz) with alternating polarity 

were applied. After the electroporation, animals were transferred into a beaker filled 

with fresh water for recovery. After ~5 minutes, the larvae woke from anesthesia and 

started normal swimming movements. 

At different time points after transection, the tadpoles were sacrificed and the 

OB and ON were investigated via two-photon microscopy. Whole-mount preparations 

(including the anterior telencephalon, ON and olfactory organ were placed in an 

imaging chamber, and an image stack of the whole intact OB was acquired from the 

ventral side (for details see Hassenklöver and Manzini, 2014). The brightness and 

contrast of image stacks were adjusted in the image processing software Fiji 

(http://fiji.sc/Fiji). 

 

3.5. Calcium imaging in the olfactory bulb 

The following techniques were developed and performed by Thomas Offner, 

colleague and phD student from the Manzini group - http://olfsys.uni-

goettingen.de/team.php. 

3.5.1. Whole olfactory system preparation 

Tadpoles were chilled in iced water and killed by transection of the spinal cord. 

A rectangular tissue block containing the intact olfactory epithelia, olfactory nerves and 

the anterior part of the brain was extracted. After removal of ventral palatial connective 

tissue, the OB as well as the caudal part of the ON was ventrally exposed. To assure 

access of odorants to the main OE, excess tissue anterior to the nostril was removed 

using fine scissors. 

http://fiji.sc/Fiji
http://olfsys.uni-goettingen.de/team.php
http://olfsys.uni-goettingen.de/team.php
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3.5.2. Multiple cell bulk loading 

The calcium indicator mix was prepared by dissolving 50 μg Fluo-4 AM (life 

technologies) in 5 μl DMSO (Sigma Aldrich) and adding 10 μl of Pluronic F-127 (0.2 

μm filtered 10% (w/v), life technologies) as well as 35 μl of bath solution to a final 

volume of 50 μl. After a step of centrifugation to get rid of excess AM dye precipitate (1 

minute, room temperature, 16.1 rcf), the supernatant was carefully removed. To prevent 

extrusion of the calcium indicator by the mitral/tufted cells through active transport, 3 μl 

of MK571 (10 mM; Enzo life sciences) were added to the mix (Manzini and Schild, 

2003). Another 0.3 μl of 3 mM cascade blue dextran solution (life technologies) were 

added to visualize the mix distribution upon loading in the tissue under fluorescent 

illumination. Borosilicate glass pipettes of 10 to 15 MΩ resistances were pulled and 

filled with the calcium indicator mix. Whole mount preparations of the olfactory system 

were mechanically fixed using a metal grid with strings in a recording chamber 

containing bath solution. The pipette tip was carefully penetrated into the bulb with a 

micromanipulator in close proximity to the lateral cluster. Pressure was generated by 

compressing a cylinder filled with air. By opening a valve the pressure pulse was 

transferred via a tube system to the pipette to inject the dye into the tissue. The 

procedure was repeated up to three times at slightly different loci under observation via 

epifluorescent illumination until the region of interest was properly stained. After 35 

minutes of incubation at room temperature successful uptake of fluo-4 AM by the 

mitral/tufted cells was observable as dim green fluorescence of their somata. 

3.5.3. Fast multiphoton calcium imaging in the olfactory bulb 

Calcium responses of the mitral/tufted cell tufts were imaged using an upright 

multiphoton microscope (Nikon A1R-MP, Nikon). An eight channel perfusion system, 

controlled by Valve Commander VC83 units (ALA Scientific Instruments), was 

connected to the setup for odorant application into the recording chamber. The funnel of 

the perfusion system was positioned in front of the main OE of the whole olfactory 

system preparation. To create a constant flow of odorants, a syringe connected to a 

suction pump was positioned caudally to the preparation. Whole volumes of the OB 

were measured over time with acquisition rates of 30-40 planes per second at a z-

resolution of 3-5 μm. Alexa-594 and fluo-4 were both excited at a wavelength of 800 

nm and laser powers between 10-20% (MaiTaiDeepSee). The emitted photons of the 
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different dyes were separated by emission filters of 500-550 nm for fluo-4 and 601-657 

nm for Alexa-594. The main OE was stimulated with basic and aromatic L-amino acids: 

L-arginine, L-histidine, L-lysine, L-phenylalanine and L-tryptophane, individually or as 

a mixture at concentrations of 100 μM. After 20 seconds of baseline fluorescence 

recording of the scanned volume the odorant solution was applied for 5 seconds and 

switched back to Ringer perfusion immediately afterwards. For each odorant application 

the recording lasted 2 minutes to include the whole calcium transient and let the ORNs 

recover to avoid adaptation effects. 

3.5.4. Analysis of calcium imaging data and reactive volume generation 

Changes in fluorescence measured in regions of interest are given as ΔF/F 

values. The values were calculated for each pixel according to the following equation: 

ΔF/F = (F-F0)/F0. F0 represents an averaged fluorescence value derived from the time 

interval prior to the stimulus and F is the actual fluorescence value of one pixel at one 

time point. For each single amino acid application experiment, a stack of difference 

images was created. The difference images were calculated for each plane by averaging 

the fluorescence value of the interval prior to stimulation and subtract this value from 

the mean peak response of the odor induced fluorescence peak (2-3 points for mean 

peak calculation).The stack of difference images was converted into a stack of binary 

images by adaptive thresholding. The resulting binary areas of each plane were assigned 

to individual groups by comparing their overlap with binary areas of neighbouring z-

planes. This was done for each amino acid application experiment leading to a set of 

volumes representing the mitral/tufted cell somata and tufted regions reactive to the 

respective amino acids. To extract the glomerular volumes mitral/tufted cell bodies 

were manually removed from the measurements. The region of interest groups were 

used for 3D reconstruction of reactive volumes. Workflow scripts and analysis tools 

were kindly provided and programmed in MATLAB (Mathworks, Natick, USA) by 

Thomas Hassenklöver. 
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4. RESULTS 

 

4.1. Changes in the olfactory epithelium after olfactory nerve 

transection 

Transection of the olfactory nerve (ON) severs the connection between the 

olfactory epithelium (OE) and the olfactory bulb (OB). The synaptic connections 

between olfactory receptor neurons (ORNs) and second order neurons are lost due to 

ORN cell death caused by ON transection. However, after the damage caused by this 

lesion model, the olfactory system (OS) of larval X. laevis recovers function. ORN cell 

labelling via biocytin backfill of the ON, coupled with a variety of 

immunohistochemistry essays, made possible the detailed observation of the 

morphological changes that occur in the OE after ON transection. 

 Larval X. laevis animals were selected for ON transection based on stage of 

development, always falling between stages 48 and 52. The animals were staged 

according to Nieuwkoop and Faber (1994). These stages were considered optimum for 

this study because animals were developed enough to allow easy manipulation while 

not yet having initiated the process of metamorphosis, therefore guaranteeing stability 

in the OS throughout. To visualize changes in the ORN population 1, 2 and 3 days after 

transection of the ON, animals were transected and biocytin backfill was performed on 

the transected side, upon transection. In the case of animals to be sacrificed after 1 

week, biocytin backfill was performed on the transected side 1 hour before dissection, 

to visualize the ORN population present at 1 week after transection of the ON. The 

tissue blocks obtained were sliced as described above and used for active Caspase-3, 

BrdU and Cytokeratin immunostainings. Active Caspase-3 immunostainings allowed 

the visualization of apoptotic events in the OE, BrdU immunostainings allowed the 

visualization of proliferative activity in the OE, and Cytokeratin immunostainings 

allowed the visualization of the SC structure. 
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4.1.1. Apoptotic events 

Results obtained show that active Caspase-3 positive cells increase substantially 

24 hours after transection and peak in the quantity of apoptotic cells at 48 hours (see 

Fig. 5 a-c, f). After 72 hours caspase-3 positive cells are again similar to the control 

situation (see Fig. 5 d). There were some instances in which the amount of caspase-3 

positive cells after 72 hours remained increased, as compared to control, but in all cases 

it is apparent that a substantial reduction from the elevated amount visible at 48 hours 

after transection occurs. After 1 week the transected side and control side appear to be 

the same, in relation to quantity of apoptotic cells (see Fig. 5 a, e). 

 

 Figure 5 – Changes in the olfactory epithelium: Biocytin backfill coupled to active caspase-3, at 

different time points after transection of the olfactory nerve. The olfactory epithelium of larval Xenopus 

laevis from stages 48-52 were used for biocytin backfill coupled to active caspase-3 staining, performed 1 

to 3 days, and 1 week, after transection of the olfactory nerve. Biocytin backfill was performed on 

animals upon unilateral ON transection, with the exception of animals sacrificed after 1week. In this case 

biocytin backfill was performed 1 hour before dissection. The olfactory organ on the non-transected side 

was used as control (a). Active caspase-3 positive cells (green) increase substantially 24 hours after 

transection (b) and peak at 48 hours (c). By day 3 (d), the OE looks similar to control situation, with just a 

slight increase in Caspase-3 positive cells. The majority of ORNs backfilled (red) upon transection 

disappear around 3 days after transection. 1 week after transection (e) the OE looks similar to the control 

situation with respect to Caspase-3 positive cells, and it also seems that it has been repopulated with 

ORNs. (f) Amplified section of the OE seen in (b). Abbreviations: OE, olfactory epithelium; ON, 

olfactory nerve; PC, principal cavity; VNO, vomeronasal organ. 
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4.1.2. Proliferative activity 

BrdU positive cells increase substantially in the BC layer and seem to maintain a 

higher number than control in the days following transection (see Fig. 6 a-d, f). After 1 

week the control side and the transected side appear to be the same in relation to 

quantity of cells in S phase (see Fig. 6 a, e). However, further evaluation and cell 

quantification is necessary. 

 

Figure 6 - Changes in the olfactory epithelium: Biocytin backfill coupled to BrdU staining, at different 

time points after transection of the olfactory nerve. The olfactory epithelium of larval Xenopus laevis 

from stages 48-52 were used for biocytin backfill coupled to BrdU staining, performed 1 to 3 days, and 1 

week, after transection of the olfactory nerve. Biocytin backfill was performed on animals upon unilateral 

ON transection, with the exception of animals sacrificed after 1week. In this case biocytin backfill was 

performed 1 hour before dissection. The olfactory organ on the non-transected side was used as control 

(a). BrdU positive cells (green) found in the BCL increase substantially 24 hours after transection (b) and 

maintain higher numbers in the following days (c - 48 hours after transection, and d - 72 hours after 

transection). 1 week after transection (e) the OE looks similar to control situation with respect to BrdU 

positive cells, and it also seems that it has been repopulated with ORNs (red). (f) Amplified section of the 

OE seen in (c). Abbreviations: OE, olfactory epithelium; PC, principal cavity. 

4.1.3. Morphological integrity of supporting cells 

Cytokeratin positive cells found in the SCL seem to maintain their integrity after 

ON transection and throughout recovery; with no obvious differences found at the 

different time points as compared to control (see Fig. 7). 
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Figure 7 – Changes in the olfactory epithelium: Biocytin backfill coupled to cytokeratin staining, at 

different time points after transection of the olfactory nerve. The olfactory epithelium of larval Xenopus 

laevis from stages 48-52 were used for biocytin backfill coupled to cytokeratin staining, performed 1 to 3 

days, and 1 week, after transection of the olfactory nerve. Biocytin backfill was performed on animals 

upon unilateral ON transection, with the exception of animals sacrificed after 1week. In this case biocytin 

backfill was performed 1 hour before dissection. The olfactory organ on the non-transected side was used 

as control (a). Cytokeratin filaments are found in SCs (green), therefore the use of specific markers allows 

visualization of SC morphology. SCs seem to maintain similar morphological structure throughout (b - 24 

hours after transection, c - 48 hours after transection, and d - 72 hours after transection). 1 week after 

transection (e) the OE seems to have been repopulated with ORNs (red). (f) Amplified section of the OE 

seen in (c). Abbreviations: OE, olfactory epithelium; PC, principal cavity. 

 

4.2. Calcium imaging in the olfactory epithelium 

 To find out how the functional integrity changes after ON transection, functional 

calcium imaging was performed on the OE of larval X. laevis, at different time points 

after transection of the ON. 

 ATP application to main OE preparations allowed confirmation that the BCL 

and the SCL seem to maintain not only morphological integrity but also functional 

integrity (see Fig. 8). After transection, cells found in the BC layer and SC layer still 

respond to ATP. Upon application of ATP, [Ca
2+

]i transients were visible in cells in the 

BC layer and SC layer. No [Ca
2+

]i transients were visible in cells of the ORN layer. The 

correlation maps show all responsive cells of the slice (Fig. 8 (c)). Specific transient 
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responses were mainly observable in SCs and BCs. These results were reproducible 

when ATP was applied several times. Virtually identical results were observed in all 

slices which were tested for their responsiveness to ATP. 

It is possible to conclude from these results that supporting and basal cells are 

still able to detect and respond to nucleotides after ON transection. No conclusion about 

the number of responsive cells or changes of individual responses is possible. 

Additional experiments and further data analysis is necessary to conclude if any 

changes in the number of responsive cells occurs. 
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Figure 8 - Functional integrity of supporting and basal cells after olfactory nerve transection. A. Calcium 

imaging performed on acute slices of the olfactory epithelium of a healthy animal, used as control. B. 24 

hours after transection of the olfactory nerve. C. 48 hours after transection of the olfactory nerve. D. 72 

hours after transection of the olfactory nerve. E. 1 week after transection of the olfactory nerve. (a) Image 

of an acute slice of the OE stained with Ca
2+

 indicator dye Fluo-4/AM. Application of 100 μM of ATP 

induced [Ca
2+

]i transients in cells of the BC layer and SC layer. No apparent changes in Ca
2+

-dependent 

fluorescence in cells of the ORN layer. (b) ATP-induced [Ca
2+

]i transients of individual cells randomly 

chosen from the SC layer (top, SC 1-3, blue traces) and BC layer (bottom, BC 1-3, orange traces). 100 

μM ATP was applied at the 10 second mark after initiating image acquisition. (c) A pixel correlation map 

of the same slice shows ATP-responsive cells bright against a dark background. 

Abbreviations: BC, basal cell; SC, supporting cell.  
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4.3. Changes in the olfactory bulb after olfactory nerve transection 

4.3.1. Morphological changes (axonal rewiring) 

After unilateral ON transection sensory neuron labeling was performed via 

electroporation, and animals were sacrificed weekly, 1-7 weeks after the date of 

transection. Electroporation was performed 48 hours before the time of dissection for 

each time point. Whole mount preparation was performed and a stack of the OB and 

ON was acquired using 2-photon microscopy. This made the observation of 

morphological changes in the presynaptic side of the OB possible. 

After 1 week, a small amount of ORNs seem to reach the very frontal portion of 

the OB (Fig. 9 (b)). After 2 weeks, substantial morphological changes are visible (Fig. 

9 (c)). The OB is quite reduced in size but erratic projections of ORNs protrude into it, 

indicating that pioneering axons are actively searching for a post-synaptic partner.  

 

Figure 9 - Reestablishment of olfactory bulb connectivity by sensory neuron axons after olfactory nerve 

transection. Electroporated ORNs in the OB and ON 1 and 2 weeks after transection of the ON. 

Fluorophore-coupled dextran was introduced into sensory neurons of the olfactory organ via 

electroporation (for details see Haas et al., 2002; Hassenklöver and Manzini, 2014). Image stacks of the 

whole intact OB and ON were acquired via two-photon microscopy. (a) OB and ON of non-transected 

side used as control. Orientation of image is medial to lateral from left to right. The division of the OB in 

spatially distinct medial (MC) and lateral (LC) clusters is evident. (b) OB and ON on transected side, 1 

week after transection. Orientation of image is lateral to medial from left to right. A small amount of 

axons reach the OB with no apparent innervation. The ON diameter is clearly reduced. (c) OB and ON 2 

weeks after transection. Orientation of image is lateral to medial from left to right. Re- innervation is 

evidently taking place. Pioneering axons projecting into the OB are visible. Abbreviations: AOB, 

accessory olfactory bulb; LC, lateral cluster; MC, medial cluster; ON, olfactory nerve. 

 

At 3 weeks, there seems to already be some morphological organization of the 

OB (Fig. 10 (b)). After 4 weeks, morphological structure of the OB is similar to control 

(Fig. 10 (c)). Although the OB on the transected side appears similar to control in 
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morphological organization, functional characterization of responses to stimulus is 

necessary to determine whether the OB is functional after the process of regeneration. 

 

Figure 10 - Successful reestablishment of olfactory bulb structure after olfactory nerve transection. 

Electroporated ORNs in the OB and ON 3 and 4 weeks after transection of the ON. Fluorophore-coupled 

dextran was introduced into sensory neurons of the olfactory organ via electroporation (for details see 

Haas et al., 2002; Hassenklöver and Manzini, 2014). Image stacks of the whole intact OB and ON were 

acquired via two-photon microscopy. (a) OB and ON of non-transected side used as control. Orientation 

of image is medial to lateral from left to right. The division of the OB in spatially distinct medial (MC) 

and lateral (LC) clusters is evident. (b) OB and ON 3 weeks after transection. Orientation of image is 

lateral to medial from left to right. Heightened axonal density is visible, as well as the beginning of spatial 

segregation of the OB in distinct clusters.  (c) OB and ON 4 weeks after transection of the ON. 

Orientation of image is lateral to medial from left to right. Presynaptic division of axons projecting into 

distinct glomerular clusters is evident. Abbreviations: AOB, accessory olfactory bulb; LC, lateral cluster; 

MC, medial cluster; ON, olfactory nerve. 

4.3.2. Functional changes (cellular and glomerular responses) 

Calcium imaging was performed on animals 3 days and 1-7 weeks after 

transection of the ON to evaluate at what time point responses to application of amino-

acids returns (Fig. 11). After 3 days no response was observed (Fig. 11 (C)), indication 

that the transection of the ON successfully severed the connection between the OE and 

the OB. Morphological analysis of the OB after 1 week allowed the observation of a 

small amount of ORNs reaching the very frontal portion of the OB. Calcium imaging at 

this time point resulted in only spontaneous response of mitral/tufted cells upon 

stimulus application, indicating that the proper function of glomeruli was disrupted by 

ON transection and has not regained function after 1 week. At 3 weeks, some slight 

responses are seen (Fig. 11 (D)). Distinct glomerular structures respond to the different 

amino acids applied (Fig. 11 (F)). After 7 weeks, responses in the OB are more 

widespread in the OB and are similar to control (Fig 11 (E), (G)).  
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Figure 11 - Loss and recovery of response in the olfactory bulb after olfactory nerve transection. A. 

Transection of the ON. B. Calcium indicator loading and multi-photon imaging of the OB. C. Responses 

of two different animals (A1 and A2) to application of basic-aromatic amino acid mixture, purple), 3 days 

after transection of the ON (TS). No responses are visible 3 days after transection of the ON, indicating 

that the synaptic connection between ORNs and the brain has been successfully severed and the OB has 

lost olfactory input. D. Responses of two different animals (A1 and A2) to application of BARO, 3 weeks 

after transection of the ON. In both animals responses to application of BARO (yellow) are visible, 

indicating that new synaptic connections have been established, 3 weeks after ON transection. E. 

Responses of two different animals (A1 and A2) to application of BARO, 7 weeks after transection of the 

ON. In both animals responses to application of BARO (cyan) are visible, and the density of responsive 

cells seems to have increased, when compared to 3 week animals (D). F. Responses of two different 

animals (A1 and A2) to application of 2 different single amino acids (ARG - arginine; TRP - 

tryptophane), 3 weeks after transection of the ON. In both animals responses to individually applied 

arginine (red) and tryptophane (green) is visible. The glomerular responses to the different amino acids 

are distinguishable. This indicates that new synaptic connections have been established and that different 

response profiles of glomeruli to amino acids is present. G. Responses of two different animals (A1 and 

A2) to application of arginine and tryptophane, 7 weeks after transection of the ON. In both animals 

responses to arginine (purple) and tryptophane (yellow) is visible and the density of responsive cells is 

increased, when compared to 3 week animals (F).  Abbreviations: ARG, arginine; BARO, basic aromatic 

amino acid mix; TRP, tryptophan; TS, transection. Schematic created by Thomas Offner. 
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After 6-7 weeks responses seem to have fully recovered in all animals analysed. 

This indicates that the OS of larval X. laevis recovers morphologically and functionally 

6-7 weeks after ON transection. 
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5. DISCUSSION 

The aim of this thesis was to describe the morphological and functional 

alterations that occur over time in the olfactory system (OS) of larval Xenopus laevis, 

after transection of the olfactory nerve (ON). Transection of the ON leads to olfactory 

receptor neuron (ORN) cell death, and to the loss of synaptic connection between the 

olfactory epithelium (OE) and the olfactory bulb (OB) (see Fig. 12). This, in turn, leads 

to the loss of function of the OB. Results obtained using immunohistochemistry essays, 

as well as sensory neuron labeling and functional calcium imaging techniques, indicate 

that cell death reaches its peak 48 hours after transection, and that proliferating stem 

cells found in the basal cell layer of the OE are quickly upregulated after lesion. 

Supporting cells (SCs) seem to maintain both morphological and functional integrity 

after transection of the ON, indicating that the SC layer is not substantially damaged by 

this lesion. The OE recovers its original morphological structure 1 week after 

transection, at which time the first axons reach the olfactory bulb and begin the process 

of re-innervation (see Fig. 13). Spontaneous activity of mitral/tufted cells occurs in the 

olfactory bulb during the first weeks after transection but no odor-induced activity is 

observed. After 3-4 weeks glomerular responses were observed in some animals upon 

application of stimulus, but the response and glomerular morphology are clearly altered 

as compared to control. After 6-7 weeks responses seem to have fully recovered, 

indicating that the OS of larval X. laevis recovers morphologically and functionally 6-7 

weeks after ON transection. 
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Figure 12 - Olfactory system regains structural and functional integrity over the course of 7 weeks after 

transection of the olfactory nerve. Timeline begins with transection of the olfactory nerve (ON). 1 day 

after transection of the ON disruption of the olfactory epithelium (OE) occurs, mainly due to increased 

cell death in the olfactory receptor neuron layer. There is also an increase in proliferating cells in the basal 

cell layer. The supporting cell layer seems to remain unaltered in the days following ON transection. Loss 

of function in the olfactory bulb (OB) after ON transection was observed using functional calcium 

imaging techniques. The OB no longer responds to application of amino-acid mix. The OE recovers its 

original morphological structure 1 week after transection, at which time the first axons reach the olfactory 

bulb and begin the process of re-innervation. After 3-4 weeks the distinct glomerular clustering in the OB 

is again visible. Responses to amino-acids are again visible 3 weeks after transection of the OB and seem 

to fully recover in all animals observed 7 weeks after transection. Abbreviations: BC, basal cell; OB, 

olfactory bulb; OE, olfactory epithelium; ON, olfactory nerve; ORN, olfactory receptor neuron; SC, 

supporting cell. 

 

5.1. Olfactory receptor neuron cell death and basal cell proliferation 

are tightly coupled and highly regulated 

After ON transection, controlled cell death in the ORN population is followed by 

stem cell proliferation in the BC layer in order to replace cells as needed. During the 

initial phase of apoptosis, the signal for cell death leads to the activation of an 

intracellular cascade of events that may include the production of Par-4, increased levels 

of oxyradicals and Ca
2+

, and translocation of pro-apoptotic Bcl-2 family members (Bax 

and Bad) to the mitochondrial membrane (Yuan and Yankner, 2000; Cheung et al., 

2005). During the effector phase of apoptosis increased mitochondrial Ca
2+

 and 

oxyradical levels occurs (Greenlund et al., 1995; Mattson, 2007), along with formation 

of permeability transition pores in the mitochondrial membrane (Brenner and Moulin, 

2012), and release of cytochrome c into the cytoplasm (Cai et al., 1998; Liu et al., 

1996), which forms a complex with apoptotic protease-activating factor 1 and caspase-

9. Activated caspase-9, in turn, activates caspase-3, leading to the beginning of the 

degradation phase of apoptosis. During this phase, numerous caspase and other enzyme 

substrates are cleaved, leading to characteristic alterations in the plasma membrane 

(blebbing and exposure of phosphatidylserine on the cell surface, a signal that activates 

cell phagocytosis by macrophages/microglia) (Slee et al., 1999; Coleman et al., 2001). 

During the final phases, the nuclear chromatin condenses and becomes fragmented. As 

observed after ON transection in larval X. laevis, after the extensive cell death that 

follows ON transection, 72 hours later the majority of apoptotic cells have been cleared 

away from the OE, presumably due to phagocytosis by macrophages/microglia. 



 
 

40 
 

Many signals can initiate or ‘trigger’ apoptosis in neurons. The best-studied 

signal is lack of neurotrophic factor support, which may trigger apoptosis during 

development of the nervous system and possibly in neurodegenerative disorders 

(Oppenheim, 1991; Mattson et al., 1997; McKay et al., 1999). Most neurons in the 

mammalian CNS possess receptors for the excitatory neurotransmitter glutamate, whose 

overactivation can induce apoptosis by a mechanism involving calcium influx 

(Ankarcrona et al., 1995; Glazner et al., 2000). Oxidative stress can also trigger 

neuronal death, in which free radicals (such as the superoxide anion radical and the 

hydroxyl radical) damage cellular lipids, proteins and nucleic acids by attacking 

chemical bonds in those molecules (Sastry and Rao, 2000; Mattson et al., 1998). 

Environmental toxins can induce neuronal apoptosis, and several such toxins can induce 

specific patterns of brain damage (Beal, 1995; Duan et al., 1999). There are several 

prominent anti-apoptotic signalling pathways that contribute to neuronal survival 

(Mattson et al., 1997). Neurotrophic factors have been identified that can protect 

neurons against apoptosis by activating receptors linked through kinase cascades to 

production of cell-survival-promoting proteins. For example, brain-derived neurotrophic 

factor or (BDNF), nerve growth factor or (NGF) and basic fibroblast growth factor or 

(bFGF) can prevent death of cultured neurons, in part by stimulating production of 

antioxidant enzymes, Bcl-2 family members and proteins involved in regulation of 

calcium homeostasis (Mattson et al., 1997; Tamatani et al., 1998). Cytokines such as 

tumour necrosis factor-α (TNF-α), ciliary neurotrophic factor (CNTF) and leukaemia 

inhibitory factor (LIF) can prevent neuronal death in experimental models of natural 

neuronal death and neurodegenerative disorders (Hagg et al., 1993; Middleton et al., 

2000; Mattson et al., 2000). 

ORN cell death and BC proliferation are tightly coupled events. Results obtained 

indicate that ORN death reaches its peak 2 days after transection and that proliferating 

stem cells found in the BCL of the OE are upregulated in the days immediately 

following lesion. These results are in line with previous studies showing that cell death 

and replacement of ORNs are tightly coupled (Costanzo and Graziadei, 1983; Schwob 

et al., 1992). In mouse, ORNs that are inhibited from environmental exposure and 

stimulation by naris occlusion demonstrate enhanced lifespan, and a reduction in ORN 

turnover and progenitor division. Reversal of occlusion stimulates progenitor activity 

and the ORN population is restored within 6-10 days (Cummings and Brunjes, 1997). 
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Surgical removal of the OB induces a retrograde wave of apoptosis in ORNs within 72 

hours after bulbectomy (Cowan et al., 2001), stimulating mitosis in local progenitor cell 

populations (Graziadei and Graziadei, 1979). ORNs are then generated from adult OE-

residing progenitors by 2-3 weeks after removal of OB (Costanzo and Graziadei, 1983; 

Schwob et al., 1992). An intranasal chemical lesion applied directly to the nasal cavity 

leaves the OB available for axon re-targeting, but also destroys multiple cell types. 

Detergent (Triton X-100), zinc sulphate (ZnSO4) (Harding et al., 1978), methylbromide 

(MeBr) gas (Schwob et al., 1995) and the thyroid drug, methimazole (Bergman et al., 

2002; Bergström et al., 2003) have all demonstrated efficacy in inducing widespread 

OE cell loss, and stimulating regeneration of multiple lineages. If the damage is too 

excessive, reconstitution can be incomplete, and respiratory epithelium will replace the 

OE (Schwob, 2002). After MeBr treatment, proliferation occurs 1-2 days following 

lesion, peaking after 1 week and continuing for up to 4 weeks. The OE is almost fully 

restored to its pre-lesion state by 6 weeks. 

 

5.2. Olfactory nerve transection does not eliminate supporting and 

basal cell function 

 ON transection leads to ORN cell death but does not lead to extensive damage in 

other cell populations in the OE. This was shown using functional calcium imaging 

experiments in the OE. SC and BCs in the OE have been shown to express purinergic 

receptors that respond to ATP. Upon ATP application to the OE at different time points 

after transection of the ON it was verified that the characteristic nucleotide-induced 

“calcium wave” still occurs in the OE after transection. Purinergic signaling has been 

linked to neuro-regenerative processes in the peripheral nervous system.  

 The amount of cells in S phase increases drastically in the BC layer in the days 

immediately following lesion. It was previously shown that the BC layer of the OE of 

larval Xenopus is composed of about 3-4 cell sublayers that include 2 main cell types - 

elongated BCs with long interlaced cytoplasmatic extensions, found adjacent to the 

basal lamina, and polyhedral BCs that reside immediately above the elongated BCs 

(Hansen et al., 1998; Hassenklöver et al., 2009). These two cell types could be 

equivalent to horizontal and globose BCs, present in the BC layer of mouse (Murdoch 
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and Roskams, 2007; Beites et al., 2005). In mouse, horizontal BCs, which have an 

elongated shape, are located above the basal lamina, seldomly divide, and are likely to 

represent the multipotent stem cells of the OE (Murdoch and Roskams, 2007; Beites et 

al., 2005). Studies have shown that the globose BCs are the major proliferating 

population in the OE, are found immediately above the horizontal BCs, are round-

shaped, and contain multipotent progenitors that differentiate and give rise to ORNs and 

SCs (Murdoch and Roskams, 2007; Beites et al., 2005). In the normal situation in which 

the animal is healthy, the BC population is active to a degree that allows regulated 

maintenance of the OE, replacing cells lost during turnover. After lesion, the drastically 

increased number of proliferating cells in the BC layer indicates that a signaling 

mechanism must exist to activate this response to acute damage. Purinergic signaling 

has been proposed as a mode of intraepithelial signaling and induction of stem cell 

proliferation. This is supported by the fact that both SCs and BCs express purinergic 

receptors that respond to application of nucleotides by generating a characteristic Ca
2+ 

wave that moves from the most apical part of the epithelium to the basal region 

(Hassenklöver et al., 2008, 2009). Nucleotides released as ORNs die could trigger 

intracellular Ca
2+

 increase in SCs, and subsequently transmit the information to the 

BCL. Since it has been shown that neuronal stem cells reside in this layer it is possible 

that ORN cell death provokes upregulation of BCs in this way. It was hypothesized that 

response to ATP could be higher in transected animals than in control animals, as 

purinergic signaling has been linked to neuroregenerative processes. Although this 

hypothesis was not excluded, additional experiments are required for significant 

conclusions to be made. 

In studies using rodent OS as model for neurogenesis after lesion, it is clear that 

the ORN replacement program is not uniform across all turbinates (Weiler and 

Farbman, 1997; Cowan et al., 2001; Carter et al., 2004). Lesion-induced ORN 

neurogenesis seems to be controlled by both the demand for replacement (loss of 

ORNs) and the degree of availability and activity of local endogenous progenitors. 

During post-bulbectomy neurogenesis, rather than undergoing uniform neuronal 

replacement following death of mature ORNs (Moulton, 1974; Càmara and Harding 

1984; Carr and Farbman, 1992; Gordon et al., 1995; Huard et al., 1998; Schwob, 2002), 

adjacent regions of OE in a given turbinate demonstrate a highly patchy pattern of 

neurogenesis. This is likely due to (i) a dynamic spatiotemporal retrograde ORN 
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apoptosis leading to localized changes in feedback induction/repression signaling 

(Cowan et al., 2001; Bauer et al., 2003); (ii) a change in lateral inhibition from 

neighboring cells that relieve inhibitory mechanisms that normally allow only a subset 

of BCs to respond to a mitotic stimulus (Shou et al., 2000; Morrison, 2001; Watt, 2001) 

and (iii) stimulation of neurogenesis from underlying olfactory ensheathing cells that 

are no longer in contact with axons. In the contralateral OE, a delayed significant 

increase in local basal cell mitosis also suggests that a feedback loop could exist from 

the central nervous system that senses the loss of ipsilateral ORN input and instructs the 

contralateral OE to compensate (Carter et al., 2004). ORN genesis is thus clearly 

controlled by the balance of positive regulatory factors from cells (e.g. apoptotic ORNs, 

macrophages, olfactory ensheathing cells) that sense a need for more ORNs and 

stimulate mitosis and differentiation, and a reduction in negative feedback from mature 

ORNs to inhibit additional ORN production (Shou et al., 2000; Bauer et al., 2003; Wu 

et al., 2003). Factors that have been shown to positively regulate ORN genesis include 

LIF, FGF, EGF and TGF-α. Factors that have been shown to negatively regulate ORN 

genesis include the TGF-β superfamily of growth factors, which includes TGF-β, 

activins and BMPs. BMPs are morphogenetic proteins whose effects can vary according 

to their concentration and target cell (Mehler et al., 2000). Many of these factors play 

important roles during embryonic and post-natal nervous system formation. As they 

have also been found to be present during processes of massive recovery after lesion 

this suggests that there is a correlation between development and regeneration. These 

tissues may recapitulate some aspects of the developmental programs used in the initial 

creation of the injured tissues (Brockes, 1997; Brockes and Kumar, 2002). 

In different lesion models, the time course and pattern of ORN replacement 

clearly depends both on the type and rate of ORN death, and the extent of cell types lost 

(Carter et al., 2004). It would be interesting to compare the differences observed in the 

regenerative process in larval X. laevis, under varied lesion models. In the model chosen 

for this study - transection of the ON - only the ORNs are targeted for cell death. In this 

way, the OB is intact and available for re-targeting by newly formed pioneering axons, 

and the proliferating stem cell population in the OE is left unharmed. It would be 

interesting to compare these results with lesion models in which various cell 

populations in the OE are damaged and/or the OB is made unavailable for ORN 

targeting. 
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5.3. Glomerular responses are lost after olfactory nerve transection, 

and recover after 6-7 weeks 

After ON transection in larval X. laevis it appears that the OE recovers 

morphological structure 1 week after unilateral transection of the ON, at which time the 

first axons reach the olfactory bulb (OB) and begin the process of reinnervation. In the 

weeks following lesion, pioneering axons are visible and these apparently are successful 

in re-targeting the OB. Only spontaneous activity of mitral/tufted cells is observed in 

the OB during the first weeks after transection. This indicates that mitral/tufted cells 

persist in the OB after extensive ORN cell death. It could be that M/TCs in larval X. 

laevis survive after losing their pre-synaptic partner and continue to show spontaneous 

activity. This spontaneous activity could also be a modulatory mechanism during the 

process of axon retargeting, assisting in the correct reconnection of synaptic partners. 

After 3-4 weeks glomerular responses were observed in some animals upon odor 

stimulus application, but the response and glomerular morphology were clearly altered 

when compared to non-transected control side of OB. 

  How do the odor representations carried by ORN inputs to the OB recover after 

massive loss and regeneration of the ORN population? The OS of larval X. laevis seems 

to recover morphologically and functionally 6-7 weeks after unilateral transection of the 

ON. This recovery is apparently quite extensive and function is clearly restored, but it 

would be interesting to see what alterations occur after lesion, at a more detailed level. 

Once the spatiotemporal odor evoked map has been established for larval X. laevis, 

under normal conditions, a comparison with altered models subjected to different forms 

of lesion will be possible, and more detailed deductions can be made regarding the basic 

factors that influence degeneration and regeneration in the OS.   

In the mouse OS, the olfactotoxin methyl bromide was used to eliminate 

functional ORN inputs to the OB. Responses recovered after lesion to near-normal 

levels of magnitude within 12 weeks, although some evidence of mistargeting of the 

regenerated ORN axons onto OB targets was found. This shows how the OS has 

extensive ability in reestablishing connections to the CNS, and indicates that the 

mechanisms mediating ORN targeting during bulbar reinnervation throughout 

developmental stages remain active after development is complete, and allow sensory 

representations to be greatly restored after massive ORN loss. Other studies have 
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reported on the regenerative capacity and glomerular convergence of specific ORN 

populations, and shown that odor memories are conserved after ORN lesion and 

recovery (Schwob et al., 1999; Costanzo, 2000; Cummings et al., 2000; St. John and 

Key, 2003; McMillan Carr et al., 2004; Blanco-Hernández et al., 2012). The 

mechanisms underlying the reestablishment of topography are not yet fully elucidated, 

but may include axonal guidance cues (Schwob, 2002; Schwarting and Henion, 2011), 

olfactory receptor identity (Feinstein et al., 2004) and the ORN cell type (Bozza et al., 

2009). The number of ORNs surviving the lesion seems to be related to the degree of 

mistargeting after recovery (Schwob et al., 1999). Retargeting of certain specific ORN 

populations to their appropriate glomerulus was found to be normal if only these 

neurons were selectively lesioned (Gogos et al., 2000). Also, a higher target precision 

was observed for ORNs recovered after chemical lesions that spared the lamina propria 

(Blanco-Hernández et al., 2012). Altogether, results indicate that the ability of the OE to 

recover and reestablish functional inputs to the OB persists even after extreme 

peripheral damage, but is dependent on the extent of this damage. 

Recovery of function in the OS of larval X. laevis was observed after transection 

of the ON. Nonetheless, metamorphosis is eminent and extensive regeneration of the 

OS may seem unnecessary, as the whole system will soon be completely reorganized. 

Since recovery was observed, this indicates that olfaction in larval X. laevis may be of 

great importance to survival. Or more interestingly, the function of the OS in larval X. 

laevis may somehow be relevant to or influence function of the OS after 

metamorphosis, in the adult frog. Although during metamorphosis the gradual 

reorganization of the OS involves the replacement of most ORNs and substantial 

rewiring, the OS never loses its capacity to process olfactory information. 

The OS of larval X. laevis seems to recover morphologically and functionally 6-

7 weeks after unilateral transection of the ON. This recovery is apparently quite 

extensive and function is restored, but it would be interesting to see what alterations 

occur after lesion, at a more detailed level. Once the spatiotemporal odor evoked map 

has been established for larval X. laevis, under normal conditions, a comparison with 

altered models subjected to different forms of lesion will be possible, and more detailed 

deductions can be made regarding the basic factors that influence degeneration and 

regeneration in the OS. Once the odor map is well established for Xenopus, it can be 

used as control to compare to odor evoked maps of animals that have recovered 
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olfactory function after lesion. This will allow us to functionally characterize the short 

and long-term effects different lesions have on this system. Knowing in detail how the 

OB responds to different stimulus, and how these responses are altered after injury, will 

allow a clearer view of how the brain recovers after lesion. 
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