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Resumo  
 
 

O principal objetivo deste trabalho foi a aplicação de um método de cromatografia 

líquida de alta eficiência (HPLC, sigla inglesa para High-Performance Liquid 

Chromatography) acoplada a um detetor de fluorescência para encontrar as condições 

mais adequadas para a separação isocrática das hormonas 17β-estradiol (E2) e 17-α-

etinilestradiol (EE2), em amostras de bivalves. Foi utilizada uma coluna com uma fase 

reversa (Kromasil 100 C18, 5μm, 15 x 0,21 cm) e um detetor de fluorescência 

operando a comprimentos de onda de excitação e de emissão de 280nm e 305nm, 

respectivamente. Obtiveram-se curvas de calibração com bom coeficiente de 

correlação tendo-se contudo verificado problemas de contaminação durante as 

análises de amostras de bivalves. Estes problemas de contaminação tiveram origem, 

principalmente, no vasilhame de vidro usado, na preparação dos padrões e durante o 

procedimento de extração das hormonas E2 e EE2 das amostras. Assim, e numa 

primeira fase, procedeu-se à eliminação dos vários fatores potencialmente na origem 

dos problemas de contaminação de modo a ser possível obter os menores limites de 

quantificação possíveis para E2 e EE2, bem como proceder à respetiva quantificação 

nas amostras de bivalves. Assim, todo o material utilizado teve de ser cuidadosamente 

lavado com acetonitrilo e fase móvel utilizada na separação cromatográfica, 

posteriormente ao processo de lavagem habitualmente aplicado no laboratório. 

Depois deste processo de lavagem, e a utilização de uma pré-coluna no procedimento 

de separação cromatográfica, conseguiu-se identificar e quantificar a hormona E2 nos 

cromatogramas obtidos para as amostras de bivalves. Obteve-se um valor médio de 

24.59 ng/g para as amostra de bivalves recolhidas num local de aquacultura em 

Aveiro. 
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Abstract  
 

The main objective of this work was the application of an isocratic high performance 

liquid chromatography (HPLC) method coupled with a fluorescence detector to find 

the best conditions for the separation and quantification of 17β-estradiol (E2) and 

17α-ethinyl estradiol (EE2) hormones in bivalve samples. A reversed phase column 

(Kromasil 100 C18, 5µm, 15 x 0.21cm), was employed with a fluorescence detector 

operating at excitation and emission wavelengths of 280nm and 305nm, respectively. 

A calibration curve was obtained with a good correlation coefficient for each 

compound. During the chromatographic analysis of the bivalve extracts, there were 

contamination problems, originated from glassware containers, E2 and EE2 standards 

preparation, and during hormones extraction from the samples. Thus, in a first step, a 

special attention was given to the elimination of these contamination problems in 

order to obtain the lowest limits of quantification for both E2 and EE2, and achieve 

their quantification in oyster samples. Therefore, after the washing process routinely 

applied in the laboratory, all glassware  employed in samples preparation were 

washed with acetonitrile followed by the mobile phase used in the chromatographic 

analysis. After this washing procedure, and the use of a pre-column in the 

chromatographic separation process, the identification and quantification of hormone 

E2 was successfully accomplished for the oyster samples. An average value of 24.59 

ng/g was obtained for oyster samples collected at an aquaculture location in Aveiro. 
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1. Introduction 
 

In this research work, two steroid hormones have been analyzed in oyster samples, 

to be more specific: the 17β-estradiol (E2) and 17α-ethinyl estradiol (EE2). They are 

biologically active compounds synthesized from cholesterol, which have in common a 

cyclopntan-o-perhidrophenanthreno ring. The hormone E2 is a natural estrogenic steroid, 

while the hormone EE2 is a synthetic steroid. Natural estrogenic steroid have higher 

solubility than the synthetics. The solubility of E2 in water is of 13 mg/l at 20ºC while the 

water solubility of EE2 is reduced to 4.8 mg/l at 20ºC according to Ying et al. (2002).  

 Estrogens, such as estradiol, are predominantly female hormones, being important 

to the health of reproductive tissues, breasts, skin and brain in human and animal. The 

estrogens play an important role in their differentiation, development and reproduction in 

wildlife. In invertebrates, the steroid control of reproduction is unclear. 

 Steroid hormones can enter the environment through sewage discharge and animal 

waste disposal, since all humans and animals can excrete the hormones from their bodies 

in different amounts, depending on gender, age, state of health, diet or pregnancy in the 

case of the females. Animal waste and biosolids as well as recycled wastewater have been 

increasingly applied to agricultural land; therefore, it is vital to estimate the input of 

steroids and their possible movement into surface and ground water through runoff and 

leaching. These steroids have a moderate binding on sediments and are reported to degrade 

rapidly in soil and water. 

 Steroids have been detected in effluents of sewage treatment plants (STPs) and 

surface water. They may interfere with the normal functioning of endocrine systems, thus 

affecting reproduction and development of wildlife (Jobling et al., 1998). The steroids of 

concern for the aquatic environment due to their endocrine disruption potential are mainly 

estrogens and contraceptives, which include E2 and EE2.  

 E2 and EE2 are analyzed because their importance in the environment. The 

presence of E2 causes the feminization of the males according to Metcalfe et al., (2001). 
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They observed gonadal intersex and high prevalence of the female phenotype in fish 

populations in urbanized areas. Environmental estrogens discharged in sewage treatment 

plant effluents may be responsible for feminization of fish but many compounds with the 

potential to induce these responses occur in the effluents, including natural and synthetic 

estrogen hormones. 

 Steroids are also active signal transmitters in vertebrates. As E2 has shown some 

physiological activities in the oyster and as estrogens or estrogen-like molecules can be 

present in water, Le Curieux-Belfond et al. (2005) have investigated the bioaccumulation 

and metabolism of this estrogen in vivo in the oyster Crassostrea gigas. They concluded 

that oyster is able to take in charge estradiol as a potential contaminant in seawater. 

Therefore, its bioaccumulation and transformation into estrone could be studied as 

potential biomarker of endocrine disruption. 

In this study, for the analysis of E2 and EE2 in oyster samples, a high performance 

liquid chromatography (HPLC) coupled with a fluorescence (FL) detector was used. HPLC 

is a technique for the separation of mixtures, where the sample is normally carried in a 

mobile phase through a stationary phase. The constituents of the sample are separated 

based on their affinity between the mobile phase and the stationary phase.  There are two 

different modes of mobile phase elution in HPLC: a) isocratic elution, where the mobile 

phase composition is kept constant through the whole procedure; and b) gradient elution, 

where the composition of the mobile phase can be programed during the separation. Our 

goal is to get an isocratic method for separating the hormones E2 and EE2. In this work, a 

chromatography column with a reversed phase (RP) stationary phase was used for separating the 

hormones. RP chromatography is any chromatographic method that uses a hydrophobic 

(non-polar) stationary phase, and can bind quite polar molecules. In RP chromatography, 

water is usually the base solvent. Other organic solvents, such as methanol, acetonitrile or 

tetrahydrofuran are added in fixed (isocratic elution) or varying proportions (gradient 

elution). 

More than one detection method can be used at the same time (usually known as 

hyphenated detector arrangement), in order to obtain information-rich detection for both 

identification and quantification compared to that using a single detector. Fluorescence is 

the detection technique chosen for this research work. Fluorescence detection is very 
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selective and sensitive of either natively fluorescent or derivatizable analytes. In the case of 

hormones E2 and EE2, it is not necessary to derivatize these compounds as they are 

natively fluorescent. By definition, fluorescence is the emission of light by a substance that 

has absorbed light or other electromagnetic radiation. It also occurs when molecules return 

to ground state after being excited to higher electronic states by energetic electron 

bombardment. 

The hormones E2 and EE2 have been also analyzed by other methods. For 

example, Ronan et al. (2013) used a sensitive method combining liquid chromatography 

and tandem mass spectrometry, with electrospray ionisation in negative mode (LC/ESI-

MS/MS), for determining estrone (E1), E2 and EE2 at concentrations between 0.07 and 60 

ng/L in seawater, and between 0.4 and 200 ng/g wet weight in mussels (Mytilus spp.). 

According to the authors, this method is suitable for the detection of E1, E2 and EE2 at 

biologically relevant concentrations and, due to the specificity offered, is not subject to 

potential interferences from endogenous E1 and E2 that often complicate the interpretation 

of estrogenic biomarker assays. The method developed in this report was successfully 

employed for the simultaneous detection of steroid estrogens (E1, E2 and EE2) in water 

and biota at concentrations above 0.4 to 0.9 ng/g in biota, and 0.07 to 0.14 ng/L in 

seawater.  

E2 an EE2 can also be analyzed by gas chromatography (GC) coupled to mass 

spectrometry (GC-MS). Petrovic et al. (2001) presented an overview of the analytical 

methods for target endocrine-disrupting compounds in freshwater sediments. In this work, 

the estrogens were Soxhlet-extracted using methanol and subsequently derivatized for 

further GC–MS analysis.  

 

 

 



4 

 

2. Materials and methods 

2.1. Reagents and standards 

 

The steroid hormones E2 (97.5%) and EE2 (99.5%) were supplied by Dr. 

Ehrenstofer, in methanol at a concentration of 100 mg/L. HPLC-plus gradient ethanol 

(CH3CH2OH, EtOH) and HPLC-GOLD-ultragradient methanol (CH3OH, MeOH) were 

obtained from Carlo Erba, HPLC gradient grade acetonitrile (CH3CN, ACN) from Fisher 

scientific, and orthophosphoric acid (H3PO4) (85%) from Panreac. 

Each standard solution of E2 and EE2 were further diluted to a stock solution of 6 

ppm concentration, using methanol to analyze the fluorescence spectra and different 

method of HPLC. After choosing the method, a 5 ppm concentration stock solution was 

prepared by dilution with the mobile phase (MP) consisting of 50% (v/v) ACN to get a 1 

ppm concentration to make the standard solutions for the calibration curve. 

 

2.2. Instrumentation and HPLC method conditions 

 

In a first step, it was necessary to select the most appropriate excitation and 

emission wavelengths (λexc and λem, respectively) for detecting E2 and EE2 in the samples 

extracts. This was done by recording the excitation-emission matrix (EEM) fluorescence 

spectra of both E2 and EE2 on a fluorescence spectrophotometer JASCO, model FP-6500. 

The chromatographic analysis of both E2 and EE2 was performed on a JASCO 

chromatographic system equipped with a JASCO isocratic HPLC pump (model PU-2080), 

a Rheodyne injection valve (model 7725i) equipped with a 20 µl loop, and a JASCO 

fluorescence detector (FP-2020 Plus) operating at λexc / λem = 280/305 nm. For the 

separation of E2 and EE2, it was used a Kromasil 100 C18 column (diameter 2.1 mm; 

length 150 mm; particle size 5 µm; pore diameter 100Å). The mobile phase consisted of 

50% (v/v) ACN, with a flow rate set at 0.4 ml/min.  
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2.3. Glassware washing procedures 

 

In order to avoid contamination problems, the use of properly cleaned material is 

important in any research work. These contaminations can interfere with the analysis of the 

compounds of interest, thus deteriorating the results. In this research work, due to the high 

sensitivity of the fluorescence detector, the glassware washing process becomes even more 

important.  

For processing the samples, all the material was washed with deionized water, 

soaked in detergent (Derquim, alkaline) for a few hours and again washed with deionized 

water. The material was then immersed in sodium hydroxide (NaOH 1M) and thoroughly 

washed, first with deionized water and then with Elix water. To finish the washing process, 

the material was washed with ACN followed by the MP (50% (v/v) ACN) and then dried. 

 

2.4. Extraction of E2 and EE2 from oyster samples 

 

For E2 and EE2 extraction, 1g of homogeneous oyster sample was placed into a 

Teflon centrifuge tube with 20 ml MeOH and shaken for 1 minute with a Vortex. 

Afterwards, this mixture was extracted in an ultrasonic bath for 5 minutes. Then, the 

samples were centrifuged at a speed of 4000 r/min for 5 minutes. With this procedure, the 

liquid and solid phases were separated, and the liquid phase was transferred into a round 

bottom flask. The remaining residue was subjected again to the solid-liquid extraction 

procedure, and the obtained liquid phase was transferred into the previous round bottom 

flask. The MeOH extract was evaporated to dryness and redissolved with 10 ml of 

ultrapure water. 

Sample clean-up was conducted using an Oasis hydrophilic-lipophilic-balanced 

(HLB) extraction cartridge (6cc, 150mg). The cartridges were rinsed and conditioned with 

10 ml MeOH and 10 ml ultra-pure water before the addition of the sample extract. The 

cartridges were then rinsed with 5 ml 5% (v/v) MeOH in ultrapure water, and the adsorbed 

compounds were eluted with 4 ml MeOH under a gentle vacuum. The eluates were then 



6 

 

evaporated to dryness and redissolved in 2 ml of MP. The obtained sample extract was 

filtered through HPLC certified syringe filters of 0.22 µm pore size before analysis by 

means of the HPLC-FL method previously described.  

 

3. Results and discussions 
 

3.1. Selection of λexc and λem  
 

The first step entailed the selection of the most appropriate λexc / λem pair for 

detecting the hormones E2 and EE2. This λexc / λem pair was selected based upon the EEM 

fluorescence spectra of both hormones, diluted in the MP. The compounds were diluted to 

a concentration of 0.1ppm using 55% (v/v) MeOH and 45% water acidified with H3PO4 

(10mM). As shown in Figure 1 and Figure 2, each hormone has two distinct λexc due to the 

resonance forms that both E2 and EE2 may undertake, both emitting at λem 305 nm. In this 

study, it was decided to select the λexc / λem pair of 280/305 nm because the obtained 

fluorescence peak is much better defined. According to Yoon et al. (2003), both E2 and 

EE2 are excited at a λexc of 280 nm, and they emit at a λem  of 310 nm. The results obtained 

in this study are very similar to those reported in the literature. 

 

Figure 1- Excitation-emission matrix (EEM) fluorescence spectra of EE2 (0.1ppm). 
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Figure 2- Excitation-emission matrix (EEM) fluorescence spectra of E2 (0.1ppm). 

 

3.2. Selection of the best HPLC separation conditions  
 

Different HPLC conditions were tested in order to achieve the separation and 

further quantification of the E2 and EE2 hormones. The first tested method was that of 

Yoon et al. (2003) for analyzing E2, EE2 and other compounds on powered activated 

carbon. A reversed phase column (Kromasil 100-5 C18 15cm x 4.6mm) was used for the 

isocratic elution with a MP composition consisting of 55% (v/v) MeOH in 10mM H3PO4, 

at a constant flow rate of 0.8 ml/min. It was decided to use a MP with MeOH instead of 

ACN, which is known to be a common organic solvent used in the chromatographic 

separation of E2 and EE2. The advantages of using MeOH include the fact that it is 

cheaper than ACN and it is a more ecological solvent. 

As shown in Figure 3 and Figure 4, there are a few unknown peaks before a 

retention time of 5 minutes, while the E2 and EE2 elute between the retention time of 27 

and 40 minutes. Each compound gave more than one non-Gaussian overlapping peaks, 

being impossible to identify each compound using these separation conditions. Another 

drawback is that it took a long time to elute each hormone, thus suggesting the need for 

using a different MP composition in order to decrease the time of analysis. 
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Figure 7- Chromatogram of a solution of EE2
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Figure 12- Chromatogram of E2 and EE2

 

 

Figure 13- Chromatogram of E2 and EE2

 

0

5000

10000

15000

20000

25000

30000

35000

0 1

µV

0

5000

10000

15000

20000

25000

30000

0 1

µV

Chromatogram of E2 and EE2 (0.5ppm) in 50% (v/v) ACN and a flow rate of 0.4ml/min

Chromatogram of E2 and EE2 (0.5ppm) in 50% (v/v) ACN and a flow rate of 0.5ml/min

2 3 4 5 6 7 8 9 10 11 12 13

min

EE2

E2

2 3 4 5 6 7 8 9 10 11 12 13

min

E2
EE2

14 

 

and a flow rate of 0.4ml/min. 

 

and a flow rate of 0.5ml/min. 

13 14 15

13 14 15



15 

 

By increasing the flow rate, the peak separation was found to be better and the time 

of chromatographic analysis was lower, thus getting lower retention times. After analyzing 

these chromatograms obtained at different flow rates, it was decided to set the flow rate at 

0.4 ml/min as the most appropriate for achieving hormones separation. With this flow rate, 

the first compound, hormone E2, elutes after 3 minutes, and only before minute 4 it 

appeared the second hormone EE2. 

The best separation conditions (best separation between peaks, Gaussian peaks) 

were therefore established, with the MP composition consisting of 50% (v/v) ACN and a 

flow rate of 0.4 ml/min, also was the method with lowest RTs.  

 

3.3. Figures of merit for the quantification of E2 and EE2  
 

For the quantification of E2 and EE2, two calibration curves were obtained from 

five standards of different concentrations between 5 ppb and 25 ppb: 5 ppb, 10 ppb, 15 

ppb, 20 ppb and 25 ppb. These standards were prepared from a 1ppm stock solution, by 

diluting an appropriate amount in the MP (50% (v/v) ACN).  

Each standard was injected three times over three days. It was necessary to repeat 

the process to see the reproducibility and repeatability of the acquired data. These 

chromatograms were obtained using the best separation conditions previously chosen: 

Kromasil 100 C18 (5µm, 15 x 0.21 cm) column, MP consisting of 50% (v/v) ACN, and a 

flow rate of 0.4 ml/min. A 7 minutes chromatography was enough, considering that the 

peaks appear from minute 3 to minute 5 with this method. Figure 14 shows the 

chromatograms of the E2 and EE2 standards, where it is possible to see an increase in the 

area of each peak proportionally to the standard concentration. 
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Table 1- Data analysis of the calibration curve of compound EE2. 

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 88.37 433.60 0.20 0.85 -1291.55 1468.29 

X Variable 1 1339.35 26.15 51.22 1.64E-05 1256.14 1422.56 

 

Table 2- Data analysis of the calibration curve of compound E2. 

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept -96.26 508.77 -0.19 0.86 -1715.39 1522.88 

X Variable 1 1431.08 30.68 46.64 2.17E-05 1333.44 1528.72 

 

 

The calibration curves obtained for each compound are shown in Figure 15 and 

Figure 16. Figure 15 shows the calibration curve obtained for EE2 and Table 3 shows the 

statistical data obtained for this calibration curve. On the other hand, Figure 16 shows the 

calibration curve obtained for E2 and Table 4 summarizes the statistical data obtained for 

this calibration curve. The obtained calibration curves have a good regression coefficient 

(R2), apart from the calibration curve we obtain a low standard deviation (STD) as it is 

shows in these figures (Figure 15,Figure 16). 

 

Table 3- Data analysis of the calibration curve of compound EE2 

Regression Statistics 

Multiple R 0.9999 

R Square 0.9998 

Adjusted R Square 0.7498 

Standard Error (SE) 360.5057 

Observations 5 
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Figure 15- Calibration curve obtained for the compound EE2 on the second day (Orange and blue lines are 

the STD of the calibration curve). 

 

Table 4- Data analysis of the calibration curve of the compound E2. 

Regression Statistics 

Multiple R 0.9999 

R Square 0.9997 

Adjusted R Square 0.7497 

Standard Error (SE) 422.6015 

Observations 5 

 

 

Figure 16- Calibration curve obtained for the compound E2 on the second day (Orange and blue lines are 
the STD calibration curve).  
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For each hormone, the calibration curve did not vary much from one day to another, 

as shown by the slope values in Table 5 and Table 6. The average value of the slope as 

well as the standard deviation and relative standard deviation are presented in these tables.  

 

Table 5- Slope values obtained for EE2 in the three days of calibration. 

 Slope Slope mean 

value 

STD RSD 

1st Day 1354.99  

1344.30 

 

10.63 

 

2nd Day 1344.17 0.79 

3rd Day 1333.73  

 

 

Table 6- Slope values obtained for E2 in the three days of calibration. 

 Slope Slope mean 

value 

STD RSD 

1st Day 1431.96  

1421.53 

 

13.12 

 

2nd Day 1425.83 0.92 

3rd Day 1406.80  

 

 

The retention time of each hormone is another value we got from the 

chromatograms, which are summarized in Table 7 and Table 8 for the hormone EE2 and 

hormone E2, respectively. Each table also shows the average of the retention times 

obtained for each standard and the standard deviation. As seen, the chromatographic peaks 

appear at similar retention times for the different injections, which is supported by the low 

value of the RSD. This feature helps to identify each hormone when analyzing the samples. 

As such, EE2 is the first compound appearing in the chromatogram with an average 

retention time of 3.12 minutes, while E2 appears at a retention time of 3.99 minutes. 
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Table 7- Retention times (RT) obtained for EE2 during the three days of analysis. 

 

EE2 

concentration 

RT of EE2 (min) RT 

mean 

value of 

EE2 

(min) 

 

STD 

(min) 

 

RSD 

(%) 

 

1st Day 

 

2nd Day 

 

3rd Day 

5ppb 4.19 3.93 3.88  

 

3.99 

 

 

0.17 

 

 

4.23 

10ppb 4.22 3.86 3.91 

15ppb 4.23 3.86 3.93 

20ppb 4.23 3.86 3.86 

25ppb 4.20 3.81 3.86 

 

Table 8- Retention times (RT) obtained for E2 during the three days of analysis. 

 

E2 

concentration 

RT of E2 (min) RT 

mean 

value of 

E2 (min) 

 

STD 

(min) 

 

RSD 

(%) 

 

1st Day 

 

2nd Day 

 

3rd Day 

5ppb 3.24 3.09 3.06  

 

3.12 

 

 

0.10 

 

 

3.38 

10ppb 3.26 3.03 3.07 

15ppb 3.27 3.03 3.11 

20ppb 3.28 3.03 3.04 

25ppb 3.25 3.00 3.04 

 

The limits of detection and quantification were calculated for each compound. The 

limit of detection (LOD) is the concentration which gives an instrumentation signal 

significantly different from the blank or background signal, being calculated with the 

following equation: 

LOD= 3.SE/Slope (3) 
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The LOD is calculated as three times the value of the standard error (SE) divided by 

the slope value. The values of SE and slope were obtained from the statistical data analysis 

of the calibration curve. Moreover, the limit of quantification (LOQ) is the concentration at 

which quantitative results can be reported with a high degree of confidence and was 

calculated with Equation (4). LOQ is ten times SE divided by the slope value. The values 

of LOD and LOQ obtained for EE2 and E2 are in Table 9 and Table 10, respectively. 

LOQ= 10. SE/Slope (4) 

 

For EE2, the obtained LOD were between 0.81ppb and 0.97ppb, while the LOQ 

were between 2.68ppb and 3.26ppb. In the case of E2, the obtained LOD were between 

0.89ppb and 1.33ppb, while the LOQ were between 2.96ppb and 4.44ppb. 

 

Table 9- Limits of detection and quantification obtained for EE2 on the three days of analysis. 

EE2 
Limit of Detection (LOD) 

(ppb) 

Limit of Quantification (LOQ) 

(ppb) 

1st day 0.97 3.23 

2nd day 0.81 2.68 

3rd day 0.85 2.83 

 

 

Table 10- Limits of detection and quantification obtained for E2 on the three days of analysis. 

E2 
Limit of Detection (LOD) 

(ppb) 

Limit of Quantification (LOQ) 

(ppb) 

1st day 1.06 3.53 

2nd day 0.89 2.96 

3rd day 1.33 4.44 
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also exhibits a similar interfering problem that overlaps the peaks of E2 and EE2, as seen 

in Figure 18. 

 

 

Figure 18- Chromatogram of E2 and EE2 (15ppb) showing an interfering peak, obtained with a MP 

consisting of 50% (v/v) ACN and a constant flow rate of 0.4ml/min. 
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Figure 19- Chromatogram of the MP consisting of 50% (v/v) ACN, and acquired at a cons

0.4ml/min. 

 

Figure 20- Chromatogram of E2 and EE2 (1ppm stock solution) using a MP consisting of 50% (v/v) ACN, 

and acquired at a constant flow rate of 0.4ml/min.
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transferred into these flasks and analyzed and the chromatograms obtained is shown in 

Figure 21, meaning that interferences came from these flasks. Considering these results it 

was decided to test different flasks (4ml). Therefore, two flasks of 4ml were cleaned by 

different procedures: one was washed with NaOH (1M) and HCl (25%), whereas the other 

was washed only with NaOH. Figure 22 and Figure 23 show the chromatograms of the MP 

after being stored in these two flasks.  

 

 

Figure 21- Chromatogram of the MP after being stored in a 5 ml micro reaction vessels. 

 

 

Figure 22- Chromatogram of the MP after being stored in a 4ml flask washed with NaOH (1M)  
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Figure 23- Chromatogram of the MP after being stored in a 4ml flask washed with NaOH (1M) and HCl 

(25%). 

 

The chromatogram of the solution stored in the new flasks exhibit a signal at a 

retention time near 1 minute, which do not interfere with the signals of the hormones. 

Although it could be concluded that the contamination came from the flasks, the 

chromatogram of the solution stored in those flasks that were not washed with acid exhibit 

a similar profile, which hinders any conclusion about the source of the contamination. 

However, it was further observed a contamination in some of the 4 ml flaks that 

interfere with the compounds of interest as shown in Figure 24. Considering this, it was 

decided to clean all the flask with ACN and MP flask after being washed with NaOH and 

acid. Several flasks were tested and for this, 1ml of the MP was transferred into the flasks 

and stored before being injected. An example of a chromatogram obtained is illustrated in 

Figure 25. As can be observed in the chromatogram, the contamination decreased using this 
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Figure 24- Chromatogram of the MP after being stored in a 4ml flask with some interferences. 

 

 

Figure 25- Chromatogram of the MP after being stored in a 4ml flask washed with acid, ACN and the MP. 
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Figure 26- Chromatograms of E2 and EE2 

consisting of 50% (v/v) ACN and a constant flow rate of 0.4ml/min.
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Figure 27- Chromatograms of the first SPK solution (25ppb) in comparison with a chromatogram of EE2 

and E2 standard (25ppb), using a MP consisting of 50% (v/v) ACN and acquired at a constant 

flow rate of 0.4ml/min.

 

Figure 28- Chromatogram of the second SPK solution (25ppb) in comparison with a chromatogram of EE2 

and E2 standard (25ppb), using a MP consisting of 50% (v/v) ACN and acquired at a constant 

flow rate of 0.4ml/min.
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and E2 standard (25ppb), using a MP consisting of 50% (v/v) ACN and acquired at a constant 
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Table 11- Percentages of recoveries for E2 and EE2 in the SPK solutions. 

 E2 recovery (%) EE2 recovery (%) 

SPK-A_R1 173 96 

SPK-A_R2 173 95 

SPK-B_R1 292 110 

SPK-B_R2 285 109 

 

All the material used in this study was analyzed for assessing the presence of 

sources of contamination. For this, the procedures of solid-liquid extraction and SPE were 

assessed using blank samples. 

The blanks of the solid-liquid extraction part were analyzed after transferring 20 ml 

of MeOH to a centrifuge tube, shake it with a vortex for 1minute, and transferred into a 

round bottom flask. All this process was repeated twice, storing 40ml of MeOH in the 

round bottom flask. Then, the MeOH was evaporated until dryness, re-dissolved with 2ml 

of MP and injected after being filtered. Figure 29 shows the obtained chromatogram, and it 

can be concluded that the extraction procedure originate signals that interfere with the 

signals of the compounds. 

To prepare blanks of the SPE procedure, the cartridges were rinsed and conditioned 

with 10 ml MeOH and 10 ml ultrapure water before the addition of the sample, in this case 

10ml of ultrapure water. The cartridges were then rinsed with 5 ml 5% (v/v) MeOH, and 

the samples were eluted in 4 ml MeOH under a gentle vacuum. The sample was then 

reduced to dryness and re-dissolved in 2 ml of MP. The solution was injected after being 

filtered with a glass syringe. The SPE procedure also originates signals that interfere with 

the signals of the compounds, as shown in Figure 30. 
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Figure 29- Chromatogram of a blank sample of the solid-liquid extraction procedure. 

 

 

Figure 30- Chromatogram of a blank sample of the SPE procedure. 

 

Both solid-liquid extraction and SPE procedures originate contamination signals. In 

the SPE, the cartridges are likely to be responsible for originating such signals. The 

cartridges used were made of plastic, so the contamination could come from this material; 

such cartridges were used because those of glass are much more expensive. In the solid-

liquid extraction procedure, the contamination could originate from the centrifuge tube or 

from the round bottom flask, and therefore these materials were tested separately. To test 

the centrifuge tube, 5ml of MeOH were transferred into the tube, shaken in a Vortex for 1 

minute, and then transferred to a flask and dried. The final residue was dissolved with 2ml 
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of MP and injected after being filtered. As shown in Figure 31, the centrifuge tubes did not 

give any contamination signal; the contamination did not come from this material. These 

centrifuge tubes were made of Teflon, so it was unlikely to be the cause of contamination. 

 

 

Figure 31- Chromatogram of a blank sample of the centrifuge tube using a MP consisting of 50% (v/v) 

ACN and acquired at a constant flow rate of 0.4ml/min. 

 

The next step entailed testing the round bottom flasks. For this, 40ml of MeOH 

were transferred directly into the round bottom flask, and evaporated until dryness. The 

final residue was dissolved with 2ml of MP and filtered before being injected. As shown in 

the chromatogram of Figure 32, the round bottom flasks originated signals which interfere 

with both E2 and EE2. Afterwards, new round bottom flasks were tested, after being 

appropriately washed. These blank samples were treated in the same way as above 

described. With the new round bottom flasks, the contamination still appears (Figure 33). 
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Figure 32- Chromatogram of a blank sample of a round bottom flask, using a MP consisting of 50% (v/v) 

ACN and acquired at a constant flow rate of 0.4ml/min. 

 

 

Figure 33- Chromatogram of a blank sample of a new round bottom flask, using a MP consisting of 50% 

(v/v) ACN and acquired at a constant flow rate of 0.4ml/min. 

 

As MeOH was used in this process, these new round bottom flasks were cleaned 

using complete washing process, plus a final step with MeOH. However, with this 

procedure, the intensity of the interference increases even further, as shown in Figure 34. 

This result suggests that MeOH could actually be the source of contamination, thus 

pointing to the fact that future efforts should be devoted to the use of fluorescence grade 

MeOH. 
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Figure 34- Chromatogram of a blank sample using a new round bottom flask after being washed with 

MeOH. The MP consists of 50% (v/v) ACN and the flow rate was 0.4ml/min. 

 

3.5. Recovery studies of the extraction procedure 
 

SPK solutions were prepared using E2 and EE2 standards with a concentration of 

10 ppb; they were designated as blank SPK. Three blank SPK solutions were prepared and 

each solution was injected three times. As shown in Figure 35, only the peak of E2 could 

be integrated to obtain the corresponding area for further estimative of its concentration. 

The percentage of recoveries of E2 obtained for the different replicates of SPK solutions 

are shown in Table 12; the recoveries were between 96% and 103%.  
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Figure 35- Chromatogram of a SPK solution (10ppb) in comparison with a chromatogram of EE2 and E2 

pattern (10ppb), in 50% acetonitrile and 50% water mobile phase at a constant flow rate of 

0.4ml/min. 

 

Table 12- Percentage of recoveries obtained for E2 in the analysis of the SPK solutions (10ppb standard).

 E2 
SPK 1 
SPK 2 
SPK 3 
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Chromatogram of a SPK solution (10ppb) in comparison with a chromatogram of EE2 and E2 
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Figure 36- Chromatogram of the 
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Figure 37- Chromatogram of the oyster sample and of the 5ppb standard obtained with a MP consisting of 
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between 3 and 5 minutes. For the oyster sample (Figure 37), there are also several of 

unknown peaks that interfere with those of E2 and EE2, preventing their quantification in 

the sample. also shows the chromatogram of the 5ppb standard in order to assist in the 

identification of both compounds in the chromatogram of the oyster sample. The 

chromatographic peak of the E2 can be identified in the chromatogram of the sample but it 

is partially overlapped by unknown peaks, while the peak of EE2 is totally overlapped. 

This interference can originate from a contamination problem, being therefore extremely 

important to find the source of contamination in order to eliminate or reduce this problem, 

so it does not interfere with the quantification of both E2 and EE2.  

After these analyses, and to prevent any damage of the HPLC analytical column, a 

pre-column was added into the HPLC instrumentation, which increased the backpressure 

of the analytical column and also the retention times of the compounds. After adding the 

pre-column, the sample was re-analyzed (Figure 38). In this case, the EE2 was also 

completely overlapped and it was impossible to identify and quantify this hormone in the 

sample. In the case of E2, it was possible to identify and integrate the chromatographic 

peak, which allowed the estimative of the concentration of this hormone in the oyster 

samples from Aveiro. The average concentration obtained for the oyster samples was 24.59 

ng per gram of sample (Table 13). To ensure that the identified peak really corresponds to 

the E2 hormone, a 15ppb standard was added to the sample extract (Figure 39). By 

increasing the concentration of E2, the chromatographic peak intensity also increases, thus 

confirming that the identified peak really belongs to the E2 hormone. 

 

Table 13- Concentrations of E2 obtained in the oyster samples from Aveiro. 

Sample Concentration of 

E2 (ng/g) 

Average 

concentration of 

E2(ng/g) 

STD RSD 

AV-A 22.11 24.59 3.51 

 
14.29 

 
AV-B 27.08 

 



 

Figure 38- Chromatogram of the oyster 

ACN at a constant flow rate of 0.4ml/min, after adding a pre

 

Figure 39- Comparison between 

sample after the addition of 15 ppb
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4. Conclusions 

 

In this research, an HPLC-FL system was used to analyze the hormones E2 and 

EE2 in oyster samples. The fluorescence detector is very sensitive, demanding a 

thoroughly cleaning procedure of all the material used for preparing the standards and the 

samples.  

The problems with contamination decreased drastically after washing the material 

with ACN. After being washed with detergent (Derquim, alkaline) and NaOH, all the 

material had to be washed with ACN and MP. With this procedure, the contamination 

problems disappeared from all the material, except for the round bottom flasks and micro 

reaction vessels (5ml). When the round bottom flasks were used, the contamination signal 

interfered with the signal of EE2. This contamination could originate from the MeOH used 

in the extraction process. It should be checked whether or not the contamination comes 

from this organic solvent by using fluorescence grade MeOH. 

The calibration curves obtained for both E2 and EE2 were good and the peaks 

appeared properly separated, thus enable integration of the peaks area. For the 

chromatograms of the samples extracts, it was not possible to integrate the peak of the EE2 

due to the interference of unknown signals. However, for the hormone E2, it was possible 

to calculate its concentration in the oyster samples collected at Aveiro. Although we were 

able to estimate the concentration of E2, additional estimates should be performed to 

confirm the obtained value. Blank SPK solutions of 10ppb were analyzed, but this 

procedure should be applied to blank SPK solutions with other concentration levels. Also, 

oyster samples with addition of SPK solutions should also be analyzed. 

In conclusion, the LOD calculated for the EE2 should not be considered a true 

value, because it was not possible to calculate the true concentration of EE2 in both the 

SPK solutions and oyster samples. The contamination that hinders a proper quantification 

of this hormone has to be eliminated or has to be reduced until the peak of EE2 is free from 

interferences. In this research, it was possible to quantify the concentration of E2 in the 

oyster samples collected in Aveiro using a HPLC-FL system and a MP consisting of 50% 
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(v/v) ACN at a constant flow rate of 0.4ml/min. The average concentration of E2 obtained 

for the oyster samples was 24.59 ng/g.  
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