
 

Universidade de Aveiro 

2014  

Departamento de Biologia 

ANA CATARINA 
FERNANDES 
MOREIRINHA 
 

DESENVOLVIMENTO DE ESPECTROSCOPIA DE 
INFRAVERMELHO PARA AVALIAR A QUALIDADE 
BACTERIANA EM ALIMENTOS 
 
DEVELOPMENT OF INFRARED SPECTROSCOPY 
FOR ASSESSING BACTERIAL QUALITY IN FOODS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



 

 

Universidade de Aveiro 

2014 

Departamento de Biologia 

ANA CATARINA 
FERNANDES 
MOREIRINHA 
 
 

DESENVOLVIMENTO DE ESPECTROSCOPIA DE 
INFRAVERMELHO PARA AVALIAR A QUALIDADE 
BACTERIANA EM ALIMENTOS 
 
DEVELOPMENT OF INFRARED SPECTROSCOPY 
FOR ASSESSING BACTERIAL QUALITY IN FOODS 
 
 

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos 
necessários à obtenção do grau de Doutor em Biologia, realizada sob a 
orientação científica da Doutora Ivonne Delgadillo, Professora Associada com 
Agregação do Departamento de Química da Universidade de Aveiro, da 
Doutora Adelaide Almeida, Professora Auxiliar do Departamento de Biologia da 
Universidade de Aveiro e do Doutor Jorge Saraiva, Investigador Auxiliar do 
Departamento de Química da Universidade de Aveiro 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Apoio financeiro da Fundação para a 
Ciência e Tecnologia e do Fundo 
Social Europeu no âmbito do III 
Quadro Comunitário de Apoio  
(Bolsa de Doutoramento: 
SFRH/BD/71512/2010). 
  

 
 



 

 



 

  
 

 
 
 

 
 

o júri   
 

Presidente Doutor Paulo Jorge de Melo Matias Faria de Vila Real 
Professor Catedrático, Departamento de Engenharia Civil, Universidade de 
Aveiro 
 
Doutora Maria Luísa Duarte Martins Beirão da Costa  
Professora Catedrática Aposentada, Instituto Superior de Agronomia, Universidade 
Técnica de Lisboa 
 

Doutora Ivonne Delgadillo Giraldo 
Professora Associada com Agregação, Departamento de Química, Universidade de 
Aveiro 

 
 Doutora Cândida Ascensão Teixeira Tomaz  

Professora Associada, Departamento de Química, Universidade da Beira Interior 

 
Doutora Ana Maria Pissarra Coelho Gil  
Professora Associada com Agregação, Departamento de Química, Universidade de 
Aveiro 

 
Doutora Maria Teresa Ferreira de Oliveira Barreto Goulão Crespo 
Investigadora Principal, Instituto de Biologia Experimental Tecnológica 

 
Doutora Paula Cristina Maia Teixeira  
Professora Auxiliar, Escola Superior de Biotecnologia, Universidade Católica 
Portuguesa 

 
Doutora Maria Adelaide de Pinho Almeida 
Professora Auxiliar, Departamento de Biologia, Universidade de Aveiro 

 

  

  

  

  

  

  

  

  

  

  

  

 

 

 

http://www.ibet.pt/


  

  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
agradecimentos 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Agradeço à minha orientadora, Doutora Ivonne Delgadillo, por me ter ajudado 
a crescer no meio científico, pela confiança e, acima de tudo, pela amizade. 
Por ter sido mais do que uma orientadora com quem foi um enorme prazer 
trabalhar, quero expressar a profunda admiração e respeito que lhe tenho. 
 
À minha co-orientadora, Doutora Adelaide Almeida, e ao meu co-orientador, 
Doutor Jorge Saraiva, um enorme obrigada a ambos por toda a ajuda, pelo 
incentivo e pela grande disponibilidade que mostraram para me ajudar sempre 
que precisei. 
 
Aos co-autores do trabalho científico: Doutora Alexandra Nunes, Mestre Joana 
Trindade e Doutor António Barros, pelo seu valioso contributo. 
  
A todos os meus queridos colegas do QOPNA, por todo o companheirismo, 
pelo bom ambiente, e pela amizade. Apesar de agradecer a todos, não posso 
deixar de expressar um obrigada especial ao Ângelo e ao Mickael, 
companheiros de “viagem”, pelo apoio, amizade e boa disposição, à Anne 
Marie que esteve sempre presente, não só no laboratório como fora dele, à 
Josiane e à Angélica, por todo o apoio e amizade. Muito obrigada :) 
 
Não posso deixar de agradecer também à nossa querida Dulce Helena pela 
amizade e simpatia e por sempre arranjar maneira de solucionar tudo. 
 
Aos meus colegas da Biologia, por toda a ajuda e disponibilidade. 
 
Porque tenho os melhores amigos do mundo, não podia deixar de lhes 
agradecer o facto de estarem sempre ao meu lado e me apoiarem 
incondicionalmente. Um grande obrigada a todos, em especial à Diana, à 
Andréa, ao Zé, à Filipa, à Carlota, à Ângela, ao Samuel, à Teresa, à Joana. Os 
momentos que passei convosco durante estes anos foram valiosos e 
imprescindíveis para que tudo corresse pelo melhor. 
 
Ao Rui e à Nádia, meus “irmãos” em Aveiro, pela família que fomos. Ajudou 
muito ter sempre motivos para rir lá em casa mesmo que os dias por vezes 
não fossem os melhores. 
 
Deixo ainda um profundo agradecimento aquelas velhas amigas que estão e 
sempre estiveram lá nos bons e nos maus momentos e que já me aturam há 
séculos: Isabel Sofia e Carla. A vossa amizade é preciosa :)  
 
Aos meus pais, à minha irmã, às minhas avós e ao meu primo, por tudo. Não 
há palavras que possam descrever todo o apoio que me prestaram ao longo 
desta aventura. 
 

 
 

 





 

  

 

 

 

 

 

 

 

 

 

 

  

palavras-chave 

 
Microbiologia alimentar, espectroscopia de Infravermelho, processamento por 
alta pressão, análise multivariada, bactérias alimentares, deterioração de 
alimentos, doenças transmitidas por alimentos. 

resumo 
 

 

A deteção rápida e específica de bactérias que podem provocar deterioração 
de alimentos ou doenças associadas ao seu consumo é cada vez mais 
importante na indústria alimentar. A deteção, identificação e classificação de 
bactérias são geralmente realizadas utilizando métodos tradicionais baseados 
em testes bioquímicos e/ou serológicos e em métodos moleculares baseados 
em análise de DNA ou RNA. Contudo, estas metodologias são dispendiosas, 
demoradas e trabalhosas. A espectroscopia de infravermelho é uma técnica 
confiável, rápida e económica, que pode ser explorada como ferramenta para 
a indústria alimentar. Nesta tese foi avaliado o potencial da espectroscopia de 
infravermelho para estudar a qualidade bacteriana de alimentos. 
No capítulo 2, foi desenvolvido um modelo de calibração que permitiu prever 
com sucesso a concentração bacteriana de fiambre naturalmente 
contaminado, mantido em refrigeração durante 8 dias. Nesta parte, foi 
desenvolvida a metodologia que permitiu obter a melhor reprodutibilidade dos 
espectros das colónias de bactérias, com preparação mínima das amostras, 
que foi utilizada no trabalho subsequente. Foram realizadas várias tentativas 
para a obtenção de espectros de infravermelho, testando diferentes resoluções 
e número de scans. Os melhores resultados foram obtidos utilizando uma 
resolução espectral de 4 cm-1 e 32 varrimentos. 
De seguida, no capítulo 3, foi feita uma tentativa de identificar 22 bactérias 
provenientes de alimentos usando a espectroscopia de infravermelho 
associada a análise multivariada. A análise de componentes principais, 
utilizada como método exploratório, permitiu a formação de grupos distintos, 
cada um correspondendo a um género diferente, na grande maioria dos casos. 
Posteriormente, foi realizada uma análise hierárquica por clusters de forma a 
investigar a formação de grupos e a possibilidade de distinção de espécies 
dentro de um mesmo género de bactérias. Observou-se que a espectroscopia 
de infravermelho é adequada não só para a distinção de diferentes géneros, 
mas também para diferenciar espécies dentro de um mesmo género, com o 
uso simultâneo de análise de componentes principais e análise hierárquica por 
clusters.  
A utilização de espectroscopia de infravermelho e análise estatística 
multivariada foram também investigadas no capítulo 4 para confirmação da 
presença de Listeria monocytogenes e Salmonella spp., isoladas a partir de 
alimentos contaminados, após crescimento em meio selectivo. Isto permitiria a 
substituição dos métodos bioquímicos e serológicos que são usados para 
confirmar a presença destas bactérias patogénicas e que podem atrasar a 
obtenção de resultados por 2 dias. Os resultados obtidos permitiram a  
distinção de Salmonella spp. de outras bactérias que se possam confundir com 
elas. 
 

 



 



 

 

 

 

 

resumo 
 

 

Por fim, no capítulo 5, o processamento por alta pressão, uma metodologia 
emergente que permite produzir alimentos microbiologicamente seguros e 
aumentar o seu tempo de prateleira, foi aplicada a 12 bactérias alimentares, de 
forma a determinar a sua resistência e os efeitos da pressão a nível das 
células. Foi aplicado um tratamento de 300 MPa, à temperatura ambiente e 
durante 15 minutos. As bactérias de Gram-negativo foram inativadas até níveis 
não detetáveis, enquanto as de Gram-positivo mostraram diferentes níveis de 
resistência. As espécies Bacillus cereus e Staphyloccus aureus decresceram 
apenas 2 unidades logarítmicas enquanto a espécie Listeria innocua diminuiu 
cerca de 5 unidades logarítmicas. A espectroscopia de infravermelho foi 
utilizada na análise das colónias bacterianas antes e após o tratamento por 
alta pressão, de forma a investigar as alterações que são provocadas nos 
componentes celulares com este tipo de processamento. Descobriu-se que a 
alta pressão altera bandas espectrais correspondentes a alguns componentes 
celulares, de entre os quais proteínas, lípidos, oligopolissacarídeos, grupos 
fosfato da parede celular e ácidos nucleicos, podendo indicar rutura da 
parede/membrana celular. 
Neste trabalho, a quantificação de bactérias e a sua classificação, bem como a 
análise de modificação nos componentes celulares após processamento por 
alta pressão foram realizados com sucesso. Assim, a espectroscopia de 
infravermelho demonstrou ser uma técnica bastante promissora para analisar 
bactérias provenientes de alimentos de uma forma simples e pouco 
dispendiosa. 
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abstract 
 

Rapid and specific detection of foodborne bacteria that can cause food 
spoilage or illness associated to its consumption is an increasingly important 
task in food industry. Bacterial detection, identification, and classification are 
generally performed using traditional methods based on biochemical or 
serological tests and the molecular methods based on DNA or RNA 
fingerprints. However, these methodologies are expensive, time consuming 
and laborious. Infrared spectroscopy is a reliable, rapid, and economic 
technique which could be explored as a tool for bacterial analysis in the food 
industry. 
In this thesis it was evaluated the potential of IR spectroscopy to study the 
bacterial quality of foods.  
In Chapter 2, it was developed a calibration model that successfully allowed to 
predict the bacterial concentration of naturally contaminated cooked ham 
samples kept at refrigeration temperature during 8 days. In this part, it was 
developed the methodology that allowed the best reproducibility of spectra from 
bacteria colonies with minimal sample preparation, which was used in the 
subsequent work. Several attempts trying different resolutions and number of 
scans in the IR were made. A spectral resolution of 4 cm-1, with 32 scans were 
the settings that allowed the best results. 
Subsequently, in Chapter 3, it was made an attempt to identify 22 different 
foodborne bacterial genera/species using IR spectroscopy coupled with 
multivariate analysis. The principal component analysis, used as an exploratory 
technique, allowed to form distinct groups, each one corresponding to a 
different genus, in most of the cases. Then, a hierarchical cluster analysis was 
performed to further analyse the group formation and the possibility of 
distinction between species of the same bacterial genus. It was observed that 
IR spectroscopy not only is suitable to the distinction of the different genera, but 
also to differentiate species of the same genus, with the simultaneous use of 
principal component analysis and cluster analysis techniques. 
The utilization of IR spectroscopy and multivariate statistical analysis were also 
investigated in Chapter 4, in order to confirm the presence of Listeria 
monocytogenes and Salmonella spp. isolated from contaminated foods, after 
growth in selective medium. This would allow to substitute the traditional 
biochemical and serological methods that are used to confirm these pathogens 
and that delay the obtainment of the results up to 2 days. The obtained results 
allowed the distinction of 3 different Listeria species and the distinction of 
Salmonella spp. from other bacteria that can be mistaken with them. 
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Finally, in chapter 5, high pressure processing, an emerging methodology that 
permits to produce microbiologically safe foods and extend their shelf-life, was 
applied to 12 foodborne bacteria to determine their resistance and the effects of 
pressure in cells. A treatment of 300 MPa, during 15 minutes at room 
temperature was applied. Gram-negative bacteria were inactivated to 
undetectable levels and Gram-positive showed different resistances. Bacillus 
cereus and Staphylococcus aureus decreased only 2 logs and Listeria innocua 
decreased about 5 logs. IR spectroscopy was performed in bacterial colonies 
before and after HPP in order to investigate the alterations of the cellular 
compounds. It was found that high pressure alters bands assigned to some 
cellular components as proteins, lipids, oligopolysaccharides, phosphate 
groups from the cell wall and nucleic acids, suggesting disruption of the cell 
envelopes.  
In this work, bacterial quantification and classification, as well as assessment of 
cellular compounds modification with high pressure processing were 
successfully performed. Taking this into account, it was showed that IR 
spectroscopy is a very promising technique to analyse bacteria in a simple and 
inexpensive manner. 
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Thesis outline 
 

The present  thesis  documents  the  research  work  carried  out  in  the scope  of the 

development of mid-infrared spectroscopy (MIR) applications to analyse foodborne 

microorganisms after growth in solid media. 

 Nowadays, the accurate and reliable detection, identification and quantification of 

microorganisms in food are critical to public safety, since it is essential to avoid outbreaks 

caused by foodborne bacteria. Consequently, it is of extreme importance to develop rapid and 

inexpensive methods for the analysis of food microorganisms. Mid-infrared spectroscopy, 

coupled to multivariate analysis, has potential to be used as a first-screening approach and to 

assess the microbial concentration and classification, avoiding the traditional plating and 

identification methods that are time consuming, laborious and expensive.  

This document is divided in six chapters. 

 The first chapter comprises the general introduction and objectives. In this chapter, a 

literature review is presented in order to provide an insight for the work carried out, and the 

objectives are specified. 

In chapter 2, the potential of MIR spectroscopy is evaluated in order to assess the 

microbial quality of cooked ham. A partial least squares regression is performed to determine 

the microbial loads of naturally contaminated ham samples in a few minutes, using mid-

infrared spectroscopy. In this chapter, it was developed the method to directly analyse the 

colonies, after growth in solid medium, with MIR spectroscopy, that was applied in the 

subsequent work. 

In chapter 3 are presented the results on the attempt to identify foodborne bacteria 

with mid-infrared spectroscopy, using multivariate statistics. For this, bacteria isolated from 

fish, meat and cooked ham, as a case study, as well as other foodborne important bacteria 

previously isolated or obtained from culture collections, were used. Principal component 

analysis was performed to allow the identification of spectral groupings of the bacteria and 

then hierarchical cluster analysis was applied, in order to evaluate the possibility to quickly 

identify the studied bacteria.  

In chapter 4, an alternative method for the identification of Salmonella spp. and 

Listeria spp. is presented, using infrared spectroscopy coupled with multivariate analysis. 

These are two of the most dangerous foodborne pathogens and their identification with 

traditional methodologies can take up to 7 days, of which 2 of them are needed for the 

biochemical confirmation. It was intended to assess if this final confirmation step can be 
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substituted with infrared spectroscopy, as long as the pathogens are plated in their specific 

obligatory media used in food analysis. 

In chapter 5, a novel and emerging food processing technology, high pressure 

processing, is used in some foodborne microorganisms, in order to assess the decrease of 

microbial loads and understand cellular modifications triggered by pressure. For this, cells 

grown in agar medium were submitted to a 300 MPa pressurization for 15 minutes at room 

temperature. Mid-infrared spectroscopy was performed on the pressurized whole cells, for the 

first time, in order to quickly determine at which extent the pressure processing modified the 

different bacteria cellular components.  

Chapter 6 presents the main conclusions of this work, as well as ideas to pursue the 

line of research dealt with in this thesis. 

Chapter 7 presents the bibliographic references used in this thesis. 
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1.1. Food spoilage, safety and shelf-life 
 

The three main categories of food spoilage that can occur are physical, chemical and 

microbial spoilage. Physical damage can be caused by poor handling. Physical changes caused 

by moisture migration are dependant of the temperature, which is one of the more important 

factors that influence the rate of spoilage. Microbial growth rates, oxidation of lipids and 

pigments, browning reactions and vitamin losses are directly controlled by temperature. 

Chemical reactions that involve fats, proteins, carbohydrates and micronutrients can produce 

changes to the colour, flavour or texture of foods that consumers can find unacceptable [1], 

[2].  

The microbiological quality of food became a very important factor for food industries 

as well as for the regulation agencies, both in terms of food spoilage and microbial safety. 

Food products deteriorate over time and although it cannot be totally prevented, one aim of 

food processing is to slow the deterioration rate by selecting appropriate processing 

technology, ingredient formulation, storage conditions and packaging [3]. 

The shelf-life of food products refers to the storage time until spoilage by 

microorganisms reaches a pre-determined threshold or when deterioration of one or more 

nutrients means that a food no longer has its declared nutritional value [2]. Microbial spoilage 

may be defined by a maximum acceptable microbial level or an unacceptable appearance or 

off-odour/off-flavour and depends on the types and number of microorganisms that are 

present [4]. 

The main factors that control the microbial type, growth and activity are the 

availability of nutrients in the food (e.g. carbon and nitrogen sources), pH, water activity (aw), 

redox potential, presence of chemical preservatives, storage conditions (temperature, light 

exposure, oxygen), stage of growth of microorganisms and presence of other competitor 

microorganisms [5]. 

 

1.1.1. Microbial spoilage of foods 

 

For many foods, microorganisms are the most important and rapid causes of spoilage. 

It is not always the quantity of microorganisms that indicates the extent of spoilage, but their 

activity.  

Highly active microorganisms may affect the quality of the foods by one of the 

following mechanisms [2], [3], [6]: 
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 Production of extracellular hydrolytic enzymes (cellulolytic enzymes, pectinases, 

proteases, carbohydrases) that alter the structure of the foods resulting in softening or 

liquefaction; 

 Production of enzymes that break down macromolecules to release for example 

organic acids or hydrogen sulphide. Lipases break down fats to fatty acids and volatile 

compounds, leading to the production of off-odours in foods, whereas non-volatile 

compounds may produce changes in the flavour; 

 Gas production that may cause the product to swell or split or inflate the package; 

 Acid production altering the colour of the food natural pigments or change the taste; 

 Production of pigments altering the food colour; 

 Production of polysaccharides that cause sliminess in food. 

 

When substantial microbial growth takes place, colonies on the food can be visible. 

The microbial spoilage of food products includes moulds, yeasts and bacteria. There are some 

species of moulds frequently associated to food spoilage, such as Penicillium, Fusarium, 

Rhizopus and Aspergillus. The most important aspect of fungi spoilage of food is, however, the 

formation of mycotoxins. Nowadays, there are more than 400 known mycotoxins, being the 

aflatoxins the best known. These toxins can be very toxic and cause serious illnesses or even 

death [7]–[9]. Yeasts are used in fermentation procedures, but some species can cause food 

spoilage as well, being common in products with high sugar content and acidity, which restrict 

the growth of competing bacteria. Enteric viruses, such as Enterovirus, Hepatitis A viruses, 

Norovirus and Rotavirus, are also frequently transmitted by food [10]. 

Concerning bacteria, there are a lot of species that can cause spoilage in many 

different foods or cause illness associated to food consumption. Most food spoilage bacteria 

can grow below water activity of 0.91, being halophilic bacteria capable to grow at water 

activity of 0.75. The optimum pH range for the growth of most bacterial species is between 6 

and 7. However, lactic acid bacteria have an optimum growth at pH 5.5-5.7 and some species 

can grow in foods at pH 4 or lower. The oxidation-reduction potential at which microorganisms 

grow determine if they are aerobic (positive oxidation-reduction values) or anaerobic (negative 

oxidation-reduction values). Facultative aerobes can grow at both situations [7]. 

Depending on the storage temperature of the food products, bacteria can grow 

rapidly, slowly, stop growing or even die. Mesophilic bacteria can grow between 

approximately 10 and 45°C and grow best between 30 and 40°C. Psychotrophic bacteria grow 

best between 20 and 30°C but can grow at below 7°C. Thermophiles grow at higher 
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temperatures and grow best between 55 and 70°C, although they can also grow at lower 

temperatures [1], [2], [7]. 

At the point of sensory rejection (spoilage), the microflora consists of microorganisms 

that have contributed to the spoilage and microorganisms that have grown but not caused 

unpleasant changes, being called specific spoilage organisms of the product. Every food 

product harbours its own specific and characteristic microflora at any given point in time 

during production and storage. This microflora is a function of raw material flora, processing, 

preservation and storage conditions. Regardless of the variability in all of these three 

parameters, some very clear patterns occur, and based on knowledge of chemical and physical 

parameters it is possible to predict which microorganisms will grow and dominate in a 

particular food product [11]. 

 

Bacterial spoilage of meat  

For centuries, meat and its derived products have constituted some of the most 

important foods consumed around the world. Animal meats are considered to be significant 

reservoirs of pathogenic microorganisms. Human pathogens from animal sources continuously 

enter the food supply chain, where cross-contaminations during processing can occur, leading 

to a high rate of contamination of retail meat and meat products [12]. 

Meat is a highly perishable food product which, unless properly stored, packaged and 

distributed, spoils rapidly and becomes hazardous due to microbial growth. The combination 

of intrinsic and extrinsic factors determines the microbial spoilage of the meat. The intrinsic 

nature of most raw meats, namely their high water activity (>0.98), moderate pH (5.5-6.5), 

readily available sources of energy, carbon and other nutrients makes them an ideal medium 

to the growth of microorganisms. The primary and most important extrinsic factor that can 

potentiate the growth of spoilage bacteria is the temperature, being this a critical control point 

[13]. Meat surface is suitable for the growth of psychotrophic aerobes and Gram-negative 

bacteria grow easily and dominate the spoilage microflora. The main genera of spoilage 

bacteria found in raw meat are Pseudomonas, Acinetobacter and Psychrobacter. Other 

organisms such Enterobacteriaceae or lactic acid bacteria are a minor component of the 

spoilage microflora [5]. 

The initial bacterial count on meat is about 102-103 CFU/g. Ninety per cent of the initial 

bacteria are not able to grow at refrigeration temperatures. The heating of the meat products 

to temperatures above 65°C kills most of the vegetative cells. Post-heat conditions determine 

the shelf-life of the food products. During storage, temperature, pH, NaCl and gaseous 



Chapter 1.                 General introduction and objectives 

 

14 
 

atmosphere select some bacteria, affecting their growth rate and activity. The maximum level 

of bacteria reached during refrigerated storage of meat is 107-109 colony forming units (CFU)/g 

and 107-108 for meat products [14].  

Meat processing, in order to enhance the products quality and microbial safety, is 

often performed. An example of processed meat is cooked ham.  Cooked ham processing 

involves the use of a salt brine that is either injected or infused by soaking, followed by a heat 

treatment, with the objective to obtain a product with high sensorial quality and 

microbiologically safe. The final percentage of salt content in ham after this processing is 

usually about 2%. Nitrite is also added (120-150 mg per kg) in order to enhance ham colour 

and antioxidant activity and also to preserve from pathogens [15]. However, this product is 

very sensitive to recontamination, mainly by lactic acid bacteria, during post-treatment 

handling such as slicing [16].  

 

Bacterial spoilage of fish 

The demand for fish products has been increasing in the last decades, mainly because 

of its role in human health. Fish is known to be a valuable food, low in saturated fatty acids, 

good source of protein and selenium and a good source of long-chain omega-3 fatty acids [17]. 

The high levels of moisture, nutrients, other nitrogenous compounds, digestible 

proteins and the high pH attained after post-mortem makes fish an easily perishable food. As 

fish carries a variety of microorganisms from both aquatic and terrestrial sources, microbial 

spoilage can occur in a short period of time even under refrigeration. In addition, seafood may 

contain various potential public health hazard pathogens. As a rule, fish spoil more rapidly 

than meat under similar chill conditions. The pH of post-rigor meat muscle is lower than that of 

fish and this contributes to the longer storage life of meat. The pH-sensitive genus Shewanella 

plays a significant role in fish spoilage but has not been reported in meat [5]. 

In general, microflora of fish species is usually dominated by psychotrophic Gram-

negative genera like Pseudomonas, Shewanella, Acinetobacter, Aeromonas, Photobacterium 

and Vibrio. Gram-positive organisms such as Micrococcus, Bacillus, Staphylococcus are also 

commonly found in fish samples [18], [19]. In Europe, hake and cod are two of the more 

consumed fishes. Hake is usually sold on fresh ice and cod is normally salted and dried, having 

the necessity to be desalted before consumption. Drying and salting are long processes, highly 

manipulative and with high potential for environmental transfer of microorganisms to the 

product. Growth of the pathogenic and spoilage bacteria is repressed in low water activity 

environments [20]. However, some bacterial genera like Vibrio, Listeria and Staphylococcus can 
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survive on high salt concentration substrates (above 10% NaCl) [21]. During desalting, these 

bacteria could grow, causing food spoilage and threatening the consumers health, particularly 

because cod can be eaten raw or after a quick/soft cooking. European commission [22] 

established the regulation for microbiological criteria of fish products, as well as the 

permissible levels for several bacteria in this food product. The most common pathogenic 

bacteria that can cause infections and have been associated to fish and meat consumption are 

summarized in the next section. 

 

1.1.2. Foodborne diseases caused by bacteria 

 

Foodborne disease outbreaks have devastating health and economic impacts all over 

the world. Illness associated to food consumption is one of the most widespread health 

problem in the contemporary world and it has been defined by the World Health Organization 

as “Any disease of an infectious or toxic nature caused by, or thought to be caused by, the 

consumption of food or water” [5]. Foodborne diseases arise mainly from harmful chemicals or 

from microorganisms. They can range from relatively mild, self-limiting gastrointestinal upsets 

through life-threatening conditions such as botulism. Within microorganisms, there are 

numerous bacteria that have been associated to foodborne illness. In this section it is 

performed a brief description of some of the most important bacterial pathogens that can be 

present on fish and meat/meat products. 

 

Aeromonas spp. 

Aeromonas species are Gram-negative and non-spore-forming rods of the family 

Aeromonadaceae. They grow optimally at 28°C but they also have the ability to grow at cold 

temperatures, reported as low as -0.1°C for some strains [23]. This pathogen has been found in 

water and in a wide range of foods, including vegetables, meat, fish and seafood [24].  

Some species of Aeromonas can cause gastrointestinal infections. A. hydrophila is the 

most widespread representative species on the subject of foodborne illness. It causes 

gastroenteritis and diarrhoea, being also associated to other diseases including inflammation 

of the gallbladder, septicaemia and meningitis that can cause death in more than 60% of the 

cases [25]. The incubation time of this genus is 1-2 days and the symptoms can last from 1 to 

10 days, in most of the cases [24]. The main Aeromonas spp. virulence factors that can be 

associated with foodborne diseases are the secretion of exotoxins, the endotoxin or 

lipopolysaccharide (LPS), the presence of S-layers, the adhesins and the production of capsules 

in glucose-rich medium [26]. 
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Bacillus cereus 

Bacillus cereus is a rod-shaped Gram-positive and spore-forming food pathogen of the 

Bacillaceae family. Its optimum growth temperature is 30°C but it can grow between 10°C and 

50°C as well [27]. This species is a normal soil inhabitant and can be mainly isolated from meat, 

cereals, vegetables and dairy products  [27].  

Bacillus cereus must be present at high levels (105 -108) in food to produce sufficient 

toxins and lead to food poisoning. It can cause two types of food poisoning: nausea and 

vomiting caused by an emetic toxin produced in foods and diarrhoea and abdominal pain 

without vomiting caused by diarrhoeagenic toxins produced in the small intestine. The emetic 

type is most frequently associated with rice products, where spores survive heating and 

germinate after cooling product, and the diarrhoeal type of toxin is found in meat, milk and 

vegetables, where cells survive heat processing, multiply before consumption and produce 

toxins in the intestine. Usually, the illness lasts 24 hours. The incubation period of the emetic 

type is very short, from 30 minutes to 6 hours, and the diarrhoeal type incubation time is 

between 6 and 15 hours. Other Bacillus species also can cause food poisoning, such as B. 

subtilis and B. thuringiensis [28]. 

 

Brucella spp. 

Brucella is a genus of Gram-negative small non-spore-forming coccobacillus of the 

Brucellaceae family. The optimal temperature growth of this bacterium is at 37°C but it also 

grows between 10 and 40°C. 

Brucellosis is primarily a disease of animals (zoonosis) but it was firstly recognized as a 

disease that manifested in humans, which is caused by three strains: B. abortis (from cows), B. 

melitensis (from goats and sheeps) and B. suis (from pigs). The disease may be mainly 

contracted either by consumption of milk or unpasteurized dairy products, however, Brucella 

can also be found in undercooked meat samples [29], [30]. 

The acute symptoms of brucellosis include weakness, fatigue, muscle and joint pain 

and weight loss. It may cause chronic health problems as joint inflammation, cardiovascular 

and neurological complications, insomnia and depression [3], [25], [31]. Following exposure, 

signs of illness usually appear within 3 weeks. With appropriate antibacterial treatment, it is 

possible to get resolution of disease in only a few weeks; however, even with treatment, 

symptoms may reappear and last for months or even years [32]. 

Brucella spp. are facultative intracellular pathogens that are able to evade the 

destruction by phagocytes in the host organisms. These mechanisms are not fully understood 
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but it has been proposed that lipopolysaccharides act as virulence factors and are important 

for Brucella replication and survival. VirB proteins that form the type IV secretion system and 

that are involved in intracellular replication are also considered as one of Brucella virulence 

factors. Moreover, some virulent strains contain a Cu-Zn superoxide dismutase enzyme that 

inhibits oxygen radicals [31], [33].  

 

Campylobacter spp. 

Campylobacter is a genus of Gram-negative motile and non-spore-forming bacteria 

with a spiral appearance that belongs to the Camplylobacteriaceae family. These species are 

thermophilic (optimum growth at 37-40°C) but can survive at lower temperatures. This 

bacteria is sensitive to freezing, heating, drying and acidity. As this genus can be found in the 

intestines of many wild and domestic animals, the principal vehicles of infection are 

undercooked meats and contaminated water [5]. 

Gastrointestinal illness due to Campylobacter spp. is one of the most commonly 

reported bacterial cause of infectious intestinal disease worldwide. The most important 

species, which causes up to 90% of the infections caused by this genus, is C. jejuni. The 

incubation period goes from 2 to 11 days and the symptoms, in spite of lasting long (up to 

three weeks), are generally mild, and the patients do not require treatment except 

rehydration. Even though cells do not survive in foods for long periods, they are highly virulent. 

[3], [31]. The infection dose is low, probably much lower than the 500 CFU quoted most 

frequently [29]. The mechanisms of pathogenesis are unclear, but it is suggested that LPS is a 

virulence factor. In motile strains, flagella are also important in virulence, as non-motile strains 

are not able to colonize the intestinal tract. Also, the presence of plasmids play an important 

role in the pathogenesis [31], [34]. 

 

Clostridium botulinum and Clostridium perfringens 

Clostridium botulinum is a Gram-positive, rod-shaped, spore-forming bacterium of the 

Clostridiaceae family. It is strictly anaerobic and can sporulate under adverse conditions. It 

includes organisms that differ in physiological properties or genetic relatedness. The optimum 

growth temperatures can range between 20-40°C depending on the group, but some strains 

can grow at temperatures as low as 3°C. Some groups have the ability to produce the most 

potent toxin known, the botulinum neurotoxin, with a lethal dose of less than 1 µg in humans 

[35]. Symptoms of botulism appear within 12-36 hours after contaminated food ingestion. 

They include vomiting, nausea, double vision and difficulty in swallowing, following by muscle 
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weakness and respiratory failure. An antitoxin has been developed and it reduces the mortality 

rate if it is quickly administrated, but patients may still need artificial respiration to enable 

recovery. Because of the severity of the intoxication, canning industry takes particular care to 

ensure the elimination of this pathogen. However there are cases arising from home vegetable 

canning, under-cooked fish or inclusion of herbs and spices in cooking oils [36]. 

Clostridium perfringens is, as C. botulinum, an anaerobic Gram-positive, rod-shaped, 

spore forming bacterium. This species doubles in number in about 8 minutes under optimal 

conditions (43-45°C), being one of fastest growing food poisoning bacteria. It can be found in 

cooked meats that were inappropriately cooked or refrigerated. Some isolates produce toxins 

that cause mild symptoms that last for about 24 hours, after an incubation period of 8-24 

hours [3]. 

 

Enteropathogenic Escherichia coli 

E. coli is a Gram-negative rod-shape and non-spore-forming bacterium from the 

Enterobacteriaceae family. It grows both aerobically or anaerobically with an optimum growth 

at 37°C but it can survive at refrigeration temperatures. E. coli is one of the most common 

bacteria in the human intestine and it is used as an indicator of faecal contamination. 

Regarding pathogenic strains, enteropathogenic E. coli is the most common and can form 

distinctive lesions on the surfaces of intestinal epithelial cells. Illness caused by E. coli is 

associated to the consumption of a wide variety of foods including water, vegetables, fish, and 

meat. The symptoms appear between 5 and 48 hours after food consumption. Some strains 

can cause illnesses and recently food poisoning outbreaks were associated with Vero 

cytotoxin-producing enterohemorragic E. coli O157:H7 that is responsible for significant 

morbidity and even mortality worldwide. In this case, symptoms appear between 10 and 24 

hours after food ingestion. In industrialized countries the focus has been on the E. coli 

O157:H7, which is a threat to the public health [37]. Illness caused by E. coli is associated to 

the consumption of a wide variety of foods including water, vegetables, fish, and meat [29]. 

 

Listeria monocytogenes 

Listeria species include Gram-positive and non-spore-forming bacteria belonging to the 

Listeriaceae family that can grow over a wide temperature range, including refrigeration 

temperature, and their optimal temperature is between 30 and 37°C. It is non-motile at 37°C, 

but forms flagella at 20-25°C. L. monocytogenes is the most important pathogen among the 10 

Listeria species known. L. monocytogenes can infect a wide variety of foods, mainly uncooked 

meats and vegetables, unpasteurized milk, cheese, seafood, processed and ready to eat meats 
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like sausages or ham and fish [29]. Although listeriosis is rare and only causes mild flu-like 

symptoms or vomiting and diarrhoea in healthy adults when a large number of cells are 

ingested, it can be mortal in people with a compromised immune system and older people. If 

pregnant women become infected, L. monocytogenes can cause infection of the uterus, 

bloodstream or central nervous system, causing abortion or stillbirth [38]. Concerning the 

virulence of L. monocytogenes as a foodborne pathogen, some virulence factors have been 

proposed: Its capacity for intracellular growth, iron compounds, catalase and superoxide 

dismutase, surface components and haemolysin secretion [39], [40].  

 

Photobacterium spp. 

Photobacterium species are Gram-negative and non-spore-forming bacteria from the 

Vibrionaceae family. They are also rod-shaped, motile and usually bioluminescent. Generally, 

they grow optimally between 18 and 25°C, but some species are able to grow at temperatures 

as low as 0°C and pressures up to 70 MPa, such as Photobacterium profundum [41]–[43].  

Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is associated 

with marine environments. It is a primary pathogen causing ulcers and haemorrhagic 

septicaemia in a variety of marine species as sharks, dolphins, and shrimps, as well as wild and 

cultivated fish [44]. In humans, it can cause opportunistic infections and may even cause fatal 

infections. Most of the reported infections in humans have their origin in wounds inflicted 

during the handling of fish, exposure to seawater and marine animals, and ingestion of raw 

seafood. In some of the human cases, the infection progresses into an extreme variant of a 

highly severe necrotizing fasciitis that advances following a very aggressive course leading to a 

fatal outcome [45]–[47]. The virulence factors of this species may include iron uptake systems, 

cytotoxins with haemolytic activity and other exotoxins and enzymes [47], [48]. 

 

Plesiomonas shigelloides 

 P. shigelloides is a gram-negative rod, non-spore-forming bacterium that belongs to 

the Enterobacteriaceae family. Its optimum growth temperature is 37°C but it also grows 

between 8 and 45°C. Cases of infection by this bacterium are more common in warmer 

climates or in travellers returning from warmer locations. The symptoms include a mild watery 

diarrhoea but can evolve to a severe colitis or cholera-like syndrome in immunosuppressed 

individuals [5]. Symptoms appear within 48 hours after infected food consumption and can 

persist for several days. Current evidence suggests that the exact mechanism of P. shigelloides 

enteropathogenicity is not fully elucidated, and that more than one mechanism may be 
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required to cause diarrhea in the host. However, this species motility appears to be an 

important factor [49], [50]. 

This organism is ubiquitous in surface waters and soil and fish and shellfish are a 

natural reservoir of the organism. However, it was also been associated to cattle, pork and 

poultry animals  [5].  

 

Salmonella 

Salmonella spp. are amongst the most important food pathogens worldwide. They are 

Gram-negative, non-spore-forming and belong to Enterobacteriaceae family. The optimal 

growth temperature for Salmonella spp. is 37°C but they can grow between 6 and 46°C as well. 

Typically, salmonellosis symptoms appear in 6-72 hours after the food ingestion. The number 

of ingested cells needed to cause illness may be as low as 10-100 cells. An individual outbreak 

can affect several people and symptoms range from gastroenteritis to severe typhoid 

paratyphoid or septicaemia, causing high rates of morbidity and mortality. Nowadays, there 

are about 2500 serotypes known, mostly designated as the species S. enterica [3], [51]. 

Salmonella spp. have evolved mechanisms that allow their survival at low pH, as the 

production of acid shock proteins, but the exact mechanism of actuation of these proteins is 

not very well understood. Intestinal adhesion of cells is mediated by fimbriae or pili that exist 

on the cell surface. About 95% of cases of human salmonellosis are associated with the 

consumption of contaminated products such as eggs, meat, milk, seafood, and fresh produce 

[52]. 

 

Shigella spp. 

Shigella spp. are Gram-negative non-spore-forming bacteria that belong to the 

Enterobacteriaceae family. They are heat sensitive, acid resistant and salt tolerant. Their 

optimum temperature is 37°C but they also grow between 10 and 40°C.  

Shigella spp. are waterborne pathogens, but foodborne outbreaks associated with 

these species are also common, in foods that are subjected to hand processing and then 

exposed to a limited heat treatment or eaten raw. Examples of foods from which these species 

were isolated are raw vegetables, fish, beef and raw oysters [53]. 

The genus Shigella comprises four taxonomic groups that are defined by the 

antigenicity of the somatic O antigens: Shigella dysenteriae, Shigella flexneri, Shigella boydii 

and Shigella sonnei. These groups differ in epidemiology, as S. dysenteriae is associated to 

epidemics, S. flexneri is related to endemic infection, S. sonnei is related to source outbreaks in 
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developed countries and S. boydii is implicated in source outbreaks in areas that have poor 

hygienic standards [53]. 

Shigella spp. multiply in the colon, invading epithelial cells and causing ulcerative 

lesions. The capacity to spread intracellularly and infect adjacent cells is critical in the infection 

process. The symptoms appear in 12-48 hours after ingestion of contaminated food. 

Shigella dysenteriae produces a cytotoxin (Shiga toxin) that damage the colon cells and 

may also produce a neurotoxin and an enterotoxin, being this species the causative agent of 

shigellosis and “bacillary dysentery”. The typical symptoms of infection include abdominal 

pain, bloody diarrhoea and fever. It may even cause convulsions and delirium and is a common 

death cause among immunocompromised people or infants where hygienic standards are 

poor. The infective dose for this species is very low, requiring just 10 cells of S. dysenteriae or 

500 of S. sonnei to cause symptoms [53], [54].  

 

Staphylococcus aureus 

Staphylococcus aureus is a Gram-positive non-spore-forming bacterium that belongs to 

the Staphylococcaceae family. This species is able to grow in a wide range of temperatures (7-

49°C) and its optimum temperature is between 30 and 37°C. This species is part of the normal 

human and animal flora and can be found on skin and nasal cavities. The contamination of 

food with this species results from inappropriate storage or cooking, poor hygiene and 

improper washing of food processing utensils. Foods that are manipulated and do not require 

additional cooking after it are the most often contaminated items [29]. Foods that have been 

often implicated in staphylococcal intoxication include meat, meat products, poultry, egg 

products, milk, dairy products, salads, bakery products, particularly cream-filled pastries and 

cakes, and sandwich fillings. Salted food products, such as ham, have also been associated to 

foodborne infection by this species [55]. When growing in food, S. aureus can produce more 

than 20 toxins and the ingestion of 94-184 ng of one toxin can result in intoxication [56]. 

Symptoms of Staphylococcal food poisoning include nausea, violent vomiting and abdominal 

pain. S. aureus can also produce exotoxins that are different from enterotoxins, as they do not 

act directly on the intestine, but act more like a neurotoxin, stimulating the vomiting centre in 

the brain [57], [58]. The toxins act fast and the symptoms appear in 1-6 hours after 

consumption of contaminated foods. Deaths due to this bacterium are rare and symptoms 

rarely last more than 24 hours. However, in some instances, the illness is severe enough to 

require hospitalization. S. aureus cells are destroyed by heating conditions used in food 

processing, but the toxins are not. These species cells do not grow under 7°C and toxins are 
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not produced below 10°C, thus, refrigeration is the best method of control of products that are 

not processed by heating [3]. 

 

Vibrio spp. 

Vibrio is a Gram-negative, non-spore-forming, comma-shaped bacterium of the 

Vibrionaceae family. The optimum growth temperature of this genus is 37°C but this bacterial 

species grows between 10 and 43°C as well. It is associated to seawater and seafood and fish 

are the most common sources of contamination. There are ten Vibrio species that can cause 

gastrointestinal illness but the most important species are V. cholera, V. parahaemolyticus and 

V. vulnificus.  

V. cholerae may produce enterotoxins that can even cause death due to severe 

diarrhoea and subsequent dehydration and loss of mineral salts in immunocompromised 

people. Septicaemia cases are also related to this species. The incubation time of this bacteria 

is between 12 and 72 hours and healthy people generally recover in 1-6 days.  

V. parahaemolyticus causes diarrhoea that lasts 2-3 days, rarely causing death. 

Infection occurs 4–96 h after consumption of contaminated food and the illness is self-

resolving in immunocompetent individuals and can be sufficiently treated with oral 

rehydration alone [59], [60]. It possesses a wide variety of virulence factors, including a newly 

discovered adhesin, toxins, and secreted effectors involved in attachment, cytotoxicity and 

enterotoxicity [61]. 

V. vulnificus causes gastroenteritis and is known to be a dangerous species because it 

also causes septicaemia in immunocompromised individuals, and V. vulnificus septicaemia is 

associated with a greater than 50% mortality [62], [63]. This species can also provoke wound 

infections and it may cause severe complications without medical treatment. This species 

virulence factors include secretion of hemolysins, proteinases, collagenases and 

phospholipases. The symptoms usually appear between 5 hours and 4 days [3], [64]. 

 

Yersinia enterocolitica 

Yersinia enterocolitica is a Gram-negative, non-spore-forming, coccobacillus-shaped 

Enterobacteriaceae. It grows optimally between 25 and 37°C but it also grows between -1.3°C 

and 42°C. As it is non- heat-resistant, it is normally destroyed at processing temperatures. 

However, recontamination can occur because of its ability to grow at refrigeration 

temperatures. It is a foodborne pathogen that has been isolated from a wide variety of foods 

but it is mostly associated with pork consumption [3]. The incubation period for this bacterium 

is about 7 days and the symptoms disappear in 2-3 days generally, but may last 3 weeks in 
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some cases.  The infection process can be done by two mechanisms. The chromosomal 

mechanism consists on the secretion of enterotoxins that induce diarrhoea or vomiting. The 

plasmid mechanism depends on antigen and calcium responses of the host cell membrane that 

allows the bacteria to bind to the host cell. The bacterial genome contains a gene coding for 

proteins that signal the invasion of epithelial cells in ileum. This in turn leads to damage of 

mucosal layers [29], [65]. In addition to gastroenteritis symptoms, Y. enterocolitica may cause 

autoimmune thyroid disease, liver abscesses, pneumonia or even septicaemia [3]. 
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1.2.High pressure processing for food preservation 

 

Food processing corresponds to the transformation of raw animal or plant materials 

into consumer-ready products, reducing or preventing negative modifications in their quality. 

There are several food processing methodologies, such as pasteurization, dehydration, 

smoking, baking, freezing, among others [3]. 

The sensorial characteristics of a food (texture, aroma, flavour, colour) are the most 

important attributes to the consumers. Nowadays, the demand for high quality products in 

terms of natural flavours, taste and nutritional value has triggered the need for the 

development of nonthermal approaches to food processing. High pressure processing (HPP) 

allows the production of fresh-like products with minimal degradation of nutritional and 

organoleptic properties. In this method, food is subjected to elevated pressures to decrease 

microbial loads or to modify food attributes in order to achieve consumer-desired qualities 

[66].  

The pressure range used in food processing is generally between 100 and 600 MPa. 

This pressure range appears to have minimal effect on covalent bonds, thus, food subjected to 

HPP at ambient temperature, do not undergo significant chemical modifications. This means 

that most of the components that are responsible for the sensory and nutritional quality of 

foods, such as flavour components and vitamins, are not altered by HPP, being this is an 

important benefit for the food industry. HPP is applied in an isostatic way, in which the entire 

product experience an uniform pressure level, regardless of its shape, size or composition [67].  

A typical high pressure system consists of a pressure vessel and a pressure generating 

device. Food packages are placed into the vessel, which is then closed, the air is removed and a 

pressure medium is pumped into the vessel until the desired pressure is reached, being these 

conditions maintained during a selected period of time. The pressure medium usually contains 

water and a small amount of soluble oil in order to transmit pressure without need for energy 

input. The compression during HPP processing increases the temperature of foods through 

adiabatic heating and the extent of temperature increase varies with the composition of the 

food (usually 3-9°C for each 100 MPa). The product volume reduces as well in proportion to 

the applied pressure, and so, the package used in HPP processing needs to be adaptable to 

these changes [66]. 

HPP technology for food preservation has been known for more than a century. The 

first report, showing that milk and fruits could be preserved by high pressure, dates from 1899 

[68], and the first commercial products appeared almost a century later, in 1990 [69]. Since 
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then, the number of HPP equipments operating in the food industry for commercial 

applications has been increasing and actually exist more than 250 units in production (Figure 

1). 

29

Evolution of total number of HPP industrial machines

Total machine number in production: 252
Not included : 15 dismantled machines (all installed before 2003)  

Figure 1: Evolution of total number of HPP industrial equipments in production since 1990.  

(Image gently provided by Dr. Jorge Saraiva). 

 

The most common use of HPP is found in food preservation, as it is a non-thermal 

processing method that can inactivate spoilage-causing organisms and foodborne pathogens. 

HPP treatment causes specific stress responses in microorganisms attempting to adapt and 

survive, affecting not only cell structural organization but also its metabolic processes. 

Different microorganisms react with different degrees of resistance, and high pressure usually 

has a higher destructive effect in organisms with a greater degree of organization and 

structural complexity, being prokaryotes usually more resistant than eukaryotes [70]. Viruses 

possess a wide range of pressure resistance, depending on their structural diversity, and 

enveloped viruses are usually more sensitive to the pressure than naked viruses. Spores have 

great HPP resistance and some of them can survive up to 1000 MPa [70], [71]. In the next 

section it is presented a brief review of the bacteria with great pressure resistance. 

 

1.2.1. Bacteria with great high pressure resistance 

 

Normally, Gram-positive bacteria are most resistant to environmental stresses than 

Gram-negative bacteria, and this observation applies to pressure resistance as well. 

Concerning to the pathogenic non-spore forming bacteria, L. monocytogenes and S. aureus are 
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two of the most well studied bacteria regarding HPP and the latter appears to have a high 

resistance to pressure. Regarding Gram-negative pathogenic bacteria, there appears to be a 

wide range of pressure sensitivity [67]. Some strains of E. coli and Salmonella spp. have 

demonstrated relatively high levels of pressure resistance, while other strains are very 

sensitive [72]. V. parahaemolyticus is substantially more sensitive to the effects of high 

pressure than L. monocytogenes and L. innocua [73], [74]. In addition, the bacterial 

endospores produced by some species are extremely resistant to high pressure and other 

physical treatments such as heat and irradiation, being able to survive at more than 1000 MPa 

[75]. C. botulinum spores are among the most pressure resistant ones [76], [77]. As relatively 

low pressures (bellow 200 MPa) can activate spore germination [78], it has been suggested to 

apply pressure in two stages, in which the first stage would induce spores germination and the 

second one would kill the germinated spores [79]. 

 

1.2.2. Inactivation mechanisms 

 

It is known that cell membranes are primary sites of pressure damage in 

microorganisms [80], [81]. High pressure reduces fluidity on cell membranes due to the 

increasing packing of the fatty acyl chains of phospholipids. One difference observed in 

microorganisms adapted to pressure (piezophiles) is the increase of the proportion of fluidizing 

mono-unsatured and poly-unsatured fatty acids, that cannot be packed as tightly as saturated 

fatty acids [82]. It is also known that HPP changes the conformation of cellular proteins, as 

non-covalent “weak” chemical bonds, essential to maintain protein structure and function 

[83]. DNA changes have also been reported, as with the increasing pressure DNA molecules are 

stabilized, and the strand separation necessary for cell processes such as replication, 

translation and transcription may become more difficult [84]. 

It is known that old bacterial cultures are more resistant to inactivation by other food 

processing techniques that recent ones, but it seems that this does not significantly affect their 

inactivation by HPP. For example, it was reported that two Vibrio species that entered the 

dormant state of viable but non culturable cells were just slightly more resistant to pressure 

than control cells, and this small resistance difference did not affect the HPP inactivation result 

[85]. Other studies suggested that cells at exponential growth phase are inactivated under high 

pressure, because this procedure causes irreversible damage to cell membranes. On the other 

hand, cells at a stationary phase have a more robust cytoplasmatic membrane, thus being 

more resistant to HPP. It is a fact that cells in exponential growth showed changes in their cell 

enveloped that was not observed in cells at stationary phase. These alterations included 
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physical perturbations of the cell envelope and respective loss of osmotic equilibrium and 

liberation of proteins and RNA to the extracellular medium [86], [87]. 

Inactivation kinetics with high pressure is very complex. Plotting the log of surviving 

cells against time may not produce a straight line relationship. Is has been often observed that 

there is a linear decrease in viable cells at first, but then a decrease in the rate of inactivation 

leads to a “tail” of pressure resistant cells. It was reported that if this “tail” population is 

isolated, grown again and then once more exposed to pressure, there is no difference in 

pressure resistance between this population and the initial one [66]. A study in which the 

resistance and the recovery of growth after several consecutive cycles of HPP were evaluated 

in different strains of S. aureus shown that after 10 inactivation cycles of pressurization, the 

surviving bacteria did not developed resistance [88]. This effect is not fully understood, but it 

seems that inherent phenotypic variations in the pressure resistance of some cells or substrate 

growth conditions may be the main factors. Because of this, calculation of pressure decimal 

reduction time can be difficult and should be taken into account when the processing 

conditions of foods are optimized [81]. 

  



Chapter 1.                 General introduction and objectives 

 

29 
 

1.3. Infrared Spectroscopy 

 

The accurate and reliable detection and identification of microorganisms in food is 

critical to public safety. It is extremely important to develop rapid and inexpensive methods for 

the detection of food microorganisms to replace traditional analysis methods that are 

expensive and time consuming. Currently, mid-infrared spectroscopy (MIR) is a common 

technique that is a powerful, fast and non-destructive tool for food quality analysis and 

control. Hence, it is one of the most promising techniques to the food industry and has been 

successfully used to study microorganisms, since each bacterial species has a complex cell 

membrane/wall composition which gives an unique MIR ‘fingerprint’. Therefore this is an 

accurate method to assess the overall molecular composition of the microbial cells in a fast 

and non-destructive manner. 

Infrared spectroscopy is an analytical methodology based on the vibrations between 

atoms in a molecule. An infrared spectrum is acquired by passing infrared radiation through a 

sample and determining what fraction of the incident radiation is absorbed at a particular 

energy. The energy at which any peak in an absorption spectrum appears corresponds to the 

frequency of a vibration of a part of the sample molecule [89]. 

To show infrared absorption, the electric dipole moment of a bond must change during 

the vibration, and so, the interaction of infrared radiation with the matter may be understood 

in terms of changes in molecular dipoles [90]. The larger is the change, the more intense is the 

absorption band. 

Vibrations can involve either a change in bond length (stretching) or angle (bending). 

Bonds can stretch in-phase (symmetrical stretching) or out-of-phase (asymmetrical stretching) 

(Figure 2). Bending vibrations also contribute to infrared spectra, and can be of deformation, 

rocking, wagging and twisting or in-plane and out-of-plane (out-of-plane bending and in-plane 

bending) (Figure 3). There are many different vibrations even for fairly simple molecules and 

the complexity of an infrared spectrum arises from the coupling of vibrations over a large part 

of the complete molecule. Such vibrations are called skeletal vibrations and bands associated 

to them are likely to conform to a ‘fingerprint’ of the molecule as a whole, rather than a 

specific group within the molecule [90]. 
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Figure 2: Stretching and bending vibrations and symmetric and asymmetric stretching (Adapted from 

Stuart, 2004). 

 

 

Figure 3: Different types of bending vibrations (Adapted from Stuart, 2004). 

 

 

The absorbance IR spectrum of a sample is calculated from the following equation: 

𝐴 = log⁡(
𝐼

𝐼0
) 

 

Where: 

A=Absorbance 

I=Intensity in the sample spectrum 

I0=Intensity in the background spectrum 
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Absorbance is related to the concentration of the molecules in a sample via Beer’s law 

equation: 

A= εlc 

Where: 

A= absorbance 

ε =Absorptivity (L g-1 cm-1) 

l=Pathlenght (cm) 

c=concentration (g L-1) 

 

1.3.1. Infrared spectroscopy advantages and disadvantages 

 

Infrared spectroscopy advantages and disadvantages are summarized in Table 1. 

 

Table 1: Advantages and disadvantages of infrared spectroscopy (Adapted from Smith, 2011). 

Advantages Disadvantages 

Almost universal technique 

Spectra have much information 

Relatively fast and easy 

Low-cost technique 

High sensitivity 

Cannot detect some molecules 

Mixtures are difficult to analyse 

Water can mask important peaks 

 

IR spectroscopy is almost universal, as many molecules show strong absorbances in the 

mid-infrared. Thus, many types of samples including solids, liquids, semi-solids, polymers, 

organics, inorganics and biological materials can be measured with this methodology. IR 

spectra are also information rich, as the peak positions allow the identification of the 

structures of the molecules in a sample and the peak intensities can provide information about 

the concentration of the molecules in a sample. The acquisition of the spectra is relatively fast 

and easy and, unless the sampling technique or the nature of the sample affect the speed and 

ease of the analysis, spectra can be obtained in few minutes or even seconds. This 

methodology is also relatively inexpensive, as it usually does not require reagents to perform 

the analysis and the equipment is cheap compared to other laboratory instruments (Nuclear 

Magnetic Resonance spectrometers, Gas Chromatography-mass spectrometers, etc). Other 

advantage of IR spectroscopy is its high sensitivity, as it is only required a minimum amount of 

material to perform an analysis. 
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Regarding the disadvantages, the most important is that there are some materials 

(constituted by chemical species without vibrations) that do not produce infrared spectra, such 

as individual atoms not chemically bonded to anything (e.g. helium, argon) and monoatomic 

ions. Molecules with only two identical atoms (homonuclear) (e.g. O2, N2) possess a symmetric 

stretch vibration with a peak intensity of zero. Other disadvantage is the measurement of 

mixtures, where complex spectra are obtained, making it difficult the determination of what 

peaks are from what molecules. Spectral software can be used to facilitate spectra 

interpretation, by means of spectra calculation, for example, by subtracting a pure substance 

spectrum from the mixture spectra. The presence of liquid water is another problem, because 

its broad and intense peaks can “mask” peaks of interest. In this case, spectral subtraction of 

water spectra will not work, as the solute needs to be present in a concentration greater than 

0,1% in order to be detected. A way of dealing with this is to evaporate off the water and 

analyse the residue [90]. 

 

1.3.2. Fourier transform infrared spectrometers 

 

The actual generation IR spectrometer is the Fourier Transform IR that uses an 

interferometer instead of a monochromator. With this replacement, IR spectrometers become 

exceptionally powerful [91], [92]. 

Fourier transform infrared spectroscopy is based on the idea of the interference 

between two beams to yield an interferogram, which is a signal produced as a function of the 

change of pathlenght between the two beams. Distance and frequency are interconvertible by 

the mathematical method of Fourier Transform. The most common interferometer used in IR 

spectroscopy is the Michelson interferometer, which consists of two perpendicular mirrors, 

one of which can travel in a direction perpendicular to the plane (Figure 4). A beam splitter 

bisects the planes of these two mirrors. The two resulting beams are reflected, returning to 

the beam splitter, where they recombine and interfere. Fifty percent of the reflected beam 

from the fixed mirror is transmitted through the beam splitter while fifty percent is reflected 

back in the direction of the source. The beam that emerges from the interferometer at 90° to 

the input beam is called the transmitted beam and this is the one detected in IR spectroscopy 

[89]. 
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Figure 4: Schematic representation of a Michelson interferometer (Adapted from Stuart, 2004). 

 

1.3.3. Attenuated total reflectance spectroscopy 

 

Attenuated total reflectance (ATR) spectroscopy utilizes the phenomenon of total 

internal reflection. A radiation beam that enters a crystal will be submitted to total internal 

reflection. It happens when the angle of incidence at the interface between the sample and 

crystal is greater that the critical angle. The latter is a function of the refractive indices of the 

two surfaces. The beam penetrates a fraction of a wavelength beyond the reflecting surface 

and when a material that absorbs the radiation is in contact with this surface, the beam loses 

energy at the wavelength where the material absorbs. The resultant attenuated radiation is 

measured and represented as a function of wavelength by the spectrometer and origins the 

absorption spectral characteristics of a sample [89]. 

 

1.3.4. Mid-infrared spectroscopy  

 

The infrared spectrum is divided in three regions: far-infrared (<400 cm-1), mid-infrared 

(4000-400 cm-1) and near-infrared (13000-4000 cm-1). For general analysis, the mid-infrared 

spectrum can be divided into 4 regions (Figure 5):  

 

- X-H stretching region (4000-2500 cm-1): The vibrations are generally due to O-H, C-H 

and N-H stretching. O-H absorbs at 3700-3600 cm-1 and N-H is generally observed at 3400-

3300 cm-1. C-H stretching occurs at 3000-2850 cm-1 but if this bond is adjacent to a double 

bond or aromatic ring, the C-H stretching wavenumber absorbs at 3100-3000 cm-1. 
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- Triple-bond region (2500-2000 cm-1): C≡C bonds absorb at 2300-2050 cm-1, C≡N at 

2300-2200 cm-1. Despite of these being the most common absorptions, there is a possibility of 

seeing some X-H absorptions, if X is a more massive atom such as phosphorous (absorption at 

2400 cm-1). 

- Double-bond region (2000-1500 cm-1): The principal bands are due to C=C and C=O 

stretching. Usually, carbonyl stretching is the most intense band in the spectrum, occurring at 

1830-1650 cm-1. C=N occurs at 1650 cm-1, generating a strong absorption band. 

- General fingerprint region (1500-600 cm-1): Many vibrations may vary by hundreds of 

wavenumbers, even for similar molecules. This applies to most bending and skeletal vibrations, 

which absorb in the 1500–650 cm−1 region, for which small steric or electronic effects in the 

molecule lead to large shifts. A spectrum of a molecule may have a hundred or more 

absorption bands present, but there is no need to assign the vast majority. The spectrum can 

be regarded as a ‘fingerprint’ of the molecule and so this region is referred to as the fingerprint 

region [89]. 

 

 

Figure 5: Group frequencies assignment in the mid-infrared spectrum. 

 

1.3.5. Spectra pre-processing 

 

Obtained spectra can undergo manipulations to be enhanced and facilitate the 

spectral interpretation and analysis. This manipulation is performed with an adequate 

software. Baseline correction eliminates the dissimilarities between spectra due to shifts in the 

baseline. Smoothing reduces the instrumental noise, improving the information content of 

spectra. If necessary, first and second derivatives can be applied to spectra to reduce replicate 

variability, amplifying spectral variations and resolve overlapping peaks. In order to eliminate 

the path length variation and reduce the differences between replicates, spectra are 
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normalized, usually to the most intense peak (typically the amide I band is an internal standard 

for normalization). This spectra pre-treatment is a pre-requisite for advanced statistical 

analysis [93]. 

 

1.3.6. Statistical analysis of infrared spectra 

 

Data obtained from infrared spectroscopy are very often complex and, consequently, it 

is necessary to use chemometric techniques in order to extract as much information as 

possible. 

The analytical information of the spectra can be interpreted using a multivariate 

statistical analysis that relates the spectra with the properties of the object of study, thus 

facilitating data interpretation [93]. While univariate analysis considers only a single property 

of a given object, multivariate statistics evaluate several properties at the same time. 

Principal component analysis (PCA), is probably the most widespread multivariate 

chemometric technique, and because of the importance of multivariate measurements in 

chemistry, it is regarded by many as the technique that most significantly changed the chemist 

view of data analysis. Most chemical measurements are inherently multivariate, meaning that 

more than one measurement can be made on a single sample. An obvious example is 

spectroscopy, since a spectrum has hundreds of wavelength for a single sample, with a lot of 

information. PCA is one of the simplest multivariate methods that allows to explore patterns in 

complex data and is, normally, the first step in the data exploration that allows a visualization 

of the main variability aspects of a data set [93]. So, the objective of PCA is to reduce the 

dimensionality of a data set consisting of a large number of interrelated variables, while 

retaining as much as possible of the variation present in the data set. This is achieved by 

transforming to a new set of variables, the principal components (PC), which are uncorrelated, 

and which are ordered so that the first few retain most of the variation present in all of the 

original variables [94].  

Cluster analysis aims to classify objects, i.e. the intrinsic description of the structure 

and property interrelationships of a given set of objects, each one defined by a multiplicity of 

properties [95]. Different algorithms can be used to calculate similarities between the objects. 

Starting from the calculated distance matrix, an attempt to distribute the objects into groups is 

made, such that all the objects that belong to the same cluster are as similar as possible. 

Cluster techniques can be divided into hierarchical and non-hierarchical procedures, being the 

hierarchical favoured in most cases, since it is assumed that they describe best the inherent 

hierarchical structure of class division within the data set [96]. 
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Multivariate calibration has been a major basis of chemometrics. It involves connecting 

one (or more) sets of variables together. Usually one set (often called a ‘block’) is a series of 

physical measurements, such as some spectra or molecular descriptors, and the other contains 

one or more parameter such as the concentration of a number of compounds, for example. 

Partial least squares regression (PLS) is one of the most used algorithms for multivariate 

calibration model, being a procedure used to model the relationship between a set of 

predictor variables and a set of response variables, so that it is possible to predict the 

concentration of a compound in a mixture spectrum [93], [97]. PCA and PLS regression have 

been successfully used in the qualitative and quantitative analysis of infrared spectral data 

[97]–[99]. 

 

1.3.7. Mid-infrared spectroscopy as a rapid tool for food analysis 

 

Mid-infrared spectroscopy has been widely used in food analysis, for example for the 

detection of adulterations in food products, as olive oils [100] or juice concentrates [101], 

determination of food components and contaminations, as tetracycline in milks [102] or 

quantification of food components, such as sugars in mango juice [99]. 

There are characteristic absorption bands that can be associated with major 

components of food, such as water (3920, 3490, 3280, 1645 cm-1), C=O group (1740 cm-1), acyl 

chain C-H (3000-2800 cm-1), amide I and II (1650 and 1550 cm-1), aqueous sugar molecules 

(1100-1000 cm-1), and much more. This methodology is not only suitable for food examination 

but also for the analysis of microorganisms that are present in food products [103].  
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1.4. Infrared spectroscopy for food microbial analysis 

 

The development and optimization of novel alternatives for the monitoring, 

characterisation and enumeration of foodborne pathogens is a key aspect in food microbiology 

and has become increasingly important for the food industry. 

Classical standard microbiological methods for detecting the presence of 

microorganisms in foods, established by U. S. Food and Drug Administration and used 

worldwide, involve pre/enrichment and isolation of presumptive colonies of bacteria on 

several specific and/or different solid media. Additionally, a final confirmation by biochemical 

and/or serological procedure may be needed for the identification of the bacteria [104]. 

Consequently, these methods are laborious, time consuming and not always reliable (e.g. 

viable but non-culturable forms might not be detected). Molecular tools have emerged as a 

powerful fast approach in food microbiology to overcome these disadvantages. However, the 

efficiency of molecular methods can be negatively affected by the presence of inhibitory 

substances in foods, growth media, and nucleic acids extraction reagents [105], [106]. They 

can reduce or even block amplification reactions leading to underestimation of the bacterial 

load or to false negative results. Consequently, due to the demand for faster, more reliable, 

specific and cost-effective techniques for an effective control of food microbial quality, new 

methods should meet the following desired criteria: rapid and accurate identification of 

bacteria on small amounts, simple and uniform operating procedure, differentiation down to 

genus level at least, and simple standardization and complete computerization for automation 

[107]. 

Infrared spectroscopy with Fourier transform (FTIR), is one of the most promising 

analytical techniques in the food industry [108]. It has proven to be a valuable method for 

detection and distinction of microbial cells on the surface of food [109], to differentiate 

between bacterial colonies and even to detect differences in the colony itself [110] and in the 

classification of bacteria [111]. The infrared absorbance spectrum represents a ‘fingerprint’ 

that is characteristic of a chemical or biological substance. The main reasons for the wide 

acceptance of this method are the speed with which samples can be characterized with almost 

no handling, the flexibility of the equipment and the low cost of the analysis [112]. 

There are some studies on the detection/identification of bacteria in food samples or 

isolated from food products. With the advent of infrared spectroscopy and computational 

analysis in 1980s, Naumann and collaborators introduced infrared spectroscopy for in situ 

analysis of microbial cells, developing this methodology to identify, differentiate and classify 
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bacteria [111], [113], [114]. Since then, this methodology has been successfully applied for the 

identification, discrimination and detection of bacteria from different species, particularly 

foodborne pathogens such as E. coli [115]–[117], Listeria [118], [119], Salmonella [115], [120] 

and Bacillus [121]. 

 

1.4.1. Detection and quantification of bacteria from culture and food 

by IR spectroscopy 

 

Detecting a microorganism in a sample by infrared spectroscopy can be performed by 

a direct or an indirect method. In the first case, IR spectra of culture or contaminated food are 

collected directly from the sample. For example, studies have differentiated and quantified 

different species of bacteria on apple juice using an ATR method and from an apple surface 

using infrared and Raman spectroscopy [107], [122]. In most cases the acquired spectra may 

contain noise due to food matrix or culture medium components. Indirect detection eliminates 

this noise by using a bacterial separation step such as filtration [115]–[117], [123] or even 

immunomagnetic separation [116] before spectral acquisition. 

There are some studies reporting the detection of single types of bacteria [115], [124]–

[126], but the detection of mixed cultures or identify a particular microorganism in a mixture is 

more difficult [127], [128]. IR detection of bacteria from food samples could, however, be used 

routinely if the spectral database for most pathogens is established. 

Regarding quantification, the issue is even more complicated. A previous calibration 

model has to be performed in order to quantify the bacterial loads in a sample. The 

quantification of microorganisms in a binary mixture was performed [129] but is still difficult to 

predict the bacterial concentration directly in a food product. 

 

1.4.2. Discrimination of viable, injured, and dead bacteria 

 

The determination of bacterial viability is very important in the food industry, since it is 

of major concern to verify the efficacy of various treatments used in food processing in order 

to decrease the bacterial loads. 

The conventional microbiological methods as quantitative PCR or fluorescent dye 

techniques are time consuming and cannot give an accurate measure of live and death cells, 

depending on the physiological and biochemical heterogeneity of the target bacteria and the 

complexity of the sample matrix [130]. IR spectroscopy, as it is based on the biochemical 
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composition of the cells and so less susceptible to variation, is a suitable technique for the 

differentiation of dead/injured and live cells. It has been used to detect S. typhimurium and L. 

monocytogenes injured by heat [131], L. monocytogenes subjected to sonication [132], 

chlorine-injured E. coli and Pseudomonas aeruginosa in water [133], and Micrococcus luteus 

damaged by radicals [134]. In these cases, the spectral differences between live and injured 

cells were minor. So, second derivative pre-processing and statistical models were used to 

correctly classify the live and injured cells. 

 

1.4.3. Analysis of structural components of bacteria 

 

As IR spectra of intact bacterial cells can be difficult to analyse due to overlapping 

bands, this methodology has been used to study some structural components of bacteria in 

order to discriminate them. It has been performed a species and strain identification of 14 

Gram-positive and Gram-negative foodborne pathogens using spectra of the fatty acid methyl 

esters isolated from bacteria [128]. Serovars of S. enterica were discriminated using the outer 

membrane proteins [135]. As well, spectra of isolated lipopolysaccharides (LPS) from E. coli 

and S. enterica were successfully used for serotype level classification, achieving more than 

95% of correct classifications [136], [137]. 

 

1.4.4. Taxonomic classification of bacteria 

 

Taxonomic classification of foodborne microorganisms is of major importance for 

epidemiological investigation, pathogen control and outbreak detections. Classical methods 

used in microbial taxonomy are staining techniques, microscopy, biochemical assays, 

serological tests, etc. These methods are time consuming and laborious. More recent 

molecular subtyping methods as for example pulsed-field gel electrophoresis (PFGE) or 

multiple locus variable-number tandem repeat analysis (MLVA) are used to perform effectively 

taxonomic classifications, but they are expensive, time consuming and require trained 

personnel. As infrared spectra represent phenotypic and genetic fingerprints of 

microorganisms, they allow the differentiation of bacteria at different taxonomic levels. There 

are several studies on the discrimination and classification of a variety of microorganisms that 

were thoroughly reviewed [138]–[140]. Several chemometric approaches and different 

spectral pre-treatments were used in order to better analyse the data to obtain the desired 

results. 
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1.4.5. IR spectra of bacteria 

 

Each bacterial species has a complex IR spectra due to stretching and bending 

vibrations of molecular bonds or functional groups present in the cell wall/membrane 

composition in proteins, nucleic acids, lipids, sugars and lipopolysaccharides (LPS). The 

molecular composition varies from species to species and even at strain level. This originates a 

unique and characteristic spectrum, making possible the identification of the microorganisms 

[140]. 

In order to analyse IR spectra, it is important to know some fundamental 

characteristics of cell surface and their composition. Gram-positive bacteria have a thicker and 

rigid layer of peptidoglycan (40-80% of the weight of the cell wall) than Gram-negative bacteria 

(10% of the weight of the cell wall). The primary of peptidoglycan structure consists of parallel 

polysaccharide chains of alternating N-acetylglucosamine and N-acetylmuramic acid residues 

linked by glycosidic bonds. In turn, the parallel chains are joined by penta or tetrapeptides, 

which aminoacid composition varies in different species of bacteria. Also, Gram-positive cell 

walls contain teichoic acids covalently bounded to the peptidoglycan. On the contrary, Gram-

negative ones do not contain teichoic acids and have lipoproteins covalently linked to the 

peptidoglycan. Moreover, Gram-negative cells have an outer membrane outside of the 

peptidoglycan layer containing phospholipids and proteins in the inner part and phospholipids, 

proteins and LPS in the outer part. LPS consist of three basic regions: an O-specific side chain 

(heteropolysaccharide responsible for antigenic properties), the inner and outer core of 

oligosaccharides and a lipid anchor called lipid A [140]–[142]. O-antigens are used for typing 

bacteria. In addition to this, Gram-negative cells also contain other antigens like K-antigens 

(associated to the capsule) and H-antigens (associated with flagella). Differences in sugars 

composition and organization of phospholipids, proteins and LPS and other antigenic 

structures help in IR identification of bacteria. 

For bacterial identification, in the absence of water, five distinct major absorbance 

regions should be taken into account when analysing the spectra [113]: 3000-2800 cm-1 region 

of fatty acids; 1700-1500 cm-1 region of amide I and amide II bands of proteins; 1500-1200 cm-1 

region of mixed fatty acids bending vibrations, proteins and phosphate-carrying compounds; 

1200-900 cm-1 region of  absorption bands of microbial cell walls carbohydrates and 900-700 

cm-1, containing weak but very characteristic absorbance to specific bacteria. 

Spectra interpretation and peak assignments are crucial steps for the infrared analysis 

of microorganisms. Even though most bacterial spectra look very similar by visual inspection, a 

closer observation can show subtle differences. The wavenumber positions of the bands, their 
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widths and intensities are very useful for functional group, cell component and sample 

identification [140], [143]. The peaks that appear on a bacteria IR spectrum represent 

functional group vibrations in the main biomolecular constituents like nucleic acids, proteins, 

fatty acids and carbohydrates (Table 2). 

 

Table 2: Assignment of functional groups associated with major vibration bands in the mid-IR bacterial 

spectra. (Adapted from Davis and Mauer, 2010). 

Wavenumber (cm-1) Functional group 

3200 

2995 

2930 

2898 

2870 

2850 

1740 

1715 

1695-1675 

1655 

1637 

1550-1520 

1515 

1468 

1415 

1400 

1310-1240 

1240 

1200-900 

1085 

720 

N-H stretching  in proteins 

C-H asymmetric stretching of -CH3 in fatty acids 

C-H asymmetric stretching of >CH2 in fatty acids 

C-H stretching of ≥C-H of aminoacids 

C-H symmetric stretching of -CH3 in fatty acids 

C-H symmetric stretching of >CH2 in fatty acids 

>C=O stretching of lipid esters 

>C=O stretching of ester, in nucleic acids and carbonic acids 

Amide I band components of proteins 

Amide I of α-helical structures of proteins 

Amide I of β-pleated sheet structures of proteins 

Amide II band of proteins 

Tyrosine band 

C-H deformation of >CH2 in lipids/proteins 

C-O-H bending in Carbohydrates, DNA/RNA backbone, proteins 

C=O symmetric stretching of COO- group in aminoacids, fatty acids 

Amide III band components of proteins 

P=O asymmetric stretching of phosphodiesters in phospholipids 

C-O-C, C-O dominated by ring vibrations in various polysaccharides 

P=O symmetric stretching in DNA, RNA and phospholipids 

C-H rocking of >CH2 in fatty acids, proteins 
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1.5. Objectives 
 

The main objective of this work was to evaluate the potential of MIR spectroscopy to 

analyse foodborne bacteria, with minimum sample preparation, to: 

-Discriminate different colonies grown in solid media 

-Predict the bacterial concentration in cooked ham using a multivariate statistical 

approach; 

-Identify foodborne bacteria from meat, fish and cooked ham using different 

multivariate approaches, both in a general medium and in some differential/selective media; 

-Confirm the presence of Listeria monocytogenes and Salmonella spp. isolated from 

food samples in order to substitute the traditional biochemical and serological confirmation 

methods; 

-Assess the impact of an HPP treatment in some foodborne bacteria by assessing the 

decrease of microbial concentration and evaluating the spectral changes after pressurization 

-Understand some modifications in the bacterial cell components triggered by HPP by 

observing the infrared spectra. 
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2.1. Abstract 
 

The accurate reliable detection and identification of microorganisms in food is critical to 

public safety. Consequently, it is extremely important to develop rapid and inexpensive 

methods for the detection of food microorganisms in order to minimize or even replace the 

traditional analysis methods that are expensive and time consuming. In this study, the 

potential of mid-infrared spectroscopy was evaluated, for the first time, to detect changes in 

colony forming units of microorganisms in freshly cut ham along the time. A partial least 

squares regression model was performed and a good linear relationship was obtained 

between spectra information and microbial load. It was concluded that infrared spectroscopy 

easily and quickly allows the separation of ham samples according to their microbial content 

and could be used to predict the microbial concentration from the spectra, using the 

fingerprint region (1200-950 cm-1), without sample preparation or handling.  
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MIR; infrared spectroscopy; ham; microbial quality; multivariate analysis. 
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2.2. Introduction 
 

Microorganisms in food may cause food deterioration or illnesses associated with 

consumption. Meat and its products are classified in the category of perishable foods. The 

large amount of water and nutrients found in these products make them an excellent medium 

for microbial growth [5]. Modifications produced by microorganisms include changes in 

appearance, odour and flavour [7].  

It is crucial to detect microorganisms early on, to prevent their transmission, avoiding 

infections and/or food poisoning, but the traditional methods used to assess the 

microbiological quality of foods are time consuming, hence faster methods of screening are 

sought. 

Mid infrared has potential to be used as a rapid method to assess the microbiological 

quality of food. The infrared spectrum can be considered as a ‘fingerprint’, which is 

characteristic of a chemical compound or biological system [144]. 

Principal component analysis (PCA) and Partial least squares (PLS) regression have 

been successfully used in the qualitative and quantitative analysis of infrared spectral data 

[145]. This methodology is relatively cheap and the analysis cost of a sample is lower 

compared to traditional methods [89].  

MIR technique proved to be quite advantageous in studies of quality and composition 

of various foods. It was also used for the detection of microbiological spoilage in meat by 

measuring the biochemical substrate [146]. In addition, MIR has also proved to be a valuable 

and rapid method of detection and distinction of microbial cells on food surfaces [109] and to 

classify different taxonomic levels of bacteria without requiring a pre-selection of strains [111] 

showing to be sensitive to differentiate between bacterial colonies. Previous reports on the 

use of MIR for microorganism studies include sample pre-treatments such as: alcohol pre-

treatment, use of specific membranes to form bacterial films [124], overnight drying of 

colonies obtained from plates [147] or colonies grown in liquid medium [148]. The use of MIR 

microscopy is also mentioned [149]. Concerning the data treatment, in previous works, the 1st 

or 2nd derivatives transformation of the spectra were used in order to enhance the results 

[111], [114], [148], [150]. 

The main objective of this study was to evaluate the potential of MIR to assess the 

microbiological quality of ham. Firstly, the spectra from different microorganisms isolated 

directly from single colonies growing on fresh pork ham surface were acquired in order to have 

an idea of the similarity/dissimilarity between their spectra. Then, the liquid/viscous layer from 
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the ham surface was analyzed to assess if MIR could detect spectral differences as function of 

the increasing microbial concentration along the time. Finally, a calibration model to predict 

the microbial concentration in the ham samples, directly from spectra, was built. 
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2.3. Materials and methods 
 

2.3.1. Isolation of microbial colonies from ham samples for MIR 

analysis  

 

A 0.5 cm-thick slice of fresh pork ham (5 x 5 cm) was prepared and stored at about 

20°C for 5 days, under aseptic conditions. At the end of this time several colonies of 

microorganisms with different morphologies (differences in color, shape, size and margins) 

were already visible. 

Five well isolated single colonies were selected on the ham surface and purified by 

streaking. Each colony was streaked on plate count agar medium, incubated overnight at 37°C 

and streak again on the same medium two times more. 3 replicate plates were done. 

 

2.3.2. Ham microbial analysis on freshly sliced pork ham  

 

Fresh pork ham, from two brands (A and B), were sliced at the moment of the 

purchase and immediately transported in a plastic wrapper. Ham slices with 0.5 cm of 

thickness and 5 x 5 cm were aseptically prepared and cut, and 2 cuts were placed in each one 

of the 25 Petri plates (5 replicates per analysis time), per brand.    

All Petri plates (unless the correspondent to initial time T0) were incubated at 4°C during 

2, 4, 6, and 8 days (T0, T2, T4, T6 and T8). After the incubation time was achieved, one cut of 

ham per Petri plate was used for microbiological examination, the second one was reserved 

for infrared analysis. For microbiological assessment each cut was homogenized with an Ultra-

Turrax (T25, Janke & Kunkel - IKA Labortechnik) in Ringer's Solution (Merck) in a ratio of 1:10. A 

standard volume (100 µL) of serially diluted samples was pour plated in duplicate in plate 

count agar medium. After 3 days of incubation at 37°C the number of colonies (CFU) was 

counted in the most convenient dilution series and it was determined the concentration of 

total aerobic bacteria per gram of ham (CFU g-1). The weight of the ham slices was determined 

aseptically (Mettler Toledo ± 0.0001 g).  
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2.3.3. Mid-infrared spectroscopy  

 

Spectroscopic acquisition was performed in an infrared spectrometer (Perkin Elmer 

Spectrum BX) with a resolution of 8 cm-1 and 32 scans, in the mid-infrared region (4000-600 

cm-1). Analyzes were performed in a room with controlled temperature (25°C).  Microbial 

colonies were collected with a loop and placed directly on the crystal of a 2 mm x 2 mm 

horizontal single reflection diamond ATR (attenuated total reflectance) accessory (Golden 

Gate). 3 replicate spectra were obtained for each sample. The sampling accessory was cleaned 

with ethanol (70%) and distilled water between each measurement. 

For the freshly cut pork ham analysis, the liquid/viscous surface layer of the 5 x 5 cm 

ham slices were thoroughly mixed and collected with a glass rod and a small amount was 

placed directly on the sampling accessory and was dried under gentle cold airflow. 5 replicate 

spectra were obtained from each sample. The samples corresponding to T0 were analyzed 

about 30 minutes after the ham preparation.  

 

2.3.4. Multivariate analysis 

 

 The spectra (obtained in OPUS format) were transferred via JCAMP.DX format to an in-

house developed data analysis package (CATS build 97). Principal component analysis (PCA) 

was used to find the major sources of variability in data, detect outliers and detect the 

probable presence of clusters. Partial least squares regression (PLS) was used to capture 

information in spectra related to the microbial content. Previous to PCA and PLS, the spectra 

were standard normal deviate (SNV) corrected. The predictive power of the PLS model was 

assessed with cross-validation to predict microbial concentration. 
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2.4. Results and discussion 

 

2.4.1. MIR analysis of microbial colonies isolated from ham  

 

The MIR spectra of the 5 morphologically different colonies isolated from the surface 

of ham kept at room temperature (20°C) during 5 days, showed high reproducibility among 

replicates and different bacteria spectral profile (Figure 6). PCA of 1800 to 950 cm-1 region was 

performed and it was found that the sub-region located between 1200 and 950 cm-1 

(representative of several types of compounds including polysaccharides) allowed best 

distinction between the different colonies. This region was also previously selected as one of 

the more important areas for detection and differentiation of microorganisms [151]. The 

spectra are dominated either by a peak around 1080 cm-1 or at 1040 cm-1. This means that in a 

microbial community growing on the ham we would also expect spectra to be dominated by 

these two peaks, making almost impossible the identification of microorganisms in a natural 

mixed culture. 

 

Figure 6: Infrared spectra of 5 different colonies (average of 3 replicates) of bacteria, in the 1800 to 900 
cm-1 spectral region. CI – Colony I, CII – Colony II, CIII- Colony III, CIV – Colony IV, CV- Colony V. 

 

2.4.2. Bacterial concentration of fresh ham  

 

The results of aerobic plate counts expressed as colony forming units (CFU’s) (Table 3) 

for brand A and B showed an increase in the number of the colonies as a function of time, with 

a greater increase between T2 (2 days after sample preparation) and T4 (4 days after sample 

preparation). The values are in accordance with other study in which the CFU’s in ham have 
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been determined [152]. It is noticeable that ham from brand B showed a lower microbial 

concentration than the one from brand A. After T8 it was visually evident that the ham was 

spoiled, so it precluded the experiment follow-up. Anyway, the bacterial concentration of T10 

and T12 was determined (data not shown) and it was found that the microbial counts 

exceeded 108 CFUg-1. This value is generally accepted as the point at which spoilage becomes 

readily detectable [4]. 

 

 

Table 3: Number of colony forming units for the different times of analysis (T0, T2, T4, T6 and T8) of ham, 
for brands A and B. Average values of 4 replicates and standard deviation. 

Time 

(Days) 
Brand A Brand B 

T0 2.7x105±3.5x102 2.2x105±2.5x103 

T2 5.8x105±5.3x103 3.6x105±2.5x104 

T4 8.8x106±2.5x105 6.2x106±1.9x105 

T6 9.6x106±4.8x105 8.2x106±3.8x105 

T8 1.4x107±5.3x105 1.3x107±1.5x105 

 

 

 

2.4.3. MIR analysis of fresh ham  

 

Figure 7 shows the spectra of initial and final analysis times of the superficial watery 

layer of the two brands of ham (T0A, T0B, T8A, T8B), normalized by the water peak  at 1645 

cm-1. Signals obtained were consistent with those observed in the different colonies at 1080 

cm-1 and 1040 cm-1 (Figure 7).  
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Figure 7: Infrared spectra of the 2 brands of fresh ham, in the 1800 to 850 cm-1 spectral region. T0A – 
time 0, brand A; T0B – time 0, brand B; T8A – time 8, brand A; T8B – time 8, brand B. 

 

Visual inspection of the spectra reveals that the spectrum of water increasingly 

dominates the spectra. Shapiro [153], using electron microscopy to study the surface of 

colonies of E. coli, found that colonies which have grown for more than 24 hours secrete 

extracellular material that is deposited as a cover on its surface. This layer is rich in 

extracellular polysaccharides [154]. These exopolysaccharides are able to retain water as a way 

of self-protection against desiccation [155]. The production from polysaccharides, which retain 

water is consistent with the fact that, with the time, the smears from the ham surface 

presented increasing viscosity and were, as well, gradually more difficult to dry on the crystal. 

It can be observed, in Figure 6, that the spectra corresponding to 8 days show lower signal in 

the region between 1200 and 950 cm-1. There is, clearly, an increase of water in the system.  

Figure 8 shows the results for the PCA of all analyzed times for both brands. The 

spectral region exhibiting a better description of the system was between 1200 and 950 cm-1. 

Samples T0A, T0B, T2A, T2B and T4B are located in the negative PC1 region. The determination 

of bacterial concentration revealed that the replicates of T4 from brand B had lower CFU 

counts than T4 from brand A (Table 3), which is in accordance with the PCA distribution. The 

PC1 loadings plot shows that these samples are associated to a band at 1080 cm-1. In positive 

PC1 are found samples with microbial loads above 6.2x106 CFU g-1 (Figure 7, Table 3). The 
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loadings plot of PC3 (Figure 8) shows, also, the band at 1080 cm-1 associated to the samples 

from T0 in quadrant IV.  

 

Figure 8: Scores scatter plot (A) and loadings plot profile (B) of brand A and B for fresh ham for days 0, 2, 
4, 6 and 8 of analysis.  

 

The global interpretation from the PCA suggest the peak at 1080 cm-1 (which is 

decreasing) as a reference for the increasing quantity of water associated to the microbial 

growth/exopolysaccharide production. The behavior from the samples in PC1 positive is 

consistent with the progressive increase from a unique compound: water.   

 

2.4.4. Microbial concentration quantification by PLS-FTIR  

 

Figure 9 represents the relationship between the observed CFU counts and the values 

estimated from the spectra. It was used the spectral region between 1200 and 950 cm-1 

because it was the one that allowed the best results to construct the quantification model. It 

can be observed in figure 9 a good linear relationship between the predicted and the observed 
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values for the samples microbial concentration (Log CFU g-1). This suggests that this model 

could be applicable to predict, from the spectral data, the CFUs of ham samples.   

 

Figure 9: Calibration curve for microbial concentration obtained by PLS of the MIR spectra of the ham 
samples (Log CFU g-1). R2=0.97, LV=10, RMSEC%=1.91. 

 

According to the bibliography, when leaving the factory, ham may present counts of 

105 CFU g-1, being 5x106 CFU g-1 the borderline limit of bacterial concentration admitted (EC 

2073/2005). Beyond this value the ham should be rejected. So, in our study, MIR combined 

with PCA is able to distinct samples with satisfactory microbiological quality from ones that are 

approaching and exceeding the maximum acceptable limit. Moreover, the microbial content 

expressed as CFU can be easily determined.  

The results of this study showed that MIR can be a valuable approach to detect 

different levels of contamination in ham. Overall, this analysis method allowed the distinction 

of ham samples with different degrees of contamination, in a fast and simple way (samples 

placed and read directly on the sampling accessory), using the fingerprint region (1200-950 cm-

1). Furthermore, the attempt to construct a calibration model that gives us an assessment of 

the bacterial concentration of ham brought good results. The total aerobic plate count can 

provide a general indication of the microbiological quality of a food and is one of the first and 

more widely used analysis to be performed in food industry. It takes at least 24 hours of 

incubation to know the results, however, MIR can provide these results within few minutes. 

Considering that nowadays exist portable mid infrared spectrometers with excellent 

signal stability and at very reasonable prices, this kind of application could be very useful for 

the food industry, control organisms and consumer associations, since it is a very fast method 

that permits to screen, making the preliminary assessment and monitor the bacterial quality of 

ham in a factory, storage centers or even at supermarkets. Moreover, provided a model was 
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developed for each product, this methodology can be suitable to assess the microbial quality 

of other food products, such as, other meat products, fish samples or any other product that 

may get contaminated at the surface. 

Taking further the applications of IR, and as shown in the initial part of this work, 

different colony types have specific and unique spectra, which can be used as a fingerprint, 

this technique is also useful in identifying strains, allowing to confirm the presence of different 

types of bacteria, which detection is required by legislation, including pathogenic bacteria 

(work in progress and to be published in another article) which makes more rentable the 

investment in this technology.  
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3.1. Abstract 
 

Nowadays, the early identification of foodborne bacteria is very important, in order to 

avoid food spoilage and particularly infections associated to food consumption. The traditional 

methodology for food microbial analysis, using different culture media and posterior 

confirmation by biochemical and/or serological methods, is laborious and time consuming, as 

several days are needed to have the final results. DNA/RNA based methods, despite of being 

more rapid, are expensive, require trained personnel and the results can be influenced by the 

food matrices leading to incorrect results. Taking this into account, the development of new 

approaches to identify foodborne bacteria on time is of crucial significance. Infrared 

spectroscopy is a rapid, easy to perform and inexpensive technique that can be used in 

microbial analysis. In this work, we were able to distinguish simultaneously 22 different 

bacteria using two different multivariate statistical analysis techniques. We were also able to 

distinguish bacteria grown on some selective media used in food microbial analysis. This makes 

IR spectroscopy a suitable technique with advantages on the actual used methodologies, 

allowing to obtain the final results 2 or more days earlier and in an inexpensive way, as there is 

no necessity to use the reagents routinely employed to confirm the colonies in solid media. 
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3.2. Introduction 
 

The high levels of moisture, nutrients, and the high pH attained after post-mortem 

makes fish and meat easily perishable foods. Fish may contain various potential public health 

hazard pathogens [22]. Several bacterial genera like Pseudomonas, Bacillus, Acinetobacter, 

Flavobacterium, Micrococcus, Staphylococcus, Flavobacterium and Vibrio are commonly found 

in marine fish samples [18], [19], [156]. In Europe, hake and cod are two of the more 

consumed fishes. Hake is usually sold fresh and cod in Portugal and Spain is normally salted 

and dry, having the necessity to be desalted before consumption. Drying and salting are long 

processes, highly manipulative and with high potential for environmental transfer of 

microorganisms to the product [20]. Some bacterial genera like Vibrio, Listeria and 

Staphylococcus can survive on high salt concentration substrates and grow during desalting, 

causing food spoilage and threatening the consumers health [21]. A wide range of 

microorganisms from different sources can contaminate meat muscle during primary and 

further processing. Pathogens can include Clostridium perfringens, Staphylococcus aureus, 

Salmonella spp., pathogenic E. coli, Campylobacter spp., Listeria monocytogenes and 

Aeromonas hydrophila [14], [157]. Meat products that are cured with salt, such as ham, are 

often eaten raw after processing, which make them a hazardous vehicle for the transmission of 

salt tolerant bacteria as S. aureus and L. monocytogenes [5].  

A rapid and accurate detection and identification of microorganisms in food is very 

important for human health. Classic microbiological methodologies are time consuming and 

have inherent limitations, requiring enrichment, isolation and bacterial confirmation by 

biochemical/serological identification after growth on selective media. There are also 

molecular tools that can be used to identify foodborne microorganisms. These methods, 

despite being rapid, are very expensive and can be inhibited by the presence of certain 

substances in food products. This can lead to an underestimation of bacterial concentration or 

false negative results [22], [152], [158]. Taking this into account, it is very important to develop 

faster methods to ensure the safety of food products, by detecting/identifying microorganisms 

in order to prevent illnesses associated to food consumption.  

Mid-infrared spectroscopy (MIR) is one of the most promising techniques to the food 

industry. It is based in the observation of molecule vibrations that are excited by an infrared 

radiation beam in the spectral region between 4000 and 400 cm-1. This method has been 

successfully used in food industry, namely to identify microorganisms, since the infrared 

spectra of microorganisms are fingerprint-like patterns characteristic of each bacteria [111]. 



Chapter 3.     MIR as a rapid method to assess bacteria present in food products 

 

64 
 

MIR allowed to analyse foodborne pathogens such as Listeria, Salmonella and Staphylococcus 

[115], [118], [159]. The main reasons for the wide acceptance of this method are the speed 

and low cost of the analysis and the flexibility of the equipment. In addition to this, the 

samples usually do not need previous preparation and a very little amount of sample is enough 

[140]. However, the data obtained with infrared spectroscopy are very complex and it is 

necessary to use chemometric analysis in order to extract the information from the spectra, 

facilitating the data interpretation [93]. Principal component analysis (PCA) is a method that 

allows the compression of the data without losing their variability. It is very useful to identify 

patterns in data, highlighting the similarities and differences between samples [94]. 

Hierarchical cluster analysis (HCA) allows to classify samples, using different metrics and 

procedures to compute similarities between them, based on a distance matrix, and perform 

their distribution into groups [95].  

The main objective of this work was to identify bacteria present in fish (hake and cod), 

meat (pork, chicken and cattle) and processed meat (cooked ham) using mid-infrared 

spectroscopy coupled to chemometric analysis, and to study the suitability of this technique to 

shorten the time of microbial identification necessary in the traditional microbiological analysis 

of foodstuffs avoiding the expensive and time taking confirmation steps.  
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3.3. Material and methods 
 

3.3.1. Food sample preparation 

 

Three pieces of hake (Merluccius merluccius), 3 pieces of dried salted cod (Gadus 

morhua), 3 pieces of pork meat and pork ham (Sus scrofa domesticus), 3 pieces of chicken 

meat (Gallus gallus domesticus) and 3 pieces of cattle meat (Bos taurus) were obtained in 3 

different commercial surfaces.  

Cod was desalted in sterile distilled water (fish:water ratio, 1:10) during 24 hours at 

4°C before microbial analysis and the water was changed 3 times (every 8 hours) to simulate 

the soaking method adopted by the consumers. Cod was analysed immediately after desalting 

procedure. Hake, pork, chicken and cattle meat and ham were analysed immediately after the 

sample acquisition. A total of 18 randomly selected sub-samples were aseptically cut: 3 

samples of hake, 3 samples of cod, 3 samples of pork meat, 3 samples of pork ham, 3 samples 

of chicken meat and 3 samples of cattle meat. 

 

3.3.2. Bacteria used 

 

Bacteria that are considered relevant for fish, meat and ham were included in this 

study: some of them were isolated from the fish, ham and meat samples, and bacteria from 

culture collections and other relevant bacteria previously isolated in our laboratory from fish 

farming waters were also used (Table 4). Bacteria were isolated from fish, meat and ham, as 

follows: each food sub-sample was aseptically homogenized with an Ultra-Turrax (T25, Janke & 

Kunkel - IKA Labortechnik) in Ringer’s Solution (Merck) (1:18 weight: volume). One hundred 

microliters of serially diluted samples were pour plated, in duplicate, in Trypticase soy agar 

(TSA) medium (Merck), Violet red bile dextrose agar (VRBD) medium (Merck), Baird-Parker 

agar (BPA) and in Thiosulfate citrate bile salts sucrose agar (TCBS) medium (Merck). Cod 

samples were additionally pour plated in TSA medium supplemented with 3% NaCl. After 3 

days of incubation at 37°C, some colonies presenting different morphologies (colour, shape, 

size and density) were selected. The colonies were purified by repeated streaking on TSA 

plates. Aeromonas hydrophila from the collection was named as (2) and the isolated as (1). 

These two members of Aeromonas, were maintained because they were apparently different 

in BOX-PCR electrophoresis gel (data not shown). 

 

 



Chapter 3.     MIR as a rapid method to assess bacteria present in food products 

 

66 
 

Table 4: Bacteria isolated from meat, fish and ham, from culture collections and isolated from 

other samples. 

Isolated from meat, fish and 
ham 

Culture collections Isolated from other samples 

Aeromonas hydrophila (1) Vibrio anguillarum (DSM 21597) Psychrobacter 

Acinetobacter Vibrio parahaemolyticus (DSM 27647) Shewanella, 

Bacillus cereus Listeria monocytogenes (NCTC 1194) Sphingomonas 

Enterobacter Listeria innocua (NCTC 11288) Micrococcus 

Klebsiella Citrobacter freundii (NCTC 6272)  

Leucobacter Photobacterium damselae (DSM 7482)  

Pseudomonas Salmonella Nottingham (NCTC 7832)  

Staphylococcus aureus Shigella flexneri (DSM 4782)  

E. coli Aeromonas hydrophila (ATCC 7966) (2)  

 

3.3.3. Molecular identification of bacteria isolated from food samples 

 

Bacterial DNA was extracted using the Instagene Matrix (Biorad, USA). 16S rDNA was 

amplified using the universal 27f forward primer (5'-AGAGTTTGATCCTGGCTCAG-3') and 1512r 

reverse primer (5′- CGGCTACCTTGTTACGACT-3′). The reaction occurred in a Multigene 

Gradient Thermal Cycler (MIDSCI). The reaction mixture contained 1 µL of bacterial DNA, 3.75 

µL of MgCl2, 2.5 µL of KCl buffer, 2.5 µL of dNTP, 0.25 µL of each primer, 0.5 µL of BSA, 1 µL of 

Taq polymerase (MBI Fermentas, Lithuania) and Milli-Q water (Millipore). The PCR running 

conditions included a 5 minutes initial denaturation of template DNA at 94°C, 25 denaturation 

cycles at 94°C for 1 minute, annealing at 55°C for 2 minutes, extension at 72°C for 2 minutes 

and a final extension at 72°C for 10 minutes.  

In order to detect bacterial clones, a BOX-PCR was performed using reverse primer 

Box-A1R (5′-CTACGGCAAGGCGACGCTGACG-3′). The reaction mixture contained 1 µL of 

bacterial DNA, 1.25 µL of NH2SO4 buffer and 1.25 µL of KCl buffer, 2.5 µL of DMSO (5%), 3 µL of 

MgCl2, 2.5 µL of dNTP, 2 µL of primer, 1 µL of Tap polymerase and 10.5 µL of Milli-Q water. The 

PCR running conditions included a 5 minutes initial denaturation of template DNA at 94°C, 30 

denaturation cycles at 94°C for 1 minute, annealing at 53°C for 1 minutes, extension at 65°C 

for 8 minutes and a final extension at 65°C for 18 minutes. PCR products were visualized in a 

standard agarose gel electrophoresis with ethidium bromide staining and the bacterial clones 

detected were discarded. The selected PCR amplicons were purified using Ron’s PCR-Pure 
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purification kit (BIORON, Germany). Automated DNA sequencing was performed by GATC 

biotech (Konstanz, Germany) and the sequences were analysed using BLAST database. 

 

3.3.4. Mid-infrared spectroscopy 

 

The bacteria were grown on some of the media normally used in a control laboratory: 

TSA, VRBD, TCBS and Baird-Parker agar (BPA). After 18 hours of incubation at 37°C the colonies 

were examined by infrared spectroscopy. 

Spectroscopic acquisition was carried out in a MIR (Bruker ALPHA FTIR Spectrometer) 

with a resolution of 4 cm-1 and 32 scans, in the mid-infrared (region between 4000 and 600 cm-

1). Microbial colonies were collected with a loop and placed directly on the crystal of a 

horizontal single reflection platinum ATR accessory. The colonies were air-dried and then 

measured. At least five replicate spectra were obtained for each sample. 

 

3.3.5. Multivariate analysis 

 

Data pre-processing/pre-treatment: Previously to the multivariate analysis of the 

spectra of the whole dataset of bacteria grown in TSA, several spectral pre-processing and 

different pre-treatment were assessed. It was found that the best approach for sample and 

spectral traits analysis was based on the spectral first derivative using a Savitsky-Golay 

procedure [160] with a 2nd degree polynomial and a 15 points wide-window. In addition, each 

spectral signal was normalized by standard normal variate (SNV). Spectra from the bacteria 

grown in VRBD, TCBS and BPA were only normalized by SNV, without any additional treatment. 

Principal Components Analysis (PCA): The main idea behind this unsupervised method 

is to recover the main directions of largest variability in the data (defined as principal 

components). The method starts by finding the largest variation and places an axes along that 

direction, then, looks to the variation that remains and finds another axis that is orthogonal to 

the previous one, and cover as much variability as possible. All the principal components 

recovered are, therefore, orthogonal (i.e., they are uncorrelated). These principal components 

are ordered as a function of the decreasing amount of variability. This approach allows to 

perform data compression or dimensional reduction, projecting the high dimensional data into 

low dimensional spaces, retaining at the same time as much variability as possible [94].  

Hierarchical Cluster Analysis (HCA): This method is based on the analysis of a distance 

matrix between all samples. The method could start with all samples in separated clusters (or 
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all samples in the sample cluster) and search for those that are most similar (or dissimilar), 

then, those similar (dissimilar) samples are merged (separated) and the distance matrix is 

updated accordingly. This approach basically allows to build a tree (dendrogram) that reflects 

the distance between all the samples. For the current work the distance matrix was built upon 

on the Euclidean distance, the agglomerative procedure was based on complete linkage. The 

distance matrix was computed over the full rank principal component scores space. 

Both data analysis approaches (PCA and HCA) were performed in the R language 

environment [161]. 
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3.4. Results and discussion 
 

A PCA was performed on the first derivative from all spectra from the bacteria grown 

in TSA in order to do a preliminary data exploration and visualization (Figure 10). The scores 

scatter plot from PC1 vs PC2 shows that bacteria present in positive PC1 are better 

discriminated than the ones in negative PC1. Bacteria from the same genera are grouped 

together. It is noticeable that the two Listeria species are placed together, as well as the two 

Aeromonas hydrophila. All of the Gram-positive analysed bacteria are present in positive PC1. 

It was expectable that the Gram-positive bacteria were easily distinguished from the Gram-

negative, as their external envelops present differences in structure and composition. Gram-

positive bacteria have a thick cell wall composed by peptidoglycan, whereas Gram-negative 

cell have an outer membrane of phospholipids, lipopolysaccharides and proteins covering the 

thin peptidoglycan layer from the cell wall. However, it has been previously found that spectra 

from Gram-negative and Gram-positive bacteria are very similar, suggesting that the main 

functional chemistry groups of both bacterial surfaces are similar [162]. 

However, and despite the good group formation obtained in the exploratory PCA, it 

would be difficult to predict accurately an unknown bacteria which would appear in negative 

PC1. 

 

 

Figure 10: Principal component analysis scores scatter plot of the analysed bacteria (PC1 vs PC2). The 

bacteria were obtained from TSA agar and the spectra were treated with first derivative. The spectral region used 

was between 3000-2400 cm-1 and 1900-700 cm-1. Bacteria surrounded by a circle are Gram-positive and all 
the others are Gram-negative. 
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Despite of the promising results from PCA and aiming to a better discrimination and 

insights into bacterial genera and species, a hierarchical clustering analysis was performed 

(Figure 11). A good separation of the different genera and species is observable. Vibrio 

parahaemolyticus is separated from Vibrio anguillarum, Listeria monocytogenes is separated 

from Listeria innocua and even the two species of Aeromonas hydrophila are placed in 

different clusters. Therefore, using these two approaches, a successful distinction of nearly all 

the bacteria analysed was accomplished with exception of Photobacterium and Acinetobacter 

which were placed in the same cluster node. These two microorganisms were overlaid in the 

PCA scores plan (Figure 10). In order to find a distinction between them, diverse spectral 

ranges were tested in PCA. The region between 1480 and 1200 cm-1 shows a better separation 

in this particular case (Figure 12). In principle, with these three statistical approaches (PCA, 

HCA, PCA) it was possible to distinguish all of the 22 studied bacteria, without the necessity of 

using selective media and biochemical/serological confirmation or molecular approaches. 
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Figure 11: Hierarchical cluster analysis dendrogram of spectra obtained from each bacteria in the spectral region of 3000-2400 cm-1 and 1900-700 cm-1. 
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Figure 12: Scores scatter plot (PC1 vs. PC2) in the spectral region of 1480 – 1200 cm-1, of bacteria grown in TSA agar. 

Acinetobacter and Photobacterium are surrounded by a circle. 

 

In order to further develop the discrimination between bacteria, these were grown in 

selective solid media used in food industry, as follow: VRBD (selective growth medium for 

enterobacteria), BPA (detection of S. aureus) and TCBS (isolation of Vibrio spp.). PCA from the 

spectra were performed after spectra obtainment.  

Current European legislation uses the Enterobacteriaceae as a parameter in process 

hygiene criteria, referring ISO 21528 [163] as mandatory analytical method. Suspect bacteria 

grown in VRBD medium have to be confirmed, and this step includes a streaking of the 

colonies on nutrient agar for 24 hours and then the realization of the biochemical tests 

(oxidase and glucose fermentation step), of which the glucose fermentation step takes 24 

hours more. In this way, the confirmation step takes 2 additional days of analysis, becoming 

also more expensive because there is need to use more reagents. PCA of the spectra shows 

that all bacteria grown in VRBD (Figure 13) are well grouped and discriminated. Therefore, MIR 

spectroscopy can be used to discriminate the enterobacteria grown in VRBD agar, instead of 

the time taking and expensive confirmation steps used in food control laboratories to detect 

enterobacteria.  
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Figure 13: Scores scatter plot (PC1 vs. PC2) in the spectral region of 3000-2400 cm-1 and 1900-700 cm-1. Bacteria 
grown in VRBD agar. 

 

BPA agar is used in food industry in order to assess the presence of S. aureus. This 

species can cause gastroenteritis due to production of enterotoxins in foods by improper 

handling and subsequent storage at high temperatures. The illness is usually self-limiting but in 

some cases it can require hospitalization. This bacterium grow as grey-black colonies 

surrounded by an opaque halo and a clear zone. According to ISO 6888 [164], the suspect 

colonies have to be confirmed, following some steps, including anaerobic incubation in 

mannitol salt agar (MSA) and brain-heart infusion (BHI) agar. Additional confirmation has to be 

performed and the suspect colonies grown on MSA and BHI are tested for coagulase and 

thermo nuclease activities. These confirmation steps last for 3 additional days, after the step of 

BPA agar [165], being time and reagent consuming. In order to assess if MIR spectroscopy 

allows to discriminate between S. aureus and other species able to grow also on BPA agar, a 

PCA was performed on the obtained spectra (Figure 14). Once again, the results demonstrate 

that this technique allows to identify bacteria grown in BPA media instead of the confirmation 

steps. 
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Figure 14: Scores scatter plot (PC1 vs. PC2) in the spectral region of 3000-2400 cm-1 and 1900-700 cm-1. Bacteria 
grown in BPA agar. 

 

Enteropathogenic Vibrio spp. can cause gastrointestinal illness associated to 

consumption of contaminated seafoods and, in severe causes, some species can even cause 

septicaemia. According to ISO  21872 [166], its detection includes an initial enrichment step 

followed by streaking in two selective media: thiosulphate citrate bile salts sucrose agar (TCBS) 

and triphenyltetrazolium chloride soya tryptone agar (TSAT). After 1 day of incubation, 

presumptive colonies (green on TCBS and red on TSAT) have to be confirmed, which takes 2 or 

3 additional days. The 2 Vibrio species and Klebsiella and Enterobacter, which also grow in this 

media, were well discriminated by mid-infrared spectroscopy, forming individualized groups 

(Figure 15). 

 

Figure 15: Scores scatter plot (PC1 vs. PC2) in the spectral region of 3000-2400 cm-1 and 1900-700 cm-1. Bacteria 
grown in TCBS agar. 
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3.5. Conclusions 
 

Mid infrared spectroscopy in tandem with multivariate analysis (PCA and HCA) has 

been successfully used for identification of bacteria. In this work we present results that show 

the high potential of these hyphenated techniques and the possibilities of exploring the 

spectral information as maximum as possible. As in the case of the microbiology work at the 

laboratory, using different kinds of media for confirming the identification of the bacteria, it is 

possible to use, as well, different multivariate treatments to further distinguish and finally 

identify the microorganisms. It is absolutely indispensable because the more bacteria 

species/serovars are involved, more challenging is the distinction with just one multivariate 

analysis tool. The spectra may be acquired directly from the colonies obtained in a given 

growth media and then different multivariate tools/wavelengths ranges can be applied to the 

spectra. These different tools will help to confirm or distinguish between bacteria that are 

overlaid in one or two of the other approaches. With these results we suggest that the 

confirmation of bacteria can be performed immediately after isolation in general purpose solid 

media: TSA for all genera, VRBD for enterobacteria, BPA for S. aureus and TCBS for Vibrio spp. 

Taking this into account, the confirmation of bacteria can be shortened in two or more days 

than with the traditional confirmation methods and in an inexpensive way than with molecular 

methods, as no reagents are needed after the growth of bacteria in solid media.  

The use of MIR spectroscopy for discriminating bacteria immediately after growth in 

general purpose media or selective/differential media could be very valuable for food industry, 

as it would allow the immediate identification of several bacterial species, without the 

necessity to perform the confirmation steps that are time and reagent consuming, providing 

rapid and accurate results.  
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4.1. Abstract 
 

Listeriosis and Salmonellosis are two of the most common foodborne diseases, and so, 

early and accurate detection of Listeria monocytogenes and Salmonella spp. in food products is 

a critical concern in public health policies. After growth in selective media, the process of final 

biochemical and serological confirmation for these pathogens delays the attainment of the 

results and is a laborious, expensive and time consuming procedure. So, it is of extreme 

importance to develop rapid, easy and cheap methods in order to replace this currently used 

methodology. Mid-infrared spectroscopy has been successfully used to confirm Listeria species 

and to confirm the presence of Salmonella within other bacteria that also grow in the same 

selective media. This methodology showed to be very sensitive and rapid as an alternative to 

detect these important pathogens, allowing to obtain results in a few minutes after previous 

growth in selective media. 
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4.2. Introduction 

 

The microbiological quality of food has become a very important factor for food 

industries as well as for the regulation agencies. The accurate reliable detection and 

identification of microorganisms in food is critical to detect microorganisms early on to 

prevent their transmission, avoiding infections and/or food poisoning. 

Listeria monocytogenes and Salmonella spp. are some of the most important and 

common foodborne pathogenic microorganisms, causing public health problems in almost all 

industrialised countries.  

The genus Listeria is constituted by six species: L. monocytogenes, L. innocua, L. 

ivanovii, L. seeligeri, L. welshimeri and L. grayi. All of them are widespread in the environment 

and L. monocytogenes is considered an opportunistic serious foodborne pathogen for humans, 

causing listeriosis, which is a significant public health hazard [167]. Although rarely, human 

infections due to L. ivanovii and L. seeligeri have also been reported [168]–[170]. Identification 

of Listeria at the species level in routine laboratories is time-consuming, laborious and 

expensive. Selective primary and selective secondary enrichment followed by isolation in 

selective differential media and suspect colonies confirmation by biochemical tests is needed. 

Biochemical methods such as sugar fermentations, API system and CAMP test are used to 

confirm the presence of Listeria. However, the results are only available after 7 days, of which 

2 days are required for the confirmation procedures [171]. In addition to this, the incidence of 

false-negative results is still a considerable problem, despite of the recent advances in these 

methodologies [172], [173]. 

The genus Salmonella includes two species: S. enterica and S. bongori. S. enterica is 

further divided into six subspecies, including S. enterica enterica, that includes more than 2500 

serovars [174], [175]. Salmonellosis disease typically resolves in about 6 days and does not 

require treatment with antibiotics. However, bacteremia occurs in 3 to 10 percent of reported 

culture-confirmed cases and is particularly common among patients at the extremes of age 

and those who are immunocompromised [176], [177]. Cultivation methods for the detection of 

Salmonella are also laborious, time consuming and expensive. A non-selective pre-enrichment 

is needed, followed by a selective enrichment and posterior plating in selective and differential 

solid media. Posteriorly, suspect colonies have to be confirmed by biochemical or serological 

tests as referred in ISO 6579:2002 [178], [179]. Biochemical substrate utilization is the basis of 

species identification for Salmonella, even though considerable variation can be observed in 
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the biotyping pattern. The majority of Salmonella are recognized as non-lactose fermenters 

(Lac−) and hydrogen-sulphide producers (H2S+), thus, confirmatory testing of all H2S+ and/or 

Lac− colonies is required, which extends the time for identification. The majority of the H2S+ 

and Lac− colonies turn out not to be Salmonella enterica, but related species such as 

Citrobacter [180]. This severely limits the effectiveness to provide a rapid response to the 

presence of this pathogenic bacterium. The results are only available after 5 days, of which 2 

days are necessary for the confirmation steps. 

During the last years, molecular and immunological procedures have been developed 

to detect the presence of Listeria and Salmonella in food, but most of them are limited [174], 

[181]–[184]. These methods, despite being rapid, are yet expensive, requiring high skilled 

personnel, and can be affected by the presence of certain substances in food products. This 

can lead to an underestimation of bacterial concentration or false negative results [152], [156]. 

Moreover, the legislation requires that positive results for the presence of Salmonella and 

Listeria in foods must be confirmed by traditional culture methods and further confirmation 

[171], [179]. Taking these aspects into account, it is very imperative to develop sensitive and 

specific faster methods to detect/identify these two foodborne pathogenic microorganisms in 

order to prevent illnesses associated to food consumption.  

Vibrational spectroscopic techniques, infrared spectroscopy (IR) and Raman 

spectroscopy, have been used since the 1980s as complementary methods for bacteria 

differentiation owing to their rapid “fingerprinting” capabilities and the molecular information 

that they can provide. These techniques present several advantages in the microbiological 

classification and identification fields. They are fast (requiring virtually no sample processing), 

non-destructive, multi-purpose (e.g., detection, enumeration, classification, identification) and 

discriminating at different taxonomic levels (serotype, strain, species or genus) [185]–[188]. 

Identification of Listeria species and Salmonella serovars using FTIR spectroscopy has 

been undertaken previously [118], [119], [189], [190]. However, these studies included some 

time consuming cell pre-treatments, such as growth of the bacteria in liquid medium with 

subsequent centrifugation and washing with distilled water. In this study, for the first time, it 

was evaluated the potential of mid infrared spectroscopy (MIR), to confirm the presence of 

Listeria monocytogenes and Salmonella spp. in food products, after plating in the selective 

recommended media. For this, Listeria and Salmonella (identified by API system) isolated from 

food products (cheeses, sausages and prepared dishes) were used. The colonies that grew in 

OCLA medium (Listeria) and XLD medium (Salmonella) were directly analyzed by Horizontal 

attenuated total reflection Mid-infrared spectroscopy (HATR-MID-IR). Multivariate analysis of 
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the spectra was used to discriminate the different Listeria species. Moreover, the potential to 

discriminate Salmonella from other bacteria that grew on XLD Salmonella selective medium 

and could be mistaken for Salmonella spp. (e. g. Shigella flexneri, Pseudomonas aeruginosa 

and Citrobacter freundii) was also evaluated. 
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4.3. Materials and methods 

 

4.3.1. Bacterial strains 

 

Listeria spp. and Salmonella serovars were isolated from food products (cheeses, 

sausages and prepared dishes) according to ISO 6579:2002 and ISO 11290-1:1996, 

respectively.  

Briefly, for the isolation of Listeria spp., a primary enrichment of the samples in half-

Fraser broth (1:10), for 24h at 30°C was done. Then, a secondary enrichment was performed 

by transferring 0.1 mL of the previous culture to a tube with Fraser broth that was incubated 

for 48h at 37°C. The cultures obtained in the primary enrichment were transferred to Listeria 

identification agar base (PALCAM, Oxoid Lda., UK) or Oxoid chromogenic Listeria agar (OCLA, 

Oxoid Lda., UK) medium. PALCAM and OCLA plates were incubated at 37°C and examined after 

24h or, if necessary, 48h to check for the presence of Listeria characteristic colonies. 

Confirmation of the presence of Listeria spp. was carried out by selecting 5 presumed Listeria 

colonies and plated in tryptone soya yeast extract agar (TSYEA, Oxoid Lda., UK). The plates 

were incubated at 37°C during 18-24h. Typical colonies, colourless with an opaque halo, were 

then confirmed with catalase test. If the morphological and physiological characteristics 

indicate the presence of Listeria spp., a hemolysis test was performed in Columbia agar 5% 

(Oxoid Lda., UK) to investigate which species of Listeria was present. Biochemical API Listeria 

and RAPIDEC L. monocytogenes identification kits (Biomerrieux, France) were also used to 

identify the Listeria species.  

For Salmonella spp. isolation, a pre-enrichment in BPW (buffered peptone water) for 

18h at 37°C was made. Then, 0.1 mL of the previous culture was transferred to Rappaport-

Vassiliadis with soya agar (RVS, Oxoid Ltd., UK) and 1 mL to Muller-Kauffmann tetrathionate 

novobiocin (TTmk, Oxoid Ltd., UK). Samples were incubated for 24 h at 42°C (RVS) and 37°C 

(TTmk) respectively. After incubation, samples were plated in xylose lysine deoxycholate agar 

(XLD, Merck, Germany) and brilliant green agar (BGA, Merck, Germany) in order to select 

typical colonies of Salmonella spp. which are red with a black centre. The positive colonies 

were identified by API system (API 20E, Biomerrieux, France). Finally, OMNI-O antiserum test 

(Bio-Rad, USA) was performed in which Salmonella spp. shows positive agglutination. 

Three different species of Listeria: 4 isolates of L. monocytogenes, 2 isolates of L. 

ivanovii and 4 isolates of L. innocua and three serovars of Salmonella enterica: 2 isolates of 
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serovar S. Nottingham, 2 isolates of serovar S. Anatum and 2 isolates of serovar S. Liverpool 

were obtained from different food products (cheeses, sausages and prepared dishes).  

Shigella flexneri DSM-4782, Citrobacter freundii NCTC-6272 and Pseudomonas 

aeruginosa isolated on our laboratory [191] were also used in this study, as they are food 

pathogens that also grow in XLD agar and can be mistaken for Salmonella due to possible 

colour similarities. 

For subsequent analysis, Salmonella isolates, C. freundii, P. aeruginosa and S. flexneri 

were plated in XLD agar and Listeria sp. in OCLA agar. Listeria monocytogenes and Salmonella 

Nottingham were also plated in Trypticase soy agar (TSA, Merck, Germany) for a preliminary 

analysis. Plates were incubated at 37°C for 18 hours. 

 

4.3.2. Mid-infrared spectroscopy  

 

Spectroscopic acquisition was performed in an infrared spectrometer (Bruker Alpha 

Platinum) with a resolution of 4 cm-1 and 32 scans, in the mid-infrared region (4000-600 cm-1). 

Analyses were performed in a room with controlled temperature (25°C) and humidity (29%).  

Microbial colonies grown in agar medium: TSA for Salmonella Nottingham and L. 

monocytogenes preliminary analysis, XLD for Salmonella, Shigella, Citrobacter and 

Pseudomonas and OCLA for Listeria.  

The colonies were collected with a loop and placed directly on the crystal of a 2 mm x 

2 mm horizontal single attenuated total reflectance (ATR) accessory and were dried under 

gentle cold air flow for 10 seconds. At least three replicate spectra were obtained for each 

sample. The sampling accessory was cleaned with ethanol (70%) and distilled water between 

each measurement. 

 

4.3.3. Multivariate analysis 

 

The spectra (obtained in OPUS format) were transferred via JCAMP.DX format to an in-

house developed data analysis package (CATS build 97) (Barros 1999). Principal component 

analysis (PCA) was used to find the major sources of variability in data, detect outliers and 

detect the probable presence of clusters. Previous to PCA, the spectra were standard normal 

deviate (SNV) corrected. 
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4.4. Results and discussion 

 

4.4.1. Mid-infrared spectra of the bacteria 

 

Observing the spectra of L. monocytogenes (Gram-positive) and S. Nottingham (Gram-

negative) grown in TSA agar (Figure 16) we can see that both spectra are apparently very 

similar, dominated by bands from proteins and carbohydrates. A previous study, using infrared 

spectroscopy, reported that spectra of Gram-positive and Gram-negative intact cells were very 

similar, as in our case, and suggests that the bulk functional chemistry group of both bacterial 

surfaces are similar [162]. This fact does not agree with the general understanding that the 

external coat from Gram-positive and Gram-negative bacteria have significant structural and 

chemical differences between them.  

In Gram-positive bacteria, peptidoglycan is a major component of the cell wall and 

corresponds to the external layer, whereas Gram-negative bacteria exhibit an additional 

external membrane, denominated outer membrane, which is an asymmetric membrane, the 

inner leaflet containing only phospholipids, while the outer leaflet contains lipopolysaccharides 

with Lipid A and the various pore-forming proteins, the porins [96]. It is generally assumed that 

mid-infrared spectroscopy (MIR) is a surface sensitive technique and it has been reported that 

the spectra from the intact bacterial cell may represent the surface macromolecular 

composition [42]. The apparent similarities between the obtained spectra, do not mean that 

the chemical composition of the outer layers is exactly the same, and it is evident that, in 

general, the spectral profile shows small but consistent differences along the spectra. These 

differences may be explained taking in account the chemical composition of the cell wall from 

Gram-positive and of the external membrane of the cell wall from Gram-negative bacteria. 
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Figure 16: MIR average spectra of L. monocytogenes and S. Nottingham obtained from TSA agar in the 
spectral region between 4000 and 500 cm-1. 

 

We studied the case of a Gram-positive (L. monocytogenes) and a Gram-negative (S. 

Nottingham) bacteria in order to perceive the spectral differences between them.  

The cell wall of L. monocytogenes is composed of a thick peptidoglycan layer, without outer 

membrane, formed by glycan chains containing alternating units of the dissacharide N-

acetylmuramic bound to a stem peptide containing L-alanine-γ-D-glutamic-acid-meso-

diaminopimelic acid-D-Ala-D-Ala [192]. Isolated dry cell walls of Listeria species consist of 

about 35% peptidoglycan [40]. This peptidoglycan layer contains two types of anionic 

polymers: the teichoic acids, which are covalently linked to the peptidoglycan and the 

lipoteichoic acids which are polymers of phosphoglycerol substituted, with a D-alanyl-ester or 

a ribitol residue [193], [194]. On the other hand, S. Nottingham is a Gram-negative bacterium 

that possess an outer membrane, in which the LPS consists of lipid A covalently bound via 3-

deoxy-D-mannooctulosonic acid to a polysaccharide domain which is subdivided into an 

oligosaccharide portion (core) and a chain of polymerized repeating units of O antigen [141].  

LPS in an amphiphilic molecule with several hydrophobic fatty acyl groups in the hydrophobic 

lipid A and with the hydrophilic polysaccharide part possessing negatively charged phosphate 

and carboxyl groups present mainly in the inner core polysaccharide. LPS is firmly linked to the 

surface of Gram-negative bacteria, being lipid A the anchor of LPS in the bacterial envelope. 

LPS-phospholipid and LPS-LPS hydrophobic bonds, as well as the chelating effects  of divalent 

cations (e.g. Ca2+), stabilize the outer membrane structure [195]. 
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Observing the spectra (Figure 16) one can notice that L. monocytogenes spectrum 

presents more CH3 signals visible at 2960, 2870 and 1397 cm-1 comparing with S. Nottingham 

which shows to have more CH2 groups (2920, 2850 and 1468 cm-1). This is consistent with the 

fact that the chemical structure of the outer membrane lipid A presents numerous CH2 groups 

when compared with the L. monocytogenes cell wall which should show CH3 signals from the 

numerous alanine molecules not only found in the lipoteichoic acid but also in the peptides 

crosslinking the peptidoglycan chains. Furthermore, differences in the spectral region under 

1800 cm-1 are also visible,  specially between 1330 and 980 cm-1 as it is expected, as in this 

region, a subtle difference in the chemical constituents can lead to a unique spectral 

fingerprint in the MIR  region [151]. 

Looking to the region between 1700 and 1500 cm-1, one can see clearly the amide I 

and amide II bands (1650 and 1550 cm-1
, respectively) however, the profile shows some 

differences, which were not unexpected. Both bacteria have peptidoglycans originating amide 

signals, but Salmonella presents additionally the mentioned external layer constituted by lipid 

A and porins, having both, also, amide groups. It is known that amide I and II bands  are very 

sensitive to conformational alterations in the peptide backbone [196]. The spectral profile in 

the amide I and II region reflects the differences in protein composition between the two types 

of bacteria. Between 1500 and 1300 cm-1 a peak is visible at 1397 cm-1, that can be assigned to 

the symmetric bending mode of the CH3 in Listeria. The phosphate asymmetric stretching 

modes appear at 1240 cm-1 and the correspondent symmetric stretching modes should appear 

around 1080 cm-1. This last band is very broad as it results of the overlapping of the phosphate 

signal with the bands arising from the saccharides in the fingerprint region from 1200 to 900 

cm-1. According to the spectra, Listeria has more phosphate groups than Salmonella, which 

makes sense looking to the chemical composition of the teichoic and lipoteichoic acids 

(polyglycerolphosphate) in Listeria [192]. However, one cannot discard the possibility that 

nucleic acids may be contributing also to these signals.  

 

4.4.2. Listeria species discrimination 

 

OCLA agar medium allows the visual differentiation of the pathogenic species (L. 

monocytogenes and L. ivanovii) from the non-pathogenic species (L. innocua). Pathogenic 

species colonies present blue to green colour surrounded by an opaque halo that does not 

exist in the case of the non-pathogenic species. However, ISO 11290:1-1996 specifies that the 
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biochemical confirmation based on haemolytic activity and carbohydrate fermentation should 

be performed. L. monocytogenes and L. ivanovii possess haemolytic activity, whereas L. 

innocua does not have this capacity. Regarding carbohydrate fermentation, it is known that in 

aerobic conditions L. monocytogenes and L. innocua utilize glucose, lactose and rhamnose, 

while L. ivanovii ferments xylose [197]. In this study, instead of the biochemical confirmation 

step, MIR was used to assess the species distinction.  

The isolate bacterial strains of Listeria spp. obtained in OCLA agar (Figure 17) showed 

similar spectra to the one shown in Figure 16 for L. monocytogenes grown in TSA agar. 

Regarding species distinction, Figure 17 shows the spectral profile from the three species 

under study. Despite their similarity, some spectral differences are visible in the region 

between 1800 and 980 cm-1, consequently, this was the region chosen to perform the 

discrimination by principal component analysis. 

 

 

Figure 17: MIR average spectra of L. monocytogenes, L. ivanovii and L. innocua obtained from OCLA agar 
in the spectral region between 4000 and 500 cm-1. 

 

PCA analysis (Figure 18) revealed 3 different clusters. L. monocytogenes is located on 

negative PC1, mainly characterized by a peak at 1517 cm-1. L. innocua and L. ivanovii are 

located on positive PC1, both characterized by a broad band between 1700 and 1570 cm-1 and 

a peak at 1200 cm-1. L. innocua is also located at positive PC2, characterized mainly by a peak 

at 1666 cm-1 and another at 1505 cm-1, and L. ivanovii is located at negative PC2, with the most 

significant peaks at 1615 cm-1, 1330 cm-1, 1240 cm-1 and 1035 cm-1.   
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In this case, it was possible to discriminate the 3 different studied Listeria species after 

growth in OCLA agar. Regarding the chemical structure of the cell wall of the different species, 

there is few information. In consequence, it is difficult at this stage to make specific 

assignments to the discriminatory peaks. However, taking in account the discussion above, 

differences on the surface proteins, with influence on the species virulence, would contribute 

to the found discrimination (peaks between 1700-1500 cm-1). It is in accordance with studies 

showing that surface protein patterns are specific for species and even serovars [198]. These 

observations indicate observed that not only the proteins may have a significant paper on the 

species distinction, but also the saccharides and phosphates were responsible for the obtained 

distribution changes (peaks between 1300 and 980 cm-1). For example, modifications on the 

polyglycerolphosphate, like their substitution by D-alanyl or ribitol, their degree of 

polymerization and in consequence the quantity of total phosphate, would be enough to 

justify some of the spectral differences. Taking these results into account, MIR spectroscopy 

allowed the rapid differentiation of the 3 Listeria studied species without the necessity of 

performing the biochemical confirmation step, after obtaining the colonies in the selective 

medium.  

 

  

Figure 18: Principal component analysis (PC1 vs PC2) of L. ivanovii, L. monocytogenes and L. innocua 
spectra in the region between 1800 and 980 cm-1. Left: Scores scatter plot. Right: Loadings plot profile. 
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4.4.3. Salmonella identification 

 

XLD agar offers the possibility of selecting Salmonella-like colonies because the 

medium contains indicators of H2S production and pH changes. Shigella spp. are genetically 

close to  Salmonella spp. and Citrobacter spp. [199]. Citrobacter generally grows as yellow 

colonies, different from Salmonella, however, there are some works reporting that C. freundii 

and other Citrobacter species produced false-positive colonies [200], [201]. Likewise, P. 

aeruginosa and Shigella spp. can produce colonies very similar to those produced by some 

Salmonella species on XLD media, leading to misinterpretation of the results obtained [202], 

[203]. 

The mid infrared spectra from the isolated bacterial strains of Salmonella serovars, C. 

freundii, P. aeruginosa and S. flexneri obtained in XLD agar showed similar profiles (Figure 19). 

However, as in the case of Listeria species, some spectral differences are visible at the region 

between 1800 and 980 cm-1, consequently, this was the chosen region to perform principal 

component analysis in order to discriminate them. 

 

 

Figure 19: MIR average spectra of C. freundii, P. aeruginosa, S. flexneri, S. Nottingham, S. Liverpool and 
S. Anatum obtained from XLD agar in the spectral region between 4000 and 500 cm-1. 

 

The PCA of the three Salmonella serovars, C. freundii, P. aeruginosa and S. flexneri are 

shown in Figure 20. One can see five distinct groups: S. Anatum and S. Liverpool were grouped 

together and S. flexneri, S. Nottingham, C. freundii and P. aeruginosa formed distinct groups. S. 

Anatum, S. Liverpool and S. flexneri were located on negative PC1. C. freundii, S. Nottingham 

and P. aeruginosa were located on positive PC1. C. freundii on negative PC2 separates from S. 
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Nottingham and P. aeruginosa, both on positive PC2. One can observe that the most significant 

peaks that contributed to the distinction of the studied species were in the region between 

1200 and 980 cm-1, region of saccharides and phosphates, compounds that may differ at the 

surface of the different studied species/serovars. As is known, IR spectra of bacteria provide 

not only the absorption bands that describe molecular composition of the cells, but many of 

these bands are also sensitive to structure changes, numerous intra and inter-molecular 

interactions including the hydrogen bonding pattern, membrane constitution, lipid-protein 

interactions, and conformational states as the secondary structures of proteins [96]. So, also in 

this case, it is difficult to make an accurate assignment of the spectral bands to structural 

compounds of bacteria external membrane or cell wall. 

 

 

Figure 20: Figure 5: Principal component analysis (PC1 vs PC3) of S. enterica serovars (Anatum, 
Nottingham and Liverpool), S. flexneri and C. freundii and P. aeruginosa spectra in the region between 
1800 and 980 cm-1. Left: Scores scatter plot. Right: Loadings plot profile. 

 

Despite the existence of distinct groups, it was intended to obtain a better separation 

of Salmonella serovars and S. flexneri. So, as the latter is distributed in the same quadrant that 

S. Anatum and S. Liverpool, a PCA with Shigella and Salmonella serovars was performed, and it 

was found a good separation between Shigella and Salmonella (Figure 21). 

S. flexneri is separated from the other bacteria in the negative PC2. S. Anatum, S. 

Liverpool and Shigella are separated from S. Nottingham in the positive PC1. Loadings plot 

profile shows that the distribution of the species is mainly characterized by peaks in the region 
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between 1700-1500 cm-1 and 1200-980 cm-1, that may have the contribution of protein, 

phosphate and saccharide differences between the studied species/serovars. 

 

 

Figure 21: Principal component analysis (PC1 vs PC2) of S. enterica serovars (Anatum, Nottingham and 
Liverpool) and S. flexneri spectra in the region between 1800 and 980 cm-1. Left: Scores scatter plot. 

Right: Loadings plot profile. 
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4.5.Conclusions 

 
In general, the studied bacteria were discriminated by peaks corresponding mainly to 

polysaccharide (1200-980 cm-1) and protein (1700-1500 cm-1) spectral regions. This was 

expectable, as the cellular surface of the different species and serovars studied differ in these 

compounds. Some signals, corresponding to DNA phosphates, could, also, be important in the 

discrimination of the bacteria. 

So, in this study, mid-infrared spectroscopy has proved to be a very useful method for 

the confirmation of Salmonella spp. and Listeria spp. By currently used methods, this 

confirmation step is expensive and takes another 2 days of analysis using the traditional 

biochemical and serological methods. The methodology used in this work is very easy to 

perform (the colonies obtained in specific agar media are directly placed on the MIR sampling 

accessory without any handling), rapid (a few seconds to obtain a spectra) and considerably 

inexpensive, taking in account that MIR spectrometers from very good quality and not 

expensive are available nowadays.  The other advantage is to avoid the use of additional 

expensive chemicals. 

Under the research point of view, infrared spectroscopy, associated to multivariate 

analysis, can be very useful as quick monitoring technique, helping to identify targets and to 

follow studies on the cell wall and external membrane composition.  
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5.1. Abstract 
 

 High pressure processing causes minimal changes in the characteristics of the fresh 

foods, while produces microbiologically safe foods and prevents food spoilage and foodborne 

diseases on the consumers, being an emergent technology for food preservation nowadays. 

In this work, 12 different foodborne bacteria were submitted to high pressure 

processing (300 MPa, 15 min, room temperature) in order to assess the bacterial reduction 

and the alterations induced with this processing in cellular molecules. IR spectroscopy was 

used to investigate the differences in the spectra of the cells before and after the high 

pressure treatment. It was observed that all the Gram-negative bacteria were inactivated to 

undetectable levels while Gram-positive bacteria showed resistance to pressure, being 

Staphylococcus aureus and Bacillus cereus the most resistant bacteria, decreasing only 2 logs. 

Listeria innocua, in turn, showed intermediate resistance, as it decreased about 5 logs.  

 Regarding cellular modifications triggered by the high pressure treatment, it was 

possible to notice that modifications in hydrogen bonds appear to be on the basis of the 

modifications observed in the cell spectra after high pressure processing. 

There appear to be changes in protein region, and in peaks assigned to the C-H 

stretching vibration corresponding to CH3 and CH2 of amino acid side chains, lipids and 

oligopolysaccharides. Bands assigned to the PO2   groups, which may correspond to the 

phosphate groups from the cell wall and to the backbone of nucleic acids, were also modified 

with the HPP treatment. These results indicate that HPP processing may cause cellular 

envelope disruption both on Gram-positive and Gram-negative bacteria, being the second 

more affected. 
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5.2. Introduction 
 

Fish and meat have a high nutritional value and are considered easily perishable foods, 

as they can be contaminated from the environment and/or during its processing. In the case of 

fish, the high post mortem pH attained in the flesh, the high water activity and the presence of 

free amino acids and nucleotides make this food a readily available bacterial growth substrate 

[204], [205]. The same happens in meat, in which the high water activity, moderate pH and 

readily available sources of energy, carbon and nutrients, make this product ideal for microbial 

growth [12]. 

Food preservation methods have been successfully used to preserve fish and meat 

products, such as cooking, canning, curing or freezing. However, many of the characteristics of 

fresh fish and meat are lost with these processing methods. High-pressure processing (HPP) is 

an emerging food preservation method that offers numerous advantages over other food 

processing procedures. This procedure inactivates or reduces spoilage and pathogenic 

bacteria, but nutrients, flavour and colour remain largely unaffected, allowing the production 

of foods with almost complete retention of their nutritional and sensory qualities. Moreover, 

as pressure is transmitted uniformly independent of the shape or size of the food, it is ensured 

that the whole food is adequately processed [3], [66]. It is known that high pressure does not 

alter the low-energy covalent bonds, which have low compressibility and does not break these 

bonds within the ranges habitually applied in high pressure processing of food. As a 

consequence, the primary structure of molecules such as proteins and fatty acids remains 

intact, however, modifications may occur in secondary, tertiary and quaternary structures, for 

instance in the form of protein unfolding. The resistance of microorganisms to pressure varies 

considerably depending on the pressure range applied, temperature and duration of the 

treatment, as reviewed by some authors [206], [207]. The inactivation of bacteria by HPP is the 

result of a combination of factors and cell membranes are the primary sites that are damaged 

by pressure, altering cell permeability, transport systems, loss of osmotic state, organelle 

disruption and inability to preserve pH [21]. There are other components and cellular functions 

sensitive to high pressures that are modified or inhibited, such as the ribosome, protein 

synthesis, and enzyme activity [71], [208]. However, nucleic acids are relatively resistant to 

high pressures and as the structure of the DNA helix is largely the result of hydrogen bond 

formation, it is also stable under pressure [81]. It is known that Gram-positive bacteria are 

more resistant to high pressures than Gram-negative cells [67], [75], [209]. Gram-positive cells 

have a thick cell wall constituted by peptidoglycan that is less affected than the thinner 

peptidoglycan cell wall overlaid by the outer membrane of Gram-negative cells. The cell 
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membrane is considered to be a primary site of pressure damage in microorganisms, which 

affects the cell integrity [80], [81]. Apparently, the double layered phospholipids of the 

external membrane are packed tightly in the compression stage, promoting the transition to a 

gel state. During decompression, the membrane structure is lost and pores are formed. In 

order to maintain its functions and properties, the membrane should preserve its fluid state, 

which is determined by the composition of unsaturated fatty acids. High pressure reduces 

fluidity on cell membranes due to the increasing packing of the fatty acyl chains of 

phospholipids [80], [82]. Factors such as cells growth phase or age tend to influence the 

resistance to high pressure as well. However, the physiological state of bacteria does not 

appear to be a significant factor if the HPP treatment is applied in order to inactivate all 

microorganisms of safety concern.   

Rapid methods such as mid-Infrared spectroscopy (MIR) have been successfully used 

to analyse food microorganisms [128], [140]. Infrared spectra of microorganisms are very 

complex fingerprint-like patterns typical of each different bacteria [111], [140], [210]. This 

methodology studies the interaction of the infrared radiation with samples representing an 

“image” of their chemical composition. There are studies in which cell components can be 

identified by IR spectroscopy. Differences in cell lipids and proteins after ultraviolet irradiation 

of bacteria were investigated by this technique and spectral modifications were detected 

[211], [212]. The objective of this work was to use MIR in order to identify modifications in the 

cellular components of bacteria isolated from food samples after HPP processing. This 

approach intends to develop a fast and effective technique to screen food pathogens in foods 

before and after HPP processing, in order to understand at which extent pressure damages the 

cell structure in the studied bacteria. 
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5.3. Materials and methods 
 

5.3.1. Isolation of bacteria from fish, meat and cooked ham 

 

Three pieces of hake (Merluccius merluccius), 3 pieces of dried salted cod (Gadus 

morhua), 3 pieces of pork meat and cooked ham (Sus scrofa domesticus), 3 pieces of chicken 

meat (Gallus gallus domesticus) and 3 pieces of cattle meat (Bos taurus) were obtained in 3 

different commercial surfaces.  

Cod was desalted in sterile distilled water (fish:water ratio, 1:10) during 24 hours at 

4°C before microbial analysis and the water was changed 3 times (every 8 hours) to simulate 

the soaking method adopted by the consumers. Cod was analysed immediately after desalting 

procedure. Hake, pork, chicken and cattle meat and ham were analysed immediately after the 

sample acquisition. 

A total of 18 randomly selected sub-samples were aseptically cut: 3 samples of hake, 3 

samples of cod, 3 samples of pork meat, 3 samples of pork ham, 3 samples of chicken meat 

and 3 samples of cattle meat. 

 

5.3.2. Bacteria quantification 

 

Each food sub-sample was aseptically homogenized with an Ultra-Turrax (T25, Janke & 

Kunkel - IKA Labortechnik) in Ringer’s Solution (Merck) (1:10, weight: volume). One hundred 

microliters of serially diluted samples were pour plated, in duplicate, in Tryptic Soy Agar (TSA) 

medium (Merck), Violet Red Bile Dextrose Agar (VRBD) medium (Merck) and in Thiosulfate 

Citrate Bile Salts Sucrose Agar (TCBS) medium (Merck). Cod samples were additionally pour 

plated in TSA medium supplemented with 3% NaCl. After 3 days of incubation at 37°C, some 

colonies presenting different morphologies (colour, shape, size and density) were selected. 

The colonies were purified by three repeated streaking steps on TSA plates. 

 

5.3.3. Bacteria identification 

 

For the identification of the selected colonies, bacterial DNA was extracted using the 

Instagene Matrix (Biorad, USA). 16S rDNA was amplified using the universal 27f forward primer 

(5'-AGAGTTTGATCCTGGCTCAG-3') and 1512r reverse primer (5′- CGGCTACCTTGTTACGACT-3′). 
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 The reaction occurred in a Multigene Gradient Thermal Cycler (MIDSCI). The reaction 

mixture contained 1 µL of bacterial DNA, 3.75 µL of MgCl2, 2.5 µL of KCl buffer, 2.5 µL of dNTP, 

0.25 µL of each primer, 0.5 µL of BSA, 1 µL of Taq polymerase (MBI Fermentas, Lithuania) and 

Milli-Q water (Millipore). The PCR running conditions included a 5 minutes initial denaturation 

of template DNA at 94°C, 25 denaturation cycles at 94°C for 1 minute, annealing at 55°C for 2 

minutes, extension at 72°C for 2 minutes and a final extension at 72°C for 10 minutes. The 

selected PCR amplicons were purified using Ron’s PCR-Pure purification kit (BIORON, 

Germany). Automated DNA sequencing was performed by GATC biotech (Konstanz, Germany) 

and the sequences were analysed using BLAST database. 

Acinetobacter, Aeromonas hydrophila, Bacillus cereus, Enterobacter, Klebsiella, 

Staphylococcus aureus, and Pseudomonas aeruginosa were selected. E. coli NCTC 10418, 

Listeria innocua NCTC 11288, Photobacterium damselae damselae DSM-7482, Salmonella 

enterica sv. Nottingham NCTC 7832 and Vibrio anguillarum DSM-21597 from culture 

collections were also used as they are important pathogenic bacteria that can infect fish, meat 

and cooked ham. Bacteria were streaked on TSA medium (Merck) and were used after 18 

hours of incubation at 37°C. 

 

5.3.4. High pressure processing 

 

For determination of microbial concentration before and after HPP, bacterial mass was 

weighted and diluted with appropriate amount of Ringer solution (Merck) in order to 

posteriorly determine the colony forming units (CFU) per mL. This mixture was very well mixed 

and 500 µL were inserted in polyethylene tubes without air. The tubes were afterwards 

inserted in a polyamide-polyethylene bag (PA/PE-90, Albipack-Packaging solutions, Portugal), 

manually heat-sealed (vacuum packager Packman, Albipack, Águeda, Portugal), in order to 

avoid as much as possible to leave air inside the bags. Finally, these bags were inserted in 

another similar bag filled with sodium hypochlorite solution to avoid contamination of the 

pressure vessel, in case the bag containing the bacteria leaked. For each bacteria, 3 samples 

were prepared. In this study, all the bacteria used were grown for 18 hours and were at the 

stationary phase of growth (108-109 CFU/g), at which bacteria tend to be more resistant to 

inactivation by most of the food processing methods [67]. 

For mid-infrared spectroscopy analysis, the colonies were carefully collected from the 

petri dishes with a sterilized loop and placed into polyamide-polyethylene bags (PA/PE-90, 

Albipack-Packaging solutions, Portugal), manually heat-sealed (vacuum packager Packman, 
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Albipack, Águeda, Portugal), in order to avoid as much as possible to leave air inside the bags. 

The bags were previously sterilized with UV radiation (BioSafety Cabinet Telstar Bio II Advance, 

Terrassa, Spain). Each bag was inserted in another bag and afterwards in a third bag, this one 

filled with sodium hypochlorite solution to avoid contamination of the equipment. For each 

bacterium, 3 samples were prepared. 

HPP treatments were carried in a hydrostatic press (high-pressure system U33, 

Unipress Equipment Division, Poland), in a pressure vessel of 35 mm diameter and 100 mm 

height, at room temperature (≈ 21°C), using as pressurizing fluid a mixture of water and 

propylene glycol. Two independent HPP treatments were made in different days to assure that 

the results were reproducible, being in each day analysed 3 samples for each. 

Petri dishes containing 30-300 CFU were selected for counting and the results were 

expressed as logarithm of CFU. The CFU were determined before and after HPP treatment in 

order to know the effect of the pressurization on bacterial counts.  

 

5.3.5. Mid-infrared spectroscopy and data analysis 

 

Spectroscopic acquisition was carried out in a MIR (Bruker ALPHA Platinum-ATR FTIR 

Spectrometer) with a resolution of 4 cm-1 and 32 scans, in the mid-infrared (region between 

4000 and 600 cm-1). Microbial colonies were collected from the petri plates with TSA medium 

or the bags submitted to HPP with a loop and placed directly on the crystal of the horizontal 

single reflection ATR accessory. The colonies were gentle air-dried with a cold flow and then 

measured. At least six replicate spectra were obtained for each sample. 

Difference spectra (HPP treated minus control) were calculated by use of OPUS 5.0 

(Bruker, Germany). In the resultant difference spectra, upward moving bands correspond to 

bands that appear or increase intensity after the high-pressure treatment, while downward-

moving bands correspond to bands that disappear or decrease intensity after the treatment. 

Standard deviation spectra of the samples before and after high pressure treatments were 

calculated in OPUS 5.0 to assess the modifications that occurred after pressurization. The 

relative height of the bands assigned to amide II (≈ 1540 cm-1) and amide III (≈ 1400 cm-1) were 

measured in OPUS 5.0 from the standard deviation spectra. Second derivatives of the spectra 

were calculated using a Savitsky-Golay procedure [160] with a 2nd degree polynomial and a 15 

points wide-window. Each spectral signal was normalized by standard normal variate (SNV).  
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5.4. Results and discussion 
 

5.4.1. Microbial concentration before and after HPP treatment  

 

The inactivation of bacteria by HPP is probably the result of a combination of various 

factors. It is assumed that HPP does not damage a unique cellular component. In fact, 

increasing pressure compromises several important cellular functions, leading to loss of cell 

viability.  

Figure 22 shows the results for the total viable counts before and after high pressure 

processing at 300 MPa during 15 minutes at room temperature. Bacteria counts decreased to 

undetectable levels for all the Gram-negative analysed bacteria: Acinetobacter, Aeromonas, E. 

coli, Enterobacter, Klebsiella, Photobacterium, Pseudomonas aeruginosa, Salmonella and Vibrio 

anguillarum. On the other hand, the Gram-positive bacteria included in this study (Bacillus 

cereus, S. aureus and L. innocua) showed resistance to high pressure. The higher resistance of 

Gram-positive bacteria compared to Gram-negative cells was reviewed by some authors [67], 

[71], [75], [213]. We observed that B. cereus and S. aureus showed great resistance, decreasing 

only approximately 2 logs. These two species are two of the most well-studied bacteria 

regarding the use of high pressure processing and have been reported to be pressure resistant 

[67]. A study in which HPP was used to inactivate a strain of S. aureus reports that pressure 

treatment must be combined with high temperatures in order to effectively destroy this 

pathogen [214]. Another study reports that Listeria innocua, also a Gram-positive bacteria, 

showed intermediate resistance to pressure, decreasing nearly 5 logs from an initial 

population of 9 logs. It is in accordance with a study in which L. innocua could also not be 

totally inactivated at room temperature at 300 MPa during 15 minutes [215]. 
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Figure 22: Colony forming unit counts (log CFU/g) of the bacteria isolated from fish (hake and desalted cod), meat 
(pork, bovine and chicken) and cooked pork ham samples, before and after HPP treatments of 300 MPa during 15 
minutes at room temperature. * - Bacteria inactivated to undetectable levels after pressurization. 

 

5.4.2. Mid-infrared spectroscopy analysis of food bacteria before and 

after HPP treatment 

 

Despite of all research on the changes induced by pressure treatments on bacterial 

cells, the mechanisms of microbial inactivation are far from being full understood. Taking this 

into account, we performed a study by MIR spectroscopy to try to follow the changes in the 

cellular components, by means of obtaining spectra before and after HPP treatment of 300 

MPa during 15 minutes at room temperature (Figure 23). Difference spectra were obtained in 

order to better understand the changes originated by high-pressure treatment, but as the 

difference spectra are quite similar among all of the studied bacteria, only the example from 

Salmonella is shown (Figure 24), in which can be observed that only the signal at 3400 cm-1 is 

decreasing whereas all others remain. 

The spectra of the bacteria before and after high pressure processing (Figure 23) are 

very similar between them, being dominated by protein-related bands, what was not 

unexpected, as it is known that in stationary cells the ratio protein/lipids increase [216]. The 

most relevant bands are: i) a large band between 3700 and 2700 cm-1, centred at 3278 cm-1, 

corresponding to amide A and O-H from water and containing the peaks from C-H stretching 

vibrations in the region of 3000 to 2800 cm-1); ii) a band with a maximum at around 1634 cm-1, 
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which is assigned to the amide I vibration with a component of the H-O-H deformation from 

water, iii) the amide II band, with a peak around 1540 cm-1. 

More than 95% of the amide A band (3278 cm-1) is due to the N-H stretching vibration. 

This vibration mode is independent of backbone conformation but is very sensitive to the 

hydrogen bond stretching. Pressure induces a slightly decrease at 3400 cm-1, and an increase 

around 3100-3040 cm-1. This last broad peak is assigned to amide B band and together with 

the amide A are part from the Fermi resonance doublet originated by resonance with 

combinations of amide II modes [217]. The decrease in the peak of 3400 cm-1 would 

correspond to the reduction of hydrogen-bonded water, since the symmetric and 

antisymmetric stretching vibration of non-hydrogen bonded water absorb between 3630 and 

3760 cm-1. A considerable number of water molecules remain associated with the dried 

proteins, and it is known that in protein films with little free water, the stretching vibration 

from water appears at 3400 cm-1, as in our case [218]. The results indicate that the pressurized 

cells are more dehydrated than the controls. 

 

 

Figure 23: MIR spectra of the dried bacteria before and after high pressure processing, in the spectral region 
between 4000-2800 cm-1 and 1800-800 cm-1. Black lines correspond to untreated bacteria and dashed black lines 
corresponds tobacteria treated by HPP. 
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Figure 24: Difference spectrum from Salmonella between HPP treated and control, in the spectral region between 
4000 and 500 cm-1. 

 

In general, spectra from all bacteria after high pressure treatment show only small 

changes in the protein region, between 1700 and 1500 cm-1. The amide I band, reportedly 

centred near to 1650 cm-1, is the most intense absorption band in proteins and in our case, as 

mentioned above, appears around 1634 cm-1. In our case, cells have a mixture of proteins that 

cannot be considered as a single one. This signal is primarily originated by the stretching 

vibration of the C=O (70-85%) and C-N groups (10-20%) and is sensitive to the structure of the 

protein backbone and consequently to modifications in the secondary structure [218]. After 

high pressure treatment, this maximum shifts by about 5-6 cm-1 to lower frequencies. Changes 

of this order have been associated to the formation of protein aggregates [219]. It was 

previously stated that bands at a wavenumber lower than 1630 cm-1 are not common in native 

proteins, and that this kind of band found in concanavalin A was assigned to peptides with an 

extended configuration, with a hydrogen-bonding pattern formed by peptide residues not 

taking part in intramolecular β-sheet, but rather hydrogen-bonded to other molecular 

structures [220]. 

The amide II vibration of proteins is hardly affected by side chain vibrations, but the 

correlation between protein secondary structure and frequency is less straightforward than 

the amide I vibration. It has been related to hydrogen bonds, as the N-H bending contributes 

to amide II mode [221]. In our case, the form of the peak from amide II varies and shoulders 

appear at lower frequencies, but the maxima (determined by second derivative) are around 

1543 cm-1 before and after high pressure, occurring an intensity increase in the HPP treated 

bacteria. 
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Taking a closer insight into the spectra, one can see signals from the C-H stretching 

vibrations from CH3 (≈ 2960 cm-1) and CH2 (≈ 2930 cm-1) corresponding to the amino acid side 

chains, lipids and oligopolysaccharides. These peaks are more evident in HPP treated cells. 

Consistently with this fact, a very small increase in the signals at 1740 cm-1 (C=O in esters) is 

visible in subtraction spectra between before and after high pressure in 6 of the bacteria 

(Acinetobacter, Klebsiella, Pseudomonas, Salmonella, B. cereus and Listeria). It may indicate 

some disruption of the outer and/or cell membrane. A study reported that pressurized 

exponential-phase cells from E.coli stained with a lipophilic dye show visible disruption of the 

envelopes, showing the formation of vesicles of lipidic material coming out of the cells [87]. 

Our cells were in stationary phase, and the time of treatment at 300 MPa was of 15 min, which 

is different from the 8 min used in the study just cited, however, it cannot be ruled out that in 

certain extend this effect can occur also in stationary phase cells, as well. 

The signals under 1500 cm-1 are difficult to interpret. A peak around 1400 cm-1 is 

present in all of the studied bacteria and enhances with high pressure treatment. It could 

correspond to the amide III mode. This mode is the in-phase combination of N-H bending and 

CN stretching vibration with small contributions from C=O in plane bending and C-C stretching 

vibration.  

There are also two peaks around 1240 cm-1 and 1080 cm-1 which are consistent with 

the bands corresponding to the antisymmetric and symmetric stretching vibrations from PO2   

groups, respectively, which may correspond to the phosphate groups from the cell wall and to 

the backbone of nucleic acids. Hydrogen bonding to PO2
- groups lowers the observed band 

position of the two stretching vibrations [221]. In our case a lowering around 5 cm-1 is 

observed. In this region one can expect to find, also, the peaks from polysaccharides and 

sugars from nucleic acids that are surely overlaid with the phosphate signals. The region 

between 1200 cm-1 and 900 cm-1 is very variable between the different bacteria. This region 

has been used to discriminate between bacteria [111], [210]. 

It is difficult to quantify the changes that occurred after HPP treatment, especially to 

differentiate the behaviour between Gram-positive and Gram-negative bacteria. When one 

wishes to know how similar or repeatable are the spectra from the replicates, a treatment of 

averaging with the functionality of storing the standard deviation (SD) spectra can be 

performed, which quantifies the spectral changes in an scale of dissimilarity/similarity [222], 

[223]. It was decided to apply this treatment to each set of bacteria in order to observe the 

dissimilarity between the control and HPP treated bacteria (Figure 25). The resulting standard 

deviation spectra were different for each bacterium, with the Gram-positive bacteria showing 

small standard deviations and the Gram-negative showing larger variabilities. Within Gram-
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positives, S. aureus and B. cereus present the lowest peak intensities, even than L. innocua, 

being this consistent with the results from the surviving cells after pressurization.  

 

 

Figure 25: Standard deviation spectra of the bacteria before and after HPP treatment, in the region between 1720 
and 1450 cm-1. Black lines correspond to Gram-negative bacteria, grey lines correspond to S. aureus and B. cereus 
and the dashed grey line corresponds to L. innocua. 

 

A detailed observation of the SD spectra showed that the amide II peak presented the 

largest variability in intensity, conserving its position between 1540 and 1520 cm-1 in all 

samples. In addition, the amide II peak is considered to be sensitive to the hydrogen bonding 

and it is not affected by water. Taking this into account, it was decided to choose this peak as 

marker of the total modification of the spectra between control and HPP-treated bacteria. On 

the other hand, the amide I peak, which is sensitive to water, appeared at different 

frequencies for each bacterium, between 1665 and 1610 cm-1. It may indicate the 

modifications in the secondary structure of proteins, but it is difficult to know in which extend 

it may have also contributions from the residual bonded-water.  

The intensities from the amide II peak and the peak at around 1400 cm-1 were 

measured from the SD spectra and are presented in Figure 26. It can be seen that the Gram-

positive bacteria (S. aureus, B. cereus and L. innocua) show lower variation in the amide II band 

than the Gram-negative bacteria. This was interpreted as reflecting better stability from the 

Gram-positive cells towards the HPP treatment. In the case of L. innocua, in which about 50% 

of the cells survived, one can observe an intermediate behaviour when compared to Gram-

negative bacteria. A study in which L. monocytogenes cells were submitted to 400 MPa during 

10 minutes reports that some cell surface presented bud scars after the treatment and the cell 
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wall integrity was damaged [224]. It was also shown in this study that the membrane integrity 

was not homogeneous in the cellular population, although high-pressure treatments are 

considered to be isostatic. Apparently cellular damage is not equally withstood by all the cells, 

suggesting that less damaged cells are present in the pressurized bacteria. 

It was observed that the peak at ≈1400 cm-1 showed a correlation with the amide II 

peak in the Gram-negative bacteria, which could indicate that this peak may correspond to 

amide III, which also has an N-H component. In the case of S. aureus and B. cereus the peak at 

around 1400 cm-1 is higher than the small peak corresponding to amide II, however, as in this 

region peaks from other groups appear, they may overlay the small changes from protein 

origin.  

 

 

 

Figure 26: Relative height of the peaks of the standard deviation spectra between HPP treated and control, at 
around 1540 cm-1 (assigned to amide II) and 1400 cm-1 of the spectra after high-pressure processing at 300 MPa, 
during 15 minutes at room temperature for all of the studied bacteria. 
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5.5. Conclusion 

 

In this study, as expected, all the Gram-negative studied bacteria were inactivated to 

undetectable levels by an HPP treatment of 300 MPa, during 15 minutes, at room 

temperature. On the other hand, Gram-positive bacteria showed resistance to inactivation by 

HPP, being S. aureus and B. cereus the most resistant bacteria, decreasing only 2 logs from an 

initial population of 8-9 logs. Listeria innocua, in turn, decreased 5 logs. Infrared spectroscopy 

reproduces this behaviour and the spectra showed modifications after pressure treatment. 

The fact that a decrease in the water signal was observable may indicate a disruption of the 

cell envelope/cell membrane leading to cellular content loss. The band of amide II, which is 

sensitive to hydrogen bonding, can be used as marker, in the SD spectra, for the magnitude of 

the effect of high pressure. 

Looking to the overall interpretation of the results, changes in hydrogen bonds appear 

to occur on the basis of modifications that can be observed by mid infrared spectroscopy, 

which in turn should reflect the changes/interactions in the cell structure underling the 

inactivation of bacteria by high pressure or their resistance. 
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6.1. Conclusions 
 

 In this thesis, infrared spectroscopy was explored in the analysis of food bacterial 

identification and concentration determination. 

 Regarding the determination of bacterial concentration in food, it was possible to 

detect different levels of contamination in cooked ham samples that were naturally 

contaminated. The results obtained using MIR and PLS were correlated with the total aerobic 

plate count in agar culture media, being the former procedure faster, easier and cheaper to 

apply. The total aerobic plate count takes at least 24 hours of incubation to obtain the results 

and is a widely used methodological analysis in food industries to obtain an indication of the 

quantity of bacteria in a food sample. In this work, in which the smears are taken directly from 

the food surface, it was shown that MIR can provide results within few minutes, for the two 

different brands of cooked ham analysed. This methodology can be also suitable to assess the 

bacterial concentration of other foods, after development of a calibration model. 

 As the identification of foodborne bacteria is crucial to prevent food spoilage and 

illness associated to food consumption, MIR, coupled with multivariate analysis, was tested in 

order to perform bacteria identification. This methodology allowed the classification of the 

analysed foodborne bacteria in groups accordingly to their genus or species. Principal 

component analysis (PCA) was used to perform a preliminary exploratory visualization of the 

data that revealed that most of the bacteria were organized by genus. Then, the hierarchical 

cluster analysis (HCA) allowed to classify the bacteria that were not discriminated by PCA. This 

suggests that PCA and HCA, used simultaneously, easily allow to classify bacteria within few 

minutes. Using selective/differential media, bacteria were also well grouped and 

discriminated, using only PCA. Taking this into account, MIR spectroscopy, in tandem with 

multivariate analysis, showed to be a suitable, more rapid and inexpensive technique to 

replace the traditional identification methodologies based in the enrichment, isolation and 

confirmation by biochemical/serological methods used in the food industries to identify 

bacteria or the molecular tools based in DNA/RNA analysis. 

 Additionally, Listeria monocytogenes and Salmonella spp. were also quickly confirmed 

by this methodology. These two pathogens obligatory need biochemical and/or serological 

confirmation after growing in specific and differential media, as stated in ISO 6579:2002 and 

ISO 11290-1:1996, which delays the obtention of the results for up to 2 days. The three Listeria 

spp. studied were well discriminated in PCA. Salmonella serovars were more difficult to 
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discriminate between them, in spite of being well separated from the other tested species. 

However, as all of the Salmonella serovars are pathogenic for humans, their distinction was 

not important for our purpose. Also in this case, infrared spectroscopy showed to be very 

sensitive and rapid as an alternative to detect these important pathogens, allowing to obtain 

results in a few minutes after previous growing in selective/differential media. 

Concerning the cellular compounds analysis, IR spectroscopy revealed to be a suitable 

methodology to identify modifications in cell composition after high pressure processing. This 

processing technology is an emerging food preservation method that intends to satisfy the 

increasing demand for fresh-like products with minimal degradation of the nutritional and 

organoleptic properties. It was suggested that the hydrogen bonds are on the basis of the 

cellular modifications that occur during pressurization. There appear to be modifications in 

protein region, as well as in bands assigned to the C-H stretching vibration corresponding to 

CH3 and CH2 present in amino acid side chains, lipids and oligopolysaccharides. Bands assigned 

to the PO2   groups, which may correspond to the phosphate groups from the cell wall and to 

the backbone of nucleic acids, were also modified with the HPP treatment. These results 

indicate that HPP processing may cause cellular envelope disruption both on Gram-positive 

and Gram-negative bacteria, being the latter more affected. 

Infrared spectroscopy demonstrated to be usefull to bacterial quantification, as well as 

for identification, confirmation and detection of the intensity of changes due to high pressure 

treatments. These kind of applications of mid-infrared spectrometry could be very useful for 

the food industry and control organisms, since it is a method that can be explored for making 

the preliminary assessment and monitor the bacterial quality of foods in factories, storage 

centres or commercial surfaces, providing rapid and accurate results, substituting laborious 

and expensive methods that are currently used. Moreover, nowadays exist portable infrared 

spectrometers at reasonable prices and, additionally, no reagents are needed to perform the 

analysis of these kind of samples, making this methodology relatively inexpensive. Under the 

research point of view, infrared spectroscopy can be very helpful in the study of cellular 

composition, particularly the cell wall and external membrane.  
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6.2. Future work  
 

 Some suggestions for future work may be raised. It is important to study other 

important foodborne bacteria in order to enlarge the spectra library for further identifications 

in a real context, using the developed methodology. Calibration methods for the 

determination of bacterial concentration should be developed for other foods. It may also be 

interesting to study the cellular compounds after high pressure with complementary 

methodologies to IR spectroscopy, in order to better understand the modifications that were 

triggered by this processing technology.  
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