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Resumo 
 

 

Dada a demanda mundial por energia e os custos ambientais associados ao 
uso de combustíveis fósseis, é crucial encontrar uma fonte de energia livre de 
emissões de CO2, sustentável e renovável. As microalgas são das matérias-
primas mais estudadas para a produção de biocombustíveis, especialmente 
por produzirem grandes quantidades de compostos energéticos (TAG e amido) 
e metabolitos secundários valiosos (como pigmentos, vitaminas e bioplástico). 
Atualmente utiliza-se uma estratégia de produção de duas fases que envolve 
um passo de imposição de stresse para acumular compostos interessantes 
para a produção de biocombustíveis. No entanto, o crescimento celular das 
microalgas é frequentemente reduzido, exigindo tempos de cultivo mais 
longos, e as técnicas de imposição de stresse são ainda caras, representando 
custos elevados para este processo. De forma a torná-lo rentável, é necessário 
usar uma abordagem de biorefinaria, combinando a extração de moléculas 
energéticas e de subprodutos de elevado valor económico. No entanto, a 
obtenção de biomassa continua a ser uma importante fator limitante. Para o 
ultrapassar é essencial estudar as redes metabólicas e regulatórias envolvidas 
na resposta a stresse de forma a identificar potenciais alvos para 
bioengenharia. Isto permitiria manter o crescimento celular em condições de 
stresse ou mimetizar um cenário de stresse através da ligação de um gene de 
interesse a um promotor induzido por um estímulo simples, reduzindo os 
custos de produção. A microalga modelo Chlamydomonas reinhardtti foi usada 
para estudar o envolvimento das proteinas quinases SnRK na resposta a 
stresse. Esta família está altamente associada à resposta a stresse em 
plantas. Alguns estudos relatam o seu envolvimento na resposta a stresse em 
Chlamydomonas, embora se saiba pouco sobre este fenómeno. As SnRK de 
Chalydomonas foram identificadas e classificadas com base nas semelhanças 
com as sequências e estruturas de domínios previamente descritas em 
Arabidopsis. Os seus padrões de expressão foram avaliados por RT-qPCR sob 
uma ampla gama de condições de stresse para procurar genes alvo envolvidos 
em vias de resposta a stresse em Chlamydomonas. Ao utilizar ferramentas 
bioinformáticas, foram identificadas 20 SnRK de 4 subfamílias (SnRK1 e as 
suas subunidades reguladoras e dois grupos de SnRK2). 
Surpreendentemente, a subfamília SnRK3, específica de plantas, não foi 
encontrada em Chlamydomonas. A análise dos padrões de expressão das 
SnRK por RT-qPCR identificou a SnRK2.9 como potencial candidata para 
estudos futuros, dado que esta mostrou uma resposta específica sob calor. De 
acordo com a análise dos dados de RNA-seq disponíveis, as SnRK2.12 e 
SnRK2.7 parecem ter um papel na mediação da deficiência em ferro e do 
stresse oxidativo, respetivamente. A radiação UV, que pode ser aplicada de 
forma barata, levou à acumulação de lípidos. Este trabalho representa um 
grande avanço para a investigação em microalgas e biologia do stresse, uma 
vez que, apesar de as SnRK serem um grupo chave de proteínas quinase em 
biotecnologia, esta família nunca foi descrita em microalgas. 
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Abstract 

 
Given the great world energy demand and the environmental costs associated 
to fossil fuels use, it is imperative to find a CO2 neutral, sustainable, and 
renewable energy source. Microalgae are one of the most studied biofuel 
feedstock, mainly because they produce considerable amounts of energetic 
compounds (TAG and starch) and other valuable secondary metabolites (such 
as pigments, vitamins, and bioplastic). Currently, a two-phase cultivation 
strategy including a stress imposition step is used to accumulate interesting 
compounds for biofuel production. However, microalgae cell growth is often 
reduced, requiring longer cultivation times, and stress imposition techniques 
are still expensive, which represent high costs for the microalgal biofuel 
production process. In order to make it profitable, a biorefinery approach must 
be used, combining the extraction of energetic molecules and high value-added 
by-products. However, biomass supply continues to represent a major limiting 
factor. To overcome this limitation, the study of the metabolic and regulatory 
networks involved in stress response is essential so that potential targets for 
bioengineering can be identified. This would allow either the maintenance of 
cell growth under stress conditions or the mimicking of a stress condition by 
coupling a gene of interest to a promoter induced by a simple stimulus, 
reducing production costs. Therefore, the model microalga Chlamydomonas 
reinhardtti was used to study the involvement of SnRK protein kinases in stress 
response. This family is highly associated to plant stress response 
mechanisms. A few studies also report its involvement in Chlamydomonas 
stress response, although little is known about it. We identified and classified 
Chlamydomonas SnRK based on sequence and domain structure similarities 
with the SnRK sequences described in Arabidopsis using bioinformatic tools. 
Moreover, its expression patterns were evaluated by RT-qPCR under a wide 
range of stress conditions in order to look for target genes that might be 
involved in Chlamydomonas stress response pathways. By using bioinformatic 
tools 19 SnRK genes coding for 20 proteins from 4 subfamilies (SnRK1, its 
regulatory subunits, and two groups of SnRK2 proteins) were identified. 
Surprisingly, the plant-specific SnRK3 subfamily was not found in 
Chlamydomonas. The analysis of SnRK expression patterns under a wide 
range of stresses by RT-qPCR identified SnRK2.9 as a potential candidate for 
future studies as its response was specific to heat stress. Also SnRK2.12 and 
SnRK2.7 seem to have an important role in mediating Iron deficiency and 
oxidative stress, respectively, according to the mining of available RNA-seq 
data. Furthermore, from the stresses studied, UV radiation showed interesting 
results as it led to lipid accumulation and it is a stimulus that can be applied 
inexpensively. This work represents a great advance in microalgal and stress 
biology research since that, although SnRK are a key group of protein kinases 
for biotechnology, this family was never described before in microalgae.  

 
 



 

 

TABLE OF CONTENTS 

Part I .............................................................................................................................................. 1 

Current world energy demand requires alternative and sustainable energy sources ............. 1 

Searching for alternative energy sources – Biofuels as a solution ............................................ 3 

Potential of using microalgae for biofuel production – the biorefinery concept ..................... 4 

Chlamydomonas reinhardttii, a model organism ...................................................................... 8 

Stress imposition as a strategy to induce TAG production in Chlamydomonas  .................... 10 

SnRK family and stress response – looking for target genes for bioengineering .................... 13 

Bioengineering SnRK in C. reinhardtii - potential to enhance bioproduction ......................... 15 

Thesis main purposes  ............................................................................................................. 17 

Part II ........................................................................................................................................... 18 

Abstract ................................................................................................................................... 18 

Introduction............................................................................................................................. 19 

Methods .................................................................................................................................. 22 

Results ..................................................................................................................................... 25 

Discussion ................................................................................................................................ 34 

Acknowledgments ................................................................................................................... 38 

References  .............................................................................................................................. 38 

Supplementary data  ............................................................................................................... 44 

Part III .......................................................................................................................................... 52 

Final Considerations ................................................................................................................ 52 

References ............................................................................................................................... 53 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Part I 

Current world energy demand requires alternative and sustainable energy sources 

Since the beginning of times, man has been using natural resources in order to obtain 

energy for its own good. With the industrial revolution, this need became more obvious and man 

turned entirely dependent on energy use for its everyday life. Nowadays, the access to high 

quality energy sources is highly associated to prosperity and human well-being (Dale et al. 2014), 

as it is usual in developed countries. The report published last year by the International Energy 

Agency (IEA) give us a clear view of the current and worrying energy demand. In only about 40 

years the total consumption of energy worldwide almost doubled, reaching 8 979 Million tonnes 

of oil equivalent in 2012 (IEA 2014) (Fig. 1A). Transportation and industry represent the major 

sectors responsible for energy consumption and rely mostly on oil, natural gas and coal, that 

represent more than 50% of the total energy used (IEA 2014) (Fig. 1A). These fossil fuels have 

been submitted to an enormous exploitation along the years. It is predicted that its prices rise (EC 

2014) with the increasing consumption of its reserves, which will eventually run-off. Therefore, 

regarding the uncertain future of fossil fuels, the economic activities based on its consumption 

become unsustainable (Dale et al. 2014), making this problem a focus of big concern worldwide. 

Moreover, the massive consumption of fossil fuels is intimately related with the 

increasing emission of greenhouse gas (GHG), especially carbon dioxide (CO2) (IPCC 2014) (Fig. 

1B). Total CO2 emissions have been increasing since the industrial revolution and almost doubled 

in the last 40 years (IEA 2014). The high concentration of CO2 in the atmosphere is one of the 

major impact factors to climate change, leading to the increase of the earth surface mean 

temperature. This increase leads to important changes in physical, biological, and human and 

managed systems globally (IPCC 2014) (Fig. 1C). Glacier melting, precipitation patterns changes, 

and ocean acidification are some of the most known phenomena that can have a strong impact 

on ecosystems biodiversity with consequences on ocean and earth life.  

A great effort has been made in order to preserve the existent natural resources and 

biodiversity. The Kyoto Protocol and the RIO+20 United Nations Conference on Sustainable 

Development are good examples of that, bringing together world leaders to discuss this topic. 

However, besides the implementation of climate change mitigation policies and the sustainable 

practices associated to it, it is likely that GHG emissions continue to increase. According to the EC 

(2014) a great population is predicted in the next 25 years, which implies a greater energy 
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demand that comes with all the costs associated to it. It is therefore urgent to find alternative 

renewable energy sources able to respond to the current energy needs with fewer impacts in 

ecosystems. 

 

Fig. 1 Current energy demand and its consequences. (A) Total energy consumption evolution from 1973 to 

2012 in million tonnes of oil equivalent (Mtoe) and respective percentage of energy sources used. Adapted 

from IEA (2014). (B) Evolution of global anthropogenic CO2 emissions (gigatonnes/year) from forestry and 

other land use and from burning of fossil fuels, cement production and flaring. Adapted from IPCC (2014). 

(C) Impacts attributed to climate change based on scientific evidences from climate change publications 

from 2001 to 2010 (numbers in ovals in each region). Symbols indicate the categories of the attributed 

impacts, the relative contribution of climate change (major or minor) to the observed impact and the 

confidence of its attribution. Adapted from IPCC (2014).    
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Searching for alternative energy sources – Biofuels as a solution 

As fossil fuels come along with great environmental costs associated, it is important to 

conserve energy, enhance efficiencies and look for alternative energy sources so to prepare a 

sustainable future (Dale et al. 2014).  We could say that one of the biggest challenges of our times 

is to find a clean and renewable energy source that fulfils man needs. A great effort is being made 

to develop and improve alternative energy sources, such as solar energy, hydroelectric, 

geothermal, wind, biofuels, and carbon sequestration, among others (Dewulf and Van 

Langenhove 2006). However, biofuel, waste and other energy sources (geothermal, solar, wind, 

heat, etc.) still represent a minority in the global scenario (15.9% of the total energy consumed) 

(IEA 2014).  

The most promising sustainable alternative to fossil fuels are biofuels, i.e., technologies 

that produce fuel with at least one component based on a biological system (Hannon et al. 2010), 

since they are non-toxic, biodegradable, and renewable energy sources that lead to the reduction 

of GHG emissions (Gouveia and Oliveira 2009). The most commons are biodiesel and bioethanol 

that replace diesel and gasoline, respectively (Mata et al. 2010). Ideally, these biofuels would be 

ready to use in the current infrastructures and vehicles or could be introduced into the processing 

chain of the existing refineries, having the same performance of fossil fuels (Savage 2011). 

Considering the particularly acute situation of the transport sector, with no relevant alternatives 

to fossil fuels, biofuels can easily replace current fuels with little or no modifications of vehicle 

engines (Mata et al. 2010). Also, biofuels can be produced using existing technologies and 

distributed by the available distribution system (Mata et al. 2010). 

Biofuel production research is mainly focused on photosynthetic organisms since they 

naturally convert solar energy into chemical energy, stored in molecules such as lignin, cellulose, 

starch, and oils (Schenk et al. 2008; Merchant et al. 2012a). These molecules can be used for 

biofuel production, either directly or after conversion. In fact, research on green organism-based 

biofuel production is a main topic for the Portuguese government (ENE 2020) and the European 

Union (FP7 and Horizon 2020), aiming to increase their energy independence and competitiveness 

while promoting environmental and economic sustainability. Several possible biological systems 

suitable for biofuel production have been studied in order to achieve this goal. Based on the 

feedstock source biofuels can be classified into (a) first generation biofuels - prepared directly 

from food crops, mainly oleaginous crops, such as sugarcane, corn, and sunflower; (b) second 

generation biofuels - produced from non-edible plants and crop by-products; (c) and third 
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generation biofuels - produced using non-food feedstock, such as algae and photosynthetic 

bacteria (Abideen et al. 2014).  

Crop plants biomass and oils are largely used for bioethanol and biodiesel production, 

respectively (Hannon et al. 2010). However, its performance is lower than that of fossil fuels. Also, 

its price is greatly increased because it is produced from food feedstock (Mata et al. 2010) and it 

requires extensive plantations, which will probably lead to land competition and biodiversity loss 

due to deforestation and use of ecological important areas (Gallagher 2008). Therefore, the use of 

crop plants for biofuel production is only feasible at small scale (Hannon et al. 2010) and, even if 

the current biofuel-producing crops occupied all the arable land worldwide, it would not be 

enough to respond to the current energy demand (Schenk et al. 2008). Furthermore, the intensive 

use of land leads to high fertilizer and pesticide applications and water use, which can represent 

significant environmental problems (Schenk et al. 2008).  

Second and further generation biofuel-production systems upsurge as an alternative to 

overcome first generation biofuel production limitations as they have higher energy yields per 

hectare, are more water-efficient, and do not require agricultural land (Schenk et al. 2008; Mata 

et al. 2010). E.g. the extensive sunny western Iberian Peninsula, occupied by the dehesa (Spain) 

and the montado (Portugal) with soil and climate characteristics that make them unsuitable for 

intensive farming (Marañón 1988), could be more efficiently used if biofuel production facilities 

were integrated in these agro-sylvo-pastoral systems. Investigation on biofuels is still on its 

infancy but microalgae seem to be one of the feedstocks with more potential (Mata et al. 2010). 

Potential of using microalgae for biofuel production – the biorefinery concept 

Microalgae are fast growing photosynthetic microorganism (prokaryotic or eukaryotic) 

that are able to live even under harsh conditions (Mata et al. 2010). These are among the most 

diverse of all organism and are present in every aquatic and terrestrial ecosystem (Reijnders et al. 

2014), being represented by more than 50 000 species (Richmond 2008). As reviewed by Tirichine 

and Bowler (2011), algae are extensively studied especially because they (a) are photosynthetic 

organisms, providing food to other organisms and sequestering great amounts of atmospheric 

CO2 into the ocean, which represents an important mechanism against global warming; (b) have a 

primitive origin, allowing tracking back the evolution of life on Earth; (c) have unique structural, 

mechanical, biochemical and optical features that can be used to build devices for drug delivery, 
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biomolecule separation, and computer chip manufacturing; (d) can be used as model systems to 

study cellular functions; and (e) have a great potential to become a biofuel source. 

Although Meier (1955) and Oswald and Golueke (1960) had already proposed the use of 

microalgae for methane gas production, the idea of using algae for biofuel production was first 

discussed only during the oil crises in the 1970s (Hu et al. 2008). Later on, the increase of fossil 

fuel prices and the request to reduce GHG emissions renewed the interest on using microalgae for 

biofuel production (Mata et al. 2010). In fact, according to Konur (2011) scientometric evaluation 

of the literature on algae and bio-energy published over the last 30 years, there was an 

exponential increase on this topic publications that visibly reflects this renewed interest. 

Microalgae are one of the most studied third generation systems for biofuel production. If its 

metabolism is engineered, microalgae-based biofuels are also named as fourth generation 

biofuels (Lü et al. 2011).  

Microalgae are easy to cultivate, have a rapid life cycle and a fast growth rate, require 

little or no attention while growing, and are able to live in several environmental conditions (Mata 

et al. 2010). These organisms are able to accumulate considerable amounts of cellulose, starch 

and oils that might be used to produce bioethanol (cellulose and starch) and biodiesel (oils) 

(Schenk et al. 2008). Most studies are focused on studying microalgae lipid accumulation since 

biodiesel could easily respond to the high energy demand than bioethanol. Microalgal 

triacylglycerides (TAG; triple esters: three fatty acids esterified to a glycerol bone) are powerful 

energy storage molecules of great interest since they can be extracted and easily converted into 

biodiesel by transesterification reactions that displace glycerol with small alcohols, such as 

methanol (Waltz 2009; Sharma et al. 2012) (Fig. 2). Also, there is a great potential for other 

economical and environmental uses related to microalgae-based biofuel production, such as: (a) 

fixation of CO2, leading to the reduction of GHG effects; (b) wastewater treatment by using water 

contaminants as nutrients (NH4
+, NO3

-, and PO4
3-); (c) use of the biomass remaining from oil 

extraction as fertilizer or to produce ethanol, methane, electricity or heat; (d) extraction of fine 

chemical and bulk products such as fats, polyunsaturated fatty acids, oils, natural dyes, sugars, 

pigments, antioxidants, and high-value bioactive compounds (reviewed by Mata et al. (2010)). 

However, besides all of the advantages pointed out for microalgae-based biofuels, it is still 

a matter of debate whether they can perform as good as other biofuels. The discussion between 

Chisti (2008a; 2008b) and Reijnders (2008) about if ͞Biodiesel fƌoŵ ŵiĐƌoalgae ďeats ďioethaŶol͟ 

from crop plants is a great example of that, with Chisti (2008b) concluding that microalgal biofuels 
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have the potential to be far superior than traditional crop-based ones and to be produced 

sustainably. Also, cyanobacteria (prokaryotic bluegreen algae) are extensively studied as they 

have higher solar energy into biomass conversion efficiencies than food-crops and algae, well-

established methods for genetic engineering, and secrete free fatty acids (FFA), precursors of 

biodiesel (Parmar et al. 2011). However, unlike microalgae, cyanobacteria do not naturally 

synthesise and accumulate significant amounts of TAG (Radakovits et al. 2010). Despite the 

distrust of many authors on microalgae-based biofuel and the hot discussion on it, this research 

field has been growing over the last years and there is a lot of hope on the development of this 

alternative energy source.  

 

Fig. 2 Transesterification of TAG (TG) 

using methanol in order to produce 

biodiesel (FAME). R1-3 represent 

hydrocarbon groups. (Source: Shi et al. 

2012). 

Moreover, although it has been shown that microalgae productivity is higher than that of 

traditional crops (e.g. yields 8-25 fold higher than oil palm, 6 000 vs. 50 000-150 000 L/Ha per 

year), their cultivation for sole biofuel production (Fig. 3A) at commercial scale appears not yet to 

be economically feasible and sustainable (Markou and Nerantzis 2013). Currently, the most 

suggested production strategy for microalgae is a two-stage cultivation. Cells are grown in optimal 

conditions to produce biomass in a first stage and, later, stress conditions are applied aiming to 

accumulate desired compounds (Stephenson et al. 2010), such as sugars and lipids known to 

accumulate as a part of microalgae stress response mechanisms. However, it decreases cultures 

growth rate and, therefore, biomass production, increasing cultivation times and leading to 

productivity and profitability decrease. Moreover, in most cases harvesting of biomass is essential 

to move from first to second stage (i.e. when a nutrient must be completely removed from media 

or when culture densities needs to be artificially increased), increasing the cost of applying 

external stresses to production ponds or photobioreactors.  

As researchers believe that the stress imposition step cannot be avoided, recent works 

aimed to mitigate its costs by increasing the cellular capability of accumulating biomolecules or by 

applying different stress gradients to partially overlap growth and stress periods (e.g. Ho et al. 

(2014)). Several genes have been proposed as potential targets for bioengineering, especially the 

ones related to lipid (TAG biosynthesis, lipid bodies formation and metabolism) (Merchant et al. 
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2012b) or sugars/starch (hexoses and starch synthases) (Blaby et al. 2013) biosynthetic pathways 

since they are directly related to the accumulation of energetic biomolecules. However, the 

increase of productivity observed was modest. This fact, together with the available system-wide 

studies of stress response in microalgae, points that the accumulation of these molecules is the 

result of a system metabolic adjustment rather than the overexpression of a certain pathway, 

showing the complexity of increasing biofuel production by following classic approaches. 

In fact, a lot of effort is still required to improve microalgal biofuel production and make it 

economically competitive. These are highly attractive organisms for green technology (Wobbe 

and Remacle 2015), being one of the most interesting green biofactories that have been used for 

centuries as fertilizer, fodder, food, medicine, and, more recently, for biodiesel production 

(Sarmidi and El Enshasy 2012). Thus, its natural capacity to produce several compounds creates 

the opportunity to develop a sustainable process for biofuel production (Fig. 3B): the novel 

biorefinery approach concept (Fig. 3C), named after the petroleum refinery. It aims to increase 

production profitability by designing a combined process for extracting not only energetic 

molecules from biomass, but also secondary metabolites of high added-value such as pigments 

(astaxanthin, β-carotene, lutein), vitamins, or bioplastics (polyhydroxyalkanoate) (Markou and 

Nerantzis 2013). E.g. Adarme-Vega et al. (2012) proposed a bioprocess production chain that 

results in biodiesel, omega-ϯ fattǇ aĐids ;ω-3), and protein-rich animal feed production. This 

biorefinery approach will undoubtedly be the future for microalgae-based biofuel production 

since that a sustainable production is achieved when all the products obtained represent an 

economical income. Despite biorefineries have the potential to be profitable in a near future, 

since the processes for co-purification of molecules are well-defined, the drawbacks related to 

biomass supply, namely the two-stages culture system and the development of strategies to 

maximized the co-accumulation of interesting molecules, must also be solved at short/mid-term 

to allow an adequate expansion of this technology in the current scenario of low prices mineral 

oils.  

Therefore, studying the metabolic and regulatory networks involved in microalgae stress 

response is imperative to identify targets for future genetic manipulation that allow the 

accumulation of valuable compounds while maintaining cell growth or that mimic stress 

conditions, instead of applying them. Both possibilities would result in a considerable reduction of 

microalgal biofuel production costs, making it economically competitive when using a biorefinery 

production strategy. 
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Fig. 3 Microalgae for a sustainable bioproduction of biofuel: the biorefinery concept. Instead of looking at 

microalgae as a system directed to biofuel production only (Source: Beer et al. 2009) (B) a sustainable 

bioprocess can be developed considering the natural ability of microalgae to produce several products with 

application in different fields (Source: Posten and Walter 2012). (C) This novel process is named biorefinery, 

after the current petroleum refineries, and is present in the scheme cultivation flow (Adapted from Markou 

and Nerantzis 2013).  

Chlamydomonas reinhardttii, a model organism 

The Chlorophycea is probably the most studied green algae group due to the 

establishment of Chlamydomonas reinhardtii as a model organism in plant biology (Hannon et al. 

2010; Neupert et al. 2012). C. reinhardtii, also referred to as the Eschericia coli of algae (Waltz 

2009) or the photosynthetic yeast (Rochaix 1995), is the only alga that attained the status of 

model organism over the last decades (Tirichine and Bowler 2011).  It has been mainly used to 

study flagellar structure and function, genetics, basal bodies (centrioles), chloroplast biogenesis, 

photosynthesis, light perception, cell-cell recognition, and cell cycle control (Harris 2001). 

Chlamydomonas is a pioneer organism in several scientific discoveries (tetrad analysis, existence 
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and transformation of the chloroplastic genome, and transformation of the mitochondrial 

genome of a photosynthetic organism) (Lefebvre and Silflow 1999) and it is currently considered 

an attractive host for bioproduction in biotechnology (Neupert et al. 2012). 

C. reinhardtii is an unicellular motile green algae with two flagella at its interior end, a 

hydroxyproline-rich glycoprotein wall, a single cup-shaped chloroplast that occupies 

approximately two-thirds of its volume, and several mitochondria (Rochaix 1995; Harris 2001; 

Neupert et al. 2012) (Fig. 3). Wild-type C. reinhardtii cells are oval-shaped and approximately 10 

µm length and 3 µm width (Rochaix 1995). It is able to grow autotrophically, mixotrophically or 

heterotrophically (Rochaix 1995). Thus, wild-type C. reinhardtii is easily grown in neutral liquid or 

agar medium without any supplementary vitamins or co-factors, both with or without acetate and 

light, although their growth rates are increased in the presence of light (Harris 2001). Its optimal 

growth temperature is 20-25 °C and at 25 °C in a minimal medium with light (200-400 µE m-2 s-1 

PAR (photosynthethically active radiation)) in average cell number doubles each 6-8 h (Harris 

2001). When growth at light-dark cycles, cells remain in G1 during the light phase and divide 

throughout the dark phase (Harris 2001). Usually Chlamydomonas reproduce asexually by mitotic 

division (Rochaix 1995; Neupert et al. 2012). However, under certain conditions, such as Nitrogen 

deprivation, C. reinhardtii haploid cells (mt+ or mt- mating type) start sexual reproduction 

(Rochaix 1995; Harris 2001; Neupert et al. 2012). The fact that C. reinhardtii is haploid during 

vegetative growth allows the immediately expression of mutations and the readily observation of 

specific mutant phenotypes as colonies on solid medium (Shrager et al. 2003). 

 

Fig. 4 Chlamydomonas reinhardtii cell structure: central 

nucleus (N) with the nucleolus (Nu), the two flagella (F), 

the cup-shaped chloroplast (C) with the eyestpot (E), the 

pyrenoid (P) and the mitochondria (M). Golgi vesicles (G), 

starch grains (S), and vacuoles (V) are also represented 

(Source: Harris 2009). 
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The C. reinhardtii genome is 121 Mb size, with 17 chromosomes (Tirichine and Bowler 

2011) and approximately 15 000 genes (Grossman et al. 2007), comprising three autonomous 

genomes (nuclear, chloroplastic, and mitochondrial) that are fully sequenced and suitable of 

genetic transformation (Rochaix 1995; Harris 2001; Neupert et al. 2012). It is the only biological 

system where all the genomes have been successfully transformed (Lefebvre and Silflow 1999). 

The existence of the sequenced genome possibly allows to reveal new metabolic routes and their 

regulation mechanisms, enhances our knowledge about previously known metabolic pathways 

(Grossman et al. 2007), and facilitates genetic manipulation (Radakovits et al. 2010).  

The Chlamydomonas simple and easily controlled cell life cycle, the ease of isolation of 

mutants, and the availability of tools for molecular genetic research (wild-type and mutant 

strains, plasmid constructs, and a large on-line database) makes it an ideal model system (Harris 

2001). As a model organism it represents many features of its near relatives and may show facts 

or principles applicable to an entire domain of life (Davis 2004). Thus, although C. reinhardtii 

might not be the ideal species for biofuel production, as it does not produce much oil under 

natural conditions (Waltz 2009), the technologies established for this species have great potential 

for application in other promising oleaginous algae species (Hannon et al. 2010), such as its close 

relatives green algae Chlorella and Dunaliella. Besides its great lipid production they are also 

promising candidates for bioproduction of other high-valuable secondary metabolites, such as 

astaǆaŶthiŶ aŶd β-carotene (Markou and Nerantzis 2013). 

Stress imposition as a strategy to induce TAG production in Chlamydomonas 

Lipid induction in microalgae has been studied along the last few decades thanks to its 

potential to enhance biofuel production. Currently, microalgae are submitted to stress conditions 

to enhance its TAG production (Reijnders et al. 2014). Physiologically, microalgae TAG not only 

have a storage function but also an adaptive function (Solovchenko 2012). It is thought that its 

accumulation under stress occurs because TAG (a) are the source of long-chain fatty acids for the 

membranes needed to photosynthetic apparatus rearrangements, (b) prevent photo-oxidative 

damage and subsequent reduction of cell capacity to use photosynthesis products in other 

biosynthetic processes, as its biosynthesis consumes excessive photoassimilates, and (c) in 

carotenogenic microalgae, are deposited as cytoplasmatic oil bodies, creating a deposit for 

secondary carotenoids forming an optical screen that protects cells against photodamage by 

excessive PAR (Solovchenko 2012).  
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Several studies were carried out exposing microalgae to different stress scenarios in order 

to evaluate lipid accumulation in such conditions. Nitrogen (N) starvation is one of the most 

widely investigated stresses as it is the most critical nutrient affecting lipid metabolism in algae 

(Sharma et al. 2012). It was stated by several authors that under N depletion C. reinhardtii 

accumulates considerable amounts of TAG (e.g. Wang et al. 2009; Siaut et al. 2011; Boyle et al. 

2012; Valledor et al. 2014). Studies about other nutrient limitations are, however, scarcer. 

Regarding Phosphorous (P) limitation in C. reinhardtii, Weers and Gulati (1997) observed an 

increase in the amount of saturated, monounsaturated and diunsaturated fatty acids and a fatty 

acid composition similar to the N limited cells. Iwai et al. (2014) also compared the effect of N and 

P limitation in C. reinhardtii finding that both stresses induced oil droplets accumulation but that 

only under P deprivation the thylakoid membranes were maintained, which allows a higher 

accumulation of TAG. Similarly, under Sulphur (S) deprivation C. reinhardtii showed to accumulate 

large amounts of TAG (Matthew et al. 2009). Moreover, according to Cakmak et al. (2012), TAG 

content increased under S starvation reaching its peak after 4 days of starvation and, unlike N-

starved cells, maintaining it afterwards, which demonstrates that S starvation could be a better 

strategy to enhance TAG production in C. reinhardtii than N starvation. Acetate was also 

described as a limiting factor and the central molecule in lipid droplet synthesis in C. reinhardtii 

(Ramanan et al. 2013) and it is well-known that this organism does not assimilate nitrate or 

ammonium if a carbon source, like acetate, is not available (Thacker and Syrett 1972). 

Besides nutrient limitation studies, also some temperature shift experiments were already 

performed. Knowing that lipid profiles change with temperature, microalgae-based biodiesel 

properties would also change with different climates and seasons (Sharma et al. 2012), which 

makes this an important field of research. Sato et al. (2000) evaluated the effect of temperature 

(15 °C or 35 °C) on the C. reinhardtii thylakoid membranes acidic lipids content, concluding that it 

was not affected by this environmental factor. Valledor et al. (2013) unravelled for the first time 

cold stress adaptation in this organism reporting a reduction on total lipid content but an increase 

in desaturation of FAME (fatty acid methyl esters). FAME molecules in most cases represent 

biodiesel produced from vegetable oil or animal fat (Knothe 2005). In fact, although it is well-

known that temperature influences fatty acid composition and total lipid content in algae, a 

general trend cannot be established as little information is available on this topic (Hu et al. 2008).  

Salt stress induced TAG accumulation in C. reinhardtii as well (Siaut et al. 2011; Fan et al. 

2011). Munnik et al. (2000) reported the increase in PA (phosphatidic acid) and its conversion to 
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DGPP (diacyl-glycerol pyrophosphate) in Chlamydomonas moewusii grown under hyperosmotic 

stress conditions (NaCl, KCl, glycerol, sucrose, and mannitol). PA is an intermediate in lipid 

synthesis and produces DGPP, which is a potential signalling molecule involved in one of the 

several phospholipid-based signalling pathways activated by osmotic stress in plants (Munnik et 

al. 2000). Similarly, Meijer et al. (2001) observed the increase of phospholipids during 

hyperosmotic stress, mainly LPA (lyso-phosphatidic acid) that was in part generated from PA. 

Hema et al. (2007) also tested different PEG (polyethylene glycol) concentration and observed 

that C. reinhardtii cells suffer a severe reduction in growth and chlorophyll degradation when 

submitted to high levels of osmotic stress. Nonetheless, no lipid accumulation or lipid profile 

changes were accessed.        

However, by exposing cells to stressful environments, its growth is reduced and the trade-

off between TAG production and cell growth becomes an important limiting factor (Klok et al. 

2013). Unrevealing the metabolic and regulatory networks involved in stress response would 

allow us to modify them in order to increase its TAG synthesis while maintaining cell growth (Fig. 

5). Besides recent studies are focused in engineering microalgae to improve its productivity and 

energy value, few progresses were achieved until recently (Mata et al. 2010). The experiment 

performed by Iwai et al. (2014) is an example of a few successful cases. A P deprivation-inducible 

promoter was constructed and the transformant obtained strongly enhanced its TAG 

accumulation.  

 

Fig. 5 Omic-driven strain 

engineering strategy. Nutrient 

deprivation increases the 

production of desirable products 

but sometimes cell growth is 

compromised. Knowing target 

genes and proteins involved in 

nutrient sensing, cell-cycle 

progression, and lipid 

accumulation allows the use of 

engineering strategies (gene 

silencing, knockout, and/or 

overexpression) to develop algal 

strains with relevant phenotypes, 

such as high lipid accumulation 

under optimal conditions and 

active growth (Source: Guarnieri 

and Pienkos 2015).   
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SnRK family and stress response – looking for target genes for bioengineering 

Plants contain a large group of protein kinases related to the classical sucrose non-

fermenting-1 (SNF1)-type kinases from yeasts. Rye RKIN1 was the first protein from this group to 

be described (Alderson et al. 1991). Later on, Halford and Hardie (1998) named this plant protein 

family as SNF1-related kinase (SnRK), recognizing three subfamilies (SnRK1, SnRK2, and SnRK3). In 

general, protein kinases play a key role on the regulation of cellular function (cell division, 

metabolism, and response to external signals) (Hrabak et al. 2003) as they promote protein 

phosphorylation/dephosphorylation, the major mechanism of post-translational regulation of 

protein activity and transduction of intracellular signals in eukaryotic organisms (Halford and Hey 

2009). Yeast SNF1 is well known by its role in glucose repression, a mechanism that regulates 

carbon metabolism in yeast (Dickinson and Schweizer 2004). This mechanism affects the use of 

alternative carbon sources, gluconeogenesis, enzyme synthesis, respiration, and mitochondria 

and peroxisomes biogenesis and it ensures that glucose is always consumed first by fermentation 

to ethanol and that aerobic metabolism starts only when glucose levels are low (Halford and Hey 

2009). SNF1 activity is greatly increased upon glucose removal (Woods et al. 1994; Wilson et al. 

1996), being activated by the phosphorylation of its Thr210 residue after sensing of an elusive 

metabolite (Halford and Hey 2009). 

SnRK represent one of the seven types of serine-threonine protein kinases from the CDPK-

SnRK superfamily (Calcium-dependent protein kinase-SNF1-related kinase) (Hrabak et al. 2003). 

All CDPK-SnRK proteins contain a catalytic domain typical of eukaryotic Ser-Thr kinases that was 

first used for its classification into this superfamily (Hanks and Hunter 1995). Afterwards, proteins 

were assigned to different groups based on the sequence and function of their flanking domains. 

N-terminal domains are highly variable in length and sequence even within each subgroup but its 

function is not clear (Hrabak et al. 2003). Usually SnRK do not contain a putative N-terminal 

myristoylation sequence (like CDPK and CDPK-related kinases (CRK)) and thus it is unlikely to find 

them associated to the membrane thanks to this hydrophobic modification (Hrabak et al. 2003). 

In plants, only CDPK and SnRK3 contain an autoregulatory region immediately C-terminal to the 

kinase domain that is regulated by interaction with calcium-binding domain or protein, similarly to 

the animal CaMK (calmodulin-dependent protein kinase) and CCaMK (calcium and calmodulin-

dependent protein kinase) (Hrabak et al. 2003). Most CDPK-SnRK have C-terminal domains that 

regulate kinase activity or mediate protein-protein interactions, as it is thought to happen in the 

highly variable SnRK C-terminus (Hrabak et al. 2003). Moreover, SnRK can be differentiated from 
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the other groups as it contains a Thr in their activation loop, a conserved subdomain (Hrabak et al. 

2003).  

Considering the premier model plant organism, 38 SnRK from three subgroups were 

found in Arabidopsis based on sequence similarity and domain structure (Hrabak et al. 2003). The 

three Arabidopsis SnRK1 sequences showed to be the most closely related to SNF1 from yeast and 

to AMP-activated protein kinases (AMPK) from animals (Hrabak et al. 2003). Both SNF1 and AMPK 

are involved in the regulation of the activity of key enzymes of carbon metabolism (Carling et al. 

1987; Carling et al. 1989; Hardie et al. 1989) and reflect the cell energetic status based on the 

ATP/AMP balance and the level of stress that the cell is being submitted to, through the direct or 

indirect action of AMP over these enzymes (Hardie and Carling 1997). Likewise, as reviewed by 

Hrabak et al. (2003), several crop species studies suggest that SnRK1 are involved in metabolism 

regulation in response to nutritional or environmental stress through the interaction with other 

proteins on its C-terminal regulatory domain (Fig. 6).  

The SnRK2 and SnRK3 subfamilies seem to be unique to plants (Halford et al. 2000), being 

larger and more diverse than the snRK1 subfamily (Halford and Hey 2009). In Arabidopsis SnRK2 

and SnRK3 subfamilies comprise 10 and 25 genes, respectively (Halford et al. 2003; Hrabak et al. 

2003). SnRK2 and SnRK3 catalytic domains are less similar to SnRK1 than SnRK1 is to SNF1 and 

AMPK (Halford et al. 2003; Hrabak et al. 2003). Halford and Hey (2009) propose that this happens 

because SnRK2 and SnRK3 emerged in plants by gene duplication of SnRK1 and diverged during 

plant evolution in order to play new roles that enable plants to link stress and ABA signalling with 

metabolic signalling. In fact, the members of these subfamilies play important roles in signalling 

pathways that regulate plant response to nutrient limitation, drought, cold, salt, and osmotic 

stress (Coello et al. 2011). Its involvement in response to stress in Arabidopsis was already 

reported e.g. under drought (SnRK2.8) (Umezawa et al. 2004), hyperosmolarity (Kobayashi et al. 

2005), Sulphur starvation (SnRK2.3) (Kimura et al. 2006), and nutrient deprivation and growth 

reduction (SnRK2.8) (Shin et al. 2007). Also, the involvement of SnRK2 and SnRK3 in signalling 

cascades mediated by ABA (SnRK2.2, SnRK2.3 and SnRK2.6) (Fujii et al. 2009) or by auxins (Farrás 

et al. 2001) was already observed. Moreover, Halford and Hey (2009) explained that AREBP (ABA-

responsive element-binding proteins) represent convergence points for signalling by the three 

plant SnRK families and probably by CDPK. 
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Fig. 6 A model of the interactions 

between nutrient and energy signalling 

components – Arabidopsis SnRK 

proteins mediate signalling networks 

(Source: Baena-Gonzalez and Sheen 

2008). 

Bioengineering SnRK in C. reinhardtii - potential to enhance bioproduction 

The key role of SnRK on connecting metabolic and stress signalling makes them potential 

candidates for manipulation to improve crop performance in extreme environments (Coello et al. 

2011). Studying this family in plants becomes a difficult challenge as they comprise a high number 

of members and there are compensatory capacities of the members from the different 

subfamilies (Dale et al. 1995). As C. reinhardtii shares common ancestry with vascular plants 

(Hannon et al. 2010), it is expected that many of their responses to limiting conditions are similar 

(Grossman 2000). By using less complex organisms to study this family of proteins, such as C. 

reinhardtii, the understanding and manipulation of the pathways in which this family is involved 

becomes easier. As said before, this green unicellular microalgae has its genome fully sequenced, 

which presents characteristics from both animals and superior plants but with an inferior number 

of genes and protein families and simpler pathways.  

Furthermore, considering that it has been proved that stress conditions induce TAG and 

other high value-added ďioŵoleĐules ;e.g. astaǆaŶthiŶ, β-carotene or lutein) accumulation in C. 
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reinhardtii and the importance of TAG for biofuel production, a great interest rises for the study 

of SnRK and stress response in this model organism. There are only a few studies that suggest 

that, like in plants, SnRK are involved in stress response in C. reinhardtii, namely under Sulphur 

(Gonzalez-Ballester et al. 2008; Gonzalez-Ballester et al. 2010) and Nitrogen deprivation (Valledor 

et al. 2014) and cold stress (Valledor et al. 2013). Gonzalez-Ballester et al. (2008) started to define 

the SnRK2 family in Chlamydomonas and Valledor et al. (2013) found homologous sequences to 

the SnRK1.1/AKIN10 (CKIN1), SnRK1.2/AKIN11 (CKIN2), and other (CKIN3) sequences from 

Arabidopsis. CKIN1 expression has been diminished under cold stress (Valledor et al. 2013) and 

SnRK2.1 showed to be involved in Sulphur deprivation in Chlamydomonas (Gonzalez-Ballester et 

al. 2008).  

However, a lot of effort is still needed in order to fully describe the SnRK family in C. 

reinhardtii and its involvement in stress response. Unravelling this will allow the future 

manipulation of genes of interest for biofuel production improvement. Using genetic engineering 

to manipulate target SnRK genes coupled to inducible promoters induced by simple stimulus 

ƌepƌeseŶts a pƌoŵisiŶg stƌategǇ foƌ ďiopƌoduĐtioŶ iŶ ChlaŵǇdoŵoŶas. This ͞stƌess ŵiŵiĐkiŶg͟ 

technology would allow cost reduction and time saving comparing to the process used nowadays 

for TAG accumulation. Together with the use of the valuable by-products produced from 

microalgae this would represent a great advance for micralgal biotechnology. 
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Thesis main purposes 

 Regarding the current energy demand and the urge to find a clean and renewable energy 

source, microalgae-based biofuels showed to be one of the most promising alternatives to fossil 

fuels. Microalgae accumulate considerable amounts of lipids and carbohydrates that can easily be 

used for biofuel production. Microalgal TAG are one of the most interesting compounds for 

biofuel production and it has been already shown that its levels greatly increase in microalgae 

submitted to several abiotic stresses. However, the current systems using stress to increase lipid 

accumulation in microalgae are not economically sustainable yet, especially because of the costs 

associated to stress imposition and cell growth reduction. To overcome these limitations a 

biorefinery approach must be used and the metabolic and regulatory networks involved in 

microalgae stress response should be investigated to find targets for microalgae bioengineering. 

The SnRK protein kinases rise as a family with great potential to look for targets for 

bioengineering. In plants it is obvious the role of the SnRK in stress response and its involvement 

in carbon metabolism. However, in microalgae little is known about this family. Only a few studies 

showed that in C. reinhardtii there are also some SnRK involved in stress response. Studying SnRK 

and stress response in microalgae becomes a target of interest as it will allow further studies of 

bioengineering of metabolic pathways in order to enhance its bioproduction capacity. C. 

reinhardtii is used for this purpose as it is a well-established model organism and thus easier to 

study. The results obtained by using this organism can afterwards be applied to other close 

relatives with higher production rates.  

 Therefore, the thesis herein present as a research paper aims to define the SnRK family in 

Chlamydomonas. In order to do so, the following topics are explored: 

1. Identification and classification of the SnRK family in Chlamydomonas; 

2. Evaluation of physiological responses and expression profiles of Chlamydomonas SnRK 

genes under abiotic stresses. 
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SnRK family in Chlamydomonas: promising targets for bioproduction 

Genome-wide description of the Chlamydomonas SNF1-related kinases protein family: Involvement in 

abiotic stress response. 
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Abstract  

Microalgae can be considered next generation biofactories since they exhibit a great capacity for 

accumulating energetic (TAG and sugars) and high value-added ;suĐh as astaǆaŶthiŶ, β-carotene, 

and lutein) biomolecules. However, their profitability is still questionable, mainly because of its 

elevated production costs. Its major limiting factor is that the accumulation of different 

biomolecules must be triggered by a specific stressful situation. SnRK have been widely studied in 

Arabidopsis and other model organisms as key regulators of abiotic stress response, including 

those that lead to the accumulation of lipids or sugars in microalgae. Herein we describe 20 SnRK 

protein kinases in the model species Chlamydomonas reinhardtii using a genome-wide approach. 

These were classified into four subfamilies (SnRK1, regulatory subunits of SnRK1, and two groups 

of SnRK2) according to their protein sequence and domain structure similarities. Unexpectedly, 

any member of the SnRK3 subfamily was found in this species. RT-qPCR expression analyses of all 

the members of this family under a wide set of abiotic stresses, together with the mining of 

available high-throughput data, allowed the identification of the stress responsiveness of SnRK 

family members such as SnRK2.7 (oxidative stress), SnRK2.9 (heat stress), or SnRK2.12 (Iron 

deficiency). These SnRK appear as interesting targets for further bioengineering-based studies 

that aim to improve the current microalgae strains. Therefore, these results represent a great 

advance for increasing our understanding on microalgal stress biology and its potential 

biotechnological applications. 

Keywords: microalgae, stress response, abiotic stress, signalling, SnRK, bioengineering, biofuel 
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Introduction 

Currently the world is facing great problems concerning energy supply and the increasing 

atmospheric CO2 levels resulting from energy use, namely fossil fuels. Thus, one of the main 

challenges of our times is to find a sustainable clean and renewable energy source that is CO2 

neutral. Non-edible feedstock-based biofuels represent a promising alternative to fossil fuels. 

These have higher energy yields per hectare than crop-based biofuels, are more water-efficient, 

and do not require agricultural land to grow (Schenk et al. 2008; Mata et al. 2010). Microalgae are 

one of the most studied non-edible biological systems. Apart from its ease of cultivation, fast life 

cycle and growth rate, and capacity to live under several environmental conditions, other 

advantages can be taken from its use for biofuel production: (a) reduction of CO2 effects by its 

fixation; (b) wastewater treatment by using water contaminants as nutrients; (c) use of biomass 

as fertilizer or to produce ethanol, methane, electricity or heat; (d) and extraction of chemical and 

bulk products and high-value bioactive compounds (reviewed by Mata et al. 2010).  

The powerful microalgal energy storage TAG (triacylglycerides) molecule is highly 

interesting for biodiesel production (Merchant et al. 2012). Several studies report its 

accumulation under stress, mainly regarding nutrient limitation (e.g. Cakmak et al. 2012; Valledor 

et al. 2014b; Iwai et al. 2014). Stress imposition is, in fact, currently used as a strategy to enhance 

TAG production (Reijnders et al. 2014), specially using a two-stage cultivation process. I.e. on a 

first stage cells are grown under optimal conditions to produce biomass and then a stimulus is 

used to trigger the accumulation of the desired compounds (Stephenson et al. 2010). However, 

cell growth is often compromised under such conditions (Klok et al. 2013), requiring larger 

cultivation times, and the costs of applying a stress condition are still high (e.g. removing a 

nutrient from the media), making the cultivation of microalgae for sole biofuel production 

economically unsustainable. The novel biorefinery production approach rises as an alternative, 

aiming to combine the extraction of energetic molecules from biomass with the extraction of 

other valuable secondary metabolites, such as pigŵeŶts ;astaǆaŶthiŶ, β-carotene, and lutein) 

vitamins, and bioplastics (polyhydroxyalkanoate) in order to increase biofuel production 

profitability (Markou and Nerantzis 2013). However, the drawbacks related to biomass supply still 

need to be solved. Studying the metabolic and regulatory networks involved in stress response is 

the first step to identify targets for genetic engineering in order to obtain microalgae strains that 

are able to maintain its growth rates under stress conditions (Guarnieri and Pienkos 2015). 

Fuƌtheƌŵoƌe, usiŶg a ͞stƌess ŵiŵiĐkiŶg͟ teĐhŶologǇ that Đouples aŶ iŶduĐiďle pƌoŵoteƌ tƌiggeƌed 
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by a simple stimulus to a gene involved in the response of a specific stress condition would greatly 

reduce valuable-biomolecules cost production as microalgae cells would mimic stressful scenarios 

with no need to apply it. 

The cAMP-dependant SnRK [Sucrose non-fermenting-1 (SNF1)-related protein kinase] 

protein kinase family emerges as an interesting object of study concerning microalgae stress 

response. This protein family mediates the connexion between central metabolism, gene 

regulation, and stress response together with hexokinases (HXK) and sucrose phosphatases (SPP). 

SNF1 was initially described in yeast, being well-known by its role in glucose repression, regulating 

carbon metabolism (Dickinson and Schweizer 2004). However, the specific role of each SnRK is 

mostly unknown. These kinases concentrate divergent stress signals by activating different 

enzymes and transcription factors, not only related to metabolic regulation but also to protein 

biosynthesis and cell organization, being the key regulators of a complex system (Halford and Hey 

2009). The SnRK family also controls lipid accumulation in yeast (Kamisaka et al. 2007) and has 

been linked to increased tolerance to Nitrogen stress (Aukerman et al. 2010) and to energy 

sensing and gene regulation (Robaglia et al. 2012) in Arabidopsis, being considered a potential 

target to improve plant performance under unfavourable conditions (Coello et al. 2011).  

Studies in Arabidopsis showed that 38 members from 3 subfamilies compose this family: 3 

SnRK1, 10 SnRK2, and 25 SnRK3 (Hrabak et al. 2003). Plant SnRK1 family is implied in plant 

response to starvation and energy deficit by coordinating the energetic balance (ATP/cAMP) and 

C/N ratios to specifically regulate broad branches of the metabolism, either directly by 

phosphorylation of enzymes or transcription factors (Halford and Hey 2009). SnRK2 and SnRK3 

appear to be unique to plants (Halford et al. 2000) and there is strong evidence that they evolved 

after gene duplication of SnRK1 in order to enable plants to develop networks capable of linking 

stress and ABA signalling with metabolic signalling (Halford and Hey 2009). In fact, the SnRK2 and 

SnRK3 showed to have a key role in signalling pathways that regulate plant response to nutrient 

limitation, drought, cold, salt, and osmotic stress (Coello et al. 2011). The SnRK2 subfamily has an 

essential role in the control of gene expression through the activation of bZIP transcription factors 

and SWI/SNF/helicase complexes (Baena-González and Sheen 2008; Fujii et al. 2011) tightly 

connected to epigenetic mechanisms to perfectly control gene activation or repression. This 

system, together with the intervention of TOR, has been reported to be quickly responsive to cold 

stress and Nitrogen starvation, being correlated to lipid and starch accumulation in animals (Shaw 

2009). However, little is known about the role of this protein kinase family in microalgae stress 
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response mechanisms and its relation with biotechnological processes, such as the accumulation 

of high value-added molecules like energetic molecules (sugars and lipids) or pigments 

;astaǆaŶthiŶ, luteiŶ, aŶd β-carotene). 

The Chlorophyceae Chlamydomonas reinhardtii is the model organism for microalgae 

research. The availability of a wide set of molecular tools (Harris 2009) and of its genome 

sequence (Merchant et al. 2007), the suitability for genetic transformation, and the attractiveness 

for bioproduction in biotechnology (Neupert et al. 2012), together with its close relation to the 

economically relevant Chlorella and Dunaliella genera, make this species a strong candidate for 

microalgal research. Given that it shares common ancestry with vascular plants (Hannon et al. 

2010) it is expected that many of their responses to limiting conditions would be similar 

(Grossman 2000). However, only a few studies suggest the involvement of SnRK in 

Chlamydomonas stress response, namely under Sulphur (Gonzalez-Ballester et al. 2008; Gonzalez-

Ballester et al. 2010) and Nitrogen deprivation (Valledor et al. 2014b) and cold stress (Valledor et 

al. 2013). Gonzalez-Ballester et al. (2008) reported the existence of eight putative SnRK2 in 

Chlamydomonas (SnRK2.1-SnRK2.8) while as Valledor et al. (2013) found three homologous  

sequences to Arabidopsis SnRK (CKIN1, CKIN2, and CKIN3). Both authors suggested that, like in 

plants, Chlamydomonas stress response is mediated by SnRK. The availability of the complete 

sequence of the Chlamydomonas genome provides a unique opportunity for identifying SnRK 

family members in this unicellular microalga. Furthermore, the identification of stress-specific 

dynamics of SnRK would reveal clear targets for further bioengineering research to accumulate 

economically relevant biomolecules, since these control entire branches of the metabolism.    

In the present study we aim to fully describe the entire SnRK family in Chlamydomonas by 

using bioinformatic tools and to describe its potential implication in stress response mechanisms 

by testing the expression levels of each SnRK member under a wide-range of stress conditions by 

RT-qPCR and data mining of available high-throughput datasets. The results herein present 

represent a great advance in microalgae and stress biology research since that, although SnRK are 

a key group of protein kinases for biotechnology, this family was never characterized before in 

microalgae.  
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Methods 

SnRK sequence identification and classification in Chlamydomonas 

An initial set of Chlamydomonas sequences belonging to the SnRK family was obtained by 

BLAST based homology search of the identified Arabidopsis thaliana SnRK protein sequences 

(Coello et al. 2011) (Supplementary Table 1) (TAIR10, The Arabidopsis Information Resource) 

(Lamesch et al. 2012) against the Chlamydomonas genome (v5.5, Joint Genome Institute, DOE) 

(Merchant et al. 2007). All sequences are available at Phytozome (Goodstein et al. 2012). 

Chlamydomonas protein sequences were considered homologous for e-values lower than 10-25 

and included in a first uncurated list. 

Proteins containing similar domains and showing high homologies to this family (i.e. 

CDPKs) were filtered out after comparing the domain structure of all candidate sequences  using 

InterProScan (Zdobnov and Apweiler 2001). Furthermore, Arabidopsis domains (Pfam and 

PANTHER automated annotations detailed in Supplementary Table 2) were used as reference to 

search for potential SnRK in the Chlamydomonas genome using BIOMART (Smedley et al. 2015). 

ClustalW alignments led to the identification of conserved regions within each group of proteins. 

The SnRK sequences were clustered by UPGMA and neighbour-joining protein sequence 

trees using the jukes-cantor model to define the SnRK family and its subfamilies and detect 

misclassified genes (such as the closely related CDPKs). For a better subfamily definition SnRK 

sequences from Arabidopsis thaliana SnRK1, SnRK2 and SnRK3 subfamilies, Saccharomyces 

cerevisae and Homo sapiens were used, together with Chlamydomonas reinhardtii CDPK 

sequences (used as outgroup) (Supplementary Table 3).  

Chlamydomonas culture and stress response characterization 

 Chlamydomonas cells were exposed to a wide range of abiotic stress to generate 

materials for expression quantification of each SnRK under each situation by using quantitative 

PCR. Chlamydomonas CC-503 cw92, nit1, nit2, agg1+, mt+ was used for all the experiments 

conducted. Cells were grown on a closed incubator at 25 °C, 120 rpm, a 16:8 h (day:night) 

photoperiod and a 190-200 µE m2 s-1 light intensity provided by warm white LEDs in liquid HAP 

culture media (Harris 2009) supplemented with 10mM sodium acetate at an initial cell density of 

3-5 x 105 cells ml-1. These control conditions were changed to test each one of the stresses studied 

(Table 1). 
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Table 1. Stress assays and conditions changed to test each one of them 

Stress assay Changed Condition 

Nitrogen deprivation (-N) Substitution of ammonium chloride for potassium chloride 

Carbon deprivation (-C) Removal of sodium acetate 

Sulphur deprivation (-S) Substitution of sulphate salts for chloride and nitrate salts 

Phosphorous limitation (5% P)  5 % of the standard phosphorous content 

Heat Stress (40ºC) Increase incubator temperature to 40 °C 

Cold Stress (4ºC) Decrease incubator temperature to 4 °C 

UV radiation Stress (UV) 30 minute UV irradiation each 24 h  

Salt stress (0.25M NaCl) Addition of 0.25 M sodium chloride 

Osmotic stress (20% PEG) Addition of 20 % PEG 4000 

 Samples were collected at the beginning of the experiment (0 h; control) and 48 h after 

the start of the assay (stress). Fifty ml of fresh culture were centrifuged (4000 rpm, 6 min at room 

temperature). Supernatants were discarded, cell pellet masses were estimated gravimetrically, 

and then immediately frozen in liquid nitrogen. Samples were kept at -80 ºC until RNA extraction. 

Gravimetrical measures at the stress phase (48 h) were normalized by its corresponding controls 

(0 h). Furthermore, 2 ml of cell culture were fixed in 3 % (v/v) formaldehyde and stained with 

Lugol stain and Nile red solutions for starch and lipid observation, respectively. This analysis was 

performed under an Eclipse E600 fluorescence microscope (Nikon, Japan) following the procedure 

described by Valledor et al. (2013) and Valledor et al. (2014b), respectively.  

RNA extraction, cDNA synthesis, and qPCR  

RNA was extracted using the method described by Valledor et al. (2014a). cDNA was 

synthesized using RevertAid Reverse Transcriptase (Thermo Scientific), random hexamers, and 1.7 

µg of RNA in 20 µl final volume reactions following the ŵaŶufaĐtuƌeƌ’s specifications.  

Real time PCR analysis was performed using the CFX96 TouchTM Real-Time PCR Detection 

System (BIO-RAD). The 20 µL individual reactions prepared contained 1x Maxima Sybr Green qPCR 

Master Mix (Thermo Scientific), 0.5 µM of each primer, 2 % DMSO, and 0.7-0.8 µg of cDNA. The 

amplification protocol consisted in an initial denaturation at 95 °C for 10 min followed by 50 

cycles of denaturation at 95 °C for 15 s and annealing at 61 °C for 30 s, with fluorescence 

measurement after this step. The specificity of the PCR amplification was evaluated by a 60 cycle 

melting curve starting at 60 °C and increasing 0.6 °C/cycle. Relative expression levels were 



24 

 

determined in 24 independent experiments for each primer pair (Supplementary Table 4). Each 

individual experiment was performed with two analytical replicates for each one of the four 

individual biological replicates from each condition tested. Ubiquitin and the receptor of activated 

protein kinase (RCK1) were selected as endogenous controls after testing the expression stability 

of Actin, Ubiquitin, Tubulin, and RCK1 with geNorm software (Vandesompele et al. 2002). 

Significant differences between stress conditions were determined for each SnRK after applying 

ANOVA to the ΔΔCƋ values (Supplementary Table 5) following Hellemans et al. (2007) 

recommendations. 

Chlamydomonas SnRK family in silico functional characterization 

Since SnRK are known to be responsive to abiotic stresses in several plant species, an 

initial in silico functional characterization was performed using the publicly available datasets in 

the AlgaePath repository (Zheng et al. 2014).  Different stress conditions were available: Sulphur 

depletion (Gonzalez-Ballester et al. 2010), Nitrogen deprivation (Miller et al. 2010), low CO2 

content (Fang et al. 2012), oxidative stress (Urzica et al. 2012), and Iron deprivation (Urzica et al. 

2012). SnRK abundance values were obtained by normalizing its abundance under stress 

conditions against the basal abundance of its corresponding controls.  

Bioinformatic and statistical analyses 

All the procedures for the identification and classification of Chlamydomonas SnRK were 

performed locally employing the bioinformatics suite Geneious v7 (Biomatters Inc.), with the 

exception of InterProScan (Zdobnov and Apweiler 2001) and BIOMART (Smedley et al. 2015) 

searches that were performed at the European Bioinformatics Institute (Goujon et al. 2010) and 

Phytozome (Goodstein et al. 2012) websites respectively. R v.2.12 software (R Core Team 2014b) 

core functions and the gplots2 and pheatmap packages were used under the R Studio 

Environment (RStudio Team 2014a) to perform the statistical analyses and heatmap plotting. Four 

biological replicates and two technical replicates were considered for each condition tested. 

DiffeƌeŶĐes ďetǁeeŶ the ĐoŶtƌol aŶd eaĐh oŶe of the stƌess ĐoŶditioŶs ǁeƌe tested ďǇ “tudeŶt’s t-

Test ;p≤Ϭ.Ϭ5). Significant differences between the stress conditions were determined for each 

SnRK by ANOVA of the ΔΔCƋ values ;p≤Ϭ.Ϭ5Ϳ. Clustered heatmaps were constructed using either 

individual -ΔΔCƋ values or average of the -ΔΔCƋ of all samples corresponding to each situation. 

The in silico data heatmap was plotted considering the stress-expression values of each gene 

normalized by its respective expression in controls.  
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Results 

 Identification and classification of the SnRK family in Chlamydomonas 

From the initial BLAST search (e-value < 10-25) 112 Chlamydomonas sequences similar to 

the SnRK Arabidopsis sequences described by Coello et al. (2011) (Supplementary Table 1) were 

found (data not shown). The use of InterProScan allowed the unequivocal distinction between 

CDPKs and SnRKs based on its specific domains. By combining the results obtained from BLAST 

and protein domain validation, 17 SnRK sequences were found in Chlamydomonas (Table 2). 

Moreover, the use of BIOMART to search for SnRK characteristic domains into the 

Chlamydomonas genome allowed the identification of 3 more putative SnRK sequences (Table 2).  

Altogether, a total of 19 putative genes coding for 20 proteins corresponding to the SnRK family 

were found in C. reinhardtii (Table 2). Eleven of the SnRK genes found were previously described 

by Valledor et al. (2013) and Gonzalez-Ballester et al. (2008), while 9, corresponding to regulatory 

subunits of the SnRK1 complex and to SnRK2 subfamily proteins, were not previously described in 

Chlamydomonas.  

The construction of sequence trees by UPGMA (Fig. 1) and neighbour-joining 

(Supplementary Fig. 1) allowed the classification of the putative C. reinhardtii SnRK. SnRK1.1 (S1 

cluster) grouped with the previously annotated Arabidopsis SnRK1 proteins (AtAKIN10, AtAKIN11, 

and AtSnRK1.3), Saccharomyces SNF1, and human AMPK. Regarding SnRK1 regulatory subunits 

(S1 R cluster): Chlamydomonas CKIN3 showed to be closely related to the γ suďuŶit ϭ aŶd Ϯ fƌoŵ 

A. thaliana; Aƌaďidopsis, huŵaŶ aŶd ChlaŵǇdoŵoŶas β suďuŶits ǁeƌe siŵilaƌ; βγ fƌoŵ C. 

reinhardtii grouped with its Arabidopsis homologous and with Homo sapiens AMPK γ suďuŶit. 

Chlamydomonas SnRK2 (S2 cluster) represents the largest SnRK subfamily (16 elements) and 

seems to be divided in 2 subgroups, one of them comprising the previously described C. 

reinhardtii SnRK sequences that group with A. thaliana SnRK2. However, SnRK2.13 showed 

different clustering results according to the algorithm used for sequence tree design, not being 

included in any specific SnRK2 group. Surprisingly, no SnRK3 sequences were found in 

Chlamydomonas. Moreover, the CDPK sequences used for this analysis group together, as 

expected. Altogether, we can consideƌ fouƌ “ŶRK Đlusteƌs iŶ ChlaŵǇdoŵoŶas: “ŶRKϭ ;“ϭͿ; βγ 

regulatory subunits of SnRK1 (S1 R); and SnRK2 (S2), which is divided in two subgroups (S2 C and 

S2 D) (Table 1).  
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Table 2. Chlamydomonas (Cre) SnRK sequences found by BLAST (e-value < 10
-25

) and protein domain 

searches. Sequence accessions and corresponding Arabidopsis (At) query sequences accession, homology 

search e-value (or domain if found only by protein search), and Chlamydomonas sequence name. SnRK 

were grouped according to sequence similarity and protein domains layout (S1: SnRK1; S1R: regulatory 

subunits of SnRK1; S2: SnRK2; SnRK2 D: SnRK2 containing the Serin/Threonin Kinase SRK2D domain; SnRK2 

C: SnRK2 containing the Serin/Threonin Kinase SRK2C domain). *Chlamydomonas sequences previously 

referred to as SnRK by 
1
Valledor et al. (2013) and 

2
Gonzalez-Ballester et al. (2008). 

Cre Accession At Accession e-value Name Cluster 

Cre04.g211600.t1.1 AT3G01090.1  0 SnRK1.1 *
1 

S1 

Cre10.g457500.t1.1 AT4G16360.1 1.86e
-69

 β  S1 R 

Cre12.g484350.t1.3 AT1G09020.1 2.88e
-52

 βγ  S1 R 

Cre12.g528000.t1.2  Domain CKIN3 *
1 

S1 R 

Cre02.g075850.t1.1 AT4G33950.1 1.33e
-57

 SnRK2.1.t1 *
2 

S2 D 

Cre02.g075850.t2.1 AT1G78290.2 7.08e
-53

 SnRK2.1.t2*
2 

S2 D 

Cre12.g499500.t1.1 AT1G78290.2 4.02e
-117

 SnRK2.2 *
2 

S2 D 

Cre02.g075900.t1.1 AT5G66880.1 6.60e
-73

 SnRK2.3 *
2 

S2 D 

Cre11.g477000.t1.2 AT5G08590.1 7.14e
-29

 SnRK2.4 *
2 

S2 D 

Cre03.g209505.t1.1 AT1G78290.2 2.60e
-63

 SnRK2.5 *
2
 S2 D 

Cre11.g481000.t1.2 AT4G33950.1 1.91e
-88

 SnRK2.6 *
2 

S2 D 

Cre06.g292700.t1.2 AT4G33950.1 8.68e
-103

 SnRK2.7 *
2 

S2 D 

Cre10.g466350.t1.1 AT4G33950.1 2.96e
-152

 SnRK2.8 *
2 

S2 D 

Cre13.g568050.t1.3 AT4G33950.1 4.77e
-58

 SnRK2.9 S2 C 

Cre16.g657350.t1.2 AT1G78290.2 5.77e
-59

 SnRK2.10 S2 C 

Cre17.g707800.t1.2 AT1G78290.2 9.81e
-46

 SnRK2.11 S2 C 

Cre12.g485600.t1.2 AT1G78290.2 5.64e
-47

 SnRK2.12 S2 C 

Cre02.g076000.t1.2 AT5G63650.1 2.10e
-40

 SnRK2.13 S2 

Cre08.g384250.t1.2  Domain SnRK2.14 S2 C 

Cre17.g707650.t1.1  Domain SnRK2.15 S2 C 

 

The ClustalW SnRK protein sequences alignment (Fig. 2) supports the CDPK-SnRK 

sequence trees. The proteins within each group have highly conserved regions that correspond to 

domains previously described as characteristic from the proteins herein studied. The 

Serin/Threonin Kinase domain (PTHR24343) is present both in the putative SnRK1 and SnRK2 

sequences found in Chlamydomonas and in the corresponding Arabidopsis proteins (Fig. 2; 

Supplementary Table 2).  Conversely, the Serin/Threonin Kinase SRK2C domain (PTHR24343:SF55) 

seems to be unique to Chlamydomonas SnRK2 (Supplementary Table 2), namely to SnRK2.9-2.12, 

SnRK2.14, and SnRK2.15, one of the two SnRK2 clusters observed in the sequence tree (Fig. 1 and 

Supplementary Fig. 1) (named S2 C after this domain). Moreover, we could observe that SnRK2 

contain C-ends rich in repetitive amino acids and that SnRK1 contains a highly conserved region 

that was not previously described (Fig. 2).  



27 

 

 

Fig. 1 Sequence tree for the Chlamydomonas SnRK family based on the alignment of protein sequences by 

UPGMA. Chlamydomonas (Cre; black) CDPK were included as an outgroup. Arabidopsis thaliana (At; green), 

Homo sapiens (Hs; red), and Saccharomyces cerevisae (Sc; yellow) homologous sequences were also 

included in the tree. 
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Fig. 2 ClustalW SnRK protein 

sequences alignment. Consensus 

sequence for each group of SnRK 

and identity observed. Red boxes 

represent conserved domains 

whereas green boxes correspond to 

variable domains in each group of 

proteins. Domains represented: 

Serin/Threonine Kinase (Protein 

kinase domain; PTHR24343); 

Ubiquitin associated domain (UBA; 

IPR015940); Kinase associated 

domain (KA1; PF02149); 

Immunoglobulin E-set (IPR014756); 

Association with the SNF1 complex 

domain (ASC, IPR006828); 

CǇstathioŶiŶe β-synthase (CBS, 

PF00571); and domains rich in 

Alanine (Ala), Glutamic acid (Glu), 

Glutamine (Gln), Aspartic acid 

(Asp), Glycine (Gly), and Proline 

(Pro) repetitions. 
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Physiological responses of Chlamydomonas to the abiotic stresses  

Stressful growth conditions reduced Chlamydomonas growth, except for the Phosphorous 

limitation (5% P) condition (Fig. 3). Lipid bodies and starch accumulation were observed by 

microscopy (Fig. 4). Nitrogen (-N) and Sulphur (-S) deprivation led to the accumulation of 

considerable amounts of lipid bodies (Fig. 4A) and starch granules (Fig. 4B) in Chlamydomonas 

cells. Surprisingly, the irradiation with UV light (UV) also induced the accumulation of lipids, 

although at a less extent (Fig. 4A). Cold imposition (4°C) increased starch content locally around 

the pyrenoid (Fig. 4B). Under salt (0.25M NaCl), osmotic (20% PEG) and UV stress cells seem to 

present a more compact structure (Fig. 4B), probably due to water status changes, that also led to 

the reduction of cell size after salt and osmotic stress conditions.  

 

Fig. 3 Fold biomass increase in stress assays. Control (CTRL), Nitrogen (-N), Carbon (-C), and Sulphur (-S) 

deprivation, Phosphorous limitation (5% P) deprivations, heat and cold stress (40°C and 4°C, respectively), 

UV radiation stress (UV), salt (0.25M NaCl) and osmotic (20% PEG) stress data are herein represented as 

mean±SD. Fold biomass increase was obtained by normalizing the stress phase measurements (48 h) with 

its corresponding controls (0 h). Asterisks indicate significant differences between each stress assay and the 

ĐoŶtƌol ;p≤Ϭ.Ϭ5Ϳ. 
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A 

 

B 

 

 

Fig. 4 Lipid and starch accumulation in Chlamydomonas under stress conditions. 

(A) Lipid bodies accumulation under Nitrogen (-N) and Sulphur deprivation and UV 

stress, and reduction of cell size and autofluorescence under osmotic stress (20% 

PEG). (B) Accumulation of starch grains under Nitrogen and Sulphur deprivation 

and cold stress conditions (4°C; around the pyrenoid) and also a more compact cell 

structure is observed for salt (0.25M NaCl), osmotic (20% PEG), and UV stress. 

Scale bares are indicated in the controls (CTRL).     
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Expression profiles of Chlamydomonas SnRK genes under the abiotic stresses tested 

The expression of the 20 Chlamydomonas SnRK sequences found under several stress 

scenarios was evaluated by RT-qPCR (Fig. 5, Supplementary Fig. 2, Supplementary Table 5, and 

Suplemental Table 6). It has been confirmed that the SnRK family widely participates in abiotic 

stress response. According to their expression patterns under stress the SnRK family was divided 

into four groups. The first one comprises the SnRK1.1 complex that was overexpressed under all 

the stress situations, except for Nitrogen and Sulphur deprivation (-N and -S) and the transition 

from mixotrophic to autotrophic growth (-C). The expression of the different genes encoding the 

SnRK1.1 complex showed stress-specific abundances. Similarly, a second group of SnRK2 proteins 

(SnRK2.2, SnRK2.3, and SnRK2.7) also showed to be responsive to all the stresses tested. The 

remaining SnRK2 genes, with the exception of SnRK2.9 that was down-regulated in all stresses but 

osmotic (unchanged) and high temperature (up-regulated), were clustered into two differentiated 

groups according to their specific responses. The first group (SnRK2.1.t1, SnRK2.5, SnRK2.13, 

SnRK2.14, and SnRK2.15) were induced after osmotic (20% PEG), salt (0.25M NaCl), temperature 

(40°C and 4°C), and Sulphur (-S) deprivation stresses. This was particularly strong under osmotic 

stress (20% PEG), once SnRK expressions were significantly increased regarding the other stresses 

eǀaluated, eǆĐept foƌ βγ aŶd γ ;Supplementary Table 5; Supplementary Table 6). The last SnRK 

group (SnRK2.1.t2, SnRK2.4, SnRK2.6, SnRK2.8, SnRK2.10, and SnRK2.12) showed a lower increase 

of its abundance in the previously described stresses and a higher repression under Nitrogen (-N), 

Carbon (-C), and Phosphorous (5% P) limitation. Moreover, the two splicing forms of SnRK2.1 

showed different expression patterns, being SnRK2.1.t1 highly expressed under Phosphorous 

limitation (5% P) and osmotic stress (20% PEG), while as SnRK2.1.t2 was greatly induced by 

Carbon deprivation (-C). 
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Fig. 5 -ΔΔCt ǀalues of eaĐh ChlaŵǇdoŵoŶas 
SnRK sequence found under the stress 

conditions tested. The colour scale is shown 

at the right. Black corresponds to no 

changes, red to overexpression, and green 

to down-regulation. Data herein 

represented correspond to the mean of four 

biological replicates. Replicates data is 

available in the Supplementary Fig. 2. 

 

Clustering of the different stress situations based on the similarities of the SnRK 

expression rates pointed out the similar effects that different stresses caused to the cells. 

Considering all biological replicates (Supplementary Fig. 2) three major stress responses can be 

distinguished. The first one could be related to water limiting conditions since it groups osmotic 

(20% PEG), salt (0.25M NaCl), and UV stresses. These promote the overexpression of all SnRK, 

except SnRK2.9. The second group can be related to nutrient deficiency (-N, -P, and –C). A last 

group includes thermal stress (4°C and 40°C) and Sulphur deprivation (-S), which showed a 

considerable distinct SnRK expression pattern compared to other nutrient limiting stresses.  

The available high-throughput RNA-seq data was also mined to intend to investigate the 

response of the Chlamydomonas SnRK family to stresses not covered by our experiments 

(oxidative stress, Iron deprivation, and low CO2 content) and also for validation of the 

experimental results obtained (Fig. 6). Data showed that, under comparable situations (Carbon, 

Nitrogen, and Sulphur deficiencies), all genes behave similarly than described by qPCR, although 

the expression fold changes differ, possibly because of the low resolution of NGS-based methods 

when analysing sequences with a low number of copies. Also, these results pointed out that the 
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SnRK family behave in the same way in a wide range of strains, once the results obtained by real 

time qPCR using CC-503 cw92, nit1, nit2, agg1+, mt+ coincide with the ones resulting from NGS-

analysis using CC-4425 cw15 nit2 mt+ (Gonzalez-Ballester et al. 2010), CC-4619 cw15 nit1 mt+ 

(Miller et al. 2010), CC-125 wild type mt+ (Fang et al. 2012), and CC4532 Mets strain 2137 mt- 

(Urzica et al. 2012). Considering the stress conditions that were not previously described in 

Chlamydomonas, Iron deficiency (-Fe) greatly induces the expression of SnRK2.12, while oxidative 

stress was characterized by an overall down-regulation of this family with the exception of 

SnRK2.7 that seems to be a marker under such conditions.   

Altogether, in vivo and in silico data confirmed the involvement of the SnRK family in 

mediating abiotic stress response in Chlamydomonas regardless the strain. Overall specific 

patterns allowed the clustering of similar stress sources, indicating that different conditions might 

activate the same stress signalling pathways in which SnRK are probably involved. However, 

SnRK2.7, SnRK2.9, and SnRK2.12 showed to have a specific stress response under oxidative and 

heat stress, and iron deficiency, respectively. This makes them interesting targets for future 

bioengineering studies that confirm their function under such conditions. 

 

 

 

 

 

 

 

 

 
 

 
Fig. 6 Fold changes in the transcription of 

Chlamydomonas SnRK genes relatively to control 

conditions extracted from the data sets available in 

AlgaePath (Zheng et al. 2014). Sulphur (-S) and 

Nitrogen (-N) depletion, low carbon content (-CO2), 

Iron deprivation (-Fe), and oxidative damage (Ox) 

stress scenarios are considered. The colour scale is 

shown at the right side. Black corresponds to no 

changes, red to overexpression, and green to down-

regulation.  
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Discussion 

Identification and classification of the SnRK family in Chlamydomonas 

 The SnRK family upsurges in Chlamydomonas as a key group of proteins for understanding 

abiotic stress response in microalgae and as an interesting target for genetic engineering and 

consequent valuable molecule accumulation increase, with special focus on the accumulation of 

energetic (such as TAG or starch) and high value-added (such as pigments, vitamins and 

bioplastic) biomolecules. It was previously shown that some members of the SnRK family are 

related to abiotic stress response in C. reinhardtii (Gonzalez-Ballester et al. 2008; Gonzalez-

Ballester et al. 2010; Valledor et al. 2013; Valledor et al. 2014b). Therefore, the identification of 

the entire SnRK in Chlamydomonas and of SnRK members that respond specifically to a certain 

abiotic stress in Chlamydomonas are key steps for future bioengineering-based approaches.  

The use of bioinformatics tools allowed the identification of SnRK proteins that are likely 

to be involved in stress response mechanisms in Chlamydomonas, as they are homologous to the 

SnRKs previously described in Arabidopsis (Coello et al. 2011) (Supplementary Table 1). The 

methodology herein applied was effectively used before e.g. for human MAPK (Matsuda et al. 

2003) and Arabidopsis bZIP characterization (Jakoby et al. 2002), and more recently to identify a 

novel human methyltransferase modulating Hsp70 protein, METTL21A (Jakobsson et al. 2013).  By 

combining homologous protein sequence BLAST search and protein domain search a total of 19 

SnRK genes coding for 20 proteins were identified in C. reinhardtii (Table 2). Almost half of the 

number of the SnRK members described in Arabidopsis (38 SnRK) (Hrabak et al. 2003). Some of 

the previously described Chlamydomnas SnRK identified by Gonzalez-Ballester et al. (2008) (SnRK 

2.1-2.8) and Valledor et al. (2013) (SnRK1.1 and CKIN3) were confirmed by our results and 9 other 

novel sequences were found (Table 2). Protein domain search showed to be a mandatory 

complementary tool to BLAST search for the complete description of this family. This allowed the 

filtering of SnRK from the great amount of results obtained by BLAST search (112 putative 

sequences) regarding its domain structure (Supplementary Table 2). In fact, great part of the 

Chlamydomonas sequences that showed to be similar to Arabidopsis SnRK belonged to the CDPK-

SnRK superfamily, which is composed by seven types of serin-threonine kinases (Hrabak et al. 

2003). Most of them were CDPK, which were easily distinguished from SnRK thanks to its 

characteristic calcium-binging EF hands (Hrabak et al. 2003). Moreover, 3 SnRK sequences (CKIN3, 

SnRK2.14, and SnRK2.15) were only found by searching for specific SnRK domains into the 



35 

 

Chlamydomonas genome using BIOMART. Otherwise these would not be identified and the 

complete description of the Chlamydomonas SnRK would not be accomplished. 

The 20 Chlamydomonas SnRK sequences found were compared to Arabidopsis, Human, 

and Saccharomyces homologous sequences (Supplementary Table 3) in order to classify them into 

subfamilies. The results obtained by the design of both UPGMA (Fig. 1) and neighbour joining 

(Supplementary Fig. 1) sequence trees were strongly supported by the ones resulting from the 

ClustalW protein sequence alignment (Fig. 2), showing that in fact Chlamydomonas sequences 

formed different clusters according to its domain structure. ClustalW SnRK protein sequence 

alignment (Fig. 2) clearly illustrates highly conserved regions for each SnRK cluster that 

correspond to well-defined protein domains already identified by domain search using 

InterProScan (Supplementary Table 2). Looking at all these data, the SnRK found in 

ChlaŵǇdoŵoŶas ǁeƌe diǀided iŶto fouƌ Đlusteƌs: “ŶRKϭ, the eŶeƌgǇ seŶsoƌ of the Đell ;“ϭͿ; βγ 

ƌegulatoƌǇ suďuŶits of “ŶRKϭ ;“ϭ RͿ, ǁith CKINϯ ƌepƌeseŶtiŶg the γ ƌegulatoƌǇ suďuŶit; aŶd “ŶRKϮ 

(S2) proteins, which are stress responsive, were divided into two subgroups (S2 D and S2 C) (Table 

1). SnRK2 clusters were named as S2 D (SnRK2.1-2.8) and S2 C (SnRK2.9-2.12, SnRK2.14, and 

SnRK2.15) as it seems that these sequences grouped together (Fig. 1) based on the existence of 

the Serin/Threonin Protein Kinase SRK2D-Related (PTHR24343:SF99) or the Serin/Threonin 

Protein Kinase SRK2C (PTHR24343:SF55), respectively (Supplementary Table 2). While S2 D 

proteins share its characteristic domain with Arabidopsis SnRK2, S2 C proteins specific domain is 

unique to Chlamydomonas (Supplementary Table 2). Interestingly, the S2 C cluster comprises the 

SnRK2 that were not previously described by Gonzalez-Ballester et al. (2008), probably because 

the Chalmydomonas genome information was not complete at that date, which also explains why 

we considered only two splicing variants of SnRK2.1, while five splicing variants were initially 

reported. SnRK2.13 did not presented either of these domains (Supplementary Table 2) and its 

clustering by sequence alignments showed different results according to the algorithm used (Fig. 

1 and Supplementary Fig. 1). Therefore, SnRK2.13 could only be assigned to the general SnRK2 

subfamily (S2) (Table 1).  Also, SnRK2 comprise a C-end rich in repetitive amino acids that vary 

according to the protein (Fig. 2), which probably correspond to regulatory domains as it was 

described for the Chlamydomonas SnRK2.1 by Gonzalez-Ballester et al. (2008). 

Unlike in Arabidopsis, no SnRK3 proteins were identified in Chlamydomonas. As SnRK2 

and SnRK3 are unique to plants (Halford et al. 2000) it would be expected that both of these 

subfamilies would be present also in Chlamydomonas since it shares common ancestry with 
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higher plants (Hannon et al. 2010). The fact that in Chlamydomonas no proteins containing the 

Arabidopsis SnRK3 characteristic NAF/FISL domain (Hrabak et al. 2003) were found can be due to 

specific variations similar to the ones that occur in some CDPK family proteins (Hamel et al. 2014). 

Other hypothesis is the presence of a SNF/SKP1/Ubiquitin ligase complex already identified in 

higher plant, animal and yeast SnRK1 subfamily that allows the action of these proteins in several 

processes, including hormone, sugar and stress responses (Farrás et al. 2001). The existence of 

these complexes could compensate the lack of elements from the SnRK3 subfamily. Furthermore, 

SnRK1 sequences present a highly conserved region that is likely to correspond to a specific 

protein domain that was not previously described (Fig. 2) which can also compensate the 

functions of SnRK3. Proteins of these elements were previously defined as cold stress responsive 

(Valledor et al. 2013), however deeper studies involving functional and protein complex analyses 

should performed to fully support this hypothesis.  

Physiological responses and expression profiles of Chlamydomonas SnRK genes under abiotic 

stress 

The role of SnRK in plant stress response is well studied. However, in Chlamydomonas, 

although some SnRK were already related to this phenomenon (Gonzalez-Ballester et al. 2008; 

Gonzalez-Ballester et al. 2010; Valledor et al. 2013; Valledor et al. 2014b), little is known. From 

the wide-range of stress conditions evaluated, similar effects of both gene expression patterns 

(Supplementary Fig. 2) and physiological responses (Fig. 4) were observed between some of them. 

Osmotic, salt and UV stresses grouped together, showing a general great overexpression of the 

SnRK family (except for SnRK2.9) and a more compact cell structure. These changes are likely to 

be related to the water status changes sensed by the Chlamydomonas cells, as it is well known 

that osmotic and salt stress, and, more recently, UV radiation induces water stress in plants (Mao 

et al. 2012). Although osmotic salt (20% PEG) was the condition that among all showed the most 

significant SnRK overexpression, cell growth seemed to be considerably reduced (Fig. 4), probably 

because of the great stress level sensed by the cells. Thus, regarding the aim to increase biomass 

production to integrate biofuel-based bioproduction into a biorefinery system, the genes related 

to osmotic stress response do not represent a target of interest. However, UV radiation leads to 

the increase of lipid bodies accumulation, apparently maintaining cell growth (Fig. 4). Therefore, 

further studies to unravel the function of the SnRK overexpressed under UV radiation stress might 

be interesting, especially because applying this stimulus to cultivation ponds or photobioreactors 

do not represent high costs.  
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Although Nitrogen and Sulphur deprivation also increased lipid bodies and starch grains 

accumulation in Chlamydomonas (Fig. 4), applying a nutrient deficit stress involves great costs, 

since that, after a first phase of cell growth, the media must be substituted. These and Carbon 

deprivation are the only conditions were the SnRK1.1 complex is not accumulated (Fig. 5). 

Contrarily, under Phosphorous limitation, this complex was highly expressed. Also, as referred 

before by Gonzalez-Ballester et al. (2008) SnRK2.1 transcripts clearly showed different behaviours 

in response to Sulphur deprivation (SnRK2.1.t1: up-regulated; SnRK2.1.t2: down-regulated) and 

also to Phosphorous limitation (SnRK2.1.t1: no change; SnRK2.1.t2:downregulated) and osmotic 

stress (SnRK2.1.t1 with a much greater overexpression) (Fig. 5). This suggests that, depending of 

the limiting conditions sensed by the cell alternative splicing regulates its response to stress. Our 

data clearly show this because it clusters apart two transcripts from the same gene regarding its 

expression changes in response to a wide-range of stress conditions (Fig. 5), indicating its possible 

distinct functionality. In fact, some SnRK2 from Arabidopsis had similarly showed its involvement 

in Sulphur deprivation (AtSnRK2.3) (Kimura et al. 2006) and water limiting conditions, namely 

under drought stress (AtSnRK2.8) (Shin et al. 2007) and hyperosmolarity (Kobayashi et al. 2005) 

(Kobayashi), which supports the idea that the plant-specific SnRK2 subfamily plays a crucial role in 

stress response signalling both in Arabidopsis and Chlamydomonas.    

From all the SnRK family genes tested, only SnRK2.9 showed a stress specific response, 

being significantly overexpressed exclusively under heat stress. It is clear the importance of this 

gene as it is displaced in the heatmap as a outgroup (Fig. 5).  This makes it a potential target for 

further bioengineering studies to confirm its function in the stress response mechanisms in 

Chlamydomonas. Moreover, from the mining of the available high-throughput RNA-seq data, that 

allowed us to support our data from the coinciding conditions and to observe that stress response 

is not strain-dependent in Chlamydomonas, other target genes were identified. These were 

SnRK2.12 that was highly induced by Iron deficiency and SnRK2.7 that appears as a possible 

specific gene for oxidative stress response in Chlamydomonas (Fig. 6).  
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Supplementary Data 

 

Supplementary Table 1. Arabidopsis thaliana (At) query sequences used for BLAST homology search to 

identify putative SnRK sequences into the C. reinhardtii genome: names and respective identification (ID).  

Name At ID Name At ID Name At ID 

Akin10 AT3g01090 SnRK2.8 AT1g78290 SnRK3.13 AT4g24400 

Akin11 AT3g29160 SnRK2.9 AT2g23030 SnRK3.14 AT4g30960 

βϭ AT5g21170 SnRK2.10 AT1g60940 SnRK3.15 AT5g01820 

βϮ AT4g16360 SnRK3.1 AT5g01810 SnRK3.16 AT3g17510 

βϯ AT2g28060 SnRK3.2 AT5g07070 SnRK3.17 AT2g26980 

βγ AT1g09020 SnRK3.3 AT4g14580 SnRK3.18 AT2g25090 

γϭ AT3g48530 SnRK3.4 AT5g57630 SnRK3.19 AT2g38490 

γϮ AT1g69800 SnRK3.5 AT5g45810 SnRK3.20 AT1g29230 

SnRK2.1 AT5g08590 SnRK3.6 AT5g45820 SnRK3.21 AT1g48260 

SnRK2.2 AT3g50500 SnRK3.7 AT2g34180 SnRK3.22 AT2g30360 

SnRK2.3 AT5g66880 SnRK3.8 AT5g58380 SnRK3.23 AT1g30270 

SnRK2.4 AT1g10940 SnRK3.9 AT4g18700 SnRK3.24 AT5g10930 

SnRK2.5 AT5g63650 SnRK3.10 AT3g23000 SnRK3.25 AT5g25110 

SnRK2.6 AT4g33950 SnRK3.11 AT5g35410   

SnRK2.7 AT4g40010 SnRK3.12 AT1g01140 
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Supplementary Table 2. SnRK sequences, protein domain names, and domain identifiers (ID) both in Arabidopsis (At) 

and Chlamydomonas (Cre) and corresponding Chlamydomonas sequence names. SnRK clusters according to sequence 

similarity and protein domain (S1: SnRK1; S1R: regulatory subunits of SnRK1; S2: SnRK2; SnRK2 D: SnRK2 containing the 

Serin/Threonin Kinase SRK2D domain; SnRK2 C: SnRK2 containing the Serin/Threonin Kinase SRK2C domain). 

SnRK Domain name At Domain ID Cre Domain ID   Cre Name  Cluster 

SnRK1.1 Kinase associated domain 1 

(KA1)  

PF02149 PF02149 SnRK1.1 S1 

 Serin/Threonin Kinase PTHR24343  PTHR24343 SnRK1.1 S1 

 Ubiquitin associated domain 

(UBA) 

IPR015940 IPR015940 SnRK1.1 S1 

β AMPK , β suďuŶit PTHR10343 PTHR10343 β S1 R 

“ŶRK ϭ, β-1 regulatory subunit PTHR10343:SF51 PTHR10343:SF51 β S1 R 

 Immunoglobulin E-set IPR014756 IPR014756 β S1 R 

 Association with the SNF1 

complex domain (ASC) 

IPR006828 IPR006828 β S1 R 

γ and 

βγ 

AMPK, γ ƌegulatoƌǇ suďuŶit PTHR13780 PTHR13780 βγ 

CKIN3 

S1 R 

S1 R 

“Ŷƌk ϭ, γ ƌegulatoƌǇ suďuŶit PTHR13780:SF36 PTHR13780:SF36 βγ S1 R 

AMPK , γ ƌegulatoƌǇ suďuŶit  PTHR13780:SF22 CKIN3 S1 R 

CǇstathioŶiŶe β siŶthase ;CB“Ϳ PF00571 PF00571 βγ 

CKIN3 

S1 R 

S1 R 

 Immunoglobulin E-set IPR014756 IPR014756 Βγ S1 R 

SnRK2 Serin/Threonin kinase PTHR24343 PTHR24343 SnRK2.1.t1 

SnRK2.1.t2 

SnRK2.2 

SnRK2.3 

SnRK2.4 

SnRk2.5 

SnRK2.6 

SnRK2.7 

SnRK2.8 

SnRK2.9 

SnRK2.10 

SnRK2.11 

SnRK2.12 

SnRK2.13 

SnRK2.14 

SnRK2.15 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

S2 

Serin/Threonin Protein Kinase 

SRK2D-Related 

PTHR24343:SF99 PTHR24343:SF99 SnRK2.1.t1 

SnRK2.1.t2 

SnRK2.2 

SnRK2.3 

SnRK2.4 

SnRK2.5 

SnRK2.6 

SnRK2.7 

SnRK2.8 

S2 D 

S2 D 

S2 D 

S2 D 

S2 D 

S2 D 

S2 D 

S2 D 

S2 D 

 Serin/Threonin Protein Kinase 

SRK2C 

 PTHR24343:SF55 SnRK2.9 

SnRK2.10 

SnRK2.11 

SnRK2.12 

SnRK2.14 

SnRK2.15 

S2 C 

S2 C 

S2 C 

S2 C 

S2 C 

S2 C 

SnRK3 CBL-Interacting Serin/Threonin 

Protein Kinase 9 

PTHR24347:SF140    

Serin/Threonin Kinase PTHR24347    

NAF PF03822    

NAF/FISL PS50816     
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Supplementary Table 3. Arabidopsis thaliana (At), Saccharomyces cerevisiae (Sc), Homo sapiens (Hs), and 

Chlamydomonas reinhardtii (Cre) sequences used for the design of the sequence trees: organism 

identification followed by sequence name (Name) and sequence identifier (Seq ID). 

Name Seq ID Name Seq ID 

AtAKIN10 AT3g01090 CreSnRK2.3 Cre02.g075900.t1.1 

AtAKIN11 AT3g29160 CreSnRK2.4 Cre11.g477000.t1.2 

AtSnRK1.3 AT5g39440 CreSnRK2.5 Cre03.g209505.t1.1 

ScSNF1 NP_010765.3 CreSnRK2.6 Cre11.g481000.t1.2 

HsAMPK αϭ NP_006242.5 CreSnRK2.7 Cre06.g292700.t1.2 

CreSnRK1.1 Cre04.g211600.t1.1 CreSnRK2.8 Cre10.g466350.t1.1 

At βϭ AT5g21170 CreSnRK2.9 Cre13.g568050.t1.3 

At βϮ AT4g16360 CreSnRK2.10 Cre16.g657350.t1.2 

HsAMPK βϮ NP_005390.1 CreSnRK2.11 Cre17.g707800.t1.2 

Cre β  Cre10.g457500.t1.1 CreSnRK2.12 Cre12.g485600.t1.2 

At βγ AT1g09020 CreSnRK2.13 Cre02.g076000.t1.2 

HsAMPK γϭ NP_002724.1 CreSnRK2.14 Cre08.g384250.t1.2 

Cre βγ  Cre12.g484350.t1.3 CreSnRK2.15 Cre17.g707650.t1.1 

At  γϭ AT3g48530 AtSnRK3.1 AT5g01810 

At γϮ AT1g69800 AtSnRK3.2 AT5G07070 

CreCKIN3 Cre12.g528000.t1.2 AtSnRK3.3 AT4g14580 

AtSnRK2.2 AT3g50500 AtSnRK3.4 AT5g57630 

AtSnRK2.6 AT4g33950 AtSnRK3.5 AT5g45810 

AtSnRK2.7 AT4g40010 CreCDPK4 Cre06.g296200.t1.2  

AtSnRK2.9 AT2g23030 CreCDPK5 Cre07.g328900.t1.2  

AtSnRK2.10 AT1g60940 CreCDPK9 Cre13.g571700.t1.1  

CreSnRK2.1.t1 Cre02.g075850.t1.1 CreCDPK11 Cre19.g750597.t1.1  

CreSnRK2.1.t2 Cre02.g075850.t2.1 CreCDPK12 Cre01.g003524.t1.1  

CreSnRK2.2 Cre12.g499500.t1.1   



47 

 

Supplementary Table 4. Primer pairs used for RT-qPCR analyses 

Name ID Forward primer sequence Reverse primer sequence 

ACT Cre13.g603700.t1.2 GCGGCTACTCGTTCACCACCAC TCTCCTGCTCGAAGTCCAGGGC 

UBI Cre03.g159200.t1.1 CTACCGCCGTTCCTGTTCCTGC CTGGCGGCAGTAGCACCACATC 

TUB Cre04.g216850.t1.2 GTCCAAGCTGGGCTTCACCGTC GGCGGCAGATGTCGTAGATGGC 

RCK1 Cre06.g278222.t1.1 CGACAAGAGCGTGCTGGTCTGG GTCAGGCAGAACTGGCCATCGG 

SnRK1.1 Cre04.g211600.t1.1 TCATGCACCCGCACATCATCCG CAGCCGCCCCTTCTCCACAATG 

β Cre10.g457500.t1.1 GATGAGCTGACAGCCGCCAACC CACCGTGGCTCCACACGATGAC 

βγ Cre12.g484350.t1.3 ACGGCTCTCCTGGGTTGTTTGC TTGACGTTGCCAAGCGGGTCTG 

CKIN3 Cre12.g528000.t1.2  CGTGCTGATGCAGGAGCTGGAG TCACGGTGTGCACCTTCTTGGC  

SnRK2.1.t1 Cre02.g075850.t1.1 GGTCAAGCGTGAAGTGCGAACC GCAGTCCGCGTACTCCATCACC 

SnRK2.1.t2 Cre02.g075850.t2.1 CCGCGTGGGCACACTCTACTAC GCCGAACGGGTAGGCCTTGAAC 

SnRK2.2 Cre12.g499500.t1.1 CATCTGGAGCTGCGGCGTGATG GCGGCGGGATGTGGTAGTCAAC 

SnRK2.3 Cre02.g075900.t1.1 CGTGTTCGGCCTCGACTACTGC GCAGGTTGAAGGGGTGCTCCAG 

SnRK2.4 Cre11.g477000.t1.2 GCGCGAAATTCAGTCCCATCGC CCCTGGTCAGCGAACTCCATGC 

SnRK2.5 Cre03.g209505.t1.1 CGGTGGACTACTGCCACAAGCG GGACCTGAAGTCGGCCTTGCTG 

SnRK2.6 Cre11.g481000.t1.2 GGCGGGAGCTTGTTCCACTACG TCCAGCTTGATGTCGCGGTTGG 

SnRK2.7 Cre06.g292700.t1.2 GCTGCCGCTGCTCAAAATCTGC GTACTGGTCCGTGGCGCGAATC 

SnRK2.8 Cre10.g466350.t1.1 GTGTGCCACCGGGATCTGAAGC TCTTGGGCTGGCTGTCAAACGC 

SnRK2.9 Cre13.g568050.t1.3 CTGGAGCCGCGGGTTCTACAAG TCCATCACCACCGCCAGGTAGG 

SnRK2.10 Cre16.g657350.t1.2 GGACGAGGCGCGGTACTTCTTC GTCGCACAGCTTCAGCCAGGAG 

SnRK2.11 Cre17.g707800.t1.2 GGCCTGCAGCGAGGAGTTCAA GCGGTTGAAGGTGGGGTAGTGC 

SnRK2.12 Cre12.g485600.t1.2 AGGACGAGCACAAGCGCATCA ACGGGTGGCCAGGTCCTGTATG 

SnRK2.13 Cre02.g076000.t1.2 ACCTGAAGCGCGAGGTGGTGTG GCTCCGCCAGCCACTGCTTGAG 

SnRK2.14 Cre08.g384250.t1.2 CATCTGGTCCTGCGGCGTGGTG TCCTCGCGCGGCACCATGATG 

SnRK2.15 Cre17.g707650.t1.1 GGTGATGGAGCTGCTGGGCACAG GCTTGCAGCTGCAGCTCCATGC 
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Supplementary Table 5. Expression levels (ΔΔCƋ ǀaluesͿ of ChlaŵǇdoŵoŶas “ŶRK uŶdeƌ stƌess ĐoŶditioŶs. Nitrogen (-N), Carbon (-C), and Sulphur (-S) 

deprivation, Phosphorous limitation (5% P), heat and cold stress (40°C and 4°C, respectively), UV radiation stress (UV), salt (0.25M NaCl) and  osmotic 

stress (20% PEG) data are herein presented as mean ± SE. Different lowercase letters indicate significant differences between the stress assays tested 

for each SnRK sequenced analysed (ANOVA; p≤ 0.05). 

SnRK 
Stress Assay 

-N -C -S 5% P 40°C 4°C 20% PEG 0.25M NaCl UV 

SnRK1.1 0.25 ± 0.12a -0.78 ± 0.43ab -0.68 ± 0.48bc -3.52 ± 2.3bc -1.72 ± 1.18bc -1.28 ± 0.71c -1.67 ± 0.52d -4.22 ± 2.5d -1.06 ± 0.86e 

β 1.78 ± 1a -0.45 ± 0.22b -0.14 ± 0.09bc -3.11 ± 1.26c -1.1 ± 0.57c -1.07 ± 0.54d -3.03 ± 0.49d -3.12 ± 1.25d -2.91 ± 2.79e 

βγ 0.6 ± 0.32a -0.16 ± 0.1ab -0.99 ± 0.87bc -1.61 ± 0.63cd -1.84 ± 0.98cd -2.05 ± 1.26cd -1.07 ± 0.57de -3.35 ± 1.89ef -2.66 ± 2.66f 

CKIN3 0.9 ± 0.33a -1.08 ± 0.47b -0.59 ± 0.37bc -3.04 ± 0.95cd -1.91 ± 1.13de -2.8 ± 2.14de 0.51 ± 0.26de -4 ± 2ef -2.43 ± 2.37f 

SnRK2.1.t1 1.03 ± 0.8a 0.58 ± 0.34a 1.16 ± 0.64a 0.15 ± 0.07a -1.46 ± 1.33b -3.06 ± 1.04c -8.82 ± 4.38c -2.75 ± 2.32d -4.46 ± 3.58e 

SnRK2.1.t2 1.29 ± 0.44a -0.06 ± 0.05b -1.16 ± 0.41c 2.5 ± 1.6d -1.41 ± 0.92de -2.13 ± 0.92e -4.11 ± 0.78f -3.5 ± 2.54f -3.89 ± 1.93g 

SnRK2.2 -0.28 ± 0.11a -0.13 ± 0.09a -2.3 ± 0.95a -0.47 ± 0.14b -1.5 ± 0.78c -3.24 ± 1cd -2.18 ± 0.7d -2.72 ± 1.73d -3.18 ± 1.74e 

SnRK2.3 -0.59 ± 0.35a -0.59 ± 0.5a -2.49 ± 1.74a -1.42 ± 0.69ab -1.47 ± 0.95bc -2.42 ± 1.23c -3.39 ± 2.33c -3.67 ± 2.35d -2.53 ± 1e 

SnRK2.4 1.97 ± 0.95a -0.28 ± 0.24b -0.08 ± 0.04bc 0.69 ± 0.38c -3.2 ± 0.54cd -1.26 ± 0.72d -4.46 ± 2.33d -1.14 ± 0.58e -0.93 ± 0.4f 

SnRK2.5 1.27 ± 0.51a -0.22 ± 0.16b -1.61 ± 0.96c -1.99 ± 0.84cd -2.75 ± 1.26de -2.63 ± 0.85e -6.37 ± 2.08f -3.84 ± 2.32f -4.41 ± 1.67g 

SnRK2.6 1.54 ± 1.05a 0.07 ± 0.05a -0.12 ± 0.08b 1.17 ± 0.55b -0.29 ± 0.12b -0.32 ± 0.15b -1.93 ± 0.42b -0.68 ± 0.48c -3.77 ± 2.32d 

SnRK2.7 0.88 ± 0.4a -0.07 ± 0.05b -0.9 ± 0.36c -1.15 ± 0.32c -1.43 ± 0.77c -2.55 ± 1.65d -3.09 ± 1.44d -3.19 ± 2.42e -4.7 ± 2.2f 

SnRK2.8 0.92 ± 0.36a 0.54 ± 0.39b -0.67 ± 0.2b 3.26 ± 2.09c -1.5 ± 0.89cd -0.73 ± 0.4de -4.6 ± 0.88e -2.03 ± 1.36f -3.42 ± 1.77g 

SnRK2.9 3.6 ± 1.35a 1.97 ± 1.37a 2.16 ± 1.09b 3.38 ± 1.55b -1.11 ± 0.44b 1.92 ± 1.22c -0.41 ± 0.28c 1.06 ± 0.51d 0.94 ± 0.28e 

SnRK2.10 1.14 ± 0.79a 1.13 ± 0.8a -1.73 ± 0.91b 0.18 ± 0.08c -0.8 ± 0.52cd -0.86 ± 0.58cd -4.05 ± 2.04d -1.48 ± 1.04e -3.19 ± 1.36f 

SnRK2.11 -0.23 ± 0.1a -1.38 ± 0.37ab -0.62 ± 0.4ab -0.85 ± 0.12ab -2.27 ± 0.91bc -0.57 ± 0.42cd -6.31 ± 2.52d -2.88 ± 2.46e -4.46 ± 3.54f 

SnRK2.12 1.38 ± 0.48a 0.58 ± 0.44ab -0.23 ± 0.15bc 1.82 ± 0.46cd -0.56 ± 0.22d -2.88 ± 1.08e -2.78 ± 1.73ef -3.2 ± 2.67f -1.75 ± 1.6g 

SnRK2.13 0.32 ± 0.16a 1.02 ± 0.56a -0.83 ± 0.41a 0.96 ± 0.53b -0.83 ± 0.25b -1.99 ± 1.19c -7.15 ± 2.58d -3 ± 2.29e -4.28 ± 4.15f 

SnRK2.14 0.1 ± 0.02a 0.13 ± 0.09a -2.79 ± 1.42a 0.18 ± 0.08b -1.41 ± 0.58bc -2.02 ± 1.02cd -7.55 ± 3.75cd -2.52 ± 1.64d -3.42 ± 3.29e 

SnRK2.15 1.34 ± 0.74a 0.78 ± 0.51ab -0.6 ± 0.33bc 0.09 ± 0.03c -0.32 ± 0.17c -1.82 ± 0.97d -8.2 ± 3.58de -2.57 ± 1.58e -2.96 ± 2.5f 
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Supplementary Table 6. Expression levels (Rq values) of Chlamydomonas SnRK under stress conditions. Nitrogen (-N), carbon (-C), and sulphur (-S) deprivation, 

phosphorous limitation (5% P), heat and cold stress (40°C and 4°C, respectively), UV radiation stress (UV), salt (0.25M NaCl) and osmotic stress (20% PEG) data are 

herein presented as mean ± SE. 

SnRK 
Stress Assay 

-N -C -S 5% P 40°C 4°C 20% PEG 0.25M NaCl UV 

SnRK1.1 0.75 ± 1.05 1.72 ± 1.1 2.08 ± 1.26 11.98 ± 1.21 3.28 ± 1.24 4.54 ± 1.11 3.38 ± 0.86 18.61 ± 1.14 2.08 ± 1.36 

β 0.33 ± 1.05 1.37 ± 0.97 1.42 ± 1.07 8.03 ± 0.89 2.15 ± 1 3.21 ± 0.99 8.33 ± 0.65 8.7 ± 0.88 37.2 ± 1.44 

βγ 1.72 ± 1.17 1.12 ± 1.26 5.23 ± 1.51 4.05 ± 1.02 3.57 ± 1.16 8.97 ± 1.25 3.35 ± 1.16 10.18 ± 1.2 51.68 ± 1.63 

CKIN3 0.51 ± 0.8 2.11 ± 0.87 1.37 ± 1.06 9.31 ± 0.75 3.75 ± 1.03 6.77 ± 1.2 1.28 ± 0.94 16.03 ± 0.93 119.33 ± 1.41 

SnRK2.1.t1 0.76 ± 1.37 0.67 ± 1.19 1 ± 1.14 1.33 ± 1.04 2.75 ± 1.5 13.54 ± 0.93 440 ± 1.09 6.72 ± 1.44 0.79 ± 1.4 

SnRK2.1.t2 0.46 ± 1.14 1.04 ± 1.59 2.74 ± 1.15 0.34 ± 1.44 2.65 ± 1.45 5.93 ± 1.23 15.45 ± 0.99 11.29 ± 1.52 22.2 ± 1.29 

SnRK2.2 2.72 ± 1.13 1.09 ± 1.46 11.62 ± 1.14 1.98 ± 1.03 2.83 ± 1.25 13.64 ± 1.04 5.15 ± 1.05 6.59 ± 1.37 148.7 ± 1.28 

SnRK2.3 1.34 ± 1.45 1.51 ± 1.7 4.73 ± 1.55 3.03 ± 1.33 2.77 ± 1.49 9.95 ± 1.36 8.74 ± 1.54 12.74 ± 1.49 58.56 ± 1.24 

SnRK2.4 0.42 ± 1.35 1.22 ± 1.73 1.64 ± 1.36 0.94 ± 1.41 9.16 ± 1.03 2.91 ± 1.44 29.8 ± 1.39 2.21 ± 1.37 12.44 ± 1.29 

SnRK2.5 1.5 ± 1.14 1.17 ± 1.48 10.38 ± 1.34 5.16 ± 1.16 6.72 ± 1.2 8.3 ± 1.06 105.61 ± 1.06 14.33 ± 1.34 152.32 ± 1.12 

SnRK2.6 1.12 ± 1.31 0.95 ± 1.26 4.44 ± 1.29 0.8 ± 1.1 1.22 ± 1.05 1.86 ± 1.09 8.97 ± 0.84 1.6 ± 1.34 77.24 ± 1.24 

SnRK2.7 0.65 ± 1.11 1.05 ± 1.31 2.15 ± 1.06 2.09 ± 0.93 2.69 ± 1.19 6.26 ± 1.3 8.05 ± 1.12 9.1 ± 1.41 124.02 ± 1.12 

SnRK2.8 0.62 ± 1.12 0.69 ± 1.44 1.74 ± 1.02 0.19 ± 1.36 2.83 ± 1.31 2.47 ± 1.26 21.2 ± 0.91 4.09 ± 1.39 128.61 ± 1.24 

SnRK2.9 0.1 ± 1.07 0.25 ± 1.39 0.28 ± 1.2 0.16 ± 1.15 2.16 ± 1.09 0.38 ± 1.33 1.64 ± 1.37 0.48 ± 1.18 0.97 ± 1 

SnRK2.10 1.13 ± 1.4 0.46 ± 1.42 4.99 ± 1.24 1.27 ± 1.13 1.74 ± 1.37 2.12 ± 1.38 16.89 ± 1.21 2.78 ± 1.41 143.14 ± 1.14 

SnRK2.11 1.16 ± 0.73 2.61 ± 0.54 1.98 ± 0.91 2.6 ± 0.41 4.82 ± 0.67 2.2 ± 1 71.84 ± 0.67 7.35 ± 1.12 4.03 ± 1.06 

SnRK2.12 0.44 ± 1.11 0.67 ± 1.52 1.87 ± 1.4 0.37 ± 1.01 1.47 ± 1.15 9.78 ± 1.14 6.71 ± 1.38 9.19 ± 1.6 8.7 ± 1.67 

SnRK2.13 1.17 ± 1.05 0.49 ± 1.1 2.45 ± 1.05 0.72 ± 1.1 1.78 ± 0.85 5.87 ± 1.15 134.08 ± 0.91 7.97 ± 1.31 17.8 ± 1.52 

SnRK2.14 2.21 ± 0.83 0.91 ± 1.32 13.77 ± 1.17 1.39 ± 1.09 2.65 ± 1.07 6.67 ± 1.16 230.7 ± 1.16 5.73 ± 1.31 4.36 ± 1.62 

SnRK2.15 1.16 ± 1.21 0.58 ± 1.3 4.47 ± 1.2 1.38 ± 0.97 1.25 ± 1.17 6.46 ± 1.19 354.1 ± 1.09 5.94 ± 1.27 34.71 ± 1.5 
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Supplementary Fig. 1 Sequence tree for the Chlamydomonas SnRK family based on alignment of protein 

sequences by neighbour-joining. Chlamydomonas (Cre; black) CDPKs were included as an outgroup. 

Arabidopsis thaliana (At; green), Homo sapiens (Hs; red), and Saccharomyces cerevisae (Sc; yellow) 

homologous sequences were also included in the tree. 
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Supplementary Fig. 2 -ΔΔCƋ ǀalues of eaĐh ChlaŵǇdoŵoŶas “ŶRK sequence found under the stress 

conditions tested. The colour scale is shown at the right. Black corresponds to no changes, red to over-

expression, and green to down-regulation. Data from four biological replicates is herein presented. 
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Part III 

Final considerations 

This study arose from the need to identify potential targets for bioengineering the current 

microalgal strains in order to improve its growth under stress conditions or to simulate a stress 

conditions with no need to apply it (stress mimicking strategy). This, together with a biorefinery 

production approach, would greatly reduce the current costs from producing microalgal biofuel, 

one of the most promising alternative energies to fossil fuels and food-based biofuels. The SnRK 

family was chosen as it has been proved to be deeply involved in plant stress response networks 

and, moreover, some studies suggest the same for the model microalgae Chlamydomonas. 

Therefore, the aim of this work was to describe SnRK in Chlamydomonas and investigate 

its involvement in stress response. To do so, the entire SnRK family was genome-wide described 

by using state-of-the-art bionformatics tools and its potential implication in stress response 

mechanisms was described testing the expression levels of each SnRK under a wide-range of 

stress conditions by RT-qPCR and data mining of the available RNA-seq data. 

Nineteen SnRK genes coding for 20 SnRK from 4 subfamilies (SnRK1, regulatory subunits 

of SnRK1, and two groups of SnRK2) were found in Chlamydomonas based on its protein sequence 

and domain structure similarities to previously described SnRK. Unlike in plants, no SnRK3 were 

found in Chlamydomonas. From the analyses of the SnRK gene expression under several stress 

conditions and the mining of the NGS-based data 3 SnRK were identified as likely to be involved in 

specific stress responses: SnRK2.7 (oxidative stress), SnRK2.9 (heat stress), and SnRK2.12 (Iron 

deficiency). Moreover, UV radiation showed to induce lipid accumulation, which is highly 

interesting from the production point of view since it is a stimulus that is easy to apply at reduced 

costs.      

 Although the results herein presented represent a great advance for microalgae and 

stress biology research, further studies are needed in order to confirm the function of the 

potential target SnRK identified. Once functionally characterized, these can result on a great 

advantage for the rising microalgal bioproduction industry. Also, studies involving other stress 

conditions can add some information to our results and alternative target genes can be found. 
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