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resumo 
 

 

A malária continua a ser a principal causa de morbilidade e mortalidade nas 
regiões tropicais e subtropicais, contribuindo para o surgimento de 198 milhões 
de casos clínicos no ano de 2013. O mosquito Anopheles stephensi é um dos 
vectores de malária mais prevalentes na região asiática, tendo sido 
recentemente implicado no ressurgimento de malária em Djibouti. 
Através de técnicas como sequenciação de RNA, genes diferenciadamente 
expressos nas glândulas salivares deste mosquito em resposta à infecção por 
Plasmodium berghei foram identificados. Alguns destes genes podem ser 
selecionados para avaliar a sua potencialidade como alvos para bloqueio da 
transmissão da malária.  
Entre os genes com expressão diferencial resultante da análise dos resultados 
de RNA-seq e confirmação por qPCR, um gene relacionado com o transporte 
de Cl

- 
e HCO3

2-
, prestin, estava sobrexpresso após infeção com P. berghei. 

Este gene tem um papel crucial na invasão do parasita no intestino médio e na 
optimização do meio em que o parasita se desenvolve. Por esse motivo, o 
silenciamento deste transcrito foi efectuado para averiguar o papel funcional 
nas glândulas salivares. 
O silenciamento de genes utilizando a técnica de RNA de interferência permite 
inferir sobre o seu papel ou função num dado processo metabólico ou 
fisiológico. Após o silenciamento do gene prestin, o número de mosquitos 
viáveis apresentou um decréscimo significativo em comparação com o controlo 
(β2M). Também houve uma queda significativa entre o número de mosquitos 
antes da injeção e no último dia após injecção. O número de esporozoítos em 
geral não foi afectado pelo silenciamento da prestin quando comparado com o 
controlo.  
Para esclarecer resultados obtidos durante o estudo, tais como a influência do 
silenciamento da prestin na sobrevivência dos mosquitos e a presença e 
número de esporozoítos na glândulas salivares, seria fundamental realizar 
ensaios de qPCR para determinar a expressão diferencial deste gene após 
silenciamento. Além disso, será também importante analisar a expressão 
diferencial do off-target (ASTE006714) após silenciamento da prestin, uma vez 
que a semelhança da sequência entre este e a prestin é elevada. 
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abstract 

 
Malaria remains the leading cause of morbidity and mortality in tropical and 
subtropical regions, contributing to the emergence of 198 million clinical cases 
in 2013. The mosquito Anopheles stephensi is one of the most prevalent 
malaria vectors in the Asian region having recently been implicated in malaria 
resurgence in Djibouti. 
Using techniques as RNA sequencing, differentially expressed genes in the 
salivary glands of the mosquito in response to infection by Plasmodium berghei 
were identified. Some of these genes can be selected to evaluate their potential 
as targets for malaria transmission blocking.  
Among the genes with differentially expression resulting from the analysis of 
RNA-seq results and confirmation by qPCR, a gene related transport of Cl

-
 and 

HCO3
2-

, prestin, was upregulated after infection with P. berghei. This gene 
plays a crucial role in parasite invasion in the midgut and the optimization of the 
environment in which the parasite develops. For this reason, the silencing of 
this transcript was made to evaluate the function of prestin in salivary glands. 
The gene silencing, using RNA interference technique, allow inferring about the 
role or function of prestin gene in a particular metabolic or physiological 
process. After prestin gene silencing, the number of viable mosquitoes had a 
significant decrease in comparison with the control (β2M). There was also a 
significant decrease in the number of mosquitoes before injection and at the 
last day after injection. The number of sporozoites were not generally affected 
by silencing of prestin when compared with the control.  
To clarify other results obtained during the study, as the influence of the 
silencing of prestin in the survival of mosquitoes and the presence and number 
of sporozoites in the salivary glands, will be essential to perform qPCR to 
determine differential expression of this gene after silencing. Furthermore, it is 
also important to examine differential expression of off-target (ASTE006714) 
after silencing prestin, since the sequence of this gene have a high percentage 
of identity with prestin. 
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Chapter 1: Introduction 

Malaria is a public health problem with high biological complexity and social impact
1
. 

According to the WHO (2014), it was estimated that 198 million cases of malaria and 584 000 

deaths occurred in 2013
2
. It is a disease caused by the bite of Anopheles mosquitoes infected 

with a parasite of the genus Plasmodium
3
. Vector control is one of the most common techniques 

used to reduce malaria
1
. 

Anopheles gambie is the major malaria vector in Africa which has been the subject of 

numerous research projects and its genome and transcriptome have been already published
4
. 

Anopheles stephensi which is more prevalent in the Asian region has recently been implicated 

with the malaria resurgence in Djibouti (Horn of Africa)
5
, reinforcing the importance to increase 

the study about this vector, that have had less attention comparing with A. gambiae. Based on 

this resurgence, new transmission blocking targets are required.  

The genomics and transcriptomics age provide an interesting opportunity to uncover the 

molecular mechanisms for the identification of new targets that can reduce the spread of the 

disease. Identification of differential expressed genes using techniques such as subtractive 

hybridization, microarrays and RNA sequencing allow selecting potential targets for blocking 

the transmission of malaria
6
. 

In view of the impact and life cycle of the vector Anopheles stephensi and parasite 

Plasmodium berghei, transcriptome analysis of salivary glands (SG) may be a good approach 

for the discovery of new targets, since the Plasmodium stage that transmits malaria is present in 

this tissue
7
. To infer about a gene and its importance or function, gene knockdown can be 

accomplished, reducing the expression of one or more genes from an organism. This can be 

obtained through genetic modifications or by injection of short DNA or RNA oligonucleotide 

that align to either a target gene or a mRNA transcript 
8
. 

This work aims to identify differential expressed genes in salivary glands of Anopheles 

stephensi mosquitoes in response to infection by Plasmodium berghei by analyzing data 

obtained from direct RNA sequencing, and confirm gene expression by real-time PCR. Another 

purpose of this work was to evaluate the importance/function of selected gene(s) in the infection 

by P. berghei, using RNA interference. 
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These studies will allow a better understanding of the vector- pathogenic agent interface 

contributing to the development of new methods to control the pathogens transmission by 

arthropods, including new antigens or potential vaccine candidates. 

1.1. Malaria 
 

Parasitology is one of the most fascinating branches of biological sciences but, in spite of 

the great findings that have been achieved in this field, some essential questions about the 

biology of the interactions between parasites, vectors and hosts remain unclear 
9
. Malaria is 

caused by a parasite of the genus Plasmodium, that is transmitted through the bite of 

mosquitoes from the Anopheles genus 
3,10

. Early this disease exerted influence on the life of 

Humanity
11

 and, about 10 000 years ago, malaria had a great impact on human survival 

coinciding with the beginning of agriculture in the Neolithic revolution 
12,13

. 

Malaria has always been associated with sickness and fever
14,15

. Scientific advances on 

this disease only became possible after the discovery, by Charles Laveran, of the interaction 

between microorganisms such as protozoan parasites and the human erythrocytes, in 1880
14

. 

A few years later mosquitoes were identified as disease transmitters or vectors: initially, in 

the case of avian malaria, caused by Plasmodium relictum described by Ronald Ross in 1897; 

and later for human malaria described by Giovanni Battista and co-workers
14

. 

Due to the climate of tropical and subtropical areas, Anopheles mosquitoes can easily 

thrive, providing suitable conditions for malaria parasites to complete their growth cycle 
16

.  

Since the year 2000, malaria incidence and mortality rates have fallen down about 30% 

and 47% respectively. However, it remains significant with 198 million cases and 584 000 

deaths caused by malaria in 2013
17

.  

The vast majority of cases and deaths are from sub-Saharan Africa and South Asia. 

However, Asia, Latin America, the Middle East and parts of Europe are also affected. 

According to WHO (2014) and CDC (2012) 
2,18

, 97 countries and territories still had ongoing 

malaria transmission (Figure 1). 
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Figure 1 - Countries with ongoing transmission of malaria, in 2013. The majority of cases are from tropical 

and sub-tropical regions
17

. 

 

Besides malaria impact in several mammals, reptiles and birds
19

; in humans, some 

population groups are at higher risk of contracting malaria, and developing severe disease, 

than others. These include children younger than five years of age, pregnant women, patients 

with HIV/AIDS, as well as non-immune migrants, mobile populations and travelers
17

. 

National malaria control programs need to take special measures to protect these population 

groups from malaria infection, taking into consideration their specificity
17

. In 

high-transmission areas of the world, 85% of malaria deaths correspond to children less than 

five years of age, making this a significant vulnerable group
17

. Malaria in pregnant women 

increases the risk of maternal and fetal anaemia, stillbirth, spontaneous abortion, low birth 

weight and neonatal death
17

. Infants born from mothers living in endemic areas are vulnerable 

to malaria from approximately three months of age, when immunity acquired from the mother 

starts to decline
17

. 

Furthermore, co-infection and interaction between HIV and malaria have major public health 

implications. HIV infection increases the risk of malaria infection, severe malaria and death, 

aggravating clinical status of AIDS
17

. Traveling population groups or migrants lack partial 

immunity to malaria, and have restriction in prevention, diagnostic and treatment services
17

. 
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1.2. Plasmodium spp. 

1.2.1. Taxonomy  

 

Protozoa are unicellular organisms (or acellular) (5-50µm) in which a single cell is able to 

perform all vital functions. Some diseases caused by protozoa, especially malaria and sleeping 

sickness, are well known as an important cause of morbidity and mortality in the tropics, and 

the discovery of etiologic and transmission mechanisms are considered as classical 

contributions to the history of human medicine
11

. 

Malaria is caused by protists of phylum Apicomplexa, in which are common to have an 

organ called apicoplast that allows the entry into the host cell
20

. Plasmodium belongs to the 

class Aconoidasida (although the parasite (Plasmodium) lacks a conoid structure, a set of 

microtubules) that includes the order Haemosporidia, containing the parasites that invade red 

blood cells
20

. Ciliates, like Plasmodium, share several features, including a vertebrate host 

asexual and sexual reproduction in a definitive host (a mosquito, that infected by the species of 

Plasmodium, infect several mammals, including humans) and that is why they are in the 

family Plasmodiidae
20, 21, 22

. 

1.2.2. Species 

 

In addition to the human population, Plasmodium spp. can also infect other mammals, 

reptiles and birds. Four species of Plasmodium were identified as causing malaria, in humans: 

P. falciparum, P. vivax, P. ovale and P. malariae. A fifth, P. knowlesi, infects non-human 

primates, but recently has been found to infect and cause disease in humans 
17,21–23

. 

P. falciparum has been the target of most vaccines as this parasite is responsible for the 

most severe malaria disease and causes many deaths 
2,19

. P. berghei, does not affect humans 

but has been used in many studies in rodent animal models to improve the understanding on 

disease and also to test new anti-malaria drugs and vaccines
24

. 
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1.3. Anopheles spp. 
 

A vector is any living being capable of transmitting an infecting (or not) agent, actively or 

passively. The active transmission occurs when the vector is infected and then infects other 

species. Passive way occurs when the vector is not infected by infectious agents, but causes 

the infection of other species, which is the case of malaria. 

With this in mind, it is important to deeply understand the taxonomy, species, anatomy 

and life cycle of the malaria vector. 

1.3.1.  Species 

 

Malaria is caused by the bite of a female mosquito from Anopheles genus. This genus is 

part of the phylum Arthropoda which has a hard exoskeleton and several pairs of jointed 

appendices
25

. The genus Anopheles belongs to the class Insecta, the family Culicidae, and the 

order Diptera characterized by having a pair of wings and a pair of dumbbells 
25

. 

Of 460 described species of Anopheles, 60 are able to ensure the transmission of malaria 

and this number is constantly increasing (Figure 2).  

 

Figure 2 - Map of global distribution of the dominant vector species of malaria
26

.  
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Mosquitoes of the genus Anopheles are very efficient malaria vectors, and a great 

diversity of ecosystems in Africa are favorable for their presence and development
27,28

. 

According to Figure 2, A. stephensi is found throughout the Indian subcontinent
26

. Recently, it 

distribuition extends from the Arabian Peninsula, through Iran and Iraq, to the Bangladesh, 

southern China, Myanmar and Thailand
29

. A. stephensi is an important vector for both P. 

falciparum and P. vivax, the most virulent parasites associated with this disease 
28

. 

1.3.2.  Life cycle and anatomy 

 

Like some other mosquitoes, Anopheles goes through four stages in their life cycle: egg, 

larva, pupa and imago (Figure 3). Imago is the only stage where the insect reaches sexual 

maturity and, if it is winged; only at this stage wings will be functional. Typically, this life 

cycle phase is usually referred to as adult stage. The first three stages develop from water and 

last 5-14 days depending on the species and ambient temperature. The female Anopheles 

mosquito in the adult stage that acts as malaria vector, can live for up to one month or more in 

captivity, but not longer than two weeks, in nature 
30

. 

 

 

Figure 3 - Life cycle of Anopheles mosquitoes. 

(http://labspace.open.ac.uk/file.php/6718/!via/oucontent/course/1151/comms_dis_session5_fig6.jpg)    

 

Adult females lay between 50-200 eggs "per oviposition" on the water since their eggs 

have the ability to float and, after 2-3 days they hatch to larvae. Mosquito larvae have a 
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well-developed head, a mouth with brushes, a large thorax and a segmented abdomen. This 

state is characteristic for the absence of legs. In contrast to other mosquitoes, Anopheles larvae 

do not have a breathing siphon (air tube) leading to a parallel positioned body in to the water 

surface (Figure 4). The larvae feeds on algae, bacteria and other microorganisms, that can be 

found in different water sources as the surface of fresh or salt water, water agricultural-related 

areas, rivers, and small pools of temporary rain. Many species prefer habitats with vegetation, 

and others habitats that have none.  

 

 

Figure 4 - Representation of differences in the development of different mosquitoes
31

.  

 

Larvae develop through four stages and after that they metamorphose into pupae. The 

head and thorax of a pupa are merged into a cephalothorax. In this stage is necessary to come 

to the surface to breath, with a pair of respiratory trumpets located on the cephalothorax. After 

a few days as pupae, the dorsal surface of the cephalothorax is divided and adult mosquitoes 

emerge.  
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Adult Anopheles has slim bodies with three sections: head, thorax and abdomen (Figure 5). 

The head is specialized for acquiring sensory information and for feeding. It contains the eyes 

and a pair of antennae, important for the detection of odors from the "host" and odors where 

breeding females lay eggs
28,30

. The head also has an elongated proboscis used for feeding and 

two sensory palps
28,30

. The thorax, specialized for locomotion, has three pairs of legs and a pair 

of wings. Food digestion and egg development occur in the abdomen
28,30

. This part of the 

segmented body expands noticeably when the female takes a blood meal. The blood is digested 

to facilitate a source of proteins to the production of eggs, which will gradually fill the 

abdomen
28,30

. Adult mosquitoes (Figure 5) mating normally occurs few days after emerging 

from the pupa stage
28,30

. The adult mosquitoes from genus Anopheles can be distinguished from 

other mosquitoes by the palps, the thorax, and the presence of distinct blocks of black and white 

scales on the wings and by their normal resting position as the abdomens are perpendicular to 

resting surfaces (Figure 4). Proboscis, abdomen and cercus can differentiate male and female A. 

stephensi mosquitoes 
32

 (Figure 6). 

 

 

Figure 5 - Anatomy of an Anopheles mosquito. 

http://www.pestcontrolmanagement.org/gfx/anatomy-of-a%20mosquito.png 
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Figure 6 - Representation of anatomic differences between male and female mosquitoes. Males have a 

plumy proboscis and a bifurcated cercus. Females have a large abdomen and a proboscis less plumy. (Adapted by 

http://www.digilibraries.com/html_ebooks/106843/34279/www.digilibraries.com@34279@34279-h@images@f

130.png)  

Contrary to males that live about a week, feeding on nectar and other sources of sugar; 

females can feed on sugar sources for energy, and on a blood meal for the development of the 

eggs
28,30

. After a blood meal, the female rests for a few days while the eggs develop for 2-3 

days (in tropical conditions). Once the eggs are fully developed and layed in a surface, female 

mosquito resumes search host
28,30

. This cycle of reproduction is repeated until the female dies. 

Temperature, humidity and the ability to obtain a blood meal while avoiding host defenses are 

some of the factors that influence survival of mosquitoes 
28,30

.  

1.3.3.  Life cycle of Plasmodium spp. 

 

The life cycle of malaria is particularly complex. Malaria parasites have a heteroxenous 

life cycle (hetero = different; xenous = host)
33

, during which the parasite develops either in a 

invertebrate definitive host, or in an vertebrate intermediate host. Also these parasites are 

eurixenous, which means that are found on a large number of host species 
34

.  

Plasmodium life cycle begins when hundreds of parasites as an infectious structure, called 

sporozoites (SPZs), are transmitted by the female Anopheles while taking a blood meal in the 

host 
19,23,30

. Females need to take blood meals rich in hemoglobin to carry out the production 

and enrichment of the eggs 
30,35

.  
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The life cycle of malaria disease follows three phases: pré (or exo) - erythrocytic phase, 

erythrocytic phase and sporogonic phase (Figure 7).  

 

 

Figure 7 - Life cycle of malaria parasite in human and in Anopheles. In this picture is represented the 

sporogonic phase in mosquito-vector; and pré (or exo) - erythrocytic phase and erythrocytic phase in humans
18

.  

 

During the pre-erythrocytic cycle, SPZs (Figure 8) invade blood vessels and are 

transported to the liver, forming the liver stage (LS)
18

. Each SPZ multiplies and grows in a 

single hepatocyte for 7 days, yielding rounded uninuclear cells known as criptozoites
19

. With 

the subsequent nuclear division, it forms a multinuclear cell known as schizont. Schizogony is 

an asexual reproduction process that results in the formation of the schizont, which in turn 

gives rise to merozoites. The schizogony, which occurs also in hepatocytes, is known as 

hepatic, pre-erythrocyte or exoerythrocyte schizogony
19

. After 8 to 15 days, the infested liver 

cells are disrupted, releasing numerous merozoites into the bloodstream
19

. The 

pre-erythrocytic stage cause no clinical signs or symptoms. 
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Figure 8 - Sporozoites of a malaria parasite. The sporozoites are 10 -15 µm in length and about 1 µm in 

diameter
36

.  

 

The erythrocytic cycle begins when hepatocytes rupture and release numerous merozoites 

in to the bloodstream 
19

. There, this parasite stage develops through several stages, as 

represented in Figure 9. 

 

 

Figure 9 - The several stages of the malaria parasites. These stages are sequential since ring form to 

gametocyte, and they are present in the erythrocytic cycle (Adapted by image from Aurélia Saraiva). 

 

The first intraerythrocytic stage is a ring form followed by a new form called trophozoite.  

Then, a new schizogony occurs inside the red blood cells (RBCs) where mature erythrocyte 

schizonts have between 6 and 32 cores
23

. At the end of the erythrocyte schizogony, 
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erythrocytes lyses and the merozoites are released into the bloodstream, coinciding temporally 

with the characteristic periodic fever peaks of malaria
23

. Intraerythrocytic stage is diverse 

between different species of Plasmodium (Appendix I). The interval between febrile peaks 

corresponds to the duration of blood schizogony of each species
23

.  

The merozoites that invade new red blood cells can turn into trophozoites and later in 

schizonts or, alternatively, differentiate into sexual forms, male and female gametocytes that 

can be ingested by the mosquito during the next blood meal
23

. 

During the sporogonic cycle in the mosquito, parasites go through various developmental 

stages in the midgut (gametogenesis, fertilization, zygote, ookinete and oocyst) and also in 

other epithelia as the salivary glands 
7
 (Figure 10 and 11) taking 2-3 weeks to complete. 

 

 

Figure 10 - Plasmodium life cycle showing the three development stages of the parasite. Since 

pre-erythrocytic stage, where sporozoites are released into the bloodstream; to erythrocytic stage, where 

gametocytes can be found; the vertebrate-host can manifest several symptoms
37

. 
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In a few minutes, the male gametocyte undergoes exflagellation releasing 6-8 

microgametes by extrusion of nuclear material into peripheral processes resembling flagella
23

. 

While the female gametocytes turn into macrogametes
23

. As showed in Figure 11, male and 

female gametes ingested during the blood meal of a female mosquito, fuse with each other, 

and form a zygote that will initiate infection within the mosquito
23

. The fusion of 

microgametes and macrogametes form a zygote which is further transformed in a mobile 

structure named ookinete. To penetrate the mosquito gut wall (midgut), the ookinete becomes 

an oocyst. This spherical structure accommodates between the epithelium and the basal 

membrane, and form thousands of sporozoites inside. With the disruption of the oocysts, the 

sporozoites are released up and then they migrate to the salivary glands. Salivary glands have 

a high impact, since each pair of coupling gametes will form 1,000 SPZ’s 
23

 and in each blood 

meal numerous sporozoites will be injected into the bloodstream of the vertebrate host.  

In some occasions, during a blood meal, only about 10% of the thousands of gametocytes 

that are ingested, develop successfully in ookinetes and about five of them succeed in invading 

the midgut epithelium to form sessile oocysts 
38

. However, a dramatic amplification of the 

number of parasites are followed when each oocyst released thousands of sporozoites
39

. 

 

 

 

Figure 11 - Scheme of time duration of each stage of the sporogonic cycle. After a blood meal the gametes 

fuse and form a zygote. After one day the ookinete will appear and after ten days an oocyst will be formed. In the 

18st day the sporozoites will be released up and they will migrate to the salivary glands
40

. 
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1.3.4.  Transmission efficiency 

 

As mentioned before, the successful development of the malaria parasite in the mosquito 

depends on several factors, such as environmental temperature, humidity and feeding.  

Host susceptibility is greatly influenced by its immunity, manly in adults living in areas 

where the transmission conditions are moderate or intense
41

. Years of exposure contribute for 

the development of partial immunity through the ability of the immune system to generate a 

memory cells 
41

. The host is never completely protected but this response is able to reduce the 

risk of malaria infection. For this reason, most of Africa's malaria deaths occur in young 

children that have low immunity since have lower exposure to malaria infection
2
. 

1.3.5.  Symptomatology and pathology 

Seven days or more (usually 10-15 days) after the bite of infective mosquito, a malaria 

infection presents an acute febrile illness in a non-immune individual
2,3

. The symptoms such 

headache, muscle pains, fatigue, fever, chills, nausea, vomiting, can be trivial and hard to 

recognize as being associated with malaria 
2,3

. Besides, involvement of multiple organs in 

malaria infection is frequent, contributing to severe anaemia, respiratory failure due to 

metabolic acidosis, or cerebral malaria
2,3

. In addition, a malaria infection caused by P. 

falciparum can progress to a serious illness, often leading to death, if not treated within 24 

hours
2,3

.  

The development of a severe disease depends on the parasite species that causes the 

infection and the immune status of the infected host. Partial immunity can be developed by 

people that resides in malaria-endemic areas, allowing asymptomatic infections to occur
2,23

. 

Sometimes relapses may occur weeks or months after the first infection, due to latent liver 

forms known as hypnozoites
2,23

. These cases of re-infection are related to parasites species 

such as P. vivax and P. ovale; being absent in P. falciparum and P. malariae. In this situation 

treatment towards the liver phase is required for a complete cure 
2
. 
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1.3.6.  Malaria diagnosis, treatment and vector control 

 

Factors such as diversity of vectors species and parasites strains, intensity of parasite 

transmission, and the age of the patient can contribute to several clinical conditions, ranging 

from asymptomatic malaria, mild uncomplicated disease to life-threatening severe disease
42

. 

In this context, approaches to regard diagnosis, therapy, vaccination and vector control must 

be multiple 
42

.  

The diagnosis of malaria is based on the clinical signs and/or on the parasitological 

diagnosis, that detects evaluate the presence of parasites in the blood
43

. Diagnosis and 

treatment must be accomplished quickly to reduce and prevent mortality and the transmission 

of the disease. Diagnostic tests (or microscopy or rapid diagnostic test-RDT (Figure 12) must 

be performed before administering a treatment in all suspected cases of malaria 
43

. These tests 

can detect several species of malaria parasites. The most common RDTs are specific for P. 

falciparum, having antigens for P. falciparum histidine-rich protein-2 (Pf HRP2)
44

. These test 

can have others antigens, such as enzymes of the parasite glycolytic pathways, namely 

plasmodial lactate dehydrogenase (LDH) and aldolase
44

. LDH can be specific for P. 

falciparum or P. vivax, and aldolase for to all species: P. falciparum, P. vivax, P. malariae, P. 

ovale, and P. knowlesi
44

. 

 

 

Figure 12 - Example of two RDTs with HRP-2 (as the antigen) with positive (first) and negative (second) 

result
45

.  
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Other diagnostic targets have been assayed including highly conserved proteins 
46

. 

Heat-shock proteins (HSPs) 
47–50

, Plasmodium heme detoxification protein (HDP) 
51,52

, 

Dihydrofolate reductase (DHFR)
53–55

, Glutamate-rich protein (GLURP)
56

 and High mobility 

group box 1 (HMGB1) protein
57

 are some examples of new malaria diagnostic targets.  

A different diagnostic approach is based on PCR method, that has been described in the 

early 1990s and proven to be the most sensitive test able to identify low levels of infection, 

parasite species, or mixed infections 
58,59

. Other similar method is Loop-mediated isothermal 

amplification (LAMP), which is a specific nucleic acid amplification method that simplify the 

detection of the malaria human species 
60–62

. 

When a parasitological diagnosis is not possible, WHO (2014) suggest that the treatment 

based on symptoms should be wisely considered
19

. Based on epidemiological data, the main 

target populations for malaria vaccines are children, young people, women of childbearing age, 

malaria-naive travelers and military troops that are in areas of moderate and high 

transmission
19

.  

For treatment, current antimalarial chemotherapy is carry out, focusing in the asexual 

blood stages of the parasite, that are the main targets responsible for the malaria symptoms. 

However, with the new goal of malaria eradication, the strategy has been changed to produce a 

drug that should prevent both disease transmission and the relapse of dormant liver stages
63,64

. 

An example is primaquine that affects both the mature stage V gametocytes and the 

hypnozoites. However, this antimalarial drug that has been currently used, is contraindicated in 

pregnancy and in young children and may cause hemolysis in patients with 

glucose-6-phosphate dehydrogenase (G6PD)-deficiency
63,64

. 

A growing problem related to malaria treatment is the parasite resistance to almost every 

class of antimalarial compounds. To overcome this problematic situation, two or more drugs 

with different mechanism of action are combined and used to delay the development of 

resistance. Recommended by WHO (2014), this is known as combined therapy
2
. This strategy 

includes artemisinin-based combination therapies (ACTs) that is a combination of a fast acting 

artemisinin derivative and a partner drug with a different and longer half-life mechanism of 

action
2
. For example, in almost all endemic countries of P. falciparum malaria, ACT is adopted 

as the first-line treatment policy (Figure 13). 
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Figure 13 - Representation of each artimisin combinated drugs for each WHO region. Symbols and their 

means: AL as Artemether-lumefantrine, AM as Artemether, AQ as Amodiaquine, ART as Artemisinin, AS as 

Artesunate, CL as Clindamycline, CQ as  Chloroquine, D as Doxycycline, DHA as  Dihydroartemisinin, MQ 

as Mefloquine, NQ as Naphroquine, PG as Proguanil, PPQ as Piperaquine, PQ as Primaquine, PYR as 

Pyronaridine, QN as Quinine, SP as Sulphadoxine-pyrimethamine, T as Tetracycline
65

. 

 

 

As a treatment, WHO (2014) recommends ACTs for uncomplicated malaria caused by P. 

falciparum parasite 
2,19

 . However, in some cases, the safety of artemisinin derivatives is not 

yet established, and for this reason other antimalarial drugs have to be administrated
2,19

. For 

example, quinine and clindamycin are administrated during the first trimester of pregnancy; 
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chloroquine in combination with primaquine to treat P. vivax malaria in endemic areas; and 

sulfadoxine-pyrimethamine with amodiaquine, to treat pregnant women and children
2,19

.  

 Resistance of parasite to these drugs is also described. In the 1970s and 1980s, P. 

falciparum became resistant to chloroquine and sulfadoxine-pyrimethamine. Sometimes in 

areas where P. vivax parasite is chloroquine-resistant, ACTs should be used with caution. 

Considering that resistance to artemisinins and other antimalarial drugs is widely spread in it is 

estimate that no alternative antimalarial drugs will appear in the market for at least five years 

2,19
.  

Also resulting from malaria infection, severe malaria caused by infection with P. 

falciparum , or P. vivax and P. knowlesi, can be life-threatening
66,67

. For treatment, quinine has 

been used to mainstay. However, injectable artesunate (intramuscular or intravenous) has 

recently became the recommended treatment for severe malaria worldwide
68

.  

In general, the groups of antimalarial drugs that exist are: 4-Aminoquinolines, Aryl Amino 

Alcohol, 8-Aminoquinolines, Antifolates, Artemisinin and derivatives. Unfortunately, fake 

antimalarials drugs are widespread in African and Asian countries (Figure 14) compromising 

effectiveness and increasing the risk for emergence of resistance 
69

.  

 

 

Figure 14 - Map of the largest seizures of counterfeit drugs 
70

. 
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Counterfeit medicines have a disastrous effect on global health and on individual patient 

safety and can lead to antimicrobial resistance for several diseases which includes malaria 
71

. 

The goals of WHO (2014) regarding malaria eradication agenda have been limited by the 

emergence resistance to antimalarial drugs and insecticides. Thus, safe and protective vaccines 

are needed to control malaria, reaching all species of Plasmodium
2
.  

A suggestion to develop a malaria vaccine is to focus in the people that live in endemic 

areas and develop clinical protective immunity; and so produce an approach that limits the 

severity of the disease and prevent mortality 
72

. However, the development of vaccines can be 

harder to achieve since the malaria parasite has strong ability to evade host’s immune system 

by displaying a genetic diversity to express different antigens in its surface. For example, P. 

falciparum erythrocyte membrane protein-1 (PfE MP1) is a vaccine that shows temporal 

switching of variant expression, and that could affect the efficiency of this approach
72

.  

To develop a malaria vaccine must be considered if it is a safe treatment to prevent 

efficiently clinical disease and transmission of parasites to young infants, pregnant women and 

others. Vaccination against malaria can target different life cycle stages. These vaccines can be 

indeed divided into three types, as follows  

Pre-erythrocytic vaccines, whose target are sporozoites and/or hepatic stages of the 

parasite
19,23

. They can induce an immune response to prevent invasion (mediated by an 

antibody) or to attack the infected liver cells (mediated by T cells). More than 40 years ago, 

sterile immunization in mice
73

 and in humans
74

 was performed by inoculating irradiated 

sporozoites. This approach aimed to reproduce the natural process that provides a high 

parasitaemia but also a protection against severe disease
74

. However, it does not result in 

sterilizing immunity 
75–77

, because an asymptomatic individual, can be a reservoir of 

gametocytes leading to transmission of malaria parasites
78,79

.  

Contrarily, immunizations with live SPZ preparations served as paradigms as antimalarial 

vaccines
80

, once it was accomplished a sterile protection against infectious parasites
39

 in 

experimental animal models and in malaria-naive humans. Besides, in 2011, Epstein and 

co-workers 
81

 demonstrated that an intravenous inoculation of attenuated and cryopreserved  

P. falciparum sporozoites protect the patients, opposing to intradermal inoculation results
82

. 

On the other hand, malaria vaccine candidates proved less effective in malaria-naïve adults of 



 

20 

field studies, possibly due to the genetic diversity of P. falciparum parasites in endemic areas 

83
, immunologic factors specific of children exposed in endemic areas 

84
 or the duration of 

vaccine-induced immunity
84

. 

In Figure 15, other approaches are represented that aim to arrest parasites stages to growth, 

and are grouped as live attenuated parasites (LAP) 
85

. Three different approaches belong to this 

group. One of them is whole-sporozoite immunization called Radiation-attenuated sporozoites 

(RAS). These sporozoites have an arrestment in theirs nuclear division when DNA replication 

starts (depending on the irradiation dose), contributing to a sterile protection in previously 

naïve adults with high efficacy. Approaches such as RAS could potentially advance to phase 

2b vaccination trials 
85

.  

 

 

Figure 15 - Transformation of sporozoites into merozoites in a hepatocyte. a) Sporozoite transformation into 

merozoites inside a hepatocyte. b) Stages of growth arrest of various live attenuated parasites (LAP). 

Radiation-attenuated sporozoites (RAS), genetically attenuated parasites (GAP), and drug-arrested parasites (DAP) 

are some of the methods of malaria treatment
86

. 

 

In genetically attenuated parasites (GAP), some strategies can cause early liver-stage 

arrest (depletion of P36 and/or P36p), rapid liver-stage elimination (depletion of UIS3 or 

UIS4), mid-to-late liver-stage arrest (depletion of PDH or FAB enzymes) or very late 

liver-stage block (conditional depletion of cyclic GMP-dependent protein kinase (PKG)) 
86

. In 
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drug-arrested parasites (DAP) are included drugs that cause mid liver-stage arrest (such as the 

antifolate pyrimethamine and the 8-aminoquinoline primaquine), inhibit apicoplast biogenesis 

in the liver stage contributing to the formation of non-infectious merozoites (such as 

azithromycin and clindamycin) and inhibit haemozoin (that is an insoluble crystalline form of 

free-toxic heme, resulting from blood digestion) formation avoiding the growth of 

intra-erythrocytic asexual parasites (such as Chloroquine, a 4-aminoquinoline, and mefloquine, 

a 4-methanolquinoline)
86

. 

RTS,S/AS01 is the most advanced vaccine candidate against P. falciparum and results 

from a GAP method
87

. Basically a genetically attenuated parasite was performed by dual gene 

deletions, leading to unable to complete liver stage development 
87

. The circumsporozoite 

antigen was identified as the major component of the sporozoite surface, that inhibit the 

invasion of sporozoites to the hepatocytes, and that induce T cell responses against 

sporozoite-infected liver cells 
88,89

. These findings led the development of RTS,S that 

formulated with potent adjuvant system, AS02 and AS01, has limited immunogenicity
87

. A 

Phase III trial began in May 2009 and completed in 2011, with 15 460 children with 5–17 

months of age across seven African countries 
90

. The results showed a vaccine efficacy for 

clinical malaria of 50% in older children 
91

 but only 30% in infants (the target population) 

without significant protection from severe malaria at 18 months post-vaccination 
92

. These 

vaccination trials did not reach what was expected by the Malaria Vaccine Technology 

Roadmap for 2015 which were to have a vaccine that could provide 50 % protection against 

severe disease and death for at least 1 year
92

.  

Considering pre-erythrocytic vaccine strategies, they are unlikely to achieve complete 

protection in all individuals, due to the difficulty to neutralize the capacity a single sporozoite 

or liver-stage form to initiate a blood-stage infection, leading to malaria illness 
93

. However, 

vaccine strategies that target the erythrocyte-invasive form of the parasite (merozoites) in 

combination with the pre-erythrocytic forms 
94,95

, could complement each other 
93,96

. 

 Blood-stage vaccines aim to prevent or blocking the invasion and adherence of parasites 

in the red blood cells (RBCs) to several tissues. Exist many asexual blood stage vaccine 

candidates, but most target merozoite antigens, such as the merozoite surface protein 1 

(MSP1), 2 (MSP2), 3 (MSP3), the apical membrane protein (AMA1), the glutamate-rich 
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protein (GLURP), and the erythrocyte-binding antigen 175 (EBA175) 
97–99

. Besides their 

unclearness in clinical protection, these vaccines attenuate the clinical symptoms of malaria 

97–99
.  

Antigens expressed on the surface of infected RBCs are considered as not good candidates 

vaccines since they are highly polymorphic. An exception is a variant of the erythrocyte 

membrane protein 1 (Pf EMP1) vaccine known as VAR2CSA that prevents 

pregnancy-associated malaria
100

. Complications during pregnancy are associated with 

maternal anemia, placental malaria infection, birth weight reduction and risk of neonatal 

mortality
100

. This vaccine are supported by the fact that women acquire immunity after one 

pregnancy through the production of antibodies against VAR2CSA that inhibits the 

accumulation and adhesion of infected erythrocytes to placental chondroitin sulfate A protein 

(CSA)
100

. Vaccine candidates against VAR2CSA are currently under development
101

. 

The most promising blood-stage vaccine candidate is the merozoite protein of P. 

falciparum reticulocyte-binding protein homologue 5 (PfRH5), due to its non-redundant role 

during erythrocyte invasion, limited genetic diversity that specifically elicit antibodies to 

neutralize parasite growth, and protection from febrile malaria in endemic populations 
102–104

.  

In addition, other studies 
105,106

 have contributed to an improve understanding on 

blood-stage biology and the potential for a multi-component approach that targets distinct 

steps during the erythrocytic cycle 
93

. 

Transmission-blocking vaccines contribute to a reduction of incidence of infection, once 

they can block transmission to an individual person and subsequent spread of parasites in 

endemic populations. By targeting the sexual stages of the parasite; process like fertilization of 

gametes, oocyst formation and sporogonic cycle in the mosquito midgut can be blocked by 

specific host antibodies, complement proteins, and cytokines, preventing parasite development 

72,107–109
. These vaccines however, do not protect the vaccinated individual protecting instead 

other individuals close by. Surface proteins expressed on gametocytes, gametes, zygotes, and 

ookinetes (such as Pfs25, Pfs28, Pfs48/45, and Pfs230 of P. falciparum
110

; and Pvs25, Pvs28 

and Pvs230 of P. vivax
111,112

) are the main targets of this category of vaccines that have been 

shown to block transmission by induction of mosquito antibodies during the blood meal. 

Among these leading candidates, Pfs25 and Pvs25 have completed Phase I clinical trials with 
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limited results
113

. Another perspective, is transmission-blocking targets of mosquito ligands, 

that can allow the development of vaccines able to interrupt the transmission of more than one 

plasmodial species 
114

. 

Regarding the necessity of preventive measures against malaria, WHO (2014) include 

vector control procedures such as indoor residual spraying, the use of long-lasting 

insecticide-treated bed-nets, and the destruction of larval breeding sites; to accomplish a 

reduction of transmission and spread of malaria 
2
. Insecticide-treated materials can influence 

the reduction of density, survival, contact with humans, and feeding frequency of vector’s 

population in its habitat
2,27

. Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) 

have contributed to the decrease in malaria morbidity and mortality in the last decades
43

. ITNs 

protect the users, not only against mosquitoes but also against other infective insects that carry 

diseases, and should be used in all endemic areas
19

. Dependent on the insect’s behavior, IRS is 

effective for indoor night biter mosquitoes because the insecticides included are a powerful 

way to rapidly reduce malaria transmission for 3–6 months. IRS is effective, depending on the 

insecticide used and the type of surface on which it is sprayed. Considering in some cases a 

longer-lasting form of IRS insecticides, dichlorodiphenyltrichloroethane (DDT) can be 

effective for 9–12 months
19

. Due to its high toxicity, other strategies have to be procedure. 

Pyrethroids are the only insecticides currently recommended by the WHO (2013) for use on 

bed nets 
43

, and as a result of its use in a wide-scale in the last decades, resistant mosquitoes to 

this insecticide have emerged in some areas of Africa 
115

.  

Besides multiple mechanisms of resistance to insecticides that have been observed in 

Anopheles populations
116

, alterations in the target site that are often referred to as knockdown 

resistance (kdr) provide to insects the ability of with these alleles to survive at prolonged 

exposure to insecticides. kdr genotype and the resistance phenotype are associated with 

resistance to pyrethroids and DDT, but it is not evident that the presence of this resistance 

allele alone is sufficient to result in the unsuccessful vector control 
117

. 

Other insecticides such organochlorines (OCs), organophosphates (OPs) and carbamates 

(Cs) have been also used in IRS throughout Africa and several reports have shown that 

resistance to all three had been as well developed in mosquitoes 
118

. These alarming 

observations show the capacity of Anopheles to adapt to different and noxious conditions. For 
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this reason and as referred before, is necessary to discover new strategies/targets to reduce 

malaria transmission.  

Another perspective to control transmission could be the use of genetically modified 

mosquitoes unable to transmit parasites. Competitor peptides able to bind salivary gland 

receptors have been tested to analyze their ability to block parasite transmission in mosquitoes.  

A. stephensi, for example, was genetically modified for the expression of the SM1 peptide, to 

inhibit the ability of mosquito to transmit parasites in the midgut
119

. Other peptides that affects 

parasites in the vector such as cecropins, defensins, and scorpine have been also described 

120–122
. An interesting way to interfere with malaria transmission is the use of paratransgenesis 

that attempts to eliminate a pathogen from vector populations by using genetically modified 

symbiotic microorganism of the insect
123

. Lastly, the use of transgenic procedure can improve 

the sterile insect technique (SIT) for Anopheles mosquitoes, by releasing radiation-sterilized 

males in the field to compete with wild ones. However, this method can result in mosquitos 

that have poor mating competitiveness 
124,125

. To introduce a transgenetic mosquito in the field 

in order to substitute the wild vector population, imperative aspects have to be analysed; such 

as the potentially harmful ecological effects and the acceptance of genetically modified 

organism procedure. Killing the mosquito larvae by spraying of kerosene, pyrethrum oil, and 

the introduction of larvivorous fishes like Gambusia sp., insectivorous plants like Utricularia 

sp. into stagnant water places where mosquitoes breed, are some of the biological control 

methods to avoid the growth of mosquito larvae
124,125

. 

1.4. Next-Generation Sequencing (NGS) 
 

New scientific resources must be available to facilitate studies about the biology, 

transcriptomic and evolution of mosquito species, making the development and 

implementation of novel targets to control malaria an easier process 
126

. 

The recent developments of next-generation sequencing (NGS) allow researchers to study 

biological systems throw rapidly sequencing whole genomes, understand sequence target 

regions, analyze genome-wide methylation or DNA-protein interactions, sequence large 

numbers of samples simultaneously using multiplex sequencing with DNA barcode tags, 
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profile microbial diversity in humans or in the environment, discover novel RNA variants and 

splice sites, or precisely quantify mRNAs for gene expression analysis by RNA sequencing
127

. 

The complex genomic research questions request techniques that provide information beyond 

the capacity of traditional DNA sequencing technologies. To fill this absence, next-generation 

sequencing became an useful tool to address these questions 
128

. 

As a NGS technique, RNA-seq contributes for many improvements in the transcriptomic 

characterization and quantification, allowing transcription start site mapping, strand-specific 

measurements, gene fusion detection, small RNA characterization 
129

, detection of alternative 

splicing events 
130,131

, single nucleotide polymorphisms 
132

, provide the opportunity to 

interrogate allele-specific expression and RNA editing. In addition to mRNA transcripts, 

RNA-seq can evaluate total RNA, small RNA, such as miRNA, tRNA, and ribosomal 

profiling 
133

. Ongoing RNA-seq research includes observing cellular pathway alterations 

during infection 
134

, and gene expression level changes in cancer studies 
135

. Besides that, it 

can measure precisely transcripts levels and their isoforms when comparing to other methods 

136
. Prior to NGS, transcriptomic and gene expression studies were done with microarrays, 

which contain thousands of DNA sequences (probes) that possibly match with the 

complementary sequences in the sample, making available a profile of all transcripts being 

expressed. This was later done with serial analysis of gene expression (SAGE). Microarrays 

have limited coverage since only target known common alleles, that only represents 

approximately 500 000 to 2 000 000 SNPs of the more than 10 000 000 in the genome 
137

. As 

such, libraries are unavailable to detect and to evaluate rare allele variant transcripts 
138

, 

preventing a better fully and detailed research results
139

. However, microarrays approach still 

has meaning to regulatory body-approved diagnostics that target common allele variants 

already known
139

. Comparison in work-flow between microarrays and RNA-seq are 

represented in Figure 16. 
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Figure 16 - Overview of analysis workflow for microarray and RNA-seq transcriptional profiling.
140

 

 

  RNA-seq is becoming increasingly attractive for quantitative studies of differential gene 

expression in non-model species, for which there is generally a weak knowledge about 

transcriptome 
141–143

. RNA-seq data from non-model species can be successfully de novo 

assembled into transcriptomes with high quality. From non-models species reads per gene and 

annotating assembly contigs can be achieved by using the genome or predicted gene set of a 

related species as proxy 
144,145

. Proxy genomic reference species that have an divergence up to 

approximately 100 million years from the target species can be utilized to generate results in 

order to functionally annotate de novo transcriptomes
129

.   

Annotating assembly contigs can then be used with high performance, as scaffolds for 

mapping RNA-seq read data for quantitative whole gene expression analyses
129

.  

1.4.1.  RNA sequencing (RNA-seq) 

 

Once mRNA is extracted and purified from cells, quality of RNA is critical to be analyzed, 

to proceed to alternative protocols if degraded RNA exist
146

. Further, fragmentation of the 

RNA in to smaller pieces followed by reverse transcription of fragments using random 

hexamers or oligo (dT) primers, contributes to ensure that coding RNA (mRNA) is separated 

from noncoding RNA (magnetic beads may be necessary)(Figure 17) 
147

.  
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Figure 17 - Representation of librarys of cDNA. 

(Image from Vincent Montoya) 

 

As represented in the Figure 18, the 5’ and/or 3’ ends of cDNA are repaired and adapters 

(containing sequences to allow hybridization to a flow cell) are ligated. PCR are performed to 

enriched correctly ligated cDNA fragments (Figure 18).  

 

 

Figure 18 - Illumina library preparation. PolyA+ RNA is enriched using oligo (dT) beads followed by 

fragmentation and reverse transcription. The 5’ and 3’ ends of cDNA fragments are next prepared to allow 

efficient ligation of “Y” adapters containing a unique barcode and primer binding sites. Finally, ligated cDNAs 

are PCR-amplified and ready for cluster generation and sequencing
148

. 
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After assessment of library concentration using qPCR and/or Bioanalyser, it is ready for 

sequencing on a high-throughput sequencing facility 
149

. Each of the following platforms 

utilizes a different type of technology to sequence millions of different short reads: 454 

Sequencing, Illumina, SOLiD, Ion Torrent, and Illumina’s TruSeq or HiSeq. 

In Illumina TruSeq, for example, dNTPs are incorporated and detected simultaneously at 

millions of fixed positions on a flow cell 
150

. Represented in Figure 19, in this technique, 

libraries that were prepared are now hybridized to a flow cell which contains a lawn of 

covalently bound oligonucleotides complementary to the sequencing adapters that were 

introduced during library preparation. Once hybridized, the capture oligonucleotide primes 

DNA polymerase extension activity resulting in a covalently bound full-length complementary 

copy of the cDNA fragment that is subjected to several rounds of PCR amplification to 

produce discrete clones ~ 1 μm in diameter that can be optically resolved during 

sequencing
150

.  

 

 

Figure 19 - Illumina sequencing resume. (http://www.geneconn.com/images/upload/Image/5-fu-1.jpg) 
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Manipulating RNA-seq data is computationally intensive and requires access to several 

databases that provide information about clusters. Two different transcriptomic assembly 

methods are used for producing a transcriptome from raw sequence reads: de novo or 

genome-guided. 

As mentioned before, in order to reconstruct the nucleotide sequence, de novo assembly 

does not rely on the presence of a reference genome described for the organism of interest. 

Due to the large size of the reads, de novo assembly may be easier though some software that 

exist (Velvet (algorithm), Oases 
151

, Trinity 
152

, and others). In de novo assembly, the absence 

of a known genome can be overcome by assembly the sequences through a proxy genomic 

reference species
129

, taking into account possible alternative isoforms and the dynamic range 

of expression values. To build transcript isoforms, Oases can analyze these results by using 

paired end read and long read information (Figure 20)
153

.  

 

 

Figure 20 - Overlapping reads. Reads from paired-end sequencing form contigs, contigs and gaps of known 

length form scaffolds. (http://genome.jgi.doe.gov/help/scaffolds.html)  

 

Another computationally approach is genome-guided assembly, which aligns the millions 

of reads to a "reference genome". This are performed for annotated organisms by using several 

software packages and algorithms for short read alignment, e.g. Bowtie and Samtools for 

RNA-seq short read alignment 
154155

, TopHat for aligning reads to a reference genome to 

discover splice sites 
156

, Cufflinks to assemble the transcripts and compare/merge them with 

others 
157

. 
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Then is necessary a annotation of reads and for this, the UniProt Reference Clusters 

(UniRef) is a very useful tool for annotation providing clustered sets of sequences from the 

UniProt Knowledgebase (including isoforms) and selected UniParc records in order to obtain 

complete coverage of the sequence space at several resolutions. Using UniRef90 it is possible 

to analyse each cluster having at least 90% sequence identity to and 80% overlap with the 

longest sequence (a.k.a. seed sequence) of the cluster 
158

. That software gives GO (Gene 

Ontology) annotations, EC numbers, Interpro motifs and others. After a collection of 

expressed sequences aligned or located to same position on genome, UniGene, an alignment 

by BLASTX to protein databases must be performed, retrieving proteins with the highest 

sequence similarity, to obtain their protein functional annotation. 

After mapping and annotation, it is necessary an expression quantification of each 

UniGene. Quantification of the abundance of target sequences obtained from sampled 

subsequences, can be done with the eXpress streaming tool which greatly reduces computing 

infrastructure requirements being more efficient when coupled with a streaming aligner (such 

as Bowtie). 

The characterization of gene expression in cells by measurement of which genes and at 

what levels of mRNA levels has long been of interest to researchers, was achieved by 

Fragments per Kilobase of transcript per Million mapped reads (FPKM) that correspond to the 

the number of fragmented reads belonging to the particular exon in fragmentation prior to 

cDNA synthesis, that are normalized by its length in vivo yields gene expression levels
159

 and 

by the total number of mapped reads. Following library normalization, statistical testing for 

differential expression can be performed. R/Bioconductor statistical computing environment 

160
, edgeR and DE-Seq are used to perform count normalization using a negative binomial 

distribution
161,162

 and further uses the counts table with biological replicates to calculate 

variation and test for statistically significant differential expression. 

Functional annotation of the assembled transcripts allows for insight into the particular 

molecular functions, cellular components, and biological processes in which the putative 

proteins are involved. Blast2GO enables Gene Ontology (GO) based data mining to annotate 

sequence data for which no GO annotation is available yet. Often employed in functional 
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genomics research on non-model species 
163

, Blast2GO works by blasting assembled contigs 

against a non-redundant protein database (at NCBI), then annotating them based on sequence 

similarity. Following annotation, KEGG (Kyoto Encyclopedia of Genes and Genomes) 
164

, 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 
165

, WoLF PSORT 

(Protein Subcellular Localization Prediction)
166

, MultiLoc2
167

 and TMHMM
168

 enables 

visualization of predicted metabolic pathways and molecular interaction networks captured in 

the transcriptome. 

Tests for enrichment of Gene Ontology (GO) terms associated with a list of significantly 

over or under expressed genes can be performed with for example, g:Profiler
169,170

 or 

GOstat
171

; depending on which model or non-model organism is used. Sequencing analysis 

using all the above mentioned tools will contribute to a better understanding of which 

molecular function or biological process is more or less representative in the transcriptome of 

interest. 

Quality control of the process and the final results has to be controlled by trimming of 

sequencing adapters and removal of reads with poor quality scores followed by mapping reads, 

analysis of differential expression, identification of novel transcripts and pathway analysis
172

. 

Just as for any other technique, both technical and biological replicates must be carefully 

considered to guarantee a proper replication, randomization and blocking of a well-designed 

experiment. The required number of replicates will vary depending on amount of biological 

variability associated with the samples of interest and should be empirically determined to 

performed RNA-seq experiments
173

. However, in the infancy of RNA-seq, technical replicates 

(libraries prepared from the same RNA sample) were commonly used and shown that 

biological variation far outweighs technical variation, at least when coverage of at least 5 reads 

per nucleotide is obtained 
174,175

.  

1.5. Real Time Polymerase Chain Reaction (qPCR) 
 

Transcriptional profiling using NGS platforms allow a better understanding about the cell 

development and diseases progression in a certain tissue under varied circumstances. RNA-seq 

has shown to be highly accurate for quantifying expression levels, but qPCR can be as well 

performed in parallel to confirm RNA-seq data results
176

.  
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First RNA is reverse-transcribed and the produced cDNA used as a template in real-time 

PCR to detect and quantitate expressed gene products and then infer about gene expression or 

messenger RNA (mRNA) presence. The data output is expressed as a fold-change or a 

fold-difference of expression levels depending if it is used quantitative or relative 

quantification
177

. 

To obtain absolute quantities of gene targets it is necessary to calculate the copy number 

of the gene usually by relating the PCR signal to a standard curve. Methods for relative 

quantitation of gene expression present the data of the gene of interest relative to some internal 

control gene known as reference gene, which will result in changes in gene expression in a 

given sample relatively when compared with a control sample (e.g. untreated control sample).  

The calculation methods used for relative quantification are standard curve method and 

comparative CT method. This last method is widely used and it compares the Ct value of one 

target gene to another (using the formula: 2ΔΔCt)—for example, an internal control or 

reference gene (e.g., housekeeping gene)—in a single sample
178

. 

1.6. RNA interference 
 

In nature, RNA interference (RNAi) is an important pathway that regulates gene 

expression in many different organisms. In higher eukaryotes, RNAi-mediated knockdown is 

the most common and the best known strategy for depleting cells of a gene product of interest 

in the cytoplasm 
179

. By contrast, genome editing that alters the genetic code; contribute to 

complete elimination of gene function, typically causing a knockout. 

RNAi-mediated knockdown is preferable when knockout is undesirable, and the aim is 

only to reduce gene function temporarily
180

. As represented in Figure 21, RNAi process begins 

when a hairpin-forming precursors (shRNAs) or introduced exogenously (siRNAs) generate 

short (approximately 20-25 nucleotides) double stranded RNA molecules (dsRNA). After 

processing by Dicer, a dsRNA is converted in a single stranded RNA base-pairs (ssRNA) with 

a target mRNA 
181

. Further, Argonaute mediate RNA gene knockdown, resulting in mRNA 

degradation or translation inhibition. This leads to post transcriptional down-regulation of gene 

expression, without altering the genetic code 
182

, termed a “knockdown”.  
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Figure 21 - General scheme of RNAi pathways.
182
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Chapter 2: Material and Methods 

 

2.1. Identification of genes differentially expressed in salivary 

glands (SG) of A. stephensi in response to infection by P. berghei  

2.1.1.  RNA-seq 

 

The transcriptomic analysis by sequencing RNA transcripts (RNA-seq) was achieved by 

Era7 Company, where reads were pre-processed to have the high quality required for the de 

novo assembly. In the report received from Era7 were described the methods used to obtain 

this RNA-seq data, and finally the results were presented for four Biological Coefficient of 

Variation (BCV). These values inferred from how much the variance of the counts exceeds the 

variance that would arise from Poisson counts, and BCV values that stabilized between genes 

are selected for forward analysis. According to Robinson, McCarthy and co-workers, a BCV 

value for technical replicates most be 0.01
183

. In this work, we did not use such low value, to 

focus in higher significantly expressed transcripts; and either not choose a high value as 0.4, 

which reduces analysis of transcripts that can be potentially interesting but with have a bit less 

significant expression. For these reasons, were chosen a BCV of 0.2 and a p value <0.05 to 

filter significant data.  

The RNA-seq result compiles information of UniProt, RefSeq, Gene Ontology and NCBI 

Taxonomy Enzyme databases. Each transcript has information about Uniprot ID, log of 

concentration, log of fold-change, p value, protein names, gene names, length of the sequence, 

Enzyme Commission number (EC number), gene ontology IDs (GO terms) and URL UniRef 

cluster. Data were further analysed and the transcripts organised into classes according to their 

function. The 14 functional classes chosen were: cell function, chemosensory, detoxification, 

diverse, immunity, metabolism, proteolysis, recognition, regulatory, RTT (replication, 

transcription and translation), signalling, structural, transport and unknown. The amount of 

transcripts that showed a significant differential expression were analysed and grouped 
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depending on the over or under expression in each functional class and the distribution of each 

class in total. Over and under-represented functional classes were identified using GO ID’s for 

each transcript by a hypergeometric test named GOstat
171

. Transcripts without GO ID’s or 

without Gene ID were excluded. 

2.1.2.  Confirmation of differential expression by qPCR 

 

All animals procedures were conducted in accordance with the Council of Ethics of 

Institute of Hygiene and Tropical Medicine, performed on anaesthesia, minimizing animal 

suffering. The maintenance and care of experimental animals was as well carried out in 

accordance to the Europe Directive 86/609/EEC and Portuguese law (Decreto-Lei 129/92) 

recommendations and protocol approved by the Direção-Geral de Alimentação e Veterinária 

(DGAV), Portugal, under Portaria 8 n°1005/92 from 23rd October.  

A. stephensi mosquitoes were obtained in the insectary of IHMT, reared at 20°C in 70% 

humidity, under a 12h light/dark photoperiod and fed ad libitum on a 10% glucose solution.  

Female CD1 mice were intraperitoneally inoculated with 10
7
 P. berghei ANKA parasitized red 

blood cells. The levels of parasitaemia were measured from blood samples of the mouse tail 

using Hemacolor® rapid staining kit (EMD Millipore, Germany). When the parasitaemia 

reached 5-10% and the presence of microgametocytes capable of exflagellation was observed 

184
, mice were used to infect mosquitoes. Four to five days-old female mosquitoes were 

allowed to feed directly on naïve (control) and P. berghei infected mice up to one hour, with 

regular monitoring to certify mice were anesthetised. Unfed mosquitoes were removed after 

each blood meal. Fully engorged mosquitoes were kept at 19-21°C and 80% relative humidity 

for P. berghei development. 

After anesthetization of mosquitoes by subjection/exposition to a temperature of 4°C, they 

were submerged in 75% (v/v) ethanol, and then in phosphate buffer (PBS) A. stephensi tissues 

were dissected on a microscope slide using fine needles under a stereomicroscope at 4x 

magnification (Motic SMZ-171B, China). 

Midguts from the infected female mosquitoes were dissected 8-9 days post-blood meal (PBM) 

to confirm the presence of oocysts for the confirmation of infection. Once P. berghei was 
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genetically modified and constitutively expressing a fluorescent protein, GFP (Green 

Fluorescent Protein), the oocysts were observed, using fluorescent microscopy. Salivary 

glands (SG) were dissected 18-19 days PBM in PBS, subsequently transferred to RNA later 

(Life Technologies, USA) and maintained at 4ºC
185

 for further RNA extraction.  

RNA was quickly extracted using RiboZol™ (AMRESCO, USA). For qPCR, a standard 

curve was performed with total RNA extracted from a pool of eight females kept exclusively 

on a sugar diet; and analysis of differential expression was performed with RNA from both 

control and infected SGs. After extraction, the RNA samples were quantified and analysed for 

purity on a ND-1000 NanoDrop® spectrophotometer (NanoDrop ND1000, Thermo Fisher 

Scientific, MA). Integrity of RNA was evaluated by an Agilent 2100 Bioanalyser® system 

(Agilent Technologies, USA). Later, samples were stored at -80 ºC.  

Total RNA extracted from SG was used to synthesize cDNA using the iScript™ Reverse 

Transcription Supermix for RT-qPCR kit (Bio-Rad, USA) using the following protocol: a 

phase of priming at 25
o
C for 5 min, followed by a reverse transcription at 42

o
C for 30 min and 

reverse transcriptase inactivation at 85
o
C, for 5 minutes.  

For validation of RNA-seq data of A. stephensi infected and non-infected, relative qPCR 

was performed. A total of 20 transcripts identified by RNA-seq, which were expressed 

differentially, were evaluated to confirmed RNA-seq results. In qPCR were used three 

biological replicates of each condition. The Primer 3 platform 

(http://bioinfo.ut.ee/primer3-0.4.0/) was utilized to design all primers. The qPCR reactions 

(total volume of 20 μl) were performed in triplicate using IQTM kit SYBR ® Green super mix 

kit (Biorad, Singapore) in a thermocycler CFX96 Touch Real-time PCR (Bio-Rad, USA). 

qPCR conditions were: an initial cycle of denaturation at 95° C for 10 min, followed by 40 

cycles of 95ºC for 15 seconds and temperature of each primer set for 45 seconds. A melting 

curve (60-95°C) was performed to determinate the quality of the amplicon. 

The sequences of the primers used in these experiments are listed in Appendix II.  

Data normalisation in real-time qPCR can be improved by including an invariant 

endogenous control (reference gene) in the assay
186

. Normalization against a single reference 

gene is not acceptable, unless experiments confirm its invariant expression under the 

experimental conditions
187

. For this reason, two reference genes candidates were chosen, the 



 

37 

gene for ribosomal protein S7 (Vectorbase: AGAP010592, because primers were similar 

between species of A. gambie and A. stephensi) and elongation factor (Vectorbase: 

ASTE005097), also indicated in the Appendix II.  

Standard curve was performed from serial dilutions of cDNA to calculate the PCR 

reaction efficiency and determine the best reaction conditions. The same curve as the reference 

for the relative quantification of expression levels was used. Starting from a concentration of 

100 ng/µl of total RNA cDNA, serial dilutions of 1:5, 1:25, 1:125 and 1:625 were achieved. 

No primer dimer was detected when inspecting the melting curves and primer pairs were 

chosen that displayed greater than 90% amplification efficiency.  

Relative expression results were normalized with ribosomal protein S7 (RPS7) as 

reference gene and analysed by the 2 delta Ct (ΔΔCt) method 
188

. The same was performed for 

an elongation factor (ELF). 

The correlation between the expression values detected by RNA-seq and qPCR for the 13 

genes confirmed was determined by calculating Pearson’s correlation, comparing the 

expression values for each transcript in the two methods 
189

. A P value between 0.25 and 0.50 

was considered to be weakly correlated, a P value between 0.51 and 0.75 was considered to be 

moderately correlated, and P value over 0.76 was considered to be strongly correlated. 

2.2. In vivo gene knockdown in Anopheles stephensi by RNA 

interference 

2.2.1. dsRNA synthesis 

 

After analysing protein-protein-interations, ontological characteristics and expression 

level, RNAi was used to knockdown the gene ASTE009391 (prestin) in A. stephensi SG and 

the effect of prestin gene knockdown in the malaria vector further analysed.  

In order to knockdown the gene, double stranded RNA was produced. First specific 

primers and cDNA from SG as template, was used to amplify fragments of interest, using 

iProof™ High-Fidelity DNA Polymerase (BioRad, Hercules, CA). Specific primers containing 

T7 promoter sequences at the 5´-end that were synthesized (Appendix III), only will generate 
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PCR products with T7 promoter. Further, this PCR products with T7 promoter will be 

necessary to produce a lot of dsRNA of interest, when added T7 RNA polymerase
190

. 

PCR reactions of 50 µL included: 1X iProof HF Buffer, 10 mM of dNTP mix, 0.5 µM of 

each primer (Appendix III), 1mM of MgCl2, 0.02 U/µL Proof DNA Polymerase and 50-500ng 

of template DNA. The conditions were: initial denaturation performed at 98ºC for 3 minutes; 

following for denaturation at 98ºC for 10 seconds, annealing at 64ºC for 30 seconds and 

extension at 72ºC for 15 seconds cycling for 35 cycles; and then a final extension at 72ºC for 

10 minutes. 

Amplification results were analysed on a 0.5X TBE, 1.2% (w/v) agarose gel and purified 

using Zigmoclean™ Gel DNA Recovery Kit (Zymo Research, USA). dsRNA was produced 

using the MEGAscript T7 kit (Ambion, Austin, TX, USA), according to manufacturer’s 

instructions. The resulting dsRNA was purified, quantified and checked on a 0.5X TBE, 1.5% 

(w/v) agarose gel. 

2.2.2.  dsRNA injection in Anopheles stephensi 

 

For gene knockdown, three experiments of 300 P. berghei-infected female mosquitoes for 

each gene (β2M and prestin) were conducted. Three to five-days-old (14 days PBM) cold 

anesthetized female mosquitoes were injected intrathoraxically with 69 nl (4µg/ml) of dsRNA 

using a nano-injector (Nanoject, Drummond Scientific, Broomall, PA, USA). The control 

group was injected with dsβ2M. Before and after injection viable mosquitoes were counted.  

2.2.3.  Statistical analysis 

 

Data were analysed across entire experiments (all time points) using Student’s t-test 

(Microsoft ® Excel® 2013). A p value of <0.05 was considered to be statistically significant. 

All p values are two-sided. 
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2.2.4. Gene knockdown assessment 

 

Mosquitoes were dissected 4 days post injection. Pools of 15 SG per treatment were used 

to perform sporozoite quantification and the remainder SG were used to extract RNA using 

RiboZol™ (AMRESCO, USA), as previously describe, to perform downstream qPCR in order 

to verify the knockdown effect.  

Each SG pool was homogenized in a total volume of 100µl of phosphate-buffered saline 

using a mini glass tissue homogenizer (Kontes Glass Co., Vineland, NJ, USA). Sporozoites 

were counted by light microscopy using a haemocytometer as described by Pinto and 

colleagues 
191

. 
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Chapter 3: Results 

3.1. Identify genes differentially expressed in salivary glands 

(SG) of A. stephensi in response to infection by P. berghei  

3.1.1.  RNA-seq 

 

RNA sequencing is a powerful tool to analyse a transcriptome across different tissues or 

conditions
192–194

, having clear advantages over existing approaches
195

. Based on this technique 

comparison of transcriptome from an organism in different situations such as infected and 

non-infected (tissues) allows the identification of transcripts that are more related with the 

infection process. In this work we performed infected vs control transcriptomic analysis of 

Anopheles SG in order to identify genes that can be related to transmission of malaria. In this 

work plan the start point was data from RNA sequencing of infected vs control Anopheles SG. 

RNA-seq results compile information of UniProt, RefSeq, Gene Ontology and NCBI 

Taxonomy Enzyme databases. Information of each transcript was proceeded, considering p 

value <0.05 as significant data and BCV value of 0.2 considering a report from Era7 company 

and the research data obtained by Kokoza and Ahmed 
183

. 

Transcripts were organised into classes according to their molecular function, cellular 

component, biological process and domains obtained by comparison with the mentioned 

databases. The most represented functional classes were those discriminated below:  

 Cell function: having transcripts that play a role in cell adhesion, cell migration, 

apoptosis, etc;  

 Chemosensory: including transcripts having sensorial functions, such as odorant 

proteins; 

 Detoxification: containing genes/proteins implicated in the removal of toxic 

substances; 

 Diverse: containing transcripts that have molecular functions that can be associated to 

more than one functional class; 
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 Immunity: related to transcripts that play a role in biological defences to fight 

infection, biological invasion, inflammation; 

 Metabolism: correlated to transcripts that are associated to chemical transformations or 

enzyme-catalyzed reactions that form metabolites; 

 Proteolysis: linked to transcripts that allow the breakdown of proteins into smaller 

polypeptides or amino acids, i.e., hydrolysis of the peptide bond by proteases, and 

others; 

 Recognition: including transcripts that recognize molecules of signalling pathways, 

and others; 

 Regulatory: containing transcripts related to processes that occur within a cell to 

maintain homeostasis, either at signalling or at genetic level; 

 RTT: transcripts in this class appear related to processes such as replication, 

transcription and translation; 

 Signalling: contains transcripts related to emission of signals that allow cellular 

activities and coordinates cell actions; 

 Structural: has transcripts associated to cell structure and other components; 

 Transport: includes transcripts that play a role in transport of molecules by channels, 

motor proteins, or others; 

 Unknown: in this functional class are represented transcripts that do not have 

information to infer about it. 

The amount of significant transcripts were analysed depending on general distribution of 

each functional class (Figure 22A) and on its over and under expression in each functional 

class (Figure 22B). 



 

42 

 

Figure 22 - Results from functional grouping of A. stephensi transcripts from RNA-seq. A) Results of general distribution 

of differential expressed transcripts by functional classes. B) Distribution results of up and down-regulated transcripts by 

functional classes. 

 
The analysis of RNA sequencing data showed that in Anopheles stephensi salivary glands 

a total of 2536 genes were found to be significantly differential expressed in response to P. 

berghei infection for the conditions above mentioned. From these, 1996 (79%) were 

upregulated and 540 (21%) were found to be down regulated (data not shown).  

Metabolism, RTT, cell function and transport were the functional classes with more 

transcripts considering a general distribution, while recognition, detoxification and 

chemosensory presented less number of transcripts in A. stephensi SG (Figure 22A). 

Metabolism and transport includes 539 and 238 transcripts, respectively; and chemosensory 

and recognition contains 33 and 16 transcripts (data not shown).  
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The most overexpressed transcripts were found in classes such as metabolism, 

replication-transcription-translation (RTT), cell function and transport and the same was 

observed for the most under expressed transcripts.  

About 429 transcripts of metabolism class were up-regulated while the rest 110 transcripts 

were down-regulated (data not shown). This predominance of up-regulated transcripts is 

common between classes. Besides that, regulatory, immunity, proteolysis and chemosensory 

were classes with low percentage of transcripts. 

A hypergeometric test was set by GOstas analysis, obtaining transition metal ion binding 

(GO:0046914) and cytoplasm (GO:0005737) as the over and under represented GO terms in 

this RNA-seq set, respectively. These GO terms were presented in metabolism, cell function 

and transport (data not shown) which are the most predominant functional classes of this 

RNA-seq result. 

The aim, at this point, was to check the expression of genes related to various functional 

classes and with higher and lower expression. Genes associated with metabolism, RTT, cell 

function and transport functional classes were also selected due to their relevance in mosquito 

SG-Plasmodium interactions.  

3.1.2.  Confirmation of differential expression by qPCR 

 

Mice were used to infect mosquitoes, when the parasitaemia reached 5-10% (Figure 23) 

and the presence of microgametocytes capable of exflagellation was observed. 

 

 

Figure 23 - Parasitaemia of 5%. Presence of several blood stages of Plasmodium berghei, examined with a 100x oil 

immersion objective of a light-microscope (Original from the author Joana Couto). 
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From the all mosquito groups used in different assays, a small fraction was picked-up 

from each cage and the infection confirmation carried on. As represented in Figure 24, 8-9 

days post-blood meal (PBM) the presence of oocysts was confirmed by observing midgut 

tissues under a UV light microscope.  

 

 

Figure 24 - Presence of oocysts. In left are represented a part of a midgut before exposition, and in right after exposed to UV 

light (Original from the author Joana Couto). 

 

For groups showing a high level of infection (more than 60%), salivary glands (SG) were 

dissected (Figure 25) 18-19 days PBM to proceed to RNA extraction. Groups showing low 

infection rates and/or absence of exflagellation were rejected. 

 

 

Figure 25 - Salivary glands dissected (Original from the author Joana Couto). 

 

RNA was quantified and analysed for purity on a ND-1000 NanoDrop® 

spectrophotometer (NanoDrop ND1000, Thermo Fisher Scientific, MA) (Appendix IV). 

Integrity of RNA was evaluated by Agilent 2100 Bioanalyser® system (Agilent 

Technologies) (Appendix V). These data can be displayed as a gel-like image and/or as 

electropherogram. Considering all electropherograms, only one sample (RNA Total) presented 
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some degradation, which was not a concern once this sample was used to perform a standard 

curve for relative quantification. 

The real-time polymerase chain reaction (qPCR) is an accurate technique used to evaluate 

gene expression in a defined biological system. 

qPCR was used to measure and further validate results obtained from the transcriptomic 

analysis of the SG from A. stephensi. Based on the ontological analysis, a total of 13 genes 

identified as differentially expressed by RNA-seq, 10 upregulated and 3 down regulated in 

response to infection, were analysed by qPCR and results compared with those obtained from 

RNA-seq, as referred above (Appendix VI).  

To evaluate gene expression level by qPCR, a first step concerned to the detection of the 

presence of primer dimers. In these experiments, as expected, no primer dimers were detected 

when inspecting the melting curves. Primer pairs were chosen when displaying amplification 

efficiency greater than 90%, except for AGAP004524, SCRB6 and INOSITOL genes that 

showed an efficiency of 89.5 ± 0.3%. The observation of melt curves also indicated that only 

one amplicon was produced for each gene amplified (Figure 26). 

 

 

Figure 26 – Amplification and melt peak chart of a standard curve. 

 

Reference genes are genes showing a constitutive expression across samples and were 

utilized to quantify changes in gene expression. Therefore, the relative expression results 

obtained were normalized against both A. gambiae ribosomal protein S7 (RPS7) and 

elongation factor (ELF) genes. A 2 delta Ct (ΔΔCt) method was performed to proceed an 

evaluation of the correlation between the expression values detected by RNA-seq and qPCR 



 

46 

for the 13 genes tested by calculating Pearson’s correlation (Figure 27). Pearson value was 

slightly different between reference genes. 

 

 

Figure 27 - Correlation between qPCR and RNA-seq results. The Pearson's correlation coefficient was calculated using the 

Excel software; a strong positive relationship correlation was observed (P = 0,656681 for S7 and P = 0,530919 for ELF). 

 

Pearson correlation shows whether two variables are related or not and how strongly. P 

value was determined to find the strength between the variables between qPCR and RNA-seq. 

When RPS7 was used as a reference gene, the results have shown that the P value was 0.67; 

contrary, when ELF was used the P value was 0.53. Working with RPS7 as reference gene, 

fold-changes of qPCR have a strong correlation to those obtained by RNA-seq results than 

when assaying with ELF (Appendix VI). 

3.2.  In vivo gene knockdown in Anopheles stephensi by RNA 

interference 

 

RNA interference methodology is widely used to knockdown genes that, by targeting 

mRNA, can provide a more information about gene function. After a deep analysis of 

transcripts, having in consideration the expression level and gene ontology classification, one 

transcript (ASTE009391) displaying a fold-change of 2.19 in RNA-seq results, showing a 
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secondary active sulfate transmembrane transporter activity in molecular function and known 

that as being related to SLC26 proteins was chosen for further studies. This transcript with 

641bp is a transmembrane transporter of compounds essential to parasite survival and, mainly 

due to these characteristics; it was selected to further silencing assays.  

In an attempt to identify physical interactions between prestin and other proteins, for a 

better understanding of intracellular signaling pathways and biochemical processes; following 

protein-protein interactions prediction (Figure 28) was performed. 

 

 

Figure 28 – STRING analysis. STRING database (http://string-db.org) can give a network of predicted associations for 

prestin (AGAP010725, an orthologue of ASTE009391). The network nodes are proteins: NDAE1 (AGAP009736), 

AGAP002992, AGAP006968, AGAP006115, AGAP001256, AGAP006988 and AGAP010464. The edges represent the 

predicted functional associations. A red line indicates the presence of fusion evidence; a green line - neighbourhood evidence; 

a blue line - co-occurrence evidence; a purple line - experimental evidence; a yellow line – text mining evidence; a light blue 

line - database evidence; a black line - co expression evidence.  

 

STRING analysis showed proteins that interact with prestin are related to metabolism of 

sulfate, which it is an ion transported by prestin. Besides that, NDAE1 protein that interact 

with prestin, share the same molecular function. Despite of this result, prestin may have an 

important role in the transport of compounds essential to parasite survival, as mentioned 

above, and to analyse this function is necessary to perform RNAi assays. 
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The ASTE009391 gene (prestin) was silenced using RNA interference technology as 

referred above. The effect of gene knockdown-RNAi mediated in P. berghei infection in A. 

stephensi mosquitoes was evaluated.  

The prestin gene was amplified by PCR using the primers with T7 promoter (Forward–5’ 

TAATACGACTCACTATAGGGAGAGGAAGGGCATGAGAGTGGTA-3’ and Reverse–5’ 

TAATACGACTCACTATAGGGAGAAGTACACCAGCACCGGAAAG-3’) and amplicons 

analysed on a 0.5X TBE, 1.5% (w/v) agarose gel (Figure 29A). Amplification at optimal 

conditions resulted in different PCR products. To assure which band was the one related with 

prestin, all bands were purified and sequenced. Sequences from both primers forward and 

reverse were aligned using BLAST and ClustalW tools from Vectorbase resource (having 

prestin (ASTE009391) sequence from A. stephensi). Only the first purified band (Figure 29 A 

and B) showed a high identity of 99.8% (reverse primer) and 96.3% (forward primer) to 

prestin sequence (Appendix VII) and therefore, DNA corresponding to this amplification was 

selected to use as template to synthetize dsRNA. The resulting dsRNA was purified, quantified 

and checked on a 0.5X TBE, 1.5% (w/v) agarose gel (Figure 29C). Concentration of purified 

dsRNA was approximately 3.5 mg/µL. 

 

 

Figure 29 - Electrophoresis gel of prestin PCR, purified PCR product and prestin dsRNA. 
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3.2.1.  Double stranded RNA injection in Anopheles stephensi 

 

To infer about the function of prestin and its eventual relation with P. berghei infection, 

knockdown experiments were carried on A. stephensi mosquitoes. For knockdown, 69 nl 

(4µg/ml) of dsRNA were injected in each female mosquito previously infected with P. 

berghei. Controls were inoculated in the same conditions with the reference gene β2M. Three 

independent experiments were performed using for each group (prestin and β2M) 350 

mosquitoes. After injection, the viable mosquitos were counted every day until the 18st day 

PBM (Figure 30). 

 

 

Figure 30 - Survival analysis post-dsRNA injection. Day 14 represents the time of dsRNA injection and the other days 

represent days after injection. Survival analysis is represented for each condition of knockdown (KDβ2M and KDprestin) of 

each pool (1, 2 and 3). Significant differences were present when comparing prestin to β2M, in pool 2 and 3 (p value of 

0.0001 and 0.00001, respectively). In contrast with pool 1 that not shows significant differences between conditions (p value 

of 0.345). Significant differences were presented when comparing number of mosquitos before injection (Day 14) and the last 

day post-dsRNA injection (Day 18) (p value of 0.00001). 

 

3.2.2.  Gene knockdown assessment 

 

The effect of gene knockdown on the infection level was assessed by evaluating the 

number of sporozoites. For this, SG were extracted on day 18 and homogenized in PBS, to 

further quantification in a haemocytometer. Figure 31 shows that no significant reduction of 
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sporozoites was obtained after gene knockdown, when analysing the all three experiments. 

However, the first pool of mosquitoes showed a reduction of 92% (reduction of 80.4x10
4
 to 

6.2x10
4
 sporozoites/mL) (data not shown). 

 

 

Figure 31 - Sporozoites quantification for gene knockdown. Number of sporozoites per mL is represented for each 

condition of knockdown (KDβ2M and KDprestin) of each pool (1, 2 and 3). No significant difference was observed. 

 

 

 

KDβ2M    KDprestin 
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Chapter 4: Discussion 

 

Treatment and control of malaria disease have been the focus of several research projects 

aiming the improvement in antimalarial medicines through focused research
196

. 

The understanding of the interactions between the malarial parasite and the mosquito 

vector has recently been augmented by different methods including the culture sporogonic 

stages of some parasite species, new technologies, and genetic transformation of both parasite 

and vector, that will allow the development of new intervention strategies
197

 and then elucidate 

the mechanisms of insect-vector specificity and monitor the spread and infection-route of the 

pathogen. 

RNA-seq is a new approaches that have been increasingly used in many model organisms 

including mosquitoes 
198,199

. In this work, the analysis of the transcriptome of A. stephensi 

female SG was performed to identify genes with differential expression in response to 

infection with P. berghei. In A. stephensi, a total of 2536 genes were found to be significantly 

differential expressed in response to P. berghei infection, from which 1996 (79%) were 

upregulated and 540 (21%) were found to be down regulated. This indicates an enrichment of 

upregulated genes in A. stephensi SG in response to malaria parasite, and this was also present 

in others experiences 
200,201

. Metabolism, RTT, cell function and transport were the functional 

classes with more number of transcripts considering general distribution (confirmed by GOstat 

analysis); while recognition, detoxification, chemosensory and diverse presented less 

transcripts in A. stephensi (Figure 22A). The most overexpressed transcripts were found in 

classes such as metabolism, RTT, cell function and transport and the same was observed in the 

most under expressed transcripts. This distribution can be justified by the importance of such 

transcripts to infection or development of Plasmodium. In general, transcripts grouped in 

functional class of metabolism can be related to products involved in process to limit parasite 

development or production of metabolites needed to sporozoites progress
202,203

. RTT and cell 

function are related to cellular changes, such as cellular structural components that are 

modified during Plasmodium infection
204,205

. Transport is a class that include transcripts that 

can be induced under Plasmodium infection
202,206,207

. As some detox components, in A. 
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gambiae for example, are suppressed under Plasmodium infection, the same might happen in 

A. stephensi 
208

. A. stephensi is more susceptible to P. berghei than A. gambiae, and that can be 

justified by minor number of transcripts belonged to immunity functional class
209

 leading to a 

weak immune response of A. stephensi. 

Looking closer within each functional class, it was possible to identify some transcripts 

having a significant expression level and an eventual relevant role in the infection process. In 

cell function class, the transcript AGAP010035 (Fold-change of 2.34), which is implicated 

with the TOR pathway, is related with the initiation of nutrient transport proteins synthesis in 

the mosquito fat body
210

, essential for mosquito survival
211

. In chemosensory class, 

CPIJ017114 (Fold-change of 3.64) and AGAP002079 (Fold-change of 1.93) belong to arrestin 

family, and some authors 
212,213

 have suggested that altering olfactory genes could lead to a 

reduction of malaria transmission and other globally important medical and veterinary 

diseases. CYP6AA3 (Fold-change of 1.08) and other P450 cytochromes genes are presented in 

RNA-seq, included in detoxification class, once it is a response to malaria infection by 

Anopheles and are implicated with insecticide resistance
214

. In Immunity class, there are 

several groups of transcripts that interact each other and play a central role in immune 

response of Anopheles mosquito. For example, AGAP006974 (TOLL9; Fold-change of 2.69) 

belongs to Toll pathway, which is regulated by AGAP009515 (REL1; Fold-change of 2.59) 

and AGAP006747 (REL2; Fold-change of 2.12) that are NFκB transcripton factors-like
215

. 

Although the Toll pathway limits the development of P. berghei, P. falciparum and/or P. vivax 

216
, the immune deficiency (Imd) signalling pathway is the most effective pathway against the 

human malaria parasite and that is why are attractive candidates for genetic modification to 

create a mosquito with an immune response that overwhelms the parasite
217

. Also influenced 

by REL1 and REL2, TOR pathway, which e.g. includes transcript AGAP010035 (Fold-change 

of 2.34) can be affected by signals arising from the parasite’s invasion resulting in an immune 

response
211

. Other groups of transcripts are also related with Immunity class such as 

leucine-rich repeat (LRR) domains family, that also influences the survival of Plasmodium 

parasites
218

, clip domain serine proteases (CLIPs), implicated in extracellular proteolytic 

cascades that can promote Plasmodium ookinetes elimination in Anopheles midgut
219

 and 

thioester-containing protein 1 (TEP1) that after cleaved, binds to the surfaces of bacteria and 
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later stages of parasites through the conserved thioester bond influencing pathogens clearance 

by phagocytosis, in vitro 
220

. Related to this class, the proteolysis class was found upregulated 

in mosquitoes SG infected with P. berghei, associated to serine-type endopeptidases, that may 

be involved in proteolytic events during blood-feeding on vertebrate hosts or in digestion of 

extracellular matrix components 
221,222

. Metabolism class includes 21.25% transcripts (539 

transcripts, 429 upregulated and 110 down regulated) with a documented crucial role in malaria 

infection. Some examples are: AGAP004175 (fold-change of 4.17) that has orotate 

phosphoribosyltransferases (OPRT) activity, allowing de novo biosynthesis of pyrimidines 

required by P. falciparum
223

; and AGAP003184 (fold-change 2.67) that are related to 

heme-biosynthetic pathway, augment Plasmodium survival
224,225

. Of 238 transcripts included 

in transport class, ion transport transcripts were predominant, up-regulated transcripts related 

to solute carrier family (SLC) proteins, such as AGAP007054 (SLC13), AGAP007743 

(SLC16), AGAP005405 (SLC 39), AGAP000097 (SLC 25), AGAP005537 (SLC 35), 

AGAP010725 (SLC26) and NDAE1 (SLC4) were also present showing a high expression 

level.  

Real time PCR enables both detection and quantification of gene expression being used to 

confirm RNA-seq results. Quantification can be either an absolute number of copies or a 

relative amount when normalized to DNA input or additional normalizing genes 
226

. For qPCR 

assays, two reference genes candidates were selected, the A. gambiae ribosomal protein S7 

(RPS7) and elongation factor (ELF) genes. During this study, Pearson correlation was 

determined to show whether qPCR and RNA-seq results were related or not and how which 

was the most suitable reference gene amongst RPS7 and ELF, to use in qPCR normalization, 

i.e. genes showing a constitutive expression across samples. Comparing the results of the two 

genes, RPS7 was considered to be a better choice once the P value for this gene showed a 

stronger correlation than ELF (Figure 27) and with a constitutive expression. 

Moreover, as can be seen in Appendix VI, fold-changes from qPCR normalized against 

RPS7 demonstrated more homogenous results than ELF, confirming RPS7 as a better 

candidate as a reference gene in future studies.  

As referred above, a list of 20 genes showing to be differentially expressed was chosen to 

confirm RNA-seq results using the qPCR approach. These genes were selected based on the 
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ontological analysis and expression level in response to infection (Appendix VI). From the 13 

genes with confirmed expression, ASTE009422 having an arrestin domain showed to be 

highly downregulated when assayed by  both RNAseq and qPCR techniques, agreeing to the 

fact that this gene is implicated with sensory pathways
227

 being present in high levels in male 

mosquitoes to regulate olfactory-driven behaviours, and less expressed in females
228

.  

Among the upregulated genes those chosen included paxillin (ASTE007758), a gene 

related to metabolism (ASTE004032), basic helix-loop-helix (ASTE011434), chondroitin 

4-sulfotransferase (ASTE007038),clip domain serine proteases ASTE008188 (CLIPA4), serpin 

ASTE001475 (SRPN6) and ASTE009391 (prestin).The first gene is thought to encode a 

cytoskeletal actin binding protein that allows focal adhesion 
222229,230

 and  might be related 

with P. berghei adhesion in the salivary glands and invasion. ASTE004032 that belong to the 

metabolism functional class was expected to be up-regulated, once metabolism is crucial to 

development of malaria parasite and vector as well. ASTE011434 (bHLH), that is devoid in 

apicomplexan organism 
231

, is upregulated in Anopheles and, interesting, is highly expressed in 

Artemisia annua L. and implicated in the production of artemisin
232

. 

In this RNA-seq data we found, as well, the chondroitin 4-sulfotransferase (ASTE007038) 

transcript upregulated in SG. The transport of chondroitin glycosaminoglycans in the apical 

midgut microvilli of A. gambiae is mediated by chondroitin 4-sulfotransferase, leading to a 

better adhesion for parasite in to the midgut
233,234

. ASTE007038 might also be related with P. 

berghei adhesion in the SG once chondroitin glycosaminoglycans are transported through 

these tissues. Regarding the CLIP family that includes CLIPA4228, it was previously 

described
235

 that they play an essential role of activation or suppression during a specific 

immune process defined as melanization
236

, consisting in a deposition of melanin allowing 

lyse of parasites
237

. An upregulated gene ASTE001475
238

, also called SRPN6, has been 

involved in insect immunity facilitating invasion
239

 or stimulating anti-parasitic responses
240

. 

 

Within the transport functional class, SG transport proteins has shown to be important for 

parasite development and for sporozoite-SG interactions as parasite factors involved in the 

interaction with insect cells
241

. Membrane transport proteins are likely to be located on the 

outer surface of the parasite cell and mediate the passage across the membrane bilayer of 
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specific molecules and/or ions serving a diverse range of physiological roles, mediating the 

uptake of nutrients into cells, the removal of metabolic wastes and xenobiotics (including 

drugs), and the generation and maintenance of transmembrane electrochemical gradients 
242

. In 

some cases the native capacities of the host cell membrane probably suffice to meet the 

parasite needs 
243

.  

For this reason some transmembrane transporters can contribute to the permanence of the 

parasite in the host. Malaria transmission requires Plasmodium invasion of the Anopheles 

mosquito midgut and then to salivary glands. In midgut phase is involved the adhesion of 

Plasmodium to chondroitin sulfate (ChSO4) 
244

, midgut epithelial ligand. Sulfate (SO4
2–

) for 

ChSO4 biosynthesis is supplied by SO4
2–

 uptake. Slc26a5, also known as Dipteran prestin, 

have a function as Cl
-
 exchange systems for HCO

3-
, oxalate

2-
, SO4

2-
 and formate 

245
. However, 

prestin can be found also in the salivary glands and gastric caeca
246

. Poorly understood at 

molecular level, even in Diptera (Drosophila and Anopheles), can be hypothesized that control 

of Slc26a5 activity could influence parasite (Plasmodium) invasion
246

. 

Meeting the main purpose of this research work, which is to find new genes or proteins 

capable of decreasing mosquito vector capacity and considering the importance of membrane 

proteins of Anopheles spp. SG for parasite invasion and transmission and the prevalence of 

SLC proteins in transport class, the AGAP010725 transport gene was selected for further 

characterization. The choice of this gene was based on its fold-change, molecular function, 

pathway and length. ASTE009391 (A. stephensi ortholog of AGAP10725) was selected, 

including a fold-change of 2.19 and a secondary active sulfate transmembrane transporter 

activity (as confirmed by TMHMM Server v. 2.0 
168

), related to SLC26 proteins. This transcript 

with 641bp was found up regulated in RNA-seq with a fold-change of 2.19, however in qPCR 

experiments show a fold-change of 0.01. Looking through qPCR results from the three pools 

analysed, the fold-change variation was between -0.26 and 0.31 (data not shown). These 

differences in the expression of prestin can be related to heterogeneity within and between the 

pools, to a short biological half-life of prestin mRNA in the SGs, to extraction procedure 

which was performed at slight different time points (hours), or to alternative splicing of the 

gene products that may have importance in tissue translation selectivity 
247

. Although, the 
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results of qPCR were less clear regarding to the upregulation of the gene prestin in comparison 

with the RNA-seq, this study proceeded to RNAi assays.  

During silencing assays, statistical analysis showed that the number of deaths in 

mosquitoes was significantly affected by the knockdown of prestin (P>0.001) in pool 2 and 3 

(p value of 0.0001 and 0.00001, respectively), in comparison with the β2M controls. 

Contrarily, pool 1 did not show significant differences between both conditions (p value of 

0.345). Significant differences were presented when comparing number of mosquitos before 

injection (Day 14) and the last day post-dsRNA injection (Day 18) (p value of 0.00001) 

(Figure 30). 

Considering the sporozoites in the SG evaluated by microscopy, statistical analysis have 

shown that in the overall results for pools 1, 2 and 3, the presence and number of this parasite 

stage is not significantly influenced by the injection of prestin dsRNA, when compared with 

control. However, analysing the number of sporozoites of each pool separately it was observed 

that only pool 1 had a considerable reduction of this number (6.2 x 10
4 

sporozoites/ mL) in 

comparison with the control (80.4 x 10
4 
sporozoites/ mL). 

To further elucidate about all results obtained during this study, namely the influence of 

prestin knockdown in the survival of the mosquitoes and the presence and number of 

sporozoites in the SGs, it would be fundamental to conduct qPCR assays to determine the 

differential expression of this gene. Also, it is important to further analyse the differential 

expression of the off-target gene (ASTE006714) once the similarity with prestin is high 

(Appendix VIII).  
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Chapter 6: Conclusions and future perspectives  
 

It is well known and largely disseminated by various research institutions and by 

researchers themselves that exploring new targets to develop transmission blocking vaccines 

to be used together with other control measures is crucial to eradicate and control malaria 

disease. 

A comparison of the transcriptome of A. stephensi salivary glands non-infected and P. 

berghei infected was performed and a catalogue of differentially expressed genes assembled 

from transcriptomic data analysis constituting a source of fundamental information that can be 

used by all the scientific community to select potential targets for malaria candidate vaccines.  

Among the differentially expressed genes analysed by transcriptomics and qPCR, an up 

regulated Cl
-
 transmembrane transporter gene, prestin, was investigated after P. berghei 

infection. This interesting gene encodes for a transmembrane protein that might be related to 

the Cl
-
 and HCO3

2-
 exchange in the mosquito SG, allowing the optimal conditions for parasite 

development.  

Future experiments should focus in the confirmation of the expression of prestin after 

gene knockdown by qPCR. This approach will contribute for a better understanding about this 

gene function in the mosquito SG during infection by P. berghei, elucidating the results here 

obtained, such as the influence of prestin knockdown in the survival of the mosquitoes and the 

presence and number of sporozoites in the SGs.  

In an attempt for a better understanding of intracellular signaling pathways and 

biochemical processes related to prestin, NDAE1 function must be evaluated once it interact 

with prestin and share the same molecular function. This can be accomplished by evaluating 

NDAE1 protein function via knockdown and the effect of silencing of both genes on 

Anopheles infected by the Plasmodium parasite. Immunolocalisation assays of these proteins 

in the SG allied with RNAi data would contribute for a better knowledge regarding their 

function and interaction with parasites. 
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Appendix I 
 
Table 1 - Biological characteristics of Plasmodium species.  

 

Species P. vivax P. malariae P. falciparum P. ovale 

Incubation period (days) 8-27 15-30 8-25 9-17 

Duration of the erythrocyte cycle (hours) 48 72 48 48 

Number of merozoites per schizont 10000 2000 40000 15000 
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Appendix II 
Table 2 - List of primers used for validation by qPCR. 

Gene Vectorbase code Primer Forward (5’-3’) Primer Reverse (5’-3’) 
Length 

(bp) 

Annealing 

conditions 

(ºC/s) 

SRPN6 ASTE001475 CAGCATGAACTGGAAGCGTA GTTCGGGACATCGTCGTAGT 142 55 

AGAP004524 ASTE004032 ACTATCAAGCGCACAGATGC GATGCCAAACGGTTTTCTGT 103 55 

CLIPA4 ASTE008188 CTGGACGCTATCACACCAAC ACTTGTTCTGCTCGGCAAAT 121 55.5 

TOLL9 ASTE010442 GCCGGACTTCAGTTGCTTAC CACTAGCAGCAGGATGACGA 116 - 

AGAP009577 ASTE010763 CATCCGGGTTCGATAGTACG TGTTAGCACTGGGACGTCTG 105 56 

Paxillin (PAX) ASTE007758 GGTGTGAACACAACGCAGAA GCAGTGGCTGCAGGTAAAGT 117 57 

AGAP003844 ASTE011434 GAACAGTATCGGCTCGGGTA TTGCAATGTTCCTTGAGGTG 116 55 

AGAP005721 ASTE007038 CGCCAGCAGTTGCTACAGT GCGCTGGTAGTGGTAGTGGT 132 58 

AGAP005796 ASTE009772 GTTCCGGTTGGCAATCATAC GTGCAGCTTGGTGAAGGTTT 103 55 

AGAP004170 ASTE004117 GGCGAGGAGATGTACCAGTG TTACAGATCGTGGCGGTGTA 107 57 

AGAP007702 ASTE001733 TCAATCATCCGGACACGATA CGAGACATCGTTGAAAGCAA 101 53 

Inositol oxygenase (INO) ASTE005290 GATCTGGATCTGCCGAACAT GCTCACCGTAGAAAGCCATC 135 53 

helicase DDX24/MAK5 (HELI) ASTE010887 TTGAAACAAGATGCGACTGC CGCTTAGTGATCCTGGCTTC 118 55 

Nep1 (AGAP002808) ASTE007528 AGCTGGCGATGTCTTTCAGT GATCCCTCGGTGTAGTCCAA 133 56 

ARRDC2 (ARRE) ASTE009422 GACAACCAAGGTCCAACGAT GTACTGCACCCAACCGTACC 114 57 

SCRB6 ASTE000417 CCTATCGCATGTCCACCTTT ATCTTCATAGCCCCAGAGCA 113 55 

AGAP006353 ASTE000811 CTCGTAATTCCTCGCAAACC AGCCTTCCTCCAGTCCTTGT 124 56 

AGAP003844 ASTE011434 GAACAGTATCGGCTCGGGTA TTGCAATGTTCCTTGAGGTG 116 55 

AGAP010794 ASTE008166 TCGTACTTGCCCTTTCATCC CAGTGAGGGCAATGATGTTG 120 54 

RPS7 ASTE004816 TCCTGGAGGATCTGGTGTTC GATGGTGGTCTGCTGGTTCT 113 60 

AGAP005128(ELF) ASTE005097 TGCGGATTACGTGAAGAACA ACGATYTTGCTRACGCCAAC 141 60 

AGAP010725 (PRESTIN) ASTE009391 ATTGCTGTCACGGTACCTTC GGCTGAAATCTGGCAATGTT 101 59.2ºC/s 
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Appendix III 
 
Table 3 - List of primers used for double-stranded RNA synthesis. 

*All primers forward contained T7 promoter sequences (5’ – TAATACGACTCACTATAGGGAGA – 3’) at the 5’end.  

**An exogenous gene, mouse beta-2microglobulin (β2M) (GenBank: NM_009735) was used as control for the knockdown experiments. 

*** For ASTE009391 were tested three pairs of primers from exon 1, 5 and 6. But only primers from exon 1 amplified to high yields. 

Gene  Vectorbase 

code or 

GenBank 

code 

Primer Forward (5’-3’)* Primer Reverse (5’-3’)* Length 

(bp) 

Annealing 

conditions 

(ºC/s) 

beta-2 microglobulin 

(β2M)** 
NM_009735 CACCCCCACTGAGACTGATACA CACCCCCACTGAGACTGATACA 450 64ºC/s 

ASTE009391 

(prestin)*** 
ASTE009391 GGAAGGGCATGAGAGTGGTA AGTACACCAGCACCGGAAAG 471 64ºC/s 
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Appendix IV 
 
Table 4 - RNA samples for qPCR. Concentrations and absorbance of samples from SG extraction of control (C) and infected (I) experiments. 

 

RNA sample ID Concentration (ng/µL) Abs 260/280 Abs 260/230 

RNA Total 875.88 1.95 0.61 

RNA SG C 1 30.58 1.67 0.10 

RNA SG I 1 69.62 1.71 0.30 

RNA SG C 2 83.01 1.65 0.42 

RNA SG I 2 259.11 1.86 0.66 

RNA SG C 3 34.08 1.52 0.67 

RNA SG I 3 36.48 1.66 0.66 
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Appendix V 
RNA Total 
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RNA SG C1 
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RNA SG I1 
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RNA SG C2 
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Appendix VI 
Table 5- Differential gene expression in A. stephensi infected with P. berghei. 

 
Code qPCR S7 qPCR ELF RNAseq 

ASTE004117 1,02 -1,64 1,66 

ASTE001733 -0,11 -2,76 -2,65 

ASTE009422 -0,68 -3,33 -1,39 

ASTE007758 0,73 -1,93 4,54 

ASTE004032 1,16 -1,50 5,22 

ASTE010763 1,49 -1,17 5,67 

ASTE011434 2,21 -0,45 4,45 

ASTE007038 1,85 -0,81 2,17 

ASTE009772 2,25 -0,41 2,71 

ASTE000811 -1,00 -3,65 -3,16 

ASTE008188 1,00 -1,66 3,62 

ASTE001475 2,55 -0,10 1,50 

ASTE009391 0.01 -4.67 2.19 

For each transcript code is represented the mean of the triplicates fold-changes from qPCR normalized against RPS7 and ELF using ΔΔCt. Is also represented the 

fold-change from each transcript from RNA-seq results. 
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Appendix VII 
 

  

 

>(Exon 1) primer forward sequenced 

TTAATCATCCTACCTTCTACCAGGAGCTGAACGAAGAACAACCGAGCTCGGAAACGGTGGCGGCACGTGATGGCGC

ACTGCCGCCGATCGCTACCGTGTCCCATCCGATGTACCAGCAGCACCAGCTAAACGATGCGTATCAATATCGGAAAC

CGAAACGGGCACTGCATCGGGAGCTGGTGGCCAGCGTACGGCGGATGGATGCAAAGACGTGCTGCAGTACCGTCT

TTCCGCTGACGACCTGGTTGCCGGAGTACTCGTGGAGCAAGGATTTGGTGCGCGACTTGATTAGTGGGTGTACGGT

GGCTGTGATGCACATACCGCATGGTATCGGGTACGCTCTGTTGGCCAACGTGCCTCCGCTCGCTCGCATCCCTATGG

CTCTCCTTCCGGCGCTGGCGTTCTTCCTCATATACTGACTCCTATTAACCTCTATACCTCAATCTTACATTCACCTTTAC

CTTCTCCCCTACCCTATCCCCCCCCCTTTAATCTCTTCTTTTCTTATTCT 

  

 

>(Exon 1) primer reverse sequenced 

AAAATAAAAGCCATATAGATGCCGACGATCGGTGGCACGTTGGCCAACAGCGCGTACCCGATACCCTGCGGTATGTG

CATCACAGCCACCGTACACCCACTAATCAAGTCGCGCACCAAATCCTTGCTCCACGAGTACTCCGGCAACCAGGTC

GTCAGCGGAAAGACGGTACTGCAGCACGTCTTTGCATCCATCCGCCGTACGCTGGCCACCAGCTCCCGATGCAGTG

CCCGTTTCGGTTTCCGATATTGATACGCATCGTTTAGCTGGTGCTGCTGGTACATCGGATGGGACACGGTAGCGATCG

GCGGCAGTGCGCCATCACGTGCCGCCACCGTTTCCGAGCTCGGTTGTTCTTCGTTCAGCTCCTGGTAGAAGGTAGG

ATTGACAATACCACTCTCATGCCCTTCCTCTCCCTATAGTGAGTCGTATTAACCCCCCCTCAATTCCTCCTCCTCAAAC

CAACACATTATCATTCCTCCCTTACCTCTATCACAACACCCTTTTTTCCACTCTCCTTTACACTCTCTAAATC 
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